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Summary. The coexistence of “classical” finite sequences [1] and their
zero-based equivalents finite 0-sequences [6] in Mizar has been regarded as a
disadvantage. However the suggested replacement of the former type with the
latter [5] has not yet been implemented, despite of several advantages of this
form, such as the identity of length and domain operators [4]. On the other hand
the number of theorems formalized using finite sequence notation is much larger
then of those based on finite 0-sequences, so such translation would require quite
an effort.

The paper addresses this problem with another solution, using the Mizar
system [3], [2]. Instead of removing one notation it is possible to introduce ope-
rators which would concatenate sequences of various types, and in this way allow
utilization of the whole range of formalized theorems. While the operation could
replace existing FS2XFS, XFS2FS commands (by using empty sequences as initial
elements) its universal notation (independent on sequences that are concatena-
ted to the initial object) allows to “forget” about the type of sequences that are
concatenated on further positions, and thus simplify the proofs.
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1. Preliminaries

Let a be a real number and b be a non negative real number. One can check
that a−′ (a+ b) is zero.

One can check that a+ b−′ a reduces to b.
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Let n, m be natural numbers. We identify n∩m with min(m,n). We identify
min(m,n) with n ∩ m. We identify max(m,n) with n ∪ m. Let n, m be non
negative real numbers. Observe that min(n + m,n) reduces to n and max(n +
m,n) reduces to n+m.

Now we state the propositions:

(1) Let us consider a binary relation f , and natural numbers n, m. Then
(f�(n+m))�n = f�n.

(2) Let us consider a function f , a natural number n, and a non zero natural
number m. Then (f�(n+m))(n) = f(n).

Let D be a non empty set, x be a sequence of D, and n be a natural number.
Let us note that dom(x�n) reduces to n. Observe that x�n is finite and transfinite
sequence-like and x�n is n-element.

2. Complex-Valued Sequences

Now we state the proposition:

(3) Let us consider complex-valued functions f , g, and a set X. Then (f ·
g)�X = (f�X) · (g�X).
Proof: For every object x such that x ∈ dom((f · g)�X) holds ((f ·
g)�X)(x) = ((f�X) · (g�X))(x). �

Let D be a non empty set and f , g be sequences of D. Let us note that f+·g
is transfinite sequence-like.

Let f be a constant complex sequence and n be a natural number. Let us
note that f ↑ n is constant and there exists a complex sequence which is empty
yielding and there exists a sequence of real numbers which is empty yielding
and every complex sequence which is empty yielding is also natural-valued and
there exists a complex sequence which is constant and real-valued.

Now we state the proposition:

(4) Let us consider a sequence s of real numbers, and a natural number n.
Then ((

∑κ
α=0 s(α))κ∈N)(n) =

∑
(s�Zn+1).

Let c be a complex number. The functor {c}n∈N yielding a complex sequence
is defined by the term

(Def. 1) N 7−→ c.

Let n be a natural number. One can check that ({c}n∈N)(n) reduces to c.
Now we state the proposition:

(5) Let us consider complex-valued functions f , g, and a set X. Then (f +
g)�X = f�X + g�X.
Proof: For every object x such that x ∈ dom((f + g)�X) holds ((f +
g)�X)(x) = (f�X + g�X)(x). �
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Let f be a 1-element finite sequence. One can verify that 〈f(1)〉 reduces to
f .

Let f be a 2-element finite sequence. Let us note that 〈f(1), f(2)〉 reduces
to f .

Let f be a 3-element finite sequence. Let us note that 〈f(1), f(2), f(3)〉
reduces to f .

Now we state the propositions:

(6) Let us consider a complex-valued finite sequence f . Then
∑
f = f(1) +∑

f�1.

(7) Let us consider a non empty, complex-valued finite sequence f . Then∏
f = f(1) · (

∏
f�1).

(8) Let us consider a natural number n, a non zero natural number m, and
an (n+m)-element finite sequence f . Then f�(n+1) = (f�n)a 〈f(n+1)〉.

(9) Let us consider a complex-valued finite sequence f , and a natural number
n. Then

∏
f =

∏
(f�n) ·

∏
f�n.

Proof: Define P[natural number] ≡
∏
f = (

∏
(f�$1)) ·(

∏
f�$1). For every

natural number k such that P[k] holds P[k+ 1] by [8, (35)], (7). For every
natural number x, P[x]. �

(10) Let us consider complex-valued finite sequences f , g. Then
∏

(f a g) =
(
∏
f) · (

∏
g). The theorem is a consequence of (9).

3. On Product and Sum of Complex Sequences

Let s be a complex sequence. The partial product of s yielding a complex
sequence is defined by

(Def. 2) it(0) = s(0) and for every natural number n, it(n+ 1) = it(n) · s(n+ 1).

Now we state the propositions:

(11) Let us consider a complex sequence f , and a natural number n. Suppose
f(n) = 0. Then (the partial product of f)(n) = 0.

(12) Let us consider a complex sequence f , and natural numbers n, m. Sup-
pose f(n) = 0. Then (the partial product of f)(n+m) = 0.
Proof: Define P[natural number] ≡ (the partial product of f)(n+$1) = 0.
P[0]. For every natural number k such that P[k] holds P[k+ 1]. For every
natural number x, P[x]. �

Let c be a complex number and n be a non zero natural number. Observe
that the functor cn is defined by the term

(Def. 3) (the partial product of {c}n∈N)(n− 1).

Now we state the proposition:
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(13) Let us consider a natural number n. Then (the partial product of
{0C}n∈N)(n) = 0. The theorem is a consequence of (12).

Let k be a natural number. Let us note that (the partial product of {0}n∈N)(k)
reduces to 0.

One can verify that every complex sequence which is empty yielding is also
absolutely summable and every sequence of real numbers which is empty yielding
is also absolutely summable.

Observe that (
∑κ
α=0(N 7−→ 0)(α))κ∈N reduces to N 7−→ 0 and the partial

product of {0}n∈N reduces to {0}n∈N. One can verify that every complex se-
quence is transfinite sequence-like and there exists a sequence of C which is
summable.

Let s1 be an empty yielding complex sequence. One can check that
∑
s1 is

zero.
Let s1 be an empty yielding sequence of real numbers. Let us note that

∑
s1

is zero.

4. Finite 0-sequences

Let c be a complex number. Observe that 〈c〉 is complex-valued.
One can verify that

∑
〈c〉 reduces to c.

Let n be a natural number. One can verify that there exists a natural-valued
finite 0-sequence which is n-element.

Let k be an object. One can check that n 7−→ k is n-element and there exists
a finite 0-sequence which is n-element.

Let f be an n-element finite 0-sequence. Let us note that f�n reduces to f .
Let n, m be natural numbers. One can check that f�(n+m) reduces to f .
Let f be a 1-element finite 0-sequence. Let us note that 〈f(0)〉 reduces to f .
Let f be a 2-element finite 0-sequence. Let us note that 〈f(0), f(1)〉 reduces

to f .
Let f be a 3-element finite 0-sequence. One can verify that 〈f(0), f(1), f(2)〉

reduces to f .
Now we state the propositions:

(14) Let us consider natural numbers n, k. If k ∈ Zn+1, then n−k is a natural
number.

(15) Let us consider complex numbers a, b, and natural numbers n, k. Suppose
k ∈ Zn+1. Then there exists an object c and there exists a natural number
l such that l = n − k and c = al · (bk). The theorem is a consequence of
(14).
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5. Shifting Sequences

Let f be a complex-valued finite 0-sequence and s1 be a complex sequence.
The functor f a s1 yielding a complex sequence is defined by the term

(Def. 4) f ∪ Shift(s1, len f).

Let f be a function. The functor s1
a f yielding a sequence of C is defined

by the term

(Def. 5) s1.

Now we state the propositions:

(16) Let us consider an object x. Then x is a real-valued complex sequence if
and only if x is a sequence of real numbers.

(17) Let us consider a sequence r1 of real numbers, and a complex sequence
c1. Suppose c1 = r1. Then the partial product of r1 = the partial product
of c1.

Let f be a complex-valued finite 0-sequence and s1 be a sequence of real
numbers. The functor f a s1 yielding a complex sequence is defined by the term

(Def. 6) f ∪ Shift(s1, len f).

Now we state the proposition:

(18) Let us consider a sequence r1 of real numbers. Then 〈〉R a r1 is a real-
valued complex sequence.

Let f be a sequence of real numbers and g be a function. The functor f a g
yielding a real-valued sequence of C is defined by the term

(Def. 7) f .

Let f be a complex-valued finite 0-sequence and s1 be a complex sequence.
Let us observe that (f a s1)� dom f reduces to f .

Let s1 be a sequence of real numbers. Let us note that (fas1)� dom f reduces
to f .

Now we state the propositions:

(19) Let us consider a complex-valued finite 0-sequence f , and a natural num-
ber x. Then (f a {0}n∈N)(x) = f(x).

(20) Let us consider a sequence f of real numbers. Then f a f is a real-valued
complex sequence.

Let f be a real-valued complex sequence. Note that =(f) is empty yielding.
One can check that <(f) reduces to f .

Let us observe that there exists a sequence of real numbers which is empty
yielding and every sequence of real numbers is transfinite sequence-like.

Let r be a real number. Let us note that <(r · (i)) is zero.
One can check that =(r · (i)) reduces to r.
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Let f be a complex-valued finite 0-sequence. Let us note that <(f) is real-
valued, finite, and transfinite sequence-like and =(f) is real-valued, finite, and
transfinite sequence-like and <(f) is (len f)-element and =(f) is (len f)-element.

Let f be a complex-valued finite sequence. Note that <(f) is real-valued and
finite sequence-like and =(f) is real-valued and finite sequence-like.

Let f be a complex-valued function. Let us observe that <(<(f)) reduces to
<(f) and <(=(f)) reduces to =(f). Let us note that =(<(f)) is empty yielding
and =(=(f)) is empty yielding.

One can check that <(<(f)+ i ·=(f)) reduces to <(f) and =(<(f)+ i ·=(f))
reduces to =(f) and <(f) + i · =(f) reduces to f .

Let n be a natural number. One can check that there exists a finite function
which is n-element.

Let f be a finite, complex-valued transfinite sequence. Note that Shift(f, n)
is finite and Shift(f, n) is (len f)-element and {0}n∈N is empty yielding.

6. Converting Complex 0-sequences into Ordinary Ones

Let f be a complex-valued finite 0-sequence. The functor Sequel f yielding
a complex sequence is defined by the term

(Def. 8) (N 7−→ 0)+·f .

Now we state the propositions:

(21) Let us consider a complex-valued finite 0-sequence f , and a natural num-
ber x. Then (Sequel f)(x) = f(x).

(22) Let us consider a complex-valued finite 0-sequence f . Then Sequel f =
f a {0}n∈N.
Proof: dom(Sequel f) = dom(f a {0}n∈N). For every natural number x,
(Sequel f)(x) = (f a {0}n∈N)(x). �

(23) Let us consider a complex sequence s1. Then s1 = <(s1) + i · =(s1).

Let us consider a complex-valued finite 0-sequence f . Now we state the
propositions:

(24) <(Sequel f) = Sequel<(f). The theorem is a consequence of (21).

(25) =(Sequel f) = Sequel=(f). The theorem is a consequence of (21).

Now we state the propositions:

(26) Let us consider a complex number c. Then 0 · (N 7−→ c) = N 7−→ 0.

(27) Let us consider a complex sequence s1, and a natural number x. Suppose
for every natural number k such that k ­ x holds s1(k) = 0. Then s1 is
summable.
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(28) Let us consider a sequence s1 of real numbers, and a natural number
x. Suppose for every natural number k such that k ­ x holds s1(k) = 0.
Then s1 is summable.

Let f be a complex-valued finite 0-sequence. One can check that Sequel f is
summable.

7. Properties of Concatenation

Let f be a finite 0-sequence and g be a finite sequence. The functor f a g
yielding a finite 0-sequence is defined by

(Def. 9) dom it = len f+len g and for every natural number k such that k ∈ dom f

holds it(k) = f(k) and for every natural number k such that k ∈ dom g

holds it(len f + k − 1) = g(k).

Let f be a finite sequence and g be a finite 0-sequence. The functor f a g
yielding a finite sequence is defined by

(Def. 10) dom it = Seg(len f + len g) and for every natural number k such that
k ∈ dom f holds it(k) = f(k) and for every natural number k such that
k ∈ dom g holds it(len f + k + 1) = g(k).

Now we state the proposition:

(29) Let us consider a finite 0-sequence f , and a finite sequence g. Then

(i) len(f a g) = len f + len g, and

(ii) len(g a f) = len f + len g.

Let n, m be natural numbers, f be an n-element finite 0-sequence, and g

be an m-element finite sequence. Let us note that f a g is (n+m)-element and
g a f is (n+m)-element.

Now we state the propositions:

(30) Let us consider a finite 0-sequence f , a finite sequence g, and a natural
number x. Then x ∈ dom(f a g) if and only if x ∈ dom f or x+ 1− len f ∈
dom g.
Proof: If x ∈ dom(f a g), then x ∈ dom f or x + 1 − len f ∈ dom g. If
x ∈ dom f or x+ 1− len f ∈ dom g, then x ∈ dom(f a g). �

(31) Let us consider a finite sequence f , a finite 0-sequence g, and a natural
number x. Then x ∈ dom(fag) if and only if x ∈ dom f or x−(len f+1) ∈
dom g.
Proof: If x ∈ dom(f a g), then x ∈ dom f or x− (len f + 1) ∈ dom g. �

(32) Let us consider a finite sequence f , and a finite 0-sequence g. Then

(i) rng(f a g) = rng f ∪ rng g, and
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(ii) rng(g a f) = rng f ∪ rng g.

Proof: rng(f a g) ⊆ rng f ∪ rng g. rng f ∪ rng g ⊆ rng(f a g). rng(ga f) ⊆
rng f ∪ rng g. rng f ∪ rng g ⊆ rng(g a f). �

(33) Let us consider a non empty finite 0-sequence f , and a finite sequence
g. Then dom(f ∪ Shift(g, len f − 1)) = Zlen f+len g.
Proof: For every object x, x ∈ dom(f ∪ Shift(g, len f − 1)) iff x ∈
Zlen f+len g. �

(34) Let us consider a finite sequence f , and a finite 0-sequence g. Then
dom(f ∪ Shift(g, len f + 1)) = Seg(len f + len g).
Proof: For every object x, x ∈ dom(f ∪ Shift(g, len f + 1)) iff x ∈
Seg(len f + len g). �

Let f be a complex-valued finite sequence. One can verify that 〈〉C a f is
complex-valued.

Let f be a complex-valued finite 0-sequence. Let us note that εC
a f is

complex-valued.
Let f be a finite 0-sequence and g be a finite sequence. One can verify that

(f a g)� len f reduces to f and (g a f)� len g reduces to g.
Now we state the propositions:

(35) Let us consider a set D, a finite 0-sequence f , and a finite sequence g of
elements of D. Then (f a g)�len f = FS2XFS(g).
Proof: For every natural number i such that i ∈ dom((f a g)�len f ) holds
((f a g)�len f )(i) = (FS2XFS(g))(i). �

(36) Every finite 0-sequence is a finite 0-sequence of rng f ∪ {1}.
(37) Let us consider a set D, a finite sequence f , and a finite 0-sequence g of

D. Then (f a g)�len f = XFS2FS(g).
Proof: len f ¬ len(f a g). For every natural number i such that i ∈
dom((f a g)�len f ) holds ((f a g)�len f )(i) = (XFS2FS(g))(i). �

Let D be a set and f be a finite 0-sequence of D. One can verify that the
functor XFS2FS(f) is defined by the term

(Def. 11) εD
a f .

Now we state the proposition:

(38) Let us consider a set D, and a finite 0-sequence f of D.
Then dom(Shift(f, 1)) = Seg len f .
Proof: For every object x such that x ∈ Seg len f holds x ∈ dom(Shift(f, 1)).
For every object x such that x ∈ dom(Shift(f, 1)) holds x ∈ Seg len f by
[7, (106)]. �

Let D be a set and f be a finite 0-sequence of D. One can verify that the
functor XFS2FS(f) is defined by the term
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(Def. 12) Shift(f, 1).

Let f be a finite sequence of elements of D. One can check that the functor
FS2XFS(f) is defined by the term

(Def. 13) 〈〉D a f .

Now we state the propositions:

(39) Let us consider a set D, and finite 0-sequences f , g of D. Then f a g =
f a XFS2FS(g).
Proof: For every natural number k such that k ∈ dom(f a g) holds
(f a g)(k) = (f a XFS2FS(g))(k). �

(40) Let us consider a set D, and finite sequences f , g of elements of D. Then
f a g = f a FS2XFS(g).
Proof: For every natural number k such that k ∈ dom(f a g) holds
(f a g)(k) = (f a FS2XFS(g))(k). �

Let f be a finite 0-sequence of R. Let us observe that Sequel f� dom f reduces
to f . One can check that Shift(f, 1) is finite sequence-like and Sequel f ↑ dom f

is empty yielding.
Now we state the propositions:

(41) Let us consider a set D, a finite sequence f of elements of D, and a fi-
nite 0-sequence g of D. Then f a g = f a XFS2FS(g). The theorem is
a consequence of (40).

(42) Let us consider a set D, a finite 0-sequence f of D, and a finite sequ-
ence g of elements of D. Then f a g = f a FS2XFS(g). The theorem is
a consequence of (39).

(43) Let us consider a set D, and finite sequences f , g of elements of D. Then
FS2XFS(f a g) = FS2XFS(f) a FS2XFS(g).
Proof: For every natural number x such that x ∈ dom(FS2XFS(f a g))
holds (FS2XFS(f a g))(x) = (FS2XFS(f) a FS2XFS(g))(x). �

Let D be a set, f be a finite sequence of elements of D, and g be a finite
0-sequence of D. Note that the functor f a g yields a finite sequence of elements
of D. Now we state the propositions:

(44) Let us consider a set D, a finite sequence f of elements of D, and a finite
0-sequence g of D. Then FS2XFS(f a g) = FS2XFS(f) a g. The theorem
is a consequence of (43) and (40).

(45) Let us consider a setD, and finite 0-sequences f , g ofD. Then XFS2FS(fa

g) = XFS2FS(f) a XFS2FS(g).
Proof: For every natural number x such that x ∈ dom(XFS2FS(f a g))
holds (XFS2FS(f a g))(x) = (XFS2FS(f) a XFS2FS(g))(x). �
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Let D be a set, f be a finite 0-sequence of D, and g be a finite sequence of
elements of D. One can check that the functor f a g yields a finite 0-sequence
of D. Now we state the propositions:

(46) Let us consider a set D, a finite 0-sequence f of D, and a finite sequence
g of elements of D. Then XFS2FS(f a g) = XFS2FS(f) a g. The theorem
is a consequence of (45) and (39).

(47) Let us consider a set D, finite 0-sequences f , g of D, and a finite sequence
h of elements of D. Then

(i) (f a g) a h = f a (g a h), and

(ii) (f a h) a g = f a (h a g), and

(iii) (h a f) a g = h a (f a g).

The theorem is a consequence of (42), (39), (43), (41), and (45).

8. Sum of Finite 0-sequences

Now we state the proposition:

(48) Let us consider a complex-valued finite 0-sequence f . Then
∑

(f�1) =
f(0).

Let n, m be natural numbers and f be an (n+m)-element finite 0-sequence.
One can verify that f�n is n-element. Let n be a natural number and p be an n-
element, complex-valued finite 0-sequence. Let us observe that −p is n-element
and p−1 is n-element and p2 is n-element and |p| is n-element and Rev(p) is
n-element.

Let m be a natural number and q be an (n + m)-element, complex-valued
finite 0-sequence. Let us observe that dom p ∩ dom q reduces to dom p. Note
that p+ q is n-element and p− q is n-element and p · q is n-element and p/q is
n-element. Let p, q be n-element, complex-valued finite 0-sequences. Note that
p + q is n-element and p − q is n-element and p · q is n-element and p/q is
n-element. Now we state the propositions:

(49) Let us consider a natural number n, and n-element, complex-valued finite
0-sequences f1, f2. Then

∑
(f1 + f2) =

∑
f1 +

∑
f2.

Proof: Define P[natural number] ≡ for every $1-element, complex-valued
finite 0-sequences f1, f2,

∑
(f1 + f2) =

∑
f1 +

∑
f2. For every natural

number k such that P[k] holds P[k+1]. For every natural number k, P[k].
�

(50) Let us consider a complex number c. Then XFS2FS(〈c〉) = 〈c〉.
Proof: For every natural number k such that k ∈ dom〈c〉 holds
(XFS2FS(〈c〉))(k) = 〈c〉(k). �
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(51) Let us consider a finite 0-sequence f of R. Then
∑

XFS2FS(f) =
∑
f .

The theorem is a consequence of (16).

(52) Let us consider a complex-valued finite 0-sequence f . Then
∑
f =∑

<(f) + (i) · (
∑
=(f)). The theorem is a consequence of (49).

(53) Let us consider a complex-valued transfinite sequence f , and a natural
number n. Then

(i) <(Shift(f, n)) = Shift(<(f), n), and

(ii) =(Shift(f, n)) = Shift(=(f), n).

Let us consider a complex-valued finite 0-sequence f .

(54) (i) XFS2FS(<(f)) = <(XFS2FS(f)), and

(ii) XFS2FS(=(f)) = =(XFS2FS(f)).

(55)
∑

XFS2FS(f) =
∑
f . The theorem is a consequence of (52), (51), and

(53).

(56) Let us consider a finite sequence f of elements of C. Then
∑

FS2XFS(f) =∑
f . The theorem is a consequence of (55).

(57) Let us consider a real-valued finite 0-sequence f . Then
∑
f =

∑
Sequel f .

Note that there exists a real-valued complex sequence which is summable.
Let f be a summable complex sequence. The functors: <(f) and =(f) yield

summable, real-valued complex sequences. Now we state the propositions:

(58) Let us consider a complex-valued finite 0-sequence f . Then
∑
f =∑

Sequel f . The theorem is a consequence of (57), (24), (25), and (52).

(59) Let us consider a finite 0-sequence f of C, and a finite sequence g of
elements of C. Then

(i)
∑

(f a g) =
∑
f +

∑
g, and

(ii)
∑

(g a f) =
∑
g +

∑
f .

The theorem is a consequence of (39), (56), (40), and (55).

9. Product of Finite 0-sequences

Let f be a finite 0-sequence. The functor
∏
f yielding an element of C is

defined by the term

(Def. 14) ·C � f .

Now we state the proposition:

(60) Let us consider an empty finite 0-sequence f . Then
∏
f = 1.

Let c be a complex number. One can check that
∏
〈c〉 reduces to c.
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(61) Let us consider a natural number n, and a complex-valued finite 0-
sequence f . Suppose n ∈ dom f . Then

∏
(f�n) · f(n) =

∏
(f�(n+ 1)).

(62) Let us consider a natural number n, and a complex sequence f . Then∏
(f�n) · f(n) =

∏
(f�(n+ 1)). The theorem is a consequence of (61).

(63) Let us consider a non empty, complex-valued finite 0-sequence f . Then∏
(f�1) = f(0).

(64) Let us consider a natural number n, and n-element, complex-valued finite
0-sequences f1, f2. Then

∏
(f1 · f2) = (

∏
f1) · (

∏
f2).

Proof: Define P[natural number] ≡ for every $1-element, complex-valued
finite 0-sequences f1, f2,

∏
(f1 · f2) = (

∏
f1) · (

∏
f2). For every natural

number k such that P[k] holds P[k + 1]. P[0]. For every natural number
k, P[k]. �

(65) Let us consider a complex sequence f , and a natural number n. Then∏
(f�(n+ 1)) = (the partial product of f)(n).

Proof: Define P[natural number] ≡
∏

(f�($1+1)) = (the partial product
of f)($1). P[0]. For every natural number k such that P[k] holds P[k+ 1].
For every natural number x, P[x]. �

(66) Let us consider a complex-valued finite 0-sequence f .
Then

∏
XFS2FS(f) =

∏
f .

Proof: Define P[natural number] ≡
∏

XFS2FS(f�$1) =
∏

(f�$1). P[0].
For every natural number k such that P[k] holds P[k+1]. For every natural
number x, P[x]. �

(67) Let us consider a finite sequence f of elements of C. Then
∏

FS2XFS(f) =∏
f . The theorem is a consequence of (66).

(68) Let us consider a finite 0-sequence f of C, and a finite sequence g of
elements of C. Then

(i)
∏

(f a g) = (
∏
f) · (

∏
g), and

(ii)
∏

(g a f) = (
∏
g) · (

∏
f).

The theorem is a consequence of (66), (46), (10), and (40).

Acknowledgement: Ad Maiorem Dei Gloriam

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6


Concatenation of finite sequences 13

[3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar.
Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.

[4] Artur Kornilowicz. How to define terms in Mizar effectively. Studies in Logic, Grammar
and Rhetoric, 18:67–77, 2009.

[5] Piotr Rudnicki and Andrzej Trybulec. On the integrity of a repository of formalized
mathematics. In Andrea Asperti, Bruno Buchberger, and James H. Davenport, editors,
Mathematical Knowledge Management, volume 2594 of Lecture Notes in Computer Science,
pages 162–174. Springer, Berlin, Heidelberg, 2003. doi:10.1007/3-540-36469-2 13.

[6] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequen-
ces. Formalized Mathematics, 9(4):825–829, 2001.

[7] Rafał Ziobro. Fermat’s Little Theorem via divisibility of Newton’s binomial. Formalized
Mathematics, 23(3):215–229, 2015. doi:10.1515/forma-2015-0018.

[8] Rafał Ziobro. On subnomials. Formalized Mathematics, 24(4):261–273, 2016.
doi:10.1515/forma-2016-0022.

Accepted February 27, 2019

http://dx.doi.org/10.1007/s10817-015-9345-1
http://logika.uwb.edu.pl/studies/download.php?volid=31&artid=ak&format=PDF
http://dx.doi.org/10.1007/3-540-36469-2_13
http://fm.mizar.org/2001-9/pdf9-4/afinsq_1.pdf
http://fm.mizar.org/2001-9/pdf9-4/afinsq_1.pdf
http://dx.doi.org/10.1515/forma-2015-0018
http://dx.doi.org/10.1515/forma-2016-0022




FORMALIZED MATHEMATICS

Vol. 27, No. 1, Pages 15–23, 2019
DOI: 10.2478/forma-2019-0002 https://www.sciendo.com/

Bilinear Operators on Normed Linear
Spaces

Kazuhisa Nakasho
Yamaguchi University

Yamaguchi, Japan

Summary. The main aim of this article is proving properties of bilinear
operators on normed linear spaces formalized by means of Mizar [1]. In the first
two chapters, algebraic structures [3] of bilinear operators on linear spaces are
discussed. Especially, the space of bounded bilinear operators on normed linear
spaces is developed here. In the third chapter, it is remarked that the algebraic
structure of bounded bilinear operators to a certain Banach space also constitutes
a Banach space.

In the last chapter, the correspondence between the space of bilinear opera-
tors and the space of composition of linear opearators is shown. We referred to
[4], [11], [2], [7] and [8] in this formalization.
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1. Real Vector Space of Bilinear Operators

Let X, Y, Z be real linear spaces. The functor BilinOpers(X,Y, Z) yielding
a subset of RealVectSpace((the carrier of X × Y ), Z) is defined by

(Def. 1) for every set x, x ∈ it iff x is a bilinear operator from X × Y into Z.

Let us observe that BilinOpers(X,Y, Z) is non empty and functional and
BilinOpers(X,Y, Z) is linearly closed.

The functor VectorSpaceOfBilinOpersR(X,Y, Z) yielding a strict RLS struc-
ture is defined by the term
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(Def. 2) 〈BilinOpers(X,Y, Z),Zero(BilinOpers(X,Y, Z),RealVectSpace((the car-
rier of X × Y ), Z)),Add(BilinOpers(X,Y, Z),RealVectSpace((the carrier
of X × Y ), Z)),Mult(BilinOpers(X,Y, Z),RealVectSpace((the carrier of
X × Y ), Z))〉.

Let us note that VectorSpaceOfBilinOpersR(X,Y, Z) is non empty and Vector-
SpaceOfBilinOpersR(X,Y, Z) is Abelian, add-associative, right zeroed, right com-
plementable, vector distributive, scalar distributive, scalar associative, and sca-
lar unital and VectorSpaceOfBilinOpersR(X,Y, Z) is constituted functions.

Now we state the proposition:

(1) Let us consider real linear spaces X, Y, Z. Then VectorSpaceOfBilin-
OpersR(X,Y, Z) is a subspace of RealVectSpace((the carrier of X×Y ), Z).

Let X, Y, Z be real linear spaces, f be an element of VectorSpaceOfBilin-
OpersR(X,Y, Z), v be a vector of X, and w be a vector of Y. Let us note that
the functor f(v, w) yields a vector of Z. Now we state the propositions:

(2) Let us consider real linear spaces X, Y, Z, and vectors f , g, h of Vector-
SpaceOfBilinOpersR(X,Y, Z). Then h = f + g if and only if for every
vector x of X and for every vector y of Y, h(x, y) = f(x, y) + g(x, y).

(3) Let us consider real linear spaces X, Y, Z, vectors f , h of VectorSpaceOf-
BilinOpersR(X,Y, Z), and a real number a. Then h = a · f if and only if
for every vector x of X and for every vector y of Y, h(x, y) = a · f(x, y).

Let us consider real linear spaces X, Y, Z. Now we state the propositions:

(4) 0VectorSpaceOfBilinOpersR(X,Y,Z) = (the carrier of X × Y ) 7−→ 0Z .

(5) (The carrier of X × Y ) 7−→ 0Z is a bilinear operator from X × Y into
Z.

2. Real Normed Linear Space of Bounded Bilinear Operators

Let X, Y, Z be real normed spaces and I1 be a bilinear operator from X ×
Y into Z. We say that I1 is Lipschitzian if and only if

(Def. 3) there exists a real number K such that 0 ¬ K and for every vector x of
X and for every vector y of Y, ‖I1(x, y)‖ ¬ K · ‖x‖ · ‖y‖.

Now we state the propositions:

(6) Let us consider real normed spaces X, Y, Z, and a bilinear operator f
from X × Y into Z. Suppose for every vector x of X for every vector y of
Y, f(x, y) = 0Z . Then f is Lipschitzian.

(7) Let us consider real normed spaces X, Y, Z. Then (the carrier of X ×
Y ) 7−→ 0Z is a bilinear operator from X × Y into Z.
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Let X, Y, Z be real normed spaces. Let us observe that there exists a bilinear
operator from X × Y into Z which is Lipschitzian.

Now we state the proposition:

(8) Let us consider real normed spaces X, Y, Z, and an object z. Then
z ∈ BilinOpers(X,Y, Z) if and only if z is a bilinear operator from X ×
Y into Z.

Let X, Y, Z be real normed spaces. The functor BoundedBilinOpers(X,Y, Z)
yielding a subset of VectorSpaceOfBilinOpersR(X,Y, Z) is defined by

(Def. 4) for every set x, x ∈ it iff x is a Lipschitzian bilinear operator from X ×
Y into Z.

Note that BoundedBilinOpers(X,Y, Z) is non empty and BoundedBilinOpers
(X,Y, Z) is linearly closed.
The functor VectorSpaceOfBoundedBilinOpersR(X,Y, Z) yielding a strict

RLS structure is defined by the term

(Def. 5) 〈BoundedBilinOpers(X,Y, Z),Zero(BoundedBilinOpers(X,Y, Z),Vector-
SpaceOfBilinOpersR(X,Y, Z)),Add(BoundedBilinOpers(X,Y, Z),
VectorSpaceOfBilinOpersR(X,Y, Z)),Mult(BoundedBilinOpers(X,Y, Z),
VectorSpaceOfBilinOpersR(X,Y, Z))〉.

Now we state the proposition:

(9) Let us consider real normed spacesX, Y, Z. Then VectorSpaceOfBounded-
BilinOpersR(X,Y, Z) is a subspace of VectorSpaceOfBilinOpersR(X,Y, Z).

Let X, Y, Z be real normed spaces. Note that VectorSpaceOfBoundedBilin-
OpersR(X,Y, Z) is non empty and VectorSpaceOfBoundedBilinOpersR(X,Y, Z)
is Abelian, add-associative, right zeroed, right complementable, vector distribu-
tive, scalar distributive, scalar associative, and scalar unital and VectorSpaceOf-
BoundedBilinOpersR(X,Y, Z) is constituted functions.

Let f be an element of VectorSpaceOfBoundedBilinOpersR(X,Y, Z), v be
a vector of X, and w be a vector of Y. One can verify that the functor f(v, w)
yields a vector of Z. Now we state the propositions:

(10) Let us consider real normed spaces X, Y, Z, and vectors f , g, h of
VectorSpaceOfBoundedBilinOpersR(X,Y, Z). Then h = f + g if and only
if for every vector x of X and for every vector y of Y, h(x, y) = f(x, y) +
g(x, y). The theorem is a consequence of (2).

(11) Let us consider real normed spacesX, Y, Z, vectors f , h of VectorSpaceOf-
BoundedBilinOpersR(X,Y, Z), and a real number a. Then h = a · f if and
only if for every vector x of X and for every vector y of Y, h(x, y) =
a · f(x, y). The theorem is a consequence of (3).

(12) Let us consider real normed spaces X, Y, Z.
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Then 0VectorSpaceOfBoundedBilinOpersR(X,Y,Z) = (the carrier of X×Y ) 7−→ 0Z .
The theorem is a consequence of (4).

Let X, Y, Z be real normed spaces and f be an object. Assume f ∈
BoundedBilinOpers(X,Y, Z). The functor modetrans(f,X, Y, Z) yielding a Lip-
schitzian bilinear operator from X × Y into Z is defined by the term

(Def. 6) f .

Let u be a bilinear operator from X × Y into Z. The functor PreNorms(u)
yielding a non empty subset of R is defined by the term

(Def. 7) {‖u(t, s)‖, where t is a vector of X, s is a vector of Y : ‖t‖ ¬ 1 and
‖s‖ ¬ 1}.

Let g be a Lipschitzian bilinear operator from X × Y into Z. Observe that
PreNorms(g) is upper bounded.

Now we state the proposition:

(13) Let us consider real normed spaces X, Y, Z, and a bilinear operator g
from X × Y into Z. Then g is Lipschitzian if and only if PreNorms(g) is
upper bounded.

LetX, Y, Z be real normed spaces. The functor BoundedBilinOpersNorm(X,
Y, Z) yielding a function from BoundedBilinOpers(X,Y, Z) into R is defined

by

(Def. 8) for every object x such that x ∈ BoundedBilinOpers(X,Y, Z) holds
it(x) = sup PreNorms(modetrans(x,X, Y, Z)).

Let f be a Lipschitzian bilinear operator from X × Y into Z. Let us note
that modetrans(f,X, Y, Z) reduces to f .

Now we state the proposition:

(14) Let us consider real normed spaces X, Y, Z, and a Lipschitzian bilinear
operator f from X × Y into Z. Then (BoundedBilinOpersNorm(X,Y, Z))
(f) = sup PreNorms(f).

Let X, Y, Z be real normed spaces. The functor NormSpaceOfBoundedBilin-
OpersR(X,Y, Z) yielding a non empty normed structure is defined by the term

(Def. 9) 〈BoundedBilinOpers(X,Y, Z),Zero(BoundedBilinOpers(X,Y, Z),Vector-
SpaceOfBilinOpersR(X,Y, Z)),Add(BoundedBilinOpers(X,Y, Z),
VectorSpaceOfBilinOpersR(X,Y, Z)),Mult(BoundedBilinOpers(X,Y, Z),
VectorSpaceOfBilinOpersR(X,Y, Z)),BoundedBilinOpersNorm(X,Y, Z)〉.

Now we state the propositions:

(15) Let us consider real normed spaces X, Y, Z. Then (the carrier of X ×
Y ) 7−→ 0Z = 0NormSpaceOfBoundedBilinOpersR(X,Y,Z). The theorem is a conse-
quence of (12).
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(16) Let us consider real normed spaces X, Y, Z, a point f of NormSpaceOf-
BoundedBilinOpersR(X,Y, Z), and a Lipschitzian bilinear operator g from
X × Y into Z. Suppose g = f . Let us consider a vector t of X, and a vector
s of Y. Then ‖g(t, s)‖ ¬ ‖f‖ · ‖t‖ · ‖s‖. The theorem is a consequence of
(14).

Let us consider real normed spaces X, Y, Z and a point f of NormSpaceOf-
BoundedBilinOpersR(X,Y, Z). Now we state the propositions:

(17) 0 ¬ ‖f‖. The theorem is a consequence of (14).

(18) If f = 0NormSpaceOfBoundedBilinOpersR(X,Y,Z), then 0 = ‖f‖. The theorem
is a consequence of (15) and (14).

Let X, Y, Z be real normed spaces. One can verify that every element of
NormSpaceOfBoundedBilinOpersR(X,Y, Z) is function-like and relation-like.

Let f be an element of NormSpaceOfBoundedBilinOpersR(X,Y, Z), v be
a vector of X, and w be a vector of Y. Observe that the functor f(v, w) yields
a vector of Z. Now we state the propositions:

(19) Let us consider real normed spaces X, Y, Z, and points f , g, h of
NormSpaceOfBoundedBilinOpersR(X,Y, Z). Then h = f + g if and on-
ly if for every vector x of X and for every vector y of Y, h(x, y) =
f(x, y) + g(x, y). The theorem is a consequence of (10).

(20) Let us consider real normed spaces X, Y, Z, points f , h of NormSpaceOf-
BoundedBilinOpersR(X,Y, Z), and a real number a. Then h = a · f if and
only if for every vector x of X and for every vector y of Y, h(x, y) =
a · f(x, y). The theorem is a consequence of (11).

(21) Let us consider real normed spaces X, Y, Z, points f , g of NormSpaceOf-
BoundedBilinOpersR(X,Y, Z), and a real number a. Then

(i) ‖f‖ = 0 iff f = 0NormSpaceOfBoundedBilinOpersR(X,Y,Z), and

(ii) ‖a · f‖ = |a| · ‖f‖, and

(iii) ‖f + g‖ ¬ ‖f‖+ ‖g‖.

Proof: ‖f + g‖ ¬ ‖f‖+ ‖g‖. ‖a · f‖ = |a| · ‖f‖. �

LetX, Y, Z be real normed spaces. Observe that NormSpaceOfBoundedBilin-
OpersR(X,Y, Z) is non empty and NormSpaceOfBoundedBilinOpersR(X,Y, Z)
is reflexive, discernible, and real normed space-like.

Now we state the proposition:

(22) Let us consider real normed spacesX, Y, Z. Then NormSpaceOfBounded-
BilinOpersR(X,Y, Z) is a real normed space.

Let X, Y, Z be real normed spaces. Let us note that NormSpaceOfBounded-
BilinOpersR(X,Y, Z) is vector distributive, scalar distributive, scalar associati-
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ve, scalar unital, Abelian, add-associative, right zeroed, and right complemen-
table.

Now we state the proposition:

(23) Let us consider real normed spaces X, Y, Z, and points f , g, h of
NormSpaceOfBoundedBilinOpersR(X,Y, Z). Then h = f − g if and on-
ly if for every vector x of X and for every vector y of Y, h(x, y) =
f(x, y)− g(x, y). The theorem is a consequence of (19).

3. Real Banach Space of Bounded Bilinear Operators

Now we state the propositions:

(24) Let us consider real normed spaces X, Y, Z. Suppose Z is complete. Let
us consider a sequence s1 of NormSpaceOfBoundedBilinOpersR(X,Y, Z).
If s1 is Cauchy sequence by norm, then s1 is convergent.
Proof: Define P[set, set] ≡ there exists a sequence x3 of Z such that for
every natural number n, x3(n) = vseq(n)($1) and x3 is convergent and
$2 = limx3. For every element x4 of X × Y, there exists an element z of
Z such that P[x4, z]. Consider f being a function from the carrier of X ×
Y into the carrier of Z such that for every element z of X × Y, P[z, f(z)].
Reconsider t1 = f as a function from X × Y into Z. For every points x1,
x2 of X and for every point y of Y, t1(x1 +x2, y) = t1(x1, y)+t1(x2, y). For
every point x of X and for every point y of Y and for every real number
a, t1(a · x, y) = a · t1(x, y). For every point x of X and for every points y1,
y2 of Y, t1(x, y1 + y2) = t1(x, y1) + t1(x, y2).

For every point x of X and for every point y of Y and for every
real number a, t1(x, a · y) = a · t1(x, y). t1 is Lipschitzian by [6, (18)],
[9, (20)], (16). For every real number e such that e > 0 there exists
a natural number k such that for every natural number n such that
n ­ k for every point x of X for every point y of Y, ‖vseq(n)(x, y) −
t1(x, y)‖ ¬ e · ‖x‖ · ‖y‖ by [10, (8)], (23). Reconsider t2 = t1 as a point
of NormSpaceOfBoundedBilinOpersR(X,Y, Z). For every real number e
such that e > 0 there exists a natural number k such that for every na-
tural number n such that n ­ k holds ‖vseq(n) − t2‖ ¬ e. For every real
number e such that e > 0 there exists a natural number m such that for
every natural number n such that n ­ m holds ‖vseq(n)− t2‖ < e. �

(25) Let us consider real normed spaces X, Y, and a real Banach space Z.
Then NormSpaceOfBoundedBilinOpersR(X,Y, Z) is a real Banach space.
The theorem is a consequence of (24).
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Let X, Y be real normed spaces and Z be a real Banach space. Let us note
that NormSpaceOfBoundedBilinOpersR(X,Y, Z) is complete.

4. Isomorphisms between the Space of Bilinear Operators and the
Space of Composition of Linear Operators

From now on X, Y, Z denote real linear spaces.
Now we state the proposition:

(26) There exists a linear operator I from VectorSpaceOfLinearOpersR(X,
VectorSpaceOfLinearOpersR(Y,Z)) into VectorSpaceOfBilinOpersR(X,Y,
Z) such that

(i) I is bijective, and

(ii) for every point u of VectorSpaceOfLinearOpersR(X,VectorSpaceOf-
LinearOpersR(Y, Z)) and for every point x of X and for every point
y of Y, I(u)(x, y) = u(x)(y).

Proof: Set X1 = the carrier of X. Set Y1 = the carrier of Y. Set Z1 =
the carrier of Z. Consider I0 being a function from (Z1

Y1)X1 into Z1
X1×Y1

such that I0 is bijective and for every function f from X1 into Z1
Y1 and for

every objects d, e such that d ∈ X1 and e ∈ Y1 holds I0(f)(d, e) = f(d)(e).
Set L1 = the carrier of VectorSpaceOfLinearOpersR(X,VectorSpaceOf-
LinearOpersR(Y, Z)). SetB = the carrier of VectorSpaceOfBilinOpersR(X,
Y, Z). Reconsider I = I0�L1 as a function from L1 into Z1

X1×Y1 .
For every element x of L1, for every point p of X and for every po-

int q of Y, there exists a linear operator G from Y into Z such that
G = x(p) and I(x)(p, q) = G(q) and I(x) ∈ B. For every elements
x1, x2 of L1, I(x1 + x2) = I(x1) + I(x2). For every element x of L1

and for every real number a, I(a · x) = a · I(x). For every point u of
VectorSpaceOfLinearOpersR(X,VectorSpaceOfLinearOpersR(Y,Z)) and for
every point x of X and for every point y of Y, I(u)(x, y) = u(x)(y). For
every object y such that y ∈ B there exists an object x such that x ∈ L1

and y = I(x). �

In the sequel X, Y, Z denote real normed spaces.

(27) There exists a linear operator I from the real norm space of bounded
linear operators from X into the real norm space of bounded linear opera-
tors from Y into Z into NormSpaceOfBoundedBilinOpersR(X,Y, Z) such
that

(i) I is bijective, and
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(ii) for every point u of the real norm space of bounded linear operators
from X into the real norm space of bounded linear operators from Y

into Z, ‖u‖ = ‖I(u)‖ and for every point x of X and for every point
y of Y, I(u)(x, y) = u(x)(y).

Proof: Set X1 = the carrier of X. Set Y1 = the carrier of Y. Set Z1 =
the carrier of Z. Consider I0 being a function from (Z1

Y1)X1 into Z1
X1×Y1

such that I0 is bijective and for every function f from X1 into Z1
Y1 and for

every objects d, e such that d ∈ X1 and e ∈ Y1 holds I0(f)(d, e) = f(d)(e).
Set L1 = the carrier of the real norm space of bounded linear operators
from X into the real norm space of bounded linear operators from Y into
Z. Set B = the carrier of NormSpaceOfBoundedBilinOpersR(X,Y, Z). Set
L2 = the carrier of the real norm space of bounded linear operators from
Y into Z. L2

X1 ⊆ (Z1
Y1)X1 . Reconsider I = I0�L1 as a function from L1

into Z1
X1×Y1 .

For every element x of L1, for every point p of X and for every point
q of Y, there exists a Lipschitzian linear operator G from Y into Z such
that G = x(p) and I(x)(p, q) = G(q) and I(x) is a Lipschitzian bilinear
operator from X × Y into Z and I(x) ∈ B and there exists a point I2

of NormSpaceOfBoundedBilinOpersR(X,Y, Z) such that I2 = I(x) and
‖x‖ = ‖I2‖. For every elements x1, x2 of L1, I(x1 + x2) = I(x1) + I(x2).
For every element x of L1 and for every real number a, I(a · x) = a · I(x).
For every point u of the real norm space of bounded linear operators from
X into the real norm space of bounded linear operators from Y into Z,
‖u‖ = ‖I(u)‖ and for every point x of X and for every point y of Y,
I(u)(x, y) = u(x)(y). For every object y such that y ∈ B there exists
an object x such that x ∈ L1 and y = I(x) by [5, (12)]. �
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Summary. In this article, we formalized in Mizar [4], [1] simple partial
differential equations. In the first section, we formalized partial differentiability
and partial derivative. The next section contains the method of separation of
variables for one-dimensional wave equation. In the last section, we formalized
the superposition principle. We referred to [6], [3], [5] and [9] in this formalization.
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1. Preliminaries

From now on m, n denote non zero elements of N, i, j, k denote elements of
N, Z denotes a subset of R2, c denotes a real number, I denotes a non empty
finite sequence of elements of N, and d1, d2 denote elements of R.

Now we state the proposition:

(1) Let us consider a non zero element m of N, a subset X ofRm, a non emp-
ty finite sequence I of elements of N, and a partial function f from Rm to
R. Suppose f is partially differentiable on X w.r.t. I. Then dom(f�IX) =
X.

Let us note that ΩR is open and ΩR2 is open.
Now we state the proposition:

c© 2019 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)25

https://content.sciendo.com/view/journals/forma/forma-overview.xml
http://zbmath.org/classification/?q=cc:35A08
http://zbmath.org/classification/?q=cc:68T99
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/pdiffeq1.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


26 sora otsuki, pauline n. kawamoto, and hiroshi yamazaki

(2) Let us consider a partial function f from R to R, a subset Z of R, and
a real number x0. Suppose Z is open and x0 ∈ Z. Then

(i) f is differentiable in x0 iff f�Z is differentiable in x0, and

(ii) if f is differentiable in x0, then f ′(x0) = (f�Z)′(x0).

Proof: f is differentiable in x0 iff f�Z is differentiable in x0. �

Let us consider a partial function f from R to R and a subset X of R. Now
we state the propositions:

(3) If X is open and X ⊆ dom f , then f is differentiable on X iff f�X is
differentiable on X. The theorem is a consequence of (2).

(4) IfX is open andX ⊆ dom f and f is differentiable onX, then (f�X)′�X =
f ′�X . The theorem is a consequence of (3) and (2).

Let us consider a partial function f from R to R and a subset Z of R. Now
we state the propositions:

(5) If Z ⊆ dom f and Z is open and f is differentiable 1 times on Z, then f
is differentiable on Z and (f ′(Z))(1) = f ′�Z . The theorem is a consequence
of (3) and (4).

(6) Suppose Z ⊆ dom f and Z is open and f is differentiable 2 times on Z.
Then

(i) f is differentiable on Z, and

(ii) (f ′(Z))(1) = f ′�Z , and

(iii) f ′�Z is differentiable on Z, and

(iv) (f ′(Z))(2) = (f ′�Z)′�Z .

The theorem is a consequence of (5).

(7) Let us consider subsets X, T of R, a partial function f from R to R, and
a partial function g from R to R. Suppose X ⊆ dom f and T ⊆ dom g.
Then there exists a partial function u from R2 to R such that

(i) domu = {〈x, t〉, where x, t are real numbers : x ∈ X and t ∈ T},
and

(ii) for every real numbers x, t such that x ∈ X and t ∈ T holds u/〈x,t〉 =
f/x · (g/t).

Proof: Define Q[object, object] ≡ there exist real numbers x, t such that
x ∈ X and t ∈ T and $1 = 〈x, t〉 and $2 = f/x·(g/t). For every objects z, w1,
w2 such that z ∈ R2 and Q[z, w1] and Q[z, w2] holds w1 = w2. Consider
u being a partial function from R2 to R such that for every object z,
z ∈ domu iff z ∈ R2 and there exists an object w such that Q[z, w] and
for every object z such that z ∈ domu holds Q[z, u(z)]. For every object z,
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z ∈ domu iff z ∈ {〈x, t〉, where x, t are real numbers : x ∈ X and t ∈ T}.
Consider x1, t1 being real numbers such that x1 ∈ X and t1 ∈ T and 〈x,
t〉 = 〈x1, t1〉 and u(〈x, t〉) = f/x1 · (g/t1). �

Let us consider a partial function f from R to R, a partial function g from
R to R, a partial function u from R2 to R, real numbers x0, t0, and an element
z of R2. Now we state the propositions:

(8) Suppose domu = {〈x, t〉, where x, t are real numbers : x ∈ dom f and
t ∈ dom g} and for every real numbers x, t such that x ∈ dom f and
t ∈ dom g holds u/〈x,t〉 = f/x · (g/t) and z = 〈x0, t0〉 and x0 ∈ dom f and
t0 ∈ dom g. Then

(i) u · (reproj(1, z)) = g/t0 · f , and

(ii) u · (reproj(2, z)) = f/x0 · g.

Proof: For every object s, s ∈ dom(u · (reproj(1, z))) iff s ∈ dom f .
For every object s, s ∈ dom(u · (reproj(2, z))) iff s ∈ dom g. For every
object s such that s ∈ dom(u · (reproj(1, z))) holds (u · (reproj(1, z)))(s) =
(g/t0 · f)(s). For every object s such that s ∈ dom(u · (reproj(2, z))) holds
(u · (reproj(2, z)))(s) = (f/x0 · g)(s) by [7, (14)]. �

(9) Suppose x0 ∈ dom f and t0 ∈ dom g and z = 〈x0, t0〉 and domu =
{〈x, t〉, where x, t are real numbers : x ∈ dom f and t ∈ dom g} and f is
differentiable in x0 and for every real numbers x, t such that x ∈ dom f

and t ∈ dom g holds u/〈x,t〉 = f/x · (g/t). Then

(i) u is partially differentiable in z w.r.t. 1, and

(ii) partdiff(u, z, 1) = f ′(x0) · (g/t0).
The theorem is a consequence of (8).

(10) Suppose x0 ∈ dom f and t0 ∈ dom g and z = 〈x0, t0〉 and domu =
{〈x, t〉, where x, t are real numbers : x ∈ dom f and t ∈ dom g} and g is
differentiable in t0 and for every real numbers x, t such that x ∈ dom f

and t ∈ dom g holds u/〈x,t〉 = f/x · (g/t). Then

(i) u is partially differentiable in z w.r.t. 2, and

(ii) partdiff(u, z, 2) = f/x0 · (g′(t0)).

The theorem is a consequence of (8).

Let us consider subsets X, T of R, a subset Z of R2, a partial function f

from R to R, a partial function g from R to R, and a partial function u from
R2 to R. Now we state the propositions:

(11) Suppose X ⊆ dom f and T ⊆ dom g and X is open and T is open
and Z is open and Z = {〈x, t〉, where x, t are real numbers : x ∈ X and
t ∈ T} and domu = {〈x, t〉, where x, t are real numbers : x ∈ dom f and
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t ∈ dom g} and f is differentiable on X and g is differentiable on T and
for every real numbers x, t such that x ∈ dom f and t ∈ dom g holds
u/〈x,t〉 = f/x · (g/t). Then

(i) u is partially differentiable on Z w.r.t. 〈1〉, and

(ii) for every real numbers x, t such that x ∈ X and t ∈ T holds
(u�〈1〉Z)/〈x,t〉 = f ′(x) · (g/t), and

(iii) u is partially differentiable on Z w.r.t. 〈2〉, and

(iv) for every real numbers x, t such that x ∈ X and t ∈ T holds
(u�〈2〉Z)/〈x,t〉 = f/x · (g′(t)).

Proof: Z ⊆ domu. For every element z of R2 such that z ∈ Z holds u
is partially differentiable in z w.r.t. 1. For every real numbers x, t and for
every element z of R2 such that x ∈ X and t ∈ T and z = 〈x, t〉 holds
partdiff(u, z, 1) = f ′(x) ·(g/t). For every real numbers x, t such that x ∈ X
and t ∈ T holds (u�〈1〉Z)/〈x,t〉 = f ′(x) · (g/t). For every element z of R2

such that z ∈ Z holds u is partially differentiable in z w.r.t. 2. For every
real numbers x, t and for every element z of R2 such that x ∈ X and t ∈ T
and z = 〈x, t〉 holds partdiff(u, z, 2) = f/x · (g′(t)). �

(12) Suppose X ⊆ dom f and T ⊆ dom g and X is open and T is open
and Z is open and Z = {〈x, t〉, where x, t are real numbers : x ∈ X and
t ∈ T} and domu = {〈x, t〉, where x, t are real numbers : x ∈ dom f and
t ∈ dom g} and f is differentiable 2 times on X and g is differentiable
2 times on T and for every real numbers x, t such that x ∈ dom f and
t ∈ dom g holds u/〈x,t〉 = f/x · (g/t). Then

(i) u is partially differentiable on Z w.r.t. 〈1〉 a 〈1〉, and

(ii) for every real numbers x, t such that x ∈ X and t ∈ T holds
(u�〈1〉

a〈1〉Z)/〈x,t〉 = (f ′(X))(2)/x · (g/t), and

(iii) u is partially differentiable on Z w.r.t. 〈2〉 a 〈2〉, and

(iv) for every real numbers x, t such that x ∈ X and t ∈ T holds
(u�〈2〉

a〈2〉Z)/〈x,t〉 = f/x · ((g′(T ))(2)/t).

Proof: u is partially differentiable on Z w.r.t. 〈1〉 and for every real
numbers x, t such that x ∈ X and t ∈ T holds (u�〈1〉Z)/〈x,t〉 = f ′(x) · (g/t)
and u is partially differentiable on Z w.r.t. 〈2〉 and for every real numbers
x, t such that x ∈ X and t ∈ T holds (u�〈2〉Z)/〈x,t〉 = f/x · (g′(t)). u is
partially differentiable on Z w.r.t. 1. For every real numbers x, t such
that x ∈ dom(f ′�X) and t ∈ dom(g�T ) holds (u�〈1〉Z)/〈x,t〉 = (f ′�X)/x ·
((g�T )/t). u�

〈1〉Z is partially differentiable on Z w.r.t. 〈1〉 and for every
real numbers x, t such that x ∈ X and t ∈ T holds ((u�〈1〉Z)�〈1〉Z)/〈x,t〉 =
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(f ′�X)′(x)·((g�T )/t). For every real numbers x, t such that x ∈ X and t ∈ T
holds (u�〈1〉

a〈1〉Z)/〈x,t〉 = (f ′(X))(2)/x · (g/t). u is partially differentiable
on Z w.r.t. 2. For every real numbers x, t such that x ∈ dom(f�X) and
t ∈ dom(g′�T ) holds (u�〈2〉Z)/〈x,t〉 = (f�X)/x · ((g′�T )/t). u�

〈2〉Z is partially
differentiable on Z w.r.t. 〈2〉 and for every real numbers x, t such that
x ∈ X and t ∈ T holds ((u�〈2〉Z)�〈2〉Z)/〈x,t〉 = (f�X)/x · ((g′�T )′(t)). �

(13) Let us consider functions f , g from R into R, a partial function u from
R2 to R, and a real number c. Suppose f is differentiable 2 times on ΩR
and g is differentiable 2 times on ΩR and domu = ΩR2 and for every
real numbers x, t, u/〈x,t〉 = f/x · (g/t) and for every real numbers x, t,
f/x · ((g′(ΩR))(2)/t) = c2 · ((f ′(ΩR))(2)/x) · (g/t). Then

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉, and

(ii) for every real numbers x, t such that x, t ∈ ΩR holds

(u�〈1〉
a〈1〉ΩR2)/〈x,t〉 = (f ′(ΩR))(2)/x · (g/t), and

(iii) u is partially differentiable on ΩR2 w.r.t. 〈2〉 a 〈2〉, and

(iv) for every real numbers x, t such that x, t ∈ ΩR holds

(u�〈2〉
a〈2〉ΩR2)/〈x,t〉 = f/x · ((g′(ΩR))(2)/t), and

(v) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

The theorem is a consequence of (12).

(14) Let us consider real numbers A, B, e, and a function f from R into R.
Suppose for every real number x, f(x) = A · (the function cos)(e · x) +B ·
(the function sin)(e · x). Then

(i) f is differentiable on ΩR, and

(ii) for every real number x, (f ′�ΩR
)(x) = −e · (A · (the function sin)(e · x)

−B · (the function cos)(e · x)).

Proof: Reconsider f1 = A · (the function cos) · (e · idΩR), f2 = B ·
(the function sin) · (e · idΩR) as a partial function from R to R. Reconsider
Z = ΩR as an open subset of R. Reconsider E = e · idΩR as a function from
R into R. For every real number x such that x ∈ Z holds E(x) = e ·x. For
every object x such that x ∈ dom f holds f(x) = f1(x) + f2(x). For every
real number x, (f ′�ΩR

)(x) = −e · (A · (the function sin)(e · x)−B·
(the function cos)(e · x)). �
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2. The Method of Separation of Variables for One-dimensional
Wave Equation

Now we state the propositions:

(15) Let us consider real numbers A, B, e, and a function f from R into R.
Suppose for every real number x, f(x) = A · (the function cos)(e · x) +B ·
(the function sin)(e · x). Then

(i) f is differentiable 2 times on ΩR, and

(ii) for every real number x, (f ′�ΩR
)(x) = −e · (A · (the function sin)(e · x)

−B · (the function cos)(e · x)) and ((f ′�ΩR
)′�ΩR

)(x) = −e2 · (A·
(the function cos)(e · x) +B · (the function sin)(e · x)) and

(f ′(ΩR))(2)/x + e2 · (f/x) = 0.

Proof: f is differentiable on ΩR and for every real number x, (f ′�ΩR
)(x) =

−e · (A · (the function sin)(e · x)−B · (the function cos)(e · x)). For every
real number x, (f ′�ΩR

)(x) = e · B · (the function cos)(e · x) + (−e ·A) ·
(the function sin)(e · x). For every natural number i such that i ¬ 2 − 1
holds (f ′(ΩR))(i) is differentiable on ΩR. �

(16) Let us consider real numbers A, B, e. Then there exists a function f

from R into R such that for every real number x, f(x) = A · (the function
cos)(e · x) +B · (the function sin)(e · x).
Proof: Define P[object, object] ≡ there exists a real number t such that
$1 = t and $2 = A ·(the function cos)(e ·t)+B ·(the function sin)(e ·t). For
every object x such that x ∈ R there exists an object y such that y ∈ R
and P[x, y]. Consider f being a function from R into R such that for every
object x such that x ∈ R holds P[x, f(x)]. �

(17) Let us consider real numbers A, B, C, d, c, e, and functions f , g from
R into R. Suppose for every real number x, f(x) = A · (the function
cos)(e ·x) +B · (the function sin)(e ·x) and for every real number t, g(t) =
C · (the function cos)(e ·c · t)+d · (the function sin)(e ·c · t). Let us consider
real numbers x, t. Then f/x · ((g′(ΩR))(2)/t) = c2 · ((f ′(ΩR))(2)/x) · (g/t).
The theorem is a consequence of (15).

(18) Let us consider functions f , g from R into R, and a function u from R2

into R. Suppose f is differentiable 2 times on ΩR and g is differentiable
2 times on ΩR and for every real numbers x, t, f/x · ((g′(ΩR))(2)/t) =
c2 ·((f ′(ΩR))(2)/x)·(g/t) and for every real numbers x, t, u/〈x,t〉 = f/x ·(g/t).
Then

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉, and

(ii) for every real numbers x, t, (u�〈1〉ΩR2)/〈x,t〉 = f ′(x) · (g/t), and
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(iii) u is partially differentiable on ΩR2 w.r.t. 〈2〉, and

(iv) for every real numbers x, t, (u�〈2〉ΩR2)/〈x,t〉 = f/x · (g′(t)), and

(v) f is differentiable 2 times on ΩR, and

(vi) g is differentiable 2 times on ΩR, and

(vii) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉, and

(viii) for every real numbers x, t, (u�〈1〉
a〈1〉ΩR2)/〈x,t〉 =

(f ′(ΩR))(2)/x · (g/t), and

(ix) u is partially differentiable on ΩR2 w.r.t. 〈2〉 a 〈2〉, and

(x) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

f/x · ((g′(ΩR))(2)/t), and

(xi) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

The theorem is a consequence of (11) and (13).

(19) Let us consider real numbers A, B, C, d, e, c, and a function u from R2

into R. Suppose for every real numbers x, t, u/〈x,t〉 = (A · (the function
cos)(e · x) +B · (the function sin)(e · x)) · (C · (the function cos)(e · c · t) +
d · (the function sin)(e · c · t)). Then

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉, and

(ii) for every real numbers x, t, (u�〈1〉ΩR2)/〈x,t〉 =

(−A · e · (the function sin)(e · x)+B ·e · (the function cos)(e ·x)) · (C ·
(the function cos)(e · c · t) + d · (the function sin)(e · c · t)), and

(iii) u is partially differentiable on ΩR2 w.r.t. 〈2〉, and

(iv) for every real numbers x, t, (u�〈2〉ΩR2)/〈x,t〉 = (A·(the function cos)(e·
x)+B·(the function sin)(e·x))·(−C · (e · c) · (the function sin)(e · c · t)
+d · (e · c) · (the function cos)(e · c · t)), and

(v) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉, and

(vi) for every real numbers x, t, (u�〈1〉
a〈1〉ΩR2)/〈x,t〉 =

−e2 · (A · (the function cos)(e · x) +B · (the function sin)(e · x)) · (C·
(the function cos)(e · c · t) + d · (the function sin)(e · c · t)) and u is par-
tially differentiable on ΩR2 w.r.t. 〈2〉a 〈2〉 and for every real numbers
x, t, (u�〈2〉

a〈2〉ΩR2)/〈x,t〉 = −(e · c)2 · (A · (the function cos)(e · x) +B·
(the function sin)(e · x)) · (C · (the function cos)(e · c · t) + d·
(the function sin)(e · c · t)), and
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(vii) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

The theorem is a consequence of (16), (15), (17), (18), and (6).

(20) Let us consider a real number c. Then there exists a partial function u

from R2 to R such that

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉 and partially dif-
ferentiable on ΩR2 w.r.t. 〈2〉 a 〈2〉, and

(ii) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

The theorem is a consequence of (16), (7), (15), (17), and (18).

3. The Superposition Principle

Now we state the propositions:

(21) Let us consider real numbers C, d, c, a natural number n, and a func-
tion u from R2 into R. Suppose for every real numbers x, t, u/〈x,t〉 =
(the function sin)(n·π·x)·(C ·(the function cos)(n·π·c·t)+d·(the function
sin)(n · π · c · t)). Then

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉, and

(ii) for every real numbers x, t, (u�〈1〉ΩR2)/〈x,t〉 = n · π · (the function
cos)(n · π · x) · (C · (the function cos)(n · π · c · t) + d · (the function
sin)(n · π · c · t)), and

(iii) u is partially differentiable on ΩR2 w.r.t. 〈2〉, and

(iv) for every real numbers x, t, (u�〈2〉ΩR2)/〈x,t〉 = (the function sin)(n ·
π · x) · (−C · (n · π · c) · (the function sin)(n · π · c · t) + d · (n · π · c) ·
(the function cos)(n · π · c · t)), and

(v) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉, and

(vi) for every real numbers x, t, (u�〈1〉
a〈1〉ΩR2)/〈x,t〉 = −(n · π)2·

(the function sin)(n · π · x) · (C · (the function cos)(n · π · c · t) + d·
(the function sin)(n · π · c · t)) and u is partially differentiable on ΩR2
w.r.t. 〈2〉a 〈2〉 and for every real numbers x, t, (u�〈2〉

a〈2〉ΩR2)/〈x,t〉 =
−(n · π · c)2 · (the function sin)(n · π · x) · (C · (the function cos)(n·
π · c · t) + d · (the function sin)(n · π · c · t)), and

(vii) for every real number t, u/〈0,t〉 = 0 and u/〈1,t〉 = 0, and
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(viii) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

Proof: Set e = n · π. For every real numbers x, t, (u�〈1〉ΩR2)/〈x,t〉 =
e · (the function cos)(e ·x) · (C · (the function cos)(e ·c · t)+d · (the function
sin)(e · c · t)). For every real numbers x, t, (u�〈2〉ΩR2)/〈x,t〉 = (the function
sin)(e ·x) ·(−C · (e · c) · (the function sin)(e · c · t)+d ·(e ·c) ·(the function
cos)(e · c · t)). For every real numbers x, t, (u�〈1〉

a〈1〉ΩR2)/〈x,t〉 = −e2·
(the function sin)(e · x) · (C · (the function cos)(e · c · t) + d·
(the function sin)(e · c · t)). For every real numbers x, t, (u�〈2〉

a〈2〉ΩR2)/〈x,t〉 =
−(e · c)2 · (the function sin)(e · x) · (C · (the function cos)(e · c · t) + d·
(the function sin)(e · c · t)). For every real number t, u/〈0,t〉 = 0 and u/〈1,t〉 =
0 by [8, (30)]. �

(22) Let us consider partial functions u, v fromR2 to R, a subset Z ofR2, and
a real number c. Suppose Z is open and Z ⊆ domu and Z ⊆ dom v and u
is partially differentiable on Z w.r.t. 〈1〉a〈1〉 and partially differentiable on
Z w.r.t. 〈2〉a 〈2〉 and for every real numbers x, t such that 〈x, t〉 ∈ Z holds
(u�〈2〉

a〈2〉Z)/〈x,t〉 = c2 · ((u�〈1〉a〈1〉Z)/〈x,t〉) and v is partially differentiable
on Z w.r.t. 〈1〉 a 〈1〉 and partially differentiable on Z w.r.t. 〈2〉 a 〈2〉 and
for every real numbers x, t such that 〈x, t〉 ∈ Z holds (v�〈2〉

a〈2〉Z)/〈x,t〉 =

c2 · ((v�〈1〉a〈1〉Z)/〈x,t〉). Then

(i) Z ⊆ dom(u+ v), and

(ii) u + v is partially differentiable on Z w.r.t. 〈1〉 a 〈1〉 and partially
differentiable on Z w.r.t. 〈2〉 a 〈2〉, and

(iii) for every real numbers x, t such that 〈x, t〉 ∈ Z holds

(u+ v�〈2〉
a〈2〉Z)/〈x,t〉 = c2 · ((u+ v�〈1〉

a〈1〉Z)/〈x,t〉).

Proof: For every real numbers x, t such that 〈x, t〉 ∈ Z holds (u +
v�〈2〉

a〈2〉Z)/〈x,t〉 = c2 · ((u+ v�〈1〉
a〈1〉Z)/〈x,t〉) by (1), [2, (75)]. �

(23) Let us consider a sequence u of partial functions fromR2 into R, a subset
Z of R2, and a real number c. Suppose Z is open and for every natural
number i, Z ⊆ dom(u(i)) and dom(u(i)) = dom(u(0)) and u(i) is par-
tially differentiable on Z w.r.t. 〈1〉 a 〈1〉 and partially differentiable on Z

w.r.t. 〈2〉 a 〈2〉 and for every real numbers x, t such that 〈x, t〉 ∈ Z holds
(u(i)�〈2〉

a〈2〉Z)/〈x,t〉 = c2 · ((u(i)�〈1〉
a〈1〉Z)/〈x,t〉). Let us consider a natural

number i. Then

(i) Z ⊆ dom(((
∑κ
α=0 u(α))κ∈N)(i)), and

(ii) ((
∑κ
α=0 u(α))κ∈N)(i) is partially differentiable on Z w.r.t. 〈1〉 a 〈1〉

and partially differentiable on Z w.r.t. 〈2〉 a 〈2〉, and
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(iii) for every real numbers x, t such that 〈x, t〉 ∈ Z holds

(((
∑κ
α=0 u(α))κ∈N)(i)�〈2〉

a〈2〉Z)/〈x,t〉 =

c2 · ((((
∑κ
α=0 u(α))κ∈N)(i)�〈1〉

a〈1〉Z)/〈x,t〉).

Proof: Define X [natural number] ≡ Z ⊆ dom(((
∑κ
α=0 u(α))κ∈N)($1))

and ((
∑κ
α=0 u(α))κ∈N)($1) is partially differentiable on Z w.r.t. 〈1〉 a 〈1〉

and partially differentiable on Z w.r.t. 〈2〉a 〈2〉 and for every real numbers
x, t such that 〈x, t〉 ∈ Z holds (((

∑κ
α=0 u(α))κ∈N)($1)�〈2〉

a〈2〉Z)/〈x,t〉 = c2 ·
((((

∑κ
α=0 u(α))κ∈N)($1)�〈1〉

a〈1〉Z)/〈x,t〉). For every natural number i such
that X [i] holds X [i+ 1]. For every natural number n, X [n]. �

Acknowledgement: We would like to thank Yasunari Shidama for useful
advice on formalizing theorems.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[2] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Higher-order partial differen-
tiation. Formalized Mathematics, 20(2):113–124, 2012. doi:10.2478/v10037-012-0015-z.

[3] John Fritz. Nonlinear Wave Equations, Formulation of Singularities. American Mathema-
tical Society, 1990. ISBN 978-0-8218-7001-3.

[4] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar.
Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.

[5] Mitsuhiro Nakao. Bibun-sekibun-gaku (Japanese). Kindai-kagaku-sha, pages 52–53, 1992.
[6] Ian Naismith Sneddon. Elements of Partial Differential Equations. Tokyo McGraw-Hill

Kogakusha, pages 209–273, 1957.
[7] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and

swap function for finite sequences. Formalized Mathematics, 9(3):471–474, 2001.
[8] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle

ratio. Formalized Mathematics, 7(2):255–263, 1998.
[9] Kentaro Yano. Kaiseki-gaku-gairon (Japanese). Shokabo Co., Ltd., 1982.

Accepted February 27, 2019

https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.2478/v10037-012-0015-z
http://dx.doi.org/10.1007/s10817-015-9345-1
http://fm.mizar.org/2001-9/pdf9-3/finseq_7.pdf
http://fm.mizar.org/2001-9/pdf9-3/finseq_7.pdf
http://fm.mizar.org/1998-7/pdf7-2/sin_cos.pdf
http://fm.mizar.org/1998-7/pdf7-2/sin_cos.pdf


FORMALIZED MATHEMATICS

Vol. 27, No. 1, Pages 35–45, 2019
DOI: 10.2478/forma-2019-0004 https://www.sciendo.com/

Multilinear Operator and Its Basic
Properties

Kazuhisa Nakasho
Yamaguchi University

Yamaguchi, Japan
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1. Multilinear Operator on Real Linear Spaces

Let X be a non empty, non-empty finite sequence, i be an object, and x be
an element of

∏
X. The functor reproj(i, x) yielding a function from X(i) into∏

X is defined by

(Def. 1) for every object r such that r ∈ X(i) holds it(r) = x+· (i, r).
Now we state the propositions:

(1) Let us consider a non empty, non-empty finite sequence X, an element
x of

∏
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(reproj(i, x))(r)(i) = r.
c© 2019 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)35

https://content.sciendo.com/view/journals/forma/forma-overview.xml
https://orcid.org/0000-0003-1110-4342
http://zbmath.org/classification/?q=cc:46-00
http://zbmath.org/classification/?q=cc:47A07
http://zbmath.org/classification/?q=cc:47A30
http://zbmath.org/classification/?q=cc:68T99
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/lopban10.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


36 kazuhisa nakasho

(2) Let us consider a non empty, non-empty finite sequence X, an element
x of

∏
X, elements i, j of domX, and an object r. If r ∈ X(i) and i 6= j,

then (reproj(i, x))(r)(j) = x(j).

(3) Let us consider a non empty, non-empty finite sequence X, an element
x of

∏
X, and an element i of domX. Then (reproj(i, x))(x(i)) = x.

Let X be a real linear space sequence, i be an element of domX, and x be
an element of

∏
X. The functor reproj(i, x) yielding a function from X(i) into∏

X is defined by

(Def. 2) there exists an element x0 of
∏
X such that x0 = x and it = reproj(i, x0).

Now we state the propositions:

(4) Let us consider a real linear space sequence X, an element i of domX,
an element x of

∏
X, an element r of X(i), and a function F . If F =

(reproj(i, x))(r), then F (i) = r. The theorem is a consequence of (1).

(5) Let us consider a real linear space sequence X, elements i, j of domX,
an element x of

∏
X, an element r of X(i), and functions F , s. If F =

(reproj(i, x))(r) and x = s and i 6= j, then F (j) = s(j). The theorem is
a consequence of (2).

(6) Let us consider a real linear space sequence X, an element i of domX,
an element x of

∏
X, and a function s. If x = s, then (reproj(i, x))(s(i)) =

x. The theorem is a consequence of (3).

Let X be a real linear space sequence, Y be a real linear space, and f be
a function from

∏
X into Y. We say that f is multilinear if and only if

(Def. 3) for every element i of domX and for every element x of
∏
X, f ·

(reproj(i, x)) is a linear operator from X(i) into Y.

One can verify that there exists a function from
∏
X into Y which is mul-

tilinear.
A multilinear operator from X into Y is a multilinear function from

∏
X

into Y. Now we state the propositions:

(7) Let us consider real linear spaces X, Y, and a linear operator f from X

into Y. Then 0Y = f(0X).

(8) Let us consider a real linear space sequence X, a real linear space Y,
a multilinear operator g from X into Y, a point t of

∏
X, and an element

s of
∏
X. Suppose s = t and there exists an element i of domX such that

s(i) = 0X(i). Then g(t) = 0Y . The theorem is a consequence of (17) and
(7).

(9) Let us consider a real linear space sequence X, a real linear space Y,
a multilinear operator g from X into Y, and a finite sequence a of elements
of R. Suppose dom a = domX. Let us consider points t, t1 of

∏
X, and
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elements s, s1 of
∏
X. Suppose t = s and t1 = s1 and for every element i

of domX, s1(i) = a/i · s(i). Then g(t1) = (
∏
a) · g(t).

Proof: Define P[natural number] ≡ for every points t, t1 of
∏
X for

every elements s, s1 of
∏
X for every finite sequence b of elements of R

such that t = s and t1 = s1 and b = a�$1 and $1 ¬ len a and for every
element i of domX, if i ∈ Seg $1, then s1(i) = a/i · s(i) and if i /∈ Seg $1,
then s1(i) = s(i) holds g(t1) = (

∏
b) ·g(t). P[0]. For every natural number

k such that P[k] holds P[k + 1]. For every natural number k, P[k]. For
every element i of domX, if i ∈ Seg len a, then s1(i) = a/i · s(i) and if
i /∈ Seg len a, then s1(i) = s(i). �

Let X be a real linear space sequence and Y be a real linear space. The
functor MultOpers(X,Y ) yielding a subset of RealVectSpace((the carrier of∏
X), Y ) is defined by

(Def. 4) for every set x, x ∈ it iff x is a multilinear operator from X into Y.

One can check that MultOpers(X,Y ) is non empty and functional and
MultOpers(X,Y ) is linearly closed.

The functor VectorSpaceOfMultOpersR(X,Y ) yielding a strict RLS struc-
ture is defined by the term

(Def. 5) 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier of∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X), Y )),

Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉.

Now we state the proposition:

(10) Let us consider a real linear space sequence X, and a real linear space Y.
Then 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier
of
∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X),

Y )),Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉 is

a subspace of RealVectSpace((the carrier of
∏
X), Y ).

Let X be a real linear space sequence and Y be a real linear space. One can
verify that VectorSpaceOfMultOpersR(X,Y ) is non empty and VectorSpaceOf

MultOpersR(X,Y ) is Abelian, add-associative, right zeroed, right comple-
mentable, vector distributive, scalar distributive, scalar associative, and scalar
unital and VectorSpaceOfMultOpersR(X,Y ) is constituted functions.

Let f be an element of VectorSpaceOfMultOpersR(X,Y ) and v be a vector
of
∏
X. Let us note that the functor f(v) yields a vector of Y. Now we state the

propositions:

(11) Let us consider a real linear space sequence X, a real linear space Y, and
vectors f , g, h of VectorSpaceOfMultOpersR(X,Y ). Then h = f+g if and
only if for every vector x of

∏
X, h(x) = f(x) + g(x).
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(12) Let us consider a real linear space sequence X, a real linear space Y,
vectors f , h of VectorSpaceOfMultOpersR(X,Y ), and a real number a.
Then h = a · f if and only if for every vector x of

∏
X, h(x) = a · f(x).

Let us consider a real linear space sequence X and a real linear space Y.
Now we state the propositions:

(13) 0VectorSpaceOfMultOpersR(X,Y ) = (the carrier of
∏
X) 7−→ 0Y .

(14) (The carrier of
∏
X) 7−→ 0Y is a multilinear operator from X into Y.

2. Bounded Multilinear Operator on Normed Linear Spaces

Now we state the propositions:

(15) Let us consider a real norm space sequence X, an element i of domX,
an element x of

∏
X, an element r of X(i), and a function F . If F =

(reproj(i, x))(r), then F (i) = r. The theorem is a consequence of (1).

(16) Let us consider a real norm space sequence X, elements i, j of domX,
an element x of

∏
X, an element r of X(i), and functions F , s. If F =

(reproj(i, x))(r) and x = s and i 6= j, then F (j) = s(j). The theorem is
a consequence of (2).

(17) Let us consider a real norm space sequence X, an element i of domX,
an element x of

∏
X, and a function s. If x = s, then (reproj(i, x))(s(i)) =

x. The theorem is a consequence of (3).

Let X be a real norm space sequence, Y be a real normed space, and f be
a function from

∏
X into Y. We say that f is multilinear if and only if

(Def. 6) for every element i of domX and for every element x of
∏
X, f ·

(reproj(i, x)) is a linear operator from X(i) into Y.

One can verify that there exists a function from
∏
X into Y which is mul-

tilinear.
A multilinear operator from X into Y is a multilinear function from

∏
X into

Y. The functor MultOpers(X,Y ) yielding a subset of RealVectSpace((the carrier
of
∏
X), Y ) is defined by

(Def. 7) for every set x, x ∈ it iff x is a multilinear operator from X into Y.

Note that MultOpers(X,Y ) is non empty and functional and MultOpers(X,Y )
is linearly closed.

Now we state the proposition:

(18) Let us consider a real norm space sequence X, and a real normed space Y.
Then 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier
of
∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X),
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Y )),Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉 is

a subspace of RealVectSpace((the carrier of
∏
X), Y ).

Let X be a real norm space sequence and Y be a real normed space. Note
that 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier of∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X), Y )),

Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉 is Abe-

lian, add-associative, right zeroed, right complementable, vector distributive,
scalar distributive, scalar associative, and scalar unital.

The functor VectorSpaceOfMultOpersR(X,Y ) yielding a strict real linear
space is defined by the term

(Def. 8) 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier of∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X), Y )),

Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉.

One can check that VectorSpaceOfMultOpersR(X,Y ) is constituted func-
tions.

Let f be an element of VectorSpaceOfMultOpersR(X,Y ) and v be a vector
of
∏
X. One can check that the functor f(v) yields a vector of Y. Now we state

the propositions:

(19) Let us consider a real norm space sequence X, a real normed space Y,
and vectors f , g, h of VectorSpaceOfMultOpersR(X,Y ). Then h = f + g

if and only if for every vector x of
∏
X, h(x) = f(x) + g(x).

(20) Let us consider a real norm space sequence X, a real normed space Y,
vectors f , h of VectorSpaceOfMultOpersR(X,Y ), and a real number a.
Then h = a · f if and only if for every vector x of

∏
X, h(x) = a · f(x).

Let us consider a real norm space sequence X and a real normed space Y.
Now we state the propositions:

(21) 0VectorSpaceOfMultOpersR(X,Y ) = (the carrier of
∏
X) 7−→ 0Y .

(22) (The carrier of
∏
X) 7−→ 0Y is a multilinear operator from X into Y.

Let X be a real norm space sequence, Y be a real normed space, I be
a multilinear operator from X into Y, and x be a vector of

∏
X. Let us observe

that the functor I(x) yields a point of Y. Note that
∏
X is constituted functions.

Let x be a point of
∏
X and i be an element of domX. One can check that

the functor x(i) yields a point of X(i). Now we state the propositions:

(23) Let us consider a real norm space sequence G, and points p, q, r of
∏
G.

Then p+q = r if and only if for every element i of domG, r(i) = p(i)+q(i).

(24) Let us consider a real norm space sequence G, points p, r of
∏
G, and

a real number a. Then a ·p = r if and only if for every element i of domG,
r(i) = a · p(i).
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(25) Let us consider a real norm space sequence G, and a point p of
∏
G.

Then 0∏G = p if and only if for every element i of domG, p(i) = 0G(i).

(26) Let us consider a real norm space sequence G, and points p, q, r of
∏
G.

Then p−q = r if and only if for every element i of domG, r(i) = p(i)−q(i).
The theorem is a consequence of (23) and (24).

Let X be a real norm space sequence and x be a point of
∏
X. The functor

NrProductx yielding a non negative real number is defined by

(Def. 9) there exists a finite sequence N of elements of R such that domN =
domX and for every element i of domX, N(i) = ‖x(i)‖ and it =

∏
N .

Now we state the proposition:

(27) Let us consider a real norm space sequence X, and a point x of
∏
X.

Then

(i) there exists an element i of domX such that

x(i) = 0X(i) iff NrProductx = 0, and

(ii) if there exists no element i of domX such that x(i) = 0X(i), then
0 < NrProductx.

Proof: Consider N being a finite sequence of elements of R such that
domN = domX and for every element i of domX, N(i) = ‖x(i)‖ and
NrProductx =

∏
N . There exists an element i of domX such that x(i) =

0X(i) iff NrProductx = 0 by [1, (103)]. If there exists no element i of
domX such that x(i) = 0X(i), then 0 < NrProductx by [4, (42)]. �

Let X be a real norm space sequence, Y be a real normed space, and I be
a multilinear operator from X into Y. We say that I is Lipschitzian if and only
if

(Def. 10) there exists a real number K such that 0 ¬ K and for every point x of∏
X, ‖I(x)‖ ¬ K · (NrProductx).

Now we state the proposition:

(28) Let us consider a real norm space sequence X, a real normed space Y,
and a multilinear operator f from X into Y. If for every vector x of

∏
X,

f(x) = 0Y , then f is Lipschitzian.

Let X be a real norm space sequence and Y be a real normed space. One
can check that there exists a multilinear operator from X into Y which is Lip-
schitzian.

The functor BoundedMultOpers(X,Y ) yielding a subset of
VectorSpaceOfMultOpersR(X,Y ) is defined by

(Def. 11) for every set x, x ∈ it iff x is a Lipschitzian multilinear operator from X

into Y.
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Note that BoundedMultOpers(X,Y ) is non empty and
BoundedMultOpers(X,Y ) is linearly closed.
Now we state the proposition:

(29) Let us consider a real norm space sequence X, and a real normed space
Y. Then 〈BoundedMultOpers(X,Y ),Zero(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Add(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Mult(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y ))〉 is a subspace of
VectorSpaceOfMultOpersR(X,Y ).

Let X be a real norm space sequence and Y be a real normed space. Observe
that 〈BoundedMultOpers(X,Y ),Zero(BoundedMultOpers(X,Y ),

VectorSpaceOfMultOpersR(X,Y )),Add(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Mult(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y ))〉 is Abelian, add-associative, right zeroed,

right complementable, vector distributive, scalar distributive, scalar associative,
and scalar unital.

The functor VectorSpaceOfBoundedMultOpersR(X,Y ) yielding a strict real
linear space is defined by the term

(Def. 12) 〈BoundedMultOpers(X,Y ),Zero(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Add(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Mult(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y ))〉.

Let us note that every element of VectorSpaceOfBoundedMultOpersR(X,Y )
is function-like and relation-like.

Let f be an element of VectorSpaceOfBoundedMultOpersR(X,Y ) and v be
a vector of

∏
X. Note that the functor f(v) yields a vector of Y. Now we state

the propositions:

(30) Let us consider a real norm space sequence X, a real normed space Y,
and vectors f , g, h of VectorSpaceOfBoundedMultOpersR(X,Y ). Then
h = f + g if and only if for every vector x of

∏
X, h(x) = f(x) + g(x).

The theorem is a consequence of (19).

(31) Let us consider a real norm space sequence X, a real normed space
Y, vectors f , h of VectorSpaceOfBoundedMultOpersR(X,Y ), and a real
number a. Then h = a · f if and only if for every vector x of

∏
X, h(x) =

a · f(x). The theorem is a consequence of (20).

(32) Let us consider a real norm space sequence X, and a real normed space Y.
Then 0VectorSpaceOfBoundedMultOpersR(X,Y ) = (the carrier of

∏
X) 7−→ 0Y .

The theorem is a consequence of (21).
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Let X be a real norm space sequence, Y be a real normed space, and f be
an object. Assume f ∈ BoundedMultOpers(X,Y ). The functor PartFuncs(f,X, Y )
yielding a Lipschitzian multilinear operator from X into Y is defined by the term

(Def. 13) f .

Let u be a multilinear operator from X into Y. The functor PreNorms(u)
yielding a non empty subset of R is defined by the term

(Def. 14) {‖u(t)‖, where t is a vector of
∏
X : for every element i of domX,

‖t(i)‖ ¬ 1}.

Now we state the propositions:

(33) Let us consider a real norm space sequence X, and an element s of
∏
X.

Then there exists a finite sequence F of elements of R such that

(i) domF = domX, and

(ii) for every element i of domX, F (i) = ‖s(i)‖.
Proof: Define Q[object, object] ≡ there exists an element i of domX

such that $1 = i and $2 = ‖s(i)‖. For every natural number n such that
n ∈ Seg lenX there exists an element d of R such that Q[n, d]. Consider
F being a finite sequence of elements of R such that lenF = lenX and
for every natural number n such that n ∈ Seg lenX holds Q[n, F/n]. For
every element i of domX, F (i) = ‖s(i)‖. �

(34) Let us consider a finite sequence F of elements of R. Suppose for every
element i of domF , 0 ¬ F (i) ¬ 1. Then 0 ¬

∏
F ¬ 1.

(35) Let us consider a real norm space sequence X, and a point x of
∏
X. Sup-

pose for every element i of domX, ‖x(i)‖ ¬ 1. Then 0 ¬ NrProductx ¬ 1.
The theorem is a consequence of (34).

(36) Let us consider a real norm space sequence X, a real normed space Y,
a multilinear operator g from X into Y, and a point t of

∏
X. Suppose

there exists an element i of domX such that t(i) = 0X(i). Then g(t) = 0Y .
The theorem is a consequence of (17).

(37) Let us consider a real norm space sequence X, and a point x of
∏
X.

Then there exists a finite sequence d of elements of R such that

(i) dom d = domX, and

(ii) for every element i of domX, d(i) = ‖x(i)‖−1.

Proof: Define Q[object, object] ≡ there exists an element i of domX

such that $1 = i and $2 = ‖x(i)‖−1. For every natural number n such that
n ∈ Seg lenX there exists an element d of R such that Q[n, d]. Consider
F being a finite sequence of elements of R such that lenF = lenX and
for every natural number n such that n ∈ Seg lenX holds Q[n, F/n]. For
every element i of domX, F (i) = ‖x(i)‖−1. �
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(38) Let us consider a real norm space sequence X, a point s of
∏
X, and

a finite sequence a of elements of R. Then there exists a point s1 of
∏
X

such that for every element i of domX, s1(i) = a/i · s(i).
Proof: Define Q[object, object] ≡ there exists an element i of domX

such that $1 = i and $2 = a/i · x(i). For every natural number n such
that n ∈ Seg lenX there exists an object d such that Q[n, d]. Consider F
being a finite sequence such that domF = Seg lenX and for every natural
number n such that n ∈ Seg lenX holds Q[n, F (n)]. For every object y
such that y ∈ domX holds F (y) ∈ X(y). For every element i of domX,
F (i) = a/i · x(i). �

(39) Let us consider a real norm space sequence X, a real normed space Y,
a multilinear operator g from X into Y, and a finite sequence a of elements
of R. Suppose dom a = domX. Let us consider points t, t1 of

∏
X. Suppose

for every element i of domX, t1(i) = a/i · t(i). Then g(t1) = (
∏
a) · g(t).

Proof: Define P[natural number] ≡ for every points t, t1 of
∏
X for every

finite sequence b of elements of R such that b = a�$1 and $1 ¬ len a and
for every element i of domX, if i ∈ Seg $1, then t1(i) = a/i · t(i) and if
i /∈ Seg $1, then t1(i) = t(i) holds g(t1) = (

∏
b) · g(t). P[0]. For every

natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. For every element i of domX, if i ∈ Seg len a, then t1(i) = a/i ·t(i)
and if i /∈ Seg len a, then t1(i) = t(i). �

(40) Let us consider finite sequences F , G of elements of R. Suppose domF =
domG and for every element i of domF , G(i) = F (i)−1. Then

∏
G =

(
∏
F )−1.

(41) Let us consider a real norm space sequence X, a real normed space Y, and
a Lipschitzian multilinear operator g from X into Y. Then PreNorms(g)
is upper bounded. The theorem is a consequence of (35).

(42) Let us consider a real norm space sequence X, a real normed space Y,
and a multilinear operator g from X into Y. Then g is Lipschitzian if and
only if PreNorms(g) is upper bounded. The theorem is a consequence of
(36), (37), (38), (39), (40), and (41).

Let X be a real norm space sequence and Y be a real normed space. The
functor BoundedMultOpersNorm(X,Y ) yielding a function from

BoundedMultOpers(X,Y ) into R is defined by

(Def. 15) for every object x such that x ∈ BoundedMultOpers(X,Y ) holds it(x) =
sup PreNorms(PartFuncs(x,X, Y )).

Let f be a Lipschitzian multilinear operator from X into Y. One can verify
that PartFuncs(f,X, Y ) reduces to f .

Now we state the proposition:
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(43) Let us consider a real norm space sequence X, a real normed spa-
ce Y, and a Lipschitzian multilinear operator f from X into Y. Then
(BoundedMultOpersNorm(X,Y ))(f) = sup PreNorms(f).

Let X be a real norm space sequence and Y be a real normed space. The
functor NormSpaceOfBoundedMultOpersR(X,Y ) yielding a non empty, strict
normed structure is defined by the term

(Def. 16) 〈BoundedMultOpers(X,Y ),Zero(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Add(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Mult(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),BoundedMultOpersNorm(X,Y )〉.

Now we state the propositions:

(44) Let us consider a real norm space sequence X, and a real normed space
Y. Then (the carrier of

∏
X) 7−→ 0Y = 0NormSpaceOfBoundedMultOpersR(X,Y ).

The theorem is a consequence of (32).

(45) Let us consider a real norm space sequence X, a real normed space Y,
a point f of NormSpaceOfBoundedMultOpersR(X,Y ), and a Lipschitzian
multilinear operator g from X into Y. Suppose g = f . Let us consider
a vector t of

∏
X. Then ‖g(t)‖ ¬ ‖f‖ · (NrProduct t). The theorem is

a consequence of (41), (36), (37), (38), (39), (40), and (43).

Let us consider a real norm space sequence X, a real normed space Y, and
a point f of NormSpaceOfBoundedMultOpersR(X,Y ). Now we state the pro-
positions:

(46) 0 ¬ ‖f‖. The theorem is a consequence of (41) and (43).

(47) If f = 0NormSpaceOfBoundedMultOpersR(X,Y ), then 0 = ‖f‖. The theorem is
a consequence of (41), (44), and (43).

Let X be a real norm space sequence and Y be a real normed space. Let us
note that every element of NormSpaceOfBoundedMultOpersR(X,Y ) is function-
like and relation-like.

Let f be an element of NormSpaceOfBoundedMultOpersR(X,Y ) and v be
a vector of

∏
X. Note that the functor f(v) yields a vector of Y. Now we state

the propositions:

(48) Let us consider a real norm space sequence X, a real normed space
Y, and points f , g, h of NormSpaceOfBoundedMultOpersR(X,Y ). Then
h = f + g if and only if for every vector x of

∏
X, h(x) = f(x) + g(x).

The theorem is a consequence of (30).

(49) Let us consider a real norm space sequence X, a real normed space Y, po-
ints f , h of NormSpaceOfBoundedMultOpersR(X,Y ), and a real number
a. Then h = a · f if and only if for every vector x of

∏
X, h(x) = a · f(x).
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The theorem is a consequence of (31).

(50) Let us consider a real norm space sequence X, a real normed space Y, po-
ints f , g of NormSpaceOfBoundedMultOpersR(X,Y ), and a real number
a. Then

(i) ‖f‖ = 0 iff f = 0NormSpaceOfBoundedMultOpersR(X,Y ), and

(ii) ‖a · f‖ = |a| · ‖f‖, and

(iii) ‖f + g‖ ¬ ‖f‖+ ‖g‖.
Proof: ‖f + g‖ ¬ ‖f‖+ ‖g‖. ‖a · f‖ = |a| · ‖f‖. �

(51) Let us consider a real norm space sequence X, and a real normed space
Y. Then NormSpaceOfBoundedMultOpersR(X,Y ) is a real normed space.

Let X be a real norm space sequence and Y be a real normed space. Let
us note that NormSpaceOfBoundedMultOpersR(X,Y ) is reflexive, discernible,
real normed space-like, vector distributive, scalar distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, and right complementable.

Now we state the proposition:

(52) Let us consider a real norm space sequence X, a real normed space
Y, and points f , g, h of NormSpaceOfBoundedMultOpersR(X,Y ). Then
h = f − g if and only if for every vector x of

∏
X, h(x) = f(x) − g(x).

The theorem is a consequence of (48).

Acknowledgement: I would like to express my gratitude to Professor
Yasunari Shidama for his helpful advice.

References

[1] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[2] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hie-
rarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Pa-
przycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and
Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information
Systems, pages 363–371, 2016. doi:10.15439/2016F520.

[3] Miyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.
[4] Marco Riccardi. Pocklington’s theorem and Bertrand’s postulate. Formalized Mathematics,

14(2):47–52, 2006. doi:10.2478/v10037-006-0007-y.
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[6] Laurent Schwartz. Calcul différentiel, tome 2. Analyse. Hermann, 1997.
[7] Kosaku Yoshida. Functional Analysis. Springer, 1980.

Accepted February 27, 2019

http://fm.mizar.org/1990-1/pdf1-4/rvsum_1.pdf
http://dx.doi.org/10.15439/2016F520
http://dx.doi.org/10.2478/v10037-006-0007-y




FORMALIZED MATHEMATICS

Vol. 27, No. 1, Pages 47–60, 2019
DOI: 10.2478/forma-2019-0005 https://www.sciendo.com/

Cross-Ratio in Real Vector Space

Roland Coghetto
Rue de la Brasserie 5

7100 La Louvière, Belgium

Summary. Using Mizar [1], in the context of a real vector space, we in-
troduce the concept of affine ratio of three aligned points (see [5]).

It is also equivalent to the notion of “Mesure algébrique”1, to the opposite
of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9].

In the second part, we introduce the classic notion of “cross-ratio” of 4 points
aligned in a real vector space.

Finally, we show that if the real vector space is the real line, the notion
corresponds to the classical notion3 [9]:

The cross-ratio of a quadruple of distinct points on the real line with
coordinates x1, x2, x3, x4 is given by:

(x1, x2;x3, x4) =
x3 − x1
x3 − x2

.
x4 − x2
x4 − x1

In the Mizar Mathematical Library, the vector spaces were first defined by
Kusak, Leończuk and Muzalewski in the article [6], while the actual real vector
space was defined by Trybulec [10] and the complex vector space was defined by
Endou [4]. Nakasho and Shidama have developed a solution to explore the notions
introduced by different authors4 [7]. The definitions can be directly linked in the
HTMLized version of the Mizar library5.

The study of the cross-ratio will continue within the framework of the Klein-
Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].
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1. Preliminaries

Let a, b, c, d be objects. Observe that 〈a, b, c, d〉(1) reduces to a and 〈a, b, c,
d〉(2) reduces to b and 〈a, b, c, d〉(3) reduces to c and 〈a, b, c, d〉(4) reduces to d.

Now we state the proposition:

(1) Let us consider objects a, b, c, d, a′, b′, c′, d′. Suppose 〈a, b, c, d〉 = 〈a′,
b′, c′, d′〉. Then

(i) a = a′, and

(ii) b = b′, and

(iii) c = c′, and

(iv) d = d′.

Let r be a real number. We say that r is unit if and only if

(Def. 1) r = 1.

Let us observe that there exists a non zero real number which is non unit.
Let r be a non unit, non zero real number. The functor op1(r) yielding a non

unit, non zero real number is defined by the term

(Def. 2) 1
r .

One can check that the functor is involutive.
The functor op2(r) yielding a non unit, non zero real number is defined by

the term

(Def. 3) 1− r.
Let us observe that the functor is involutive.

From now on a, b, r denote non unit, non zero real numbers.
Now we state the propositions:

(2) (i) op2(op1(r)) = r−1
r , and

(ii) op1(op2(r)) = 1
1−r , and

(iii) op1(op2(op1(r))) = r
r−1 , and

(iv) op2(op1(op2(r))) = r
r−1 .

(3) (i) op2(op1(op2(op1(r)))) = op1(op2(r)), and

(ii) op1(op2(op1(op2(r)))) = op2(op1(r)).
The theorem is a consequence of (2).

(4) op1(a)
op1(b) = b

a .

In the sequel X denotes a non empty set and x denotes a 4-tuple of X.
Now we state the propositions:

(5) X4 = the set of all 〈d1, d2, d3, d4〉 where d1, d2, d3, d4 are elements of X.
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(6) Let us consider objects a, b, c, d. Suppose (a = x(1) or a = x(2) or
a = x(3) or a = x(4)) and (b = x(1) or b = x(2) or b = x(3) or b = x(4))
and (c = x(1) or c = x(2) or c = x(3) or c = x(4)) and (d = x(1) or
d = x(2) or d = x(3) or d = x(4)). Then 〈a, b, c, d〉 is a 4-tuple of X. The
theorem is a consequence of (5).

Let X be a non empty set and x be a 4-tuple of X. The functors: σ1342(x),
σ1423(x), σ2143(x), σ2314(x), and σ2341(x) yielding 4-tuples of X are defined by
terms

(Def. 4) 〈x(1), x(3), x(4), x(2)〉,
(Def. 5) 〈x(1), x(4), x(2), x(3)〉,
(Def. 6) 〈x(2), x(1), x(4), x(3)〉,
(Def. 7) 〈x(2), x(3), x(1), x(4)〉,
(Def. 8) 〈x(2), x(3), x(4), x(1)〉,

respectively. The functors: σ2413(x), σ2431(x), σ3124(x), σ3142(x), and σ3241(x)
yielding 4-tuples of X are defined by terms

(Def. 9) 〈x(2), x(4), x(1), x(3)〉,
(Def. 10) 〈x(2), x(4), x(3), x(1)〉,
(Def. 11) 〈x(3), x(1), x(2), x(4)〉,
(Def. 12) 〈x(3), x(1), x(4), x(2)〉,
(Def. 13) 〈x(3), x(2), x(4), x(1)〉,

respectively. The functors: σ3412(x), σ3421(x), σ4123(x), σ4132(x), and σ4213(x)
yielding 4-tuples of X are defined by terms

(Def. 14) 〈x(3), x(4), x(1), x(2)〉,
(Def. 15) 〈x(3), x(4), x(2), x(1)〉,
(Def. 16) 〈x(4), x(1), x(2), x(3)〉,
(Def. 17) 〈x(4), x(1), x(3), x(2)〉,
(Def. 18) 〈x(4), x(2), x(1), x(3)〉,

respectively. The functors: σ4312(x) and σ4321(x) yielding 4-tuples of X are de-
fined by terms

(Def. 19) 〈x(4), x(3), x(1), x(2)〉,
(Def. 20) 〈x(4), x(3), x(2), x(1)〉,

respectively. The functors: σid(x) and σ12(x) yielding 4-tuples of X are defined
by terms

(Def. 21) 〈x(1), x(2), x(3), x(4)〉,
(Def. 22) 〈x(2), x(1), x(3), x(4)〉,
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respectively. Observe that the functor is involutive.
The functors: σ13(x) and σ14(x) yielding 4-tuples of X are defined by terms

(Def. 23) 〈x(3), x(2), x(1), x(4)〉,
(Def. 24) 〈x(4), x(2), x(3), x(1)〉,

respectively. One can check that the functor is involutive.
The functor σ23(x) yielding a 4-tuple of X is defined by the term

(Def. 25) 〈x(1), x(3), x(2), x(4)〉.
Note that the functor is involutive.

The functors: σ24(x) and σ34(x) yielding 4-tuples of X are defined by terms

(Def. 26) 〈x(1), x(4), x(3), x(2)〉,
(Def. 27) 〈x(1), x(2), x(4), x(3)〉,

respectively. Let us observe that the functor is involutive.
Note that σid(x) reduces to x.
We introduce the notation σ1234(x) as a synonym of σid(x) and σ2134(x)

as a synonym of σ12(x) and σ3214(x) as a synonym of σ13(x). And σ4231(x) as
a synonym of σ14(x) and σ1324(x) as a synonym of σ23(x) and σ1432(x) as a
synonym of σ24(x) and σ1243(x) as a synonym of σ34(x).

Now we state the propositions:

(7) (i) σ12(σ13(x)) = σ13(σ23(x)), and

(ii) σ12(σ14(x)) = σ14(σ24(x)), and

(iii) σ12(σ23(x)) = σ13(σ12(x)), and

(iv) σ12(σ24(x)) = σ14(σ12(x)), and

(v) σ12(σ34(x)) = σ34(σ12(x)), and

(vi) σ13(σ12(x)) = σ23(σ13(x)), and

(vii) σ13(σ14(x)) = σ34(σ13(x)), and

(viii) σ13(σ23(x)) = σ12(σ13(x)), and

(ix) σ13(σ24(x)) = σ13(σ24(x)), and

(x) σ13(σ34(x)) = σ14(σ13(x)), and

(xi) σ23(σ12(x)) = σ13(σ23(x)), and

(xii) σ23(σ13(x)) = σ12(σ23(x)), and

(xiii) σ23(σ14(x)) = σ14(σ23(x)), and

(xiv) σ23(σ24(x)) = σ34(σ23(x)), and

(xv) σ23(σ34(x)) = σ24(σ23(x)), and

(xvi) σ24(σ12(x)) = σ14(σ24(x)), and

(xvii) σ24(σ13(x)) = σ13(σ24(x)), and
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(xviii) σ24(σ14(x)) = σ12(σ24(x)), and

(xix) σ24(σ23(x)) = σ34(σ24(x)), and

(xx) σ24(σ34(x)) = σ23(σ24(x)), and

(xxi) σ34(σ12(x)) = σ12(σ34(x)), and

(xxii) σ34(σ13(x)) = σ14(σ34(x)), and

(xxiii) σ34(σ14(x)) = σ13(σ34(x)), and

(xxiv) σ34(σ23(x)) = σ24(σ34(x)), and

(xxv) σ34(σ24(x)) = σ23(σ34(x)).

(8) (i) σ1342(x) = σ34(σ23(x)), and

(ii) σ1423(x) = σ34(σ24(x)), and

(iii) σ2143(x) = σ12(σ34(x)), and

(iv) σ2314(x) = σ23(σ12(x)), and

(v) σ2341(x) = σ34(σ23(σ12(x))), and

(vi) σ2413(x) = σ34(σ24(σ12(x))), and

(vii) σ2431(x) = σ24(σ12(x)), and

(viii) σ3124(x) = σ23(σ13(x)), and

(ix) σ3142(x) = σ24(σ34(σ13(x))), and

(x) σ3241(x) = σ34(σ13(x)), and

(xi) σ3412(x) = σ24(σ13(x)), and

(xii) σ3421(x) = σ24(σ23(σ13(x))), and

(xiii) σ4123(x) = σ23(σ34(σ14(x))), and

(xiv) σ4132(x) = σ24(σ14(x)), and

(xv) σ4213(x) = σ34(σ14(x)), and

(xvi) σ4312(x) = σ23(σ24(σ14(x))), and

(xvii) σ4321(x) = σ23(σ14(x)).

(9) (i) σ13(σ23(σ13(x))) = σ12(x), and

(ii) σ12(σ34(σ23(σ13(x)))) = σ34(σ23(x)), and

(iii) σ23(σ24(σ14(σ23(σ13(x))))) = σ14(x).

(10) (i) σ23(σ14(σ34(x))) = σ24(σ23(σ13(x))), and

(ii) σ34(σ24(σ12(x))) = σ24(σ13(σ23(x))), and

(iii) σ24(σ34(σ13(x))) = σ12(σ34(σ23(x))).
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2. Affine Ratio

In the sequel V denotes a real linear space and A, B, C, P , Q, R, S denote
elements of V .

Now we state the proposition:

(11) P , Q and Q are collinear.

Let V be a real linear space and A, B, C be elements of V . Assume A 6= C

and A, B and C are collinear. The functor AffineRatio(A,B,C) yielding a real
number is defined by

(Def. 28) B −A = it · (C −A).

Now we state the propositions:

(12) IfA 6= C andA,B and C are collinear, thenA−B = (AffineRatio(A,B,C))·
(A− C).

(13) If A 6= C and A, B and C are collinear, then AffineRatio(A,B,C) = 0
iff A = B.

(14) If A 6= C and A, B and C are collinear, then AffineRatio(A,B,C) = 1
iff B = C.

(15) Let us consider real numbers a, b. If P 6= Q and a · (P −Q) = b · (P −Q),
then a = b.

(16) If P ,Q andR are collinear and P 6= R and P 6= Q, then AffineRatio(P,R,
Q) = 1

AffineRatio(P,Q,R) . The theorem is a consequence of (15).

(17) Suppose P , Q and R are collinear and P 6= R and Q 6= R and P 6= Q.
Then AffineRatio(Q,P,R) = AffineRatio(P,Q,R)

AffineRatio(P,Q,R)−1 . The theorem is a conse-
quence of (13) and (14).

(18) If P , Q and R are collinear and P 6= R, then AffineRatio(R,Q, P ) =
1−AffineRatio(P,Q,R). The theorem is a consequence of (15).

(19) If P ,Q andR are collinear and P 6= R and P 6= Q, then AffineRatio(Q,R,
P ) = AffineRatio(P,Q,R)−1

AffineRatio(P,Q,R) . The theorem is a consequence of (13) and (15).

(20) If P ,Q andR are collinear and P 6= R andQ 6= R, then AffineRatio(R,P,
Q) = 1

1−AffineRatio(P,Q,R) . The theorem is a consequence of (14) and (15).

(21) Let us consider a real number r. Suppose P , Q and R are collinear and
P 6= R and Q 6= R and P 6= Q and r = AffineRatio(P,Q,R). Then

(i) AffineRatio(P,R,Q) = 1
r , and

(ii) AffineRatio(Q,P,R) = r
r−1 , and

(iii) AffineRatio(Q,R, P ) = r−1
r , and

(iv) AffineRatio(R,P,Q) = 1
1−r , and
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(v) AffineRatio(R,Q, P ) = 1− r.

(22) Let us consider a non zero real number a. Suppose P , Q and R are
collinear and P 6= R. Then AffineRatio(P,Q,R) = AffineRatio(a · P, a ·
Q, a ·R).

(23) Let us consider elements x, y of R1, and 1-tuples p, q of R. If p = x and
q = y, then x+ y = p+ q.

Let us consider elements x, y of E1
T and 1-tuples p, q of R. Now we state the

propositions:

(24) If p = x and q = y, then x+ y = p+ q.

(25) If p = x and q = y, then x− y = p− q.
(26) Let us consider an element x of E1

T, and a 1-tuple p of R. If p = x, then
−x = −p.

(27) Let us consider a real linear space T , elements x, y of T , and 1-tuples p,
q of R. If T = E1

T and p = x and q = y, then x+ y = p+ q.

(28) Let us consider a 1-tuple p of R. Then −p is a 1-tuple of R.

(29) Let us consider a real linear space T , an element x of T , and a 1-tuple p
of R. If T = E1

T and p = x, then −p = −x. The theorem is a consequence
of (27).

(30) Let us consider a real linear space T , an element x of T , and an element p
of E1

T. If T = E1
T and p = x, then −p = −x. The theorem is a consequence

of (29).

(31) Let us consider a real linear space T , elements x, y of T , and 1-tuples p,
q of R. If T = E1

T and p = x and q = y, then x− y = p− q. The theorem
is a consequence of (28) and (29).

(32) Let us consider a real linear space T , elements x, y of T , and elements p,
q of E1

T. If T = E1
T and p = x and q = y, then x+ y = p+ q. The theorem

is a consequence of (27).

(33) Let us consider a set D, and an element d of D. Then Seg 1 7−→ d = 〈d〉.
(34) Let us consider real numbers a, r. Then (·R)◦(Seg 1 7−→ a, 〈r〉) = 〈a · r〉.

The theorem is a consequence of (33).

Let us consider a real number a and a 1-tuple p of R. Now we state the
propositions:

(35) (·R)◦(dom p 7−→ a, p) = a · p. The theorem is a consequence of (34).

(36) (·R)◦(dom p 7−→ a, p) = a · p.
(37) Let us consider a real linear space T , elements x, y of T , a real number

a, and 1-tuples p, q of R. If T = E1
T and p = x and q = y and x = a · y,

then p = a · q. The theorem is a consequence of (35).
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(38) Let us consider a real linear space T , elements x, y of T , a real number
a, and elements p, q of E1

T. If T = E1
T and p = x and q = y, then if x = a ·y,

then p = a · q. The theorem is a consequence of (37).

(39) Let us consider a real linear space T , elements x, y of T , and elements p,
q of E1

T. If T = E1
T and p = x and q = y, then x− y = p− q. The theorem

is a consequence of (30) and (32).

(40) Let us consider 1-tuples p, q of R, and a real number r. Suppose p = r · q
and p 6= 〈0〉. Then there exist real numbers a, b such that

(i) p = 〈a〉, and

(ii) q = 〈b〉, and

(iii) r = a
b .

(41) Let us consider elements x, y, z of E1
T. Then x, y and z are collinear.

Let us consider a real linear space T and elements x, y, z of T . Now we state
the propositions:

(42) If T = E1
T, then x, y and z are collinear.

(43) Suppose T = E1
T. Then suppose z 6= x and y 6= x. Then there exist real

numbers a, b, c such that

(i) x = 〈a〉, and

(ii) y = 〈b〉, and

(iii) z = 〈c〉, and

(iv) AffineRatio(x, y, z) = b−a
c−a .

The theorem is a consequence of (31), (41), (37), and (40).

Now we state the propositions:

(44) Let us consider an element x of E1
T, and real numbers a, r. If x = 〈a〉,

then r · x = 〈r · a〉.
(45) Let us consider elements x, y of E1

T, and real numbers a, b, r. If x = 〈a〉
and y = 〈b〉, then x = r · y iff a = r · b. The theorem is a consequence of
(44).

(46) Let us consider elements x, y of E1
T, and real numbers a, b. If x = 〈a〉

and y = 〈b〉, then x− y = 〈a− b〉.
(47) Let us consider a real linear space V , elements x, y of RF, and elements

x′, y′ of V . If V = RF and x = x′ and y = y′, then x+ y = x′ + y′.

Let us consider a real linear space V and elements P , Q, R of V . Now we
state the propositions:

(48) If P , Q and R are collinear and P 6= R and Q 6= R and P 6= Q, then
AffineRatio(P,Q,R) 6= 0 and AffineRatio(P,Q,R) 6= 1.
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(49) Suppose P , Q and R are collinear and P 6= R and Q 6= R and P 6= Q.
Then there exists a non unit, non zero real number r such that

(i) r = AffineRatio(P,Q,R), and

(ii) AffineRatio(P,R,Q) = op1(r), and

(iii) AffineRatio(Q,P,R) = op1(op2(op1(r))), and

(iv) AffineRatio(Q,R, P ) = op2(op1(r)), and

(v) AffineRatio(R,P,Q) = op1(op2(r)), and

(vi) AffineRatio(R,Q, P ) = op2(r).

The theorem is a consequence of (13), (14), (16), (17), (18), (19), (20),
and (2).

3. Cross-Ratio

Now we state the propositions:

(50) Let us consider a non empty set X, a 4-tuple x of X, and elements P ,
Q, R, S of X. Suppose x = 〈P,Q,R, S〉. Then

(i) σ1234(x) = 〈P,Q,R, S〉, and

(ii) σ1243(x) = 〈P,Q, S,R〉, and

(iii) σ1324(x) = 〈P,R,Q, S〉, and

(iv) σ1342(x) = 〈P,R, S,Q〉, and

(v) σ1423(x) = 〈P, S,Q,R〉, and

(vi) σ1432(x) = 〈P, S,R,Q〉, and

(vii) σ2134(x) = 〈Q,P,R, S〉, and

(viii) σ2143(x) = 〈Q,P, S,R〉, and

(ix) σ2314(x) = 〈Q,R, P, S〉, and

(x) σ2341(x) = 〈Q,R, S, P 〉, and

(xi) σ2413(x) = 〈Q,S, P,R〉, and

(xii) σ2431(x) = 〈Q,S,R, P 〉, and

(xiii) σ3124(x) = 〈R,P,Q, S〉, and

(xiv) σ3142(x) = 〈R,P, S,Q〉, and

(xv) σ3214(x) = 〈R,Q, P, S〉, and

(xvi) σ3241(x) = 〈R,Q, S, P 〉, and

(xvii) σ3412(x) = 〈R,S, P,Q〉, and
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(xviii) σ3421(x) = 〈R,S,Q, P 〉, and

(xix) σ4123(x) = 〈S, P,Q,R〉, and

(xx) σ4132(x) = 〈S, P,R,Q〉, and

(xxi) σ4213(x) = 〈S,Q, P,R〉, and

(xxii) σ4231(x) = 〈S,Q,R, P 〉, and

(xxiii) σ4312(x) = 〈S,R, P,Q〉, and

(xxiv) σ4321(x) = 〈S,R,Q, P 〉.
(51) Let us consider a non empty set X, and a 4-tuple x of X. Then

(i) σ1324(σ1243(x)) = σ1423(x), and

(ii) σ2143(σ1243(x)) = σ2134(x), and

(iii) σ3412(σ1243(x)) = σ4312(x), and

(iv) σ4321(σ1243(x)) = σ3421(x), and

(v) σ3412(σ1324(x)) = σ2413(x), and

(vi) σ2143(σ1324(x)) = σ3142(x), and

(vii) σ4321(σ1324(x)) = σ4231(x), and

(viii) σ3412(σ1423(x)) = σ2314(x), and

(ix) σ2143(σ1423(x)) = σ4132(x), and

(x) σ4321(σ1423(x)) = σ3241(x), and

(xi) σ1243(σ1423(x)) = σ1432(x), and

(xii) σ4321(σ1432(x)) = σ2341(x), and

(xiii) σ3412(σ1432(x)) = σ3214(x), and

(xiv) σ2143(σ1432(x)) = σ4123(x), and

(xv) σ4321(σ3124(x)) = σ4213(x), and

(xvi) σ3412(σ3124(x)) = σ2431(x), and

(xvii) σ2143(σ3124(x)) = σ1342(x), and

(xviii) σ4312(σ3124(x)) = σ4231(x), and

(xix) σ4321(σ3124(x)) = σ4213(x).

In the sequel x denotes a 4-tuple of the carrier of V and P ′, Q′, R′, S′ denote
elements of V .

Let V be a real linear space and P , Q, R, S be elements of V . The functor
CrossRatio(P,Q,R, S) yielding a real number is defined by the term

(Def. 29) AffineRatio(R,P,Q)
AffineRatio(S,P,Q) .

Now we state the propositions:
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(52) If P , Q, R, and S are collinear and R 6= Q and S 6= Q and S 6= P , then
R = P iff CrossRatio(P,Q,R, S) = 0. The theorem is a consequence of
(13).

(53) If P 6= R and P 6= S, then CrossRatio(P, P,R, S) = 1. The theorem is
a consequence of (11) and (14).

(54) If P , Q, R, and S are collinear and R 6= Q and S 6= Q and R 6= S and
CrossRatio(P,Q,R, S) = 1, then P = Q. The theorem is a consequence of
(15) and (14).

(55) Suppose P , Q, R, and S are collinear and P ′, Q′, R′, and S′ are collinear
and S 6= P and S 6= Q and S′ 6= P ′ and S′ 6= Q′. Then CrossRatio(P,Q,R,
S) = CrossRatio(P ′, Q′, R′, S′) if and only if AffineRatio(R,P,Q)·AffineRa-
tio(S′, P ′, Q′) = AffineRatio(R′, P ′, Q′)·AffineRatio(S, P,Q). The theorem
is a consequence of (13).

(56) If P , Q, R, and S are collinear and P 6= S and R 6= Q and S 6= Q, then
CrossRatio(P,Q,R, S) = CrossRatio(R,S, P,Q). The theorem is a conse-
quence of (13).

(57) Let us consider a real linear space V , and elements P , Q, R, S of V .
Suppose P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q

and S 6= Q. Then CrossRatio(P,Q,R, S) = CrossRatio(Q,P, S,R). The
theorem is a consequence of (11), (14), and (49).

(58) If P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q

and S 6= Q, then CrossRatio(P,Q,R, S) = CrossRatio(S,R,Q, P ). The
theorem is a consequence of (57) and (56).

(59) CrossRatio(P,Q, S,R) = 1
CrossRatio(P,Q,R,S) .

(60) If P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q and
S 6= Q, then CrossRatio(Q,P,R, S) = 1

CrossRatio(P,Q,R,S) . The theorem is
a consequence of (57).

(61) If P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q and
S 6= Q, then CrossRatio(R,S,Q, P ) = 1

CrossRatio(P,Q,R,S) . The theorem is
a consequence of (58).

(62) If P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q and
S 6= Q, then CrossRatio(S,R, P,Q) = 1

CrossRatio(P,Q,R,S) . The theorem is
a consequence of (56).

(63) If P , Q, R, and S are collinear and P , Q, R, S are mutually different,
then CrossRatio(P,R,Q, S) = 1−CrossRatio(P,Q,R, S). The theorem is
a consequence of (17), (20), (14), (13), and (15).

(64) If P , Q, R, and S are collinear and P , Q, R, S are mutually different,
then CrossRatio(Q,S, P,R) = 1−CrossRatio(P,Q,R, S). The theorem is
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a consequence of (56) and (63).

(65) If P , Q, R, and S are collinear and P , Q, R, S are mutually different,
then CrossRatio(R,P, S,Q) = 1−CrossRatio(P,Q,R, S). The theorem is
a consequence of (57) and (63).

(66) If P , Q, R, and S are collinear and P , Q, R, S are mutually different,
then CrossRatio(S,Q,R, P ) = 1−CrossRatio(P,Q,R, S). The theorem is
a consequence of (58) and (63).

Let V be a real linear space and x be a 4-tuple of the carrier of V . The
functor CrossRatio(x) yielding a real number is defined by

(Def. 30) there exist elements P , Q, R, S of V such that P = x(1) and Q = x(2)
and R = x(3) and S = x(4) and it = CrossRatio(P,Q,R, S).

Now we state the propositions:

(67) If x = 〈P,Q,R, S〉, then CrossRatio(P,Q,R, S) = CrossRatio(x).

(68) Suppose x = 〈P,Q,R, S〉 and P , Q, R, and S are collinear and P 6= S

and Q 6= R and Q 6= S. Then CrossRatio(x) = CrossRatio(σ3412(x)). The
theorem is a consequence of (56).

(69) Suppose x = 〈P,Q,R, S〉 and P , Q, R, and S are collinear and P 6= R

and P 6= S and Q 6= R and Q 6= S. Then

(i) CrossRatio(x) = CrossRatio(σ2143(x)), and

(ii) CrossRatio(x) = CrossRatio(σ4321(x)).

The theorem is a consequence of (57) and (58).

(70) CrossRatio(σ1243(x)) = 1
CrossRatio(x) .

(71) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then there exists a non unit, non zero real
number r such that

(i) r = CrossRatio(x), and

(ii) CrossRatio(σ1243(x)) = op1(r).

The theorem is a consequence of (54), (52), and (70).

(72) Suppose x = 〈P,Q,R, S〉 and P , Q, R, and S are collinear and P 6= R

and P 6= S and Q 6= R and Q 6= S. Then

(i) CrossRatio(σ1243(x)) = 1
CrossRatio(x) , and

(ii) CrossRatio(σ2134(x)) = 1
CrossRatio(x) , and

(iii) CrossRatio(σ3421(x)) = 1
CrossRatio(x) , and

(iv) CrossRatio(σ4312(x)) = 1
CrossRatio(x) .

The theorem is a consequence of (69) and (68).
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(73) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then

(i) CrossRatio(σ1324(x)) = 1− CrossRatio(x), and

(ii) CrossRatio(σ2413(x)) = 1− CrossRatio(x), and

(iii) CrossRatio(σ3142(x)) = 1− CrossRatio(x), and

(iv) CrossRatio(σ4231(x)) = 1− CrossRatio(x).

The theorem is a consequence of (68), (69), and (63).

(74) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then

(i) CrossRatio(σ3124(x)) = 1
1−CrossRatio(x) , and

(ii) CrossRatio(σ2431(x)) = 1
1−CrossRatio(x) , and

(iii) CrossRatio(σ1342(x)) = 1
1−CrossRatio(x) , and

(iv) CrossRatio(σ4213(x)) = 1
1−CrossRatio(x) .

The theorem is a consequence of (70), (73), (68), and (69).

(75) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then

(i) CrossRatio(σ1423(x)) = CrossRatio(x)−1
CrossRatio(x) , and

(ii) CrossRatio(σ2314(x)) = CrossRatio(x)−1
CrossRatio(x) , and

(iii) CrossRatio(σ4132(x)) = CrossRatio(x)−1
CrossRatio(x) , and

(iv) CrossRatio(σ3241(x)) = CrossRatio(x)−1
CrossRatio(x) .

The theorem is a consequence of (52), (67), (73), (72), (68), and (69).

(76) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then

(i) CrossRatio(σ1432(x)) = CrossRatio(x)
CrossRatio(x)−1 , and

(ii) CrossRatio(σ2341(x)) = CrossRatio(x)
CrossRatio(x)−1 , and

(iii) CrossRatio(σ3214(x)) = CrossRatio(x)
CrossRatio(x)−1 , and

(iv) CrossRatio(σ4123(x)) = CrossRatio(x)
CrossRatio(x)−1 .

The theorem is a consequence of (70), (75), (69), and (68).
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4. Cross-Ratio and the Real Line

Now we state the proposition:

(77) Let us consider elements x1, x2, x3, x4 of E1
T. Suppose x2 6= x3 and

x3 6= x1 and x2 6= x4 and x1 6= x4. Then there exist real numbers a, b, c,
d such that

(i) x1 = 〈a〉, and

(ii) x2 = 〈b〉, and

(iii) x3 = 〈c〉, and

(iv) x4 = 〈d〉, and

(v) CrossRatio(〈x1, x2, x3, x4〉) = c−a
c−b ·

d−b
d−a .

The theorem is a consequence of (43).
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Summary. In this article, various definitions of contuity of multilinear
operators on normed linear spaces are discussed in the Mizar formalism [4], [1]
and [2]. In the first chapter, several basic theorems are prepared to handle the
norm of the multilinear operator, and then it is formalized that the linear space
of bounded multilinear operators is a complete Banach space.

In the last chapter, the continuity of the multilinear operator on finite normed
spaces is addressed. Especially, it is formalized that the continuity at the origin
can be extended to the continuity at every point in its whole domain. We referred
to [5], [11], [8], [9] in this formalization.
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1. Completeness of the Space of Multilinear Operators

Now we state the propositions:

(1) Let us consider a natural number n, and a real number r. Suppose 0 < r.
Then there exists a real number s such that

(i) 0 < s < r, and

(ii)
√
s · s · n < r.
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(2) Let us consider finite sequences R1, R2 of elements of R, natural numbers
n, i, and a real number r. Suppose i ∈ domR1 and R1 = n 7→ (1 qua real
number) and R2 = R1 +· (i, r). Then

∏
R2 = r.

(3) Let us consider a finite sequence F of elements of R. Suppose for every
element k of N such that k ∈ domF holds 0 ¬ F (k). Then 0 ¬

∏
F .

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of R such that for every element k of N such that k ∈ domF holds
0 ¬ F (k) and lenF = $1 holds 0 ¬

∏
F . For every natural number n such

that P[n] holds P[n+ 1]. P[0]. For every natural number n, P[n]. �

From now on X, G denote real norm space sequences, Y denotes a real
normed space, and f denotes a multilinear operator from X into Y.

Now we state the propositions:

(4) domX = domX.

(5) Let us consider an element z of
∏
X. If z = 0∏X , then for every element

i of domX, z(i) = 0X(i). The theorem is a consequence of (4).

(6) f(0∏X) = 0Y . The theorem is a consequence of (5).

(7) Let us consider a finite sequence F of elements of R. If for every element
i of domF , F (i) > 0, then

∏
F > 0.

(8) Let us consider a real norm space sequence X, and a real normed space
Y. Suppose Y is complete. Let us consider a sequence s1

of NormSpaceOfBoundedMultOpersR(X,Y ). If s1 is Cauchy sequence by
norm, then s1 is convergent.
Proof: Define P[set, set] ≡ there exists a sequence x1 of Y such that for
every natural number n, x1(n) = (PartFuncs(vseq(n), X, Y ))($1) and x1

is convergent and $2 = limx1. For every element x of
∏
X, there exists

an element y of Y such that P[x, y]. Consider f being a function from
the carrier of

∏
X into the carrier of Y such that for every element x

of
∏
X, P[x, f(x)]. Reconsider t1 = f as a function from

∏
X into Y.

For every point u of
∏
X and for every element i of domX and for every

point x of X(i), there exists a sequence x2 of Y such that for every natural
number n, x2(n) = ((PartFuncs(vseq(n), X, Y )) · (reproj(i, u)))(x) and x2

is convergent and (t1 · (reproj(i, u)))(x) = limx2. t1 is Lipschitzian by [10,
(20)].

For every real number e such that e > 0 there exists a natural number
k such that for every natural number n such that n ­ k for every point
x of

∏
X, ‖(PartFuncs(vseq(n), X, Y ))(x) − t1(x)‖ ¬ e · (NrProductx).

Reconsider t2 = t1 as a point of NormSpaceOfBoundedMultOpersR(X,Y ).
For every real number e such that e > 0 there exists a natural number k
such that for every natural number n such that n ­ k holds ‖vseq(n) −
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t2‖ ¬ e. For every real number e such that e > 0 there exists a natural
number m such that for every natural number n such that n ­ m holds
‖vseq(n)− t2‖ < e. �

(9) Let us consider a real norm space sequence X, and a real Banach space
Y. Then NormSpaceOfBoundedMultOpersR(X,Y ) is a real Banach space.
The theorem is a consequence of (8).

Let X be a real norm space sequence and Y be a real Banach space. One
can check that NormSpaceOfBoundedMultOpersR(X,Y ) is complete.

2. Equivalence of Continuity Definitions of Multilinear
Operators

Now we state the propositions:

(10) Let us consider a natural number n, an element F of Rn, and a real
number s. Suppose for every natural number i such that i ∈ domF holds
0 ¬ F (i) ¬ s. Then |F | ¬

√
s · s · (lenF ).

Proof: SetG = lenF 7→ s. Reconsider F0 = F as an element of RlenF . For
every natural number j such that j ∈ Seg lenF0 holds (2F0)(j) ¬ (2G)(j).
�

(11) Let us consider a real norm space sequence X, a real normed space Y,
a multilinear operator f from X into Y, and a real number K. Suppose
0 ¬ K and for every point x of

∏
X, ‖f(x)‖ ¬ K · (NrProductx). Let

us consider points v0, v1 of
∏
X, finite sequences C0, C1, and an element

i of domX. Suppose C0 = v0 and C1 = v1 and ‖v1 − v0‖ ¬ 1 and for
every element j of domX such that i 6= j holds C1(j) = C0(j). Then
‖f/v1 − f/v0‖ ¬ (‖v0‖+ 1)lenX ·K · ‖(v1 − v0)(i)‖.
Proof: For every object x such that x ∈ dom v1 holds v1(x) = (reproj(i, v0))
(v1(i))(x). Reconsider v3 = (reproj(i, v0))(v1(i)−v0(i)) as a point of

∏
X.

Reconsider R1 = lenX 7→ (1 qua real number) as a finite sequence of
elements of R. Reconsider N1 = ‖(v1 − v0)(i)‖ as an element of R. Re-
consider R2 = R1 +· (i,N1) as a finite sequence of elements of R. Recon-
sider R3 = lenX 7→ (‖v0‖ + 1) as a finite sequence of elements of R. Set
R4 = R2 •R3.

∏
R2 = ‖(v1 − v0)(i)‖. Consider N2 being a finite sequence

of elements of R such that domN2 = domX and for every element i of
domX, N2(i) = ‖v3(i)‖ and NrProduct v3 =

∏
N2. For every element k

of N such that k ∈ domN2 holds N2(k) ¬ R4(k) and 0 ¬ N2(k). �

(12) Let us consider a real norm space sequence X, a real normed space Y,
a multilinear operator f from X into Y, and a real number K. Suppose
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0 ¬ K and for every point x of
∏
X, ‖f(x)‖ ¬ K · (NrProductx). Let us

consider a point v0 of
∏
X. Then there exists a real number M such that

(i) 0 ¬M , and

(ii) for every point v1 of
∏
X such that ‖v1−v0‖ ¬ 1 there exists a finite

sequence F of elements of R such that domF = domX and ‖f/v1 −
f/v0‖ ¬ M · K · (

∑
F ) and for every element i of domX, F (i) =

‖(v1 − v0)(i)‖.

Proof: Consider g being a function such that v0 = g and dom g = domX

and for every object i such that i ∈ domX holds g(i) ∈ X(i). Reconsider
C0 = v0 as a finite sequence. Define P[natural number] ≡ for every points
v0, v1 of

∏
X for every finite sequences C0, C1 such that ‖v1 − v0‖ ¬

1 and v0 = C0 and v1 = C1 and $1 ¬ lenX and C1�(lenX −′ $1) =
C0�(lenX −′ $1) there exists a finite sequence F of elements of R such
that domF = Seg $1 and ‖f/v1 − f/v0‖ ¬ (‖v0‖+ 3)lenX ·K · (

∑
F ) and

for every natural number n such that n ∈ Seg $1 there exists an element i
of domX such that i = lenX −′ $1 + n and F (n) = ‖(v1 − v0)(i)‖.
P[0]. For every natural number k such that P[k] holds P[k + 1]. For

every natural number n, P[n]. Consider g being a function such that v1 = g

and dom g = domX and for every object i such that i ∈ domX holds
g(i) ∈ X(i). Consider F being a finite sequence of elements of R such that
domF = Seg lenX and ‖f/v1 − f/v0‖ ¬ (‖v0‖+ 3)lenX ·K · (

∑
F ) and for

every natural number n such that n ∈ Seg lenX there exists an element i
of domX such that i = lenX −′ lenX + n and F (n) = ‖(v1 − v0)(i)‖. For
every element i of domX, F (i) = ‖(v1 − v0)(i)‖. �

(13) Let us consider a point x of
∏
X, and a real number r. Suppose 0 < r.

Then there exists a finite sequence s of elements of R and there exists
a non empty, non-empty finite sequence Y such that dom s = domX and
domY = domX and

∏
Y ⊆ Ball(x, r) and for every element i of domX,

0 < s(i) < r and Y (i) = Ball(x(i), s(i)).
Proof: Consider s0 being a real number such that 0 < s0 < r and√
s0 · s0 · (lenX) < r. Set C2 = lenX 7→ s0. For every element i of domX,

0 < C2(i) < r. Define P[object, object] ≡ there exists an element i of
domX such that $1 = i and $2 = Ball(x(i), C2(i)). For every natural num-
ber n such that n ∈ Seg lenX there exists an object d such that P[n, d].
Consider Y being a finite sequence such that domY = Seg lenX and for
every natural number n such that n ∈ Seg lenX holds P[n, Y (n)]. ∅ /∈
rng Y by [6, (14)]. For every element i of domX, Y (i) = Ball(x(i), C2(i)).
For every object z such that z ∈

∏
Y holds z ∈ Ball(x, r). �

(14) Let us consider a real norm space sequence X, a real normed space Y,
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and a multilinear operator f from X into Y. Then

(i) f is continuous on the carrier of
∏
X iff f is continuous in 0∏X , and

(ii) f is continuous on the carrier of
∏
X iff f is Lipschitzian.

Proof: f/0∏
X

= 0Y . If f is continuous in 0∏X , then f is Lipschitzian

by [7, (7)], (13), (4), (5). If f is Lipschitzian, then f is continuous on
the carrier of

∏
X by (12), [3, (10)]. �
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Summary. Fubini theorem is an essential tool for the analysis of high-
dimensional space [8], [2], [3], a theorem about the multiple integral and iterated
integral. The author has been working on formalizing Fubini’s theorem over the
past few years [4], [6] in the Mizar system [7], [1]. As a result, Fubini’s theorem
(30) was proved in complete form by this article.
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1. Preliminaries

From now on X denotes a set.
Now we state the proposition:

(1) Let us consider a subset A of X, and an X-defined binary relation f .
Then f�Ac = f�(dom f \A).

Let us consider a partial function f from X to R. Now we state the propo-
sitions:

(2) GTE-dom(f,+∞) = EQ-dom(f,+∞).

(3) LEQ-dom(f,−∞) = EQ-dom(f,−∞).

(4) Let us consider a partial function f from X to R, and an extended real
e. Then GTE-dom(f, e) misses LE-dom(f, e).

(5) Let us consider a partial function f fromX to R. Then dom f = (EQ-dom
(f,−∞) ∪GT-dom(f,−∞) ∩ LE-dom(f,+∞)) ∪ EQ-dom(f,+∞).
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In the sequel X, X1, X2 denote non empty sets.

(6) Let us consider a partial function f from X to R, and an element x of
X. Then

(i) (max+(f))(x) ¬ |f |(x), and

(ii) (max−(f))(x) ¬ |f |(x).

(7) Let us consider a partial function f from X1×X2 to R, an element x of
X1, and an element y of X2. Then

(i) ProjPMap1(|f |, x) = |ProjPMap1(f, x)|, and

(ii) ProjPMap2(|f |, y) = |ProjPMap2(f, y)|.

2. Markov’s Inequality

From now on S denotes a σ-field of subsets of X, S1 denotes a σ-field of
subsets of X1, S2 denotes a σ-field of subsets of X2, M denotes a σ-measure on
S, M1 denotes a σ-measure on S1, and M2 denotes a σ-measure on S2.

Let X be a non empty set, S be a σ-field of subsets of X, and E be an element
of S. One can verify that there exists a partial function from X to R which is
E-measurable.

Now we state the proposition:

(8) Let us consider an element E of S, and an E-measurable partial function
f from X to R. Suppose dom f = E.
Then EQ-dom(f,+∞), EQ-dom(f,−∞) ∈ S.

Let us consider an element E of σ(MeasRect(S1, S2)) and an E-measurable
partial function f from X1 ×X2 to R. Now we state the propositions:

(9) Suppose M1 is σ-finite and M2 is σ-finite and dom f = E. Then

(i)
∫

Integral2(M2, |f |) dM1 =
∫
|f |d ProdMeas(M1,M2), and

(ii)
∫

Integral1(M1, |f |) dM2 =
∫
|f |d ProdMeas(M1,M2).

(10) Suppose M1 is σ-finite and M2 is σ-finite and E = dom f . Then f is
integrable on ProdMeas(M1,M2) if and only if

∫
Integral1(M1, |f |) dM2 <

+∞.

(11) Suppose M1 is σ-finite and M2 is σ-finite and E = dom f . Then f is
integrable on ProdMeas(M1,M2) if and only if

∫
Integral2(M2, |f |) dM1 <

+∞.

(12) Let us consider an element E of σ(MeasRect(S1, S2)), an element U of
S1, and an E-measurable partial function f from X1 ×X2 to R. Suppose
M2 is σ-finite and E = dom f . Then Integral2(M2, |f |) is U -measurable.
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(13) Let us consider an element E of σ(MeasRect(S1, S2)), an element V of
S2, and an E-measurable partial function f from X1 ×X2 to R. Suppose
M1 is σ-finite and E = dom f . Then Integral1(M1, |f |) is V -measurable.

Let us consider a partial function f from X1 ×X2 to R. Now we state the
propositions:

(14) Suppose M2 is σ-finite and f is integrable on ProdMeas(M1,M2). Then

(i)
∫

max+(Integral2(M2, |f |)) dM1 =
∫

Integral2(M2, |f |) dM1, and

(ii)
∫

max−(Integral2(M2, |f |)) dM1 = 0.

The theorem is a consequence of (12).

(15) Suppose M1 is σ-finite and f is integrable on ProdMeas(M1,M2). Then

(i)
∫

max+(Integral1(M1, |f |)) dM2 =
∫

Integral1(M1, |f |) dM2, and

(ii)
∫

max−(Integral1(M1, |f |)) dM2 = 0.

The theorem is a consequence of (13).

(16) Markov’s inequality:
Let us consider an element E of S, an E-measurable partial function f

from X to R, and an extended real e. Suppose dom f = E and f is non-
negative and e ­ 0. Then e ·M(GTE-dom(f, e)) ¬

∫
f dM .

Proof: GTE-dom(f,+∞) = EQ-dom(f,+∞). Reconsider E3 = GTE-dom
(f, e) as an element of S. For every element x of X such that
x ∈ dom(χe,E3,X�E3) holds (χe,E3,X�E3)(x) ¬ (f�E3)(x). �

3. Fubini’s Theorem

Now we state the propositions:

(17) Let us consider partial functions f , g from X to R. Suppose f is inte-
grable on M and g is integrable on M . Then

(i)
∫
f + g dM =

∫
f�(dom f ∩ dom g) dM +

∫
g�(dom f ∩ dom g) dM ,

and

(ii)
∫
f − g dM =

∫
f�(dom f ∩ dom g) dM −

∫
g�(dom f ∩ dom g) dM .

(18) Let us consider a partial function f from X to R. Then f is integrable
on M if and only if max+(f) is integrable on M and max−(f) is integrable
on M .

(19) Let us consider elements A, B of S, and a partial function f from X to
R. Suppose B ⊆ A and f�A is B-measurable. Then f is B-measurable.

Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure
on S, and f be a partial function from X to R. We say that f is integrable a.e.
w.r.t. M if and only if
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(Def. 1) there exists an element A of S such that M(A) = 0 and A ⊆ dom f and
f�Ac is integrable on M .

Let us consider a partial function f from X to R. Now we state the propo-
sitions:

(20) If f is integrable a.e. w.r.t. M , then dom f ∈ S.

(21) If f is integrable on M , then f is integrable a.e. w.r.t. M . The theorem
is a consequence of (1).

Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure
on S, and f be a partial function from X to R. We say that f is finite M -a.e.
if and only if

(Def. 2) there exists an element A of S such that M(A) = 0 and A ⊆ dom f and
f�Ac is a partial function from X to R.

Now we state the propositions:

(22) Let us consider an element E of S, and an E-measurable partial function
f from X to R. Suppose dom f = E. Then f is finite M -a.e. if and only if
M(EQ-dom(f,+∞)∪EQ-dom(f,−∞)) = 0. The theorem is a consequence
of (8).

(23) Let us consider a partial function f from X to R. Suppose f is integrable
on M . Then

(i) M(EQ-dom(f,+∞)) = 0, and

(ii) M(EQ-dom(f,−∞)) = 0, and

(iii) f is finite M -a.e., and

(iv) for every real number r such that r > 0 holds M(GTE-dom(|f |, r)) <
+∞.

The theorem is a consequence of (16).

(24) Let us consider a partial function f from X1 × X2 to R. Suppose M1

is σ-finite and M2 is σ-finite and f is integrable on ProdMeas(M1,M2).
Then

(i) Integral1(M1,max+(f)) is integrable on M2, and

(ii) Integral2(M2,max+(f)) is integrable on M1, and

(iii) Integral1(M1,max−(f)) is integrable on M2, and

(iv) Integral2(M2,max−(f)) is integrable on M1, and

(v) Integral1(M1, |f |) is integrable on M2, and

(vi) Integral2(M2, |f |) is integrable on M1.
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(25) Let us consider an element E of S, and an E-measurable partial function
f from X to R. Suppose dom f ⊆ E and f is integrable a.e. w.r.t. M . Then
f is integrable on M . The theorem is a consequence of (20) and (1).

(26) Let us consider an element A of S, and a partial function f from X to
R. Suppose M(A) = 0 and A ⊆ dom f and f�Ac is integrable on M . Then
there exists a partial function g from X to R such that

(i) dom g = dom f , and

(ii) f�Ac = g�Ac, and

(iii) g is integrable on M , and

(iv)
∫
f�Ac dM =

∫
g dM .

Proof: Consider B being an element of S such that B = dom(f�Ac)
and f�Ac is B-measurable. f�Ac = f�(dom f \ A). Define C[object] ≡
$1 ∈ A. Define F(object) = +∞. Define G(object) = f($1). Consider g
being a function such that dom g = dom f and for every object x such that
x ∈ dom f holds if C[x], then g(x) = F(x) and if not C[x], then g(x) =
G(x). For every real number r, (A∪B)∩LE-dom(g, r) ∈ S.

∫
f�Ac dM =∫

g�(dom g \A) dM . �

(27) Let us consider a partial function f from X1 × X2 to R. Suppose M1

is σ-finite and M2 is σ-finite and f is integrable on ProdMeas(M1,M2).
Then

(i)
∫
f d ProdMeas(M1,M2) =∫
Integral1(M1,max+(f)) dM2−

∫
Integral1(M1,max−(f)) dM2, and

(ii)
∫
f d ProdMeas(M1,M2) =∫
Integral2(M2,max+(f)) dM1 −

∫
Integral2(M2,max−(f)) dM1.

(28) Let us consider an element E of σ(MeasRect(S1, S2)), and an element y
of X2. Then

(i) if M1(MeasurableYsection(E, y)) 6= 0, then
(Integral1(M1, χE,X1×X2))(y) = +∞, and

(ii) if M1(MeasurableYsection(E, y)) = 0, then
(Integral1(M1, χE,X1×X2))(y) = 0.

(29) Let us consider an element E of σ(MeasRect(S1, S2)), and an element x
of X1. Then

(i) if M2(MeasurableXsection(E, x)) 6= 0, then
(Integral2(M2, χE,X1×X2))(x) = +∞, and

(ii) if M2(MeasurableXsection(E, x)) = 0, then
(Integral2(M2, χE,X1×X2))(x) = 0.
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(30) Fubini’s theorem:
Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
a partial function f from X1×X2 to R, and an element S3 of S1. Suppose
M1 is σ-finite and M2 is σ-finite and f is integrable on ProdMeas(M1,M2)
and X1 = S3. Then there exists an element U of S1 such that

(i) M1(U) = 0, and

(ii) for every element x of X1 such that x ∈ U c holds ProjPMap1(f, x)
is integrable on M2, and

(iii) Integral2(M2, |f |)�U c is a partial function from X1 to R, and

(iv) Integral2(M2, f) is (S3 \ U)-measurable, and

(v) Integral2(M2, f)�U c is integrable on M1, and

(vi) Integral2(M2, f)�U c ∈ the L1 functions of M1, and

(vii) there exists a function g from X1 into R such that g is integrable on
M1 and g�U c = Integral2(M2, f)�U c and

∫
f d ProdMeas(M1,M2) =∫

g dM1.

Proof: Consider A being an element of σ(MeasRect(S1, S2)) such that
A = dom f and f is A-measurable. Integral2(M2, |f |) is integrable on
M1 and Integral2(M2,max+(f)) is integrable on M1 and Integral2(M2,

max−(f)) is integrable on M1. Integral2(M2, |f |) is finite M1-a.e.. Consider
U being an element of S1 such thatM1(U) = 0 and Integral2(M2, |f |)�U c is
a partial function fromX1 to R. For every element x ofX1 such that x ∈ U c

holds ProjPMap1(f, x) is integrable on M2. Consider g1 being a partial
function from X1 to R such that dom g1 = dom(Integral2(M2,max+(f)))
and g1�U c = Integral2(M2,max+(f))�U c and g1 is integrable on M1 and∫
g1 dM1 =

∫
Integral2(M2,max+(f))�U c dM1.

Consider g2 being a partial function from X1 to R such that dom g2 =
dom(Integral2(M2,max−(f))) and g2�U c = Integral2(M2,max−(f))�U c

and g2 is integrable on M1 and
∫
g2 dM1 =

∫
Integral2(M2,max−(f))�U c

dM1. Consider g being a partial function from X1 to R such that dom g =
dom(Integral2(M2, f)) and g�U c = Integral2(M2, f)�U c and g is integrable
onM1 and

∫
g dM1 =

∫
Integral2(M2, f)�U c dM1.

∫
f d ProdMeas(M1,M2)

=
∫
g�U c dM1. �

(31) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
a partial function f from X1×X2 to R, and an element S4 of S2. Suppose
M1 is σ-finite and M2 is σ-finite and f is integrable on ProdMeas(M1,M2)
and X2 = S4. Then there exists an element V of S2 such that



Fubini’s theorem 73

(i) M2(V ) = 0, and

(ii) for every element y of X2 such that y ∈ V c holds ProjPMap2(f, y) is
integrable on M1, and

(iii) Integral1(M1, |f |)�V c is a partial function from X2 to R, and

(iv) Integral1(M1, f) is (S4 \ V )-measurable, and

(v) Integral1(M1, f)�V c is integrable on M2, and

(vi) Integral1(M1, f)�V c ∈ the L1 functions of M2, and

(vii) there exists a function g from X2 into R such that g is integrable on
M2 and g�V c = Integral1(M1, f)�V c and

∫
f d ProdMeas(M1,M2) =∫

g dM2.

Proof: Consider A being an element of σ(MeasRect(S1, S2)) such that
A = dom f and f is A-measurable. Integral1(M1, |f |) is integrable on
M2 and Integral1(M1,max+(f)) is integrable on M2 and Integral1(M1,

max−(f)) is integrable on M2. Integral1(M1, |f |) is finite M2-a.e.. Consider
V being an element of S2 such that M2(V ) = 0 and Integral1(M1, |f |)�V c

is a partial function from X2 to R. For every element y of X2 such that
y ∈ V c holds ProjPMap2(f, y) is integrable on M1 by (7), [5, (31)].
Consider g1 being a partial function from X2 to R such that dom g1 =
dom(Integral1(M1,max+(f))) and g1�V c = Integral1(M1,max+(f))�V c

and g1 is integrable on M2 and
∫
g1 dM2 =

∫
Integral1(M1,max+(f))�V c

dM2.
Consider g2 being a partial function from X2 to R such that dom g2 =

dom(Integral1(M1,max−(f))) and g2�V c = Integral1(M1,max−(f))�V c

and g2 is integrable on M2 and
∫
g2 dM2 =

∫
Integral1(M1,max−(f))�V c

dM2. Consider g being a partial function from X2 to R such that dom g =
dom(Integral1(M1, f)) and g�V c = Integral1(M1, f)�V c and g is integrable
onM2 and

∫
g dM2 =

∫
Integral1(M1, f)�V c dM2.

∫
f d ProdMeas(M1,M2)

=
∫
g�V c dM2. �

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-field
S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, and a partial
function f from X1 ×X2 to R. Now we state the propositions:

(32) SupposeM1 is σ-finite andM2 is σ-finite and f is integrable on ProdMeas
(M1,M2) and for every element x of X1, (Integral2(M2, |f |))(x) < +∞.
Then

(i) for every element x of X1, ProjPMap1(f, x) is integrable on M2, and

(ii) for every element U of S1, Integral2(M2, f) is U -measurable, and

(iii) Integral2(M2, f) is integrable on M1, and
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(iv)
∫
f d ProdMeas(M1,M2) =

∫
Integral2(M2, f) dM1, and

(v) Integral2(M2, f) ∈ the L1 functions of M1.

The theorem is a consequence of (7), (24), (6), and (17).

(33) SupposeM1 is σ-finite andM2 is σ-finite and f is integrable on ProdMeas
(M1,M2) and for every element y of X2, (Integral1(M1, |f |))(y) < +∞.
Then

(i) for every element y of X2, ProjPMap2(f, y) is integrable on M1, and

(ii) for every element V of S2, Integral1(M1, f) is V -measurable, and

(iii) Integral1(M1, f) is integrable on M2, and

(iv)
∫
f d ProdMeas(M1,M2) =

∫
Integral1(M1, f) dM2, and

(v) Integral1(M1, f) ∈ the L1 functions of M2.

The theorem is a consequence of (7), (24), (6), and (17).
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Summary. In the article, we continue [7] the formalization of the work
devoted to Tarski’s geometry – the book “Metamathematische Methoden in der
Geometrie” (SST for short) by W. Schwabhäuser, W. Szmielew, and A. Tarski
[14], [9], [10]. We use the Mizar system to systematically formalize Chapter 8 of
the SST book.

We define the notion of right angle and prove some of its basic properties,
a theory of intersecting lines (including orthogonality). Using the notion of per-
pendicular foot, we prove the existence of the midpoint (Satz 8.22), which will be
used in the form of the Mizar functor (as the uniqueness can be easily shown) in
Chapter 10. In the last section we give some lemmas proven by means of Otter
during Tarski Formalization Project by M. Beeson (the so-called Section 8A of
SST).
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0. Introduction

We use the Mizar system [1], [2] to systematically formalize Chapter 8
(“Rechte Winkel – Right angle”) of the SST book. The theorems of this chapter
are valid in neutral geometry [13].

We start (Def. 1) with the translation of the definition of the “right angle”
which in SST reads as follows:
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a,b,c bilden einen rechten winkel (mit dem Scheitel b):

Rabc :←→ ac ≡ aSb(c).

In the Mizar formalism (note explicit use of Tarski’s axioms):

definition
let S be satisfying_CongruenceIdentity satisfying_CongruenceSymmetry

satisfying_CongruenceEquivalenceRelation
satisfying_SegmentConstruction satisfying_SAS

satisfying_BetweennessIdentity TarskiGeometryStruct;
let a,b,c be POINT of S;
pred right_angle a,b,c means
a,c equiv a,reflection(b,c);

end;

where reflection is defined in [7].
For the purpose of this presentation, we use the notation (a, b, c) instead

of Rabc chosen in SST. Section 3 starts with variants of Definition 8.11, while
in the next section predicate A,B Is x is defined, and this is Def. 7 in our
translation. Section 5 deals with perpendicular foot – Satz 8.18 is Lotsatz, Satz
8.22 states that every segment has a midpoint (Gupta 1965 [11]).

In 2006, the first eight chapters were formalised in Coq in 2006 by Narbo-
ux [12] and we are essentially in this place. The entire SST book have been
formalized within intuitionistic logic [5]. Note that the definitions in [6]1:

(* Definition 8.1. *)
Definition Per A B C := exists C’, Midpoint B C C’ /\ Cong A C A C’.

and in [4]: ABC is a right angle if there is a point D such that B(A,B,D) and
AB = DB and AC = DC:

rightangle ‘RR A B C <=> ?X. BE A B X /\ EE A B X B /\ EE A C X C /\ NE B C‘

are slightly different than in SST.
Some of the results were obtained by means of other automatic proof assi-

stants, either partially [8], or completely [3].

1https://github.com/GeoCoq/GeoCoq/blob/master/Tarski_dev/Definitions.v

https://github.com/GeoCoq/GeoCoq/blob/master/Tarski_dev/Definitions.v
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1. Preliminaries

From now on S denotes a non empty Tarski plane satisfying seven Tarski’s
geometry axioms and a, b, c, d, c′, x, y, z, p, q, q′ denote points of S.

Let S be a non empty Tarski plane satisfying the axiom of congruence iden-
tity, the axiom of segment construction, the axiom of betweenness identity, and
the axiom of Pasch and a, b be points of S. Let us note that the functor Line(a, b)
is commutative.

Now we state the proposition:

(1) Let us consider Tarski plane S satisfying the axiom of congruence sym-
metry, the axiom of congruence equivalence relation, and the axiom of
congruence identity, and points a, b, c, d of S. Suppose ab ∼= cd. Then

(i) ab ∼= dc, and

(ii) ba ∼= cd, and

(iii) ba ∼= dc, and

(iv) cd ∼= ab, and

(v) dc ∼= ab, and

(vi) cd ∼= ba, and

(vii) dc ∼= ba.

Let us consider Tarski plane S satisfying the axiom of congruence symme-
try, the axiom of congruence equivalence relation, and the axiom of congruence
identity and points p, q, a, b, c, d of S. Now we state the propositions:

(2) Suppose (pq ∼= ab or pq ∼= ba or qp ∼= ab or qp ∼= ba) and (pq ∼= cd or
pq ∼= dc or qp ∼= cd or qp ∼= dc). Then

(i) ab ∼= dc, and

(ii) ba ∼= cd, and

(iii) ba ∼= dc, and

(iv) cd ∼= ab, and

(v) dc ∼= ab, and

(vi) cd ∼= ba, and

(vii) dc ∼= ba.

The theorem is a consequence of (1).

(3) Suppose (pq ∼= ab or pq ∼= ba or qp ∼= ab or qp ∼= ba or ab ∼= pq or ba ∼= pq

or ab ∼= qp or ba ∼= qp) and (pq ∼= cd or pq ∼= dc or qp ∼= cd or qp ∼= dc or
cd ∼= pq or dc ∼= pq or cd ∼= qp or dc ∼= qp). Then
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(i) ab ∼= dc, and

(ii) ba ∼= cd, and

(iii) ba ∼= dc, and

(iv) cd ∼= ab, and

(v) dc ∼= ab, and

(vi) cd ∼= ba, and

(vii) dc ∼= ba, and

(viii) ab ∼= cd.

The theorem is a consequence of (1) and (2).

(4) Let us consider Tarski plane S satisfying the axiom of congruence identi-
ty, the axiom of segment construction, the axiom of betweenness identity,
and the axiom of Pasch, and points a, b of S. Then

(i) a, b and b are collinear, and

(ii) b, b and a are collinear, and

(iii) b, a and b are collinear.

(5) Let us consider a non empty Tarski plane S satisfying seven Tarski’s
geometry axioms, and points p, q, r of S. Suppose p 6= q and p 6= r and (p,
q and r are collinear or q, r and p are collinear or r, p and q are collinear
or p, r and q are collinear or q, p and r are collinear or r, q and p are
collinear). Then

(i) Line(p, q) = Line(p, r), and

(ii) Line(p, q) = Line(r, p), and

(iii) Line(q, p) = Line(p, r), and

(iv) Line(q, p) = Line(r, p).

(6) Let us consider a Tarski plane S, and points a, b, c of S. Suppose
Middle(a, b, c) or b lies between a and c. Then a, b and c are collinear.

(7) Let us consider Tarski plane S satisfying the axiom of congruence identi-
ty, the axiom of segment construction, the axiom of betweenness identity,
and the axiom of Pasch, and points a, b, c of S. Suppose Middle(a, b, c) or
b lies between a and c. Then

(i) a, b and c are collinear, and

(ii) b, c and a are collinear, and

(iii) c, a and b are collinear, and

(iv) c, b and a are collinear, and
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(v) b, a and c are collinear, and

(vi) a, c and b are collinear.

The theorem is a consequence of (6).

(8) Ext1:
Let us consider a non empty Tarski plane S satisfying seven Tarski’s geo-
metry axioms, and points a, b, c, d of S. Suppose a 6= b and a, b and c are
collinear and a, b and d are collinear. Then a, c and d are collinear. The
theorem is a consequence of (4) and (5).

(9) Let us consider a non empty Tarski plane S satisfying seven Tarski’s geo-
metry axioms, and points a, b of S. Suppose Middle(a, a, b) or Middle(a, b, b)
or Middle(a, b, a). Then a = b.

(10) Suppose (Middle(a, b, c) or Middle(c, b, a)) and (a 6= b or b 6= c). Then

(i) Line(b, a) = Line(b, c), and

(ii) Line(a, b) = Line(b, c), and

(iii) Line(a, b) = Line(c, b), and

(iv) Line(b, a) = Line(c, b).

The theorem is a consequence of (9).

(11) Suppose a 6= b and c 6= c′ and (c ∈ Line(a, b) or c ∈ Line(b, a)) and
(c′ ∈ Line(a, b) or c′ ∈ Line(b, a)). Then

(i) Line(c, c′) = Line(a, b), and

(ii) Line(c, c′) = Line(b, a), and

(iii) Line(c′, c) = Line(b, a), and

(iv) Line(c′, c) = Line(a, b).

(12) Middle(Sp(c), Sp(b),Sp((Sb(c)))).

2. Right Angle

Let S be Tarski plane satisfying the axiom of congruence identity, the axiom
of congruence symmetry, the axiom of congruence equivalence relation, the
axiom of segment construction, the axiom of betweenness identity, and the axiom
of SAS and a, b, c be points of S. We say that (a, b, c) if and only if

(Def. 1) ac ∼= aSb(c).

From now on S denotes Tarski plane satisfying seven Tarski’s geometry
axioms and a, a′, b, b′, c, c′ denote points of S.

Now we state the propositions:
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(13) 8.2 Satz:
If (a, b, c), then (c, b, a).

(14) Sa(a) = a.

(15) 8.3 Satz:
If (a, b, c) and a 6= b and b, a and a′ are collinear, then (a′, b, c). The
theorem is a consequence of (14).

(16) 8.4 Satz:
If (a, b, c), then (a, b,Sb(c)).

(17) 8.5 Satz:
(a, b, b). The theorem is a consequence of (14).

(18) 8.6 Satz:
If (a, b, c) and (a′, b, c) and c lies between a and a′, then b = c.

(19) 8.7 Satz:
If (a, b, c) and (a, c, b), then b = c. The theorem is a consequence of
(13), (17), (1), (7), (15), and (18).

(20) 8.8 Satz:
If (a, b, a), then a = b. The theorem is a consequence of (13), (17), and
(19).

(21) 8.9 Satz:
If (a, b, c) and a, b and c are collinear, then a = b or c = b. The theorem
is a consequence of (15) and (20).

(22) 8.10 Satz:
If (a, b, c) and 4abc ∼= 4a′b′c′, then (a′, b′, c′). The theorem is a con-
sequence of (17), (1), and (3).

3. Orthogonality

Let S be a non empty Tarski plane satisfying seven Tarski’s geometry axioms,
A, A′ be subsets of S, and x be a point of S. We say that A ⊥x A′ if and only if

(Def. 2) A is a line and A′ is a line and x ∈ A and x ∈ A′ and for every points u,
v of S such that u ∈ A and v ∈ A′ holds (u, x, v).

We say that A ⊥ A′ if and only if

(Def. 3) there exists a point x of S such that A ⊥x A′.
Let A be a subset of S and x, c, d be points of S. We say that A, x ⊥ c, d if

and only if

(Def. 4) c 6= d and A ⊥x Line(c, d).

Let a, b, x, c, d be points of S. We say that a, b ⊥x c, d if and only if
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(Def. 5) a 6= b and c 6= d and Line(a, b) ⊥x Line(c, d).

Let a, b, c, d be points of S. We say that a, b ⊥ c, d if and only if

(Def. 6) a 6= b and c 6= d and Line(a, b) ⊥ Line(c, d).

From now on S denotes a non empty Tarski plane satisfying seven Tarski’s
geometry axioms, A, A′ denote subsets of S, and x, y, z, a, b, c, c′, d, u, p, q, q′

denote points of S.
Now we state the propositions:

(23) 8.12 Satz:
A ⊥x A′ if and only if A′ ⊥x A.

(24) 8.13 Satz:
A ⊥x A′ if and only if A is a line and A′ is a line and x ∈ A and x ∈ A′
and there exist points u, v of S such that u ∈ A and v ∈ A′ and u 6= x

and v 6= x and (u, x, v). The theorem is a consequence of (15) and (13).

(25) 8.14 (i) Satz:
If A ⊥ A′, then A 6= A′. The theorem is a consequence of (24) and (21).

4. Intersection of Lines

Let S be a non empty Tarski plane, A, B be subsets of S, and x be a point
of S. We say that A,B intersect at x if and only if

(Def. 7) A is a line and B is a line and A 6= B and x ∈ A and x ∈ B.

Now we state the propositions:

(26) 8.14 (ii) Satz:
A ⊥x A′ if and only if A ⊥ A′ and A,A′ intersect at x. The theorem is
a consequence of (25).

(27) 8.14 (iii) Satz:
If A ⊥x A′ and A ⊥y A′, then x = y. The theorem is a consequence of
(25) and (26).

(28) If a, b and x are collinear and a, b ⊥ c, x, then a, b ⊥x c, x. The theorem
is a consequence of (25) and (26).

(29) 8.15 Satz:
If a 6= b and a, b and x are collinear, then a, b ⊥ c, x iff a, b ⊥x c, x. The
theorem is a consequence of (28).

(30) 8.16 Satz:
Suppose a 6= b and a, b and x are collinear and a, b and u are collinear
and u 6= x. Then a, b ⊥ c, x if and only if a, b and c are not collinear and

(c, x, u). The theorem is a consequence of (29), (13), (21), and (24).
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5. Perpendicular Foot

Let S be a non empty Tarski plane satisfying seven Tarski’s geometry axioms
and a, b, c, x be points of S. We say that x is perpendicular foot of a, b, c if
and only if

(Def. 8) a, b and x are collinear and a, b ⊥ c, x.

Now we state the propositions:

(31) 8.18 Satz – Uniqueness:
If x is perpendicular foot of a, b, c and y is perpendicular foot of a, b, c,
then x = y. The theorem is a consequence of (29), (13), and (19).

(32) Suppose a, b and c are not collinear and a lies between b and y and a 6= y

and y lies between a and z and yz ∼= yp and y 6= p and q′ = Sz(q) and
Middle(c, x, c′) and c 6= y and y lies between q′ and c′ and Middle(y, p, c)
and y lies between p and q and q 6= q′. Then x 6= y. The theorem is
a consequence of (10) and (11).

In the sequel S denotes a non empty Tarski plane satisfying Lower Dimension
Axiom and seven Tarski’s geometry axioms and a, b, c, p, q, x, y, z, t denote
points of S.

Now we state the propositions:

(33) 8.18 Satz – Existence:
If a, b and c are not collinear, then there exists x such that x is perpendi-
cular foot of a, b, c.
Proof: Consider y such that a lies between b and y and ay ∼= ac. Consider
p such that Middle(y, p, c). Consider z such that y lies between a and z

and yz ∼= yp. Consider q such that y lies between p and q and yq ∼= ya.
Set q′ = Sz(q). Consider c′ such that y lies between q′ and c′ and yc′ ∼= yc.
a 6= y. (q, z, y). (y, z, q). Consider x such that Middle(c, x, c′). y 6= p.
c 6= y. q 6= q′. c 6= x. �

(34) 8.20 Lemma:
If (a, b, c) and Middle(Sa(c), p,Sb(c)), then (b, a, p) and if b 6= c, then
a 6= p.
Proof: Set d = Sb(c). Set b′ = Sa(b). Set c′ = Sa(c). Set d′ = Sa(d).
Set p′ = Sa(p). (b′, b, c). b′b ∼= bb′. b′c ∼= bc′. 4b′bc ∼= 4bb′c′. (b, b′, c′).
Sb′(c′) = d′. IFS

( c′, p, d, b
d′, p′, c, b

)
. If b 6= c, then a 6= p. �

(35) Suppose a, b and c are not collinear. Then there exists p and there exists
t such that a, b ⊥ p, a and a, b and t are collinear and t lies between c and
p. The theorem is a consequence of (33), (29), (34), and (24).

(36) 8.21 Satz:
If a 6= b, then there exists p and there exists t such that a, b ⊥ p, a and a, b
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and t are collinear and t lies between c and p. The theorem is a consequence
of (35).

(37) If a 6= b and a 6= p and (b, a, p) and (a, b, q), then p, a and q are not
collinear. The theorem is a consequence of (13), (15), and (19).

(38) Let us consider a non empty Tarski plane S satisfying Lower Dimension
Axiom and seven Tarski’s geometry axioms, and points a, b, p, q, t of
S. Suppose a, p ¬ b, q and a, b ⊥ q, b and a, b ⊥ p, a and a, b and t are
collinear and t lies between q and p. Then there exists a point x of S such
that Middle(a, x, b).
Proof: Consider r being a point of S such that r lies between b and q

and ap ∼= br. Consider x being a point of S such that x lies between t and
b and x lies between r and p. a, b and x are collinear. Consider x′ being
a point of S such that Line(a, b) ⊥x′ Line(q, b). Consider y being a point
of S such that Line(a, b) ⊥y Line(p, a). (q, b, a) and q 6= b and b, q and r
are collinear. (r, b, a). b, a and p are not collinear and a, b and q are not
collinear. �

(39) 8.22 Satz:
Let us consider a non empty Tarski plane S satisfying Lower Dimension
Axiom and seven Tarski’s geometry axioms, and points a, b of S. Then
there exists a point x of S such that Middle(a, x, b). The theorem is a con-
sequence of (36) and (38).

(40) 8.24 Lemma:
Let us consider a non empty Tarski plane S satisfying Lower Dimension
Axiom and seven Tarski’s geometry axioms, and points a, b, p, q, r, t of
S. Suppose p, a ⊥ a, b and q, b ⊥ a, b and a, b and t are collinear and t

lies between p and q and r lies between b and q and ap ∼= br. Then there
exists a point x of S such that

(i) Middle(a, x, b), and

(ii) Middle(p, x, r).

Proof: Consider x being a point of S such that x lies between t and b

and x lies between r and p. a, b and x are collinear. Consider x′ being
a point of S such that Line(a, b) ⊥x′ Line(q, b). Consider y being a point
of S such that Line(a, b) ⊥y Line(p, a). (q, b, a) and q 6= b and b, q and r
are collinear. (r, b, a). b, a and p are not collinear and a, b and q are not
collinear. �
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6. Additional Lemmas Needed by Otter: Chapter 8A

Now we state the propositions:

(41) ExtCol2:
Let us consider points a, b, c, d, x, p, q of S. Suppose c, d ∈ Line(a, b) and
a 6= b and c 6= d. Then Line(a, b) = Line(c, d).

(42) ExtPerp:
Let us consider points a, b, c, d, x, p, q of S. Suppose c, d ∈ Line(a, b) and
c 6= d and a, b ⊥x p, q. Then c, d ⊥x p, q. The theorem is a consequence of
(11).

(43) ExtPerp2:
Let us consider points a, b, c, d, p, q of S. Suppose p, q ∈ Line(a, b) and
a 6= b and p, q ⊥ c, d. Then a, b ⊥ c, d. The theorem is a consequence of
(11).

(44) ExtPerp3:
Let us consider points a, b, c, d of S. Suppose a 6= b and b 6= c and c 6= d

and a 6= c and a 6= d and b 6= d and b, a ⊥ a, c and a, c and d are collinear.
Then b, a ⊥ a, d. The theorem is a consequence of (11).

(45) ExtPerp4:
Let us consider points a, b, p, q of S. If a, b ⊥ p, q, then a, b ⊥ q, p.

(46) ExtPerp5:
Let us consider points a, b, c, d, p, q of S. Suppose p, q ∈ Line(a, b) and
p 6= q and a, b ⊥ c, d. Then p, q ⊥ c, d. The theorem is a consequence of
(11).

(47) ExtPerp5A:
Let us consider points a, b, c, d, p, q of S. Suppose a, b and p are collinear
and a, b and q are collinear and p 6= q and a, b ⊥ c, d. Then p, q ⊥ c, d.
The theorem is a consequence of (46).

(48) ExtPerp6:
Let us consider points a, b, c, d, p, q of S. Suppose p, q ∈ Line(a, b)
and p 6= q and a 6= b and c, d ⊥ p, q. Then c, d ⊥ a, b. The theorem is
a consequence of (11).
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1. Right–to–Left Binary Algorithm for Modular Exponentiation

Let F be an element of Boolean∗ and x be an object. Let us note that the
functor F (x) yields a natural number. Let n, m be natural numbers. Let us
note that the functor nm yields a natural number. Let a, b be objects and c be
a natural number. The functor BinBranch(a, b, c) is defined by the term

(Def. 1)

{
a, if c = 0,
b, otherwise.

Let a, b, c be natural numbers. Let us note that the functor BinBranch(a, b, c)
yields a natural number. Let a, n,m be elements of N. The functor AlgoBPow(a, n,
m) yielding an element of N is defined by

(Def. 2) there exist sequences A, B of N such that it = B(LenBinSeq(n)) and
A(0) = a mod m and B(0) = 1 and for every natural number i, A(i +
1) = A(i) · A(i) mod m and B(i+ 1) = BinBranch(B(i), B(i) · A(i) mod
m, (Nat2BinLen)(n)(i+ 1)).

Now we state the propositions:

(1) Let us consider natural numbers a, m, i, and a sequence A of N. Suppose
A(0) = a mod m and for every natural number j, A(j + 1) = A(j) ·
A(j) mod m. Then A(i) = a2i mod m.

Proof: Define P[natural number] ≡ A($1) = a2$1 mod m. For every
natural number i such that P[i] holds P[i + 1] by [8, (11)]. For every
natural number i, P[i]. �

(2) LenBinSeq(0) = 1.

(3) LenBinSeq(1) = 1.

(4) Let us consider a natural number x. If 2 ¬ x, then 1 < LenBinSeq(x).

(5) Let us consider a natural number n. Suppose 0 < n.
Then LenBinSeq(n) = blog2 nc+ 1.

(6) (Nat2BinLen)(0) = 〈0〉.
(7) (Nat2BinLen)(1) = 〈1〉. The theorem is a consequence of (3).

(8) Let us consider an element n of N. If 0 < n,
then (Nat2BinLen)(n)(LenBinSeq(n)) = 1.
Proof: Reconsider x = (Nat2BinLen)(n) as an element of Boolean∗.
x /∈ {y, where y is an element of Boolean∗ : y(len y) = 1}. �

(9) (Nat2BinLen)(2) = 〈0, 1〉. The theorem is a consequence of (5).

(10) (Nat2BinLen)(3) = 〈1, 1〉. The theorem is a consequence of (5).

(11) (Nat2BinLen)(4) = 〈0, 0, 1〉. The theorem is a consequence of (5).
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(12) Let us consider a natural number n. Then (Nat2BinLen)(2n) = 〈0, . . . , 0︸ ︷︷ ︸
n

〉a

〈1〉. The theorem is a consequence of (5).

(13) Let us consider an element m of N. Then AlgoBPow(0, 0,m) = 1. The
theorem is a consequence of (6).

(14) Let us consider elements n, m of N. If 0 < n, then AlgoBPow(0, n,m) = 0.
The theorem is a consequence of (1) and (8).

Let us consider elements a, n, m of N. Now we state the propositions:

(15) If 0 < n and m ¬ 1, then AlgoBPow(a, n,m) = 0. The theorem is a con-
sequence of (8).

(16) If a 6= 0 and 1 < m, then AlgoBPow(a, n,m) = an mod m.
Proof: Consider A, B being sequences of N such that AlgoBPow(a, n,m) =
B(LenBinSeq(n)) and A(0) = a mod m and B(0) = 1 and for eve-
ry natural number i, A(i + 1) = A(i) · A(i) mod m and B(i + 1) =
BinBranch(B(i), B(i) ·A(i) mod m, (Nat2BinLen)(n)(i+ 1)).

Define P[natural number] ≡ if $1 < LenBinSeq(n), then there exists
a ($1 + 1)-tuple S of Boolean such that S = (Nat2BinLen)(n)�($1 + 1)
and B($1 + 1) = aAbsVal(S) mod m. P[0] by [3, (5)]. For every natural
number i such that P[i] holds P[i+ 1]. For every natural number i, P[i].
Reconsider f = LenBinSeq(n)−1 as a natural number. Consider F1 being
an (f + 1)-tuple of Boolean such that F1 = (Nat2BinLen)(n)�(f + 1) and
B(f + 1) = aAbsVal(F1) mod m. �

2. Lamé’s Theorem

Now we state the propositions:

(17) Fib(5) = 5.

(18) 1 < τ .

(19) τ < 2.

(20) logτ 10 < 5. The theorem is a consequence of (17) and (18).

(21) Let us consider a natural number n. If 3 ¬ n, then τn−2 < Fib(n).
Proof: Define P[natural number] ≡ τ$1−2 < Fib($1). For every natural
number k such that k ­ 3 holds if for every natural number i such that
i ­ 3 holds if i < k, then P[i], then P[k] by [4, (22)], (19). For every
natural number k such that k ­ 3 holds P[k]. �

(22) Let us consider elements a, b of Z. Suppose |a| > |b| and b > 1. Then
there exist sequences A, B of N and there exists a sequence C of real
numbers and there exists an element n of N such that A(0) = |a| and
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B(0) = |b| and for every natural number i, A(i+1) = B(i) and B(i+1) =
A(i) mod B(i) and n = min∗{i, where i is a natural number : B(i) = 0}
and gcd(a, b) = A(n) and Fib(n + 1) ¬ |b| and n ¬ 5 · dlog10 |b|e and
n ¬ C(|b|) and C is polynomially bounded.
Proof: Consider A, B being sequences of N such that A(0) = |a| and
B(0) = |b| and for every natural number i, A(i + 1) = B(i) and B(i +
1) = A(i) mod B(i) and AlgoGCD(a, b) = A(min∗{i, where i is a natural
number : B(i) = 0}). Consider n being an element of N such that n =
min∗{i, where i is a natural number : B(i) = 0} and AlgoGCD(a, b) =
A(n). For every elements a, b of Z and for every sequences A, B of N
such that A(0) = |a| and B(0) = |b| and for every natural number i,
A(i + 1) = B(i) and B(i + 1) = A(i) mod B(i) holds {i, where i is
a natural number : B(i) = 0} is a non empty subset of N. B(n − 1) 6= 0.
For every natural number i such that i < n holds B(i) > 0. For every
natural number i such that i < n holds B(i + 1) ¬ B(i) − 1. Define
P[natural number] ≡ if $1 ¬ n, then B($1) ¬ B(0)− $1.

For every natural number i such that P[i] holds P[i + 1]. For every
natural number i, P[i]. n ¬ B(0). For every natural number j such that
j < n holds A(j + 1) < A(j). If 1 < n, then Fib(3) ¬ A(n− 1). For every
natural number i such that 0 < i < n holds A(i + 2) + A(i + 1) ¬ A(i).
For every natural number i such that i < n holds Fib(i + 2) ¬ A(n − i).
n ¬ 5 · dlog10 |b|e. �
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