## Contents

On the Intersection of Fields $F$ with $F[X]$
By Christoph Schwarzweller ..... 223
Field Extensions and Kronecker's Construction
By Christoph Schwarzweller ..... 229
Underlying Simple GraphsBy Sebastian KOCH237
About Graph Mappings
By Sebastian Koch ..... 261
About Vertex Mappings
By Sebastian Koch ..... 303Operations of Points on Elliptic Curve in Affine Coordinates
By Yuichi Futa et al. ..... 315

# On the Intersection of Fields $F$ with $F[X]$ 

Christoph Schwarzweller (D)<br>Institute of Informatics<br>University of Gdańsk<br>Poland

Summary. This is the third part of a four-article series containing a Mizar [3], 1], 2] formalization of Kronecker's construction about roots of polynomials in field extensions, i.e. that for every field $F$ and every polynomial $p \in F[X] \backslash F$ there exists a field extension $E$ of $F$ such that $p$ has a root over $E$. The formalization follows Kronecker's classical proof using $F[X] /\langle p>$ as the desired field extension E 6, 4, 5].

In the first part we show that an irreducible polynomial $p \in F[X] \backslash F$ has a root over $F[X] /\langle p\rangle$. Note, however, that this statement cannot be true in a rigid formal sense: We do not have $F \subseteq F[X] /\langle p\rangle$ as sets, so $F$ is not a subfield of $F[X] /\langle p\rangle$, and hence formally $p$ is not even a polynomial over $F[X] /\langle p\rangle$. Consequently, we translate $p$ along the canonical monomorphism $\phi: F \longrightarrow F[X] /\langle p\rangle$ and show that the translated polynomial $\phi(p)$ has a root over $F[X] /\langle p\rangle$.

Because $F$ is not a subfield of $F[X] /\langle p\rangle$ we construct in the second part the field $(E \backslash \phi F) \cup F$ for a given monomorphism $\phi: F \longrightarrow E$ and show that this field both is isomorphic to $F$ and includes $F$ as a subfield. In the literature this part of the proof usually consists of saying that "one can identify $F$ with its image $\phi F$ in $F[X] /\langle p\rangle$ and therefore consider $F$ as a subfield of $F[X] /\langle p\rangle$ ". Interestingly, to do so we need to assume that $F \cap E=\emptyset$, in particular Kronecker's construction can be formalized for fields $F$ with $F \cap F[X]=\emptyset$.

Surprisingly, as we show in this third part, this condition is not automatically true for arbitrary fields $F$ : With the exception of $\mathbb{Z}_{2}$ we construct for every field $F$ an isomorphic copy $F^{\prime}$ of $F$ with $F^{\prime} \cap F^{\prime}[X] \neq \emptyset$. We also prove that for Mizar's representations of $\mathbb{Z}_{n}, \mathbb{Q}$ and $\mathbb{R}$ we have $\mathbb{Z}_{n} \cap \mathbb{Z}_{n}[X]=\emptyset, \mathbb{Q} \cap \mathbb{Q}[X]=\emptyset$ and $\mathbb{R} \cap \mathbb{R}[X]=\emptyset$, respectively.

In the fourth part we finally define field extensions: $E$ is a field extension of $F$ iff $F$ is a subfield of $E$. Note, that in this case we have $F \subseteq E$ as sets, and thus a polynomial $p$ over $F$ is also a polynomial over $E$. We then apply the construction of the second part to $F[X] /\langle p\rangle$ with the canonical monomorphism
(C) 2019 University of Białystok
$\phi: F \longrightarrow F[X] /<p>$. Together with the first part this gives - for fields $F$ with $F \cap F[X]=\emptyset$ - a field extension $E$ of $F$ in which $p \in F[X] \backslash F$ has a root.

MSC: 12E05 12F05 68T99 03B35
Keywords: roots of polynomials; field extensions; Kronecker's construction MML identifier: FIELD_3, version:8.1.09 5.59.1363

## 1. Preliminaries

Now we state the propositions:
(1) Let us consider a natural number $n$, and an object $x$. If $n=\{x\}$, then $x=0$.
(2) Let us consider a natural number $n$, and objects $x$, $y$. If $n=\{x, y\}$ and $x \neq y$, then $x=0$ and $y=1$ or $x=1$ and $y=0$.
(3) Let us consider a natural number $n$. If $1<n$, then $0_{\mathbb{Z} / n}=0$.
(4) $1_{\mathbb{Z} / 2}+1_{\mathbb{Z} / 2}=0_{\mathbb{Z} / 2}$. The theorem is a consequence of (3).
(5) Let us consider a ring $R$, and a non zero natural number $n$. Then $\operatorname{power}_{R}\left(0_{R}, n\right)=0_{R}$.
One can verify that $\mathbb{Z} / 3$ is non degenerated and almost left invertible and there exists a field which is finite and there exists a field which is infinite.

Let $L$ be a non empty double loop structure. We say that $L$ is almost trivial if and only if
(Def. 1) for every element $a$ of $L, a=1_{L}$ or $a=0_{L}$.
Observe that every ring which is degenerated is also almost trivial and there exists a field which is non almost trivial.

Now we state the proposition:
(6) Let us consider a ring $R$. Then $R$ is almost trivial if and only if $R$ is degenerated or $R$ and $\mathbb{Z} / 2$ are isomorphic. The theorem is a consequence of (4).
Let $R$ be a ring and $a$ be an element of $R$. We say that $a$ is trivial if and only if
(Def. 2) $\quad a=1_{R}$ or $a=0_{R}$.
Let $R$ be a non almost trivial ring. One can verify that there exists an element of $R$ which is non trivial.

Let $R$ be a ring. We say that $R$ is polynomial-disjoint if and only if
(Def. 3) $\quad \Omega_{R} \cap \Omega_{\operatorname{PolyRing}(R)}=\emptyset$.

## 2. Some Negative Results

Let $R$ be a non almost trivial ring, $x$ be a non trivial element of $R$, and $o$ be an object. The functor $\operatorname{carr}(x, o)$ yielding a non empty set is defined by the term
(Def. 4) $\Omega_{R} \backslash\{x\} \cup\{o\}$.
Let $a, b$ be elements of $\operatorname{carr}(x, o)$. The functor $\operatorname{addR}(a, b)$ yielding an element of $\operatorname{carr}(x, o)$ is defined by the term
(Def. 5)


The functor $\operatorname{addR}(x, o)$ yielding a binary operation on $\operatorname{carr}(x, o)$ is defined by
(Def. 6) for every elements $a, b$ of $\operatorname{carr}(x, o), i t(a, b)=\operatorname{addR}(a, b)$.
Let $a, b$ be elements of $\operatorname{carr}(x, o)$. The functor $\operatorname{multR}(a, b)$ yielding an element of $\operatorname{carr}(x, o)$ is defined by the term
(Def. 7


The functor multR $(x, o)$ yielding a binary operation on $\operatorname{carr}(x, o)$ is defined by
(Def. 8) for every elements $a, b$ of $\operatorname{carr}(x, o), i t(a, b)=\operatorname{multR}(a, b)$.
Let $F$ be a non almost trivial field and $x$ be a non trivial element of $F$. The functor $\operatorname{ExField}(x, o)$ yielding a strict double loop structure is defined by
(Def. 9) the carrier of $i t=\operatorname{carr}(x, o)$ and the addition of it $=\operatorname{addR}(x, o)$ and the multiplication of $i t=\operatorname{multR}(x, o)$ and the one of $i t=1_{F}$ and the zero of $i t=0_{F}$.

One can check that $\operatorname{ExField}(x, o)$ is non degenerated and $\operatorname{ExField}(x, o)$ is Abelian.

From now on $o$ denotes an object, $F$ denotes a non almost trivial field, and $x, a$ denote elements of $F$.

Let us consider a non trivial element $x$ of $F$ and an object $o$. Now we state the propositions:
(7) If $o \notin \Omega_{F}$, then $\operatorname{ExField}(x, o)$ is right zeroed and right complementable.
(8) If $o \notin \Omega_{F}$, then $\operatorname{ExField}(x, o)$ is add-associative.

Let $F$ be a non almost trivial field, $x$ be a non trivial element of $F$, and $o$ be an object. One can verify that $\operatorname{ExField}(x, o)$ is commutative.

Let us consider a non trivial element $x$ of $F$ and an object $o$. Now we state the propositions:
(9) If $o \notin \Omega_{F}$, then $\operatorname{ExField}(x, o)$ is well unital.
(10) If $o \notin \Omega_{F}$, then $\operatorname{ExField}(x, o)$ is associative.
(11) If $o \notin \Omega_{F}$, then $\operatorname{ExField}(x, o)$ is distributive.
(12) If $o \notin \Omega_{F}$, then $\operatorname{ExField}(x, o)$ is almost left invertible.
(13) Let us consider a non trivial element $x$ of $F$, and a ring $P$. Suppose $P=\operatorname{ExField}\left(x,\left\langle 0_{F}, 1_{F}\right\rangle\right)$. Then $\left\langle 0_{F}, 1_{F}\right\rangle \in \Omega_{P} \cap \Omega_{\text {PolyRing }(P)}$.
(14) There exists a field $K$ such that $\Omega_{K} \cap \Omega_{\operatorname{PolyRing}(K)} \neq \emptyset$. The theorem is a consequence of $(7),(8),(10),(9),(12),(11)$, and (13).
In the sequel $n$ denotes a non zero natural number.
(15) There exists a field $K$ and there exists a polynomial $p$ over $K$ such that $\operatorname{deg} p=n$ and $p \in \Omega_{K} \cap \Omega_{\operatorname{PolyRing}(K)}$. The theorem is a consequence of (7), (8), (10), (9), (12), (11), and (5).
(16) There exists a field $K$ and there exists an object $x$ such that $x \notin$ rng(the canonical homomorphism of $K$ into quotient field) and $x \in \Omega_{K} \cap$ $\Omega_{\text {PolyRing }(K)}$. The theorem is a consequence of (7), (8), (10), (9), (12), (11), and (13).
Let us note that there exists a field which is non polynomial-disjoint.
Let $F$ be a non almost trivial field, $x$ be a non trivial element of $F$, and $o$ be an object. The functor $\operatorname{isoR}(x, o)$ yielding a function from $F$ into $\operatorname{ExField}(x, o)$ is defined by
(Def. 10) $\quad i t(x)=o$ and for every element $a$ of $F$ such that $a \neq x$ holds $i t(a)=a$.
One can check that iso $\mathrm{R}(x, o)$ is onto.
Now we state the propositions:
(17) Let us consider a non trivial element $x$ of $F$, and an object $o$. If $o \notin \Omega_{F}$, then $\operatorname{iso} \mathrm{R}(x, o)$ is one-to-one.
(18) Let us consider a non trivial element $x$ of $F$, and an object $u$. Suppose $u \notin \Omega_{F}$. Then $\operatorname{isoR}(x, u)$ is additive, multiplicative, and unity-preserving. The theorem is a consequence of (7), (10), (8), (9), and (11).
Let us consider a non almost trivial field $F$. Now we state the propositions:
(19) There exists a non polynomial-disjoint field $K$ such that $K$ and $F$ are isomorphic. The theorem is a consequence of $(7),(8),(9),(10),(11),(12)$, (13), and (18).
(20) There exists a non polynomial-disjoint field $K$ and there exists a polynomial $p$ over $K$ such that $K$ and $F$ are isomorphic and $\operatorname{deg} p=n$ and $p \in \Omega_{K} \cap \Omega_{\operatorname{PolyRing}(K)}$. The theorem is a consequence of (7), (8), (10), (9), (12), (11), (5), and (18).

## 3. An Intuitive "Solution"

Let $R$ be a ring. We say that $R$ is flat if and only if
(Def. 11) for every elements $a, b$ of $R, \operatorname{rk}(a)=\operatorname{rk}(b)$.
One can check that there exists a ring which is flat. Now we state the proposition:
(21) Let us consider a flat ring $R$, and a polynomial $p$ over $R$. Then $p \notin \Omega_{R}$. Note that every flat ring is polynomial-disjoint.
(22) Let us consider a non degenerated ring $R$. Suppose $0 \in$ the carrier of $R$. Then $R$ is not flat.
One can check that $\mathbb{Z}^{R}$ is non flat and $\mathbb{F}_{\mathbb{Q}}$ is non flat and $\mathbb{R}_{F}$ is non flat.
Let $n$ be a non trivial natural number. One can verify that $\mathbb{Z} / n$ is non flat.

## 4. Some Positive Results

Now we state the proposition:
(23) Let us consider a ring $R$, a polynomial $p$ over $R$, and a natural number $n$. Then $p \neq n$.
Let $n$ be a non trivial natural number. Let us observe that $\mathbb{Z} / n$ is polynomialdisjoint and there exists a finite field which is polynomial-disjoint.
(24) Let us consider a ring $R$, a polynomial $p$ over $R$, and an integer $i$. Then $p \neq i$. The theorem is a consequence of (23).
One can verify that $\mathbb{Z}^{\mathrm{R}}$ is polynomial-disjoint.
(25) Let us consider a ring $R$, a polynomial $p$ over $R$, and a rational number $r$. Then $p \neq r$.

Observe that $\mathbb{F}_{\mathbb{Q}}$ is polynomial-disjoint. Now we state the proposition:
(26) Let us consider a ring $R$, a polynomial $p$ over $R$, and a real number $r$. Then $p \neq r$.
Note that $\mathbb{R}_{\mathrm{F}}$ is polynomial-disjoint and there exists an infinite field which is polynomial-disjoint.

Let $R$ be a polynomial-disjoint ring. Let us observe that $\operatorname{PolyRing}(R)$ is polynomial-disjoint.

Let $F$ be a field and $p$ be an element of $\Omega_{\text {PolyRing }(F)}$. One can check that $\frac{\operatorname{PolyRing}(F)}{\{p\}-\text { ideal }}$ is polynomial-disjoint.

Let $F$ be a polynomial-disjoint field and $p$ be a non constant element of the carrier of $\operatorname{PolyRing}(F)$. One can check that $\operatorname{PolyRing}(p)$ is polynomialdisjoint.

## References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ s $10817-017-9440-6$
[3] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363-371, 2016. doi 10.15439/2016F520.
[4] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
[5] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.
[6] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.

# Field Extensions and Kronecker's Construction 

Christoph Schwarzweller (ㅁ<br>Institute of Informatics<br>University of Gdańsk<br>Poland

Summary. This is the fourth part of a four-article series containing a Mizar [3, [2], (1) formalization of Kronecker's construction about roots of polynomials in field extensions, i.e. that for every field $F$ and every polynomial $p \in F[X] \backslash F$ there exists a field extension $E$ of $F$ such that $p$ has a root over $E$. The formalization follows Kronecker's classical proof using $F[X] /\langle p\rangle$ as the desired field extension $E$ [6], [4, [5].

In the first part we show that an irreducible polynomial $p \in F[X] \backslash F$ has a root over $F[X] /\langle p\rangle$. Note, however, that this statement cannot be true in a rigid formal sense: We do not have $F \subseteq F[X] /\langle p\rangle$ as sets, so $F$ is not a subfield of $F[X] /\langle p\rangle$, and hence formally $p$ is not even a polynomial over $F[X] /\langle p\rangle$. Consequently, we translate $p$ along the canonical monomorphism $\phi: F \longrightarrow F[X] /<p>$ and show that the translated polynomial $\phi(p)$ has a root over $F[X] /\langle p\rangle$.

Because $F$ is not a subfield of $F[X] /\langle p\rangle$ we construct in the second part the field $(E \backslash \phi F) \cup F$ for a given monomorphism $\phi: F \longrightarrow E$ and show that this field both is isomorphic to $F$ and includes $F$ as a subfield. In the literature this part of the proof usually consists of saying that "one can identify $F$ with its image $\phi F$ in $F[X] /\langle p\rangle$ and therefore consider $F$ as a subfield of $F[X] /\langle p\rangle$ ". Interestingly, to do so we need to assume that $F \cap E=\emptyset$, in particular Kronecker's construction can be formalized for fields $F$ with $F \cap F[X]=\emptyset$.

Surprisingly, as we show in the third part, this condition is not automatically true for arbitrary fields $F$ : With the exception of $\mathbb{Z}_{2}$ we construct for every field $F$ an isomorphic copy $F^{\prime}$ of $F$ with $F^{\prime} \cap F^{\prime}[X] \neq \emptyset$. We also prove that for Mizar's representations of $\mathbb{Z}_{n}, \mathbb{Q}$ and $\mathbb{R}$ we have $\mathbb{Z}_{n} \cap \mathbb{Z}_{n}[X]=\emptyset, \mathbb{Q} \cap \mathbb{Q}[X]=\emptyset$ and $\mathbb{R} \cap \mathbb{R}[X]=\emptyset$, respectively.

In this fourth part we finally define field extensions: $E$ is a field extension of $F$ iff $F$ is a subfield of $E$. Note, that in this case we have $F \subseteq E$ as sets, and thus a polynomial $p$ over $F$ is also a polynomial over $E$. We then apply the
(C) 2019 University of Białystok
construction of the second part to $F[X] /\langle p\rangle$ with the canonical monomorphism $\phi: F \longrightarrow F[X] /<p\rangle$. Together with the first part this gives - for fields $F$ with $F \cap F[X]=\emptyset$ - a field extension $E$ of $F$ in which $p \in F[X] \backslash F$ has a root.

MSC: 12E05 12F05 68T99 03B35
Keywords: roots of polynomials; field extensions; Kronecker's construction MML identifier: FIELD_4 version: 8.1.09 5.59.1363

## 1. Preliminaries

From now on $K, F, E$ denote fields and $R, S$ denote rings.
Now we state the proposition:
(1) $K$ is a subfield of $K$.

Let $R$ be a non degenerated ring. One can verify that every subring of $R$ is non degenerated.

Let $R$ be a commutative ring. Note that every subring of $R$ is commutative.
Let $R$ be an integral domain. Let us observe that every subring of $R$ is integral domain-like.

Now we state the proposition:
(2) Let us consider a subring $S$ of $R$, a finite sequence $F$ of elements of $R$, and a finite sequence $G$ of elements of $S$. If $F=G$, then $\sum F=\sum G$.

## 2. Ring and Field Extensions

Let $R, S$ be rings. We say that $S$ is $R$-extending if and only if
(Def. 1) $\quad R$ is a subring of $S$.
Let $R$ be a ring. Note that there exists a ring which is $R$-extending.
Let $R$ be a commutative ring. One can check that there exists a commutative ring which is $R$-extending.

Let $R$ be an integral domain. One can verify that there exists an integral domain which is $R$-extending.

Let $F$ be a field. Let us observe that there exists a field which is $F$-extending.
Let $R$ be a ring.
A ring extension of $R$ is an $R$-extending ring. Let $R$ be a commutative ring.
A commutative ring extension of $R$ is an $R$-extending commutative ring. Let $R$ be an integral domain.

A domain ring extension of $R$ is an $R$-extending integral domain. Let $F$ be a field.

An extension of $F$ is an $F$-extending field. Now we state the propositions:
(3) $R$ is a ring extension of $R$.
(4) Every commutative ring is a commutative ring extension of $R$.
(5) Every integral domain is a domain ring extension of $R$.
(6) $F$ is an extension of $F$.
(7) $E$ is an extension of $F$ if and only if $F$ is a subfield of $E$.

One can check that $\mathbb{C}_{F}$ is $\left(\mathbb{R}_{F}\right)$-extending and $\mathbb{R}_{F}$ is $\left(\mathbb{F}_{\mathbb{Q}}\right)$-extending and $\mathbb{F}_{\mathbb{Q}}$ is $\left(\mathbb{Z}^{\mathrm{R}}\right)$-extending.

Let $R$ be a ring and $S$ be a ring extension of $R$. One can check that every ring extension of $S$ is $R$-extending.

Let $R$ be a commutative ring and $S$ be a commutative ring extension of $R$. One can verify that every commutative ring extension of $S$ is $R$-extending.

Let $R$ be an integral domain and $S$ be a domain ring extension of $R$. Let us observe that every domain ring extension of $S$ is $R$-extending.

Let $F$ be a field and $E$ be an extension of $F$. Observe that every extension of $E$ is $F$-extending.

Let $R$ be a non degenerated ring. Observe that every ring extension of $R$ is non degenerated.

## 3. Extensions of Polynomial Rings

Now we state the propositions:
(8) Let us consider a ring extension $S$ of $R$. Then every polynomial over $R$ is a polynomial over $S$.
(9) Let us consider a subring $R$ of $S$. Then every polynomial over $R$ is a polynomial over $S$.
(10) Let us consider a ring extension $S$ of $R$. Then the carrier of $\operatorname{PolyRing}(R) \subseteq$ the carrier of PolyRing $(S)$. The theorem is a consequence of (8).
(11) If $S$ is a ring extension of $R$, then $0_{\text {PolyRing }(S)}=0_{\text {PolyRing }(R)}$.
(12) If $S$ is a ring extension of $R$, then $\mathbf{0} . S=\mathbf{0} . R$. The theorem is a consequence of (11).
(13) If $S$ is a ring extension of $R$, then $1_{\operatorname{PolyRing}(S)}=1_{\operatorname{PolyRing}(R)}$. The theorem is a consequence of (12).
(14) Let us consider a ring extension $S$ of $R$. Then $1 . S=1 . R$. The theorem is a consequence of (13).
(15) Let us consider a ring extension $S$ of $R$, polynomials $p, q$ over $R$, and polynomials $p_{1}, q_{1}$ over $S$. If $p=p_{1}$ and $q=q_{1}$, then $p+q=p_{1}+q_{1}$.
(16) Let us consider a ring extension $S$ of $R$. Then the addition of PolyRing
$(R)=($ the addition of PolyRing $(S)) \upharpoonright($ the carrier of PolyRing $(R))$. The theorem is a consequence of (10) and (15).
(17) Let us consider a ring extension $S$ of $R$, polynomials $p, q$ over $R$, and polynomials $p_{1}, q_{1}$ over $S$. If $p=p_{1}$ and $q=q_{1}$, then $p * q=p_{1} * q_{1}$. The theorem is a consequence of (2).
(18) Suppose $S$ is a ring extension of $R$. Then the multiplication of PolyRing $(R)=($ the multiplication of $\operatorname{PolyRing}(S)) \upharpoonright($ the carrier of $\operatorname{PolyRing}(R))$. The theorem is a consequence of (10) and (17).
Let $R$ be a ring and $S$ be a ring extension of $R$. One can verify that $\operatorname{PolyRing}(S)$ is (PolyRing $(R))$-extending. Now we state the propositions:
(19) Let us consider a ring $R$, and a ring extension $S$ of $R$. Then $\operatorname{PolyRing}(S)$ is a ring extension of PolyRing $(R)$.
(20) Let us consider a ring extension $S$ of $R$, an element $p$ of the carrier of $\operatorname{PolyRing}(R)$, and an element $q$ of the carrier of PolyRing $(S)$. If $p=q$, then $\operatorname{deg} p=\operatorname{deg} q$. The theorem is a consequence of (11).
(21) Let us consider a non degenerated ring $R$, a ring extension $S$ of $R$, an element $a$ of $R$, and an element $b$ of $S$. If $a=b$, then $\operatorname{rpoly}(1, a)=$ $\operatorname{rpoly}(1, b)$. The theorem is a consequence of (10).

## 4. Evaluation of Polynomials in Ring Extensions

Now we state the propositions:
(22) Let us consider an element $a$ of $S$. Suppose $S$ is a ring extension of $R$. Then $\operatorname{ExtEval}(\mathbf{0} . R, a)=0_{S}$.
(23) Let us consider a non degenerated ring $R$, a ring extension $S$ of $R$, and an element $a$ of $S$. Then $\operatorname{ExtEval}(1 . R, a)=1_{S}$.
(24) Let us consider a ring extension $S$ of $R$, an element $a$ of $S$, and polynomials $p, q$ over $R$. Then $\operatorname{ExtEval}(p+q, a)=\operatorname{ExtEval}(p, a)+\operatorname{ExtEval}(q, a)$.
(25) Let us consider a commutative ring $R$, a commutative ring extension $S$ of $R$, an element $a$ of $S$, and polynomials $p, q$ over $R$. Then $\operatorname{ExtEval}(p * q, a)=$ $\operatorname{ExtEval}(p, a) \cdot \operatorname{ExtEval}(q, a)$.
(26) Let us consider a ring extension $S$ of $R$, an element $p$ of the carrier of PolyRing $(R)$, an element $q$ of the carrier of PolyRing $(S)$, and an element $a$ of $S$. If $p=q$, then $\operatorname{ExtEval}(p, a)=\operatorname{eval}(q, a)$. The theorem is a consequence of (11).
(27) Let us consider a ring extension $S$ of $R$, an element $p$ of the carrier of $\operatorname{PolyRing}(R)$, an element $q$ of the carrier of PolyRing $(S)$, an element $a$ of
$R$, and an element $b$ of $S$. If $q=p$ and $b=a$, then $\operatorname{eval}(q, b)=\operatorname{eval}(p, a)$. The theorem is a consequence of (26).
Let $R$ be a ring, $S$ be a ring extension of $R, p$ be an element of the carrier of $\operatorname{PolyRing}(R)$, and $a$ be an element of $S$. We say that $a$ is a root of $p$ in $S$ if and only if
(Def. 2) $\operatorname{ExtEval}(p, a)=0_{S}$.
We say that $p$ has a root in $S$ if and only if
(Def. 3) there exists an element $a$ of $S$ such that $a$ is a root of $p$ in $S$.
The functor Roots $(S, p)$ yielding a subset of $S$ is defined by the term
(Def. 4) $\{a$, where $a$ is an element of $S: a$ is a root of $p$ in $S\}$.
Now we state the proposition:
(28) Let us consider a ring extension $S$ of $R$, and an element $p$ of the carrier of PolyRing $(R)$. Then $\operatorname{Roots}(p) \subseteq \operatorname{Roots}(S, p)$.
Let $R$ be a ring, $S$ be a non degenerated ring, and $p$ be a polynomial over $R$. We say that $p$ splits in $S$ if and only if
(Def. 5) there exists a non zero element $a$ of $S$ and there exists a product of linear polynomials $q$ of $S$ such that $p=a \cdot q$.
Now we state the proposition:
(29) Let us consider a field $F$, and a polynomial $p$ over $F$. If $\operatorname{deg} p=1$, then $p$ splits in $F$.

## 5. The Degree of Field Extensions

Let $R$ be a ring and $S$ be a ring extension of $R$. The functor $\operatorname{VecSp}(S, R)$ yielding a strict vector space structure over $R$ is defined by
(Def. 6) the carrier of $i t=$ the carrier of $S$ and the addition of $i t=$ the addition of $S$ and the zero of $i t=0_{S}$ and the left multiplication of $i t=$ (the multiplication of $S) \upharpoonright(($ the carrier of $R) \times($ the carrier of $S))$.
Observe that $\operatorname{VecSp}(S, R)$ is non empty and $\operatorname{VecSp}(S, R)$ is Abelian, addassociative, right zeroed, and right complementable and $\operatorname{VecSp}(S, R)$ is scalar distributive, scalar associative, scalar unital, and vector distributive.

Now we state the proposition:
(30) Let us consider a ring extension $S$ of $R$. Then $\operatorname{VecSp}(S, R)$ is a vector space over $R$.
Let $F$ be a field and $E$ be an extension of $F$. The functor $\operatorname{deg}(E, F)$ yielding an integer is defined by the term
(Def. 7) $\begin{cases}\operatorname{dim}(\operatorname{VecSp}(E, F)), & \text { if } \operatorname{VecSp}(E, F) \text { is finite dimensional, } \\ -1, & \text { otherwise. }\end{cases}$
Let us note that $\operatorname{deg}(E, F)$ is a dim-like.
We say that $E$ is $F$-finite if and only if
(Def. 8) $\operatorname{VecSp}(E, F)$ is finite dimensional.
Observe that there exists an extension of $F$ which is $F$-finite.
Let $E$ be an $F$-finite extension of $F$. One can verify that $\operatorname{deg}(E, F)$ is natural.

## 6. Kronecker's Construction

Let $F$ be a field and $p$ be a non constant element of the carrier of PolyRing $(F)$. Let us note that the carrier of $\operatorname{PolyRing}(p)$ is $F$-polynomial membered and $\operatorname{PolyRing}(p)$ is $F$-polynomial membered.

Let $p$ be an irreducible element of the carrier of PolyRing $(F)$. The functor $\operatorname{KroneckerIso}(p)$ yielding a function from the carrier of $\operatorname{PolyRing}(p)$ into the carrier of $\operatorname{KroneckerField}(F, p)$ is defined by
(Def. 9) for every element $q$ of the carrier of $\operatorname{PolyRing}(p), i t(q)=$ $[q]_{\text {EqRel(PolyRing }(F),\{p\} \text {-ideal) }}$.
Observe that $\operatorname{KroneckerIso}(p)$ is additive, multiplicative, unity-preserving, one-to-one, and onto and $\operatorname{KroneckerField}(F, p)$ is $(\operatorname{PolyRing}(p))$-homomorphic, ( $\operatorname{PolyRing}(p)$ )-monomorphic, and ( $\operatorname{PolyRing}(p)$ )-isomorphic.

PolyRing $(p)$ is $(\operatorname{KroneckerField}(F, p))$-homomorphic, $(\operatorname{KroneckerField}(F, p))$ monomorphic, and $(\operatorname{KroneckerField}(F, p))$-isomorphic and $\operatorname{PolyRing}(p)$ is $F$ homomorphic and $F$-monomorphic.

Now we state the proposition:
(31) Let us consider a polynomial-disjoint field $F$, and a non constant element $f$ of the carrier of $\operatorname{PolyRing}(F)$. Then there exists an extension $E$ of $F$ such that $f$ has a root in $E$.

## References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. dol $10.1007 / \mathrm{si0817-017-9440-6}$
[2] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[3] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363-371, 2016. doi $10.15439 / 2016$ F520.
[4] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
[5] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.
[6] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
Accepted August 29, 2019

# Underlying Simple Graphs 

Sebastian Koch<br>Johannes Gutenberg University<br>Mainz, Germany ${ }^{11}$


#### Abstract

Summary. In this article the notion of the underlying simple graph of a graph (as defined in [8) is formalized in the Mizar system [5], along with some convenient variants. The property of a graph to be without decorators (as introduced in [7]) is formalized as well to serve as the base of graph enumerations in the future.


MSC: 68T99 03B35 05C76
Keywords: graph operations; underlying simple graph
MML identifier: GLIB_009, version: 8.1.09 5.59.1363

## 0 . Introduction

In the Mizar Mathematical Library [2] there are several formalizations of graphs with a varying degree of generality, see [1], 6], 10], 8], 9]. The GLIB_ series (starting with [8]) formalizes general digraphs (that is, digraphs with loops and parallel edges allowed) in Mizar [5] and provides a rich notation so that any digraph in Mizar can be seen as an undirected graph simply by ignoring the direction of the edges (although they are always there). In conclusion, there is no need for another formalization of undirected graphs, in contrast to how it is typically done in the literature (cf. [12], [3]), and the underlying (undirected) graph of a digraph (in the sense of [8]) is itself. For undirected graphs or digraphs possibly containing loops and multiple parallel edges, the underlying (simple) graph or digraph is derived by removing the loops and replacing each

[^0]set of parallel edges with a single edge. That concept requires formalization and this article provides subgraph modes that respectively remove loops, (directed) parallel edges or both from a given (di)graph. "Much of graph theory is concerned with the study of simple graphs" [4, p. 3] which results in many books only studying simple graphs, even when graphs are more generally introduced in the respective book (for example [11]).

The rather extensive preliminaries contain many theorems that would fit well into earlier articles of the GLIB series, for example:

- The source and target of a directed edge in a graph are uniquely determined.
- A walk in a graph is uniquely determined by its vertex and edge sequence.
- Adding vertices to a graph doesn't change adjacencies.

The next section introduces plain graphs. Graphs, as defined in [8], can arbitrarily be expanded with decorators as done in [7]. Therefore for any non empty set $S$ the set containing all graphs with vertex and edge sets contained in $S$ does not exist because of possible decorators, even if $S$ only contains a single element. A graph is called plain if it does not contain additional decorators, and then the set of all plain graphs with vertex and edge sets contained in $S$ can be constructed, which will be needed for graph enumeration at a later point in time.

In the section after that the set of all loops of a graph is introduced as well as a graph operator removing all loops from a given graph as a special case of removing edges.

At the start of the following section, two equivalence relations are defined on the edge set, where two edges are equivalent iff they are (directed) parallel. Then modes are introduced to pick one edge out of each set of (directed) parallel edges. Using such representative edge selections, the graphs with parallel edges removed can be defined as induced subgraphs. While the directed and undirected variants are formalized along each other, there are also some theorems focusing on how they interact with each other.

This trend is continued in the last section, where the underlying simple graphs are introduced as induced subgraphs on the representative edge selections with the loops removed. Naturally, these subgraphs can also be constructed by removing loops and then parallel edges from a graph or vice versa.

## 1. Preliminaries

Now we state the propositions:
(1) Let us consider sets $X, Y$. If $Y \subseteq X$, then $X \backslash(X \backslash Y)=Y$.
(2) Let us consider a binary relation $R$, and a set $X$. Then
(i) $(R \upharpoonright X)^{\smile}=X \upharpoonleft R^{\smile}$, and
(ii) $(X \upharpoonleft R)^{\smile}=R^{\smile} \mid X$.

Let us consider a function $f$ and a set $Y$. Now we state the propositions:
(3) $\operatorname{dom}(Y \upharpoonleft f)=f^{-1}(Y)$.

Proof: For every object $x, x \in \operatorname{dom}(Y \mid f)$ iff $x \in f^{-1}(Y)$.
(4) $\quad Y \upharpoonleft f=f \upharpoonright \operatorname{dom}(Y \upharpoonleft f)$. The theorem is a consequence of (3).
(5) Let us consider a one-to-one function $f$, and a set $X$. Then
(i) $(f \upharpoonright X)^{-1}=X \upharpoonleft f^{-1}$, and
(ii) $(X \upharpoonleft f)^{-1}=f^{-1} \upharpoonright X$.

The theorem is a consequence of (2).
(6) Let us consider a graph $G$, and objects $e, x_{1}, y_{1}, x_{2}, y_{2}$. Suppose $e$ joins $x_{1}$ to $y_{1}$ in $G$ and $e$ joins $x_{2}$ to $y_{2}$ in $G$. Then
(i) $x_{1}=x_{2}$, and
(ii) $y_{1}=y_{2}$.

Let $G$ be a trivial graph. Let us observe that the vertices of $G$ is trivial and every graph which is trivial and non-directed-multi is also non-multi.

Let $G$ be a trivial, non-directed-multi graph. Let us observe that the edges of $G$ is trivial.

Now we state the propositions:
(7) Let us consider a graph $G$, sets $X, Y$, and objects $e, x, y$. Suppose $e$ joins $x$ to $y$ in $G$ and $x \in X$ and $y \in Y$. Then $e$ joins a vertex from $X$ to a vertex from $Y$ in $G$.
(8) Let us consider a trivial graph $G$, and a graph $H$. Suppose the vertices of $H \subseteq$ the vertices of $G$ and the edges of $H \subseteq$ the edges of $G$. Then $H$ is trivial and subgraph of $G$.
(9) Let us consider a graph $G$. Then $G \approx G \upharpoonright$ (the graph selectors).

Let us consider a graph $G$, sets $X, Y$, and an object $e$. Now we state the propositions:
$e$ joins a vertex from $X$ and a vertex from $Y$ in $G$ if and only if $e$ joins a vertex from $Y$ and a vertex from $X$ in $G$.
(11) $e$ joins a vertex from $X$ and a vertex from $Y$ in $G$ if and only if $e$ joins a vertex from $X$ to a vertex from $Y$ in $G$ or $e$ joins a vertex from $Y$ to a vertex from $X$ in $G$.
Let us consider a graph $G$ and objects $e, v, w$. Now we state the propositions:
(12) If $e$ joins a vertex from $\{v\}$ and a vertex from $\{w\}$ in $G$, then $e$ joins $v$ and $w$ in $G$.
(13) If $e$ joins a vertex from $\{v\}$ to a vertex from $\{w\}$ in $G$, then $e$ joins $v$ to $w$ in $G$.
(14) Let us consider a graph $G$, and objects $v, w$. Suppose $v \neq w$. Then
(i) G.edgesDBetween $(\{v\},\{w\})$ misses $G$.edgesDBetween $(\{w\},\{v\})$, and
(ii) G.edgesBetween $(\{v\},\{w\})=G$.edgesDBetween $(\{v\},\{w\}) \cup$ G.edgesDBetween $(\{w\},\{v\})$.

The theorem is a consequence of (11).
(15) Let us consider a graph $G$, and a set $X$. Then $G$.edgesBetween $(X, X)=$ $G$.edgesDBetween $(X, X)$. The theorem is a consequence of (11).
(16) Let us consider a graph $G$, and sets $X, Y$. Then $G$.edgesBetween $(X, Y)=$ $G$.edgesBetween $(Y, X)$. The theorem is a consequence of (10).
Let us consider a graph $G$. Now we state the propositions:
(17) $G$ is loopless if and only if for every object $v$, there exists no object $e$ such that $e$ joins $v$ to $v$ in $G$.
Proof: For every object $v$, there exists no object $e$ such that $e$ joins $v$ and $v$ in $G$.
(18) $G$ is loopless if and only if for every object $v$, there exists no object $e$ such that $e$ joins a vertex from $\{v\}$ and a vertex from $\{v\}$ in $G$.
Proof: For every object $v$, there exists no object $e$ such that $e$ joins $v$ and $v$ in $G$.
(19) $G$ is loopless if and only if for every object $v$, there exists no object $e$ such that $e$ joins a vertex from $\{v\}$ to a vertex from $\{v\}$ in $G$. The theorem is a consequence of (11) and (18).
(20) $G$ is loopless if and only if for every object $v, G$.edgesBetween $(\{v\},\{v\})=$ $\emptyset$. The theorem is a consequence of (18).
(21) $G$ is loopless if and only if for every object $v, G$.edgesDBetween $(\{v\},\{v\})=$ $\emptyset$. The theorem is a consequence of (19).
Let $G$ be a loopless graph and $v$ be an object. One can verify that
$G$.edgesBetween $(\{v\},\{v\})$ is empty and $G$.edgesDBetween $(\{v\},\{v\})$ is empty.
(22) Let us consider a graph $G$. Then $G$ is non-multi if and only if for every objects $v, w, G$.edgesBetween $(\{v\},\{w\})$ is trivial. The theorem is a consequence of (12).
Let $G$ be a non-multi graph and $v, w$ be objects. One can verify that G.edgesBetween $(\{v\},\{w\})$ is trivial. Now we state the proposition:
(23) Let us consider a graph $G$. Then $G$ is non-directed-multi if and only if for every objects $v, w, G$.edgesDBetween $(\{v\},\{w\})$ is trivial. The theorem is a consequence of (13) and (7).
Let $G$ be a non-directed-multi graph and $v, w$ be objects. One can check that G.edgesDBetween $(\{v\},\{w\})$ is trivial.

Let $G$ be a non trivial graph. Let us note that every subgraph of $G$ which is spanning is also non trivial.

Let $G$ be a graph. One can check that every vertex of $G$ which is isolated is also non endvertex.

Let us consider a graph $G$ and a vertex $v$ of $G$. Now we state the propositions:
(24) $\quad(G \cdot$ walkOf $(v)) \cdot \operatorname{edgeSeq}()=\varepsilon_{\alpha}$, where $\alpha$ is the edges of $G$.
(25) $\quad(G \cdot \operatorname{walkOf}(v)) \cdot \operatorname{edges}()=\emptyset$. The theorem is a consequence of (24).

Let $G$ be a graph and $W$ be a trivial walk of $G$. Note that $W$.edges() is empty and trivial.

Let $W$ be a walk of $G$. Note that $W$.vertices () is non empty.
Now we state the propositions:
(26) Let us consider graphs $G_{1}, G_{2}$, a walk $W_{1}$ of $G_{1}$, and a walk $W_{2}$ of $G_{2}$. Suppose $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$ and $W_{1} \cdot \operatorname{edgeSeq}()=$ $W_{2}$.edgeSeq(). Then $W_{1}=W_{2}$.
Proof: For every natural number $n$ such that $1 \leqslant n \leqslant$ len $W_{1}$ holds $W_{1}(n)=W_{2}(n)$.
(27) Let us consider a graph $G$, a finite sequence $p$ of elements of the vertices of $G$, and a finite sequence $q$ of elements of the edges of $G$. Suppose len $p=1+\operatorname{len} q$ and for every element $n$ of $\mathbb{N}$ such that $1 \leqslant n$ and $n+1 \leqslant \operatorname{len} p$ holds $q(n)$ joins $p(n)$ and $p(n+1)$ in $G$. Then there exists a walk $W$ of $G$ such that
(i) $W \cdot \operatorname{vertexSeq}()=p$, and
(ii) $W$.edgeSeq ()$=q$.

Proof: Define $\mathcal{P}$ [object, object] $\equiv$ there exists a natural number $m$ such that $m=\$_{1}$ and if $m$ is odd, then $\$_{2}=p(m+1 \operatorname{div} 2)$ and if $m$ is even, then $\$_{2}=q(m \operatorname{div} 2)$. For every natural number $k$ such that $k \in \operatorname{Seg}(\operatorname{len} p+\operatorname{len} q)$ there exists an element $x$ of (the vertices of $G) \cup($ the edges of $G$ ) such that $\mathcal{P}[k, x]$. Consider $W$ being a finite sequence of elements of (the vertices of
$G) \cup($ the edges of $G)$ such that $\operatorname{dom} W=\operatorname{Seg}(\operatorname{len} p+\operatorname{len} q)$ and for every natural number $k$ such that $k \in \operatorname{Seg}(\operatorname{len} p+\operatorname{len} q)$ holds $\mathcal{P}[k, W(k)] . W(1) \in$ the vertices of $G$. For every odd element $n$ of $\mathbb{N}$ such that $n<$ len $W$ holds $W(n+1)$ joins $W(n)$ and $W(n+2)$ in $G$. For every natural number $k$ such that $1 \leqslant k \leqslant \operatorname{len} p$ holds $p(k)=(W$.vertexSeq ()$)(k)$. For every natural number $k$ such that $1 \leqslant k \leqslant \operatorname{len} q$ holds $q(k)=(W$.edgeSeq ()$)(k)$.
(28) Let us consider a graph $G$, and a walk $W$ of $G$. Then len( $W$.vertexSeq()) $=$ $W . \operatorname{length}()+1$.
(29) Let us consider graphs $G_{1}, G_{2}$, a walk $W_{1}$ of $G_{1}$, a walk $W_{2}$ of $G_{2}$, and an odd natural number $n$. If $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, then $W_{1}(n)=W_{2}(n)$.
Let us consider graphs $G_{1}, G_{2}$, a walk $W_{1}$ of $G_{1}$, and a walk $W_{2}$ of $G_{2}$. Now we state the propositions:
(30) Suppose $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$. Then
(i) len $W_{1}=\operatorname{len} W_{2}$, and
(ii) $W_{1} \cdot$ length ()$=W_{2} \cdot$ length () , and
(iii) $W_{1} \cdot$ first ()$=W_{2}$.first ( $)$, and
(iv) $W_{1} \cdot \operatorname{last}()=W_{2} \cdot \operatorname{last}()$, and
(v) $W_{2}$ is walk from $W_{1}$.first() to $W_{1}$.last().

The theorem is a consequence of (29).
(31) If $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$, then if $W_{1}$ is not trivial, then $W_{2}$ is not trivial and if $W_{1}$ is closed, then $W_{2}$ is closed. The theorem is a consequence of (30).
(32) $\quad$ Suppose $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$ and len $W_{1} \neq 5$. Then
(i) if $W_{1}$ is path-like, then $W_{2}$ is path-like, and
(ii) if $W_{1}$ is cycle-like, then $W_{2}$ is cycle-like.

Proof: If $W_{1}$ is path-like, then $W_{2}$ is path-like. $\square$
The scheme IndWalk deals with a graph $\mathcal{G}$ and a unary predicate $\mathcal{P}$ and states that
(Sch. 1) For every walk $W$ of $\mathcal{G}, \mathcal{P}[W]$
provided

- for every trivial walk $W$ of $\mathcal{G}, \mathcal{P}[W]$ and
- for every walk $W$ of $\mathcal{G}$ and for every object $e$ such that $e \in W$.last().edgesInOut() and $\mathcal{P}[W]$ holds $\mathcal{P}[W$.addEdge $(e)]$.

The scheme IndDWalk deals with a graph $\mathcal{G}$ and a unary predicate $\mathcal{P}$ and states that
(Sch. 2) For every dwalk $W$ of $\mathcal{G}, \mathcal{P}[W]$
provided

- for every trivial dwalk $W$ of $\mathcal{G}, \mathcal{P}[W]$ and
- for every dwalk $W$ of $\mathcal{G}$ and for every object $e$ such that $e \in W$.last().edgesOut() and $\mathcal{P}[W]$ holds $\mathcal{P}[W$.addEdge $(e)]$.

Now we state the propositions:
(33) Let us consider a graph $G_{1}$, a subset $E$ of the edges of $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$ induced by the vertices of $G_{1}$ and $E$. If $G_{2}$ is connected, then $G_{1}$ is connected.
(34) Let us consider a graph $G_{1}$, a set $E$, and a subgraph $G_{2}$ of $G_{1}$ with edges $E$ removed. If $G_{2}$ is connected, then $G_{1}$ is connected.
Let $G_{1}$ be a non connected graph and $E$ be a set. One can check that every subgraph of $G_{1}$ with edges $E$ removed is non connected.
(35) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$. Suppose for every walk $W_{1}$ of $G_{1}$, there exists a walk $W_{2}$ of $G_{2}$ such that $W_{2}$ is walk from $W_{1}$.first() to $W_{1}$.last(). Let us consider a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $G_{1}$.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$.
(36) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$. Suppose for every walk $W_{1}$ of $G_{1}$, there exists a walk $W_{2}$ of $G_{2}$ such that $W_{2}$ is walk from $W_{1}$.first() to $W_{1}$.last(). If $G_{1}$ is connected, then $G_{2}$ is connected.
Let us consider a graph $G_{1}$ and a spanning subgraph $G_{2}$ of $G_{1}$. Now we state the propositions:
(37) Suppose for every vertex $v_{1}$ of $G_{1}$ and for every vertex $v_{2}$ of $G_{2}$ such that $v_{1}=v_{2}$ holds $G_{1}$.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot \operatorname{componentSet}()$.
(38) Suppose for every vertex $v_{1}$ of $G_{1}$ and for every vertex $v_{2}$ of $G_{2}$ such that $v_{1}=v_{2}$ holds $G_{1}$.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. Then $G_{1}$.numComponents ()$=G_{2}$.numComponents () . The theorem is a consequence of (37).
(39) Let us consider a graph $G$. Then $G$ is loopless if and only if for every vertex $v$ of $G, v$ and $v$ are not adjacent.
Let $G$ be a non complete graph. One can check that every subgraph of $G$ which is spanning is also non complete.

Now we state the propositions:
(40) Let us consider graphs $G_{2}, G_{3}$, and a supergraph $G_{1}$ of $G_{3}$. If $G_{1} \approx G_{2}$, then $G_{2}$ is a supergraph of $G_{3}$.
(41) Let us consider a graph $G_{2}$, a set $V$, a supergraph $G_{1}$ of $G_{2}$ extended by the vertices from $V$, sets $x, y$, and an object $e$. Then
(i) $e$ joins $x$ and $y$ in $G_{1}$ iff $e$ joins $x$ and $y$ in $G_{2}$, and
(ii) $e$ joins $x$ to $y$ in $G_{1}$ iff $e$ joins $x$ to $y$ in $G_{2}$, and
(iii) $e$ joins a vertex from $x$ and a vertex from $y$ in $G_{1}$ iff $e$ joins a vertex from $x$ and a vertex from $y$ in $G_{2}$, and
(iv) $e$ joins a vertex from $x$ to a vertex from $y$ in $G_{1}$ iff $e$ joins a vertex from $x$ to a vertex from $y$ in $G_{2}$.
(42) Let us consider graphs $G_{1}, G_{2}$. Suppose $G_{1} \approx G_{2}$. Then $G_{2}$ is a graph given by reversing directions of the edges $\emptyset$ of $G_{1}$.
(43) Every graph is a graph given by reversing directions of the edges $\emptyset$ of $G$.

## 2. Plain Graphs

Let $G$ be a graph. We say that $G$ is plain if and only if
(Def. 1) $\operatorname{dom} G=$ the graph selectors.
Note that $G \upharpoonright$ (the graph selectors) is plain.
Let $V$ be a non empty set, $E$ be a set, and $S, T$ be functions from $E$ into $V$. Let us observe that createGraph $(V, E, S, T)$ is plain.

Let $G$ be a graph and $X$ be a set. Note that $G$.set(WeightSelector, $X$ ) is non plain and $G$.set(ELabelSelector, $X$ ) is non plain and $G$.set(VLabelSelector, $X$ ) is non plain and there exists a graph which is plain.

Now we state the proposition:
(44) Let us consider plain graphs $G_{1}, G_{2}$. If $G_{1} \approx G_{2}$, then $G_{1}=G_{2}$.

Let $G$ be a graph. Note that there exists a subgraph of $G$ which is plain.
Let $V$ be a set. One can check that there exists a subgraph of $G$ with vertices $V$ removed which is plain.

Let $E$ be a set. Let us note that there exists a subgraph of $G$ induced by $V$ and $E$ which is plain and there exists a subgraph of $G$ with edges $E$ removed which is plain and there exists a graph given by reversing directions of the edges $E$ of $G$ which is plain.

Let $v$ be a set. One can verify that there exists a subgraph of $G$ with vertex $v$ removed which is plain.

Let $e$ be a set. One can verify that there exists a subgraph of $G$ with edge $e$ removed which is plain and there exists a supergraph of $G$ which is plain.

Let $V$ be a set. Let us note that there exists a supergraph of $G$ extended by the vertices from $V$ which is plain.

Let $v, e, w$ be objects. One can check that there exists a supergraph of $G$ extended by $e$ between vertices $v$ and $w$ which is plain and there exists a supergraph of $G$ extended by $v, w$ and $e$ between them which is plain.

Let $v$ be an object and $V$ be a set. Let us note that there exists a supergraph of $G$ extended by vertex $v$ and edges from $V$ of $G$ to $v$ which is plain and there exists a supergraph of $G$ extended by vertex $v$ and edges from $v$ to $V$ of $G$ which is plain and there exists a supergraph of $G$ extended by vertex $v$ and edges between $v$ and $V$ of $G$ which is plain.

## 3. Graphs with Loops Removed

Let $G$ be a graph. The functor $G$.loops() yielding a subset of the edges of $G$ is defined by
(Def. 2) for every object $e, e \in i t$ iff there exists an object $v$ such that $e$ joins $v$ and $v$ in $G$.

Now we state the propositions:
(45) Let us consider a graph $G$, and an object $e$. Then $e \in G$.loops() if and only if there exists an object $v$ such that $e$ joins $v$ to $v$ in $G$.
(46) Let us consider a graph $G$, and objects $e, v, w$. If $e$ joins $v$ and $w$ in $G$ and $v \neq w$, then $e \notin G$.loops () .
(47) Let us consider a graph $G$. Then $G$ is loopless if and only if $G \cdot \operatorname{loops}()=\emptyset$.

Let $G$ be a loopless graph. Let us observe that $G$.loops() is empty.
Let $G$ be a non loopless graph. Let us observe that $G$.loops() is non empty. Now we state the propositions:
(48) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$. Then $G_{2} \cdot \operatorname{loops}() \subseteq$ $G_{1} \cdot \operatorname{loops}()$. The theorem is a consequence of (45).
(49) Let us consider a graph $G_{2}$, and a supergraph $G_{1}$ of $G_{2}$. Then $G_{2} \cdot \operatorname{loops}() \subseteq$ $G_{1} \cdot \operatorname{loops}()$. The theorem is a consequence of (48).
(50) Let us consider graphs $G_{1}, G_{2}$. If $G_{1} \approx G_{2}$, then $G_{1}$. loops ()$=G_{2} \cdot \operatorname{loops}()$. The theorem is a consequence of (48).
(51) Let us consider a graph $G_{1}$, a set $E$, and a graph $G_{2}$ given by reversing directions of the edges $E$ of $G_{1}$. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}()$.
(52) Let us consider a graph $G_{2}$, a set $V$, and a supergraph $G_{1}$ of $G_{2}$ extended by the vertices from $V$. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}()$. The theorem is a consequence of (41) and (49).
(53) Let us consider a graph $G_{2}$, objects $v_{1}, e, v_{2}$, and a supergraph $G_{1}$ of $G_{2}$ extended by $e$ between vertices $v_{1}$ and $v_{2}$. If $v_{1} \neq v_{2}$, then $G_{1}$.loops ()$=$ $G_{2}$.loops(). The theorem is a consequence of (50) and (49).
(54) Let us consider a graph $G_{2}$, a vertex $v$ of $G_{2}$, an object $e$, and a supergraph $G_{1}$ of $G_{2}$ extended by $e$ between vertices $v$ and $v$. Suppose $e \notin$ the edges of $G_{2}$. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}() \cup\{e\}$. The theorem is a consequence of (45) and (49).
(55) Let us consider a graph $G_{2}$, objects $v_{1}, e, v_{2}$, and a supergraph $G_{1}$ of $G_{2}$ extended by $v_{1}, v_{2}$ and $e$ between them. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}()$. The theorem is a consequence of (49) and (50).
(56) Let us consider a graph $G_{2}$, an object $v$, a set $V$, and a supergraph $G_{1}$ of $G_{2}$ extended by vertex $v$ and edges between $v$ and $V$ of $G_{2}$. Then $G_{1} \cdot \operatorname{loops}()=G_{2} \cdot \operatorname{loops}()$. The theorem is a consequence of (49) and (50).
(57) Let us consider a graph $G$, and a path $P$ of $G$. Then
(i) P.edges() misses $G$.loops(), or
(ii) there exist objects $v, e$ such that $e$ joins $v$ and $v$ in $G$ and $P=$ $G$.walkOf $(v, e, v)$.

Let $G$ be a graph. A subgraph of $G$ with loops removed is a subgraph of $G$ with edges $G$.loops() removed. Now we state the proposition:
(58) Let us consider a loopless graph $G_{1}$, and a graph $G_{2}$. Then $G_{1} \approx G_{2}$ if and only if $G_{2}$ is a subgraph of $G_{1}$ with loops removed.
Let us consider graphs $G_{1}, G_{2}$ and a subgraph $G_{3}$ of $G_{1}$ with loops removed.
(59) $\quad G_{2} \approx G_{3}$ if and only if $G_{2}$ is a subgraph of $G_{1}$ with loops removed.
(60) If $G_{1} \approx G_{2}$, then $G_{3}$ is a subgraph of $G_{2}$ with loops removed. The theorem is a consequence of (50).
Let $G$ be a graph. Observe that every subgraph of $G$ with loops removed is loopless and there exists a subgraph of $G$ with loops removed which is plain.

Let $G$ be a non-multi graph. Observe that every subgraph of $G$ with loops removed is simple.

Let $G$ be a non-directed-multi graph. One can check that every subgraph of $G$ with loops removed is directed-simple.

Let $G$ be a complete graph. Observe that every subgraph of $G$ with loops removed is complete.

Now we state the propositions:
(61) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with loops removed, and a walk $W_{1}$ of $G_{1}$. Then there exists a walk $W_{2}$ of $G_{2}$ such that $W_{2}$ is walk from $W_{1}$.first() to $W_{1} \cdot \operatorname{last}()$. The theorem is a consequence of (57).
(62) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with loops removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then
$G_{1}$.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (61) and (35).
Let $G$ be a connected graph. Observe that every subgraph of $G$ with loops removed is connected. Let $G$ be a non connected graph. Observe that every subgraph of $G$ with loops removed is non connected. Let us consider a graph $G_{1}$ and a subgraph $G_{2}$ of $G_{1}$ with loops removed. Now we state the propositions:
(63) $\quad G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot$ componentSet () . The theorem is a consequence of (62) and (37).
(64) $G_{1}$.numComponents ()$=G_{2}$.numComponents(). The theorem is a consequence of (62) and (38).
(65) $G_{1}$ is chordal if and only if $G_{2}$ is chordal. The theorem is a consequence of (46) and (57).
Let $G$ be a chordal graph. Let us observe that every subgraph of $G$ with loops removed is chordal. Now we state the proposition:
(66) Let us consider a graph $G_{1}$, a set $v$, a subgraph $G_{2}$ of $G_{1}$ with loops removed, and a subgraph $G_{3}$ of $G_{1}$ with vertex $v$ removed. Then every subgraph of $G_{2}$ with vertex $v$ removed is a subgraph of $G_{3}$ with loops removed. The theorem is a consequence of (1), (48), (59), and (60).
Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with loops removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. Now we state the propositions:
(67) If $v_{1}=v_{2}$, then $v_{1}$ is cut-vertex iff $v_{2}$ is cut-vertex. The theorem is a consequence of (66) and (64).
(68) If $v_{1}=v_{2}$ and $v_{1}$ is endvertex, then $v_{2}$ is endvertex. The theorem is a consequence of (46).

## 4. Graphs with Parallel Edges Removed

Let $G$ be a graph. The functors: $\operatorname{EdgeParEqRel}(G)$ and $\operatorname{DEdgeParEqRel}(G)$ yielding equivalence relations of the edges of $G$ are defined by conditions
(Def. 3) for all objects $e_{1}, e_{2},\left\langle e_{1}, e_{2}\right\rangle \in \operatorname{EdgeParEqRel}(G)$ iff there exist objects $v_{1}, v_{2}$ such that $e_{1}$ joins $v_{1}$ and $v_{2}$ in $G$ and $e_{2}$ joins $v_{1}$ and $v_{2}$ in $G$,
(Def. 4) for all objects $e_{1}, e_{2},\left\langle e_{1}, e_{2}\right\rangle \in \operatorname{DEdgeParEqRel}(G)$ iff there exist objects $v_{1}, v_{2}$ such that $e_{1}$ joins $v_{1}$ to $v_{2}$ in $G$ and $e_{2}$ joins $v_{1}$ to $v_{2}$ in $G$, respectively.

Let us consider a graph $G$. Now we state the propositions:
(69) $\operatorname{DEdgeParEqRel}(G) \subseteq \operatorname{EdgeParEqRel}(G)$.
(70) $G$ is non-multi if and only if $\operatorname{EdgeParEqRel}(G)=\operatorname{id}_{\alpha}$, where $\alpha$ is the edges of $G$.
(71) $G$ is non-directed-multi if and only if $\operatorname{DEdgeParEqRel}(G)=\mathrm{id}_{\alpha}$, where $\alpha$ is the edges of $G$.
Let $G$ be an edgeless graph. One can verify that $\operatorname{EdgeParEqRel}(G)$ is empty and $\operatorname{DEdgeParEqRel}(G)$ is empty.

Let $G$ be a non edgeless graph. Observe that $\operatorname{EdgeParEqRel}(G)$ is non empty and $\operatorname{DEdgeParEqRel}(G)$ is non empty.

Let $G$ be a graph.
A representative selection of the parallel edges of $G$ is a subset of the edges of $G$ defined by
(Def. 5) for every objects $v, w, e_{0}$ such that $e_{0}$ joins $v$ and $w$ in $G$ there exists an object $e$ such that $e$ joins $v$ and $w$ in $G$ and $e \in i t$ and for every object $e^{\prime}$ such that $e^{\prime}$ joins $v$ and $w$ in $G$ and $e^{\prime} \in i t$ holds $e^{\prime}=e$.
A representative selection of the directed-parallel edges of $G$ is a subset of the edges of $G$ defined by
(Def. 6) for every objects $v, w, e_{0}$ such that $e_{0}$ joins $v$ to $w$ in $G$ there exists an object $e$ such that $e$ joins $v$ to $w$ in $G$ and $e \in i t$ and for every object $e^{\prime}$ such that $e^{\prime}$ joins $v$ to $w$ in $G$ and $e^{\prime} \in i t$ holds $e^{\prime}=e$.
Let $G$ be an edgeless graph. Let us observe that every representative selection of the parallel edges of $G$ is empty and every representative selection of the directed-parallel edges of $G$ is empty.

Let $G$ be a non edgeless graph. Let us observe that every representative selection of the parallel edges of $G$ is non empty and every representative selection of the directed-parallel edges of $G$ is non empty.

Now we state the propositions:
(72) Let us consider a graph $G$, and a representative selection of the directedparallel edges $E_{1}$ of $G$. Then there exists a representative selection of the parallel edges $E_{2}$ of $G$ such that $E_{2} \subseteq E_{1}$.
Proof: Set $A=\{\{e$, where $e$ is an element of the edges of $G: e$ joins $v_{1}$ and $v_{2}$ in $G$ and $\left.e \in E_{1}\right\}$, where $v_{1}, v_{2}$ are vertices of $G$ : there exists an object $e_{0}$ such that $e_{0}$ joins $v_{1}$ and $v_{2}$ in $\left.G\right\}$. Define $\mathcal{P}$ [object, object] $\equiv$ there exists a non empty set $S$ such that $\$_{1}=S$ and $\$_{2}=$ the element of $S$. For every object $x$ such that $x \in A$ there exists an object $y$ such that $\mathcal{P}[x, y]$. Consider $f$ being a function such that $\operatorname{dom} f=A$ and for every object $x$ such that $x \in A$ holds $\mathcal{P}[x, f(x)]$. For every object $e$ such that $e \in \operatorname{rng} f$ holds $e \in E_{1}$. Reconsider $E_{2}=\operatorname{rng} f$ as a subset of the edges of $G$. For every objects $v, w, e_{0}$ such that $e_{0}$ joins $v$ and $w$ in $G$ there exists an object $e$ such that $e$ joins $v$ and $w$ in $G$ and $e \in E_{2}$ and for every object
$e^{\prime}$ such that $e^{\prime}$ joins $v$ and $w$ in $G$ and $e^{\prime} \in E_{2}$ holds $e^{\prime}=e . \square$
(73) Let us consider a graph $G$, and a representative selection of the parallel edges $E_{2}$ of $G$. Then there exists a representative selection of the directedparallel edges $E_{1}$ of $G$ such that $E_{2} \subseteq E_{1}$.
Proof: Set $A=\left\{\left\{e\right.\right.$, where $e$ is an element of the edges of $G: e$ joins $v_{1}$ to $v_{2}$ in $\left.G\right\}$, where $v_{1}, v_{2}$ are vertices of $G$ : there exists an object $e_{0}$ such that $e_{0}$ joins $v_{1}$ to $v_{2}$ in $G$ and for every object $e_{0}$ such that $e_{0}$ joins $v_{1}$ to $v_{2}$ in $G$ holds $\left.e_{0} \notin E_{2}\right\}$. Define $\mathcal{P}$ [object, object] $\equiv$ there exists a non empty set $S$ such that $\$_{1}=S$ and $\$_{2}=$ the element of $S$. For every object $x$ such that $x \in A$ there exists an object $y$ such that $\mathcal{P}[x, y]$. Consider $f$ being a function such that $\operatorname{dom} f=A$ and for every object $x$ such that $x \in A$ holds $\mathcal{P}[x, f(x)]$. For every object $e$ such that $e \in \operatorname{rng} f$ holds $e \in$ the edges of $G$. Reconsider $E_{1}=E_{2} \cup \operatorname{rng} f$ as a subset of the edges of $G$. For every objects $v, w, e_{0}$ such that $e_{0}$ joins $v$ to $w$ in $G$ there exists an object $e$ such that $e$ joins $v$ to $w$ in $G$ and $e \in E_{1}$ and for every object $e^{\prime}$ such that $e^{\prime}$ joins $v$ to $w$ in $G$ and $e^{\prime} \in E_{1}$ holds $e^{\prime}=e$.
(74) Let us consider a non-multi graph $G$, and a representative selection of the parallel edges $E$ of $G$. Then $E=$ the edges of $G$.
(75) Let us consider a graph $G$. Suppose there exists a representative selection of the parallel edges $E$ of $G$ such that $E=$ the edges of $G$. Then $G$ is nonmulti.
(76) Let us consider a non-directed-multi graph $G$, and a representative selection of the directed-parallel edges $E$ of $G$. Then $E=$ the edges of $G$.
(77) Let us consider a graph $G$. Suppose there exists a representative selection of the directed-parallel edges $E$ of $G$ such that $E=$ the edges of $G$. Then $G$ is non-directed-multi.
(78) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$, and a representative selection of the parallel edges $E$ of $G_{1}$. Suppose $E \subseteq$ the edges of $G_{2}$. Then $E$ is a representative selection of the parallel edges of $G_{2}$.
(79) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$, and a representative selection of the directed-parallel edges $E$ of $G_{1}$. Suppose $E \subseteq$ the edges of $G_{2}$. Then $E$ is a representative selection of the directed-parallel edges of $G_{2}$.
(80) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$, and a representative selection of the parallel edges $E_{2}$ of $G_{2}$. Then there exists a representative selection of the parallel edges $E_{1}$ of $G_{1}$ such that $E_{2}=E_{1} \cap$ (the edges of $G_{2}$ ).
Proof: Set $A=\left\{\left\{e\right.\right.$, where $e$ is an element of the edges of $G_{1}: e$ joins $v_{1}$
and $v_{2}$ in $\left.G_{1}\right\}$, where $v_{1}, v_{2}$ are vertices of $G_{1}$ : there exists an object $e_{0}$ such that $e_{0}$ joins $v_{1}$ and $v_{2}$ in $G_{1}$ and for every object $e_{0}$ such that $e_{0}$ joins $v_{1}$ and $v_{2}$ in $G_{1}$ holds $\left.e_{0} \notin E_{2}\right\}$. Define $\mathcal{P}$ [object, object] $\equiv$ there exists a non empty set $S$ such that $\$_{1}=S$ and $\$_{2}=$ the element of $S$. For every object $x$ such that $x \in A$ there exists an object $y$ such that $\mathcal{P}[x, y]$. Consider $f$ being a function such that $\operatorname{dom} f=A$ and for every object $x$ such that $x \in A$ holds $\mathcal{P}[x, f(x)]$. For every object $e$ such that $e \in \operatorname{rng} f$ holds $e \in$ the edges of $G_{1}$. Reconsider $E_{1}=E_{2} \cup \operatorname{rng} f$ as a subset of the edges of $G_{1}$. For every objects $v, w, e_{0}$ such that $e_{0}$ joins $v$ and $w$ in $G_{1}$ there exists an object $e$ such that $e$ joins $v$ and $w$ in $G_{1}$ and $e \in E_{1}$ and for every object $e^{\prime}$ such that $e^{\prime}$ joins $v$ and $w$ in $G_{1}$ and $e^{\prime} \in E_{1}$ holds $e^{\prime}=e$. For every object $x, x \in E_{2}$ iff $x \in E_{1}$ and $x \in$ the edges of $G_{2}$.
(81) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$, and a representative selection of the directed-parallel edges $E_{2}$ of $G_{2}$. Then there exists a representative selection of the directed-parallel edges $E_{1}$ of $G_{1}$ such that $E_{2}=E_{1} \cap\left(\right.$ the edges of $\left.G_{2}\right)$.
Proof: Set $A=\left\{\left\{e\right.\right.$, where $e$ is an element of the edges of $G_{1}: e$ joins $v_{1}$ to $v_{2}$ in $\left.G_{1}\right\}$, where $v_{1}, v_{2}$ are vertices of $G_{1}$ : there exists an object $e_{0}$ such that $e_{0}$ joins $v_{1}$ to $v_{2}$ in $G_{1}$ and for every object $e_{0}$ such that $e_{0}$ joins $v_{1}$ to $v_{2}$ in $G_{1}$ holds $\left.e_{0} \notin E_{2}\right\}$. Define $\mathcal{P}$ [object, object] $\equiv$ there exists a non empty set $S$ such that $\$_{1}=S$ and $\$_{2}=$ the element of $S$. For every object $x$ such that $x \in A$ there exists an object $y$ such that $\mathcal{P}[x, y]$. Consider $f$ being a function such that $\operatorname{dom} f=A$ and for every object $x$ such that $x \in A$ holds $\mathcal{P}[x, f(x)]$. For every object $e$ such that $e \in \operatorname{rng} f$ holds $e \in$ the edges of $G_{1}$. Reconsider $E_{1}=E_{2} \cup \operatorname{rng} f$ as a subset of the edges of $G_{1}$. For every objects $v, w, e_{0}$ such that $e_{0}$ joins $v$ to $w$ in $G_{1}$ there exists an object $e$ such that $e$ joins $v$ to $w$ in $G_{1}$ and $e \in E_{1}$ and for every object $e^{\prime}$ such that $e^{\prime}$ joins $v$ to $w$ in $G_{1}$ and $e^{\prime} \in E_{1}$ holds $e^{\prime}=e$. For every object $x, x \in E_{2}$ iff $x \in E_{1}$ and $x \in$ the edges of $G_{2}$.
(82) Let us consider a graph $G_{1}$, a representative selection of the parallel edges $E_{1}$ of $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ induced by the vertices of $G_{1}$ and $E_{1}$, and a representative selection of the parallel edges $E_{2}$ of $G_{2}$. Then $E_{1}=E_{2}$.
Proof: For every object $e$ such that $e \in E_{1}$ holds $e \in E_{2}$.
(83) Let us consider a graph $G_{1}$, a representative selection of the directedparallel edges $E_{1}$ of $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ induced by the vertices of $G_{1}$ and $E_{1}$, and a representative selection of the directed-parallel edges $E_{2}$ of $G_{2}$. Then $E_{1}=E_{2}$.
Proof: For every object $e$ such that $e \in E_{1}$ holds $e \in E_{2}$.
(84) Let us consider a graph $G_{1}$, a representative selection of the directedparallel edges $E_{1}$ of $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ induced by the vertices of $G_{1}$ and $E_{1}$, and a representative selection of the parallel edges $E_{2}$ of $G_{2}$. Then
(i) $E_{2} \subseteq E_{1}$, and
(ii) $E_{2}$ is a representative selection of the parallel edges of $G_{1}$.

Let us consider a graph $G$ and representative selections of the parallel edges $E_{1}, E_{2}$ of $G$. Now we state the propositions:
(85) There exists a one-to-one function $f$ such that
(i) $\operatorname{dom} f=E_{1}$, and
(ii) $\operatorname{rng} f=E_{2}$, and
(iii) for every objects $e, v, w$ such that $e \in E_{1}$ holds $e$ joins $v$ and $w$ in $G$ iff $f(e)$ joins $v$ and $w$ in $G$.
Proof: Define $\mathcal{P}$ [object, object $] \equiv \$_{2} \in E_{2}$ and there exist objects $v, w$ such that $\$_{1}$ joins $v$ and $w$ in $G$ and $\$_{2}$ joins $v$ and $w$ in $G$. For every objects $x, y_{1}, y_{2}$ such that $x \in E_{1}$ and $\mathcal{P}\left[x, y_{1}\right]$ and $\mathcal{P}\left[x, y_{2}\right]$ holds $y_{1}=y_{2}$. For every object $x$ such that $x \in E_{1}$ there exists an object $y$ such that $\mathcal{P}[x, y]$. Consider $f$ being a function such that $\operatorname{dom} f=E_{1}$ and for every object $x$ such that $x \in E_{1}$ holds $\mathcal{P}[x, f(x)]$. Consider $v_{0}, w_{0}$ being objects such that $e$ joins $v_{0}$ and $w_{0}$ in $G$ and $f(e)$ joins $v_{0}$ and $w_{0}$ in $G$.
(86) $\overline{\overline{E_{1}}}=\overline{\overline{E_{2}}}$. The theorem is a consequence of (85).

Let us consider a graph $G$ and representative selections of the directedparallel edges $E_{1}, E_{2}$ of $G$. Now we state the propositions:
(87) There exists a one-to-one function $f$ such that
(i) $\operatorname{dom} f=E_{1}$, and
(ii) $\operatorname{rng} f=E_{2}$, and
(iii) for every objects $e, v, w$ such that $e \in E_{1}$ holds $e$ joins $v$ to $w$ in $G$ iff $f(e)$ joins $v$ to $w$ in $G$.
Proof: Define $\mathcal{P}$ [object, object $] \equiv \$_{2} \in E_{2}$ and there exist objects $v, w$ such that $\$_{1}$ joins $v$ to $w$ in $G$ and $\$_{2}$ joins $v$ to $w$ in $G$. For every objects $x, y_{1}, y_{2}$ such that $x \in E_{1}$ and $\mathcal{P}\left[x, y_{1}\right]$ and $\mathcal{P}\left[x, y_{2}\right]$ holds $y_{1}=y_{2}$. For every object $x$ such that $x \in E_{1}$ there exists an object $y$ such that $\mathcal{P}[x, y]$. Consider $f$ being a function such that $\operatorname{dom} f=E_{1}$ and for every object $x$ such that $x \in E_{1}$ holds $\mathcal{P}[x, f(x)]$. Consider $v_{0}, w_{0}$ being objects such that $e$ joins $v_{0}$ to $w_{0}$ in $G$ and $f(e)$ joins $v_{0}$ to $w_{0}$ in $G . v_{0}=v$ and $w_{0}=w$.
(88) $\overline{\overline{E_{1}}}=\overline{\overline{E_{2}}}$. The theorem is a consequence of (87).

Let $G$ be a graph.
A subgraph of $G$ with parallel edges removed is a subgraph of $G$ defined by
(Def. 7) there exists a representative selection of the parallel edges $E$ of $G$ such that $i t$ is a subgraph of $G$ induced by the vertices of $G$ and $E$.
A subgraph of $G$ with directed-parallel edges removed is a subgraph of $G$ defined by
(Def. 8) there exists a representative selection of the directed-parallel edges $E$ of $G$ such that it is a subgraph of $G$ induced by the vertices of $G$ and $E$.
Observe that every subgraph of $G$ with parallel edges removed is spanning and non-multi and every subgraph of $G$ with directed-parallel edges removed is spanning and non-directed-multi and there exists a subgraph of $G$ with parallel edges removed which is plain and there exists a subgraph of $G$ with directedparallel edges removed which is plain.

Let $G$ be a loopless graph. Let us observe that every subgraph of $G$ with parallel edges removed is simple and every subgraph of $G$ with directed-parallel edges removed is directed-simple.

Now we state the propositions:
(89) Let us consider a non-multi graph $G_{1}$, and a graph $G_{2}$. Then $G_{1} \approx G_{2}$ if and only if $G_{2}$ is a subgraph of $G_{1}$ with parallel edges removed. The theorem is a consequence of (74).
(90) Let us consider a non-directed-multi graph $G_{1}$, and a graph $G_{2}$. Then $G_{1} \approx G_{2}$ if and only if $G_{2}$ is a subgraph of $G_{1}$ with directed-parallel edges removed. The theorem is a consequence of (76).
(91) Let us consider graphs $G_{1}, G_{2}$, and a subgraph $G_{3}$ of $G_{1}$ with parallel edges removed. If $G_{1} \approx G_{2}$, then $G_{3}$ is a subgraph of $G_{2}$ with parallel edges removed. The theorem is a consequence of (78).
(92) Let us consider graphs $G_{1}, G_{2}$, and a subgraph $G_{3}$ of $G_{1}$ with directedparallel edges removed. Suppose $G_{1} \approx G_{2}$. Then $G_{3}$ is a subgraph of $G_{2}$ with directed-parallel edges removed. The theorem is a consequence of (79).
(93) Let us consider graphs $G_{1}, G_{2}$, and a subgraph $G_{3}$ of $G_{1}$ with parallel edges removed. If $G_{2} \approx G_{3}$, then $G_{2}$ is a subgraph of $G_{1}$ with parallel edges removed.
(94) Let us consider graphs $G_{1}, G_{2}$, and a subgraph $G_{3}$ of $G_{1}$ with directedparallel edges removed. Suppose $G_{2} \approx G_{3}$. Then $G_{2}$ is a subgraph of $G_{1}$ with directed-parallel edges removed.
Let us consider a graph $G_{1}$ and a subgraph $G_{2}$ of $G_{1}$ with directed-parallel edges removed. Now we state the propositions:
(95) Every subgraph of $G_{2}$ with parallel edges removed is a subgraph of $G_{1}$ with parallel edges removed. The theorem is a consequence of (84).
(96) There exists a subgraph $G_{3}$ of $G_{1}$ with parallel edges removed such that $G_{3}$ is a subgraph of $G_{2}$ with parallel edges removed. The theorem is a consequence of (72) and (78).
(97) Let us consider a graph $G_{1}$, and a subgraph $G_{3}$ of $G_{1}$ with parallel edges removed. Then there exists a subgraph $G_{2}$ of $G_{1}$ with directedparallel edges removed such that $G_{3}$ is a subgraph of $G_{2}$ with parallel edges removed. The theorem is a consequence of (73) and (78).
Let $G$ be a complete graph. Let us observe that every subgraph of $G$ with parallel edges removed is complete and every subgraph of $G$ with directedparallel edges removed is complete.

Now we state the propositions:
(98) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed, and a walk $W_{1}$ of $G_{1}$. Then there exists a walk $W_{2}$ of $G_{2}$ such that $W_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$.
Proof: Define $\mathcal{P}\left[\right.$ walk of $\left.G_{1}\right] \equiv$ there exists a walk $W_{2}$ of $G_{2}$ such that $\$_{1} \cdot \operatorname{vertexSeq}()=W_{2} \cdot \operatorname{vertexSeq}()$. For every trivial walk $W$ of $G_{1}, \mathcal{P}[W]$. For every walk $W$ of $G_{1}$ and for every object $e$ such that
$e \in W$.last( $)$.edgesInOut () and $\mathcal{P}[W]$ holds $\mathcal{P}[W$.addEdge $(e)]$. For every walk $W_{1}$ of $G_{1}, \mathcal{P}\left[W_{1}\right]$.
(99) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with directed-parallel edges removed, and a walk $W_{1}$ of $G_{1}$. Then there exists a walk $W_{2}$ of $G_{2}$ such that $W_{1} \cdot \operatorname{vertexSeq}()=W_{2}$.vertexSeq(). The theorem is a consequence of (95) and (98).
(100) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $G_{1}$.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (35).
(101) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with directed-parallel edges removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $G_{1}$.reachableFrom $\left(v_{1}\right)=G_{2}$.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (35).
Let $G$ be a connected graph. Note that every subgraph of $G$ with parallel edges removed is connected and every subgraph of $G$ with directed-parallel edges removed is connected.

Let $G$ be a non connected graph. One can verify that every subgraph of $G$ with parallel edges removed is non connected and every subgraph of $G$ with directed-parallel edges removed is non connected.

Now we state the propositions:
(102) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed. Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot$ componentSet () . The theorem is a consequence of (100) and (37).
(103) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$ with directedparallel edges removed. Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot \operatorname{componentSet}()$. The theorem is a consequence of (101) and (37).
(104) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed. Then $G_{1}$.numComponents ()$=G_{2}$.numComponents(). The theorem is a consequence of (100) and (38).
(105) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$ with directedparallel edges removed. Then $G_{1}$.numComponents ()$=$ $G_{2}$.numComponents(). The theorem is a consequence of (101) and (38).
(106) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed. Then $G_{1}$ is chordal if and only if $G_{2}$ is chordal. The theorem is a consequence of (98), (30), (32), and (29).
(107) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$ with directedparallel edges removed. Then $G_{1}$ is chordal if and only if $G_{2}$ is chordal. The theorem is a consequence of (95) and (106).
Let $G$ be a chordal graph. Note that every subgraph of $G$ with parallel edges removed is chordal and every subgraph of $G$ with directed-parallel edges removed is chordal.

Now we state the propositions:
(108) Let us consider a graph $G_{1}$, a set $v$, a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed, and a subgraph $G_{3}$ of $G_{1}$ with vertex $v$ removed. Then every subgraph of $G_{2}$ with vertex $v$ removed is a subgraph of $G_{3}$ with parallel edges removed. The theorem is a consequence of (93) and (91).
(109) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $v_{1}$ is cut-vertex iff $v_{2}$ is cut-vertex. The theorem is a consequence of (108) and (104).
(110) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with directed-parallel edges removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $v_{1}$ is cut-vertex iff $v_{2}$ is cut-vertex. The theorem is a consequence of (95) and (109).
(111) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $v_{1}$ is isolated iff $v_{2}$ is isolated.

Proof: $v_{1}$. edgesInOut ()$=\emptyset$.
(112) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with directed-parallel edges removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $v_{1}$ is isolated iff $v_{2}$ is isolated. The theorem is a consequence of (95) and (111).
(113) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$ and $v_{1}$ is endvertex, then $v_{2}$ is endvertex. The theorem is a consequence of (111).
(114) Let us consider a graph $G_{1}$, a subgraph $G_{2}$ of $G_{1}$ with directed-parallel edges removed, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$ and $v_{1}$ is endvertex, then $v_{2}$ is endvertex. The theorem is a consequence of (112).
Let $G$ be a graph. A simple graph of $G$ is a subgraph of $G$ defined by
(Def. 9) there exists a representative selection of the parallel edges $E$ of $G$ such that $i t$ is a subgraph of $G$ induced by the vertices of $G$ and $E \backslash(G$.loops()).
A directed-simple graph of $G$ is a subgraph of $G$ defined by
(Def. 10) there exists a representative selection of the directed-parallel edges $E$ of $G$ such that it is a subgraph of $G$ induced by the vertices of $G$ and $E \backslash(G$.loops ()$)$.
Now we state the propositions:
(115) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed. Then every subgraph of $G_{2}$ with loops removed is a simple graph of $G_{1}$. The theorem is a consequence of (48).
(116) Let us consider a graph $G_{1}$, and a subgraph $G_{2}$ of $G_{1}$ with directedparallel edges removed. Then every subgraph of $G_{2}$ with loops removed is a directed-simple graph of $G_{1}$. The theorem is a consequence of (48).
Let us consider a graph $G_{1}$ and a subgraph $G_{2}$ of $G_{1}$ with loops removed. Now we state the propositions:
(117) Every subgraph of $G_{2}$ with parallel edges removed is a simple graph of $G_{1}$. The theorem is a consequence of (80).
(118) Every subgraph of $G_{2}$ with directed-parallel edges removed is a directedsimple graph of $G_{1}$. The theorem is a consequence of (81).
(119) Let us consider a graph $G_{1}$, and a simple graph $G_{3}$ of $G_{1}$. Then there exists a subgraph $G_{2}$ of $G_{1}$ with parallel edges removed such that $G_{3}$ is a subgraph of $G_{2}$ with loops removed.
Proof: Consider $E$ being a representative selection of the parallel edges of $G_{1}$ such that $G_{3}$ is a subgraph of $G_{1}$ induced by the vertices of $G_{1}$ and $E \backslash\left(G_{1}\right.$.loops ()$)$. Set $G_{2}=$ the subgraph of $G_{1}$ induced by the vertices of
$G_{1}$ and $E$. For every object $e, e \in$ the edges of $G_{3}$ iff $e \in$ (the edges of $\left.G_{2}\right) \backslash\left(G_{2} \cdot \operatorname{loops}()\right)$.
(120) Let us consider a graph $G_{1}$, and a directed-simple graph $G_{3}$ of $G_{1}$. Then there exists a subgraph $G_{2}$ of $G_{1}$ with directed-parallel edges removed such that $G_{3}$ is a subgraph of $G_{2}$ with loops removed.
Proof: Consider $E$ being a representative selection of the directed-parallel edges of $G_{1}$ such that $G_{3}$ is a subgraph of $G_{1}$ induced by the vertices of $G_{1}$ and $E \backslash\left(G_{1}\right.$.loops()). Set $G_{2}=$ the subgraph of $G_{1}$ induced by the vertices of $G_{1}$ and $E$. For every object $e, e \in$ the edges of $G_{3}$ iff $e \in$ (the edges of $\left.G_{2}\right) \backslash\left(G_{2} \cdot \operatorname{loops}()\right)$.
Let us consider a graph $G_{1}$ and a subgraph $G_{2}$ of $G_{1}$ with loops removed. Now we state the propositions:
(121) Every simple graph of $G_{1}$ is a subgraph of $G_{2}$ with parallel edges removed.
(122) Every directed-simple graph of $G_{1}$ is a subgraph of $G_{2}$ with directedparallel edges removed. The theorem is a consequence of (45) and (6).
Let us consider a loopless graph $G_{1}$ and a graph $G_{2}$. Now we state the propositions:
(123) $G_{2}$ is a simple graph of $G_{1}$ if and only if $G_{2}$ is a subgraph of $G_{1}$ with parallel edges removed.
(124) $\quad G_{2}$ is a directed-simple graph of $G_{1}$ if and only if $G_{2}$ is a subgraph of $G_{1}$ with directed-parallel edges removed.
(125) Let us consider a non-multi graph $G_{1}$, and a graph $G_{2}$. Then $G_{2}$ is a simple graph of $G_{1}$ if and only if $G_{2}$ is a subgraph of $G_{1}$ with loops removed. The theorem is a consequence of (74).
(126) Let us consider a non-directed-multi graph $G_{1}$, and a graph $G_{2}$. Then $G_{2}$ is a directed-simple graph of $G_{1}$ if and only if $G_{2}$ is a subgraph of $G_{1}$ with loops removed. The theorem is a consequence of (76).
Let $G$ be a graph. Note that every simple graph of $G$ is spanning, loopless, non-multi, and simple and every directed-simple graph of $G$ is spanning, loopless, non-directed-multi, and directed-simple and there exists a simple graph of $G$ which is plain and there exists a directed-simple graph of $G$ which is plain.

Now we state the propositions:
(127) Let us consider a simple graph $G_{1}$, and a graph $G_{2}$. Then $G_{1} \approx G_{2}$ if and only if $G_{2}$ is a simple graph of $G_{1}$. The theorem is a consequence of (74).
(128) Let us consider a directed-simple graph $G_{1}$, and a graph $G_{2}$. Then $G_{1} \approx$ $G_{2}$ if and only if $G_{2}$ is a directed-simple graph of $G_{1}$. The theorem is
a consequence of (76).
(129) Let us consider graphs $G_{1}, G_{2}$, and a simple graph $G_{3}$ of $G_{1}$. If $G_{1} \approx G_{2}$, then $G_{3}$ is a simple graph of $G_{2}$. The theorem is a consequence of (50) and (78).
(130) Let us consider graphs $G_{1}, G_{2}$, and a directed-simple graph $G_{3}$ of $G_{1}$. If $G_{1} \approx G_{2}$, then $G_{3}$ is a directed-simple graph of $G_{2}$. The theorem is a consequence of (50) and (79).
(131) Let us consider graphs $G_{1}, G_{2}$, and a simple graph $G_{3}$ of $G_{1}$. If $G_{2} \approx G_{3}$, then $G_{2}$ is a simple graph of $G_{1}$.
(132) Let us consider graphs $G_{1}, G_{2}$, and a directed-simple graph $G_{3}$ of $G_{1}$. If $G_{2} \approx G_{3}$, then $G_{2}$ is a directed-simple graph of $G_{1}$.
Let us consider a graph $G_{1}$ and a directed-simple graph $G_{2}$ of $G_{1}$. Now we state the propositions:
(133) Every simple graph of $G_{2}$ is a simple graph of $G_{1}$. The theorem is a consequence of (122), (123), (95), and (117).
(134) There exists a simple graph $G_{3}$ of $G_{1}$ such that $G_{3}$ is a simple graph of $G_{2}$. The theorem is a consequence of (122), (96), (117), and (123).
(135) Let us consider a graph $G_{1}$, and a simple graph $G_{3}$ of $G_{1}$. Then there exists a directed-simple graph $G_{2}$ of $G_{1}$ such that $G_{3}$ is a simple graph of $G_{2}$. The theorem is a consequence of (121), (97), (118), and (123).

Let $G$ be a complete graph. Observe that every simple graph of $G$ is complete and every directed-simple graph of $G$ is complete.

Now we state the propositions:
(136) Let us consider a graph $G_{1}$, a simple graph $G_{2}$ of $G_{1}$, and a walk $W_{1}$ of $G_{1}$. Then there exists a walk $W_{2}$ of $G_{2}$ such that $W_{2}$ is walk from $W_{1}$.first() to $W_{1} \cdot \operatorname{last}()$. The theorem is a consequence of (119) and (61).
(137) Let us consider a graph $G_{1}$, a directed-simple graph $G_{2}$ of $G_{1}$, and a walk $W_{1}$ of $G_{1}$. Then there exists a walk $W_{2}$ of $G_{2}$ such that $W_{2}$ is walk from $W_{1}$.first() to $W_{1}$.last(). The theorem is a consequence of (133) and (136).
(138) Let us consider a graph $G_{1}$, a simple graph $G_{2}$ of $G_{1}$, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $G_{1}$.reachableFrom $\left(v_{1}\right)=$ $G_{2}$.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (136) and (35).
(139) Let us consider a graph $G_{1}$, a directed-simple graph $G_{2}$ of $G_{1}$, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $G_{1}$ reachableFrom $\left(v_{1}\right)=$ $G_{2}$.reachableFrom $\left(v_{2}\right)$. The theorem is a consequence of (137) and (35).
Let $G$ be a connected graph. Observe that every simple graph of $G$ is connected and every directed-simple graph of $G$ is connected.

Let $G$ be a non connected graph. One can verify that every simple graph of $G$ is non connected and every directed-simple graph of $G$ is non connected.

Now we state the propositions:
(140) Let us consider a graph $G_{1}$, and a simple graph $G_{2}$ of $G_{1}$.

Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot \operatorname{componentSet}()$. The theorem is a consequence of (138) and (37).
(141) Let us consider a graph $G_{1}$, and a directed-simple graph $G_{2}$ of $G_{1}$. Then $G_{1} \cdot \operatorname{componentSet}()=G_{2} \cdot \operatorname{componentSet}()$. The theorem is a consequence of (139) and (37).
(142) Let us consider a graph $G_{1}$, and a simple graph $G_{2}$ of $G_{1}$.

Then $G_{1}$.numComponents ()$=G_{2}$.numComponents () . The theorem is a consequence of (138) and (38).
(143) Let us consider a graph $G_{1}$, and a directed-simple graph $G_{2}$ of $G_{1}$. Then $G_{1}$.numComponents ()$=G_{2}$.numComponents(). The theorem is a consequence of (139) and (38).
(144) Let us consider a graph $G_{1}$, and a simple graph $G_{2}$ of $G_{1}$. Then $G_{1}$ is chordal if and only if $G_{2}$ is chordal. The theorem is a consequence of (119), (65), and (106).
(145) Let us consider a graph $G_{1}$, and a directed-simple graph $G_{2}$ of $G_{1}$. Then $G_{1}$ is chordal if and only if $G_{2}$ is chordal. The theorem is a consequence of (120), (65), and (107).
Let $G$ be a chordal graph. One can check that every simple graph of $G$ is chordal and every directed-simple graph of $G$ is chordal.

Now we state the propositions:
(146) Let us consider a graph $G_{1}$, a simple graph $G_{2}$ of $G_{1}$, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $v_{1}$ is cut-vertex iff $v_{2}$ is cut-vertex. The theorem is a consequence of (119), (67), and (109).
(147) Let us consider a graph $G_{1}$, a directed-simple graph $G_{2}$ of $G_{1}$, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $v_{1}$ is cut-vertex iff $v_{2}$ is cut-vertex. The theorem is a consequence of (120), (67), and (110).
(148) Let us consider a loopless graph $G_{1}$, a simple graph $G_{2}$ of $G_{1}$, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $v_{1}$ is isolated iff $v_{2}$ is isolated. The theorem is a consequence of (119), (58), and (111).
(149) Let us consider a loopless graph $G_{1}$, a directed-simple graph $G_{2}$ of $G_{1}$, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$, then $v_{1}$ is isolated iff $v_{2}$ is isolated. The theorem is a consequence of (120), (58), and (112).
(150) Let us consider a graph $G_{1}$, a simple graph $G_{2}$ of $G_{1}$, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$ and $v_{1}$ is endvertex, then $v_{2}$ is endvertex.

The theorem is a consequence of (119), (113), and (68).
(151) Let us consider a graph $G_{1}$, a directed-simple graph $G_{2}$ of $G_{1}$, a vertex $v_{1}$ of $G_{1}$, and a vertex $v_{2}$ of $G_{2}$. If $v_{1}=v_{2}$ and $v_{1}$ is endvertex, then $v_{2}$ is endvertex. The theorem is a consequence of (120), (114), and (68).

## References

[1] Grzegorz Bancerek. Introduction to trees Formalized Mathematics, 1(2):421-427, 1990.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Lowell W. Beineke and Robin J. Wilson, editors. Selected Topics in Graph Theory. Academic Press, London, 1978. ISBN 0-12-086250-6.
[4] John Adrian Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics, 244. Springer, New York, 2008. ISBN 978-1-84628-969-9.
[5] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[6] Krzysztof Hryniewiecki. Graphs, Formalized Mathematics, 2(3):365-370, 1991.
[7] Gilbert Lee. Weighted and labeled graphs Formalized Mathematics, 13(2):279-293, 2005.
[8] Gilbert Lee and Piotr Rudnicki. Alternative graph structures Formalized Mathematics, 13(2):235-252, 2005.
[9] Piotr Rudnicki and Lorna Stewart. Simple graphs as simplicial complexes: the Mycielskian of a graph. Formalized Mathematics, 20(2):161-174, 2012. doi 10.2478/v10037-012-00198.
[10] Yozo Toda. The formalization of simple graphs Formalized Mathematics, 5(1):137-144, 1996.
[11] Klaus Wagner. Graphentheorie. B.I-Hochschultaschenbücher; 248. Bibliograph. Inst., Mannheim, 1970. ISBN 3-411-00248-4.
[12] Robin James Wilson. Introduction to Graph Theory. Oliver \& Boyd, Edinburgh, 1972. ISBN 0-05-002534-1.

Accepted August 29, 2019

# About Graph Mappings 

Sebastian Koch<br>Johannes Gutenberg University<br>Mainz, Germany ${ }^{1}$


#### Abstract

Summary. In this articles adjacency-preserving mappings from a graph to another are formalized in the Mizar system [7, [2]. The generality of the approach seems to be largely unpreceeded in the literature to the best of the author's knowledge. However, the most important property defined in the article is that of two graphs being isomorphic, which has been extensively studied. Another graph decorator is introduced as well.


MSC: 05C60 68T99 03B35
Keywords: graph homomorphism; graph isomorphism
MML identifier: GLIB_010, version: 8.1.09 5.59.1363

## 0 . Introduction

Writing this article has been rather challenging. "Much of graph theory is concerned with the study of simple graphs" [3, p. 3], so most graph theory books are only concerned with graph homomorphisms between simple graphs, if they are concerned with anything more general than isomorphisms at all. [3] writes about general graphs; isomorphisms are done in the first chapter while homomorphisms are only looked at in the context of vertex colorings in chapter 14. The book "Graphs and homomorphisms" [8] only handles (di)graphs without multiple parallel edges. The book "Graph coloring problems" [10] notes homomorphisms between loopless graphs, but doesn't elaborate. [6] only handles homomorphisms between simple graphs. [14] shortly describes homomorphisms between undirected graphs. [9] handles homomorphisms between

[^1]digraphs without parallel edges. [16] writes about general graphs but, like most graph books, only about isomorphisms. The best source so far has been [11], where graph homomorphisms are introduced for digraphs possibly containing loops and multiple parallel edges (just like graphs are formalized in [15]) but the focus is almost immediately shifted to homomorphisms between simple graphs. So a quick overview of the formalized notation seems in order.

A graph $G$ consists of a non empty set $V(G)$ called vertices of $G$, a set $E(G)$ called edges of $G$ and two functions $s(G), t(G): E(G) \rightarrow V(G)$, the source and target of $G$. For $e \in E(G), v, w \in V(G)$ we write $e$ joins $v$ to $w$ if $s(G)(e)=v$ and $t(G)(e)=w$, and we write $e$ joins $v$ and $w$ if $e$ joins $v$ to $w$ or $e$ joins $w$ to $v$. Let $G_{1}, G_{2}$ be graphs. A partial graph mapping from $G_{1}$ to $G_{2}$ is an ordered pair $F=\left\langle F_{\mathbb{V}}, F_{\mathbb{E}}\right\rangle$ with the following properties:

- $F_{\mathbb{V}}$ is a partial function from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$.
- $F_{\mathbb{E}}$ is a partial function from $E\left(G_{1}\right)$ to $E\left(G_{2}\right)$.
- For any $e \in \operatorname{dom} F_{\mathbb{E}}$ holds $s(G)(e), t(G)(e) \in \operatorname{dom} F_{\mathbb{V}}$.
- For any $e \in \operatorname{dom} F_{\mathbb{E}}$ and $v, w \in \operatorname{dom} F_{\mathbb{V}}$ such that $e$ joins $v$ and $w$ holds $F_{\mathbb{E}}(e)$ joins $F_{\mathbb{V}}(v)$ and $F_{\mathbb{V}}(w)$.

Note that $\langle f, \emptyset\rangle$ is a valid partial graph mapping for any partial function $f$ : $V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$, especially for $f=\emptyset$. Now define the following attributes:

- $F$ is empty if $\operatorname{dom} F_{\mathbb{V}}=\emptyset$.
- $F$ is total (or a homomorphism) if dom $F_{\mathbb{V}}=V\left(G_{1}\right)$ and $\operatorname{dom} F_{\mathbb{E}}=E\left(G_{1}\right)$.
- $F$ is onto (or surjective) if rng $F_{\mathbb{V}}=V\left(G_{2}\right)$ and rng $F_{\mathbb{E}}=E\left(G_{2}\right)$.
- $F$ is one-to-one (or injective) if $F_{\mathbb{V}}$ and $F_{\mathbb{E}}$ are.
- $F$ is semi-continuous if for any $e \in \operatorname{dom} F_{\mathbb{E}}$ and $v, w \in \operatorname{dom} F_{\mathbb{V}}$ such that $F_{\mathbb{E}}(e)$ joins $F_{\mathbb{V}}(v)$ and $F_{\mathbb{V}}(w)$ holds $e$ joins $v$ and $w$.
- $F$ is continuous if for any $\tilde{e} \in E\left(G_{2}\right)$ and $v, w \in \operatorname{dom} F_{\mathbb{V}}$ such that $\tilde{e}$ joins $F_{\mathbb{V}}(v)$ and $F_{\mathbb{V}}(w)$ exists an $e \in \operatorname{dom} F_{\mathbb{E}}$ such that $F_{\mathbb{E}}(e)=\tilde{e}$ and $e$ joins $v$ and $w$.
- $F$ is a weak subgraph-embedding if it is total and one-to-one.
- $F$ is a strong subgraph-embedding if it is total, one-to-one and continuous.
- $F$ is an isomorphism if it is total, one-to-one and onto.

Because modes in Mizar must always be inhabitated, partial graph mappings are the chosen foundation rather than homomorphisms, which may not exist between two graphs. The attributes total, onto and one-to-one were named like their function analogons from [4] and [5]. The continuous attribute was inspired by the continuous vertex mappings of [11] and is in fact sometimes different from semi-continuous. Semi-continuous seemed like the natural generalization
of continuous for graph mappings instead of vertex mappings, but that turned out to be false. Still, a semi-continuous graph mapping already carries a lot of properties from $G_{1}$ to $G_{2}$, so the definition was kept. Corresponding attributes for directed graph mappings are given in this article as well.

If $F$ is a weak subgraph-embedding, then $G_{1}$ is isomorphic to a subgraph of $G_{2}$. If $F$ is a strong subgraph-embedding, then $G_{1}$ is isomorphic to an induced subgraph of $G_{2}$. The short term embedding was desperately avoided to be available for embeddings of graphs into the plane and other surfaces. If $F$ is one-to-one, it is also semi-continuous. If $F$ is semi-continuous and onto, it is also continuous.

Originally, only an article about graph isomorphisms was planned, but it was changed to provide a solid foundation of general graph mappings. Now this article also includes the restriction of $F$ to subgraphs of $G_{1}$ or $G_{2}$, the domain and range of $F$ defined as the plain subgraphs of $G_{1}$ and $G_{2}$ induced by dom $F_{\mathbb{V}}$, $\operatorname{dom} F_{\mathbb{E}}$ and $\operatorname{rng} F_{\mathbb{V}}, \operatorname{rng} F_{\mathbb{E}}$ respectively, and the images of walks under $F$. Of course the inverse of $F$ and the composition of two graph mappings are included as well.

Additionally, the ordering of a graph, which is just an enumeration of its vertices, has been introduced as yet another graph decorator. This decorator is planned as a tool to identify graphs with trees from [1]. Attributes describing if $F$ preserves the weights, edge labels, vertex labels or the ordering have been added as well.

## 1. Preliminaries

Now we state the propositions:
(1) Let us consider functions $A, B, C, D$. Suppose $D \cdot A=C \upharpoonright \operatorname{dom} A$. Then $(D \upharpoonright \operatorname{dom} B) \cdot A=C \upharpoonright \operatorname{dom}(B \cdot A)$.
Proof: Set $f=(D \upharpoonright \operatorname{dom} B) \cdot A$. Set $g=C \upharpoonright \operatorname{dom}(B \cdot A)$. For every object $x$ such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$.
(2) Let us consider a one-to-one function $A$, and functions $C, D$. Suppose $D \cdot A=C \upharpoonright \operatorname{dom} A$. Then $C \cdot\left(A^{-1}\right)=D \upharpoonright \operatorname{dom}\left(A^{-1}\right)$.
Proof: For every object $y, y \in \operatorname{dom}\left(C \cdot\left(A^{-1}\right)\right)$ iff $y \in \operatorname{dom}\left(D \upharpoonright \operatorname{dom}\left(A^{-1}\right)\right)$. For every object $y$ such that $y \in \operatorname{dom}\left(C \cdot\left(A^{-1}\right)\right)$ holds $\left(C \cdot\left(A^{-1}\right)\right)(y)=$ $\left(D \upharpoonright \operatorname{dom}\left(A^{-1}\right)\right)(y)$.
Let $G$ be a non finite graph and $X$ be a set. One can verify that
$G$.set(WeightSelector, $X$ ) is non finite and $G$.set(ELabelSelector, $X$ ) is non finite and $G$.set(VLabelSelector, $X$ ) is non finite.

Let $G$ be a non loopless graph. One can check that $G$.set(WeightSelector, $X$ ) is non loopless and $G$.set(ELabelSelector, $X$ ) is non loopless and
$G$.set(VLabelSelector, $X$ ) is non loopless.
Let $G$ be a non non-multi graph. Note that $G$.set(WeightSelector, $X$ ) is non non-multi and $G$.set(ELabelSelector, $X$ ) is non non-multi and
$G$.set(VLabelSelector, $X$ ) is non non-multi. Let $G$ be a non non-directedmulti graph. Let us note that $G$.set(WeightSelector, $X$ ) is non non-directedmulti and $G$.set(ELabelSelector, $X$ ) is non non-directed-multi and
$G$.set(VLabelSelector, $X$ ) is non non-directed-multi.
Let $G$ be a non connected graph. Observe that $G$.set(WeightSelector, $X$ ) is non connected and $G$.set(ELabelSelector, $X$ ) is non connected and
$G$.set(VLabelSelector, $X$ ) is non connected.
Let $G$ be a non acyclic graph. Let us observe that $G$.set(WeightSelector, $X$ ) is non acyclic and $G$.set(ELabelSelector, $X$ ) is non acyclic and
$G$.set(VLabelSelector, $X$ ) is non acyclic. Let $G$ be a graph. We say that $G$ is elabel-full if and only if
(Def. 1) ELabelSelector $\in \operatorname{dom} G$ and there exists a many sorted set $f$ indexed by the edges of $G$ such that $G($ ELabelSelector $)=f$.
We say that $G$ is vlabel-full if and only if
(Def. 2) VLabelSelector $\in \operatorname{dom} G$ and there exists a many sorted set $f$ indexed by the vertices of $G$ such that $G($ VLabelSelector $)=f$.
Let us observe that every graph which is elabel-full is also elabeled and every graph which is vlabel-full is also vlabeled.

Let $G$ be an e-graph. We say that $G$ is elabel-distinct if and only if
(Def. 3) the elabel of $G$ is one-to-one.
Let $G$ be a v-graph. We say that $G$ is vlabel-distinct if and only if
(Def. 4) the vlabel of $G$ is one-to-one.
Let $G$ be a graph. Observe that $G$.set(ELabelSelector, $\mathrm{id}_{\text {the edges of } G}$ ) is elabelfull and elabel-distinct and $G$.set(VLabelSelector, $\mathrm{id}_{\text {the vertices of } G}$ ) is vlabel-full and vlabel-distinct and there exists an e-graph which is elabel-distinct and elabel-full and there exists a v-graph which is vlabel-distinct and vlabel-full.

Let $G$ be an elabel-full graph. Let us observe that the elabel of $G$ yields a many sorted set indexed by the edges of $G$. Let $G$ be a vlabel-full graph. Observe that the vlabel of $G$ yields a many sorted set indexed by the vertices of $G$. Let $G$ be an elabel-distinct e-graph. Let us note that the elabel of $G$ is one-to-one.

Let $G$ be a vlabel-distinct v-graph. Observe that the vlabel of $G$ is one-toone. Let $G$ be an elabel-full graph and $X$ be a set. One can verify that
$G \cdot \operatorname{set}($ WeightSelector, $X$ ) is elabel-full and $G$.set(VLabelSelector, $X$ ) is elabelfull. Let $G$ be a vlabel-full graph. One can check that $G$.set(WeightSelector, $X$ ) is vlabel-full and $G$.set(ELabelSelector, $X$ ) is vlabel-full.

Let $G$ be an elabel-distinct e-graph. Note that $G$.set(WeightSelector, $X$ ) is elabel-distinct and $G$.set(VLabelSelector, $X$ ) is elabel-distinct.

Let $G$ be a vlabel-distinct v-graph. Let us observe that $G$.set(WeightSelector,
$X)$ is vlabel-distinct and $G$.set(ELabelSelector, $X$ ) is vlabel-distinct and there exists an ev-graph which is elabel-full, elabel-distinct, vlabel-full, and vlabeldistinct.

Let $G_{1}$ be a w-graph, $E$ be a set, and $G_{2}$ be a graph given by reversing directions of the edges $E$ of $G_{1}$. Observe that $G_{2} \cdot \operatorname{set}$ (WeightSelector, the weight of $G_{1}$ ) is weighted.

Let $G_{1}$ be an e-graph. One can verify that $G_{2} \cdot \operatorname{set}$ (ELabelSelector, the elabel of $G_{1}$ ) is elabeled.

Let $G_{1}$ be a v-graph, $V$ be a set, and $G_{2}$ be a graph given by reversing directions of the edges $V$ of $G_{1}$. Observe that $G_{2} \cdot \operatorname{set}$ (VLabelSelector, the vlabel of $G_{1}$ ) is vlabeled.

Let $G_{1}$ be an elabel-full graph, $E$ be a set, and $G_{2}$ be a graph given by reversing directions of the edges $E$ of $G_{1}$. Note that $G_{2}$.set(ELabelSelector, the elabel of $G_{1}$ ) is elabel-full.

Let $G_{1}$ be a vlabel-full graph, $V$ be a set, and $G_{2}$ be a graph given by reversing directions of the edges $V$ of $G_{1}$. Note that $G_{2}$.set(VLabelSelector, the vlabel of $G_{1}$ ) is vlabel-full. Let $G_{1}$ be an elabel-distinct e-graph, $E$ be a set, and $G_{2}$ be a graph given by reversing directions of the edges $E$ of $G_{1}$. Note that $G_{2} \cdot \operatorname{set}\left(E L a b e l S e l e c t o r\right.$, the elabel of $\left.G_{1}\right)$ is elabel-distinct. Let $G_{1}$ be a vlabeldistinct v-graph. Observe that $G_{2} \cdot \operatorname{set}(V L a b e l S e l e c t o r, ~ t h e ~ v l a b e l ~ o f ~ G 1) ~ i s ~ v l a b e l-~$ distinct.

## 2. Ordering of a Graph

The functor OrderingSelector yielding an element of $\mathbb{N}$ is defined by the term (Def. 5) 8.

Let $G$ be a graph structure. We say that $G$ is ordered if and only if
(Def. 6) OrderingSelector $\in \operatorname{dom} G$ and $G$ (OrderingSelector) is an enumeration of the vertices of $G$.
Let $G$ be a graph and $X$ be a set. Note that $G$.set(OrderingSelector, $X$ ) is graph-like and $G$.set(OrderingSelector, $X$ ) is non plain.

Let $G$ be a w-graph. One can verify that $G$.set(OrderingSelector, $X$ ) is weighted.

Let $G$ be an e-graph. One can check that $G$.set(OrderingSelector, $X$ ) is elabeled.

Let $G$ be a v-graph. Note that $G$.set(OrderingSelector, $X$ ) is vlabeled.

Let $G$ be a graph and $X$ be an enumeration of the vertices of $G$. Note that $G$.set(OrderingSelector, $X$ ) is ordered and there exists a graph structure which is graph-like, weighted, elabeled, vlabeled, and ordered.

Let $G$ be an ordered graph. The ordering of $G$ yielding an enumeration of the vertices of $G$ is defined by the term
(Def. 7) $G$ (OrderingSelector).
Now we state the proposition:
(3) Let us consider a graph $G$, and a set $X$.

Then $G \approx G$.set(OrderingSelector, $X$ ).
Let $G$ be an elabel-full graph and $X$ be a set. Let us note that $G$.set(OrderingSelector, $X$ ) is elabel-full.
Let $G$ be a vlabel-full graph. Let us note that $G$.set(OrderingSelector, $X$ ) is vlabel-full.

Let $G$ be an elabel-distinct e-graph. Let us note that $G$.set(OrderingSelector, $X)$ is elabel-distinct.
Let $G$ be a vlabel-distinct v-graph. Observe that $G$.set(OrderingSelector, $X$ ) is vlabel-distinct.

Let $G$ be a finite graph. Let us observe that $G$.set(OrderingSelector, $X$ ) is finite.

Let $G$ be a non finite graph. Let us observe that $G$.set(OrderingSelector, $X$ ) is non finite.

Let $G$ be a loopless graph. Let us observe that $G$.set(OrderingSelector, $X$ ) is loopless.

Let $G$ be a non loopless graph. Let us observe that $G$.set(OrderingSelector, $X$ ) is non loopless.

Let $G$ be a trivial graph. Let us observe that $G$.set(OrderingSelector, $X$ ) is trivial.

Let $G$ be a non trivial graph. Let us observe that $G$.set(OrderingSelector, $X$ ) is non trivial.

Let $G$ be a non-multi graph. Let us observe that $G$.set(OrderingSelector, $X$ ) is non-multi.

Let $G$ be a non non-multi graph. Let us observe that
$G$.set(OrderingSelector, $X$ ) is non non-multi.
Let $G$ be a non-directed-multi graph. Let us observe that
$G$.set(OrderingSelector, $X$ ) is non-directed-multi.
Let $G$ be a non non-directed-multi graph. Let us observe that
$G$.set(OrderingSelector, $X$ ) is non non-directed-multi.
Let $G$ be a connected graph. Let us observe that $G$.set(OrderingSelector, $X$ ) is connected.

Let $G$ be a non connected graph. Let us note that $G$.set(OrderingSelector, $X$ ) is non connected.

Let $G$ be an acyclic graph. Let us note that $G$.set(OrderingSelector, $X$ ) is acyclic.

Let $G$ be a non acyclic graph. One can check that $G$.set(OrderingSelector, $X$ ) is non acyclic.

Let $G$ be an edgeless graph. One can check that $G$.set(OrderingSelector, $X$ ) is edgeless.

Let $G$ be a non edgeless graph. Let us observe that $G \cdot \operatorname{set}($ OrderingSelector, $X$ ) is non edgeless.

Let $G$ be an ordered graph. Let us observe that $G$.set(WeightSelector, $X$ ) is ordered and $G \cdot \operatorname{set}(E L a b e l S e l e c t o r, ~ X)$ is ordered and $G \cdot \operatorname{set}(V L a b e l S e l e c t o r, ~ X)$ is ordered.

Let $G_{1}$ be an ordered graph and $G_{2}$ be a spanning subgraph of $G_{1}$. Note that $G_{2} \cdot$ set(OrderingSelector, the ordering of $G_{1}$ ) is ordered.

Let $E$ be a set and $G_{2}$ be a graph given by reversing directions of the edges $E$ of $G_{1}$. Let us observe that $G_{2} \cdot \operatorname{set}$ (OrderingSelector, the ordering of $G_{1}$ ) is ordered.

## 3. Graph Mappings

Let $G_{1}, G_{2}$ be graphs. A partial graph mapping from $G_{1}$ to $G_{2}$ is an object defined by
(Def. 8) there exist functions $f, g$ such that $i t=\langle f, g\rangle$ and $\operatorname{dom} f \subseteq$ the vertices of $G_{1}$ and $\operatorname{rng} f \subseteq$ the vertices of $G_{2}$ and $\operatorname{dom} g \subseteq$ the edges of $G_{1}$ and $\operatorname{rng} g \subseteq$ the edges of $G_{2}$ and for every object $e$ such that $e \in \operatorname{dom} g$ holds (the source of $\left.G_{1}\right)(e)$, (the target of $\left.G_{1}\right)(e) \in \operatorname{dom} f$ and for every objects $e, v, w$ such that $e \in \operatorname{dom} g$ and $v, w \in \operatorname{dom} f$ holds if $e$ joins $v$ and $w$ in $G_{1}$, then $g(e)$ joins $f(v)$ and $f(w)$ in $G_{2}$.
Let us observe that every partial graph mapping from $G_{1}$ to $G_{2}$ is pair.
Let $F$ be a partial graph mapping from $G_{1}$ to $G_{2}$. We introduce the notation $F_{\mathbb{V}}$ as a synonym of $(F)_{\mathbf{1}}$ and $F_{\mathbb{E}}$ as a synonym of $(F)_{\mathbf{2}}$.

One can check that $\left\langle F_{\mathbb{V}}, F_{\mathbb{E}}\right\rangle$ reduces to $F$.
One can verify that $F_{\mathbb{V}}$ is function-like and relation-like as a set and $F_{\mathbb{E}}$ is function-like and relation-like as a set and $F_{\mathbb{V}}$ is (the vertices of $G_{1}$ )-defined and (the vertices of $G_{2}$ )-valued as a function and $F_{\mathbb{E}}$ is (the edges of $G_{1}$ )-defined and (the edges of $G_{2}$ )-valued as a function.

Note that the functor $F_{\mathbb{V}}$ yields a partial function from the vertices of $G_{1}$ to the vertices of $G_{2}$. Observe that the functor $F_{\mathbb{E}}$ yields a partial function from the edges of $G_{1}$ to the edges of $G_{2}$. Now we state the proposition:
(4) Let us consider graphs $G_{1}, G_{2}$, a partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and objects $e, v, w$. Suppose $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$. If $e$ joins $v$ and $w$ in $G_{1}$, then $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)(v)$ and $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$.
Let us consider graphs $G_{1}, G_{2}$, a partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an object $e$. Now we state the propositions:
(5) Suppose $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$. Then (the source of $\left.G_{1}\right)(e)$, (the target of $\left.G_{1}\right)(e) \in$ $\operatorname{dom}\left(F_{\mathbb{V}}\right)$.
(6) Suppose $e \in \operatorname{rng} F_{\mathbb{E}}$. Then (the source of $\left.G_{2}\right)(e)$, (the target of $\left.G_{2}\right)(e) \in$ $\operatorname{rng} F_{\mathbb{V}}$. The theorem is a consequence of (5) and (4).
(7) Let us consider graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then
(i) $\operatorname{dom}\left(F_{\mathbb{E}}\right) \subseteq G_{1}$.edgesBetween $\left(\operatorname{dom}\left(F_{\mathbb{V}}\right)\right)$, and
(ii) $\operatorname{rng} F_{\mathbb{E}} \subseteq G_{2}$.edgesBetween(rng $\left.F_{\mathbb{V}}\right)$.

Proof: For every object $e$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ holds $e \in G_{1}$.edgesBetween $\left(\operatorname{dom}\left(F_{\mathbb{V}}\right)\right)$. For every object $e$ such that $e \in \operatorname{rng} F_{\mathbb{E}}$ holds $e \in G_{2}$.edgesBetween $\left(\operatorname{rng} F_{\mathbb{V}}\right)$.
(8) Let us consider graphs $G_{1}, G_{2}$, a partial function $f$ from the vertices of $G_{1}$ to the vertices of $G_{2}$, and a partial function $g$ from the edges of $G_{1}$ to the edges of $G_{2}$. Suppose for every object $e$ such that $e \in \operatorname{dom} g$ holds (the source of $\left.G_{1}\right)(e)$, (the target of $\left.G_{1}\right)(e) \in \operatorname{dom} f$ and for every objects $e, v, w$ such that $e \in \operatorname{dom} g$ and $v, w \in \operatorname{dom} f$ holds if $e$ joins $v$ and $w$ in $G_{1}$, then $g(e)$ joins $f(v)$ and $f(w)$ in $G_{2}$. Then $\langle f, g\rangle$ is a partial graph mapping from $G_{1}$ to $G_{2}$.
Let us consider graphs $G_{1}, G_{2}, G_{3}, G_{4}$ and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(9) If $G_{1} \approx G_{3}$ and $G_{2} \approx G_{4}$, then $F$ is a partial graph mapping from $G_{3}$ to $G_{4}$. The theorem is a consequence of (5), (4), and (8).
(10) Suppose there exist sets $E_{1}, E_{2}$ such that $G_{3}$ is a graph given by reversing directions of the edges $E_{1}$ of $G_{1}$ and $G_{4}$ is a graph given by reversing directions of the edges $E_{2}$ of $G_{2}$. Then $F$ is a partial graph mapping from $G_{3}$ to $G_{4}$. The theorem is a consequence of (5), (4), and (8).
Let $G$ be a graph. The functor $\mathrm{id}_{G}$ yielding a partial graph mapping from $G$ to $G$ is defined by the term
(Def. 9) $\left\langle\mathrm{id}_{\alpha}, \mathrm{id}_{\beta}\right\rangle$, where $\alpha$ is the vertices of $G$ and $\beta$ is the edges of $G$.
Now we state the propositions:
(11) Let us consider graphs $G_{1}, G_{2}$. Suppose $G_{1} \approx G_{2}$. Then
(i) $\operatorname{id}_{G_{1}}=\operatorname{id}_{G_{2}}$, and
(ii) $\operatorname{id}_{G_{1}}$ is a partial graph mapping from $G_{1}$ to $G_{2}$.

The theorem is a consequence of (9).
(12) Let us consider a graph $G_{1}$, a set $E$, and a graph $G_{2}$ given by reversing directions of the edges $E$ of $G_{1}$. Then
(i) $\operatorname{id}_{G_{1}}=\operatorname{id}_{G_{2}}$, and
(ii) $\mathrm{id}_{G_{1}}$ is a partial graph mapping from $G_{1}$ to $G_{2}$.

Proof: There exist sets $E_{1}, E_{2}$ such that $G_{1}$ is a graph given by reversing directions of the edges $E_{1}$ of $G_{1}$ and $G_{2}$ is a graph given by reversing directions of the edges $E_{2}$ of $G_{1}$.
Let $G_{1}, G_{2}$ be graphs and $F$ be a partial graph mapping from $G_{1}$ to $G_{2}$. We say that $F$ is empty if and only if
(Def. 10) $\operatorname{dom}\left(F_{\mathbb{V}}\right)$ is empty.
We say that $F$ is total if and only if
(Def. 11) $\operatorname{dom}\left(F_{\mathbb{V}}\right)=$ the vertices of $G_{1}$ and $\operatorname{dom}\left(F_{\mathbb{E}}\right)=$ the edges of $G_{1}$.
We say that $F$ is onto if and only if
(Def. 12) $\quad \operatorname{rng} F_{\mathbb{V}}=$ the vertices of $G_{2}$ and $\operatorname{rng} F_{\mathbb{E}}=$ the edges of $G_{2}$.
We say that $F$ is one-to-one if and only if
(Def. 13) $F_{\mathbb{V}}$ is one-to-one and $F_{\mathbb{E}}$ is one-to-one.
We say that $F$ is directed if and only if
(Def. 14) for every objects $e, v, w$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ holds if $e$ joins $v$ to $w$ in $G_{1}$, then $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)(v)$ to $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$.
We say that $F$ is semi-continuous if and only if
(Def. 15) for every objects $e, v, w$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ holds if $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)(v)$ and $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$, then $e$ joins $v$ and $w$ in $G_{1}$.
We say that $F$ is continuous if and only if
(Def. 16) for every objects $\tilde{e}, v, w$ such that $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\tilde{e}$ joins $\left(F_{\mathbb{V}}\right)(v)$ and $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$ there exists an object $e$ such that $e$ joins $v$ and $w$ in $G_{1}$ and $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $\left(F_{\mathbb{E}}\right)(e)=\tilde{e}$.
We say that $F$ is semi-directed-continuous if and only if
(Def. 17) for every objects $e, v, w$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ holds if $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)(v)$ to $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$, then $e$ joins $v$ to $w$ in $G_{1}$.
We say that $F$ is directed-continuous if and only if
(Def. 18) for every objects $\tilde{e}, v, w$ such that $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\tilde{e}$ joins $\left(F_{\mathbb{V}}\right)(v)$ to $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$ there exists an object $e$ such that $e$ joins $v$ to $w$ in $G_{1}$ and $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $\left(F_{\mathbb{E}}\right)(e)=\tilde{e}$.

Let us consider graphs $G_{1}, G_{2}$ and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(13) $F$ is directed if and only if for every object $e$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ holds (the source of $\left.G_{2}\right)\left(\left(F_{\mathbb{E}}\right)(e)\right)=\left(F_{\mathbb{V}}\right)\left(\left(\right.\right.$ the source of $\left.\left.G_{1}\right)(e)\right)$ and (the target of $\left.G_{2}\right)\left(\left(F_{\mathbb{E}}\right)(e)\right)=\left(F_{\mathbb{V}}\right)\left(\left(\right.\right.$ the target of $\left.\left.G_{1}\right)(e)\right)$. The theorem is a consequence of (5).
(14) $\quad F$ is directed if and only if (the source of $\left.G_{2}\right) \cdot\left(F_{\mathbb{E}}\right)=\left(F_{\mathbb{V}}\right) \cdot(($ the source of $\left.G_{1}\right) \upharpoonright \operatorname{dom}\left(F_{\mathbb{E}}\right)$ ) and (the target of $\left.G_{2}\right) \cdot\left(F_{\mathbb{E}}\right)=\left(F_{\mathbb{V}}\right) \cdot(($ the target of $\left.\left.G_{1}\right) \upharpoonright \operatorname{dom}\left(F_{\mathbb{E}}\right)\right)$. The theorem is a consequence of (13) and (5).
(15) $F$ is semi-continuous if and only if for every objects $e, v, w$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ holds $e$ joins $v$ and $w$ in $G_{1} \operatorname{iff}\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)(v)$ and $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$.
(16) $F$ is semi-directed-continuous if and only if for every objects $e, v, w$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ holds $e$ joins $v$ to $w$ in $G_{1}$ iff $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)(v)$ to $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$.
Proof: If $F$ is semi-directed-continuous, then for every objects $e, v, w$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ holds $e$ joins $v$ to $w$ in $G_{1}$ iff $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)(v)$ to $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$.
Let $G_{1}, G_{2}$ be graphs. Note that there exists a partial graph mapping from $G_{1}$ to $G_{2}$ which is empty, one-to-one, directed-continuous, directed, continuous, semi-directed-continuous, and semi-continuous and there exists a partial graph mapping from $G_{1}$ to $G_{2}$ which is non empty, one-to-one, directed, semi-directedcontinuous, and semi-continuous.

Let $F$ be an empty partial graph mapping from $G_{1}$ to $G_{2}$. One can verify that $F_{\mathbb{V}}$ is empty as a set and $F_{\mathbb{E}}$ is empty as a set.

Let $F$ be a non empty partial graph mapping from $G_{1}$ to $G_{2}$. One can verify that $F_{\mathbb{V}}$ is non empty as a set.

Let $F$ be a one-to-one partial graph mapping from $G_{1}$ to $G_{2}$. One can verify that $F_{\mathbb{V}}$ is one-to-one as a function and $F_{\mathbb{E}}$ is one-to-one as a function.

Now we state the propositions:
(17) Let us consider graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F_{\mathbb{V}}$ is one-to-one, then $F$ is semi-continuous. The theorem is a consequence of (5) and (4).
(18) Let us consider graphs $G_{1}, G_{2}$, and a directed partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F_{\mathbb{V}}$ is one-to-one, then $F$ is semi-directed-continuous. The theorem is a consequence of (5).
(19) Let us consider graphs $G_{1}, G_{2}$, and a semi-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose rng $F_{\mathbb{E}}=$ the edges of $G_{2}$. Then $F$ is continuous.
(20) Let us consider graphs $G_{1}, G_{2}$, and a semi-directed-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose rng $F_{\mathbb{E}}=$ the edges of $G_{2}$. Then $F$ is directed-continuous.
(21) Let us consider graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F_{\mathbb{V}}$ is one-to-one and $\operatorname{rng} F_{\mathbb{E}}=$ the edges of $G_{2}$. Then $F$ is continuous. The theorem is a consequence of (17) and (19).
(22) Let us consider graphs $G_{1}, G_{2}$, and a directed partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F_{\mathbb{V}}$ is one-to-one and $\operatorname{rng} F_{\mathbb{E}}=$ the edges of $G_{2}$. Then $F$ is directed-continuous. The theorem is a consequence of (18) and (20).
(23) Let us consider graphs $G_{1}, G_{2}$, and a continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F_{\mathbb{E}}$ is one-to-one, then $F$ is semi-continuous.
Let us consider graphs $G_{1}, G_{2}$ and a directed-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(24) If $F_{\mathbb{E}}$ is one-to-one, then $F$ is semi-directed-continuous.
(25) If $F_{\mathbb{E}}$ is one-to-one, then $F$ is directed. The theorem is a consequence of (4).
(26) Let us consider graphs $G_{1}, G_{2}$, a semi-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and objects $v_{1}, v_{2}$. Suppose $v_{1}, v_{2} \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\left(F_{\mathbb{V}}\right)\left(v_{1}\right)=\left(F_{\mathbb{V}}\right)\left(v_{2}\right)$ and there exist objects $e, w$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)\left(v_{1}\right)$ and $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$. Then $v_{1}=v_{2}$.
(27) Let us consider graphs $G_{1}, G_{2}$, and a semi-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose for every object $v$ such that $v \in$ $\operatorname{dom}\left(F_{\mathbb{V}}\right)$ there exist objects $e, w$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)(v)$ and $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$. Then $F_{\mathbb{V}}$ is one-to-one. The theorem is a consequence of (26).
(28) Let us consider graphs $G_{1}, G_{2}$, a semi-directed-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and objects $v_{1}, v_{2}$. Suppose $v_{1}, v_{2} \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\left(F_{\mathbb{V}}\right)\left(v_{1}\right)=\left(F_{\mathbb{V}}\right)\left(v_{2}\right)$ and there exist objects $e$, $w$ such that $e \in$ $\operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)\left(v_{1}\right)$ to $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$. Then $v_{1}=v_{2}$.
(29) Let us consider graphs $G_{1}, G_{2}$, and a semi-directed-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose for every object $v$ such that $v \in$ $\operatorname{dom}\left(F_{\mathbb{V}}\right)$ there exist objects $e, w$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\left(F_{\mathbb{E}}\right)(e)$ joins $\left(F_{\mathbb{V}}\right)(v)$ to $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$. Then $F_{\mathbb{V}}$ is one-to-one. The theorem is a consequence of (28).
Let $G_{1}, G_{2}$ be graphs. One can verify that every partial graph mapping from
$G_{1}$ to $G_{2}$ which is one-to-one is also semi-continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is one-to-one and directed is also semi-directedcontinuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is one-to-one and onto is also continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is directed, one-to-one, and onto is also directed-continuous.

Every partial graph mapping from $G_{1}$ to $G_{2}$ which is semi-continuous and onto is also continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is semi-directed-continuous is also directed and semi-continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is semi-directed-continuous and onto is also directed-continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is directed-continuous is also continuous.

Every partial graph mapping from $G_{1}$ to $G_{2}$ which is directed-continuous and one-to-one is also directed and semi-directed-continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is empty is also one-to-one, directed-continuous, directed, and continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is total is also non empty and every partial graph mapping from $G_{1}$ to $G_{2}$ which is onto is also non empty.

Let $G$ be a graph. One can verify that $\mathrm{id}_{G}$ is total, non empty, onto, one-toone, and directed-continuous.

Let us consider graphs $G_{1}, G_{2}$, a partial function $f$ from the vertices of $G_{1}$ to the vertices of $G_{2}$, and a partial function $g$ from the edges of $G_{1}$ to the edges of $G_{2}$. Now we state the propositions:
(30) Suppose for every object $e$ such that $e \in \operatorname{dom} g$ holds (the source of $\left.G_{1}\right)(e)$, (the target of $\left.G_{1}\right)(e) \in \operatorname{dom} f$ and for every objects $e, v, w$ such that $e \in \operatorname{dom} g$ and $v, w \in \operatorname{dom} f$ holds if $e$ joins $v$ to $w$ in $G_{1}$, then $g(e)$ joins $f(v)$ to $f(w)$ in $G_{2}$. Then $\langle f, g\rangle$ is a directed partial graph mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (8).
(31) Suppose for every object $e$ such that $e \in \operatorname{dom} g$ holds (the source of $\left.G_{1}\right)(e)$, (the target of $\left.G_{1}\right)(e) \in \operatorname{dom} f$ and for every objects $e, v, w$ such that $e \in \operatorname{dom} g$ and $v, w \in \operatorname{dom} f$ holds $e$ joins $v$ and $w$ in $G_{1}$ iff $g(e)$ joins $f(v)$ and $f(w)$ in $G_{2}$. Then $\langle f, g\rangle$ is a semi-continuous partial graph mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (8).
(32) Suppose for every object $e$ such that $e \in \operatorname{dom} g$ holds (the source of $\left.G_{1}\right)(e)$, (the target of $\left.G_{1}\right)(e) \in \operatorname{dom} f$ and for every objects $e, v, w$ such that $e \in \operatorname{dom} g$ and $v, w \in \operatorname{dom} f$ holds $e$ joins $v$ to $w$ in $G_{1}$ iff $g(e)$ joins $f(v)$ to $f(w)$ in $G_{2}$. Then $\langle f, g\rangle$ is a semi-directed-continuous partial graph mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (8).
(33) Let us consider graphs $G_{1}, G_{2}$. Then $\langle\emptyset, \emptyset\rangle$ is an empty, one-to-one, directed-continuous partial graph mapping from $G_{1}$ to $G_{2}$.
(34) Let us consider graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F$ is total. Let us consider a vertex $v$ of $G_{1}$. Then $\left(F_{\mathbb{V}}\right)(v)$ is a vertex of $G_{2}$.
(35) Let us consider graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F$ is total. Then
(i) if $G_{2}$ is loopless, then $G_{1}$ is loopless, and
(ii) if $G_{2}$ is edgeless, then $G_{1}$ is edgeless.

The theorem is a consequence of (4).
(36) Let us consider graphs $G_{1}, G_{2}$, and a continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $\operatorname{rng} F_{\mathbb{V}}=$ the vertices of $G_{2}$. If $G_{1}$ is loopless, then $G_{2}$ is loopless.
Proof: For every object $v$, there exists no object $e$ such that $e$ joins $v$ and $v$ in $G_{2}$.
(37) Let us consider graphs $G_{1}, G_{2}$, and a semi-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F$ is onto, then if $G_{1}$ is loopless, then $G_{2}$ is loopless.
Let us consider graphs $G_{1}, G_{2}$ and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(38) If $\operatorname{rng} F_{\mathbb{E}}=$ the edges of $G_{2}$, then if $G_{1}$ is edgeless, then $G_{2}$ is edgeless.
(39) If $F$ is onto, then if $G_{1}$ is edgeless, then $G_{2}$ is edgeless.
(40) Let us consider a graph $G_{1}$, a non-multi graph $G_{2}$, and partial graph mappings $F_{1}, F_{2}$ from $G_{1}$ to $G_{2}$. Suppose $F_{1 \mathbb{V}}=F_{2 \mathbb{V}}$ and $\operatorname{dom}\left(F_{1 \mathbb{E}}\right)=$ $\operatorname{dom}\left(F_{2 \mathbb{E}}\right)$. Then $F_{1}=F_{2}$. The theorem is a consequence of (5) and (4).
(41) Let us consider a graph $G_{1}$, a non-directed-multi graph $G_{2}$, and directed partial graph mappings $F_{1}, F_{2}$ from $G_{1}$ to $G_{2}$. Suppose $F_{1 \mathbb{V}}=F_{2 \mathbb{V}}$ and $\operatorname{dom}\left(F_{1 \mathbb{E}}\right)=\operatorname{dom}\left(F_{2 \mathbb{E}}\right)$. Then $F_{1}=F_{2}$. The theorem is a consequence of (5).
(42) Let us consider a non-multi graph $G_{1}$, a graph $G_{2}$, and a semi-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then $F_{\mathbb{E}}$ is one-to-one. The theorem is a consequence of (5) and (4).
(43) Let us consider a non-multi graph $G_{1}$, a graph $G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F_{\mathbb{V}}$ is one-to-one, then $F_{\mathbb{E}}$ is one-to-one. The theorem is a consequence of (5) and (4).
(44) Let us consider a non-directed-multi graph $G_{1}$, a graph $G_{2}$, and a directed partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F_{\mathbb{V}}$ is one-to-one, then $F_{\mathbb{E}}$ is one-to-one. The theorem is a consequence of (5).
Let $G_{1}$ be a graph and $G_{2}$ be a loopless graph. Observe that every partial graph mapping from $G_{1}$ to $G_{2}$ which is directed and semi-continuous is also semi-
directed-continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is directed and continuous is also directed-continuous.

Let $G_{1}$ be a trivial graph and $G_{2}$ be a graph. Observe that every partial graph mapping from $G_{1}$ to $G_{2}$ is directed and every partial graph mapping from $G_{1}$ to $G_{2}$ which is semi-continuous is also semi-directed-continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is continuous is also directed-continuous.

Let $G_{1}$ be a trivial, non-directed-multi graph. Note that every partial graph mapping from $G_{1}$ to $G_{2}$ is one-to-one.

Let $G_{1}$ be a trivial, edgeless graph. Observe that every partial graph mapping from $G_{1}$ to $G_{2}$ which is non empty is also total.

Let $G_{1}$ be a graph and $G_{2}$ be a trivial, edgeless graph. Note that every partial graph mapping from $G_{1}$ to $G_{2}$ which is non empty is also onto and every partial graph mapping from $G_{1}$ to $G_{2}$ is semi-continuous and continuous.

Let $G_{1}, G_{2}$ be graphs and $F$ be a partial graph mapping from $G_{1}$ to $G_{2}$. We say that $F$ is weak subgraph embedding if and only if
(Def. 19) $F$ is total and one-to-one.
We say that $F$ is strong subgraph embedding if and only if
(Def. 20) $F$ is total, one-to-one, and continuous.
We say that $F$ is isomorphism if and only if
(Def. 21) $F$ is total, one-to-one, and onto.
We say that $F$ is directed-isomorphism if and only if
(Def. 22) $F$ is directed, total, one-to-one, and onto.
One can check that every partial graph mapping from $G_{1}$ to $G_{2}$ which is weak subgraph embedding is also total, non empty, one-to-one, and semi-continuous and every partial graph mapping from $G_{1}$ to $G_{2}$ which is total and one-to-one is also weak subgraph embedding and every partial graph mapping from $G_{1}$ to $G_{2}$ which is strong subgraph embedding is also total, non empty, one-to-one, continuous, and weak subgraph embedding and every partial graph mapping from $G_{1}$ to $G_{2}$ which is total, one-to-one, and continuous is also strong subgraph embedding.

Every partial graph mapping from $G_{1}$ to $G_{2}$ which is weak subgraph embedding and continuous is also strong subgraph embedding and every partial graph mapping from $G_{1}$ to $G_{2}$ which is isomorphism is also onto, semi-continuous, continuous, total, non empty, one-to-one, weak subgraph embedding, and strong subgraph embedding and every partial graph mapping from $G_{1}$ to $G_{2}$ which is total, one-to-one, onto, and continuous is also isomorphism and every partial graph mapping from $G_{1}$ to $G_{2}$ which is strong subgraph embedding and onto is also isomorphism.

Every partial graph mapping from $G_{1}$ to $G_{2}$ which is weak subgraph embedding, continuous, and onto is also isomorphism and every partial graph mapping from $G_{1}$ to $G_{2}$ which is directed-isomorphism is also directed, isomorphism, continuous, total, non empty, semi-directed-continuous, semi-continuous, one-to-one, weak subgraph embedding, and strong subgraph embedding and every partial graph mapping from $G_{1}$ to $G_{2}$ which is directed and isomorphism is also directed-continuous and directed-isomorphism.

Let $G$ be a graph. Let us note that $\operatorname{id}_{G}$ is weak subgraph embedding, strong subgraph embedding, isomorphism, and directed-isomorphism and there exists a partial graph mapping from $G$ to $G$ which is weak subgraph embedding, strong subgraph embedding, isomorphism, and directed-isomorphism.

Now we state the propositions:
(45) Let us consider graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F$ is weak subgraph embedding. Then
(i) $G_{1} \cdot \operatorname{order}() \subseteq G_{2} \cdot \operatorname{order}()$, and
(ii) $G_{1} \cdot \operatorname{size}() \subseteq G_{2} \cdot \operatorname{size}()$.
(46) Let us consider graphs $G_{1}, G_{2}$, a partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and subsets $X, Y$ of the vertices of $G_{1}$. Suppose $F$ is weak subgraph embedding. Then $\overline{\overline{G_{1}} \text {.edgesBetween }(X, Y)} \subseteq \overline{\overline{G_{2}} \text {.edgesBetween }\left(\left(F_{\mathbb{V}}\right)^{\circ} X,\left(F_{\mathbb{V}}\right)^{\circ} Y\right)}$. Proof: Set $f=F_{\mathbb{E}}\left\lceil G_{1}\right.$.edgesBetween $(X, Y)$. For every object $y$ such that $y \in \operatorname{rng} f$ holds $y \in G_{2}$.edgesBetween $\left(\left(F_{\mathbb{V}}\right)^{\circ} X,\left(F_{\mathbb{V}}\right)^{\circ} Y\right)$.
(47) Let us consider graphs $G_{1}, G_{2}$, a partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and a subset $X$ of the vertices of $G_{1}$. Suppose $F$ is weak subgraph embedding. Then $\overline{\overline{G_{1}} \text {.edgesBetween }(X)} \subseteq \overline{\overline{G_{2}} \text {. edgesBetween }\left(\left(F_{\mathbb{V}}\right)^{\circ} X\right)}$.
Proof: Set $f=F_{\mathbb{E}}\left\lceil G_{1}\right.$. edgesBetween $(X)$. For every object $y$ such that $y \in \operatorname{rng} f$ holds $y \in G_{2}$. edgesBetween $\left(\left(F_{\mathbb{V}}\right)^{\circ} X\right)$.
(48) Let us consider graphs $G_{1}, G_{2}$, a directed partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and subsets $X, Y$ of the vertices of $G_{1}$. Suppose $F$ is weak subgraph embedding. Then $\overline{\overline{G_{1}} \text {.edgesDBetween }(X, Y)} \subseteq$ $\overline{\overline{G_{2}} \text {.edgesDBetween }\left(\left(F_{\mathbb{V}}\right)^{\circ} X,\left(F_{\mathbb{V}}\right)^{\circ} Y\right)}$.
Proof: Set $f=F_{\mathbb{E}} \upharpoonright G_{1}$.edgesDBetween $(X, Y)$. For every object $y$ such that $y \in \operatorname{rng} f$ holds $y \in G_{2}$.edgesDBetween $\left(\left(F_{\mathbb{V}}\right)^{\circ} X,\left(F_{\mathbb{V}}\right)^{\circ} Y\right)$.
Let us consider graphs $G_{1}, G_{2}$ and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(49) Suppose $F$ is weak subgraph embedding. Then
(i) if $G_{2}$ is trivial, then $G_{1}$ is trivial, and
(ii) if $G_{2}$ is non-multi, then $G_{1}$ is non-multi, and
(iii) if $G_{2}$ is simple, then $G_{1}$ is simple, and
(iv) if $G_{2}$ is finite, then $G_{1}$ is finite.

Proof: If $G_{2}$ is non-multi, then $G_{1}$ is non-multi. $G_{1}$.order ()$\subseteq G_{2}$.order () and $G_{1}$.size ()$\subseteq G_{2} \cdot \operatorname{size}()$.
(50) Suppose $F$ is directed and weak subgraph embedding. Then
(i) if $G_{2}$ is non-directed-multi, then $G_{1}$ is non-directed-multi, and
(ii) if $G_{2}$ is directed-simple, then $G_{1}$ is directed-simple.

Proof: If $G_{2}$ is non-directed-multi, then $G_{1}$ is non-directed-multi. $G_{1}$ is loopless and non-directed-multi.
(51) Let us consider finite graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F$ is strong subgraph embedding and $G_{1}$.order ()$=$ $G_{2} \cdot \operatorname{order}()$ and $G_{1} \cdot \operatorname{size}()=G_{2} \cdot \operatorname{size}()$. Then $F$ is isomorphism.
(52) Let us consider graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F$ is strong subgraph embedding. If $G_{2}$ is complete, then $G_{1}$ is complete.
Let $G_{1}, G_{2}$ be graphs. We say that $G_{2}$ is $G_{1}$-isomorphic if and only if
(Def. 23) there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that $F$ is isomorphism.
We say that $G_{2}$ is $G_{1}$-directed-isomorphic if and only if
(Def. 24) there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that $F$ is directed-isomorphism.
Let $G$ be a graph. Note that every graph which is $G$-directed-isomorphic is also $G$-isomorphic and there exists a graph which is $G$-directed-isomorphic and $G$-isomorphic.

Now we state the proposition:
(53) Every graph is directed-isomorphic and isomorphic to itself.

Let $G_{1}$ be a graph and $G_{2}$ be a $G_{1}$-isomorphic graph. Let us observe that there exists a partial graph mapping from $G_{1}$ to $G_{2}$ which is isomorphism, strong subgraph embedding, weak subgraph embedding, total, non empty, one-to-one, onto, semi-continuous, and continuous.

An isomorphism between $G_{1}$ and $G_{2}$ is an isomorphism partial graph mapping from $G_{1}$ to $G_{2}$. Let $G_{2}$ be a $G_{1}$-directed-isomorphic graph. One can verify that there exists a partial graph mapping from $G_{1}$ to $G_{2}$ which is isomorphism, strong subgraph embedding, weak subgraph embedding, total, non empty, one-to-one, onto, directed, semi-directed-continuous, and directed-continuous.

A directed isomorphism of $G_{1}$ and $G_{2}$ is a directed-isomorphism partial graph mapping from $G_{1}$ to $G_{2}$. Let $G_{1}, G_{2}$ be w-graphs and $F$ be a partial graph mapping from $G_{1}$ to $G_{2}$. We say that $F$ preserves weight if and only if
(Def. 25) (the weight of $\left.G_{2}\right) \cdot\left(F_{\mathbb{E}}\right)=\left(\right.$ the weight of $\left.G_{1}\right) \upharpoonright \operatorname{dom}\left(F_{\mathbb{E}}\right)$.
Let $G_{1}, G_{2}$ be e-graphs. We say that $F$ preserves elabel if and only if
(Def. 26) (the elabel of $\left.G_{2}\right) \cdot\left(F_{\mathbb{E}}\right)=\left(\right.$ the elabel of $\left.G_{1}\right) \upharpoonright \operatorname{dom}\left(F_{\mathbb{E}}\right)$.
Let $G_{1}, G_{2}$ be v-graphs. We say that $F$ preserves vlabel if and only if
(Def. 27) (the vlabel of $\left.G_{2}\right) \cdot\left(F_{\mathbb{V}}\right)=\left(\right.$ the vlabel of $\left.G_{1}\right) \upharpoonright \operatorname{dom}\left(F_{\mathbb{V}}\right)$.
Let $G_{1}, G_{2}$ be ordered graphs. We say that $F$ preserves ordering if and only if
(Def. 28) (the ordering of $\left.G_{2}\right) \cdot\left(F_{\mathbb{V}}\right)=$ the ordering of $G_{1} \upharpoonright \operatorname{dom}\left(F_{\mathbb{V}}\right)$.
Let $G$ be a w-graph. Note that $\mathrm{id}_{G}$ preserves weight.
Let $G$ be an e-graph. Let us note that $\mathrm{id}_{G}$ preserves elabel.
Let $G$ be a v-graph. Observe that $\mathrm{id}_{G}$ preserves vlabel.
Let $G$ be an ordered graph. Let us observe that $\mathrm{id}_{G}$ preserves ordering.
Let $G_{1}, G_{2}$ be graphs and $F$ be a partial graph mapping from $G_{1}$ to $G_{2}$. The functor dom $F$ yielding a subgraph of $G_{1}$ induced by $\operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\operatorname{dom}\left(F_{\mathbb{E}}\right)$ is defined by the term
(Def. 29) the plain subgraph of $G_{1}$ induced by $\operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\operatorname{dom}\left(F_{\mathbb{E}}\right)$.
The functor $\operatorname{rng} F$ yielding a subgraph of $G_{2}$ induced by $\operatorname{rng} F_{\mathbb{V}}$ and $\operatorname{rng} F_{\mathbb{E}}$ is defined by the term
(Def. 30) the plain subgraph of $G_{2}$ induced by rng $F_{\mathbb{V}}$ and $\operatorname{rng} F_{\mathbb{E}}$.
One can verify that $\operatorname{dom} F$ is plain and $\operatorname{rng} F$ is plain.
Let us consider graphs $G_{1}, G_{2}$ and a non empty partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(i) the vertices of $\operatorname{dom} F=\operatorname{dom}\left(F_{\mathbb{V}}\right)$, and
(ii) the edges of $\operatorname{dom} F=\operatorname{dom}\left(F_{\mathbb{E}}\right)$, and
(iii) the vertices of $\operatorname{rng} F=\operatorname{rng} F_{\mathbb{V}}$, and
(iv) the edges of $\operatorname{rng} F=\operatorname{rng} F_{\mathbb{E}}$.

The theorem is a consequence of (7).
(55) $F$ is total if and only if $\operatorname{dom} F \approx G_{1}$. The theorem is a consequence of (54).
(56) $\quad F$ is onto if and only if $\operatorname{rng} F \approx G_{2}$. The theorem is a consequence of (54).

Let $G_{1}, G_{2}$ be graphs, $H$ be a subgraph of $G_{1}$, and $F$ be a partial graph mapping from $G_{1}$ to $G_{2}$. The functor $F \upharpoonright H$ yielding a partial graph mapping from $H$ to $G_{2}$ is defined by the term
(Def. 31) $\left\langle F_{\mathbb{V}} \upharpoonright(\right.$ the vertices of $H), F_{\mathbb{E}} \upharpoonright($ the edges of $\left.H)\right\rangle$.
Now we state the propositions:
(57) Let us consider graphs $G_{1}, G_{2}$, a subgraph $H$ of $G_{1}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then
(i) if $F$ is empty, then $F \upharpoonright H$ is empty, and
(ii) if $F$ is total, then $F \upharpoonright H$ is total, and
(iii) if $F$ is one-to-one, then $F \upharpoonright H$ is one-to-one, and
(iv) if $F$ is weak subgraph embedding, then $F \upharpoonright H$ is weak subgraph embedding, and
(v) if $F$ is semi-continuous, then $F \upharpoonright H$ is semi-continuous, and
(vi) if $F$ is not onto, then $F \upharpoonright H$ is not onto, and
(vii) if $F$ is directed, then $F \upharpoonright H$ is directed, and
(viii) if $F$ is semi-directed-continuous, then $F \upharpoonright H$ is semi-directed-continuous.

Proof: If $F$ is total, then $F \upharpoonright H$ is total. If $F$ is semi-continuous, then $F \upharpoonright H$ is semi-continuous. If $F \upharpoonright H$ is onto, then $F$ is onto. If $F$ is directed, then $F \upharpoonright H$ is directed. If $F$ is semi-directed-continuous, then $F \upharpoonright H$ is semi-directed-continuous.
(58) Let us consider graphs $G_{1}, G_{2}$, a set $V$, a subgraph $H$ of $G_{1}$ induced by $V$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then
(i) if $F$ is continuous, then $F \upharpoonright H$ is continuous, and
(ii) if $F$ is strong subgraph embedding, then $F \upharpoonright H$ is strong subgraph embedding, and
(iii) if $F$ is directed-continuous, then $F \upharpoonright H$ is directed-continuous.

The theorem is a consequence of (57).
Let $G_{1}, G_{2}$ be graphs, $H$ be a subgraph of $G_{1}$, and $F$ be an empty partial graph mapping from $G_{1}$ to $G_{2}$. Let us observe that $F \upharpoonright H$ is empty.

Let $F$ be a one-to-one partial graph mapping from $G_{1}$ to $G_{2}$. Let us observe that $F \upharpoonright H$ is one-to-one.

Let $F$ be a semi-continuous partial graph mapping from $G_{1}$ to $G_{2}$. Observe that $F \upharpoonright H$ is semi-continuous.

Let $V$ be a set, $H$ be a subgraph of $G_{1}$ induced by $V$, and $F$ be a continuous partial graph mapping from $G_{1}$ to $G_{2}$. Let us observe that $F \upharpoonright H$ is continuous.

Let $H$ be a subgraph of $G_{1}$ and $F$ be a directed partial graph mapping from $G_{1}$ to $G_{2}$. Note that $F \upharpoonright H$ is directed.

Let $F$ be a semi-directed-continuous partial graph mapping from $G_{1}$ to $G_{2}$. One can check that $F \upharpoonright H$ is semi-directed-continuous.

Let $V$ be a set, $H$ be a subgraph of $G_{1}$ induced by $V$, and $F$ be a directedcontinuous partial graph mapping from $G_{1}$ to $G_{2}$. Note that $F \upharpoonright H$ is directedcontinuous.

Let $F$ be a non empty partial graph mapping from $G_{1}$ to $G_{2}$. One can verify that $F \upharpoonright \operatorname{dom} F$ is total.

Now we state the propositions:
(59) Let us consider graphs $G_{1}, G_{2}$, a subgraph $H$ of $G_{1}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then
(i) $\operatorname{dom}\left((F \upharpoonright H)_{\mathbb{V}}\right)=\operatorname{dom}\left(F_{\mathbb{V}}\right) \cap$ (the vertices of $\left.H\right)$, and
(ii) $\operatorname{dom}\left((F \upharpoonright H)_{\mathbb{E}}\right)=\operatorname{dom}\left(F_{\mathbb{E}}\right) \cap($ the edges of $H)$.
(60) Let us consider w-graphs $G_{1}, G_{2}$, a w-subgraph $H$ of $G_{1}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F$ preserves weight, then $F \upharpoonright H$ preserves weight. The theorem is a consequence of (59).
(61) Let us consider e-graphs $G_{1}, G_{2}$, an e-subgraph $H$ of $G_{1}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F$ preserves elabel, then $F \upharpoonright H$ preserves elabel. The theorem is a consequence of (59).
(62) Let us consider v-graphs $G_{1}, G_{2}$, a v-subgraph $H$ of $G_{1}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F$ preserves vlabel, then $F \upharpoonright H$ preserves vlabel. The theorem is a consequence of (59).
Let $G_{1}, G_{2}$ be graphs, $H$ be a subgraph of $G_{2}$, and $F$ be a partial graph mapping from $G_{1}$ to $G_{2}$. The functor $H \upharpoonleft F$ yielding a partial graph mapping from $G_{1}$ to $H$ is defined by the term
(Def. 32) $\left\langle(\right.$ the vertices of $H) 1 F_{\mathbb{V}}$, (the edges of $\left.\left.H\right) 1 F_{\mathbb{E}}\right\rangle$.
Now we state the proposition:
(63) Let us consider graphs $G_{1}, G_{2}$, a subgraph $H$ of $G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then
(i) if $F$ is empty, then $H \upharpoonleft F$ is empty, and
(ii) if $F$ is one-to-one, then $H \upharpoonleft F$ is one-to-one, and
(iii) if $F$ is onto, then $H \upharpoonleft F$ is onto, and
(iv) if $F$ is not total, then $H \upharpoonleft F$ is not total, and
(v) if $F$ is directed, then $H \upharpoonleft F$ is directed, and
(vi) if $F$ is semi-continuous, then $H \upharpoonleft F$ is semi-continuous, and
(vii) if $F$ is continuous, then $H \upharpoonleft F$ is continuous, and
(viii) if $F$ is semi-directed-continuous, then $H \upharpoonleft F$ is semi-directed-continuous, and
(ix) if $F$ is directed-continuous, then $H \upharpoonleft F$ is directed-continuous.

Proof: If $F$ is onto, then $H \upharpoonleft F$ is onto. If $F$ is directed, then $H \upharpoonleft F$ is directed. If $F$ is semi-continuous, then $H \upharpoonleft F$ is semi-continuous. If $F$ is continuous, then $H \upharpoonleft F$ is continuous. If $F$ is semi-directed-continuous, then
$H \upharpoonleft F$ is semi-directed-continuous. If $F$ is directed-continuous, then $H \upharpoonleft F$ is directed-continuous.
Let $G_{1}, G_{2}$ be graphs, $H$ be a subgraph of $G_{2}$, and $F$ be an empty partial graph mapping from $G_{1}$ to $G_{2}$. One can verify that $H \upharpoonleft F$ is empty.

Let $F$ be a one-to-one partial graph mapping from $G_{1}$ to $G_{2}$. Let us observe that $H \upharpoonleft F$ is one-to-one.

Let $F$ be a semi-continuous partial graph mapping from $G_{1}$ to $G_{2}$. Observe that $H \upharpoonleft F$ is semi-continuous.

Let $F$ be a continuous partial graph mapping from $G_{1}$ to $G_{2}$. Let us note that $H \upharpoonleft F$ is continuous.

Let $F$ be a directed partial graph mapping from $G_{1}$ to $G_{2}$. Note that $H \upharpoonleft F$ is directed.

Let $F$ be a semi-directed-continuous partial graph mapping from $G_{1}$ to $G_{2}$. One can check that $H \upharpoonleft F$ is semi-directed-continuous.

Let $F$ be a directed-continuous partial graph mapping from $G_{1}$ to $G_{2}$. One can verify that $H \upharpoonleft F$ is directed-continuous.

Let $F$ be a non empty partial graph mapping from $G_{1}$ to $G_{2}$. Observe that $\operatorname{rng} F \upharpoonleft F$ is onto.

Now we state the propositions:
(64) Let us consider graphs $G_{1}, G_{2}$, a subgraph $H$ of $G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then
(i) $\operatorname{rng}(H \upharpoonleft F)_{\mathbb{V}}=\operatorname{rng} F_{\mathbb{V}} \cap$ (the vertices of $H$ ), and
(ii) $\operatorname{rng}(H \upharpoonleft F)_{\mathbb{E}}=\operatorname{rng} F_{\mathbb{E}} \cap($ the edges of $H)$.
(65) Let us consider w-graphs $G_{1}, G_{2}$, a w-subgraph $H$ of $G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F$ preserves weight, then $H \upharpoonleft F$ preserves weight.
(66) Let us consider e-graphs $G_{1}, G_{2}$, an e-subgraph $H$ of $G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F$ preserves elabel, then $H \upharpoonleft F$ preserves elabel.
(67) Let us consider v-graphs $G_{1}, G_{2}$, a v-subgraph $H$ of $G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. If $F$ preserves vlabel, then $H \upharpoonleft F$ preserves vlabel.
(68) Let us consider graphs $G_{1}, G_{2}$, a partial graph mapping $F$ from $G_{1}$ to $G_{2}$, a subgraph $H_{1}$ of $G_{1}$, and a subgraph $H_{2}$ of $G_{2}$. Then $\left(H_{2} \mid F\right) \upharpoonright H_{1}=$ $H_{2} \upharpoonleft\left(F \upharpoonright H_{1}\right)$.
Let $G_{1}, G_{2}$ be graphs and $F$ be a one-to-one partial graph mapping from $G_{1}$ to $G_{2}$. The functor $F^{-1}$ yielding a partial graph mapping from $G_{2}$ to $G_{1}$ is defined by the term
(Def. 33) $\left\langle\left(F_{\mathbb{V}}\right)^{-1},\left(F_{\mathbb{E}}\right)^{-1}\right\rangle$.
One can verify that $F^{-1}$ is one-to-one and semi-continuous.
Let $F$ be an empty, one-to-one partial graph mapping from $G_{1}$ to $G_{2}$. One can verify that $F^{-1}$ is empty.

Let $F$ be a non empty, one-to-one partial graph mapping from $G_{1}$ to $G_{2}$. Let us note that $F^{-1}$ is non empty.

Let $F$ be a one-to-one, semi-directed-continuous partial graph mapping from $G_{1}$ to $G_{2}$. One can verify that $F^{-1}$ is semi-directed-continuous.

Let us consider graphs $G_{1}, G_{2}$ and a one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(i) $F^{-1}{ }_{\mathbb{V}}=\left(F_{\mathbb{V}}\right)^{-1}$, and
(ii) $F^{-1}{ }_{\mathbb{E}}=\left(F_{\mathbb{E}}\right)^{-1}$.
(70) $\quad\left(F^{-1}\right)^{-1}=F$.
(71) $F$ is total if and only if $F^{-1}$ is onto.
(72) $F$ is onto if and only if $F^{-1}$ is total.
(73) If $F$ is total and continuous, then $F^{-1}$ is continuous.
(74) If $F$ is total and directed-continuous, then $F^{-1}$ is directed-continuous.
(75) $F$ is isomorphism if and only if $F^{-1}$ is isomorphism.
(76) Let us consider w-graphs $G_{1}, G_{2}$, and a one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then $F$ preserves weight if and only if $F^{-1}$ preserves weight. The theorem is a consequence of (2) and (70).
(77) Let us consider e-graphs $G_{1}, G_{2}$, and a one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then $F$ preserves elabel if and only if $F^{-1}$ preserves elabel. The theorem is a consequence of (2) and (70).
(78) Let us consider v-graphs $G_{1}, G_{2}$, and a one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then $F$ preserves vlabel if and only if $F^{-1}$ preserves vlabel. The theorem is a consequence of (2) and (70).
(79) Let us consider graphs $G_{1}, G_{2}$, and a one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F$ is onto. Let us consider a vertex $v$ of $G_{2}$. Then $\left(F^{-1} \mathbb{V}\right)(v)$ is a vertex of $G_{1}$.
(80) Let us consider a graph $G$. Then $\left(\mathrm{id}_{G}\right)^{-1}=\mathrm{id}_{G}$.
(81) Let us consider graphs $G_{1}, G_{2}$, and a non empty, one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then
(i) $\operatorname{dom} F=\operatorname{rng} F^{-1}$, and
(ii) $\operatorname{rng} F=\operatorname{dom}\left(F^{-1}\right)$.

The theorem is a consequence of (54).
(82) Let us consider graphs $G_{1}, G_{2}$, a one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and a subgraph $H$ of $G_{1}$. Then $(F \upharpoonright H)^{-1}=H \upharpoonleft F^{-1}$.
(83) Let us consider graphs $G_{1}, G_{2}$, a one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and a subgraph $H$ of $G_{2}$. Then $(H \upharpoonleft F)^{-1}=F^{-1} \upharpoonright H$. The theorem is a consequence of (82) and (70).
(84) Let us consider graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F$ is isomorphism. Then
(i) $G_{1} \cdot \operatorname{order}()=G_{2} \cdot \operatorname{order}()$, and
(ii) $G_{1} \cdot \operatorname{size}()=G_{2} \cdot \operatorname{size}()$.

The theorem is a consequence of (45) and (75).
(85) Let us consider finite graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F$ is strong subgraph embedding. If there exists a partial graph mapping $F_{0}$ from $G_{1}$ to $G_{2}$ such that $F_{0}$ is isomorphism, then $F$ is isomorphism. The theorem is a consequence of (84) and (51).
(86) Let us consider graphs $G_{1}, G_{2}$, a partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and subsets $X, Y$ of the vertices of $G_{1}$. Suppose $F$ is isomorphism. Then $\overline{\overline{G_{1}} \text {. edgesBetween }(X, Y)}=\overline{\overline{G_{2}} \text {.edgesBetween }\left(\left(F_{\mathbb{V}}\right)^{\circ} X,\left(F_{\mathbb{V}}\right)^{\circ} Y\right)}$. The theorem is a consequence of (46) and (75).
(87) Let us consider graphs $G_{1}, G_{2}$, a partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and a subset $X$ of the vertices of $G_{1}$. Suppose $F$ is isomorphism. Then $\overline{\overline{G_{1} \text {.edgesBetween }(X)}}=\overline{\overline{G_{2}} \text {.edgesBetween }\left(\left(F_{\mathbb{V}}\right)^{\circ} X\right)}$. The theorem is a consequence of (47) and (75).
(88) Let us consider graphs $G_{1}, G_{2}$, a directed partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and subsets $X, Y$ of the vertices of $G_{1}$. Suppose $F$ is isomorphism. Then $\overline{\overline{G_{1}} \text {.edgesDBetween }(X, Y)}=$
$\overline{G_{2}}$.edgesDBetween $\left(\left(F_{\mathbb{V}}\right)^{\circ} X,\left(F_{\mathbb{V}}\right)^{\circ} Y\right)$. The theorem is a consequence of (48) and (75).

Let us consider graphs $G_{1}, G_{2}$ and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(89) Suppose $F$ is isomorphism. Then
(i) $G_{1}$ is trivial iff $G_{2}$ is trivial, and
(ii) $G_{1}$ is loopless iff $G_{2}$ is loopless, and
(iii) $G_{1}$ is edgeless iff $G_{2}$ is edgeless, and
(iv) $G_{1}$ is non-multi iff $G_{2}$ is non-multi, and
(v) $G_{1}$ is simple iff $G_{2}$ is simple, and
(vi) $G_{1}$ is finite iff $G_{2}$ is finite, and
(vii) $G_{1}$ is complete iff $G_{2}$ is complete.

The theorem is a consequence of (75), (35), (49), and (52).
(90) Suppose $F$ is directed-continuous and isomorphism. Then
(i) $G_{1}$ is non-directed-multi iff $G_{2}$ is non-directed-multi, and
(ii) $G_{1}$ is directed-simple iff $G_{2}$ is directed-simple.

The theorem is a consequence of (74), (75), and (50).
(91) Let us consider graphs $G_{1}, G_{2}$, and a non empty, one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then $\overline{\overline{\operatorname{dom} F \text {.loops }()}}=\overline{\overline{\operatorname{rng} F \text {.loops }()}}$. The theorem is a consequence of (81).
Let us consider graphs $G_{1}, G_{2}$ and a one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(92) If $F$ is total, then $\overline{\overline{G_{1} \cdot \operatorname{loops}()}} \subseteq \overline{\overline{G_{2} \cdot \text { loops }()}}$. The theorem is a consequence of (55).
(93) If $F$ is onto, then $\overline{\overline{G_{2} \cdot \operatorname{loops}()}} \subseteq \overline{\overline{G_{1} \cdot \operatorname{loops}()}}$. The theorem is a consequence of (72) and (92).
(94) If $F$ is isomorphism, then $\overline{\overline{G_{1} \cdot \operatorname{loops}()}}=\overline{\overline{G_{2} \cdot \operatorname{loops}()}}$. The theorem is a consequence of (92) and (93).
(95) Let us consider a graph $G_{1}$, and a $G_{1}$-isomorphic graph $G_{2}$. Then $G_{1}$ is $G_{2}$-isomorphic. The theorem is a consequence of (75).
(96) Let us consider a graph $G_{1}$, and a $G_{1}$-directed-isomorphic graph $G_{2}$. Then $G_{1}$ is $G_{2}$-directed-isomorphic. The theorem is a consequence of (71) and (72).
Let us consider a graph $G_{1}$, a $G_{1}$-isomorphic graph $G_{2}$, a $G_{2}$-isomorphic graph $G_{3}$, and an isomorphism $F$ between $G_{1}$ and $G_{2}$. Now we state the propositions:
(97) Suppose there exists a set $E$ such that $G_{3}$ is a graph given by reversing directions of the edges $E$ of $G_{1}$. Then $F^{-1}$ is an isomorphism between $G_{2}$ and $G_{3}$.
Proof: Reconsider $F_{2}=F^{-1}$ as a partial graph mapping from $G_{2}$ to $G_{3}$. $F_{2}$ is total. $F_{2}$ is onto.
(98) If $G_{1} \approx G_{3}$, then $F^{-1}$ is an isomorphism between $G_{2}$ and $G_{3}$. The theorem is a consequence of (97).
(99) Let us consider a graph $G_{1}$, a $G_{1}$-directed-isomorphic graph $G_{2}$, a $G_{2^{-}}$ directed-isomorphic graph $G_{3}$, and a directed isomorphism $F$ of $G_{1}$ and $G_{2}$. Suppose $G_{1} \approx G_{3}$. Then $F^{-1}$ is a directed isomorphism of $G_{2}$ and $G_{3}$. Proof: Reconsider $F_{2}=F^{-1}$ as a partial graph mapping from $G_{2}$ to $G_{3}$. $F_{2}$ is total. $F_{2}$ is onto.

Let $G_{1}, G_{2}, G_{3}$ be graphs, $F_{1}$ be a partial graph mapping from $G_{1}$ to $G_{2}$, and $F_{2}$ be a partial graph mapping from $G_{2}$ to $G_{3}$. The functor $F_{2} \cdot F_{1}$ yielding a partial graph mapping from $G_{1}$ to $G_{3}$ is defined by the term
$($ Def. 34$)\left\langle\left(F_{2 \mathbb{V}}\right) \cdot\left(F_{1 \mathbb{V}}\right),\left(F_{2 \mathbb{E}}\right) \cdot\left(F_{1 \mathbb{E}}\right)\right\rangle$.
Let us consider graphs $G_{1}, G_{2}, G_{3}$, a partial graph mapping $F_{1}$ from $G_{1}$ to $G_{2}$, and a partial graph mapping $F_{2}$ from $G_{2}$ to $G_{3}$. Now we state the propositions:
(100) (i) $F_{2} \cdot F_{1 \mathbb{V}}=\left(F_{2 \mathbb{V}}\right) \cdot\left(F_{1 \mathbb{V}}\right)$, and
(ii) $F_{2} \cdot F_{1 \mathbb{E}}=\left(F_{2 \mathbb{E}}\right) \cdot\left(F_{1 \mathbb{E}}\right)$.
(101) If $F_{2} \cdot F_{1}$ is onto, then $F_{2}$ is onto.
(102) If $F_{2} \cdot F_{1}$ is total, then $F_{1}$ is total.

Let $G_{1}, G_{2}, G_{3}$ be graphs, $F_{1}$ be a one-to-one partial graph mapping from $G_{1}$ to $G_{2}$, and $F_{2}$ be a one-to-one partial graph mapping from $G_{2}$ to $G_{3}$. Observe that $F_{2} \cdot F_{1}$ is one-to-one.

Let $F_{1}$ be a semi-continuous partial graph mapping from $G_{1}$ to $G_{2}$ and $F_{2}$ be a semi-continuous partial graph mapping from $G_{2}$ to $G_{3}$. Let us observe that $F_{2} \cdot F_{1}$ is semi-continuous.

Let $F_{1}$ be a continuous partial graph mapping from $G_{1}$ to $G_{2}$ and $F_{2}$ be a continuous partial graph mapping from $G_{2}$ to $G_{3}$. One can check that $F_{2} \cdot F_{1}$ is continuous.

Let $F_{1}$ be a directed partial graph mapping from $G_{1}$ to $G_{2}$ and $F_{2}$ be a directed partial graph mapping from $G_{2}$ to $G_{3}$. One can check that $F_{2} \cdot F_{1}$ is directed.

Let $F_{1}$ be a semi-directed-continuous partial graph mapping from $G_{1}$ to $G_{2}$ and $F_{2}$ be a semi-directed-continuous partial graph mapping from $G_{2}$ to $G_{3}$. Note that $F_{2} \cdot F_{1}$ is semi-directed-continuous.

Let $F_{1}$ be a directed-continuous partial graph mapping from $G_{1}$ to $G_{2}$ and $F_{2}$ be a directed-continuous partial graph mapping from $G_{2}$ to $G_{3}$. Observe that $F_{2} \cdot F_{1}$ is directed-continuous.

Let $F_{1}$ be an empty partial graph mapping from $G_{1}$ to $G_{2}$ and $F_{2}$ be a partial graph mapping from $G_{2}$ to $G_{3}$. Observe that $F_{2} \cdot F_{1}$ is empty.

Let $F_{1}$ be a partial graph mapping from $G_{1}$ to $G_{2}$ and $F_{2}$ be an empty partial graph mapping from $G_{2}$ to $G_{3}$. Let us observe that $F_{2} \cdot F_{1}$ is empty.

Let us consider graphs $G_{1}, G_{2}, G_{3}$, a partial graph mapping $F_{1}$ from $G_{1}$ to $G_{2}$, and a partial graph mapping $F_{2}$ from $G_{2}$ to $G_{3}$. Now we state the propositions:
(103) Suppose $F_{1}$ is total and $\operatorname{rng} F_{1 \mathbb{V}} \subseteq \operatorname{dom}\left(F_{2 \mathbb{V}}\right)$ and $\operatorname{rng} F_{1 \mathbb{E}} \subseteq \operatorname{dom}\left(F_{2 \mathbb{E}}\right)$. Then $F_{2} \cdot F_{1}$ is total.
(104) If $F_{1}$ is total and $F_{2}$ is total, then $F_{2} \cdot F_{1}$ is total. The theorem is a consequence of (103).
(105) Suppose $F_{2}$ is onto and $\operatorname{dom}\left(F_{2 \mathbb{V}}\right) \subseteq \operatorname{rng} F_{1 \mathbb{V}}$ and $\operatorname{dom}\left(F_{2 \mathbb{E}}\right) \subseteq \operatorname{rng} F_{1 \mathbb{E}}$. Then $F_{2} \cdot F_{1}$ is onto.
(106) If $F_{1}$ is onto and $F_{2}$ is onto, then $F_{2} \cdot F_{1}$ is onto. The theorem is a consequence of (105).
(107) If $F_{1}$ is weak subgraph embedding and $F_{2}$ is weak subgraph embedding, then $F_{2} \cdot F_{1}$ is weak subgraph embedding.
(108) If $F_{1}$ is strong subgraph embedding and $F_{2}$ is strong subgraph embedding, then $F_{2} \cdot F_{1}$ is strong subgraph embedding.
(109) If $F_{1}$ is isomorphism and $F_{2}$ is isomorphism, then $F_{2} \cdot F_{1}$ is isomorphism.
(110) If $F_{1}$ is directed-isomorphism and $F_{2}$ is directed-isomorphism, then $F_{2} \cdot F_{1}$ is directed-isomorphism. The theorem is a consequence of (109).
(111) Let us consider w-graphs $G_{1}, G_{2}, G_{3}$, a partial graph mapping $F_{1}$ from $G_{1}$ to $G_{2}$, and a partial graph mapping $F_{2}$ from $G_{2}$ to $G_{3}$. Suppose $F_{1}$ preserves weight and $F_{2}$ preserves weight. Then $F_{2} \cdot F_{1}$ preserves weight. The theorem is a consequence of (1).
(112) Let us consider e-graphs $G_{1}, G_{2}, G_{3}$, a partial graph mapping $F_{1}$ from $G_{1}$ to $G_{2}$, and a partial graph mapping $F_{2}$ from $G_{2}$ to $G_{3}$. Suppose $F_{1}$ preserves elabel and $F_{2}$ preserves elabel. Then $F_{2} \cdot F_{1}$ preserves elabel. The theorem is a consequence of (1).
(113) Let us consider v-graphs $G_{1}, G_{2}, G_{3}$, a partial graph mapping $F_{1}$ from $G_{1}$ to $G_{2}$, and a partial graph mapping $F_{2}$ from $G_{2}$ to $G_{3}$. Suppose $F_{1}$ preserves vlabel and $F_{2}$ preserves vlabel. Then $F_{2} \cdot F_{1}$ preserves vlabel. The theorem is a consequence of (1).
(114) Let us consider graphs $G_{1}, G_{2}, G_{3}, G_{4}$, a partial graph mapping $F_{1}$ from $G_{1}$ to $G_{2}$, a partial graph mapping $F_{2}$ from $G_{2}$ to $G_{3}$, and a partial graph mapping $F_{3}$ from $G_{3}$ to $G_{4}$. Then $F_{3} \cdot\left(F_{2} \cdot F_{1}\right)=\left(F_{3} \cdot F_{2}\right) \cdot F_{1}$.
(115) Let us consider graphs $G_{1}, G_{2}$, and a one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Suppose $F$ is isomorphism. Then
(i) $F \cdot\left(F^{-1}\right)=\operatorname{id}_{G_{2}}$, and
(ii) $F^{-1} \cdot F=\operatorname{id}_{G_{1}}$.
(116) Let us consider graphs $G_{1}, G_{2}$, and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then
(i) $F \cdot\left(\mathrm{id}_{G_{1}}\right)=F$, and
(ii) $\operatorname{id}_{G_{2}} \cdot F=F$.
(117) Let us consider graphs $G_{1}, G_{2}, G_{3}$, a partial graph mapping $F_{1}$ from $G_{1}$ to $G_{2}$, a partial graph mapping $F_{2}$ from $G_{2}$ to $G_{3}$, and a subgraph $H$ of $G_{1}$. Then $F_{2} \cdot\left(F_{1} \upharpoonright H\right)=\left(F_{2} \cdot F_{1}\right) \upharpoonright H$.
(118) Let us consider graphs $G_{1}, G_{2}, G_{3}$, a partial graph mapping $F_{1}$ from $G_{1}$ to $G_{2}$, a partial graph mapping $F_{2}$ from $G_{2}$ to $G_{3}$, and a subgraph $H$ of $G_{3}$. Then $\left(H \upharpoonleft F_{2}\right) \cdot F_{1}=H \upharpoonleft\left(F_{2} \cdot F_{1}\right)$.
Let $G_{1}$ be a graph and $G_{2}$ be a $G_{1}$-isomorphic graph. Let us note that every graph which is $G_{2}$-isomorphic is also $G_{1}$-isomorphic.

Let $G_{2}$ be a $G_{1}$-directed-isomorphic graph. Note that every graph which is $G_{2}$-directed-isomorphic is also $G_{1}$-directed-isomorphic.

## 4. Walks Induced by Graph Mappings

Let $G_{1}, G_{2}$ be graphs, $F$ be a partial graph mapping from $G_{1}$ to $G_{2}$, and $W_{1}$ be a walk of $G_{1}$. We say that $W_{1}$ is $F$-defined if and only if
$\left(\right.$ Def. 35) $\quad W_{1} \cdot \operatorname{vertices}() \subseteq \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $W_{1} \cdot \operatorname{edges}() \subseteq \operatorname{dom}\left(F_{\mathbb{E}}\right)$.
Let $W_{2}$ be a walk of $G_{2}$. We say that $W_{2}$ is $F$-valued if and only if
$\left(\right.$ Def. 36) $\quad W_{2} \cdot \operatorname{vertices}() \subseteq \operatorname{rng} F_{\mathbb{V}}$ and $W_{2} \cdot \operatorname{edges}() \subseteq \operatorname{rng} F_{\mathbb{E}}$.
Let $F$ be a non empty partial graph mapping from $G_{1}$ to $G_{2}$. Observe that there exists a walk of $G_{1}$ which is $F$-defined and trivial and there exists a walk of $G_{2}$ which is $F$-valued and trivial.

Let us consider graphs $G_{1}, G_{2}$ and an empty partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(119) Every walk of $G_{1}$ is not $F$-defined.
(120) Every walk of $G_{2}$ is not $F$-valued.
(121) Let us consider graphs $G_{1}, G_{2}$, a partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and a walk $W_{1}$ of $G_{1}$. If $F$ is total, then $W_{1}$ is $F$-defined.
(122) Let us consider graphs $G_{1}, G_{2}$, a partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and a walk $W_{2}$ of $G_{2}$. If $F$ is onto, then $W_{2}$ is $F$-valued.
Let $G_{1}, G_{2}$ be graphs and $F$ be a one-to-one partial graph mapping from $G_{1}$ to $G_{2}$. Observe that every walk of $G_{1}$ which is $F$-defined is also $\left(F^{-1}\right)$-valued and every walk of $G_{2}$ which is $F$-valued is also $\left(F^{-1}\right)$-defined.

Let $F$ be a non empty partial graph mapping from $G_{1}$ to $G_{2}$ and $W_{1}$ be an $F$-defined walk of $G_{1}$. The functor $F^{\circ} W_{1}$ yielding a walk of $G_{2}$ is defined by $\left(\right.$ Def. 37) $\left(F_{\mathbb{V}}\right) \cdot\left(W_{1} \cdot \operatorname{vertexSeq}()\right)=i t \cdot v e r t e x S e q()$ and $\left(F_{\mathbb{E}}\right) \cdot\left(W_{1} \cdot \operatorname{edgeSeq}()\right)=$ it.edgeSeq().
Note that $F^{\circ} W_{1}$ is $F$-valued.

Let us observe that the functor $F^{\circ} W_{1}$ yields an $F$-valued walk of $G_{2}$. Let $F$ be a non empty, one-to-one partial graph mapping from $G_{1}$ to $G_{2}$ and $W_{2}$ be an $F$-valued walk of $G_{2}$. The functor $F^{-1}\left(W_{2}\right)$ yielding an $F$-defined walk of $G_{1}$ is defined by the term
(Def. 38) $\left(F^{-1}\right)^{\circ} W_{2}$.
Let us observe that the functor $F^{-1}\left(W_{2}\right)$ is defined by
$\left(\right.$ Def. 39) $\left(F_{\mathbb{V}}\right) \cdot($ it.vertexSeq ()$)=W_{2} \cdot \operatorname{vertexSeq}()$ and $\left(F_{\mathbb{E}}\right) \cdot($ it.edgeSeq ()$)=$ $W_{2}$.edgeSeq().
Now we state the propositions:
(123) Let us consider graphs $G_{1}, G_{2}$, a non empty, one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an $F$-defined walk $W_{1}$ of $G_{1}$. Then $F^{-1}\left(F^{\circ} W_{1}\right)=W_{1}$.
(124) Let us consider graphs $G_{1}, G_{2}$, a non empty, one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an $F$-valued walk $W_{2}$ of $G_{2}$. Then $F^{\circ}\left(F^{-1}\left(W_{2}\right)\right)=W_{2}$.
(125) Let us consider graphs $G_{1}, G_{2}$, a non empty partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an $F$-defined walk $W_{1}$ of $G_{1}$. Then
(i) $W_{1} \cdot \operatorname{length}()=\left(F^{\circ} W_{1}\right) \cdot \operatorname{length}()$, and
(ii) len $W_{1}=\operatorname{len}\left(F^{\circ} W_{1}\right)$.
(126) Let us consider graphs $G_{1}, G_{2}$, a non empty, one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an $F$-valued walk $W_{2}$ of $G_{2}$. Then
(i) $W_{2} \cdot$ length ()$=\left(F^{-1}\left(W_{2}\right)\right) \cdot$ length () , and
(ii) len $W_{2}=\operatorname{len}\left(F^{-1}\left(W_{2}\right)\right)$.
(127) Let us consider graphs $G_{1}, G_{2}$, a non empty partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an $F$-defined walk $W_{1}$ of $G_{1}$. Then
(i) $\left(F_{\mathbb{V}}\right)\left(W_{1} \cdot\right.$ first ()$)=\left(F^{\circ} W_{1}\right) \cdot \operatorname{first}()$, and
(ii) $\left(F_{\mathbb{V}}\right)\left(W_{1} \cdot \operatorname{last}()\right)=\left(F^{\circ} W_{1}\right) \cdot \operatorname{last}()$.
(128) Let us consider graphs $G_{1}, G_{2}$, a non empty, one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an $F$-valued walk $W_{2}$ of $G_{2}$. Then
(i) $\left(\left(F_{\mathbb{V}}\right)^{-1}\right)\left(W_{2} \cdot\right.$.first ()$)=\left(F^{-1}\left(W_{2}\right)\right)$.first () , and
(ii) $\left(\left(F_{\mathbb{V}}\right)^{-1}\right)\left(W_{2} \cdot \operatorname{last}()\right)=\left(F^{-1}\left(W_{2}\right)\right) \cdot \operatorname{last}()$.
(129) Let us consider graphs $G_{1}, G_{2}$, a non empty partial graph mapping $F$ from $G_{1}$ to $G_{2}$, an $F$-defined walk $W_{1}$ of $G_{1}$, and an odd element $n$ of $\mathbb{N}$. If $n \leqslant \operatorname{len} W_{1}$, then $\left(F_{\mathbb{V}}\right)\left(W_{1}(n)\right)=\left(F^{\circ} W_{1}\right)(n)$. The theorem is a consequence of (125).
(130) Let us consider graphs $G_{1}, G_{2}$, a non empty partial graph mapping $F$ from $G_{1}$ to $G_{2}$, an $F$-defined walk $W_{1}$ of $G_{1}$, and an even element $n$ of $\mathbb{N}$. Suppose $1 \leqslant n \leqslant$ len $W_{1}$. Then $\left(F_{\mathbb{E}}\right)\left(W_{1}(n)\right)=\left(F^{\circ} W_{1}\right)(n)$. The theorem is a consequence of (125).
Let us consider graphs $G_{1}, G_{2}$, a non empty partial graph mapping $F$ from $G_{1}$ to $G_{2}$, an $F$-defined walk $W_{1}$ of $G_{1}$, and objects $v, w$. Now we state the propositions:
(131) If $W_{1}$ is walk from $v$ to $w$, then $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$.
(132) If $W_{1}$ is walk from $v$ to $w$, then $F^{\circ} W_{1}$ is walk from $\left(F_{\mathbb{V}}\right)(v)$ to $\left(F_{\mathbb{V}}\right)(w)$. The theorem is a consequence of (129) and (125).
(133) Let us consider graphs $G_{1}, G_{2}$, a non empty, one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$, an $F$-defined walk $W_{1}$ of $G_{1}$, and objects $v$, $w$. Then $W_{1}$ is walk from $v$ to $w$ if and only if $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $F^{\circ} W_{1}$ is walk from $\left(F_{\mathbb{V}}\right)(v)$ to $\left(F_{\mathbb{V}}\right)(w)$. The theorem is a consequence of (131), (132), and (123).
(134) Let us consider graphs $G_{1}, G_{2}$, a non empty, one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an $F$-defined walk $W_{1}$ of $G_{1}$. Suppose $\left(F_{\mathbb{V}}\right)\left(W_{1} \cdot \operatorname{first}()\right)=\left(F_{\mathbb{V}}\right)\left(W_{1} \cdot \operatorname{last}()\right)$. Then $W_{1} \cdot \operatorname{first}()=W_{1} \cdot \operatorname{last}()$. The theorem is a consequence of (4).
Let us consider graphs $G_{1}, G_{2}$, a non empty partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an $F$-defined walk $W_{1}$ of $G_{1}$. Now we state the propositions:
(135) $\quad\left(F^{\circ} W_{1}\right) \cdot \operatorname{vertices}()=\left(F_{\mathbb{V}}\right)^{\circ}\left(W_{1} \cdot \operatorname{vertices}()\right)$.

Proof: For every object $y, y \in \operatorname{rng}\left(F_{\mathbb{V}}\right) \cdot\left(W_{1} \cdot\right.$ vertexSeq( $)$ ) iff $y \in$ $\left(F_{\mathbb{V}}\right)^{\circ}\left(W_{1}\right.$.vertices ()$)$.
(136) $\quad\left(F^{\circ} W_{1}\right) \cdot \operatorname{edges}()=\left(F_{\mathbb{E}}\right)^{\circ}\left(W_{1} \cdot \operatorname{edges}()\right)$.

Proof: For every object $y, y \in \operatorname{rng}\left(F_{\mathbb{E}}\right) \cdot\left(W_{1}\right.$.edgeSeq()) iff $y \in$ $\left(F_{\mathbb{E}}\right)^{\circ}\left(W_{1}\right.$. $\left.\operatorname{edges}()\right)$.
(137) (i) if $W_{1}$ is trivial, then $F^{\circ} W_{1}$ is trivial, and
(ii) if $W_{1}$ is closed, then $F^{\circ} W_{1}$ is closed, and
(iii) if $F^{\circ} W_{1}$ is trail-like, then $W_{1}$ is trail-like, and
(iv) if $F^{\circ} W_{1}$ is path-like, then $W_{1}$ is path-like.

Proof: If $F^{\circ} W_{1}$ is trail-like, then $W_{1}$ is trail-like. For every odd elements $m, n$ of $\mathbb{N}$ such that $m<n \leqslant$ len $W_{1}$ holds if $W_{1}(m)=W_{1}(n)$, then $m=1$ and $n=\operatorname{len} W_{1}$.
(138) Let us consider graphs $G_{1}, G_{2}$, a non empty, one-to-one partial graph mapping $F$ from $G_{1}$ to $G_{2}$, and an $F$-defined walk $W_{1}$ of $G_{1}$. Then
(i) $W_{1}$ is trivial iff $F^{\circ} W_{1}$ is trivial, and
(ii) $W_{1}$ is closed iff $F^{\circ} W_{1}$ is closed, and
(iii) $W_{1}$ is trail-like iff $F^{\circ} W_{1}$ is trail-like, and
(iv) $W_{1}$ is path-like iff $F^{\circ} W_{1}$ is path-like, and
(v) $W_{1}$ is circuit-like iff $F^{\circ} W_{1}$ is circuit-like, and
(vi) $W_{1}$ is cycle-like iff $F^{\circ} W_{1}$ is cycle-like.

The theorem is a consequence of (123) and (137).
Let us consider graphs $G_{1}, G_{2}$ and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(139) If $F$ is strong subgraph embedding, then if $G_{2}$ is acyclic, then $G_{1}$ is acyclic. The theorem is a consequence of (121) and (138).
(140) Suppose $F$ is isomorphism. Then
(i) $G_{1}$ is acyclic iff $G_{2}$ is acyclic, and
(ii) $G_{1}$ is chordal iff $G_{2}$ is chordal, and
(iii) $G_{1}$ is connected iff $G_{2}$ is connected.

Proof: $F^{-1}$ is isomorphism and semi-continuous. For every vertices $u, v$ of $G_{1}$, there exists a walk $W_{1}$ of $G_{1}$ such that $W_{1}$ is walk from $u$ to $v$.

## 5. Graph Mappings and Graph Modes

Let us consider graphs $G_{1}, G_{2}$, sets $E_{1}, E_{2}$, a graph $G_{3}$ given by reversing directions of the edges $E_{1}$ of $G_{1}$, a graph $G_{4}$ given by reversing directions of the edges $E_{2}$ of $G_{2}$, and a partial graph mapping $F_{0}$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(141) There exists a partial graph mapping $F$ from $G_{3}$ to $G_{4}$ such that
(i) $F=F_{0}$, and
(ii) if $F_{0}$ is not empty, then $F$ is not empty, and
(iii) if $F_{0}$ is total, then $F$ is total, and
(iv) if $F_{0}$ is onto, then $F$ is onto, and
(v) if $F_{0}$ is one-to-one, then $F$ is one-to-one, and
(vi) if $F_{0}$ is semi-continuous, then $F$ is semi-continuous, and
(vii) if $F_{0}$ is continuous, then $F$ is continuous.

Proof: Reconsider $F=F_{0}$ as a partial graph mapping from $G_{3}$ to $G_{4}$. If $F_{0}$ is semi-continuous, then $F$ is semi-continuous. If $F_{0}$ is continuous, then $F$ is continuous by [13, (9)].
(142) There exists a partial graph mapping $F$ from $G_{3}$ to $G_{4}$ such that
(i) $F=F_{0}$, and
(ii) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(iii) if $F_{0}$ is strong subgraph embedding, then $F$ is strong subgraph embedding, and
(iv) if $F_{0}$ is isomorphism, then $F$ is isomorphism.

The theorem is a consequence of (141).
(143) Let us consider a graph $G_{1}$, a $G_{1}$-isomorphic graph $G_{2}$, sets $E_{1}, E_{2}$, and a graph $G_{3}$ given by reversing directions of the edges $E_{1}$ of $G_{1}$. Then every graph given by reversing directions of the edges $E_{2}$ of $G_{2}$ is $G_{3}$-isomorphic. The theorem is a consequence of (142).
Let us consider graphs $G_{3}, G_{4}$, sets $V_{1}, V_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by the vertices from $V_{1}$, a supergraph $G_{2}$ of $G_{4}$ extended by the vertices from $V_{2}$, a partial graph mapping $F_{0}$ from $G_{3}$ to $G_{4}$, and a one-to-one function $f$. Now we state the propositions:
(144) Suppose dom $f=V_{1} \backslash\left(\right.$ the vertices of $\left.G_{3}\right)$ and $\operatorname{rng} f=V_{2} \backslash$ (the vertices of $G_{4}$ ). Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+\cdot f, F_{0 \mathbb{E}}\right\rangle$, and
(ii) if $F_{0}$ is not empty, then $F$ is not empty, and
(iii) if $F_{0}$ is total, then $F$ is total, and
(iv) if $F_{0}$ is onto, then $F$ is onto, and
(v) if $F_{0}$ is one-to-one, then $F$ is one-to-one, and
(vi) if $F_{0}$ is directed, then $F$ is directed, and
(vii) if $F_{0}$ is semi-continuous, then $F$ is semi-continuous, and
(viii) if $F_{0}$ is continuous, then $F$ is continuous, and
(ix) if $F_{0}$ is semi-directed-continuous, then $F$ is semi-directed-continuous, and
(x) if $F_{0}$ is directed-continuous, then $F$ is directed-continuous.

Proof: Set $h=F_{0 \mathbb{V}}+f$. Reconsider $g=F_{0 \mathbb{E}}$ as a partial function from the edges of $G_{1}$ to the edges of $G_{2}$. Reconsider $F=\langle h, g\rangle$ as a partial graph mapping from $G_{1}$ to $G_{2}$. If $F_{0}$ is total, then $F$ is total. If $F_{0}$ is onto, then $F$ is onto. If $F_{0}$ is directed, then $F$ is directed. If $F_{0}$ is semi-continuous, then $F$ is semi-continuous. If $F_{0}$ is continuous, then $F$ is continuous. If $F_{0}$ is semi-directed-continuous, then $F$ is semi-directed-continuous. If $F_{0}$ is directed-continuous, then $F$ is directed-continuous.
(145) Suppose dom $f=V_{1} \backslash\left(\right.$ the vertices of $\left.G_{3}\right)$ and $\operatorname{rng} f=V_{2} \backslash$ (the vertices of $G_{4}$ ). Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+f, F_{0 \mathbb{E}}\right\rangle$, and
(ii) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(iii) if $F_{0}$ is strong subgraph embedding, then $F$ is strong subgraph embedding, and
(iv) if $F_{0}$ is isomorphism, then $F$ is isomorphism, and
(v) if $F_{0}$ is directed-isomorphism, then $F$ is directed-isomorphism.

The theorem is a consequence of (144).
(146) Let us consider a graph $G_{3}$, a $G_{3}$-isomorphic graph $G_{4}$, sets $V_{1}, V_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by the vertices from $V_{1}$, and a supergraph $G_{2}$ of $G_{4}$ extended by the vertices from $V_{2}$. Suppose $\overline{\overline{V_{1} \backslash \alpha}}=\overline{\overline{V_{2} \backslash \beta}}$. Then $G_{2}$ is $G_{1}$-isomorphic, where $\alpha$ is the vertices of $G_{3}$ and $\beta$ is the vertices of $G_{4}$. The theorem is a consequence of (145).
(147) Let us consider a graph $G_{3}$, a $G_{3}$-directed-isomorphic graph $G_{4}$, sets $V_{1}, V_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by the vertices from $V_{1}$, and a supergraph $G_{2}$ of $G_{4}$ extended by the vertices from $V_{2}$. Suppose $\overline{\overline{V_{1} \backslash \alpha}}=$ $\overline{\overline{V_{2} \backslash \beta}}$. Then $G_{2}$ is $G_{1}$-directed-isomorphic, where $\alpha$ is the vertices of $G_{3}$ and $\beta$ is the vertices of $G_{4}$. The theorem is a consequence of (145).
Let us consider graphs $G_{3}, G_{4}$, objects $v_{1}, v_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by $v_{1}$, a supergraph $G_{2}$ of $G_{4}$ extended by $v_{2}$, and a partial graph mapping $F_{0}$ from $G_{3}$ to $G_{4}$. Now we state the propositions:
(148) Suppose $v_{1} \notin$ the vertices of $G_{3}$ and $v_{2} \notin$ the vertices of $G_{4}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}\right\rangle$, and
(ii) if $F_{0}$ is total, then $F$ is total, and
(iii) if $F_{0}$ is onto, then $F$ is onto, and
(iv) if $F_{0}$ is one-to-one, then $F$ is one-to-one, and
(v) if $F_{0}$ is directed, then $F$ is directed, and
(vi) if $F_{0}$ is semi-continuous, then $F$ is semi-continuous, and
(vii) if $F_{0}$ is continuous, then $F$ is continuous, and
(viii) if $F_{0}$ is semi-directed-continuous, then $F$ is semi-directed-continuous, and
(ix) if $F_{0}$ is directed-continuous, then $F$ is directed-continuous.

The theorem is a consequence of (144).
(149) Suppose $v_{1} \notin$ the vertices of $G_{3}$ and $v_{2} \notin$ the vertices of $G_{4}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}\right\rangle$, and
(ii) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(iii) if $F_{0}$ is strong subgraph embedding, then $F$ is strong subgraph embedding, and
(iv) if $F_{0}$ is isomorphism, then $F$ is isomorphism, and
(v) if $F_{0}$ is directed-isomorphism, then $F$ is directed-isomorphism.

The theorem is a consequence of (148).
(150) Let us consider a graph $G_{3}$, a $G_{3}$-isomorphic graph $G_{4}$, objects $v_{1}, v_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by $v_{1}$, and a supergraph $G_{2}$ of $G_{4}$ extended by $v_{2}$. Suppose $v_{1} \in$ the vertices of $G_{3}$ iff $v_{2} \in$ the vertices of $G_{4}$. Then $G_{2}$ is $G_{1}$-isomorphic. The theorem is a consequence of (146).
(151) Let us consider a graph $G_{3}$, a $G_{3}$-directed-isomorphic graph $G_{4}$, objects $v_{1}, v_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by $v_{1}$, and a supergraph $G_{2}$ of $G_{4}$ extended by $v_{2}$. Suppose $v_{1} \in$ the vertices of $G_{3}$ iff $v_{2} \in$ the vertices of $G_{4}$. Then $G_{2}$ is $G_{1}$-directed-isomorphic. The theorem is a consequence of (147).

Let us consider graphs $G_{3}, G_{4}$, vertices $v_{1}, v_{3}$ of $G_{3}$, vertices $v_{2}, v_{4}$ of $G_{4}$, objects $e_{1}, e_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by $e_{1}$ between vertices $v_{1}$ and $v_{3}$, a supergraph $G_{2}$ of $G_{4}$ extended by $e_{2}$ between vertices $v_{2}$ and $v_{4}$, and a partial graph mapping $F_{0}$ from $G_{3}$ to $G_{4}$. Now we state the propositions:
(152) Suppose $e_{1} \notin$ the edges of $G_{3}$ and $e_{2} \notin$ the edges of $G_{4}$ and $v_{1}, v_{3} \in$ $\operatorname{dom}\left(F_{0 \mathbb{V}}\right)$ and $\left(\left(F_{0 \mathbb{V}}\right)\left(v_{1}\right)=v_{2}\right.$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$ or $\left(F_{0 \mathbb{V}}\right)\left(v_{1}\right)=v_{4}$ and $\left.\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{2}\right)$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}, F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$, and
(ii) if $F_{0}$ is total, then $F$ is total, and
(iii) if $F_{0}$ is onto, then $F$ is onto, and
(iv) if $F_{0}$ is one-to-one, then $F$ is one-to-one.

The theorem is a consequence of (5), (4), and (8).
(153) Suppose $e_{1} \notin$ the edges of $G_{3}$ and $e_{2} \notin$ the edges of $G_{4}$ and $v_{1}, v_{3} \in$ $\operatorname{dom}\left(F_{0 \mathbb{V}}\right)$ and $\left(\left(F_{0 \mathbb{V}}\right)\left(v_{1}\right)=v_{2}\right.$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$ or $\left(F_{0 \mathbb{V}}\right)\left(v_{1}\right)=v_{4}$ and
$\left.\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{2}\right)$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}, F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$, and
(ii) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(iii) if $F_{0}$ is isomorphism, then $F$ is isomorphism.

The theorem is a consequence of (152).
(154) Suppose $e_{1} \notin$ the edges of $G_{3}$ and $e_{2} \notin$ the edges of $G_{4}$ and $v_{1}, v_{3} \in$ $\operatorname{dom}\left(F_{0 \mathbb{V}}\right)$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{1}\right)=v_{2}$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}, F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$, and
(ii) if $F_{0}$ is directed, then $F$ is directed, and
(iii) if $F_{0}$ is directed-isomorphism, then $F$ is directed-isomorphism.

Proof: Consider $F$ being a partial graph mapping from $G_{1}$ to $G_{2}$ such that $F=\left\langle F_{0 \mathbb{V}}, F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$ and if $F_{0}$ is total, then $F$ is total and if $F_{0}$ is onto, then $F$ is onto and if $F_{0}$ is one-to-one, then $F$ is one-to-one. If $F_{0}$ is directed, then $F$ is directed by [15, (16)], [12, (71),(70),(106)].
Let us consider graphs $G_{3}, G_{4}$, a vertex $v_{3}$ of $G_{3}$, a vertex $v_{4}$ of $G_{4}$, objects $e_{1}, e_{2}, v_{1}, v_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by $v_{1}, v_{3}$ and $e_{1}$ between them, a supergraph $G_{2}$ of $G_{4}$ extended by $v_{2}, v_{4}$ and $e_{2}$ between them, and a partial graph mapping $F_{0}$ from $G_{3}$ to $G_{4}$. Now we state the propositions:
(155) Suppose $e_{1} \notin$ the edges of $G_{3}$ and $e_{2} \notin$ the edges of $G_{4}$ and $v_{1} \notin$ the vertices of $G_{3}$ and $v_{2} \notin$ the vertices of $G_{4}$ and $v_{3} \in \operatorname{dom}\left(F_{0 \mathbb{V}}\right)$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$, and
(ii) if $F_{0}$ is total, then $F$ is total, and
(iii) if $F_{0}$ is onto, then $F$ is onto, and
(iv) if $F_{0}$ is one-to-one, then $F$ is one-to-one, and
(v) if $F_{0}$ is directed, then $F$ is directed.

Proof: Consider $G_{5}$ being a supergraph of $G_{3}$ extended by $v_{1}$ such that $G_{1}$ is a supergraph of $G_{5}$ extended by $e_{1}$ between vertices $v_{1}$ and $v_{3}$. Consider $G_{6}$ being a supergraph of $G_{4}$ extended by $v_{2}$ such that $G_{2}$ is a supergraph of $G_{6}$ extended by $e_{2}$ between vertices $v_{2}$ and $v_{4}$.

Consider $F_{1}$ being a partial graph mapping from $G_{5}$ to $G_{6}$ such that $F_{1}=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}\right\rangle$ and if $F_{0}$ is total, then $F_{1}$ is total and if $F_{0}$
is onto, then $F_{1}$ is onto and if $F_{0}$ is one-to-one, then $F_{1}$ is one-to-one and if $F_{0}$ is directed, then $F_{1}$ is directed and if $F_{0}$ is semi-continuous, then $F_{1}$ is semi-continuous and if $F_{0}$ is continuous, then $F_{1}$ is continuous and if $F_{0}$ is semi-directed-continuous, then $F_{1}$ is semi-directed-continuous and if $F_{0}$ is directed-continuous, then $F_{1}$ is directed-continuous. $v_{1}, v_{3} \in \operatorname{dom}\left(F_{1 \mathbb{V}}\right)$ and $\left(F_{1 \mathbb{V}}\right)\left(v_{1}\right)=v_{2}$ and $\left(F_{1 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$.

Consider $F_{2}$ being a partial graph mapping from $G_{1}$ to $G_{2}$ such that $F_{2}=\left\langle F_{1 \mathbb{V}}, F_{1 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$ and if $F_{1}$ is total, then $F_{2}$ is total and if $F_{1}$ is onto, then $F_{2}$ is onto and if $F_{1}$ is one-to-one, then $F_{2}$ is one-toone. Consider $F_{3}$ being a partial graph mapping from $G_{1}$ to $G_{2}$ such that $F_{3}=\left\langle F_{1 \mathbb{V}}, F_{1 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$ and if $F_{1}$ is directed, then $F_{3}$ is directed and if $F_{1}$ is directed-isomorphism, then $F_{3}$ is directed-isomorphism.
(156) Suppose $e_{1} \notin$ the edges of $G_{3}$ and $e_{2} \notin$ the edges of $G_{4}$ and $v_{1} \notin$ the vertices of $G_{3}$ and $v_{2} \notin$ the vertices of $G_{4}$ and $v_{3} \in \operatorname{dom}\left(F_{0 \mathbb{V}}\right)$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$, and
(ii) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(iii) if $F_{0}$ is isomorphism, then $F$ is isomorphism, and
(iv) if $F_{0}$ is directed-isomorphism, then $F$ is directed-isomorphism.

The theorem is a consequence of (155).
Let us consider graphs $G_{3}, G_{4}$, a vertex $v_{3}$ of $G_{3}$, a vertex $v_{4}$ of $G_{4}$, objects $e_{1}, e_{2}, v_{1}, v_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by $v_{3}, v_{1}$ and $e_{1}$ between them, a supergraph $G_{2}$ of $G_{4}$ extended by $v_{4}, v_{2}$ and $e_{2}$ between them, and a partial graph mapping $F_{0}$ from $G_{3}$ to $G_{4}$. Now we state the propositions:
(157) Suppose $e_{1} \notin$ the edges of $G_{3}$ and $e_{2} \notin$ the edges of $G_{4}$ and $v_{1} \notin$ the vertices of $G_{3}$ and $v_{2} \notin$ the vertices of $G_{4}$ and $v_{3} \in \operatorname{dom}\left(F_{0 \mathbb{V}}\right)$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$, and
(ii) if $F_{0}$ is total, then $F$ is total, and
(iii) if $F_{0}$ is onto, then $F$ is onto, and
(iv) if $F_{0}$ is one-to-one, then $F$ is one-to-one, and
(v) if $F_{0}$ is directed, then $F$ is directed.

Proof: Consider $G_{5}$ being a supergraph of $G_{3}$ extended by $v_{1}$ such that $G_{1}$ is a supergraph of $G_{5}$ extended by $e_{1}$ between vertices $v_{3}$ and $v_{1}$.

Consider $G_{6}$ being a supergraph of $G_{4}$ extended by $v_{2}$ such that $G_{2}$ is a supergraph of $G_{6}$ extended by $e_{2}$ between vertices $v_{4}$ and $v_{2}$.

Consider $F_{1}$ being a partial graph mapping from $G_{5}$ to $G_{6}$ such that $F_{1}=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}\right\rangle$ and if $F_{0}$ is total, then $F_{1}$ is total and if $F_{0}$ is onto, then $F_{1}$ is onto and if $F_{0}$ is one-to-one, then $F_{1}$ is one-to-one and if $F_{0}$ is directed, then $F_{1}$ is directed and if $F_{0}$ is semi-continuous, then $F_{1}$ is semi-continuous and if $F_{0}$ is continuous, then $F_{1}$ is continuous and if $F_{0}$ is semi-directed-continuous, then $F_{1}$ is semi-directed-continuous and if $F_{0}$ is directed-continuous, then $F_{1}$ is directed-continuous. $v_{1}, v_{3} \in \operatorname{dom}\left(F_{1 \mathbb{V}}\right)$ and $\left(F_{1 \mathbb{V}}\right)\left(v_{1}\right)=v_{2}$ and $\left(F_{1 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$.

Consider $F_{2}$ being a partial graph mapping from $G_{1}$ to $G_{2}$ such that $F_{2}=\left\langle F_{1 \mathbb{V}}, F_{1 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$ and if $F_{1}$ is total, then $F_{2}$ is total and if $F_{1}$ is onto, then $F_{2}$ is onto and if $F_{1}$ is one-to-one, then $F_{2}$ is one-toone. Consider $F_{3}$ being a partial graph mapping from $G_{1}$ to $G_{2}$ such that $F_{3}=\left\langle F_{1 \mathbb{V}}, F_{1 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$ and if $F_{1}$ is directed, then $F_{3}$ is directed and if $F_{1}$ is directed-isomorphism, then $F_{3}$ is directed-isomorphism.
(158) Suppose $e_{1} \notin$ the edges of $G_{3}$ and $e_{2} \notin$ the edges of $G_{4}$ and $v_{1} \notin$ the vertices of $G_{3}$ and $v_{2} \notin$ the vertices of $G_{4}$ and $v_{3} \in \operatorname{dom}\left(F_{0 \mathbb{V}}\right)$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$, and
(ii) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(iii) if $F_{0}$ is isomorphism, then $F$ is isomorphism, and
(iv) if $F_{0}$ is directed-isomorphism, then $F$ is directed-isomorphism.

The theorem is a consequence of (157).
(159) Let us consider graphs $G_{3}, G_{4}$, a vertex $v_{3}$ of $G_{3}$, a vertex $v_{4}$ of $G_{4}$, objects $e_{1}, e_{2}, v_{1}, v_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by $v_{1}, v_{3}$ and $e_{1}$ between them, a supergraph $G_{2}$ of $G_{4}$ extended by $v_{4}, v_{2}$ and $e_{2}$ between them, and a partial graph mapping $F_{0}$ from $G_{3}$ to $G_{4}$. Suppose $e_{1} \notin$ the edges of $G_{3}$ and $e_{2} \notin$ the edges of $G_{4}$ and $v_{1} \notin$ the vertices of $G_{3}$ and $v_{2} \notin$ the vertices of $G_{4}$ and $v_{3} \in \operatorname{dom}\left(F_{0 \mathbb{V}}\right)$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$, and
(ii) if $F_{0}$ is total, then $F$ is total, and
(iii) if $F_{0}$ is onto, then $F$ is onto, and
(iv) if $F_{0}$ is one-to-one, then $F$ is one-to-one, and
(v) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(vi) if $F_{0}$ is isomorphism, then $F$ is isomorphism.

Proof: Consider $G_{5}$ being a supergraph of $G_{3}$ extended by $v_{1}$ such that $G_{1}$ is a supergraph of $G_{5}$ extended by $e_{1}$ between vertices $v_{1}$ and $v_{3}$. Consider $G_{6}$ being a supergraph of $G_{4}$ extended by $v_{2}$ such that $G_{2}$ is a supergraph of $G_{6}$ extended by $e_{2}$ between vertices $v_{4}$ and $v_{2}$.

Consider $F_{1}$ being a partial graph mapping from $G_{5}$ to $G_{6}$ such that $F_{1}=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}\right\rangle$ and if $F_{0}$ is total, then $F_{1}$ is total and if $F_{0}$ is onto, then $F_{1}$ is onto and if $F_{0}$ is one-to-one, then $F_{1}$ is one-to-one and if $F_{0}$ is directed, then $F_{1}$ is directed and if $F_{0}$ is semi-continuous, then $F_{1}$ is semi-continuous and if $F_{0}$ is continuous, then $F_{1}$ is continuous and if $F_{0}$ is semi-directed-continuous, then $F_{1}$ is semi-directed-continuous and if $F_{0}$ is directed-continuous, then $F_{1}$ is directed-continuous. $v_{1}, v_{3} \in \operatorname{dom}\left(F_{1 \mathbb{V}}\right)$ and $\left(F_{1 \mathbb{V}}\right)\left(v_{1}\right)=v_{2}$ and $\left(F_{1 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$.

Consider $F_{2}$ being a partial graph mapping from $G_{1}$ to $G_{2}$ such that $F_{2}=\left\langle F_{1 \mathbb{V}}, F_{1 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$ and if $F_{1}$ is total, then $F_{2}$ is total and if $F_{1}$ is onto, then $F_{2}$ is onto and if $F_{1}$ is one-to-one, then $F_{2}$ is one-to-one.
(160) Let us consider graphs $G_{3}, G_{4}$, a vertex $v_{3}$ of $G_{3}$, a vertex $v_{4}$ of $G_{4}$, objects $e_{1}, e_{2}, v_{1}, v_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by $v_{3}, v_{1}$ and $e_{1}$ between them, a supergraph $G_{2}$ of $G_{4}$ extended by $v_{2}, v_{4}$ and $e_{2}$ between them, and a partial graph mapping $F_{0}$ from $G_{3}$ to $G_{4}$. Suppose $e_{1} \notin$ the edges of $G_{3}$ and $e_{2} \notin$ the edges of $G_{4}$ and $v_{1} \notin$ the vertices of $G_{3}$ and $v_{2} \notin$ the vertices of $G_{4}$ and $v_{3} \in \operatorname{dom}\left(F_{0 \mathbb{V}}\right)$ and $\left(F_{0 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$, and
(ii) if $F_{0}$ is total, then $F$ is total, and
(iii) if $F_{0}$ is onto, then $F$ is onto, and
(iv) if $F_{0}$ is one-to-one, then $F$ is one-to-one, and
(v) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(vi) if $F_{0}$ is isomorphism, then $F$ is isomorphism.

Proof: Consider $G_{5}$ being a supergraph of $G_{3}$ extended by $v_{1}$ such that $G_{1}$ is a supergraph of $G_{5}$ extended by $e_{1}$ between vertices $v_{3}$ and $v_{1}$. Consider $G_{6}$ being a supergraph of $G_{4}$ extended by $v_{2}$ such that $G_{2}$ is a supergraph of $G_{6}$ extended by $e_{2}$ between vertices $v_{2}$ and $v_{4}$.

Consider $F_{1}$ being a partial graph mapping from $G_{5}$ to $G_{6}$ such that $F_{1}=\left\langle F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right), F_{0 \mathbb{E}}\right\rangle$ and if $F_{0}$ is total, then $F_{1}$ is total and if $F_{0}$
is onto, then $F_{1}$ is onto and if $F_{0}$ is one-to-one, then $F_{1}$ is one-to-one and if $F_{0}$ is directed, then $F_{1}$ is directed and if $F_{0}$ is semi-continuous, then $F_{1}$ is semi-continuous and if $F_{0}$ is continuous, then $F_{1}$ is continuous and if $F_{0}$ is semi-directed-continuous, then $F_{1}$ is semi-directed-continuous and if $F_{0}$ is directed-continuous, then $F_{1}$ is directed-continuous. $v_{1}, v_{3} \in \operatorname{dom}\left(F_{1 \mathbb{V}}\right)$ and $\left(F_{1 \mathbb{V}}\right)\left(v_{1}\right)=v_{2}$ and $\left(F_{1 \mathbb{V}}\right)\left(v_{3}\right)=v_{4}$.

Consider $F_{2}$ being a partial graph mapping from $G_{1}$ to $G_{2}$ such that $F_{2}=\left\langle F_{1 \mathbb{V}}, F_{1 \mathbb{E}}+\cdot\left(e_{1} \longmapsto e_{2}\right)\right\rangle$ and if $F_{1}$ is total, then $F_{2}$ is total and if $F_{1}$ is onto, then $F_{2}$ is onto and if $F_{1}$ is one-to-one, then $F_{2}$ is one-to-one.
(161) Let us consider a graph $G$, an object $v$, a set $V$, and supergraphs $G_{1}$, $G_{2}$ of $G$ extended by vertex $v$ and edges between $v$ and $V$ of $G$. Then $G_{2}$ is $G_{1}$-isomorphic. The theorem is a consequence of (8), (53), and (143).
(162) Let us consider graphs $G_{3}, G_{4}$, objects $v_{1}, v_{2}$, sets $V_{1}, V_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by vertex $v_{1}$ and edges between $v_{1}$ and $V_{1}$ of $G_{3}$, a supergraph $G_{2}$ of $G_{4}$ extended by vertex $v_{2}$ and edges between $v_{2}$ and $V_{2}$ of $G_{4}$, and a partial graph mapping $F_{0}$ from $G_{3}$ to $G_{4}$. Suppose $V_{1} \subseteq$ the vertices of $G_{3}$ and $V_{2} \subseteq$ the vertices of $G_{4}$ and $v_{1} \notin$ the vertices of $G_{3}$ and $v_{2} \notin$ the vertices of $G_{4}$ and $F_{0 \mathbb{V}} \upharpoonright V_{1}$ is one-to-one and $\operatorname{dom}\left(F_{0 \mathbb{V}} \backslash V_{1}\right)=$ $V_{1}$ and $\operatorname{rng}\left(F_{0 \mathbb{V}} \upharpoonright V_{1}\right)=V_{2}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F_{\mathbb{V}}=F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right)$, and
(ii) $F_{\mathbb{E}} \upharpoonright \operatorname{dom}\left(F_{0 \mathbb{E}}\right)=F_{0 \mathbb{E}}$, and
(iii) if $F_{0}$ is total, then $F$ is total, and
(iv) if $F_{0}$ is onto, then $F$ is onto, and
(v) if $F_{0}$ is one-to-one, then $F$ is one-to-one, and
(vi) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(vii) if $F_{0}$ is isomorphism, then $F$ is isomorphism.

Proof: $V_{1} \subseteq \operatorname{dom}\left(F_{0 \mathbb{V}}\right)$. Set $f=F_{0 \mathbb{V}}+\cdot\left(v_{1} \longmapsto v_{2}\right)$. Consider $h_{1}$ being a function from $V_{1}$ into $G_{1}$.edgesBetween $\left(V_{1},\left\{v_{1}\right\}\right)$ such that $h_{1}$ is one-toone and onto and for every object $w$ such that $w \in V_{1}$ holds $h_{1}(w)$ joins $w$ and $v_{1}$ in $G_{1}$. Consider $h_{2}$ being a function from $V_{2}$ into $G_{2}$. edgesBetween $\left(V_{2}\right.$, $\left.\left\{v_{2}\right\}\right)$ such that $h_{2}$ is one-to-one and onto and for every object $w$ such that $w \in V_{2}$ holds $h_{2}(w)$ joins $w$ and $v_{2}$ in $G_{2}$. Set $g=F_{0 \mathbb{E}}+\cdot h_{2} \cdot\left(F_{0 \mathbb{V}}\right) \cdot\left(h_{1}^{-1}\right)$.
$\operatorname{dom}\left(F_{0 \mathbb{E}}\right)$ misses $\operatorname{dom}\left(h_{2} \cdot\left(F_{0 \mathbb{V}}\right) \cdot\left(h_{1}^{-1}\right)\right)$. rng $F_{0 \mathbb{E}}$ misses rng $h_{2} \cdot\left(F_{0 \mathbb{V}}\right)$. $\left(h_{1}^{-1}\right)$. Consider $E_{1}$ being a set such that $\overline{\overline{V_{1}}}=\overline{\overline{E_{1}}}$ and $E_{1}$ misses the edges of $G_{3}$ and the edges of $G_{1}=\left(\right.$ the edges of $\left.G_{3}\right) \cup E_{1}$ and for every object $w_{1}$ such that $w_{1} \in V_{1}$ there exists an object $e_{1}$ such that $e_{1} \in E_{1}$ and $e_{1}$
joins $w_{1}$ and $v_{1}$ in $G_{1}$ and for every object $\tilde{e}$ such that $\tilde{e}$ joins $w_{1}$ and $v_{1}$ in $G_{1}$ holds $e_{1}=\tilde{e}$.

Consider $E_{2}$ being a set such that $\overline{\overline{V_{2}}}=\overline{\overline{E_{2}}}$ and $E_{2}$ misses the edges of $G_{4}$ and the edges of $G_{2}=\left(\right.$ the edges of $\left.G_{4}\right) \cup E_{2}$ and for every object $w_{2}$ such that $w_{2} \in V_{2}$ there exists an object $e_{2}$ such that $e_{2} \in E_{2}$ and $e_{2}$ joins $w_{2}$ and $v_{2}$ in $G_{2}$ and for every object $\tilde{e}$ such that $\tilde{e}$ joins $w_{2}$ and $v_{2}$ in $G_{2}$ holds $e_{2}=\tilde{e}$. Reconsider $F=\langle f, g\rangle$ as a partial graph mapping from $G_{1}$ to $G_{2}$. If $F_{0}$ is total, then $F$ is total. If $F_{0}$ is onto, then $F$ is onto.
(163) Let us consider a graph $G_{3}$, a $G_{3}$-isomorphic graph $G_{4}$, objects $v_{1}, v_{2}$, a supergraph $G_{1}$ of $G_{3}$ extended by vertex $v_{1}$ and edges between $v_{1}$ and the vertices of $G_{3}$, and a supergraph $G_{2}$ of $G_{4}$ extended by vertex $v_{2}$ and edges between $v_{2}$ and the vertices of $G_{4}$. Suppose $v_{1} \in$ the vertices of $G_{3}$ iff $v_{2} \in$ the vertices of $G_{4}$. Then $G_{2}$ is $G_{1}$-isomorphic. The theorem is a consequence of (162) and (143).
Let us consider graphs $G_{1}, G_{2}$, a subgraph $G_{3}$ of $G_{1}$ with loops removed, a subgraph $G_{4}$ of $G_{2}$ with loops removed, and a one-to-one partial graph mapping $F_{0}$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(164) There exists a one-to-one partial graph mapping $F$ from $G_{3}$ to $G_{4}$ such that
(i) $F=F_{0} \upharpoonright G_{3}$, and
(ii) if $F_{0}$ is total, then $F$ is total, and
(iii) if $F_{0}$ is onto, then $F$ is onto, and
(iv) if $F_{0}$ is directed, then $F$ is directed, and
(v) if $F_{0}$ is semi-directed-continuous, then $F$ is semi-directed-continuous.

Proof: Reconsider $F=G_{4} \upharpoonleft\left(F_{0} \upharpoonright G_{3}\right)$ as a one-to-one partial graph mapping from $G_{3}$ to $G_{4}$. If $F_{0}$ is total, then $F$ is total. If $F_{0}$ is onto, then $F$ is onto.
(165) There exists a one-to-one partial graph mapping $F$ from $G_{3}$ to $G_{4}$ such that
(i) $F=F_{0} \upharpoonright G_{3}$, and
(ii) if $F_{0}$ is weak subgraph embedding, then $F$ is weak subgraph embedding, and
(iii) if $F_{0}$ is isomorphism, then $F$ is isomorphism, and
(iv) if $F_{0}$ is directed-isomorphism, then $F$ is directed-isomorphism.

The theorem is a consequence of (164).
(166) Let us consider a graph $G_{1}$, a $G_{1}$-isomorphic graph $G_{2}$, and a subgraph $G_{3}$ of $G_{1}$ with loops removed. Then every subgraph of $G_{2}$ with loops removed is $G_{3}$-isomorphic. The theorem is a consequence of (165).
(167) Let us consider a graph $G_{1}$, a $G_{1}$-directed-isomorphic graph $G_{2}$, and a subgraph $G_{3}$ of $G_{1}$ with loops removed. Then every subgraph of $G_{2}$ with loops removed is $G_{3}$-directed-isomorphic. The theorem is a consequence of (165).
(168) Let us consider a graph $G_{1}$, a $G_{1}$-isomorphic graph $G_{2}$, and a subgraph $G_{3}$ of $G_{1}$ with parallel edges removed. Then every subgraph of $G_{2}$ with parallel edges removed is $G_{3}$-isomorphic.
Proof: Consider $G$ being a partial graph mapping from $G_{1}$ to $G_{2}$ such that $G$ is isomorphism. Consider $E_{1}$ being a representative selection of the parallel edges of $G_{1}$ such that $G_{3}$ is a subgraph of $G_{1}$ induced by the vertices of $G_{1}$ and $E_{1}$.

Consider $E_{2}$ being a representative selection of the parallel edges of $G_{2}$ such that $G_{4}$ is a subgraph of $G_{2}$ induced by the vertices of $G_{2}$ and $E_{2}$. Define $\mathcal{P}$ [object, object $] \equiv \$_{2} \in E_{2}$ and $\left\langle \$_{1}, \$_{2}\right\rangle \in \operatorname{EdgeParEqRel}\left(G_{2}\right)$. For every objects $x, y_{1}, y_{2}$ such that $x \in$ the edges of $G_{2}$ and $\mathcal{P}\left[x, y_{1}\right]$ and $\mathcal{P}\left[x, y_{2}\right]$ holds $y_{1}=y_{2}$. For every object $x$ such that $x \in$ the edges of $G_{2}$ there exists an object $y$ such that $\mathcal{P}[x, y]$.

Consider $h$ being a function such that dom $h=$ the edges of $G_{2}$ and for every object $x$ such that $x \in$ the edges of $G_{2}$ holds $\mathcal{P}[x, h(x)]$.
(169) Let us consider a graph $G_{1}$, and subgraphs $G_{2}, G_{3}$ of $G_{1}$ with parallel edges removed. Then $G_{3}$ is $G_{2}$-isomorphic. The theorem is a consequence of (53) and (168).
(170) Let us consider a graph $G_{1}$, a $G_{1}$-directed-isomorphic graph $G_{2}$, and a subgraph $G_{3}$ of $G_{1}$ with directed-parallel edges removed. Then every subgraph of $G_{2}$ with directed-parallel edges removed is $G_{3}$-directedisomorphic.
Proof: Consider $G$ being a partial graph mapping from $G_{1}$ to $G_{2}$ such that $G$ is directed-isomorphism. Consider $E_{1}$ being a representative selection of the directed-parallel edges of $G_{1}$ such that $G_{3}$ is a subgraph of $G_{1}$ induced by the vertices of $G_{1}$ and $E_{1}$.

Consider $E_{2}$ being a representative selection of the directed-parallel edges of $G_{2}$ such that $G_{4}$ is a subgraph of $G_{2}$ induced by the vertices of $G_{2}$ and $E_{2}$. Define $\mathcal{P}$ [object, object $] \equiv \$_{2} \in E_{2}$ and $\left\langle \$ 1, \$_{2}\right\rangle \in$ DEdgeParEqRel $\left(G_{2}\right)$. For every objects $x, y_{1}, y_{2}$ such that $x \in$ the edges of $G_{2}$ and $\mathcal{P}\left[x, y_{1}\right]$ and $\mathcal{P}\left[x, y_{2}\right]$ holds $y_{1}=y_{2}$. For every object $x$ such that $x \in$ the edges of $G_{2}$ there exists an object $y$ such that $\mathcal{P}[x, y]$.

Consider $h$ being a function such that dom $h=$ the edges of $G_{2}$ and for every object $x$ such that $x \in$ the edges of $G_{2}$ holds $\mathcal{P}[x, h(x)]$.
(171) Let us consider a graph $G_{1}$, and subgraphs $G_{2}, G_{3}$ of $G_{1}$ with directedparallel edges removed. Then $G_{3}$ is $G_{2}$-directed-isomorphic. The theorem is a consequence of (53) and (170).
(172) Let us consider a graph $G_{1}$, a $G_{1}$-isomorphic graph $G_{2}$, and a simple graph $G_{3}$ of $G_{1}$. Then every simple graph of $G_{2}$ is $G_{3}$-isomorphic. The theorem is a consequence of (166) and (168).
(173) Let us consider a graph $G_{1}$, and simple graphs $G_{2}, G_{3}$ of $G_{1}$. Then $G_{3}$ is $G_{2}$-isomorphic. The theorem is a consequence of (53) and (172).
(174) Let us consider a graph $G_{1}$, a $G_{1}$-directed-isomorphic graph $G_{2}$, and a directed-simple graph $G_{3}$ of $G_{1}$. Then every directed-simple graph of $G_{2}$ is $G_{3}$-directed-isomorphic. The theorem is a consequence of (167) and (170).
(175) Let us consider a graph $G_{1}$, and directed-simple graphs $G_{2}, G_{3}$ of $G_{1}$. Then $G_{3}$ is $G_{2}$-directed-isomorphic. The theorem is a consequence of (53) and (174).
(176) Let us consider trivial, loopless graphs $G_{1}, G_{2}$, and a non empty partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Then
(i) $F$ is directed-isomorphism, and
(ii) $F=\left\langle\right.$ the vertex of $G_{1} \longmapsto$ the vertex of $\left.G_{2}, \emptyset\right\rangle$.
(177) Let us consider trivial graphs $G_{1}, G_{2}$. Suppose $G_{1} \cdot \operatorname{size}()=G_{2} \cdot \operatorname{size}()$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that $F$ is directed-isomorphism. The theorem is a consequence of (31).
(178) Let us consider trivial, loopless graphs $G_{1}, G_{2}$. Then $G_{2}$ is $G_{1}$-directedisomorphic and $G_{1}$-isomorphic.

## References

[1] Grzegorz Bancerek. Introduction to trees Formalized Mathematics, 1(2):421-427, 1990.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. dol $10.1007 /$ s10817-017-9440-6
[3] John Adrian Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics, 244. Springer, New York, 2008. ISBN 978-1-84628-969-9.
[4] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[6] Christopher David Godsil and Gordon Royle. Algebraic graph theory. Graduate Texts in Mathematics; 207. Springer, New York, 2001. ISBN 0-387-95220-9; 0-387-95241-1.
[7] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[8] Pavol Hell and Jaroslav Nesetril. Graphs and homomorphisms. Oxford Lecture Series in Mathematics and Its Applications; 28. Oxford University Press, Oxford, 2004. ISBN 0-19-852817-5.
[9] Ulrich Huckenbeck. Extremal paths in graphs: foundations, search strategies, and related topics, volume 10 of Mathematical Topics. Akademie Verlag, Berlin, 1. edition, 1997. ISBN 3-05-501658-0; 978-3-05-501658-5.
[10] Tommy R. Jensen and Bjarne Toft. Graph coloring problems. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York, 1995. ISBN 0-471-02865-7.
[11] Ulrich Knauer. Algebraic graph theory: morphisms, monoids and matrices, volume 41 of De Gruyter Studies in Mathematics. Walter de Gruyter, 2011.
[12] Sebastian Koch. About supergraphs. Part I. Formalized Mathematics, 26(2):101-124, 2018. doi $10.2478 /$ forma-2018-0009.
[13] Sebastian Koch. About supergraphs. Part II. Formalized Mathematics, 26(2):125-140, 2018. doi $10.2478 /$ forma-2018-0010
[14] Mike Krebs and Anthony Shaheen. Expander families and Cayley graphs: a beginners guide. Oxford University Press, Oxford, 2011. ISBN 0-19-976711-4; 978-0-19-976711-3.
[15] Gilbert Lee and Piotr Rudnicki. Alternative graph structures Formalized Mathematics, 13(2):235-252, 2005.
[16] Robin James Wilson. Introduction to Graph Theory. Oliver \& Boyd, Edinburgh, 1972. ISBN 0-05-002534-1.

Accepted August 29, 2019

# About Vertex Mappings 

Sebastian Koch<br>Johannes Gutenberg University<br>Mainz, Germany ${ }^{1}$


#### Abstract

Summary. In [6] partial graph mappings were formalized in the Mizar system [3. Such mappings map some vertices and edges of a graph to another while preserving adjacency. While this general approach is appropriate for the general form of (multidi)graphs as introduced in [7], a more specialized version for graphs without parallel edges seems convenient. As such, partial vertex mappings preserving adjacency between the mapped verticed are formalized here.


MSC: 05C60 68T99 03B35
Keywords: graph homomorphism; graph isomorphism
MML identifier: GLIB_011, version: 8.1.09 5.59.1363

## 0. Introduction

This article is a brief introduction to partial vertex mappings in Mizar [2]. As discussed in the introduction of [6] almost no graph theory book discusses graph homomorphisms in a scope as general as it was done in [5] and [6]. Most of the time, graph homomorphisms are only discussed in the form of vertex mappings, often only in the context of simple graphs. But of course that choice is not without reason and in many cases considering vertex mappings is enough, which is especially useful since one does not need to think about an edge mapping then. Given that the graph definitions change slightly between different authors, a quick overview of the formalized notation seems in order.

A partial vertex mapping $f$ between two graphs $G_{1}, G_{2}$ is a partial function of their vertex sets $V\left(G_{1}\right), V\left(G_{2}\right)$ with the additional property that if vertices

[^2]$v, w \in \operatorname{dom} f$ are adjacent in $G_{1}$, then their images $f(v), f(w)$ are adjacent in $G_{2}$. The properties of $f$ to be total (or a homomorphism), one-to-one (or injective) and onto (or surjective) have the usual meaning for $f$ as a partial function. $f$ is continuous if for any $v, w \in \operatorname{dom} f$ such that $f(v)$ and $f(w)$ are adjacent, $v$ and $w$ are adjacent as well. $f$ is an isomorphism if it is total, one-to-one, onto and the cardinality of edges between to vertices $v$ and $w$ of $G_{1}$ is the same as the cardinality of the edges between $f(v)$ and $f(w)$. Corresponding attributes for directed vertex mappings are given as well in this article.

The attribute continuous is the generalization for not necessarily simple graphs of the continuous of [5]. The isomorphism attribute was inspired by [1]. It is shown that for graphs $G_{1}, G_{2}$ without multiple edges that a total bijective and continuous vertex mapping $f$ between them is already an isomorphism, just like a graph isomorphism is usually described (cf. [4], [8, [5]). This article does not go into depth like [6], but the inverse and composition of partial vertex mappings are covered.

A partial graph mapping does not always induce a partial vertex mapping (since any subset of the set of edges of $G_{1}$ can be mapped) and a partial vertex mapping can give rise to several partial graph mappings. In the second part of this article it is shown when the induced partial vertex mapping exists and when the induced partial graph mapping is unique. Furthermore it is formally stated that for two graphs without parallel edges there exists a graph mapping that is an isomorphism iff there exists a vertex mapping that is an isomorphism.

## 1. Vertex Mappings

Let $G_{1}, G_{2}$ be graphs.
A partial vertex mapping from $G_{1}$ to $G_{2}$ is a partial function from the vertices of $G_{1}$ to the vertices of $G_{2}$ defined by
(Def. 1) for every vertices $v, w$ of $G_{1}$ such that $v, w \in \operatorname{dom} i t$ and $v$ and $w$ are adjacent holds $i t_{/ v}$ and $i t_{/ w}$ are adjacent.
Now we state the proposition:
(1) Let us consider graphs $G_{1}, G_{2}$, and a partial function $f$ from the vertices of $G_{1}$ to the vertices of $G_{2}$. Then $f$ is a partial vertex mapping from $G_{1}$ to $G_{2}$ if and only if for every objects $v, w, e$ such that $v, w \in \operatorname{dom} f$ and $e$ joins $v$ and $w$ in $G_{1}$ there exists an object $\tilde{e}$ such that $\tilde{e}$ joins $f(v)$ and $f(w)$ in $G_{2}$.
Let $G_{1}, G_{2}$ be graphs and $f$ be a partial vertex mapping from $G_{1}$ to $G_{2}$. We say that $f$ is directed if and only if
(Def. 2) for every objects $v, w, e$ such that $v, w \in \operatorname{dom} f$ and $e$ joins $v$ to $w$ in $G_{1}$ there exists an object $\tilde{e}$ such that $\tilde{e}$ joins $f(v)$ to $f(w)$ in $G_{2}$.
We say that $f$ is continuous if and only if
(Def. 3) for every vertices $v, w$ of $G_{1}$ such that $v, w \in \operatorname{dom} f$ and $f_{/ v}$ and $f_{/ w}$ are adjacent holds $v$ and $w$ are adjacent.

We say that $f$ is directed-continuous if and only if
(Def. 4) for every objects $v, w, \tilde{e}$ such that $v, w \in \operatorname{dom} f$ and $\tilde{e}$ joins $f(v)$ to $f(w)$ in $G_{2}$ there exists an object $e$ such that $e$ joins $v$ to $w$ in $G_{1}$.
Let us consider graphs $G_{1}, G_{2}$ and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(2) $f$ is continuous if and only if for every objects $v, w, \tilde{e}$ such that $v$, $w \in \operatorname{dom} f$ and $\tilde{e}$ joins $f(v)$ and $f(w)$ in $G_{2}$ there exists an object $e$ such that $e$ joins $v$ and $w$ in $G_{1}$.
(3) $f$ is continuous if and only if for every vertices $v, w$ of $G_{1}$ such that $v$, $w \in \operatorname{dom} f$ holds $v$ and $w$ are adjacent iff $f_{/ v}$ and $f_{/ w}$ are adjacent.
Let $G_{1}, G_{2}$ be graphs. One can check that every partial vertex mapping from $G_{1}$ to $G_{2}$ which is directed-continuous is also continuous and every partial vertex mapping from $G_{1}$ to $G_{2}$ which is empty is also one-to-one, directed-continuous, directed, and continuous and every partial vertex mapping from $G_{1}$ to $G_{2}$ which is total is also non empty and every partial vertex mapping from $G_{1}$ to $G_{2}$ which is onto is also non empty.

Let $G_{1}$ be a simple graph and $G_{2}$ be a graph. Observe that every partial vertex mapping from $G_{1}$ to $G_{2}$ which is directed-continuous is also directed.

Let $G_{1}$ be a graph and $G_{2}$ be a simple graph. Observe that every partial vertex mapping from $G_{1}$ to $G_{2}$ which is directed and continuous is also directedcontinuous.

Let $G_{1}$ be a trivial graph and $G_{2}$ be a graph. Let us observe that every partial vertex mapping from $G_{1}$ to $G_{2}$ is directed and every partial vertex mapping from $G_{1}$ to $G_{2}$ which is continuous is also directed-continuous and every partial vertex mapping from $G_{1}$ to $G_{2}$ which is non empty is also total.

Let $G_{1}$ be a graph and $G_{2}$ be a trivial graph. One can verify that every partial vertex mapping from $G_{1}$ to $G_{2}$ which is non empty is also onto.

Let $G_{2}$ be a trivial, loopless graph. Let us note that every partial vertex mapping from $G_{1}$ to $G_{2}$ is directed-continuous and continuous.

Let $G_{1}, G_{2}$ be graphs. Observe that there exists a partial vertex mapping from $G_{1}$ to $G_{2}$ which is empty, one-to-one, directed, continuous, and directedcontinuous.

Now we state the proposition:
(4) Let us consider graphs $G_{1}, G_{2}$, and a partial function $f$ from the vertices of $G_{1}$ to the vertices of $G_{2}$. Then $f$ is a directed partial vertex mapping from $G_{1}$ to $G_{2}$ if and only if for every objects $v, w, e$ such that $v, w \in \operatorname{dom} f$ and $e$ joins $v$ to $w$ in $G_{1}$ there exists an object $\tilde{e}$ such that $\tilde{e}$ joins $f(v)$ to $f(w)$ in $G_{2}$. The theorem is a consequence of (1).
Let $G_{1}$ be a loopless graph and $G_{2}$ be a graph. One can verify that there exists a partial vertex mapping from $G_{1}$ to $G_{2}$ which is non empty, one-to-one, and directed.

Let $G_{1}, G_{2}$ be loopless graphs. Let us observe that there exists a partial vertex mapping from $G_{1}$ to $G_{2}$ which is non empty, one-to-one, directed, continuous, and directed-continuous.

Let $G_{1}, G_{2}$ be non loopless graphs. One can verify that there exists a partial vertex mapping from $G_{1}$ to $G_{2}$ which is non empty, one-to-one, directed, continuous, and directed-continuous.

Now we state the propositions:
(5) Let us consider a graph $G$. Then $\mathrm{id}_{\alpha}$ is a directed, continuous, directedcontinuous partial vertex mapping from $G$ to $G$, where $\alpha$ is the vertices of $G$. The theorem is a consequence of (1) and (2).
(6) Let us consider graphs $G_{1}, G_{2}$, and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Suppose $f$ is total. Then
(i) if $G_{2}$ is loopless, then $G_{1}$ is loopless, and
(ii) if $G_{2}$ is edgeless, then $G_{1}$ is edgeless.

The theorem is a consequence of (1).
(7) Let us consider graphs $G_{1}, G_{2}$, and a continuous partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Suppose $f$ is onto. Then
(i) if $G_{1}$ is loopless, then $G_{2}$ is loopless, and
(ii) if $G_{1}$ is edgeless, then $G_{2}$ is edgeless.

The theorem is a consequence of (2).
Let $G_{1}, G_{2}$ be graphs and $f$ be a partial vertex mapping from $G_{1}$ to $G_{2}$. We say that $f$ is isomorphism if and only if
(Def. 5) $\quad f$ is total, one-to-one, and onto and for every vertices $v, w$ of $G_{1}$, $\overline{\overline{G_{1}} \text {.edgesBetween }(\{v\},\{w\})}=\overline{\overline{G_{2}} \text {.edgesBetween }(\{f(v)\},\{f(w)\})}$.
We say that $f$ is directed-isomorphism if and only if
(Def. 6) $\quad f$ is total, one-to-one, and onto and for every vertices $v, w$ of $G_{1}$,
$\overline{\overline{G_{1}} \text {.edgesDBetween }(\{v\},\{w\})}=\overline{\overline{G_{2}} \text {.edgesDBetween }(\{f(v)\},\{f(w)\})}$ and $\overline{\overline{G_{1}} \text {.edgesDBetween }(\{w\},\{v\})}=\overline{\overline{G_{2}} \text {.edgesDBetween }(\{f(w)\},\{f(v)\})}$.

Let us note that every partial vertex mapping from $G_{1}$ to $G_{2}$ which is isomorphism is also total, one-to-one, onto, and continuous and every partial vertex mapping from $G_{1}$ to $G_{2}$ which is directed-isomorphism is also total, one-to-one, onto, isomorphism, continuous, directed, and directed-continuous.

Now we state the proposition:
(8) Let us consider non-multi graphs $G_{1}, G_{2}$, and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Suppose $f$ is total, one-to-one, and continuous. Let us consider vertices $v, w$ of $G_{1}$. Then $\overline{\overline{G_{1}} \text {.edgesBetween }(\{v\},\{w\})}=$ $\overline{\overline{G_{2}} \text {.edgesBetween }(\{f(v)\},\{f(w)\})}$. The theorem is a consequence of (2) and (1).
Let $G_{1}, G_{2}$ be non-multi graphs and $f$ be a partial vertex mapping from $G_{1}$ to $G_{2}$. Note that $f$ is isomorphism if and only if the condition (Def. 7 ) is satisfied.
(Def. 7) $f$ is total, one-to-one, onto, and continuous.
Observe that every partial vertex mapping from $G_{1}$ to $G_{2}$ which is total, one-to-one, onto, and continuous is also isomorphism.

Now we state the proposition:
(9) Let us consider non-directed-multi graphs $G_{1}, G_{2}$, and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Suppose $f$ is total, one-to-one, directed, and directed-continuous. Let us consider vertices $v, w$ of $G_{1}$. Then
(i) $\overline{\overline{G_{1}} \text {.edgesDBetween }(\{v\},\{w\})}=\overline{\overline{G_{2}} \text {.edgesDBetween }(\{f(v)\},\{f(w)\})}$, and
(ii) $\overline{\overline{G_{1}} \text {.edgesDBetween }(\{w\},\{v\})}=\overline{\overline{G_{2}} \text {.edgesDBetween }(\{f(w)\},\{f(v)\})}$.

Let $G_{1}, G_{2}$ be non-directed-multi graphs and $f$ be a partial vertex mapping from $G_{1}$ to $G_{2}$. Observe that $f$ is directed-isomorphism if and only if the condition (Def. 8) is satisfied.
(Def. 8) $f$ is total, one-to-one, onto, directed, and directed-continuous.
One can check that every partial vertex mapping from $G_{1}$ to $G_{2}$ which is total, one-to-one, onto, directed, and directed-continuous is also directedisomorphism.

Let $G$ be a graph. Let us observe that there exists a partial vertex mapping from $G$ to $G$ which is directed-isomorphism and isomorphism.

Now we state the proposition:
(10) Let us consider a graph $G$. Then $\operatorname{id}_{\alpha}$ is a directed-isomorphism, isomorphism partial vertex mapping from $G$ to $G$, where $\alpha$ is the vertices of $G$. The theorem is a consequence of (5).
Let $G_{1}, G_{2}$ be graphs and $f$ be a partial vertex mapping from $G_{1}$ to $G_{2}$. We say that $f$ is invertible if and only if
(Def. 9) $\quad f$ is one-to-one and continuous.
Note that every partial vertex mapping from $G_{1}$ to $G_{2}$ which is invertible is also one-to-one and continuous and every partial vertex mapping from $G_{1}$ to $G_{2}$ which is one-to-one and continuous is also invertible and every partial vertex mapping from $G_{1}$ to $G_{2}$ which is isomorphism is also invertible and every partial vertex mapping from $G_{1}$ to $G_{2}$ which is directed-isomorphism is also invertible and there exists a partial vertex mapping from $G_{1}$ to $G_{2}$ which is empty and invertible.

Let $G_{1}, G_{2}$ be loopless graphs. Note that there exists a partial vertex mapping from $G_{1}$ to $G_{2}$ which is non empty, directed, and invertible.

Let $G_{1}, G_{2}$ be non loopless graphs. Observe that there exists a partial vertex mapping from $G_{1}$ to $G_{2}$ which is non empty, directed, and invertible.

Let $G_{1}, G_{2}$ be graphs and $f$ be an invertible partial vertex mapping from $G_{1}$ to $G_{2}$. Note that the functor $f^{-1}$ yields a partial vertex mapping from $G_{2}$ to $G_{1}$. Observe that $f^{-1}$ is one-to-one, continuous, and invertible as a partial vertex mapping from $G_{2}$ to $G_{1}$.

Let $G_{1}, G_{2}, G_{3}$ be graphs, $f$ be a partial vertex mapping from $G_{1}$ to $G_{2}$, and $g$ be a partial vertex mapping from $G_{2}$ to $G_{3}$. One can check that the functor $g \cdot f$ yields a partial vertex mapping from $G_{1}$ to $G_{3}$.

Let us consider graphs $G_{1}, G_{2}, G_{3}$, a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$, and a partial vertex mapping $g$ from $G_{2}$ to $G_{3}$. Now we state the propositions:
(11) If $f$ is continuous and $g$ is continuous, then $g \cdot f$ is continuous. The theorem is a consequence of (2).
(12) If $f$ is directed and $g$ is directed, then $g \cdot f$ is directed.
(13) If $f$ is directed-continuous and $g$ is directed-continuous, then $g \cdot f$ is directed-continuous.
(14) If $f$ is isomorphism and $g$ is isomorphism, then $g \cdot f$ is isomorphism.
(15) If $f$ is directed-isomorphism and $g$ is directed-isomorphism, then $g \cdot f$ is directed-isomorphism.

## 2. The Relation Between Graph Mappings and Vertex Mappings

Let us consider graphs $G_{1}, G_{2}$ and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(16) Suppose for every vertices $v, w$ of $G_{1}$ such that $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $v$ and $w$ are adjacent there exists an object $e$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $e$ joins $v$ and $w$ in $G_{1}$. Then $F_{\mathbb{V}}$ is a partial vertex mapping from $G_{1}$ to $G_{2}$.
(17) If $\operatorname{dom}\left(F_{\mathbb{E}}\right)=$ the edges of $G_{1}$, then $F_{\mathbb{V}}$ is a partial vertex mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (16).
(18) If $F$ is total, then $F_{\mathbb{V}}$ is a partial vertex mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (17).
Let us consider graphs $G_{1}, G_{2}$ and a directed partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(19) Suppose for every objects $v, w$ such that $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and there exists an object $e$ such that $e$ joins $v$ to $w$ in $G_{1}$ there exists an object $e$ such that $e \in \operatorname{dom}\left(F_{\mathbb{E}}\right)$ and $e$ joins $v$ to $w$ in $G_{1}$. Then $F_{\mathbb{V}}$ is a directed partial vertex mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (1).
(20) Suppose $\operatorname{dom}\left(F_{\mathbb{E}}\right)=$ the edges of $G_{1}$. Then $F_{\mathbb{V}}$ is a directed partial vertex mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (19).
(21) If $F$ is total, then $F_{\mathbb{V}}$ is a directed partial vertex mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (20).
Let us consider graphs $G_{1}, G_{2}$ and a semi-continuous partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(22) Suppose $F_{\mathbb{V}}$ is a partial vertex mapping from $G_{1}$ to $G_{2}$ and for every vertices $v, w$ of $G_{1}$ such that $v, w \in \operatorname{dom}\left(F_{\mathbb{V}}\right)$ and $\left(F_{\mathbb{V}}\right)_{/ v}$ and $\left(F_{\mathbb{V}}\right)_{/ w}$ are adjacent there exists an object $\tilde{e}$ such that $\tilde{e} \in \operatorname{rng} F_{\mathbb{E}}$ and $\tilde{e}$ joins $\left(F_{\mathbb{V}}\right)(v)$ and $\left(F_{\mathbb{V}}\right)(w)$ in $G_{2}$. Then $F_{\mathbb{V}}$ is a continuous partial vertex mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (2).
(23) $\operatorname{Suppose} \operatorname{dom}\left(F_{\mathbb{E}}\right)=$ the edges of $G_{1}$ and $\operatorname{rng} F_{\mathbb{E}}=$ the edges of $G_{2}$. Then $F_{\mathbb{V}}$ is a continuous partial vertex mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (17) and (22).
(24) If $F$ is total and onto, then $F_{\mathbb{V}}$ is a continuous partial vertex mapping from $G_{1}$ to $G_{2}$. The theorem is a consequence of (23).
Let us consider graphs $G_{1}, G_{2}$ and a partial graph mapping $F$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(25) If $F$ is isomorphism, then there exists a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$ such that $F_{\mathbb{V}}=f$ and $f$ is isomorphism. The theorem is a consequence of (18).
(26) If $F$ is directed-isomorphism, then there exists a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$ such that $F_{\mathbb{V}}=f$ and $f$ is directed-isomorphism. The theorem is a consequence of (21).
(27) Let us consider graphs $G_{1}, G_{2}$, a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$, a representative selection of the parallel edges $E_{1}$ of $G_{1}$, and a representative selection of the parallel edges $E_{2}$ of $G_{2}$. Then there exists a partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F_{\mathbb{V}}=f$, and
(ii) $\operatorname{dom}\left(F_{\mathbb{E}}\right)=E_{1} \cap G_{1}$.edgesBetween $(\operatorname{dom} f)$, and
(iii) $\operatorname{rng} F_{\mathbb{E}} \subseteq E_{2} \cap G_{2}$.edgesBetween(rng $f$ ).

Proof: Define $\mathcal{P}$ [object, object] $\equiv$ there exist objects $v, w$ such that $v$, $w \in \operatorname{dom} f$ and $\$_{1} \in E_{1}$ and $\$_{2} \in E_{2}$ and $\$_{1}$ joins $v$ and $w$ in $G_{1}$ and $\$_{2}$ joins $f(v)$ and $f(w)$ in $G_{2}$. For every objects $e_{1}, e_{2}, e_{3}$ such that $e_{1} \in$ $E_{1} \cap G_{1}$.edgesBetween $(\operatorname{dom} f)$ and $\mathcal{P}\left[e_{1}, e_{2}\right]$ and $\mathcal{P}\left[e_{1}, e_{3}\right]$ holds $e_{2}=e_{3}$.

For every object $e_{1}$ such that $e_{1} \in E_{1} \cap G_{1}$.edgesBetween $(\operatorname{dom} f)$ there exists an object $e_{2}$ such that $\mathcal{P}\left[e_{1}, e_{2}\right]$. Consider $g$ being a function such that $\operatorname{dom} g=E_{1} \cap G_{1}$.edgesBetween(dom $f$ ) and for every object $e_{1}$ such that $e_{1} \in E_{1} \cap G_{1}$.edgesBetween $(\operatorname{dom} f)$ holds $\mathcal{P}\left[e_{1}, g\left(e_{1}\right)\right]$. For every object $y$ such that $y \in \operatorname{rng} g$ holds $y \in E_{2} \cap G_{2}$.edgesBetween(rng $\left.f\right)$.
Let $G_{1}, G_{2}$ be non-multi graphs and $f$ be a partial vertex mapping from $G_{1}$ to $G_{2}$. The functor PVM2PGM $(f)$ yielding a partial graph mapping from $G_{1}$ to $G_{2}$ is defined by
(Def. 10) $\quad i t_{\mathbb{V}}=f$ and $\operatorname{dom}\left(i t_{\mathbb{E}}\right)=G_{1}$.edgesBetween $(\operatorname{dom} f)$ and rng $i t_{\mathbb{E}} \subseteq$ $G_{2}$.edgesBetween $(\operatorname{rng} f)$.
Now we state the proposition:
(28) Let us consider non-multi graphs $G_{1}, G_{2}$, and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Then $\operatorname{PVM} 2 \operatorname{PGM}(f)_{\mathbb{V}}=f$.
Let $G_{1}, G_{2}$ be non-multi graphs and $f$ be a partial vertex mapping from $G_{1}$ to $G_{2}$. Observe that PVM2PGM $(f)_{\mathbb{V}}$ reduces to $f$.

Now we state the proposition:
(29) Let us consider graphs $G_{1}, G_{2}$, a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$, a representative selection of the directed-parallel edges $E_{1}$ of $G_{1}$, and a representative selection of the directed-parallel edges $E_{2}$ of $G_{2}$. Then there exists a directed partial graph mapping $F$ from $G_{1}$ to $G_{2}$ such that
(i) $F_{\mathbb{V}}=f$, and
(ii) $\operatorname{dom}\left(F_{\mathbb{E}}\right)=E_{1} \cap G_{1}$.edgesBetween $(\operatorname{dom} f)$, and
(iii) rng $F_{\mathbb{E}} \subseteq E_{2} \cap G_{2}$.edgesBetween(rng $f$ ).

Proof: Define $\mathcal{P}$ [object, object] $\equiv$ there exist objects $v, w$ such that $v$, $w \in \operatorname{dom} f$ and $\$_{1} \in E_{1}$ and $\$_{2} \in E_{2}$ and $\$_{1}$ joins $v$ to $w$ in $G_{1}$ and $\$_{2}$ joins $f(v)$ to $f(w)$ in $G_{2}$. For every objects $e_{1}, e_{2}, e_{3}$ such that $e_{1} \in$ $E_{1} \cap G_{1}$.edgesBetween $(\operatorname{dom} f)$ and $\mathcal{P}\left[e_{1}, e_{2}\right]$ and $\mathcal{P}\left[e_{1}, e_{3}\right]$ holds $e_{2}=e_{3}$.

For every object $e_{1}$ such that $e_{1} \in E_{1} \cap G_{1}$.edgesBetween $(\operatorname{dom} f)$ there exists an object $e_{2}$ such that $\mathcal{P}\left[e_{1}, e_{2}\right]$. Consider $g$ being a function such that $\operatorname{dom} g=E_{1} \cap G_{1}$.edgesBetween( $\operatorname{dom} f$ ) and for every object $e_{1}$ such
that $e_{1} \in E_{1} \cap G_{1}$.edgesBetween $(\operatorname{dom} f)$ holds $\mathcal{P}\left[e_{1}, g\left(e_{1}\right)\right]$. For every object $y$ such that $y \in \operatorname{rng} g$ holds $y \in E_{2} \cap G_{2}$.edgesBetween $(\operatorname{rng} f)$.
Let $G_{1}, G_{2}$ be non-directed-multi graphs and $f$ be a directed partial vertex mapping from $G_{1}$ to $G_{2}$. The functor DPVM2PGM $(f)$ yielding a directed partial graph mapping from $G_{1}$ to $G_{2}$ is defined by
(Def. 11) $\quad i t_{\mathbb{V}}=f$ and $\operatorname{dom}\left(i t_{\mathbb{E}}\right)=G_{1}$.edgesBetween $(\operatorname{dom} f)$ and rng $i t_{\mathbb{E}} \subseteq$ $G_{2}$.edgesBetween $(\operatorname{rng} f)$.
Now we state the proposition:
(30) Let us consider non-directed-multi graphs $G_{1}, G_{2}$, and a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Then DPVM2PGM $(f)_{\mathbb{V}}=f$.
Let $G_{1}, G_{2}$ be non-directed-multi graphs and $f$ be a directed partial vertex mapping from $G_{1}$ to $G_{2}$. One can check that DPVM2PGM $(f)_{\mathbb{V}}$ reduces to $f$.

Now we state the propositions:
(31) Let us consider non-multi graphs $G_{1}, G_{2}$, and a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Then $\operatorname{PVM} 2 \operatorname{PGM}(f)=\operatorname{DPVM} 2 \operatorname{PGM}(f)$.
(32) Let us consider non-multi graphs $G_{1}, G_{2}$, and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. If $f$ is total, then $\operatorname{PVM} 2 \operatorname{PGM}(f)$ is total.
(33) Let us consider non-directed-multi graphs $G_{1}, G_{2}$, and a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. If $f$ is total, then $\operatorname{DPVM2PGM}(f)$ is total.
(34) Let us consider non-multi graphs $G_{1}, G_{2}$, and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. If $f$ is one-to-one, then $\operatorname{PVM} 2 \operatorname{PGM}(f)$ is one-to-one.
Proof: Set $g=\operatorname{PVM} 2 \operatorname{PGM}(f)_{\mathbb{E}}$. For every objects $x_{1}, x_{2}$ such that $x_{1}$, $x_{2} \in \operatorname{dom} g$ and $g\left(x_{1}\right)=g\left(x_{2}\right)$ holds $x_{1}=x_{2}$.
(35) Let us consider non-directed-multi graphs $G_{1}, G_{2}$, and a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. If $f$ is one-to-one, then $\operatorname{DPVM2PGM}(f)$ is one-to-one.
Proof: Set $g=\operatorname{DPVM2PGM}(f)_{\mathbb{E}}$. For every objects $x_{1}, x_{2}$ such that $x_{1}$, $x_{2} \in \operatorname{dom} g$ and $g\left(x_{1}\right)=g\left(x_{2}\right)$ holds $x_{1}=x_{2}$.
(36) Let us consider non-multi graphs $G_{1}, G_{2}$, and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. If $f$ is onto and continuous, then $\operatorname{PVM} 2 \mathrm{PGM}(f)$ is onto. Proof: Set $g=\operatorname{PVM2PGM}(f)_{\mathbb{E}}$. For every object $e$ such that $e \in$ the edges of $G_{2}$ holds $e \in \operatorname{rng} g$.
(37) Let us consider non-directed-multi graphs $G_{1}, G_{2}$, and a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. If $f$ is onto and directed-continuous, then DPVM2PGM $(f)$ is onto.
Proof: Set $g=\operatorname{DPVM2PGM}(f)_{\mathbb{E}}$. For every object $e$ such that $e \in$ the edges of $G_{2}$ holds $e \in \operatorname{rng} g$.

Let us consider non-multi graphs $G_{1}, G_{2}$ and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(38) If $f$ is continuous and one-to-one, then $\operatorname{PVM} 2 \mathrm{PGM}(f)$ is semi-continuous. The theorem is a consequence of (2) and (34).
(39) If $f$ is continuous, then $\operatorname{PVM2PGM}(f)$ is continuous. The theorem is a consequence of (2).
Let us consider non-directed-multi graphs $G_{1}, G_{2}$ and a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(40) If $f$ is one-to-one, then DPVM2PGM $(f)$ is semi-directed-continuous and semi-continuous. The theorem is a consequence of (35).
(41) If $f$ is directed-continuous, then DPVM2PGM $(f)$ is directed-continuous.
(42) Let us consider non-multi graphs $G_{1}, G_{2}$, and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. If $f$ is one-to-one, then $\operatorname{PVM} 2 \operatorname{PGM}(f)$ is one-to-one.
(43) Let us consider non-directed-multi graphs $G_{1}, G_{2}$, and a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. If $f$ is one-to-one, then $\operatorname{DPVM2PGM}(f)$ is one-to-one.
(44) Let us consider non-multi graphs $G_{1}, G_{2}$, and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Suppose $f$ is total and one-to-one. Then $\operatorname{PVM2PGM}(f)$ is weak subgraph embedding. The theorem is a consequence of (32) and (34).
(45) Let us consider non-directed-multi graphs $G_{1}, G_{2}$, and a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Suppose $f$ is total and one-to-one. Then DPVM2PGM $(f)$ is weak subgraph embedding. The theorem is a consequence of (33) and (35).
Let us consider non-multi graphs $G_{1}, G_{2}$ and a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Now we state the propositions:
(46) If $f$ is total, one-to-one, and continuous, then $\operatorname{PVM2PGM}(f)$ is strong subgraph embedding. The theorem is a consequence of (32), (34), and (39).
(47) If $f$ is isomorphism, then $\operatorname{PVM} 2 \operatorname{PGM}(f)$ is isomorphism. The theorem is a consequence of $(32),(34)$, and (36).
(48) Let us consider non-directed-multi graphs $G_{1}, G_{2}$, and a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$. Suppose $f$ is directed-isomorphism. Then DPVM2PGM $(f)$ is directed-isomorphism. The theorem is a consequence of (33), (35), (37), and (41).
(49) Let us consider non-multi graphs $G_{1}, G_{2}$. Then $G_{2}$ is $G_{1}$-isomorphic if and only if there exists a partial vertex mapping $f$ from $G_{1}$ to $G_{2}$ such that $f$ is isomorphism. The theorem is a consequence of (25) and (47).
(50) Let us consider non-directed-multi graphs $G_{1}, G_{2}$. Then $G_{2}$ is $G_{1}$-directedisomorphic if and only if there exists a directed partial vertex mapping $f$ from $G_{1}$ to $G_{2}$ such that $f$ is directed-isomorphism. The theorem is a consequence of (26) and (48).

## References

[1] Ian Anderson. A first course in discrete mathematics. Springer Undergraduate Mathematics Series. Springer, London, 2001. ISBN 1-85233-236-0.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ siU817-017-9440-6
[3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi $10.1007 /$ s10817-015-9345-1
[4] Pavol Hell and Jaroslav Nesetril. Graphs and homomorphisms. Oxford Lecture Series in Mathematics and Its Applications; 28. Oxford University Press, Oxford, 2004. ISBN 0-19-852817-5.
[5] Ulrich Knauer. Algebraic graph theory: morphisms, monoids and matrices, volume 41 of De Gruyter Studies in Mathematics. Walter de Gruyter, 2011.
[6] Sebastian Koch. About graph mappings. Formalized Mathematics, 27(3):261-301, 2019. doi 10.2478/forma-2019-0024.
[7] Gilbert Lee and Piotr Rudnicki. Alternative graph structures Formalized Mathematics, 13(2):235-252, 2005.
[8] Robin James Wilson. Introduction to Graph Theory. Oliver \& Boyd, Edinburgh, 1972. ISBN 0-05-002534-1.

Accepted August 29, 2019

# Operations of Points on Elliptic Curve in Affine Coordinates] 

Yuichi Futa<br>Tokyo University of Technology<br>Tokyo, Japan

Hiroyuki Okazaki<br>Shinshu University<br>Nagano, Japan

Yasunari Shidama<br>Shinshu University<br>Nagano, Japan


#### Abstract

Summary. In this article, we formalize in Mizar [1, [2] a binary operation of points on an elliptic curve over $\mathbf{G F}(\mathbf{p})$ in affine coordinates. We show that the operation is unital, complementable and commutative. Elliptic curve cryptography [3], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.


MSC: 14H52 14K05 68T99 03B35
Keywords: elliptic curve; commutative operation
MML identifier: EC_PF_3, version: 8.1.09 5.59.1363

## 1. Set of Points on Elliptic Curve in Affine Coordinates

From now on $p$ denotes a 5 or greater prime number and $z$ denotes an element of the parameters of elliptic curve $p$.

Now we state the propositions:
(1) Let us consider a prime number $p$, elements $a, b$ of $\operatorname{GF}(p)$, and an element $P$ of $\operatorname{ProjCo}(\operatorname{GF}(p))$. Suppose $P=\langle 0,1,0\rangle$ or $(P)_{3,3}=1$. Then the represent point of $P=P$.

[^3]Proof: If $P=\langle 0,1,0\rangle$, then the represent point of $P=P$. If $(P)_{\mathbf{3}, 3}=1$, then the represent point of $P=P$ by [5, (2)], [6, (3)]. $\square$
(2) Let us consider a 5 or greater prime number $p$, an element $z$ of the parameters of elliptic curve $p$, and elements $P, O$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$. Suppose $O=\langle 0,1,0\rangle$. Then $(P)_{\mathbf{3}, 3}=0$ if and only if $P \equiv O$. The theorem is a consequence of (1).
(3) Let us consider a 5 or greater prime number $p$, an element $z$ of the parameters of elliptic curve $p$, and an element $P$ of $\operatorname{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$. If $(P)_{3,3}=0$, then $P \equiv\left(\operatorname{compell}_{\mathrm{ProjCo}}(z, p)\right)(P)$. The theorem is a consequence of (2).
(4) Let us consider elements $P, O$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{1}\right)$. Suppose $O=\langle 0$, $1,0\rangle$. Then $\left(\operatorname{addell}_{\operatorname{ProjCo}}(z, p)\right)\left(P,\left(\operatorname{compell}_{\mathrm{ProjCo}}(z, p)\right)(P)\right) \equiv O$. The theorem is a consequence of (2) and (3).
Let $p$ be a 5 or greater prime number and $z$ be an element of the parameters
 of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$ is defined by the term
(Def. 1) $\left\{P\right.$, where $P$ is an element of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right):(P)_{\mathbf{3}, 3}=1$ or $P=\langle 0$, $1,0\rangle\}$.
Now we state the proposition:
(5) $\langle 0,1,0\rangle$ is an element of $\operatorname{EC-SetAffCo(z,p).~}$

Let us consider a 5 or greater prime number $p$, an element $z$ of the parameters of elliptic curve $p$, and an element $P$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$. Now we state the propositions:
(6) The represent point of $P$ is an element of EC-SetAffCo $(z, p)$.
(7) If $P \in \operatorname{EC-SetAffCo}(z, p)$, then the represent point of $P=P$. The theorem is a consequence of (1).
Let us consider elements $P, O$ of $\mathrm{EC}_{\mathrm{SetProjCo}}\left((z)_{\mathbf{1}}\right)$. Now we state the propositions:
(8) If $O=\langle 0,1,0\rangle$ and $P \not \equiv O$, then (the represent point of $P)_{\mathbf{3}, 3}=1$. The theorem is a consequence of (2).
(9) Suppose $O=\langle 0,1,0\rangle$ and the represent point of $P \equiv O$. Then
(i) the represent point of $P=O$, and
(ii) $P \equiv O$.

The theorem is a consequence of (2) and (1).
(10) Let us consider an element $P$ of $\operatorname{ProjCo}(\mathrm{GF}(p))$. Then the represent point of the represent point of $P=$ the represent point of $P$. The theorem is a consequence of (1).
(11) Let us consider elements $P, Q$ of $\mathrm{EC}_{\mathrm{SetProjCo}}\left((z)_{\mathbf{1}}\right)$. Suppose the represent point of $P \equiv$ the represent point of $Q$. Then the represent point of $P=$ the represent point of $Q$. The theorem is a consequence of (10).

Let $p$ be a 5 or greater prime number and $z$ be an element of the parameters of elliptic curve $p$. The functor compell- $\operatorname{AffCo}(z, p)$ yielding a unary operation on EC-SetAffCo $(z, p)$ is defined by
(Def. 2) for every element $P$ of EC-SetAffCo $(z, p)$, it $(P)=$ the represent point of $\left(\right.$ compell $\left._{\text {ProjCo }}(z, p)\right)(P)$.
Let $F$ be a function from EC-SetAffCo $(z, p)$ into $\mathrm{EC}-\operatorname{SetAffCo}(z, p)$ and $P$ be an element of EC-SetAffCo $(z, p)$. Let us observe that the functor $F(P)$ yields an element of EC-SetAffCo $(z, p)$. The functor addell- $\operatorname{AffCo}(z, p)$ yielding a binary operation on EC-SetAffCo $(z, p)$ is defined by
(Def. 3) for every elements $P, Q$ of EC-SetAffCo $(z, p), i t(P, Q)=$ the represent point of $\left(\operatorname{addell}_{\mathrm{ProjCo}}(z, p)\right)(P, Q)$.
Let $F$ be a function from EC-SetAffCo $(z, p) \times \operatorname{EC-SetAffCo}(z, p)$ into
EC-SetAffCo $(z, p)$ and $Q, R$ be elements of EC-SetAffCo $(z, p)$. Let us observe that the functor $F(Q, R)$ yields an element of EC-SetAffCo $(z, p)$. Now we state the proposition:
(12) Let us consider elements $P, O$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$. Suppose $O=\langle 0,1$, $0\rangle$. Then
(i) $\left(\right.$ addell $\left._{\operatorname{ProjCo}}(z, p)\right)(P, O) \equiv P$, and
(ii) $\left(\right.$ addell $\left._{\text {ProjCo }}(z, p)\right)(O, P) \equiv P$.

Let us consider elements $P, O$ of $\operatorname{EC-SetAffCo}(z, p)$. Now we state the propositions:
(13) If $O=\langle 0,1,0\rangle$, then (addell- $\operatorname{AffCo}(z, p))(O, P)=P$. The theorem is a consequence of (12) and (7).
(14) If $O=\langle 0,1,0\rangle$, then (addell- $\operatorname{AffCo}(z, p))(P, O)=P$. The theorem is a consequence of (12) and (7).
(15) Let us consider an element $O$ of EC-SetAffCo $(z, p)$. Suppose $O=\langle 0,1$, $0\rangle$. Then $O$ is a unity w.r.t. addell- $\mathrm{AffCo}(z, p)$. The theorem is a consequence of (13) and (14).
(16) Let us consider elements $P, O$ of EC-SetAffCo $(z, p)$. Suppose $O=\langle 0,1$, $0\rangle$. Then $($ addell- $-\operatorname{AffCo}(z, p))(P,(\operatorname{compell}-\operatorname{AffCo}(z, p))(P))=O$. The theorem is a consequence of $(7),(4)$, and (2).

## 2. Commutative Property of Operations of Points on Elliptic Curve

Now we state the propositions:
(17) Let us consider a 5 or greater prime number $p$, an element $z$ of the parameters of elliptic curve $p$, and elements $P, Q, O, P_{3}, Q_{3}$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$. Suppose $O=\langle 0,1,0\rangle$ and $P \not \equiv O$ and $Q \not \equiv O$ and $P \not \equiv Q$. Suppose $P_{3}=\left(\operatorname{addell}_{\mathrm{ProjCo}}(z, p)\right)(P, Q)$ and $Q_{3}=\left(\operatorname{addell}_{\mathrm{ProjCo}}(z, p)\right)(Q, P)$. Then
(i) $\left(Q_{3}\right)_{\mathbf{1}, 3}=-\left(P_{3}\right)_{\mathbf{1}, 3}$, and
(ii) $\left(Q_{3}\right)_{\mathbf{2}, 3}=-\left(P_{3}\right)_{\mathbf{2}, 3}$, and
(iii) $\left(Q_{3}\right)_{\mathbf{3}, 3}=-\left(P_{3}\right)_{\mathbf{3}, 3}$.

Proof: Reconsider $g_{2}=2 \bmod p$ as an element of $\operatorname{GF}(p)$. Set $g f_{1 P Q}=$ $(Q)_{\mathbf{2}, 3} \cdot\left((P)_{\mathbf{3}, 3}\right)-(P)_{\mathbf{2}, 3} \cdot\left((Q)_{\mathbf{3}, 3}\right)$. Set $g f_{2 P Q}=(Q)_{\mathbf{1}, 3} \cdot\left((P)_{\mathbf{3}, 3}\right)-(P)_{\mathbf{1}, 3}$. $\left((Q)_{\mathbf{3}, 3}\right)$. Set $g f_{3 P Q}=g f_{1 P Q}{ }^{2} \cdot\left((P)_{\mathbf{3}, 3}\right) \cdot\left((Q)_{\mathbf{3}, 3}\right)-g f_{2 P Q}^{3}-g_{2} \cdot\left(g f_{2 P Q}{ }^{2}\right)$. $\left((P)_{\mathbf{1}, 3}\right) \cdot\left((Q)_{\mathbf{3}, 3}\right)$. Set $g f_{1 Q P}=(P)_{\mathbf{2}, 3} \cdot\left((Q)_{\mathbf{3}, 3}\right)-(Q)_{\mathbf{2}, 3} \cdot\left((P)_{\mathbf{3}, 3}\right)$. Set $g f_{2 Q P}=(P)_{\mathbf{1}, 3} \cdot\left((Q)_{\mathbf{3}, 3}\right)-(Q)_{\mathbf{1}, 3} \cdot\left((P)_{\mathbf{3}, 3}\right)$. Set $g f_{3 Q P}=g f_{1 Q P}{ }^{2} \cdot\left((Q)_{\mathbf{3}, 3}\right)$. $\left((P)_{\mathbf{3}, 3}\right)-g f_{2 Q P}^{3}-g_{2} \cdot\left(g f_{2 Q P}^{2}\right) \cdot\left((Q)_{\mathbf{1}, 3}\right) \cdot\left((P)_{\mathbf{3}, 3}\right) \cdot g f_{3 Q P}=g f_{3 P Q} \cdot\left(Q_{3}\right)_{\mathbf{1}, 3}=$ $-\left(P_{3}\right)_{\mathbf{1}, 3} \cdot\left(Q_{3}\right)_{\mathbf{2}, 3}=-\left(P_{3}\right)_{\mathbf{2}, 3} \cdot\left(Q_{3}\right)_{\mathbf{3}, 3}=-\left(P_{3}\right)_{\mathbf{3}, 3} . \square$
(18) Let us consider elements $P, Q, O, P_{3}, Q_{3}$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$, and an element $d$ of $\operatorname{GF}(p)$. Suppose $O=\langle 0,1,0\rangle$ and $d \neq 0_{\mathrm{GF}(p)}$ and $(Q)_{\mathbf{1}, 3}=d \cdot\left((P)_{\mathbf{1}, 3}\right)$ and $(Q)_{\mathbf{2}, 3}=d \cdot\left((P)_{\mathbf{2}, 3}\right)$ and $(Q)_{\mathbf{3}, 3}=d \cdot\left((P)_{\mathbf{3}, 3}\right)$ and $P \not \equiv O$ and $Q \not \equiv O$ and $P \equiv Q$ and $P_{3}=\left(\operatorname{addell}_{\operatorname{ProjCo}}(z, p)\right)(P, Q)$ and $Q_{3}=\left(\operatorname{addell}_{\mathrm{ProjCo}}(z, p)\right)(Q, P)$. Then
(i) $\left(Q_{3}\right)_{\mathbf{1}, 3}=d^{6} \cdot\left(\left(P_{3}\right)_{\mathbf{1}, 3}\right)$, and
(ii) $\left(Q_{3}\right)_{\mathbf{2}, 3}=d^{6} \cdot\left(\left(P_{3}\right)_{\mathbf{2}, 3}\right)$, and
(iii) $\left(Q_{3}\right)_{\mathbf{3}, 3}=d^{6} \cdot\left(\left(P_{3}\right)_{\mathbf{3}, 3}\right)$.
(19) Let us consider elements $P, Q$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$.

Then $\left(\operatorname{addell}_{\mathrm{ProjCo}}(z, p)\right)(P, Q) \equiv\left(\operatorname{addell}_{\mathrm{ProjCo}}(z, p)\right)(Q, P)$. The theorem is a consequence of (17) and (18).
(20) Let us consider elements $P, Q$ of EC-SetAffCo $(z, p)$.

Then (addell- $\operatorname{AffCo}(z, p))(P, Q)=(\operatorname{addell}-\operatorname{AffCo}(z, p))(Q, P)$. The theorem is a consequence of (19).
Let $p$ be a 5 or greater prime number and $z$ be an element of the parameters of elliptic curve $p$. One can verify that addell- $\operatorname{AffCo}(z, p)$ is non empty, commutative, and unital.

The functor $0-\mathrm{EC}(z, p)$ yielding an element of $\mathrm{EC}-\operatorname{Set} \mathrm{AffCo}(z, p)$ is defined by the term
(Def. 4) $\langle 0,1,0\rangle$.
Let us consider $p$ and $z$. Let us observe that $\langle\mathrm{EC}-\operatorname{Set} \operatorname{AffCo}(z, p)$, addell-AffCo
$(z, p)\rangle$ is Abelian and $\langle\mathrm{EC}-\operatorname{Set} \operatorname{AffCo}(z, p)$, addell- $\mathrm{AffCo}(z, p), 0-\mathrm{EC}(z, p)\rangle$ is left zeroed and right zeroed and $\langle\mathrm{EC}-\operatorname{Set} \operatorname{AffCo}(z, p)$, addell- $\operatorname{AffCo}(z, p), 0-\mathrm{EC}(z, p)\rangle$ is complementable.

Let $p$ be a 5 or greater prime number and $z$ be an element of the parameters of elliptic curve $p$. One can verify that $\langle\mathrm{EC}-\operatorname{Set} \operatorname{AffCo}(z, p)$, addell- $\operatorname{AffCo}(z, p)\rangle$ is unital.

Now we state the proposition:
(21) Let us consider a 5 or greater prime number $p$, and an element $z$ of the parameters of elliptic curve $p$. Then $\mathbf{1}_{\langle\operatorname{EC}-\operatorname{SetAffCo}(z, p), \operatorname{addell}-\operatorname{AffCo}(z, p)\rangle}=$ $0-\mathrm{EC}(z, p)$. The theorem is a consequence of (15).
Let $p$ be a 5 or greater prime number and $z$ be an element of the parameters of elliptic curve $p$. One can check that $\langle\mathrm{EC}-\operatorname{Set} \operatorname{AffCo}(z, p)$, addell- $\operatorname{AffCo}(z, p)\rangle$ is commutative, group-like, and non empty.

Now we state the propositions:
(22) Let us consider elements $P_{1}, P_{2}, Q$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$. Suppose $P_{1} \equiv$ $P_{2}$. Then $\left(\right.$ addell $\left._{\text {ProjCo }}(z, p)\right)\left(P_{1}, Q\right) \equiv\left(\right.$ addell $\left._{\operatorname{ProjCo}}(z, p)\right)\left(P_{2}, Q\right)$. The theorem is a consequence of (19).
(23) Let us consider elements $P, Q_{1}, Q_{2}$ of $\operatorname{EC}_{\text {SetProjCo }}\left((z)_{1}\right)$. Suppose $Q_{1} \equiv$ $Q_{2}$. Then $\left(\operatorname{addell}_{\operatorname{ProjCo}}(z, p)\right)\left(P, Q_{1}\right) \equiv\left(\operatorname{addell}_{\operatorname{ProjCo}}(z, p)\right)\left(P, Q_{2}\right)$. The theorem is a consequence of (19) and (22).
(24) Let us consider elements $P_{1}, P_{2}, Q_{1}, Q_{2}$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{1}\right)$. Suppose $P_{1} \equiv P_{2}$ and $Q_{1} \equiv Q_{2}$. Then (addell $\left.{ }_{\text {ProjCo }}(z, p)\right)\left(P_{1}, Q_{1}\right) \equiv$ (addell $\left.{ }_{\mathrm{ProjCo}}(z, p)\right)\left(P_{2}, Q_{2}\right)$. The theorem is a consequence of (22) and (23).
(25) Let us consider elements $P, O$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$. Suppose $O=\langle 0,1$, $0\rangle$. Then $P \equiv O$ if and only if $\left(\right.$ compell $\left._{\mathrm{ProjCo}}(z, p)\right)(P) \equiv O$.
(26) Let us consider elements $P, Q$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$, and an element $a$ of $\mathrm{GF}(p)$. Suppose $a \neq 0_{\mathrm{GF}(p)}$ and $(P)_{\mathbf{1}, 3}=a \cdot\left((Q)_{\mathbf{1}, 3}\right)$ and $(P)_{\mathbf{2}, 3}=$ $a \cdot\left((Q)_{\mathbf{2}, 3}\right)$ and $(P)_{\mathbf{3}, 3}=a \cdot\left((Q)_{\mathbf{3}, 3}\right)$. Then $P \equiv Q$.
(27) Let us consider elements $P, Q$ of $\operatorname{EC}_{\text {SetProjCo }}\left((z)_{1}\right)$, and elements $g_{2}$, $g f_{1}, g f_{2}, g f_{3}$ of $\mathrm{GF}(p)$. Suppose $P \not \equiv Q$ and $(P)_{\mathbf{3}, 3}=1$ and $(Q)_{\mathbf{3}, 3}=1$ and $g_{2}=2 \bmod p$ and $g f_{1}=(Q)_{\mathbf{2}, 3}-(P)_{\mathbf{2}, 3}$ and $g f_{2}=(Q)_{\mathbf{1}, 3}-(P)_{\mathbf{1}, 3}$ and $g f_{3}=g f_{1}^{2}-g f_{2}^{3}-g_{2} \cdot\left(g f_{2}^{2}\right) \cdot\left((P)_{1,3}\right)$. Then $\left(\operatorname{addell}_{\text {ProjCo }}(z, p)\right)(P, Q)=$ $\left\langle g f_{2} \cdot g f_{3}, g f_{1} \cdot\left(g f_{2}^{2} \cdot\left((P)_{\mathbf{1}, 3}\right)-g f_{3}\right)-g f_{2}^{3} \cdot\left((P)_{\mathbf{2}, 3}\right), g f_{2}^{3}\right\rangle$. The theorem is a consequence of (2).
(28) Let us consider elements $P, Q$ of $\operatorname{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$, and elements $g_{2}$, $g_{3}, g_{4}, g_{8}, g f_{1}, g f_{2}, g f_{3}, g f_{4}$ of $\operatorname{GF}(p)$. Suppose $P \equiv Q$ and $(P)_{3,3}=1$ and $(Q)_{\mathbf{3}, 3}=1$ and $g_{2}=2 \bmod p$ and $g_{3}=3 \bmod p$ and $g_{4}=4 \bmod p$ and $g_{8}=$
$8 \bmod p$ and $g f_{1}=(z)_{\mathbf{1}}+g_{3} \cdot\left(\left((P)_{\mathbf{1}, 3}\right)^{2}\right)$ and $g f_{2}=(P)_{\mathbf{2}, 3}$ and $g f_{3}=(P)_{\mathbf{1}, 3}$. $\left((P)_{\mathbf{2}, 3}\right) \cdot g f_{2}$ and $g f_{4}=g f_{1}^{2}-g_{8} \cdot g f_{3}$. Then $\left(\operatorname{addell}{ }_{\text {ProjCo }}(z, p)\right)(P, Q)=$ $\left\langle g_{2} \cdot g f_{4} \cdot g f_{2}, g f_{1} \cdot\left(g_{4} \cdot g f_{3}-g f_{4}\right)-g_{8} \cdot\left(\left((P)_{\mathbf{2}, 3}\right)^{2}\right) \cdot\left(g f_{2}^{2}\right), g_{8} \cdot\left(g f_{2}^{3}\right)\right\rangle$. The theorem is a consequence of (2).
Let us consider elements $P, Q$ of $\mathrm{EC}_{\mathrm{SetProjCo}}\left((z)_{\mathbf{1}}\right)$. Now we state the propositions:
(29) Suppose $(P)_{3,3}=1$ and $(Q)_{\mathbf{3}, 3}=1$.

Then $\left(\right.$ compell $\left._{\text {ProjCo }}(z, p)\right)\left(\left(\operatorname{addell}_{\text {ProjCo }}(z, p)\right)(P, Q)\right) \equiv\left(\operatorname{addell}_{\operatorname{ProjCo}}(z, p)\right)$ $\left(\left(\right.\right.$ compell $\left._{\text {ProjCo }}(z, p)\right)(P),\left(\right.$ compell $\left.\left._{\text {ProjCo }}(z, p)\right)(Q)\right)$. The theorem is a consequence of (27), (28), and (26).
(30) $\quad\left(\operatorname{compell}_{\operatorname{ProjCo}}(z, p)\right)\left(\left(\operatorname{addell}_{\operatorname{ProjCo}}(z, p)\right)(P, Q)\right) \equiv\left(\operatorname{addell}_{\operatorname{ProjCo}}(z, p)\right)$ $\left(\left(\right.\right.$ compell $\left._{\mathrm{ProjCo}}(z, p)\right)(P),\left(\right.$ compell $\left.\left._{\mathrm{ProjCo}}(z, p)\right)(Q)\right)$. The theorem is a consequence of (25), (8), (29), (24), and (2).
(31) Let us consider elements $P, O$ of $\mathrm{EC}_{\text {SetProjCo }}\left((z)_{\mathbf{1}}\right)$. Suppose $O=\langle 0,1$, $0\rangle$ and $P \not \equiv O$. Then $(P)_{\mathbf{2}, 3}=0_{\mathrm{GF}(p)}$ if and only if $\left(\right.$ addell $\left._{\text {ProjCo }}(z, p)\right)(P, P) \equiv O$.
Proof: Reconsider $g_{8}=8 \bmod p$ as an element of $\operatorname{GF}(p)$.
$\left(\left(\text { addell }_{\text {ProjCo }}(z, p)\right)(P, P)\right)_{\mathbf{3}, 3}=0 . g_{8} \neq 0_{\mathrm{GF}(p)} .(P)_{\mathbf{3}, 3} \neq 0$ by [4, (23)], 5, (28)].

## References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ s10817-017-9440-6
[3] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Number 265 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.
[4] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Set of points on elliptic curve in projective coordinates. Formalized Mathematics, 19(3):131-138, 2011. doi:10.2478/v10037-011-0021-6
[5] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Operations of points on elliptic curve in proiective coordinates. Formalized Mathematics, 20(1):87-95, 2012. doi 10.2478/v10037-012-0012-2
[6] Artur Korniłowicz. Recursive definitions. Part II Formalized Mathematics, 12(2):167-172, 2004.


[^0]:    ${ }^{1}$ The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto: skoch02@students.uni-mainz.de

[^1]:    ${ }^{1}$ The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto: skoch02@students.uni-mainz.de

[^2]:    ${ }^{1}$ The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto: skoch02@students.uni-mainz.de

[^3]:    ${ }^{1}$ This work was supported by JSPS KAKENHI Grant Numbers JP15K00183 and JP17K00182.

