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On the Intersection of Fields F with F [X ]

Christoph Schwarzweller
Institute of Informatics
University of Gdańsk

Poland

Summary. This is the third part of a four-article series containing a Mizar
[3], [1], [2] formalization of Kronecker’s construction about roots of polynomials in
field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there
exists a field extension E of F such that p has a root over E. The formalization
follows Kronecker’s classical proof using F [X]/<p> as the desired field extension
E [6], [4], [5].

In the first part we show that an irreducible polynomial p ∈ F [X]\F has
a root over F [X]/<p>. Note, however, that this statement cannot be true in
a rigid formal sense: We do not have F ⊆ F [X]/< p> as sets, so F is not
a subfield of F [X]/<p>, and hence formally p is not even a polynomial over
F [X]/<p>. Consequently, we translate p along the canonical monomorphism
φ : F −→ F [X]/<p> and show that the translated polynomial φ(p) has a root
over F [X]/<p>.

Because F is not a subfield of F [X]/<p> we construct in the second part the
field (E \φF )∪F for a given monomorphism φ : F −→ E and show that this field
both is isomorphic to F and includes F as a subfield. In the literature this part of
the proof usually consists of saying that “one can identify F with its image φF in
F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to
do so we need to assume that F ∩E = ∅, in particular Kronecker’s construction
can be formalized for fields F with F ∩ F [X] = ∅.

Surprisingly, as we show in this third part, this condition is not automatically
true for arbitrary fields F : With the exception of Z2 we construct for every field
F an isomorphic copy F ′ of F with F ′ ∩ F ′[X] 6= ∅. We also prove that for
Mizar’s representations of Zn, Q and R we have Zn ∩ Zn[X] = ∅, Q ∩ Q[X] = ∅
and R ∩ R[X] = ∅, respectively.

In the fourth part we finally define field extensions: E is a field extension
of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets,
and thus a polynomial p over F is also a polynomial over E. We then apply the
construction of the second part to F [X]/<p> with the canonical monomorphism
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φ : F −→ F [X]/<p>. Together with the first part this gives – for fields F with
F ∩ F [X] = ∅ – a field extension E of F in which p ∈ F [X]\F has a root.

MSC: 12E05 12F05 68T99 03B35

Keywords: roots of polynomials; field extensions; Kronecker’s construction

MML identifier: FIELD 3, version: 8.1.09 5.59.1363

1. Preliminaries

Now we state the propositions:

(1) Let us consider a natural number n, and an object x. If n = {x}, then
x = 0.

(2) Let us consider a natural number n, and objects x, y. If n = {x, y} and
x 6= y, then x = 0 and y = 1 or x = 1 and y = 0.

(3) Let us consider a natural number n. If 1 < n, then 0Z/n = 0.

(4) 1Z/2 + 1Z/2 = 0Z/2. The theorem is a consequence of (3).

(5) Let us consider a ring R, and a non zero natural number n. Then
powerR(0R, n) = 0R.

One can verify that Z/3 is non degenerated and almost left invertible and
there exists a field which is finite and there exists a field which is infinite.

Let L be a non empty double loop structure. We say that L is almost trivial
if and only if

(Def. 1) for every element a of L, a = 1L or a = 0L.

Observe that every ring which is degenerated is also almost trivial and there
exists a field which is non almost trivial.

Now we state the proposition:

(6) Let us consider a ring R. Then R is almost trivial if and only if R is
degenerated or R and Z/2 are isomorphic. The theorem is a consequence
of (4).

Let R be a ring and a be an element of R. We say that a is trivial if and
only if

(Def. 2) a = 1R or a = 0R.

Let R be a non almost trivial ring. One can verify that there exists an element
of R which is non trivial.

Let R be a ring. We say that R is polynomial-disjoint if and only if

(Def. 3) ΩR ∩ ΩPolyRing(R) = ∅.

http://zbmath.org/classification/?q=cc:12E05
http://zbmath.org/classification/?q=cc:12F05
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On the intersection of fields F with F [X] 225

2. Some Negative Results

Let R be a non almost trivial ring, x be a non trivial element of R, and o

be an object. The functor carr(x, o) yielding a non empty set is defined by the
term

(Def. 4) ΩR \ {x} ∪ {o}.
Let a, b be elements of carr(x, o). The functor addR(a, b) yielding an element

of carr(x, o) is defined by the term

(Def. 5)



(the addition of R)(x, x), if a = o and b = o and
(the addition of R)(x, x) 6= x,

(the addition of R)(a, x), if a 6= o and b = o and
(the addition of R)(a, x) 6= x,

(the addition of R)(x, b), if a = o and b 6= o and
(the addition of R)(x, b) 6= x,

(the addition of R)(a, b), if a 6= o and b 6= o and
(the addition of R)(a, b) 6= x,

o, otherwise.
The functor addR(x, o) yielding a binary operation on carr(x, o) is defined

by

(Def. 6) for every elements a, b of carr(x, o), it(a, b) = addR(a, b).

Let a, b be elements of carr(x, o). The functor multR(a, b) yielding an element
of carr(x, o) is defined by the term

(Def. 7)



(the multiplication of R)(x, x), if a = o and b = o and
(the multiplication of R)(x, x) 6= x,

(the multiplication of R)(a, x), if a 6= o and b = o and
(the multiplication of R)(a, x) 6= x,

(the multiplication of R)(x, b), if a = o and b 6= o and
(the multiplication of R)(x, b) 6= x,

(the multiplication of R)(a, b), if a 6= o and b 6= o and
(the multiplication of R)(a, b) 6= x,

o, otherwise.
The functor multR(x, o) yielding a binary operation on carr(x, o) is defined

by

(Def. 8) for every elements a, b of carr(x, o), it(a, b) = multR(a, b).

Let F be a non almost trivial field and x be a non trivial element of F . The
functor ExField(x, o) yielding a strict double loop structure is defined by

(Def. 9) the carrier of it = carr(x, o) and the addition of it = addR(x, o) and
the multiplication of it = multR(x, o) and the one of it = 1F and the zero
of it = 0F .
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One can check that ExField(x, o) is non degenerated and ExField(x, o) is
Abelian.

From now on o denotes an object, F denotes a non almost trivial field, and
x, a denote elements of F .

Let us consider a non trivial element x of F and an object o. Now we state
the propositions:

(7) If o /∈ ΩF , then ExField(x, o) is right zeroed and right complementable.

(8) If o /∈ ΩF , then ExField(x, o) is add-associative.

Let F be a non almost trivial field, x be a non trivial element of F , and o

be an object. One can verify that ExField(x, o) is commutative.
Let us consider a non trivial element x of F and an object o. Now we state

the propositions:

(9) If o /∈ ΩF , then ExField(x, o) is well unital.

(10) If o /∈ ΩF , then ExField(x, o) is associative.

(11) If o /∈ ΩF , then ExField(x, o) is distributive.

(12) If o /∈ ΩF , then ExField(x, o) is almost left invertible.

(13) Let us consider a non trivial element x of F , and a ring P . Suppose
P = ExField(x, 〈0F , 1F 〉). Then 〈0F , 1F 〉 ∈ ΩP ∩ ΩPolyRing(P ).

(14) There exists a field K such that ΩK ∩ ΩPolyRing(K) 6= ∅. The theorem is
a consequence of (7), (8), (10), (9), (12), (11), and (13).

In the sequel n denotes a non zero natural number.

(15) There exists a field K and there exists a polynomial p over K such that
deg p = n and p ∈ ΩK ∩ΩPolyRing(K). The theorem is a consequence of (7),
(8), (10), (9), (12), (11), and (5).

(16) There exists a field K and there exists an object x such that x /∈
rng(the canonical homomorphism of K into quotient field) and x ∈ ΩK ∩
ΩPolyRing(K). The theorem is a consequence of (7), (8), (10), (9), (12), (11),
and (13).

Let us note that there exists a field which is non polynomial-disjoint.
Let F be a non almost trivial field, x be a non trivial element of F , and o be

an object. The functor isoR(x, o) yielding a function from F into ExField(x, o)
is defined by

(Def. 10) it(x) = o and for every element a of F such that a 6= x holds it(a) = a.

One can check that isoR(x, o) is onto.
Now we state the propositions:

(17) Let us consider a non trivial element x of F , and an object o. If o /∈ ΩF ,
then isoR(x, o) is one-to-one.
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(18) Let us consider a non trivial element x of F , and an object u. Suppose
u /∈ ΩF . Then isoR(x, u) is additive, multiplicative, and unity-preserving.
The theorem is a consequence of (7), (10), (8), (9), and (11).

Let us consider a non almost trivial field F . Now we state the propositions:

(19) There exists a non polynomial-disjoint field K such that K and F are
isomorphic. The theorem is a consequence of (7), (8), (9), (10), (11), (12),
(13), and (18).

(20) There exists a non polynomial-disjoint field K and there exists a poly-
nomial p over K such that K and F are isomorphic and deg p = n and
p ∈ ΩK ∩ΩPolyRing(K). The theorem is a consequence of (7), (8), (10), (9),
(12), (11), (5), and (18).

3. An Intuitive “Solution”

Let R be a ring. We say that R is flat if and only if

(Def. 11) for every elements a, b of R, rk(a) = rk(b).

One can check that there exists a ring which is flat.
Now we state the proposition:

(21) Let us consider a flat ring R, and a polynomial p over R. Then p /∈ ΩR.

Note that every flat ring is polynomial-disjoint.

(22) Let us consider a non degenerated ring R. Suppose 0 ∈ the carrier of R.
Then R is not flat.

One can check that ZR is non flat and FQ is non flat and RF is non flat.
Let n be a non trivial natural number. One can verify that Z/n is non flat.

4. Some Positive Results

Now we state the proposition:

(23) Let us consider a ring R, a polynomial p over R, and a natural number
n. Then p 6= n.

Let n be a non trivial natural number. Let us observe that Z/n is polynomial-
disjoint and there exists a finite field which is polynomial-disjoint.

(24) Let us consider a ring R, a polynomial p over R, and an integer i. Then
p 6= i. The theorem is a consequence of (23).

One can verify that ZR is polynomial-disjoint.

(25) Let us consider a ring R, a polynomial p over R, and a rational number
r. Then p 6= r.
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Observe that FQ is polynomial-disjoint. Now we state the proposition:

(26) Let us consider a ring R, a polynomial p over R, and a real number r.
Then p 6= r.

Note that RF is polynomial-disjoint and there exists an infinite field which
is polynomial-disjoint.

Let R be a polynomial-disjoint ring. Let us observe that PolyRing(R) is
polynomial-disjoint.

Let F be a field and p be an element of ΩPolyRing(F ). One can check that
PolyRing(F )
{p}–ideal is polynomial-disjoint.

Let F be a polynomial-disjoint field and p be a non constant element of
the carrier of PolyRing(F ). One can check that PolyRing(p) is polynomial-
disjoint.
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Poland

Summary. This is the fourth part of a four-article series containing a
Mizar [3], [2], [1] formalization of Kronecker’s construction about roots of po-
lynomials in field extensions, i.e. that for every field F and every polynomial
p ∈ F [X]\F there exists a field extension E of F such that p has a root over
E. The formalization follows Kronecker’s classical proof using F [X]/<p> as the
desired field extension E [6], [4], [5].

In the first part we show that an irreducible polynomial p ∈ F [X]\F has
a root over F [X]/<p>. Note, however, that this statement cannot be true in
a rigid formal sense: We do not have F ⊆ F [X]/< p> as sets, so F is not
a subfield of F [X]/<p>, and hence formally p is not even a polynomial over
F [X]/<p>. Consequently, we translate p along the canonical monomorphism
φ : F −→ F [X]/<p> and show that the translated polynomial φ(p) has a root
over F [X]/<p>.

Because F is not a subfield of F [X]/<p> we construct in the second part the
field (E \φF )∪F for a given monomorphism φ : F −→ E and show that this field
both is isomorphic to F and includes F as a subfield. In the literature this part of
the proof usually consists of saying that “one can identify F with its image φF in
F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to
do so we need to assume that F ∩E = ∅, in particular Kronecker’s construction
can be formalized for fields F with F ∩ F [X] = ∅.

Surprisingly, as we show in the third part, this condition is not automatically
true for arbitrary fields F : With the exception of Z2 we construct for every field
F an isomorphic copy F ′ of F with F ′ ∩ F ′[X] 6= ∅. We also prove that for
Mizar’s representations of Zn, Q and R we have Zn ∩ Zn[X] = ∅, Q ∩ Q[X] = ∅
and R ∩ R[X] = ∅, respectively.

In this fourth part we finally define field extensions: E is a field extension
of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets,
and thus a polynomial p over F is also a polynomial over E. We then apply the
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construction of the second part to F [X]/<p> with the canonical monomorphism
φ : F −→ F [X]/<p>. Together with the first part this gives – for fields F with
F ∩ F [X] = ∅ – a field extension E of F in which p ∈ F [X]\F has a root.

MSC: 12E05 12F05 68T99 03B35

Keywords: roots of polynomials; field extensions; Kronecker’s construction

MML identifier: FIELD 4, version: 8.1.09 5.59.1363

1. Preliminaries

From now on K, F , E denote fields and R, S denote rings.
Now we state the proposition:

(1) K is a subfield of K.

Let R be a non degenerated ring. One can verify that every subring of R is
non degenerated.

Let R be a commutative ring. Note that every subring of R is commutative.
Let R be an integral domain. Let us observe that every subring of R is

integral domain-like.
Now we state the proposition:

(2) Let us consider a subring S of R, a finite sequence F of elements of R,
and a finite sequence G of elements of S. If F = G, then

∑
F =

∑
G.

2. Ring and Field Extensions

Let R, S be rings. We say that S is R-extending if and only if

(Def. 1) R is a subring of S.

Let R be a ring. Note that there exists a ring which is R-extending.
Let R be a commutative ring. One can check that there exists a commutative

ring which is R-extending.
Let R be an integral domain. One can verify that there exists an integral

domain which is R-extending.
Let F be a field. Let us observe that there exists a field which is F -extending.
Let R be a ring.
A ring extension of R is an R-extending ring. Let R be a commutative ring.
A commutative ring extension of R is an R-extending commutative ring. Let

R be an integral domain.
A domain ring extension of R is an R-extending integral domain. Let F be

a field.
An extension of F is an F -extending field. Now we state the propositions:
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(3) R is a ring extension of R.

(4) Every commutative ring is a commutative ring extension of R.

(5) Every integral domain is a domain ring extension of R.

(6) F is an extension of F .

(7) E is an extension of F if and only if F is a subfield of E.

One can check that CF is (RF)-extending and RF is (FQ)-extending and FQ
is (ZR)-extending.

Let R be a ring and S be a ring extension of R. One can check that every
ring extension of S is R-extending.

Let R be a commutative ring and S be a commutative ring extension of R.
One can verify that every commutative ring extension of S is R-extending.

Let R be an integral domain and S be a domain ring extension of R. Let us
observe that every domain ring extension of S is R-extending.

Let F be a field and E be an extension of F . Observe that every extension
of E is F -extending.

Let R be a non degenerated ring. Observe that every ring extension of R is
non degenerated.

3. Extensions of Polynomial Rings

Now we state the propositions:

(8) Let us consider a ring extension S of R. Then every polynomial over R
is a polynomial over S.

(9) Let us consider a subring R of S. Then every polynomial over R is
a polynomial over S.

(10) Let us consider a ring extension S ofR. Then the carrier of PolyRing(R) ⊆
the carrier of PolyRing(S). The theorem is a consequence of (8).

(11) If S is a ring extension of R, then 0PolyRing(S) = 0PolyRing(R).

(12) If S is a ring extension of R, then 0.S = 0.R. The theorem is a conse-
quence of (11).

(13) If S is a ring extension of R, then 1PolyRing(S) = 1PolyRing(R). The theorem
is a consequence of (12).

(14) Let us consider a ring extension S of R. Then 1.S = 1.R. The theorem
is a consequence of (13).

(15) Let us consider a ring extension S of R, polynomials p, q over R, and
polynomials p1, q1 over S. If p = p1 and q = q1, then p+ q = p1 + q1.

(16) Let us consider a ring extension S of R. Then the addition of PolyRing
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(R) = (the addition of PolyRing(S)) � (the carrier of PolyRing(R)). The
theorem is a consequence of (10) and (15).

(17) Let us consider a ring extension S of R, polynomials p, q over R, and
polynomials p1, q1 over S. If p = p1 and q = q1, then p ∗ q = p1 ∗ q1. The
theorem is a consequence of (2).

(18) Suppose S is a ring extension of R. Then the multiplication of PolyRing
(R) = (the multiplication of PolyRing(S)) � (the carrier of PolyRing(R)).
The theorem is a consequence of (10) and (17).

Let R be a ring and S be a ring extension of R. One can verify that
PolyRing(S) is (PolyRing(R))-extending. Now we state the propositions:

(19) Let us consider a ring R, and a ring extension S of R. Then PolyRing(S)
is a ring extension of PolyRing(R).

(20) Let us consider a ring extension S of R, an element p of the carrier of
PolyRing(R), and an element q of the carrier of PolyRing(S). If p = q,
then deg p = deg q. The theorem is a consequence of (11).

(21) Let us consider a non degenerated ring R, a ring extension S of R,
an element a of R, and an element b of S. If a = b, then rpoly(1, a) =
rpoly(1, b). The theorem is a consequence of (10).

4. Evaluation of Polynomials in Ring Extensions

Now we state the propositions:

(22) Let us consider an element a of S. Suppose S is a ring extension of R.
Then ExtEval(0.R, a) = 0S .

(23) Let us consider a non degenerated ring R, a ring extension S of R, and
an element a of S. Then ExtEval(1.R, a) = 1S .

(24) Let us consider a ring extension S of R, an element a of S, and polyno-
mials p, q over R. Then ExtEval(p+ q, a) = ExtEval(p, a) + ExtEval(q, a).

(25) Let us consider a commutative ring R, a commutative ring extension S of
R, an element a of S, and polynomials p, q over R. Then ExtEval(p∗q, a) =
ExtEval(p, a) · ExtEval(q, a).

(26) Let us consider a ring extension S of R, an element p of the carrier
of PolyRing(R), an element q of the carrier of PolyRing(S), and an ele-
ment a of S. If p = q, then ExtEval(p, a) = eval(q, a). The theorem is
a consequence of (11).

(27) Let us consider a ring extension S of R, an element p of the carrier of
PolyRing(R), an element q of the carrier of PolyRing(S), an element a of
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R, and an element b of S. If q = p and b = a, then eval(q, b) = eval(p, a).
The theorem is a consequence of (26).

Let R be a ring, S be a ring extension of R, p be an element of the carrier
of PolyRing(R), and a be an element of S. We say that a is a root of p in S if
and only if

(Def. 2) ExtEval(p, a) = 0S .

We say that p has a root in S if and only if

(Def. 3) there exists an element a of S such that a is a root of p in S.

The functor Roots(S, p) yielding a subset of S is defined by the term

(Def. 4) {a, where a is an element of S : a is a root of p in S}.

Now we state the proposition:

(28) Let us consider a ring extension S of R, and an element p of the carrier
of PolyRing(R). Then Roots(p) ⊆ Roots(S, p).

Let R be a ring, S be a non degenerated ring, and p be a polynomial over
R. We say that p splits in S if and only if

(Def. 5) there exists a non zero element a of S and there exists a product of linear
polynomials q of S such that p = a · q.

Now we state the proposition:

(29) Let us consider a field F , and a polynomial p over F . If deg p = 1, then
p splits in F .

5. The Degree of Field Extensions

Let R be a ring and S be a ring extension of R. The functor VecSp(S,R)
yielding a strict vector space structure over R is defined by

(Def. 6) the carrier of it = the carrier of S and the addition of it = the addition
of S and the zero of it = 0S and the left multiplication of it =
(the multiplication of S)�((the carrier of R)× (the carrier of S)).

Observe that VecSp(S,R) is non empty and VecSp(S,R) is Abelian, add-
associative, right zeroed, and right complementable and VecSp(S,R) is scalar
distributive, scalar associative, scalar unital, and vector distributive.

Now we state the proposition:

(30) Let us consider a ring extension S of R. Then VecSp(S,R) is a vector
space over R.

Let F be a field and E be an extension of F . The functor deg(E,F ) yielding
an integer is defined by the term
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(Def. 7)

{
dim(VecSp(E,F )), if VecSp(E,F ) is finite dimensional,
−1, otherwise.

Let us note that deg(E,F ) is a dim-like.
We say that E is F -finite if and only if

(Def. 8) VecSp(E,F ) is finite dimensional.

Observe that there exists an extension of F which is F -finite.
Let E be an F -finite extension of F . One can verify that deg(E,F ) is natural.

6. Kronecker’s Construction

Let F be a field and p be a non constant element of the carrier of PolyRing(F ).
Let us note that the carrier of PolyRing(p) is F -polynomial membered and
PolyRing(p) is F -polynomial membered.

Let p be an irreducible element of the carrier of PolyRing(F ). The func-
tor KroneckerIso(p) yielding a function from the carrier of PolyRing(p) into
the carrier of KroneckerField(F, p) is defined by

(Def. 9) for every element q of the carrier of PolyRing(p), it(q) =
[q]EqRel(PolyRing(F ),{p}–ideal).

Observe that KroneckerIso(p) is additive, multiplicative, unity-preserving,
one-to-one, and onto and KroneckerField(F, p) is (PolyRing(p))-homomorphic,
(PolyRing(p))-monomorphic, and (PolyRing(p))-isomorphic.

PolyRing(p) is (KroneckerField(F, p))-homomorphic, (KroneckerField(F, p))-
monomorphic, and (KroneckerField(F, p))-isomorphic and PolyRing(p) is F -
homomorphic and F -monomorphic.

Now we state the proposition:

(31) Let us consider a polynomial-disjoint field F , and a non constant element
f of the carrier of PolyRing(F ). Then there exists an extension E of F
such that f has a root in E.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[2] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar.
Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.

[3] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hie-
rarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Pa-
przycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and
Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information
Systems, pages 363–371, 2016. doi:10.15439/2016F520.

https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-015-9345-1
http://dx.doi.org/10.15439/2016F520


Field extensions and Kronecker’s construction 235

[4] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
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set of parallel edges with a single edge. That concept requires formalization and
this article provides subgraph modes that respectively remove loops, (directed)
parallel edges or both from a given (di)graph. “Much of graph theory is concer-
ned with the study of simple graphs” [4, p. 3] which results in many books only
studying simple graphs, even when graphs are more generally introduced in the
respective book (for example [11]).

The rather extensive preliminaries contain many theorems that would fit
well into earlier articles of the GLIB series, for example:

• The source and target of a directed edge in a graph are uniquely determi-
ned.

• A walk in a graph is uniquely determined by its vertex and edge sequence.

• Adding vertices to a graph doesn’t change adjacencies.

The next section introduces plain graphs. Graphs, as defined in [8], can
arbitrarily be expanded with decorators as done in [7]. Therefore for any non
empty set S the set containing all graphs with vertex and edge sets contained in
S does not exist because of possible decorators, even if S only contains a single
element. A graph is called plain if it does not contain additional decorators,
and then the set of all plain graphs with vertex and edge sets contained in S

can be constructed, which will be needed for graph enumeration at a later point
in time.

In the section after that the set of all loops of a graph is introduced as well
as a graph operator removing all loops from a given graph as a special case of
removing edges.

At the start of the following section, two equivalence relations are defined
on the edge set, where two edges are equivalent iff they are (directed) parallel.
Then modes are introduced to pick one edge out of each set of (directed) parallel
edges. Using such representative edge selections, the graphs with parallel edges
removed can be defined as induced subgraphs. While the directed and undirected
variants are formalized along each other, there are also some theorems focusing
on how they interact with each other.

This trend is continued in the last section, where the underlying simple
graphs are introduced as induced subgraphs on the representative edge selections
with the loops removed. Naturally, these subgraphs can also be constructed by
removing loops and then parallel edges from a graph or vice versa.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider sets X, Y. If Y ⊆ X, then X \ (X \ Y ) = Y.

(2) Let us consider a binary relation R, and a set X. Then

(i) (R�X)` = X�R`, and

(ii) (X�R)` = R`�X.

Let us consider a function f and a set Y. Now we state the propositions:

(3) dom(Y �f) = f−1(Y ).
Proof: For every object x, x ∈ dom(Y �f) iff x ∈ f−1(Y ). �

(4) Y �f = f� dom(Y �f). The theorem is a consequence of (3).

(5) Let us consider a one-to-one function f , and a set X. Then

(i) (f�X)−1 = X�f−1, and

(ii) (X�f)−1 = f−1�X.

The theorem is a consequence of (2).

(6) Let us consider a graph G, and objects e, x1, y1, x2, y2. Suppose e joins
x1 to y1 in G and e joins x2 to y2 in G. Then

(i) x1 = x2, and

(ii) y1 = y2.

Let G be a trivial graph. Let us observe that the vertices of G is trivial and
every graph which is trivial and non-directed-multi is also non-multi.

Let G be a trivial, non-directed-multi graph. Let us observe that the edges
of G is trivial.

Now we state the propositions:

(7) Let us consider a graph G, sets X, Y, and objects e, x, y. Suppose e
joins x to y in G and x ∈ X and y ∈ Y. Then e joins a vertex from X to
a vertex from Y in G.

(8) Let us consider a trivial graph G, and a graph H. Suppose the vertices
of H ⊆ the vertices of G and the edges of H ⊆ the edges of G. Then H is
trivial and subgraph of G.

(9) Let us consider a graph G. Then G ≈ G�(the graph selectors).

Let us consider a graph G, sets X, Y, and an object e. Now we state the
propositions:

(10) e joins a vertex from X and a vertex from Y in G if and only if e joins
a vertex from Y and a vertex from X in G.
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(11) e joins a vertex from X and a vertex from Y in G if and only if e joins
a vertex from X to a vertex from Y in G or e joins a vertex from Y to a
vertex from X in G.

Let us consider a graph G and objects e, v, w. Now we state the propositions:

(12) If e joins a vertex from {v} and a vertex from {w} in G, then e joins v
and w in G.

(13) If e joins a vertex from {v} to a vertex from {w} in G, then e joins v to
w in G.

(14) Let us consider a graph G, and objects v, w. Suppose v 6= w. Then

(i) G.edgesDBetween({v}, {w}) missesG.edgesDBetween({w}, {v}), and

(ii) G.edgesBetween({v}, {w}) = G.edgesDBetween({v}, {w})∪
G.edgesDBetween({w}, {v}).

The theorem is a consequence of (11).

(15) Let us consider a graph G, and a set X. Then G.edgesBetween(X,X) =
G.edgesDBetween(X,X). The theorem is a consequence of (11).

(16) Let us consider a graph G, and sets X, Y. Then G.edgesBetween(X,Y ) =
G.edgesBetween(Y,X). The theorem is a consequence of (10).

Let us consider a graph G. Now we state the propositions:

(17) G is loopless if and only if for every object v, there exists no object e
such that e joins v to v in G.
Proof: For every object v, there exists no object e such that e joins v
and v in G. �

(18) G is loopless if and only if for every object v, there exists no object e
such that e joins a vertex from {v} and a vertex from {v} in G.
Proof: For every object v, there exists no object e such that e joins v
and v in G. �

(19) G is loopless if and only if for every object v, there exists no object e
such that e joins a vertex from {v} to a vertex from {v} in G. The theorem
is a consequence of (11) and (18).

(20) G is loopless if and only if for every object v,G.edgesBetween({v}, {v}) =
∅. The theorem is a consequence of (18).

(21) G is loopless if and only if for every object v,G.edgesDBetween({v}, {v}) =
∅. The theorem is a consequence of (19).

Let G be a loopless graph and v be an object. One can verify that
G.edgesBetween({v}, {v}) is empty and G.edgesDBetween({v}, {v}) is emp-

ty.
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(22) Let us consider a graph G. Then G is non-multi if and only if for every
objects v, w, G.edgesBetween({v}, {w}) is trivial. The theorem is a con-
sequence of (12).

Let G be a non-multi graph and v, w be objects. One can verify that
G.edgesBetween({v}, {w}) is trivial. Now we state the proposition:

(23) Let us consider a graph G. Then G is non-directed-multi if and only if
for every objects v, w, G.edgesDBetween({v}, {w}) is trivial. The theorem
is a consequence of (13) and (7).

Let G be a non-directed-multi graph and v, w be objects. One can check
that G.edgesDBetween({v}, {w}) is trivial.

Let G be a non trivial graph. Let us note that every subgraph of G which is
spanning is also non trivial.

Let G be a graph. One can check that every vertex of G which is isolated is
also non endvertex.

Let us consider a graph G and a vertex v of G. Now we state the propositions:

(24) (G.walkOf(v)).edgeSeq() = εα, where α is the edges of G.

(25) (G.walkOf(v)).edges() = ∅. The theorem is a consequence of (24).

Let G be a graph and W be a trivial walk of G. Note that W.edges() is
empty and trivial.

Let W be a walk of G. Note that W.vertices() is non empty.
Now we state the propositions:

(26) Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2.
Suppose W1.vertexSeq() = W2.vertexSeq() and W1.edgeSeq() =
W2.edgeSeq(). Then W1 = W2.
Proof: For every natural number n such that 1 ¬ n ¬ lenW1 holds
W1(n) = W2(n). �

(27) Let us consider a graph G, a finite sequence p of elements of the vertices
of G, and a finite sequence q of elements of the edges of G. Suppose
len p = 1 + len q and for every element n of N such that 1 ¬ n and
n + 1 ¬ len p holds q(n) joins p(n) and p(n + 1) in G. Then there exists
a walk W of G such that

(i) W.vertexSeq() = p, and

(ii) W.edgeSeq() = q.

Proof: Define P[object, object] ≡ there exists a natural number m such
that m = $1 and if m is odd, then $2 = p(m+1 div 2) and if m is even, then
$2 = q(m div 2). For every natural number k such that k ∈ Seg(len p+len q)
there exists an element x of (the vertices of G)∪(the edges of G) such that
P[k, x]. Consider W being a finite sequence of elements of (the vertices of
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G) ∪ (the edges of G) such that domW = Seg(len p+ len q) and for every
natural number k such that k ∈ Seg(len p+len q) holds P[k,W (k)]. W (1) ∈
the vertices of G. For every odd element n of N such that n < lenW holds
W (n+1) joins W (n) and W (n+2) in G. For every natural number k such
that 1 ¬ k ¬ len p holds p(k) = (W.vertexSeq())(k). For every natural
number k such that 1 ¬ k ¬ len q holds q(k) = (W.edgeSeq())(k). �

(28) Let us consider a graphG, and a walkW ofG. Then len(W.vertexSeq()) =
W.length() + 1.

(29) Let us consider graphs G1, G2, a walk W1 of G1, a walk W2 of G2,
and an odd natural number n. If W1.vertexSeq() = W2.vertexSeq(), then
W1(n) = W2(n).

Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2. Now
we state the propositions:

(30) Suppose W1.vertexSeq() = W2.vertexSeq(). Then

(i) lenW1 = lenW2, and

(ii) W1.length() = W2.length(), and

(iii) W1.first() = W2.first(), and

(iv) W1.last() = W2.last(), and

(v) W2 is walk from W1.first() to W1.last().

The theorem is a consequence of (29).

(31) If W1.vertexSeq() = W2.vertexSeq(), then if W1 is not trivial, then W2

is not trivial and if W1 is closed, then W2 is closed. The theorem is a con-
sequence of (30).

(32) Suppose W1.vertexSeq() = W2.vertexSeq() and lenW1 6= 5. Then

(i) if W1 is path-like, then W2 is path-like, and

(ii) if W1 is cycle-like, then W2 is cycle-like.

Proof: If W1 is path-like, then W2 is path-like. �

The scheme IndWalk deals with a graph G and a unary predicate P and
states that

(Sch. 1) For every walk W of G, P[W ]

provided

• for every trivial walk W of G, P[W ] and

• for every walk W of G and for every object e such that

e ∈W.last().edgesInOut() and P[W ] holds P[W.addEdge(e)].
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The scheme IndDWalk deals with a graph G and a unary predicate P and
states that

(Sch. 2) For every dwalk W of G, P[W ]

provided

• for every trivial dwalk W of G, P[W ] and

• for every dwalk W of G and for every object e such that

e ∈W.last().edgesOut() and P[W ] holds P[W.addEdge(e)].

Now we state the propositions:

(33) Let us consider a graph G1, a subset E of the edges of G1, and a subgraph
G2 of G1 induced by the vertices of G1 and E. If G2 is connected, then
G1 is connected.

(34) Let us consider a graph G1, a set E, and a subgraph G2 of G1 with edges
E removed. If G2 is connected, then G1 is connected.

Let G1 be a non connected graph and E be a set. One can check that every
subgraph of G1 with edges E removed is non connected.

(35) Let us consider a graph G1, and a subgraph G2 of G1. Suppose for every
walk W1 of G1, there exists a walk W2 of G2 such that W2 is walk from
W1.first() to W1.last(). Let us consider a vertex v1 of G1, and a vertex v2

of G2. If v1 = v2, then G1.reachableFrom(v1) = G2.reachableFrom(v2).

(36) Let us consider a graph G1, and a subgraph G2 of G1. Suppose for every
walk W1 of G1, there exists a walk W2 of G2 such that W2 is walk from
W1.first() to W1.last(). If G1 is connected, then G2 is connected.

Let us consider a graph G1 and a spanning subgraph G2 of G1. Now we state
the propositions:

(37) Suppose for every vertex v1 of G1 and for every vertex v2 of G2 such
that v1 = v2 holds G1.reachableFrom(v1) = G2.reachableFrom(v2). Then
G1.componentSet() = G2.componentSet().

(38) Suppose for every vertex v1 of G1 and for every vertex v2 of G2 such
that v1 = v2 holds G1.reachableFrom(v1) = G2.reachableFrom(v2). Then
G1.numComponents() = G2.numComponents(). The theorem is a conse-
quence of (37).

(39) Let us consider a graph G. Then G is loopless if and only if for every
vertex v of G, v and v are not adjacent.

Let G be a non complete graph. One can check that every subgraph of G
which is spanning is also non complete.

Now we state the propositions:
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(40) Let us consider graphs G2, G3, and a supergraph G1 of G3. If G1 ≈ G2,
then G2 is a supergraph of G3.

(41) Let us consider a graph G2, a set V , a supergraph G1 of G2 extended by
the vertices from V , sets x, y, and an object e. Then

(i) e joins x and y in G1 iff e joins x and y in G2, and

(ii) e joins x to y in G1 iff e joins x to y in G2, and

(iii) e joins a vertex from x and a vertex from y in G1 iff e joins a vertex
from x and a vertex from y in G2, and

(iv) e joins a vertex from x to a vertex from y in G1 iff e joins a vertex
from x to a vertex from y in G2.

(42) Let us consider graphs G1, G2. Suppose G1 ≈ G2. Then G2 is a graph
given by reversing directions of the edges ∅ of G1.

(43) Every graph is a graph given by reversing directions of the edges ∅ of G.

2. Plain Graphs

Let G be a graph. We say that G is plain if and only if

(Def. 1) domG = the graph selectors.

Note that G�(the graph selectors) is plain.
Let V be a non empty set, E be a set, and S, T be functions from E into

V . Let us observe that createGraph(V,E, S, T ) is plain.
Let G be a graph and X be a set. Note that G.set(WeightSelector, X) is non

plain and G.set(ELabelSelector, X) is non plain and G.set(VLabelSelector, X)
is non plain and there exists a graph which is plain.

Now we state the proposition:

(44) Let us consider plain graphs G1, G2. If G1 ≈ G2, then G1 = G2.

Let G be a graph. Note that there exists a subgraph of G which is plain.
Let V be a set. One can check that there exists a subgraph of G with vertices

V removed which is plain.
Let E be a set. Let us note that there exists a subgraph of G induced by V

and E which is plain and there exists a subgraph of G with edges E removed
which is plain and there exists a graph given by reversing directions of the edges
E of G which is plain.

Let v be a set. One can verify that there exists a subgraph of G with vertex
v removed which is plain.

Let e be a set. One can verify that there exists a subgraph of G with edge e
removed which is plain and there exists a supergraph of G which is plain.
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Let V be a set. Let us note that there exists a supergraph of G extended by
the vertices from V which is plain.

Let v, e, w be objects. One can check that there exists a supergraph of
G extended by e between vertices v and w which is plain and there exists
a supergraph of G extended by v, w and e between them which is plain.

Let v be an object and V be a set. Let us note that there exists a supergraph
of G extended by vertex v and edges from V of G to v which is plain and there
exists a supergraph of G extended by vertex v and edges from v to V of G
which is plain and there exists a supergraph of G extended by vertex v and
edges between v and V of G which is plain.

3. Graphs with Loops Removed

Let G be a graph. The functor G.loops() yielding a subset of the edges of G
is defined by

(Def. 2) for every object e, e ∈ it iff there exists an object v such that e joins v
and v in G.

Now we state the propositions:

(45) Let us consider a graph G, and an object e. Then e ∈ G.loops() if and
only if there exists an object v such that e joins v to v in G.

(46) Let us consider a graph G, and objects e, v, w. If e joins v and w in G

and v 6= w, then e /∈ G.loops().

(47) Let us consider a graph G. Then G is loopless if and only if G.loops() = ∅.
Let G be a loopless graph. Let us observe that G.loops() is empty.
Let G be a non loopless graph. Let us observe that G.loops() is non empty.
Now we state the propositions:

(48) Let us consider a graph G1, and a subgraph G2 of G1. Then G2.loops() ⊆
G1.loops(). The theorem is a consequence of (45).

(49) Let us consider a graphG2, and a supergraphG1 ofG2. ThenG2.loops() ⊆
G1.loops(). The theorem is a consequence of (48).

(50) Let us consider graphsG1,G2. IfG1 ≈ G2, thenG1.loops() = G2.loops().
The theorem is a consequence of (48).

(51) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then G1.loops() = G2.loops().

(52) Let us consider a graph G2, a set V , and a supergraph G1 of G2 extended
by the vertices from V . Then G1.loops() = G2.loops(). The theorem is
a consequence of (41) and (49).
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(53) Let us consider a graph G2, objects v1, e, v2, and a supergraph G1 of G2

extended by e between vertices v1 and v2. If v1 6= v2, then G1.loops() =
G2.loops(). The theorem is a consequence of (50) and (49).

(54) Let us consider a graph G2, a vertex v of G2, an object e, and a su-
pergraph G1 of G2 extended by e between vertices v and v. Suppose
e /∈ the edges of G2. Then G1.loops() = G2.loops()∪{e}. The theorem
is a consequence of (45) and (49).

(55) Let us consider a graph G2, objects v1, e, v2, and a supergraph G1 of G2

extended by v1, v2 and e between them. Then G1.loops() = G2.loops().
The theorem is a consequence of (49) and (50).

(56) Let us consider a graph G2, an object v, a set V , and a supergraph
G1 of G2 extended by vertex v and edges between v and V of G2. Then
G1.loops() = G2.loops(). The theorem is a consequence of (49) and (50).

(57) Let us consider a graph G, and a path P of G. Then

(i) P .edges() misses G.loops(), or

(ii) there exist objects v, e such that e joins v and v in G and P =
G.walkOf(v, e, v).

Let G be a graph. A subgraph of G with loops removed is a subgraph of G
with edges G.loops() removed. Now we state the proposition:

(58) Let us consider a loopless graph G1, and a graph G2. Then G1 ≈ G2 if
and only if G2 is a subgraph of G1 with loops removed.

Let us consider graphs G1, G2 and a subgraph G3 of G1 with loops removed.

(59) G2 ≈ G3 if and only if G2 is a subgraph of G1 with loops removed.

(60) If G1 ≈ G2, then G3 is a subgraph of G2 with loops removed. The
theorem is a consequence of (50).

Let G be a graph. Observe that every subgraph of G with loops removed is
loopless and there exists a subgraph of G with loops removed which is plain.

Let G be a non-multi graph. Observe that every subgraph of G with loops
removed is simple.

Let G be a non-directed-multi graph. One can check that every subgraph of
G with loops removed is directed-simple.

Let G be a complete graph. Observe that every subgraph of G with loops
removed is complete.

Now we state the propositions:

(61) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
and a walk W1 of G1. Then there exists a walk W2 of G2 such that W2 is
walk from W1.first() to W1.last(). The theorem is a consequence of (57).
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(62) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
G1.reachableFrom(v1) = G2.reachableFrom(v2). The theorem is a conse-
quence of (61) and (35).

Let G be a connected graph. Observe that every subgraph of G with loops
removed is connected. Let G be a non connected graph. Observe that every
subgraph of G with loops removed is non connected. Let us consider a graph G1

and a subgraph G2 of G1 with loops removed. Now we state the propositions:

(63) G1.componentSet() = G2.componentSet(). The theorem is a consequen-
ce of (62) and (37).

(64) G1.numComponents() = G2.numComponents(). The theorem is a con-
sequence of (62) and (38).

(65) G1 is chordal if and only if G2 is chordal. The theorem is a consequence
of (46) and (57).

Let G be a chordal graph. Let us observe that every subgraph of G with
loops removed is chordal. Now we state the proposition:

(66) Let us consider a graph G1, a set v, a subgraph G2 of G1 with loops
removed, and a subgraph G3 of G1 with vertex v removed. Then every
subgraph of G2 with vertex v removed is a subgraph of G3 with loops
removed. The theorem is a consequence of (1), (48), (59), and (60).

Let us consider a graphG1, a subgraphG2 ofG1 with loops removed, a vertex
v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(67) If v1 = v2, then v1 is cut-vertex iff v2 is cut-vertex. The theorem is
a consequence of (66) and (64).

(68) If v1 = v2 and v1 is endvertex, then v2 is endvertex. The theorem is
a consequence of (46).

4. Graphs with Parallel Edges Removed

Let G be a graph. The functors: EdgeParEqRel(G) and DEdgeParEqRel(G)
yielding equivalence relations of the edges of G are defined by conditions

(Def. 3) for all objects e1, e2, 〈〈e1, e2〉〉 ∈ EdgeParEqRel(G) iff there exist objects
v1, v2 such that e1 joins v1 and v2 in G and e2 joins v1 and v2 in G,

(Def. 4) for all objects e1, e2, 〈〈e1, e2〉〉 ∈ DEdgeParEqRel(G) iff there exist objects
v1, v2 such that e1 joins v1 to v2 in G and e2 joins v1 to v2 in G,

respectively.
Let us consider a graph G. Now we state the propositions:

(69) DEdgeParEqRel(G) ⊆ EdgeParEqRel(G).
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(70) G is non-multi if and only if EdgeParEqRel(G) = idα, where α is the ed-
ges of G.

(71) G is non-directed-multi if and only if DEdgeParEqRel(G) = idα, where
α is the edges of G.

Let G be an edgeless graph. One can verify that EdgeParEqRel(G) is empty
and DEdgeParEqRel(G) is empty.

Let G be a non edgeless graph. Observe that EdgeParEqRel(G) is non empty
and DEdgeParEqRel(G) is non empty.

Let G be a graph.
A representative selection of the parallel edges of G is a subset of the edges

of G defined by

(Def. 5) for every objects v, w, e0 such that e0 joins v and w in G there exists
an object e such that e joins v and w in G and e ∈ it and for every object
e′ such that e′ joins v and w in G and e′ ∈ it holds e′ = e.

A representative selection of the directed-parallel edges of G is a subset of
the edges of G defined by

(Def. 6) for every objects v, w, e0 such that e0 joins v to w in G there exists
an object e such that e joins v to w in G and e ∈ it and for every object
e′ such that e′ joins v to w in G and e′ ∈ it holds e′ = e.

Let G be an edgeless graph. Let us observe that every representative selection
of the parallel edges of G is empty and every representative selection of the
directed-parallel edges of G is empty.

Let G be a non edgeless graph. Let us observe that every representative se-
lection of the parallel edges of G is non empty and every representative selection
of the directed-parallel edges of G is non empty.

Now we state the propositions:

(72) Let us consider a graph G, and a representative selection of the directed-
parallel edges E1 of G. Then there exists a representative selection of the
parallel edges E2 of G such that E2 ⊆ E1.
Proof: Set A = {{e, where e is an element of the edges of G : e joins
v1 and v2 in G and e ∈ E1}, where v1, v2 are vertices of G : there exists
an object e0 such that e0 joins v1 and v2 in G}. Define P[object, object] ≡
there exists a non empty set S such that $1 = S and $2 = the element of
S. For every object x such that x ∈ A there exists an object y such that
P[x, y]. Consider f being a function such that dom f = A and for every
object x such that x ∈ A holds P[x, f(x)]. For every object e such that
e ∈ rng f holds e ∈ E1. Reconsider E2 = rng f as a subset of the edges of
G. For every objects v, w, e0 such that e0 joins v and w in G there exists
an object e such that e joins v and w in G and e ∈ E2 and for every object
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e′ such that e′ joins v and w in G and e′ ∈ E2 holds e′ = e. �

(73) Let us consider a graph G, and a representative selection of the parallel
edges E2 of G. Then there exists a representative selection of the directed-
parallel edges E1 of G such that E2 ⊆ E1.
Proof: Set A = {{e, where e is an element of the edges of G : e joins v1

to v2 in G}, where v1, v2 are vertices of G : there exists an object e0 such
that e0 joins v1 to v2 in G and for every object e0 such that e0 joins v1

to v2 in G holds e0 /∈ E2}. Define P[object, object] ≡ there exists a non
empty set S such that $1 = S and $2 = the element of S. For every object
x such that x ∈ A there exists an object y such that P[x, y]. Consider f
being a function such that dom f = A and for every object x such that
x ∈ A holds P[x, f(x)]. For every object e such that e ∈ rng f holds
e ∈ the edges of G. Reconsider E1 = E2 ∪ rng f as a subset of the edges
of G. For every objects v, w, e0 such that e0 joins v to w in G there exists
an object e such that e joins v to w in G and e ∈ E1 and for every object
e′ such that e′ joins v to w in G and e′ ∈ E1 holds e′ = e. �

(74) Let us consider a non-multi graph G, and a representative selection of
the parallel edges E of G. Then E = the edges of G.

(75) Let us consider a graph G. Suppose there exists a representative selection
of the parallel edges E of G such that E = the edges of G. Then G is non-
multi.

(76) Let us consider a non-directed-multi graph G, and a representative se-
lection of the directed-parallel edges E of G. Then E = the edges of
G.

(77) Let us consider a graph G. Suppose there exists a representative selection
of the directed-parallel edges E of G such that E = the edges of G. Then
G is non-directed-multi.

(78) Let us consider a graph G1, a subgraph G2 of G1, and a representative
selection of the parallel edges E of G1. Suppose E ⊆ the edges of G2. Then
E is a representative selection of the parallel edges of G2.

(79) Let us consider a graph G1, a subgraph G2 of G1, and a representative
selection of the directed-parallel edges E of G1. Suppose E ⊆ the edges
of G2. Then E is a representative selection of the directed-parallel edges
of G2.

(80) Let us consider a graph G1, a subgraph G2 of G1, and a representative
selection of the parallel edges E2 of G2. Then there exists a representative
selection of the parallel edges E1 of G1 such that E2 = E1 ∩ (the edges of
G2).
Proof: Set A = {{e, where e is an element of the edges of G1 : e joins v1
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and v2 in G1}, where v1, v2 are vertices of G1 : there exists an object e0

such that e0 joins v1 and v2 in G1 and for every object e0 such that e0

joins v1 and v2 in G1 holds e0 /∈ E2}. Define P[object, object] ≡ there
exists a non empty set S such that $1 = S and $2 = the element of S. For
every object x such that x ∈ A there exists an object y such that P[x, y].
Consider f being a function such that dom f = A and for every object x
such that x ∈ A holds P[x, f(x)]. For every object e such that e ∈ rng f
holds e ∈ the edges of G1. Reconsider E1 = E2 ∪ rng f as a subset of
the edges of G1. For every objects v, w, e0 such that e0 joins v and w in
G1 there exists an object e such that e joins v and w in G1 and e ∈ E1

and for every object e′ such that e′ joins v and w in G1 and e′ ∈ E1 holds
e′ = e. For every object x, x ∈ E2 iff x ∈ E1 and x ∈ the edges of G2. �

(81) Let us consider a graph G1, a subgraph G2 of G1, and a representative
selection of the directed-parallel edges E2 of G2. Then there exists a re-
presentative selection of the directed-parallel edges E1 of G1 such that
E2 = E1 ∩ (the edges of G2).
Proof: Set A = {{e, where e is an element of the edges of G1 : e joins
v1 to v2 in G1}, where v1, v2 are vertices of G1 : there exists an object e0

such that e0 joins v1 to v2 in G1 and for every object e0 such that e0

joins v1 to v2 in G1 holds e0 /∈ E2}. Define P[object, object] ≡ there exists
a non empty set S such that $1 = S and $2 = the element of S. For
every object x such that x ∈ A there exists an object y such that P[x, y].
Consider f being a function such that dom f = A and for every object x
such that x ∈ A holds P[x, f(x)]. For every object e such that e ∈ rng f
holds e ∈ the edges of G1. Reconsider E1 = E2 ∪ rng f as a subset of
the edges of G1. For every objects v, w, e0 such that e0 joins v to w in G1

there exists an object e such that e joins v to w in G1 and e ∈ E1 and for
every object e′ such that e′ joins v to w in G1 and e′ ∈ E1 holds e′ = e.
For every object x, x ∈ E2 iff x ∈ E1 and x ∈ the edges of G2. �

(82) Let us consider a graph G1, a representative selection of the parallel
edges E1 of G1, a subgraph G2 of G1 induced by the vertices of G1 and
E1, and a representative selection of the parallel edges E2 of G2. Then
E1 = E2.
Proof: For every object e such that e ∈ E1 holds e ∈ E2. �

(83) Let us consider a graph G1, a representative selection of the directed-
parallel edges E1 of G1, a subgraph G2 of G1 induced by the vertices of
G1 and E1, and a representative selection of the directed-parallel edges E2

of G2. Then E1 = E2.
Proof: For every object e such that e ∈ E1 holds e ∈ E2. �



Underlying simple graphs 251

(84) Let us consider a graph G1, a representative selection of the directed-
parallel edges E1 of G1, a subgraph G2 of G1 induced by the vertices of
G1 and E1, and a representative selection of the parallel edges E2 of G2.
Then

(i) E2 ⊆ E1, and

(ii) E2 is a representative selection of the parallel edges of G1.

Let us consider a graph G and representative selections of the parallel edges
E1, E2 of G. Now we state the propositions:

(85) There exists a one-to-one function f such that

(i) dom f = E1, and

(ii) rng f = E2, and

(iii) for every objects e, v, w such that e ∈ E1 holds e joins v and w in G
iff f(e) joins v and w in G.

Proof: Define P[object, object] ≡ $2 ∈ E2 and there exist objects v, w
such that $1 joins v and w in G and $2 joins v and w in G. For every
objects x, y1, y2 such that x ∈ E1 and P[x, y1] and P[x, y2] holds y1 = y2.
For every object x such that x ∈ E1 there exists an object y such that
P[x, y]. Consider f being a function such that dom f = E1 and for every
object x such that x ∈ E1 holds P[x, f(x)]. Consider v0, w0 being objects
such that e joins v0 and w0 in G and f(e) joins v0 and w0 in G. �

(86) E1 = E2 . The theorem is a consequence of (85).

Let us consider a graph G and representative selections of the directed-
parallel edges E1, E2 of G. Now we state the propositions:

(87) There exists a one-to-one function f such that

(i) dom f = E1, and

(ii) rng f = E2, and

(iii) for every objects e, v, w such that e ∈ E1 holds e joins v to w in G

iff f(e) joins v to w in G.

Proof: Define P[object, object] ≡ $2 ∈ E2 and there exist objects v, w
such that $1 joins v to w in G and $2 joins v to w in G. For every objects
x, y1, y2 such that x ∈ E1 and P[x, y1] and P[x, y2] holds y1 = y2. For
every object x such that x ∈ E1 there exists an object y such that P[x, y].
Consider f being a function such that dom f = E1 and for every object x
such that x ∈ E1 holds P[x, f(x)]. Consider v0, w0 being objects such that
e joins v0 to w0 in G and f(e) joins v0 to w0 in G. v0 = v and w0 = w. �

(88) E1 = E2 . The theorem is a consequence of (87).
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Let G be a graph.
A subgraph of G with parallel edges removed is a subgraph of G defined by

(Def. 7) there exists a representative selection of the parallel edges E of G such
that it is a subgraph of G induced by the vertices of G and E.

A subgraph of G with directed-parallel edges removed is a subgraph of G
defined by

(Def. 8) there exists a representative selection of the directed-parallel edges E of
G such that it is a subgraph of G induced by the vertices of G and E.

Observe that every subgraph of G with parallel edges removed is spanning
and non-multi and every subgraph of G with directed-parallel edges removed is
spanning and non-directed-multi and there exists a subgraph of G with parallel
edges removed which is plain and there exists a subgraph of G with directed-
parallel edges removed which is plain.

Let G be a loopless graph. Let us observe that every subgraph of G with
parallel edges removed is simple and every subgraph of G with directed-parallel
edges removed is directed-simple.

Now we state the propositions:

(89) Let us consider a non-multi graph G1, and a graph G2. Then G1 ≈ G2

if and only if G2 is a subgraph of G1 with parallel edges removed. The
theorem is a consequence of (74).

(90) Let us consider a non-directed-multi graph G1, and a graph G2. Then
G1 ≈ G2 if and only if G2 is a subgraph of G1 with directed-parallel edges
removed. The theorem is a consequence of (76).

(91) Let us consider graphs G1, G2, and a subgraph G3 of G1 with parallel
edges removed. If G1 ≈ G2, then G3 is a subgraph of G2 with parallel
edges removed. The theorem is a consequence of (78).

(92) Let us consider graphs G1, G2, and a subgraph G3 of G1 with directed-
parallel edges removed. Suppose G1 ≈ G2. Then G3 is a subgraph of G2

with directed-parallel edges removed. The theorem is a consequence of
(79).

(93) Let us consider graphs G1, G2, and a subgraph G3 of G1 with parallel
edges removed. If G2 ≈ G3, then G2 is a subgraph of G1 with parallel
edges removed.

(94) Let us consider graphs G1, G2, and a subgraph G3 of G1 with directed-
parallel edges removed. Suppose G2 ≈ G3. Then G2 is a subgraph of G1

with directed-parallel edges removed.

Let us consider a graph G1 and a subgraph G2 of G1 with directed-parallel
edges removed. Now we state the propositions:
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(95) Every subgraph of G2 with parallel edges removed is a subgraph of G1

with parallel edges removed. The theorem is a consequence of (84).

(96) There exists a subgraph G3 of G1 with parallel edges removed such
that G3 is a subgraph of G2 with parallel edges removed. The theorem is
a consequence of (72) and (78).

(97) Let us consider a graph G1, and a subgraph G3 of G1 with parallel
edges removed. Then there exists a subgraph G2 of G1 with directed-
parallel edges removed such that G3 is a subgraph of G2 with parallel
edges removed. The theorem is a consequence of (73) and (78).

Let G be a complete graph. Let us observe that every subgraph of G with
parallel edges removed is complete and every subgraph of G with directed-
parallel edges removed is complete.

Now we state the propositions:

(98) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, and a walk W1 of G1. Then there exists a walk W2 of G2 such
that W1.vertexSeq() = W2.vertexSeq().
Proof: Define P[walk of G1] ≡ there exists a walk W2 of G2 such that
$1.vertexSeq() = W2.vertexSeq(). For every trivial walk W of G1, P[W ].
For every walk W of G1 and for every object e such that
e ∈ W.last().edgesInOut() and P[W ] holds P[W.addEdge(e)]. For every
walk W1 of G1, P[W1]. �

(99) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, and a walk W1 of G1. Then there exists a walk W2 of G2

such thatW1.vertexSeq() = W2.vertexSeq(). The theorem is a consequence
of (95) and (98).

(100) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
G1.reachableFrom(v1) = G2.reachableFrom(v2). The theorem is a con-
sequence of (35).

(101) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
G1.reachableFrom(v1) = G2.reachableFrom(v2). The theorem is a conse-
quence of (35).

Let G be a connected graph. Note that every subgraph of G with parallel
edges removed is connected and every subgraph of G with directed-parallel edges
removed is connected.

Let G be a non connected graph. One can verify that every subgraph of G
with parallel edges removed is non connected and every subgraph of G with
directed-parallel edges removed is non connected.
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Now we state the propositions:

(102) Let us consider a graph G1, and a subgraph G2 of G1 with parallel edges
removed. Then G1.componentSet() = G2.componentSet(). The theorem is
a consequence of (100) and (37).

(103) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then G1.componentSet() = G2.componentSet().
The theorem is a consequence of (101) and (37).

(104) Let us consider a graph G1, and a subgraph G2 of G1 with parallel ed-
ges removed. Then G1.numComponents() = G2.numComponents(). The
theorem is a consequence of (100) and (38).

(105) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then G1.numComponents() =
G2.numComponents(). The theorem is a consequence of (101) and (38).

(106) Let us consider a graph G1, and a subgraph G2 of G1 with parallel edges
removed. Then G1 is chordal if and only if G2 is chordal. The theorem is
a consequence of (98), (30), (32), and (29).

(107) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then G1 is chordal if and only if G2 is chordal.
The theorem is a consequence of (95) and (106).

Let G be a chordal graph. Note that every subgraph of G with parallel
edges removed is chordal and every subgraph of G with directed-parallel edges
removed is chordal.

Now we state the propositions:

(108) Let us consider a graph G1, a set v, a subgraph G2 of G1 with parallel
edges removed, and a subgraph G3 of G1 with vertex v removed. Then
every subgraph of G2 with vertex v removed is a subgraph of G3 with
parallel edges removed. The theorem is a consequence of (93) and (91).

(109) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is
cut-vertex iff v2 is cut-vertex. The theorem is a consequence of (108) and
(104).

(110) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v1 is cut-vertex iff v2 is cut-vertex. The theorem is a consequence of (95)
and (109).

(111) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is
isolated iff v2 is isolated.
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Proof: v1.edgesInOut() = ∅. �

(112) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v1 is isolated iff v2 is isolated. The theorem is a consequence of (95) and
(111).

(113) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2 and v1 is
endvertex, then v2 is endvertex. The theorem is a consequence of (111).

(114) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2 and v1

is endvertex, then v2 is endvertex. The theorem is a consequence of (112).

Let G be a graph. A simple graph of G is a subgraph of G defined by

(Def. 9) there exists a representative selection of the parallel edges E of G such
that it is a subgraph of G induced by the vertices of G and E \(G.loops()).

A directed-simple graph of G is a subgraph of G defined by

(Def. 10) there exists a representative selection of the directed-parallel edges E
of G such that it is a subgraph of G induced by the vertices of G and
E \ (G.loops()).

Now we state the propositions:

(115) Let us consider a graph G1, and a subgraph G2 of G1 with parallel edges
removed. Then every subgraph of G2 with loops removed is a simple graph
of G1. The theorem is a consequence of (48).

(116) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then every subgraph of G2 with loops removed is
a directed-simple graph of G1. The theorem is a consequence of (48).

Let us consider a graph G1 and a subgraph G2 of G1 with loops removed.
Now we state the propositions:

(117) Every subgraph of G2 with parallel edges removed is a simple graph of
G1. The theorem is a consequence of (80).

(118) Every subgraph of G2 with directed-parallel edges removed is a directed-
simple graph of G1. The theorem is a consequence of (81).

(119) Let us consider a graph G1, and a simple graph G3 of G1. Then there
exists a subgraph G2 of G1 with parallel edges removed such that G3 is
a subgraph of G2 with loops removed.
Proof: Consider E being a representative selection of the parallel edges
of G1 such that G3 is a subgraph of G1 induced by the vertices of G1 and
E \ (G1.loops()). Set G2 = the subgraph of G1 induced by the vertices of
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G1 and E. For every object e, e ∈ the edges of G3 iff e ∈ (the edges of
G2) \ (G2.loops()). �

(120) Let us consider a graph G1, and a directed-simple graph G3 of G1. Then
there exists a subgraph G2 of G1 with directed-parallel edges removed
such that G3 is a subgraph of G2 with loops removed.
Proof: Consider E being a representative selection of the directed-parallel
edges of G1 such that G3 is a subgraph of G1 induced by the vertices of G1

and E\(G1.loops()). Set G2 = the subgraph of G1 induced by the vertices
of G1 and E. For every object e, e ∈ the edges of G3 iff e ∈ (the edges of
G2) \ (G2.loops()). �

Let us consider a graph G1 and a subgraph G2 of G1 with loops removed.
Now we state the propositions:

(121) Every simple graph of G1 is a subgraph of G2 with parallel edges remo-
ved.

(122) Every directed-simple graph of G1 is a subgraph of G2 with directed-
parallel edges removed. The theorem is a consequence of (45) and (6).

Let us consider a loopless graph G1 and a graph G2. Now we state the
propositions:

(123) G2 is a simple graph of G1 if and only if G2 is a subgraph of G1 with
parallel edges removed.

(124) G2 is a directed-simple graph of G1 if and only if G2 is a subgraph of G1

with directed-parallel edges removed.

(125) Let us consider a non-multi graph G1, and a graph G2. Then G2 is
a simple graph of G1 if and only if G2 is a subgraph of G1 with loops
removed. The theorem is a consequence of (74).

(126) Let us consider a non-directed-multi graph G1, and a graph G2. Then
G2 is a directed-simple graph of G1 if and only if G2 is a subgraph of G1

with loops removed. The theorem is a consequence of (76).

Let G be a graph. Note that every simple graph of G is spanning, loopless,
non-multi, and simple and every directed-simple graph ofG is spanning, loopless,
non-directed-multi, and directed-simple and there exists a simple graph of G
which is plain and there exists a directed-simple graph of G which is plain.

Now we state the propositions:

(127) Let us consider a simple graph G1, and a graph G2. Then G1 ≈ G2 if
and only if G2 is a simple graph of G1. The theorem is a consequence of
(74).

(128) Let us consider a directed-simple graph G1, and a graph G2. Then G1 ≈
G2 if and only if G2 is a directed-simple graph of G1. The theorem is
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a consequence of (76).

(129) Let us consider graphs G1, G2, and a simple graph G3 of G1. If G1 ≈ G2,
then G3 is a simple graph of G2. The theorem is a consequence of (50)
and (78).

(130) Let us consider graphs G1, G2, and a directed-simple graph G3 of G1.
If G1 ≈ G2, then G3 is a directed-simple graph of G2. The theorem is
a consequence of (50) and (79).

(131) Let us consider graphs G1, G2, and a simple graph G3 of G1. If G2 ≈ G3,
then G2 is a simple graph of G1.

(132) Let us consider graphs G1, G2, and a directed-simple graph G3 of G1. If
G2 ≈ G3, then G2 is a directed-simple graph of G1.

Let us consider a graph G1 and a directed-simple graph G2 of G1. Now we
state the propositions:

(133) Every simple graph of G2 is a simple graph of G1. The theorem is a con-
sequence of (122), (123), (95), and (117).

(134) There exists a simple graph G3 of G1 such that G3 is a simple graph of
G2. The theorem is a consequence of (122), (96), (117), and (123).

(135) Let us consider a graph G1, and a simple graph G3 of G1. Then there
exists a directed-simple graph G2 of G1 such that G3 is a simple graph of
G2. The theorem is a consequence of (121), (97), (118), and (123).

Let G be a complete graph. Observe that every simple graph of G is complete
and every directed-simple graph of G is complete.

Now we state the propositions:

(136) Let us consider a graph G1, a simple graph G2 of G1, and a walk W1 of
G1. Then there exists a walk W2 of G2 such that W2 is walk from W1.first()
to W1.last(). The theorem is a consequence of (119) and (61).

(137) Let us consider a graph G1, a directed-simple graph G2 of G1, and a walk
W1 of G1. Then there exists a walk W2 of G2 such that W2 is walk from
W1.first() to W1.last(). The theorem is a consequence of (133) and (136).

(138) Let us consider a graph G1, a simple graph G2 of G1, a vertex v1 of
G1, and a vertex v2 of G2. If v1 = v2, then G1.reachableFrom(v1) =
G2.reachableFrom(v2). The theorem is a consequence of (136) and (35).

(139) Let us consider a graph G1, a directed-simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. If v1 = v2, then G1.reachableFrom(v1) =
G2.reachableFrom(v2). The theorem is a consequence of (137) and (35).

Let G be a connected graph. Observe that every simple graph of G is con-
nected and every directed-simple graph of G is connected.
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Let G be a non connected graph. One can verify that every simple graph of
G is non connected and every directed-simple graph of G is non connected.

Now we state the propositions:

(140) Let us consider a graph G1, and a simple graph G2 of G1.
Then G1.componentSet() = G2.componentSet(). The theorem is a conse-
quence of (138) and (37).

(141) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
G1.componentSet() = G2.componentSet(). The theorem is a consequence
of (139) and (37).

(142) Let us consider a graph G1, and a simple graph G2 of G1.
ThenG1.numComponents() = G2.numComponents(). The theorem is a con-
sequence of (138) and (38).

(143) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
G1.numComponents() = G2.numComponents(). The theorem is a conse-
quence of (139) and (38).

(144) Let us consider a graph G1, and a simple graph G2 of G1. Then G1 is
chordal if and only if G2 is chordal. The theorem is a consequence of (119),
(65), and (106).

(145) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
G1 is chordal if and only if G2 is chordal. The theorem is a consequence
of (120), (65), and (107).

Let G be a chordal graph. One can check that every simple graph of G is
chordal and every directed-simple graph of G is chordal.

Now we state the propositions:

(146) Let us consider a graph G1, a simple graph G2 of G1, a vertex v1 of G1,
and a vertex v2 of G2. If v1 = v2, then v1 is cut-vertex iff v2 is cut-vertex.
The theorem is a consequence of (119), (67), and (109).

(147) Let us consider a graph G1, a directed-simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is cut-vertex iff v2 is
cut-vertex. The theorem is a consequence of (120), (67), and (110).

(148) Let us consider a loopless graph G1, a simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is isolated iff v2 is
isolated. The theorem is a consequence of (119), (58), and (111).

(149) Let us consider a loopless graph G1, a directed-simple graph G2 of G1,
a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then v1 is isolated iff
v2 is isolated. The theorem is a consequence of (120), (58), and (112).

(150) Let us consider a graph G1, a simple graph G2 of G1, a vertex v1 of G1,
and a vertex v2 of G2. If v1 = v2 and v1 is endvertex, then v2 is endvertex.
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The theorem is a consequence of (119), (113), and (68).

(151) Let us consider a graph G1, a directed-simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. If v1 = v2 and v1 is endvertex, then v2 is
endvertex. The theorem is a consequence of (120), (114), and (68).
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digraphs without parallel edges. [16] writes about general graphs but, like most
graph books, only about isomorphisms. The best source so far has been [11],
where graph homomorphisms are introduced for digraphs possibly containing
loops and multiple parallel edges (just like graphs are formalized in [15]) but the
focus is almost immediately shifted to homomorphisms between simple graphs.
So a quick overview of the formalized notation seems in order.

A graph G consists of a non empty set V (G) called vertices of G, a set E(G)
called edges of G and two functions s(G), t(G) : E(G)→ V (G), the source and
target of G. For e ∈ E(G), v, w ∈ V (G) we write e joins v to w if s(G)(e) = v

and t(G)(e) = w, and we write e joins v and w if e joins v to w or e joins w to
v. Let G1, G2 be graphs. A partial graph mapping from G1 to G2 is an ordered
pair F = 〈〈FV, FE〉〉 with the following properties:

• FV is a partial function from V (G1) to V (G2).
• FE is a partial function from E(G1) to E(G2).
• For any e ∈ domFE holds s(G)(e), t(G)(e) ∈ domFV.
• For any e ∈ domFE and v, w ∈ domFV such that e joins v and w holds
FE(e) joins FV(v) and FV(w).

Note that 〈〈f, ∅〉〉 is a valid partial graph mapping for any partial function f :
V (G1)→ V (G2), especially for f = ∅. Now define the following attributes:

• F is empty if domFV = ∅.
• F is total (or a homomorphism) if domFV = V (G1) and domFE = E(G1).
• F is onto (or surjective) if rngFV = V (G2) and rngFE = E(G2).
• F is one-to-one (or injective) if FV and FE are.
• F is semi-continuous if for any e ∈ domFE and v, w ∈ domFV such that
FE(e) joins FV(v) and FV(w) holds e joins v and w.
• F is continuous if for any ẽ ∈ E(G2) and v, w ∈ domFV such that ẽ joins
FV(v) and FV(w) exists an e ∈ domFE such that FE(e) = ẽ and e joins v
and w.
• F is a weak subgraph-embedding if it is total and one-to-one.
• F is a strong subgraph-embedding if it is total, one-to-one and continuous.
• F is an isomorphism if it is total, one-to-one and onto.

Because modes in Mizar must always be inhabitated, partial graph mappings
are the chosen foundation rather than homomorphisms, which may not exist
between two graphs. The attributes total, onto and one-to-one were named like
their function analogons from [4] and [5]. The continuous attribute was inspired
by the continuous vertex mappings of [11] and is in fact sometimes different
from semi-continuous. Semi-continuous seemed like the natural generalization
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of continuous for graph mappings instead of vertex mappings, but that turned
out to be false. Still, a semi-continuous graph mapping already carries a lot of
properties from G1 to G2, so the definition was kept. Corresponding attributes
for directed graph mappings are given in this article as well.

If F is a weak subgraph-embedding, then G1 is isomorphic to a subgraph
of G2. If F is a strong subgraph-embedding, then G1 is isomorphic to an in-
duced subgraph of G2. The short term embedding was desperately avoided to
be available for embeddings of graphs into the plane and other surfaces. If F
is one-to-one, it is also semi-continuous. If F is semi-continuous and onto, it is
also continuous.

Originally, only an article about graph isomorphisms was planned, but it
was changed to provide a solid foundation of general graph mappings. Now this
article also includes the restriction of F to subgraphs of G1 or G2, the domain
and range of F defined as the plain subgraphs of G1 and G2 induced by domFV,
domFE and rngFV, rngFE respectively, and the images of walks under F . Of
course the inverse of F and the composition of two graph mappings are included
as well.

Additionally, the ordering of a graph, which is just an enumeration of its
vertices, has been introduced as yet another graph decorator. This decorator is
planned as a tool to identify graphs with trees from [1]. Attributes describing
if F preserves the weights, edge labels, vertex labels or the ordering have been
added as well.

1. Preliminaries

Now we state the propositions:

(1) Let us consider functions A, B, C, D. Suppose D ·A = C� domA. Then
(D� domB) ·A = C� dom(B ·A).
Proof: Set f = (D� domB) ·A. Set g = C� dom(B ·A). For every object
x such that x ∈ dom f holds f(x) = g(x). �

(2) Let us consider a one-to-one function A, and functions C, D. Suppose
D ·A = C� domA. Then C · (A−1) = D� dom(A−1).
Proof: For every object y, y ∈ dom(C ·(A−1)) iff y ∈ dom(D� dom(A−1)).
For every object y such that y ∈ dom(C · (A−1)) holds (C · (A−1))(y) =
(D� dom(A−1))(y). �

Let G be a non finite graph and X be a set. One can verify that
G.set(WeightSelector, X) is non finite and G.set(ELabelSelector, X) is non

finite and G.set(VLabelSelector, X) is non finite.
Let G be a non loopless graph. One can check that G.set(WeightSelector, X)

is non loopless and G.set(ELabelSelector, X) is non loopless and
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G.set(VLabelSelector, X) is non loopless.
Let G be a non non-multi graph. Note that G.set(WeightSelector, X) is non

non-multi and G.set(ELabelSelector, X) is non non-multi and
G.set(VLabelSelector, X) is non non-multi. Let G be a non non-directed-

multi graph. Let us note that G.set(WeightSelector, X) is non non-directed-
multi and G.set(ELabelSelector, X) is non non-directed-multi and

G.set(VLabelSelector, X) is non non-directed-multi.
Let G be a non connected graph. Observe that G.set(WeightSelector, X) is

non connected and G.set(ELabelSelector, X) is non connected and
G.set(VLabelSelector, X) is non connected.
Let G be a non acyclic graph. Let us observe that G.set(WeightSelector, X)

is non acyclic and G.set(ELabelSelector, X) is non acyclic and
G.set(VLabelSelector, X) is non acyclic. Let G be a graph. We say that G

is elabel-full if and only if

(Def. 1) ELabelSelector ∈ domG and there exists a many sorted set f indexed
by the edges of G such that G(ELabelSelector) = f .

We say that G is vlabel-full if and only if

(Def. 2) VLabelSelector ∈ domG and there exists a many sorted set f indexed
by the vertices of G such that G(VLabelSelector) = f .

Let us observe that every graph which is elabel-full is also elabeled and every
graph which is vlabel-full is also vlabeled.

Let G be an e-graph. We say that G is elabel-distinct if and only if

(Def. 3) the elabel of G is one-to-one.

Let G be a v-graph. We say that G is vlabel-distinct if and only if

(Def. 4) the vlabel of G is one-to-one.

LetG be a graph. Observe thatG.set(ELabelSelector, idthe edges of G) is elabel-
full and elabel-distinct and G.set(VLabelSelector, idthe vertices of G) is vlabel-full
and vlabel-distinct and there exists an e-graph which is elabel-distinct and
elabel-full and there exists a v-graph which is vlabel-distinct and vlabel-full.

Let G be an elabel-full graph. Let us observe that the elabel of G yields
a many sorted set indexed by the edges of G. Let G be a vlabel-full graph.
Observe that the vlabel of G yields a many sorted set indexed by the vertices
of G. Let G be an elabel-distinct e-graph. Let us note that the elabel of G is
one-to-one.

Let G be a vlabel-distinct v-graph. Observe that the vlabel of G is one-to-
one. Let G be an elabel-full graph and X be a set. One can verify that

G.set(WeightSelector, X) is elabel-full andG.set(VLabelSelector, X) is elabel-
full. Let G be a vlabel-full graph. One can check that G.set(WeightSelector, X)
is vlabel-full and G.set(ELabelSelector, X) is vlabel-full.
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Let G be an elabel-distinct e-graph. Note that G.set(WeightSelector, X) is
elabel-distinct and G.set(VLabelSelector, X) is elabel-distinct.

Let G be a vlabel-distinct v-graph. Let us observe that G.set(WeightSelector,
X) is vlabel-distinct and G.set(ELabelSelector, X) is vlabel-distinct and the-

re exists an ev-graph which is elabel-full, elabel-distinct, vlabel-full, and vlabel-
distinct.

Let G1 be a w-graph, E be a set, and G2 be a graph given by reversing
directions of the edges E of G1. Observe that G2.set(WeightSelector, the weight
of G1) is weighted.

Let G1 be an e-graph. One can verify that G2.set(ELabelSelector, the elabel
of G1) is elabeled.

Let G1 be a v-graph, V be a set, and G2 be a graph given by reversing
directions of the edges V of G1. Observe that G2.set(VLabelSelector, the vlabel
of G1) is vlabeled.

Let G1 be an elabel-full graph, E be a set, and G2 be a graph given by rever-
sing directions of the edges E of G1. Note that G2.set(ELabelSelector, the elabel
of G1) is elabel-full.

Let G1 be a vlabel-full graph, V be a set, and G2 be a graph given by rever-
sing directions of the edges V ofG1. Note thatG2.set(VLabelSelector, the vlabel
of G1) is vlabel-full. Let G1 be an elabel-distinct e-graph, E be a set, and
G2 be a graph given by reversing directions of the edges E of G1. Note that
G2.set(ELabelSelector, the elabel of G1) is elabel-distinct. Let G1 be a vlabel-
distinct v-graph. Observe thatG2.set(VLabelSelector, the vlabel ofG1) is vlabel-
distinct.

2. Ordering of a Graph

The functor OrderingSelector yielding an element of N is defined by the term

(Def. 5) 8.

Let G be a graph structure. We say that G is ordered if and only if

(Def. 6) OrderingSelector ∈ domG and G(OrderingSelector) is an enumeration
of the vertices of G.

Let G be a graph and X be a set. Note that G.set(OrderingSelector, X) is
graph-like and G.set(OrderingSelector, X) is non plain.

Let G be a w-graph. One can verify that G.set(OrderingSelector, X) is we-
ighted.

Let G be an e-graph. One can check that G.set(OrderingSelector, X) is ela-
beled.

Let G be a v-graph. Note that G.set(OrderingSelector, X) is vlabeled.
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Let G be a graph and X be an enumeration of the vertices of G. Note that
G.set(OrderingSelector, X) is ordered and there exists a graph structure which
is graph-like, weighted, elabeled, vlabeled, and ordered.

Let G be an ordered graph. The ordering of G yielding an enumeration of
the vertices of G is defined by the term

(Def. 7) G(OrderingSelector).

Now we state the proposition:

(3) Let us consider a graph G, and a set X.
Then G ≈ G.set(OrderingSelector, X).

Let G be an elabel-full graph and X be a set. Let us note that
G.set(OrderingSelector, X) is elabel-full.
Let G be a vlabel-full graph. Let us note that G.set(OrderingSelector, X) is

vlabel-full.
Let G be an elabel-distinct e-graph. Let us note that G.set(OrderingSelector,
X) is elabel-distinct.
Let G be a vlabel-distinct v-graph. Observe that G.set(OrderingSelector, X)

is vlabel-distinct.
Let G be a finite graph. Let us observe that G.set(OrderingSelector, X) is

finite.
Let G be a non finite graph. Let us observe that G.set(OrderingSelector, X)

is non finite.
Let G be a loopless graph. Let us observe that G.set(OrderingSelector, X)

is loopless.
LetG be a non loopless graph. Let us observe thatG.set(OrderingSelector, X)

is non loopless.
Let G be a trivial graph. Let us observe that G.set(OrderingSelector, X) is

trivial.
Let G be a non trivial graph. Let us observe that G.set(OrderingSelector, X)

is non trivial.
Let G be a non-multi graph. Let us observe that G.set(OrderingSelector, X)

is non-multi.
Let G be a non non-multi graph. Let us observe that
G.set(OrderingSelector, X) is non non-multi.
Let G be a non-directed-multi graph. Let us observe that
G.set(OrderingSelector, X) is non-directed-multi.
Let G be a non non-directed-multi graph. Let us observe that
G.set(OrderingSelector, X) is non non-directed-multi.
Let G be a connected graph. Let us observe that G.set(OrderingSelector, X)

is connected.
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Let G be a non connected graph. Let us note that G.set(OrderingSelector, X)
is non connected.

Let G be an acyclic graph. Let us note that G.set(OrderingSelector, X) is
acyclic.

Let G be a non acyclic graph. One can check that G.set(OrderingSelector, X)
is non acyclic.

Let G be an edgeless graph. One can check that G.set(OrderingSelector, X)
is edgeless.

LetG be a non edgeless graph. Let us observe thatG.set(OrderingSelector, X)
is non edgeless.

Let G be an ordered graph. Let us observe that G.set(WeightSelector, X) is
ordered and G.set(ELabelSelector, X) is ordered and G.set(VLabelSelector, X)
is ordered.

Let G1 be an ordered graph and G2 be a spanning subgraph of G1. Note
that G2.set(OrderingSelector, the ordering of G1) is ordered.

Let E be a set and G2 be a graph given by reversing directions of the edges
E of G1. Let us observe that G2.set(OrderingSelector, the ordering of G1) is
ordered.

3. Graph Mappings

Let G1, G2 be graphs. A partial graph mapping from G1 to G2 is an object
defined by

(Def. 8) there exist functions f , g such that it = 〈〈f, g〉〉 and dom f ⊆ the vertices
of G1 and rng f ⊆ the vertices of G2 and dom g ⊆ the edges of G1 and
rng g ⊆ the edges of G2 and for every object e such that e ∈ dom g holds
(the source of G1)(e), (the target of G1)(e) ∈ dom f and for every objects
e, v, w such that e ∈ dom g and v, w ∈ dom f holds if e joins v and w in
G1, then g(e) joins f(v) and f(w) in G2.

Let us observe that every partial graph mapping from G1 to G2 is pair.
Let F be a partial graph mapping from G1 to G2. We introduce the notation

FV as a synonym of (F )1 and FE as a synonym of (F )2.
One can check that 〈〈FV, FE〉〉 reduces to F .
One can verify that FV is function-like and relation-like as a set and FE is

function-like and relation-like as a set and FV is (the vertices of G1)-defined and
(the vertices of G2)-valued as a function and FE is (the edges of G1)-defined and
(the edges of G2)-valued as a function.

Note that the functor FV yields a partial function from the vertices of G1 to
the vertices of G2. Observe that the functor FE yields a partial function from
the edges of G1 to the edges of G2. Now we state the proposition:
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(4) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and objects e, v, w. Suppose e ∈ dom(FE) and v, w ∈ dom(FV). If e
joins v and w in G1, then (FE)(e) joins (FV)(v) and (FV)(w) in G2.

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and an object e. Now we state the propositions:

(5) Suppose e ∈ dom(FE). Then (the source ofG1)(e), (the target ofG1)(e) ∈
dom(FV).

(6) Suppose e ∈ rngFE. Then (the source of G2)(e), (the target of G2)(e) ∈
rngFV. The theorem is a consequence of (5) and (4).

(7) Let us consider graphs G1, G2, and a partial graph mapping F from G1

to G2. Then

(i) dom(FE) ⊆ G1.edgesBetween(dom(FV)), and

(ii) rngFE ⊆ G2.edgesBetween(rngFV).

Proof: For every object e such that e ∈ dom(FE) holds
e ∈ G1.edgesBetween(dom(FV)). For every object e such that e ∈ rngFE
holds e ∈ G2.edgesBetween(rngFV). �

(8) Let us consider graphs G1, G2, a partial function f from the vertices of
G1 to the vertices of G2, and a partial function g from the edges of G1

to the edges of G2. Suppose for every object e such that e ∈ dom g holds
(the source of G1)(e), (the target of G1)(e) ∈ dom f and for every objects
e, v, w such that e ∈ dom g and v, w ∈ dom f holds if e joins v and w in
G1, then g(e) joins f(v) and f(w) in G2. Then 〈〈f, g〉〉 is a partial graph
mapping from G1 to G2.

Let us consider graphs G1, G2, G3, G4 and a partial graph mapping F from
G1 to G2. Now we state the propositions:

(9) If G1 ≈ G3 and G2 ≈ G4, then F is a partial graph mapping from G3 to
G4. The theorem is a consequence of (5), (4), and (8).

(10) Suppose there exist sets E1, E2 such that G3 is a graph given by reversing
directions of the edges E1 of G1 and G4 is a graph given by reversing
directions of the edges E2 of G2. Then F is a partial graph mapping from
G3 to G4. The theorem is a consequence of (5), (4), and (8).

Let G be a graph. The functor idG yielding a partial graph mapping from
G to G is defined by the term

(Def. 9) 〈〈idα, idβ〉〉, where α is the vertices of G and β is the edges of G.

Now we state the propositions:

(11) Let us consider graphs G1, G2. Suppose G1 ≈ G2. Then

(i) idG1 = idG2 , and
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(ii) idG1 is a partial graph mapping from G1 to G2.

The theorem is a consequence of (9).

(12) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then

(i) idG1 = idG2 , and

(ii) idG1 is a partial graph mapping from G1 to G2.

Proof: There exist sets E1, E2 such that G1 is a graph given by reversing
directions of the edges E1 of G1 and G2 is a graph given by reversing
directions of the edges E2 of G1. �

Let G1, G2 be graphs and F be a partial graph mapping from G1 to G2. We
say that F is empty if and only if

(Def. 10) dom(FV) is empty.

We say that F is total if and only if

(Def. 11) dom(FV) = the vertices of G1 and dom(FE) = the edges of G1.

We say that F is onto if and only if

(Def. 12) rngFV = the vertices of G2 and rngFE = the edges of G2.

We say that F is one-to-one if and only if

(Def. 13) FV is one-to-one and FE is one-to-one.

We say that F is directed if and only if

(Def. 14) for every objects e, v, w such that e ∈ dom(FE) and v, w ∈ dom(FV)
holds if e joins v to w in G1, then (FE)(e) joins (FV)(v) to (FV)(w) in G2.

We say that F is semi-continuous if and only if

(Def. 15) for every objects e, v, w such that e ∈ dom(FE) and v, w ∈ dom(FV)
holds if (FE)(e) joins (FV)(v) and (FV)(w) in G2, then e joins v and w in
G1.

We say that F is continuous if and only if

(Def. 16) for every objects ẽ, v, w such that v, w ∈ dom(FV) and ẽ joins (FV)(v)
and (FV)(w) in G2 there exists an object e such that e joins v and w in
G1 and e ∈ dom(FE) and (FE)(e) = ẽ.

We say that F is semi-directed-continuous if and only if

(Def. 17) for every objects e, v, w such that e ∈ dom(FE) and v, w ∈ dom(FV)
holds if (FE)(e) joins (FV)(v) to (FV)(w) in G2, then e joins v to w in G1.

We say that F is directed-continuous if and only if

(Def. 18) for every objects ẽ, v, w such that v, w ∈ dom(FV) and ẽ joins (FV)(v)
to (FV)(w) in G2 there exists an object e such that e joins v to w in G1

and e ∈ dom(FE) and (FE)(e) = ẽ.
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Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(13) F is directed if and only if for every object e such that e ∈ dom(FE) holds
(the source of G2)((FE)(e)) = (FV)((the source of G1)(e)) and (the target
of G2)((FE)(e)) = (FV)((the target of G1)(e)). The theorem is a consequ-
ence of (5).

(14) F is directed if and only if (the source of G2) · (FE) = (FV) · ((the source
of G1)� dom(FE)) and (the target of G2) · (FE) = (FV) · ((the target of
G1)� dom(FE)). The theorem is a consequence of (13) and (5).

(15) F is semi-continuous if and only if for every objects e, v, w such that
e ∈ dom(FE) and v, w ∈ dom(FV) holds e joins v and w in G1 iff (FE)(e)
joins (FV)(v) and (FV)(w) in G2.

(16) F is semi-directed-continuous if and only if for every objects e, v, w
such that e ∈ dom(FE) and v, w ∈ dom(FV) holds e joins v to w in G1 iff
(FE)(e) joins (FV)(v) to (FV)(w) in G2.
Proof: If F is semi-directed-continuous, then for every objects e, v, w
such that e ∈ dom(FE) and v, w ∈ dom(FV) holds e joins v to w in G1 iff
(FE)(e) joins (FV)(v) to (FV)(w) in G2. �

Let G1, G2 be graphs. Note that there exists a partial graph mapping from
G1 to G2 which is empty, one-to-one, directed-continuous, directed, continuous,
semi-directed-continuous, and semi-continuous and there exists a partial graph
mapping from G1 to G2 which is non empty, one-to-one, directed, semi-directed-
continuous, and semi-continuous.

Let F be an empty partial graph mapping from G1 to G2. One can verify
that FV is empty as a set and FE is empty as a set.

Let F be a non empty partial graph mapping from G1 to G2. One can verify
that FV is non empty as a set.

Let F be a one-to-one partial graph mapping from G1 to G2. One can verify
that FV is one-to-one as a function and FE is one-to-one as a function.

Now we state the propositions:

(17) Let us consider graphs G1, G2, and a partial graph mapping F from
G1 to G2. If FV is one-to-one, then F is semi-continuous. The theorem is
a consequence of (5) and (4).

(18) Let us consider graphs G1, G2, and a directed partial graph mapping F
from G1 to G2. If FV is one-to-one, then F is semi-directed-continuous.
The theorem is a consequence of (5).

(19) Let us consider graphs G1, G2, and a semi-continuous partial graph
mapping F from G1 to G2. Suppose rngFE = the edges of G2. Then F is
continuous.
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(20) Let us consider graphs G1, G2, and a semi-directed-continuous partial
graph mapping F from G1 to G2. Suppose rngFE = the edges of G2. Then
F is directed-continuous.

(21) Let us consider graphs G1, G2, and a partial graph mapping F from G1

to G2. Suppose FV is one-to-one and rngFE = the edges of G2. Then F is
continuous. The theorem is a consequence of (17) and (19).

(22) Let us consider graphs G1, G2, and a directed partial graph mapping F
from G1 to G2. Suppose FV is one-to-one and rngFE = the edges of G2.
Then F is directed-continuous. The theorem is a consequence of (18) and
(20).

(23) Let us consider graphs G1, G2, and a continuous partial graph mapping
F from G1 to G2. If FE is one-to-one, then F is semi-continuous.

Let us consider graphs G1, G2 and a directed-continuous partial graph map-
ping F from G1 to G2. Now we state the propositions:

(24) If FE is one-to-one, then F is semi-directed-continuous.

(25) If FE is one-to-one, then F is directed. The theorem is a consequence of
(4).

(26) Let us consider graphs G1, G2, a semi-continuous partial graph mapping
F from G1 to G2, and objects v1, v2. Suppose v1, v2 ∈ dom(FV) and
(FV)(v1) = (FV)(v2) and there exist objects e, w such that e ∈ dom(FE)
and w ∈ dom(FV) and (FE)(e) joins (FV)(v1) and (FV)(w) in G2. Then
v1 = v2.

(27) Let us consider graphs G1, G2, and a semi-continuous partial graph
mapping F from G1 to G2. Suppose for every object v such that v ∈
dom(FV) there exist objects e, w such that e ∈ dom(FE) and w ∈ dom(FV)
and (FE)(e) joins (FV)(v) and (FV)(w) in G2. Then FV is one-to-one. The
theorem is a consequence of (26).

(28) Let us consider graphs G1, G2, a semi-directed-continuous partial graph
mapping F from G1 to G2, and objects v1, v2. Suppose v1, v2 ∈ dom(FV)
and (FV)(v1) = (FV)(v2) and there exist objects e, w such that e ∈
dom(FE) and w ∈ dom(FV) and (FE)(e) joins (FV)(v1) to (FV)(w) in
G2. Then v1 = v2.

(29) Let us consider graphs G1, G2, and a semi-directed-continuous partial
graph mapping F from G1 to G2. Suppose for every object v such that v ∈
dom(FV) there exist objects e, w such that e ∈ dom(FE) and w ∈ dom(FV)
and (FE)(e) joins (FV)(v) to (FV)(w) in G2. Then FV is one-to-one. The
theorem is a consequence of (28).

Let G1, G2 be graphs. One can verify that every partial graph mapping from
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G1 to G2 which is one-to-one is also semi-continuous and every partial graph
mapping from G1 to G2 which is one-to-one and directed is also semi-directed-
continuous and every partial graph mapping from G1 to G2 which is one-to-one
and onto is also continuous and every partial graph mapping from G1 to G2

which is directed, one-to-one, and onto is also directed-continuous.
Every partial graph mapping from G1 to G2 which is semi-continuous and

onto is also continuous and every partial graph mapping from G1 to G2 which is
semi-directed-continuous is also directed and semi-continuous and every partial
graph mapping from G1 to G2 which is semi-directed-continuous and onto is
also directed-continuous and every partial graph mapping from G1 to G2 which
is directed-continuous is also continuous.

Every partial graph mapping from G1 to G2 which is directed-continuous and
one-to-one is also directed and semi-directed-continuous and every partial graph
mapping from G1 to G2 which is empty is also one-to-one, directed-continuous,
directed, and continuous and every partial graph mapping from G1 to G2 which
is total is also non empty and every partial graph mapping from G1 to G2 which
is onto is also non empty.

Let G be a graph. One can verify that idG is total, non empty, onto, one-to-
one, and directed-continuous.

Let us consider graphs G1, G2, a partial function f from the vertices of G1

to the vertices of G2, and a partial function g from the edges of G1 to the edges
of G2. Now we state the propositions:

(30) Suppose for every object e such that e ∈ dom g holds (the source of
G1)(e), (the target of G1)(e) ∈ dom f and for every objects e, v, w such
that e ∈ dom g and v, w ∈ dom f holds if e joins v to w in G1, then g(e)
joins f(v) to f(w) in G2. Then 〈〈f, g〉〉 is a directed partial graph mapping
from G1 to G2. The theorem is a consequence of (8).

(31) Suppose for every object e such that e ∈ dom g holds (the source of
G1)(e), (the target of G1)(e) ∈ dom f and for every objects e, v, w such
that e ∈ dom g and v, w ∈ dom f holds e joins v and w in G1 iff g(e)
joins f(v) and f(w) in G2. Then 〈〈f, g〉〉 is a semi-continuous partial graph
mapping from G1 to G2. The theorem is a consequence of (8).

(32) Suppose for every object e such that e ∈ dom g holds (the source of
G1)(e), (the target of G1)(e) ∈ dom f and for every objects e, v, w such
that e ∈ dom g and v, w ∈ dom f holds e joins v to w in G1 iff g(e)
joins f(v) to f(w) in G2. Then 〈〈f, g〉〉 is a semi-directed-continuous partial
graph mapping from G1 to G2. The theorem is a consequence of (8).

(33) Let us consider graphs G1, G2. Then 〈〈∅, ∅〉〉 is an empty, one-to-one,
directed-continuous partial graph mapping from G1 to G2.
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(34) Let us consider graphs G1, G2, and a partial graph mapping F from G1

to G2. Suppose F is total. Let us consider a vertex v of G1. Then (FV)(v)
is a vertex of G2.

(35) Let us consider graphs G1, G2, and a partial graph mapping F from G1

to G2. Suppose F is total. Then

(i) if G2 is loopless, then G1 is loopless, and

(ii) if G2 is edgeless, then G1 is edgeless.

The theorem is a consequence of (4).

(36) Let us consider graphs G1, G2, and a continuous partial graph mapping
F from G1 to G2. Suppose rngFV = the vertices of G2. If G1 is loopless,
then G2 is loopless.
Proof: For every object v, there exists no object e such that e joins v
and v in G2. �

(37) Let us consider graphs G1, G2, and a semi-continuous partial graph
mapping F from G1 to G2. If F is onto, then if G1 is loopless, then G2 is
loopless.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(38) If rngFE = the edges of G2, then if G1 is edgeless, then G2 is edgeless.

(39) If F is onto, then if G1 is edgeless, then G2 is edgeless.

(40) Let us consider a graph G1, a non-multi graph G2, and partial graph
mappings F1, F2 from G1 to G2. Suppose F1V = F2V and dom(F1E) =
dom(F2E). Then F1 = F2. The theorem is a consequence of (5) and (4).

(41) Let us consider a graph G1, a non-directed-multi graph G2, and directed
partial graph mappings F1, F2 from G1 to G2. Suppose F1V = F2V and
dom(F1E) = dom(F2E). Then F1 = F2. The theorem is a consequence of
(5).

(42) Let us consider a non-multi graph G1, a graph G2, and a semi-continuous
partial graph mapping F from G1 to G2. Then FE is one-to-one. The
theorem is a consequence of (5) and (4).

(43) Let us consider a non-multi graph G1, a graph G2, and a partial graph
mapping F from G1 to G2. If FV is one-to-one, then FE is one-to-one. The
theorem is a consequence of (5) and (4).

(44) Let us consider a non-directed-multi graph G1, a graph G2, and a direc-
ted partial graph mapping F from G1 to G2. If FV is one-to-one, then FE
is one-to-one. The theorem is a consequence of (5).

Let G1 be a graph and G2 be a loopless graph. Observe that every partial
graph mapping fromG1 toG2 which is directed and semi-continuous is also semi-
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directed-continuous and every partial graph mapping from G1 to G2 which is
directed and continuous is also directed-continuous.

LetG1 be a trivial graph andG2 be a graph. Observe that every partial graph
mapping from G1 to G2 is directed and every partial graph mapping from G1 to
G2 which is semi-continuous is also semi-directed-continuous and every partial
graph mapping from G1 to G2 which is continuous is also directed-continuous.

Let G1 be a trivial, non-directed-multi graph. Note that every partial graph
mapping from G1 to G2 is one-to-one.

LetG1 be a trivial, edgeless graph. Observe that every partial graph mapping
from G1 to G2 which is non empty is also total.

Let G1 be a graph and G2 be a trivial, edgeless graph. Note that every
partial graph mapping from G1 to G2 which is non empty is also onto and every
partial graph mapping from G1 to G2 is semi-continuous and continuous.

Let G1, G2 be graphs and F be a partial graph mapping from G1 to G2. We
say that F is weak subgraph embedding if and only if

(Def. 19) F is total and one-to-one.

We say that F is strong subgraph embedding if and only if

(Def. 20) F is total, one-to-one, and continuous.

We say that F is isomorphism if and only if

(Def. 21) F is total, one-to-one, and onto.

We say that F is directed-isomorphism if and only if

(Def. 22) F is directed, total, one-to-one, and onto.

One can check that every partial graph mapping from G1 to G2 which is weak
subgraph embedding is also total, non empty, one-to-one, and semi-continuous
and every partial graph mapping from G1 to G2 which is total and one-to-one
is also weak subgraph embedding and every partial graph mapping from G1 to
G2 which is strong subgraph embedding is also total, non empty, one-to-one,
continuous, and weak subgraph embedding and every partial graph mapping
from G1 to G2 which is total, one-to-one, and continuous is also strong subgraph
embedding.

Every partial graph mapping from G1 to G2 which is weak subgraph embed-
ding and continuous is also strong subgraph embedding and every partial graph
mapping from G1 to G2 which is isomorphism is also onto, semi-continuous,
continuous, total, non empty, one-to-one, weak subgraph embedding, and strong
subgraph embedding and every partial graph mapping from G1 to G2 which is
total, one-to-one, onto, and continuous is also isomorphism and every partial
graph mapping from G1 to G2 which is strong subgraph embedding and onto is
also isomorphism.
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Every partial graph mapping from G1 to G2 which is weak subgraph embed-
ding, continuous, and onto is also isomorphism and every partial graph mapping
from G1 to G2 which is directed-isomorphism is also directed, isomorphism,
continuous, total, non empty, semi-directed-continuous, semi-continuous, one-
to-one, weak subgraph embedding, and strong subgraph embedding and every
partial graph mapping from G1 to G2 which is directed and isomorphism is also
directed-continuous and directed-isomorphism.

Let G be a graph. Let us note that idG is weak subgraph embedding, strong
subgraph embedding, isomorphism, and directed-isomorphism and there exists
a partial graph mapping from G to G which is weak subgraph embedding, strong
subgraph embedding, isomorphism, and directed-isomorphism.

Now we state the propositions:

(45) Let us consider graphs G1, G2, and a partial graph mapping F from G1

to G2. Suppose F is weak subgraph embedding. Then

(i) G1.order() ⊆ G2.order(), and

(ii) G1.size() ⊆ G2.size().

(46) Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and subsetsX, Y of the vertices ofG1. Suppose F is weak subgraph embed-
ding. Then G1.edgesBetween(X,Y ) ⊆ G2.edgesBetween((FV)◦X, (FV)◦Y ).
Proof: Set f = FE�G1.edgesBetween(X,Y ). For every object y such that
y ∈ rng f holds y ∈ G2.edgesBetween((FV)◦X, (FV)◦Y ). �

(47) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and a subset X of the vertices of G1. Suppose F is weak subgraph
embedding. Then G1.edgesBetween(X) ⊆ G2.edgesBetween((FV)◦X).
Proof: Set f = FE�G1.edgesBetween(X). For every object y such that
y ∈ rng f holds y ∈ G2.edgesBetween((FV)◦X). �

(48) Let us consider graphs G1, G2, a directed partial graph mapping F from
G1 to G2, and subsets X, Y of the vertices of G1. Suppose F is weak
subgraph embedding. Then G1.edgesDBetween(X,Y ) ⊆
G2.edgesDBetween((FV)◦X, (FV)◦Y ).
Proof: Set f = FE�G1.edgesDBetween(X,Y ). For every object y such
that y ∈ rng f holds y ∈ G2.edgesDBetween((FV)◦X, (FV)◦Y ). �

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(49) Suppose F is weak subgraph embedding. Then

(i) if G2 is trivial, then G1 is trivial, and

(ii) if G2 is non-multi, then G1 is non-multi, and
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(iii) if G2 is simple, then G1 is simple, and

(iv) if G2 is finite, then G1 is finite.

Proof: If G2 is non-multi, then G1 is non-multi. G1.order() ⊆ G2.order()
and G1.size() ⊆ G2.size(). �

(50) Suppose F is directed and weak subgraph embedding. Then

(i) if G2 is non-directed-multi, then G1 is non-directed-multi, and

(ii) if G2 is directed-simple, then G1 is directed-simple.

Proof: If G2 is non-directed-multi, then G1 is non-directed-multi. G1 is
loopless and non-directed-multi. �

(51) Let us consider finite graphs G1, G2, and a partial graph mapping F

from G1 to G2. Suppose F is strong subgraph embedding and G1.order() =
G2.order() and G1.size() = G2.size(). Then F is isomorphism.

(52) Let us consider graphs G1, G2, and a partial graph mapping F from G1

to G2. Suppose F is strong subgraph embedding. If G2 is complete, then
G1 is complete.

Let G1, G2 be graphs. We say that G2 is G1-isomorphic if and only if

(Def. 23) there exists a partial graph mapping F from G1 to G2 such that F is
isomorphism.

We say that G2 is G1-directed-isomorphic if and only if

(Def. 24) there exists a partial graph mapping F from G1 to G2 such that F is
directed-isomorphism.

Let G be a graph. Note that every graph which is G-directed-isomorphic is
also G-isomorphic and there exists a graph which is G-directed-isomorphic and
G-isomorphic.

Now we state the proposition:

(53) Every graph is directed-isomorphic and isomorphic to itself.

Let G1 be a graph and G2 be a G1-isomorphic graph. Let us observe that
there exists a partial graph mapping from G1 to G2 which is isomorphism, strong
subgraph embedding, weak subgraph embedding, total, non empty, one-to-one,
onto, semi-continuous, and continuous.

An isomorphism between G1 and G2 is an isomorphism partial graph map-
ping from G1 to G2. Let G2 be a G1-directed-isomorphic graph. One can verify
that there exists a partial graph mapping from G1 to G2 which is isomorphism,
strong subgraph embedding, weak subgraph embedding, total, non empty, one-
to-one, onto, directed, semi-directed-continuous, and directed-continuous.

A directed isomorphism of G1 and G2 is a directed-isomorphism partial
graph mapping from G1 to G2. Let G1, G2 be w-graphs and F be a partial
graph mapping from G1 to G2. We say that F preserves weight if and only if
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(Def. 25) (the weight of G2) · (FE) = (the weight of G1)� dom(FE).

Let G1, G2 be e-graphs. We say that F preserves elabel if and only if

(Def. 26) (the elabel of G2) · (FE) = (the elabel of G1)� dom(FE).

Let G1, G2 be v-graphs. We say that F preserves vlabel if and only if

(Def. 27) (the vlabel of G2) · (FV) = (the vlabel of G1)� dom(FV).

Let G1, G2 be ordered graphs. We say that F preserves ordering if and only
if

(Def. 28) (the ordering of G2) · (FV) = the ordering of G1� dom(FV).

Let G be a w-graph. Note that idG preserves weight.
Let G be an e-graph. Let us note that idG preserves elabel.
Let G be a v-graph. Observe that idG preserves vlabel.
Let G be an ordered graph. Let us observe that idG preserves ordering.
Let G1, G2 be graphs and F be a partial graph mapping from G1 to G2. The

functor domF yielding a subgraph of G1 induced by dom(FV) and dom(FE) is
defined by the term

(Def. 29) the plain subgraph of G1 induced by dom(FV) and dom(FE).

The functor rngF yielding a subgraph of G2 induced by rngFV and rngFE is
defined by the term

(Def. 30) the plain subgraph of G2 induced by rngFV and rngFE.

One can verify that domF is plain and rngF is plain.
Let us consider graphs G1, G2 and a non empty partial graph mapping F

from G1 to G2. Now we state the propositions:

(54) (i) the vertices of domF = dom(FV), and

(ii) the edges of domF = dom(FE), and

(iii) the vertices of rngF = rngFV, and

(iv) the edges of rngF = rngFE.
The theorem is a consequence of (7).

(55) F is total if and only if domF ≈ G1. The theorem is a consequence of
(54).

(56) F is onto if and only if rngF ≈ G2. The theorem is a consequence of
(54).

Let G1, G2 be graphs, H be a subgraph of G1, and F be a partial graph
mapping from G1 to G2. The functor F �H yielding a partial graph mapping
from H to G2 is defined by the term

(Def. 31) 〈〈FV�(the vertices of H), FE�(the edges of H)〉〉.
Now we state the propositions:
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(57) Let us consider graphs G1, G2, a subgraph H of G1, and a partial graph
mapping F from G1 to G2. Then

(i) if F is empty, then F �H is empty, and

(ii) if F is total, then F �H is total, and

(iii) if F is one-to-one, then F �H is one-to-one, and

(iv) if F is weak subgraph embedding, then F �H is weak subgraph em-
bedding, and

(v) if F is semi-continuous, then F �H is semi-continuous, and

(vi) if F is not onto, then F �H is not onto, and

(vii) if F is directed, then F �H is directed, and

(viii) if F is semi-directed-continuous, then F �H is semi-directed-continuous.

Proof: If F is total, then F �H is total. If F is semi-continuous, then
F �H is semi-continuous. If F �H is onto, then F is onto. If F is directed,
then F �H is directed. If F is semi-directed-continuous, then F �H is semi-
directed-continuous. �

(58) Let us consider graphs G1, G2, a set V , a subgraph H of G1 induced by
V , and a partial graph mapping F from G1 to G2. Then

(i) if F is continuous, then F �H is continuous, and

(ii) if F is strong subgraph embedding, then F �H is strong subgraph
embedding, and

(iii) if F is directed-continuous, then F �H is directed-continuous.

The theorem is a consequence of (57).

Let G1, G2 be graphs, H be a subgraph of G1, and F be an empty partial
graph mapping from G1 to G2. Let us observe that F �H is empty.

Let F be a one-to-one partial graph mapping from G1 to G2. Let us observe
that F �H is one-to-one.

Let F be a semi-continuous partial graph mapping from G1 to G2. Observe
that F �H is semi-continuous.

Let V be a set, H be a subgraph of G1 induced by V , and F be a continuous
partial graph mapping from G1 to G2. Let us observe that F �H is continuous.

Let H be a subgraph of G1 and F be a directed partial graph mapping from
G1 to G2. Note that F �H is directed.

Let F be a semi-directed-continuous partial graph mapping from G1 to G2.
One can check that F �H is semi-directed-continuous.

Let V be a set, H be a subgraph of G1 induced by V , and F be a directed-
continuous partial graph mapping from G1 to G2. Note that F �H is directed-
continuous.
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Let F be a non empty partial graph mapping from G1 to G2. One can verify
that F � domF is total.

Now we state the propositions:

(59) Let us consider graphs G1, G2, a subgraph H of G1, and a partial graph
mapping F from G1 to G2. Then

(i) dom((F �H)V) = dom(FV) ∩ (the vertices of H), and

(ii) dom((F �H)E) = dom(FE) ∩ (the edges of H).

(60) Let us consider w-graphs G1, G2, a w-subgraph H of G1, and a par-
tial graph mapping F from G1 to G2. If F preserves weight, then F �H
preserves weight. The theorem is a consequence of (59).

(61) Let us consider e-graphs G1, G2, an e-subgraph H of G1, and a partial
graph mapping F from G1 to G2. If F preserves elabel, then F �H preserves
elabel. The theorem is a consequence of (59).

(62) Let us consider v-graphs G1, G2, a v-subgraph H of G1, and a partial
graph mapping F fromG1 toG2. If F preserves vlabel, then F �H preserves
vlabel. The theorem is a consequence of (59).

Let G1, G2 be graphs, H be a subgraph of G2, and F be a partial graph
mapping from G1 to G2. The functor H�F yielding a partial graph mapping
from G1 to H is defined by the term

(Def. 32) 〈〈(the vertices of H)�FV, (the edges of H)�FE〉〉.
Now we state the proposition:

(63) Let us consider graphs G1, G2, a subgraph H of G2, and a partial graph
mapping F from G1 to G2. Then

(i) if F is empty, then H�F is empty, and

(ii) if F is one-to-one, then H�F is one-to-one, and

(iii) if F is onto, then H�F is onto, and

(iv) if F is not total, then H�F is not total, and

(v) if F is directed, then H�F is directed, and

(vi) if F is semi-continuous, then H�F is semi-continuous, and

(vii) if F is continuous, then H�F is continuous, and

(viii) if F is semi-directed-continuous, thenH�F is semi-directed-continuous,
and

(ix) if F is directed-continuous, then H�F is directed-continuous.

Proof: If F is onto, then H�F is onto. If F is directed, then H�F is
directed. If F is semi-continuous, then H�F is semi-continuous. If F is
continuous, then H�F is continuous. If F is semi-directed-continuous, then
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H�F is semi-directed-continuous. If F is directed-continuous, then H�F
is directed-continuous. �

Let G1, G2 be graphs, H be a subgraph of G2, and F be an empty partial
graph mapping from G1 to G2. One can verify that H�F is empty.

Let F be a one-to-one partial graph mapping from G1 to G2. Let us observe
that H�F is one-to-one.

Let F be a semi-continuous partial graph mapping from G1 to G2. Observe
that H�F is semi-continuous.

Let F be a continuous partial graph mapping from G1 to G2. Let us note
that H�F is continuous.

Let F be a directed partial graph mapping from G1 to G2. Note that H�F
is directed.

Let F be a semi-directed-continuous partial graph mapping from G1 to G2.
One can check that H�F is semi-directed-continuous.

Let F be a directed-continuous partial graph mapping from G1 to G2. One
can verify that H�F is directed-continuous.

Let F be a non empty partial graph mapping from G1 to G2. Observe that
rngF �F is onto.

Now we state the propositions:

(64) Let us consider graphs G1, G2, a subgraph H of G2, and a partial graph
mapping F from G1 to G2. Then

(i) rng (H�F )V = rngFV ∩ (the vertices of H), and

(ii) rng (H�F )E = rngFE ∩ (the edges of H).

(65) Let us consider w-graphs G1, G2, a w-subgraph H of G2, and a par-
tial graph mapping F from G1 to G2. If F preserves weight, then H�F
preserves weight.

(66) Let us consider e-graphs G1, G2, an e-subgraph H of G2, and a partial
graph mapping F from G1 to G2. If F preserves elabel, then H�F preserves
elabel.

(67) Let us consider v-graphs G1, G2, a v-subgraph H of G2, and a partial
graph mapping F fromG1 toG2. If F preserves vlabel, thenH�F preserves
vlabel.

(68) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, a subgraph H1 of G1, and a subgraph H2 of G2. Then (H2�F )�H1 =
H2�(F �H1).

Let G1, G2 be graphs and F be a one-to-one partial graph mapping from
G1 to G2. The functor F−1 yielding a partial graph mapping from G2 to G1 is
defined by the term
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(Def. 33) 〈〈(FV)−1, (FE)−1〉〉.
One can verify that F−1 is one-to-one and semi-continuous.
Let F be an empty, one-to-one partial graph mapping from G1 to G2. One

can verify that F−1 is empty.
Let F be a non empty, one-to-one partial graph mapping from G1 to G2.

Let us note that F−1 is non empty.
Let F be a one-to-one, semi-directed-continuous partial graph mapping from

G1 to G2. One can verify that F−1 is semi-directed-continuous.
Let us consider graphs G1, G2 and a one-to-one partial graph mapping F

from G1 to G2. Now we state the propositions:

(69) (i) F−1
V = (FV)−1, and

(ii) F−1
E = (FE)−1.

(70) (F−1)−1 = F .

(71) F is total if and only if F−1 is onto.

(72) F is onto if and only if F−1 is total.

(73) If F is total and continuous, then F−1 is continuous.

(74) If F is total and directed-continuous, then F−1 is directed-continuous.

(75) F is isomorphism if and only if F−1 is isomorphism.

(76) Let us consider w-graphsG1,G2, and a one-to-one partial graph mapping
F from G1 to G2. Then F preserves weight if and only if F−1 preserves
weight. The theorem is a consequence of (2) and (70).

(77) Let us consider e-graphs G1, G2, and a one-to-one partial graph mapping
F from G1 to G2. Then F preserves elabel if and only if F−1 preserves
elabel. The theorem is a consequence of (2) and (70).

(78) Let us consider v-graphs G1, G2, and a one-to-one partial graph mapping
F from G1 to G2. Then F preserves vlabel if and only if F−1 preserves
vlabel. The theorem is a consequence of (2) and (70).

(79) Let us consider graphs G1, G2, and a one-to-one partial graph mapping
F from G1 to G2. Suppose F is onto. Let us consider a vertex v of G2.
Then (F−1

V)(v) is a vertex of G1.

(80) Let us consider a graph G. Then (idG)−1 = idG.

(81) Let us consider graphs G1, G2, and a non empty, one-to-one partial graph
mapping F from G1 to G2. Then

(i) domF = rngF−1, and

(ii) rngF = dom(F−1).

The theorem is a consequence of (54).
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(82) Let us consider graphs G1, G2, a one-to-one partial graph mapping F

from G1 to G2, and a subgraph H of G1. Then (F �H)−1 = H�F−1.

(83) Let us consider graphs G1, G2, a one-to-one partial graph mapping F

from G1 to G2, and a subgraph H of G2. Then (H�F )−1 = F−1�H. The
theorem is a consequence of (82) and (70).

(84) Let us consider graphs G1, G2, and a partial graph mapping F from G1

to G2. Suppose F is isomorphism. Then

(i) G1.order() = G2.order(), and

(ii) G1.size() = G2.size().

The theorem is a consequence of (45) and (75).

(85) Let us consider finite graphs G1, G2, and a partial graph mapping F

from G1 to G2. Suppose F is strong subgraph embedding. If there exists
a partial graph mapping F0 from G1 to G2 such that F0 is isomorphism,
then F is isomorphism. The theorem is a consequence of (84) and (51).

(86) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and subsets X, Y of the vertices of G1. Suppose F is isomorphism.
Then G1.edgesBetween(X,Y ) = G2.edgesBetween((FV)◦X, (FV)◦Y ). The
theorem is a consequence of (46) and (75).

(87) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and a subset X of the vertices of G1. Suppose F is isomorphism.
Then G1.edgesBetween(X) = G2.edgesBetween((FV)◦X). The theorem
is a consequence of (47) and (75).

(88) Let us consider graphs G1, G2, a directed partial graph mapping F

from G1 to G2, and subsets X, Y of the vertices of G1. Suppose F is
isomorphism. Then G1.edgesDBetween(X,Y ) =

G2.edgesDBetween((FV)◦X, (FV)◦Y ). The theorem is a consequence of
(48) and (75).

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(89) Suppose F is isomorphism. Then

(i) G1 is trivial iff G2 is trivial, and

(ii) G1 is loopless iff G2 is loopless, and

(iii) G1 is edgeless iff G2 is edgeless, and

(iv) G1 is non-multi iff G2 is non-multi, and

(v) G1 is simple iff G2 is simple, and

(vi) G1 is finite iff G2 is finite, and
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(vii) G1 is complete iff G2 is complete.

The theorem is a consequence of (75), (35), (49), and (52).

(90) Suppose F is directed-continuous and isomorphism. Then

(i) G1 is non-directed-multi iff G2 is non-directed-multi, and

(ii) G1 is directed-simple iff G2 is directed-simple.

The theorem is a consequence of (74), (75), and (50).

(91) Let us consider graphs G1, G2, and a non empty, one-to-one partial

graph mapping F from G1 to G2. Then domF .loops() = rngF .loops().
The theorem is a consequence of (81).

Let us consider graphs G1, G2 and a one-to-one partial graph mapping F

from G1 to G2. Now we state the propositions:

(92) If F is total, then G1.loops() ⊆ G2.loops(). The theorem is a consequ-
ence of (55).

(93) If F is onto, then G2.loops() ⊆ G1.loops(). The theorem is a consequ-
ence of (72) and (92).

(94) If F is isomorphism, then G1.loops() = G2.loops(). The theorem is
a consequence of (92) and (93).

(95) Let us consider a graph G1, and a G1-isomorphic graph G2. Then G1 is
G2-isomorphic. The theorem is a consequence of (75).

(96) Let us consider a graph G1, and a G1-directed-isomorphic graph G2.
Then G1 is G2-directed-isomorphic. The theorem is a consequence of (71)
and (72).

Let us consider a graph G1, a G1-isomorphic graph G2, a G2-isomorphic
graph G3, and an isomorphism F between G1 and G2. Now we state the propo-
sitions:

(97) Suppose there exists a set E such that G3 is a graph given by reversing
directions of the edges E of G1. Then F−1 is an isomorphism between G2

and G3.
Proof: Reconsider F2 = F−1 as a partial graph mapping from G2 to G3.
F2 is total. F2 is onto. �

(98) If G1 ≈ G3, then F−1 is an isomorphism between G2 and G3. The
theorem is a consequence of (97).

(99) Let us consider a graph G1, a G1-directed-isomorphic graph G2, a G2-
directed-isomorphic graph G3, and a directed isomorphism F of G1 and
G2. Suppose G1 ≈ G3. Then F−1 is a directed isomorphism of G2 and G3.
Proof: Reconsider F2 = F−1 as a partial graph mapping from G2 to G3.
F2 is total. F2 is onto. �
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Let G1, G2, G3 be graphs, F1 be a partial graph mapping from G1 to G2,
and F2 be a partial graph mapping from G2 to G3. The functor F2 ·F1 yielding
a partial graph mapping from G1 to G3 is defined by the term

(Def. 34) 〈〈(F2V) · (F1V), (F2E) · (F1E)〉〉.
Let us consider graphs G1, G2, G3, a partial graph mapping F1 from G1 to

G2, and a partial graph mapping F2 from G2 to G3. Now we state the proposi-
tions:

(100) (i) F2 · F1V = (F2V) · (F1V), and

(ii) F2 · F1E = (F2E) · (F1E).

(101) If F2 · F1 is onto, then F2 is onto.

(102) If F2 · F1 is total, then F1 is total.

Let G1, G2, G3 be graphs, F1 be a one-to-one partial graph mapping from
G1 to G2, and F2 be a one-to-one partial graph mapping from G2 to G3. Observe
that F2 · F1 is one-to-one.

Let F1 be a semi-continuous partial graph mapping from G1 to G2 and F2

be a semi-continuous partial graph mapping from G2 to G3. Let us observe that
F2 · F1 is semi-continuous.

Let F1 be a continuous partial graph mapping from G1 to G2 and F2 be
a continuous partial graph mapping from G2 to G3. One can check that F2 · F1

is continuous.
Let F1 be a directed partial graph mapping from G1 to G2 and F2 be a di-

rected partial graph mapping from G2 to G3. One can check that F2 · F1 is
directed.

Let F1 be a semi-directed-continuous partial graph mapping from G1 to G2

and F2 be a semi-directed-continuous partial graph mapping from G2 to G3.
Note that F2 · F1 is semi-directed-continuous.

Let F1 be a directed-continuous partial graph mapping from G1 to G2 and
F2 be a directed-continuous partial graph mapping from G2 to G3. Observe that
F2 · F1 is directed-continuous.

Let F1 be an empty partial graph mapping from G1 to G2 and F2 be a partial
graph mapping from G2 to G3. Observe that F2 · F1 is empty.

Let F1 be a partial graph mapping from G1 to G2 and F2 be an empty
partial graph mapping from G2 to G3. Let us observe that F2 · F1 is empty.

Let us consider graphs G1, G2, G3, a partial graph mapping F1 from G1 to
G2, and a partial graph mapping F2 from G2 to G3. Now we state the proposi-
tions:

(103) Suppose F1 is total and rngF1V ⊆ dom(F2V) and rngF1E ⊆ dom(F2E).
Then F2 · F1 is total.
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(104) If F1 is total and F2 is total, then F2 ·F1 is total. The theorem is a con-
sequence of (103).

(105) Suppose F2 is onto and dom(F2V) ⊆ rngF1V and dom(F2E) ⊆ rngF1E.
Then F2 · F1 is onto.

(106) If F1 is onto and F2 is onto, then F2 · F1 is onto. The theorem is a con-
sequence of (105).

(107) If F1 is weak subgraph embedding and F2 is weak subgraph embedding,
then F2 · F1 is weak subgraph embedding.

(108) If F1 is strong subgraph embedding and F2 is strong subgraph embed-
ding, then F2 · F1 is strong subgraph embedding.

(109) If F1 is isomorphism and F2 is isomorphism, then F2 ·F1 is isomorphism.

(110) If F1 is directed-isomorphism and F2 is directed-isomorphism, then F2·F1

is directed-isomorphism. The theorem is a consequence of (109).

(111) Let us consider w-graphs G1, G2, G3, a partial graph mapping F1 from
G1 to G2, and a partial graph mapping F2 from G2 to G3. Suppose F1

preserves weight and F2 preserves weight. Then F2 · F1 preserves weight.
The theorem is a consequence of (1).

(112) Let us consider e-graphs G1, G2, G3, a partial graph mapping F1 from
G1 to G2, and a partial graph mapping F2 from G2 to G3. Suppose F1

preserves elabel and F2 preserves elabel. Then F2 ·F1 preserves elabel. The
theorem is a consequence of (1).

(113) Let us consider v-graphs G1, G2, G3, a partial graph mapping F1 from
G1 to G2, and a partial graph mapping F2 from G2 to G3. Suppose F1

preserves vlabel and F2 preserves vlabel. Then F2 · F1 preserves vlabel.
The theorem is a consequence of (1).

(114) Let us consider graphs G1, G2, G3, G4, a partial graph mapping F1 from
G1 to G2, a partial graph mapping F2 from G2 to G3, and a partial graph
mapping F3 from G3 to G4. Then F3 · (F2 · F1) = (F3 · F2) · F1.

(115) Let us consider graphs G1, G2, and a one-to-one partial graph mapping
F from G1 to G2. Suppose F is isomorphism. Then

(i) F · (F−1) = idG2 , and

(ii) F−1 · F = idG1 .

(116) Let us consider graphs G1, G2, and a partial graph mapping F from G1

to G2. Then

(i) F · (idG1) = F , and

(ii) idG2 · F = F .
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(117) Let us consider graphs G1, G2, G3, a partial graph mapping F1 from G1

to G2, a partial graph mapping F2 from G2 to G3, and a subgraph H of
G1. Then F2 · (F1�H) = (F2 · F1)�H.

(118) Let us consider graphs G1, G2, G3, a partial graph mapping F1 from G1

to G2, a partial graph mapping F2 from G2 to G3, and a subgraph H of
G3. Then (H�F2) · F1 = H�(F2 · F1).

Let G1 be a graph and G2 be a G1-isomorphic graph. Let us note that every
graph which is G2-isomorphic is also G1-isomorphic.

Let G2 be a G1-directed-isomorphic graph. Note that every graph which is
G2-directed-isomorphic is also G1-directed-isomorphic.

4. Walks Induced by Graph Mappings

Let G1, G2 be graphs, F be a partial graph mapping from G1 to G2, and
W1 be a walk of G1. We say that W1 is F -defined if and only if

(Def. 35) W1.vertices() ⊆ dom(FV) and W1.edges() ⊆ dom(FE).

Let W2 be a walk of G2. We say that W2 is F-valued if and only if

(Def. 36) W2.vertices() ⊆ rngFV and W2.edges() ⊆ rngFE.

Let F be a non empty partial graph mapping from G1 to G2. Observe that
there exists a walk of G1 which is F -defined and trivial and there exists a walk
of G2 which is F-valued and trivial.

Let us consider graphs G1, G2 and an empty partial graph mapping F from
G1 to G2. Now we state the propositions:

(119) Every walk of G1 is not F -defined.

(120) Every walk of G2 is not F-valued.

(121) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and a walk W1 of G1. If F is total, then W1 is F -defined.

(122) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and a walk W2 of G2. If F is onto, then W2 is F-valued.

Let G1, G2 be graphs and F be a one-to-one partial graph mapping from G1

to G2. Observe that every walk of G1 which is F -defined is also (F−1)-valued
and every walk of G2 which is F-valued is also (F−1)-defined.

Let F be a non empty partial graph mapping from G1 to G2 and W1 be
an F -defined walk of G1. The functor F ◦W1 yielding a walk of G2 is defined by

(Def. 37) (FV) · (W1.vertexSeq()) = it .vertexSeq() and (FE) · (W1.edgeSeq()) =
it .edgeSeq().

Note that F ◦W1 is F-valued.
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Let us observe that the functor F ◦W1 yields an F-valued walk of G2. Let F
be a non empty, one-to-one partial graph mapping from G1 to G2 and W2 be
an F-valued walk of G2. The functor F−1(W2) yielding an F -defined walk of G1

is defined by the term

(Def. 38) (F−1)◦W2.

Let us observe that the functor F−1(W2) is defined by

(Def. 39) (FV) · (it .vertexSeq()) = W2.vertexSeq() and (FE) · (it .edgeSeq()) =
W2.edgeSeq().

Now we state the propositions:

(123) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F -defined walk W1 of G1. Then
F−1(F ◦W1) = W1.

(124) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F-valued walk W2 of G2.
Then F ◦(F−1(W2)) = W2.

(125) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, and an F -defined walk W1 of G1. Then

(i) W1.length() = (F ◦W1).length(), and

(ii) lenW1 = len(F ◦W1).

(126) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F-valued walk W2 of G2. Then

(i) W2.length() = (F−1(W2)).length(), and

(ii) lenW2 = len(F−1(W2)).

(127) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, and an F -defined walk W1 of G1. Then

(i) (FV)(W1.first()) = (F ◦W1).first(), and

(ii) (FV)(W1.last()) = (F ◦W1).last().

(128) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F-valued walk W2 of G2. Then

(i) ((FV)−1)(W2.first()) = (F−1(W2)).first(), and

(ii) ((FV)−1)(W2.last()) = (F−1(W2)).last().

(129) Let us consider graphs G1, G2, a non empty partial graph mapping
F from G1 to G2, an F -defined walk W1 of G1, and an odd element n
of N. If n ¬ lenW1, then (FV)(W1(n)) = (F ◦W1)(n). The theorem is
a consequence of (125).
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(130) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, an F -defined walk W1 of G1, and an even element n of N.
Suppose 1 ¬ n ¬ lenW1. Then (FE)(W1(n)) = (F ◦W1)(n). The theorem
is a consequence of (125).

Let us consider graphs G1, G2, a non empty partial graph mapping F from
G1 to G2, an F -defined walk W1 of G1, and objects v, w. Now we state the
propositions:

(131) If W1 is walk from v to w, then v, w ∈ dom(FV).

(132) If W1 is walk from v to w, then F ◦W1 is walk from (FV)(v) to (FV)(w).
The theorem is a consequence of (129) and (125).

(133) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, an F -defined walk W1 of G1, and objects v,
w. Then W1 is walk from v to w if and only if v, w ∈ dom(FV) and F ◦W1

is walk from (FV)(v) to (FV)(w). The theorem is a consequence of (131),
(132), and (123).

(134) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F -defined walk W1 of G1. Suppo-
se (FV)(W1.first()) = (FV)(W1.last()). Then W1.first() = W1.last(). The
theorem is a consequence of (4).

Let us consider graphs G1, G2, a non empty partial graph mapping F from
G1 to G2, and an F -defined walk W1 of G1. Now we state the propositions:

(135) (F ◦W1).vertices() = (FV)◦(W1.vertices()).
Proof: For every object y, y ∈ rng(FV) · (W1.vertexSeq()) iff y ∈
(FV)◦(W1.vertices()). �

(136) (F ◦W1).edges() = (FE)◦(W1.edges()).
Proof: For every object y, y ∈ rng(FE) · (W1.edgeSeq()) iff y ∈
(FE)◦(W1.edges()). �

(137) (i) if W1 is trivial, then F ◦W1 is trivial, and

(ii) if W1 is closed, then F ◦W1 is closed, and

(iii) if F ◦W1 is trail-like, then W1 is trail-like, and

(iv) if F ◦W1 is path-like, then W1 is path-like.
Proof: If F ◦W1 is trail-like, then W1 is trail-like. For every odd elements
m, n of N such that m < n ¬ lenW1 holds if W1(m) = W1(n), then m = 1
and n = lenW1. �

(138) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an F -defined walk W1 of G1. Then

(i) W1 is trivial iff F ◦W1 is trivial, and
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(ii) W1 is closed iff F ◦W1 is closed, and

(iii) W1 is trail-like iff F ◦W1 is trail-like, and

(iv) W1 is path-like iff F ◦W1 is path-like, and

(v) W1 is circuit-like iff F ◦W1 is circuit-like, and

(vi) W1 is cycle-like iff F ◦W1 is cycle-like.

The theorem is a consequence of (123) and (137).

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(139) If F is strong subgraph embedding, then if G2 is acyclic, then G1 is
acyclic. The theorem is a consequence of (121) and (138).

(140) Suppose F is isomorphism. Then

(i) G1 is acyclic iff G2 is acyclic, and

(ii) G1 is chordal iff G2 is chordal, and

(iii) G1 is connected iff G2 is connected.

Proof: F−1 is isomorphism and semi-continuous. For every vertices u, v
of G1, there exists a walk W1 of G1 such that W1 is walk from u to v. �

5. Graph Mappings and Graph Modes

Let us consider graphs G1, G2, sets E1, E2, a graph G3 given by reversing
directions of the edges E1 of G1, a graph G4 given by reversing directions of the
edges E2 of G2, and a partial graph mapping F0 from G1 to G2. Now we state
the propositions:

(141) There exists a partial graph mapping F from G3 to G4 such that

(i) F = F0, and

(ii) if F0 is not empty, then F is not empty, and

(iii) if F0 is total, then F is total, and

(iv) if F0 is onto, then F is onto, and

(v) if F0 is one-to-one, then F is one-to-one, and

(vi) if F0 is semi-continuous, then F is semi-continuous, and

(vii) if F0 is continuous, then F is continuous.

Proof: Reconsider F = F0 as a partial graph mapping from G3 to G4.
If F0 is semi-continuous, then F is semi-continuous. If F0 is continuous,
then F is continuous by [13, (9)]. �
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(142) There exists a partial graph mapping F from G3 to G4 such that

(i) F = F0, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is strong subgraph embedding, then F is strong subgraph em-
bedding, and

(iv) if F0 is isomorphism, then F is isomorphism.

The theorem is a consequence of (141).

(143) Let us consider a graph G1, a G1-isomorphic graph G2, sets E1, E2, and
a graph G3 given by reversing directions of the edges E1 of G1. Then every
graph given by reversing directions of the edges E2 of G2 is G3-isomorphic.
The theorem is a consequence of (142).

Let us consider graphs G3, G4, sets V1, V2, a supergraph G1 of G3 extended
by the vertices from V1, a supergraph G2 of G4 extended by the vertices from
V2, a partial graph mapping F0 from G3 to G4, and a one-to-one function f .
Now we state the propositions:

(144) Suppose dom f = V1 \ (the vertices of G3) and rng f = V2 \ (the vertices
of G4). Then there exists a partial graph mapping F from G1 to G2 such
that

(i) F = 〈〈F0V+·f, F0E〉〉, and

(ii) if F0 is not empty, then F is not empty, and

(iii) if F0 is total, then F is total, and

(iv) if F0 is onto, then F is onto, and

(v) if F0 is one-to-one, then F is one-to-one, and

(vi) if F0 is directed, then F is directed, and

(vii) if F0 is semi-continuous, then F is semi-continuous, and

(viii) if F0 is continuous, then F is continuous, and

(ix) if F0 is semi-directed-continuous, then F is semi-directed-continuous,
and

(x) if F0 is directed-continuous, then F is directed-continuous.

Proof: Set h = F0V+·f . Reconsider g = F0E as a partial function from
the edges of G1 to the edges of G2. Reconsider F = 〈〈h, g〉〉 as a partial
graph mapping from G1 to G2. If F0 is total, then F is total. If F0 is onto,
then F is onto. If F0 is directed, then F is directed. If F0 is semi-continuous,
then F is semi-continuous. If F0 is continuous, then F is continuous. If F0

is semi-directed-continuous, then F is semi-directed-continuous. If F0 is
directed-continuous, then F is directed-continuous. �
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(145) Suppose dom f = V1 \ (the vertices of G3) and rng f = V2 \ (the vertices
of G4). Then there exists a partial graph mapping F from G1 to G2 such
that

(i) F = 〈〈F0V+·f, F0E〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is strong subgraph embedding, then F is strong subgraph em-
bedding, and

(iv) if F0 is isomorphism, then F is isomorphism, and

(v) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (144).

(146) Let us consider a graph G3, a G3-isomorphic graph G4, sets V1, V2,
a supergraph G1 of G3 extended by the vertices from V1, and a supergraph
G2 of G4 extended by the vertices from V2. Suppose V1 \ α = V2 \ β . Then
G2 is G1-isomorphic, where α is the vertices of G3 and β is the vertices of
G4. The theorem is a consequence of (145).

(147) Let us consider a graph G3, a G3-directed-isomorphic graph G4, sets
V1, V2, a supergraph G1 of G3 extended by the vertices from V1, and
a supergraph G2 of G4 extended by the vertices from V2. Suppose V1 \ α =

V2 \ β . Then G2 is G1-directed-isomorphic, where α is the vertices of G3

and β is the vertices of G4. The theorem is a consequence of (145).

Let us consider graphs G3, G4, objects v1, v2, a supergraph G1 of G3 exten-
ded by v1, a supergraph G2 of G4 extended by v2, and a partial graph mapping
F0 from G3 to G4. Now we state the propositions:

(148) Suppose v1 /∈ the vertices of G3 and v2 /∈ the vertices of G4. Then there
exists a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and

(v) if F0 is directed, then F is directed, and

(vi) if F0 is semi-continuous, then F is semi-continuous, and

(vii) if F0 is continuous, then F is continuous, and

(viii) if F0 is semi-directed-continuous, then F is semi-directed-continuous,
and
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(ix) if F0 is directed-continuous, then F is directed-continuous.

The theorem is a consequence of (144).

(149) Suppose v1 /∈ the vertices of G3 and v2 /∈ the vertices of G4. Then there
exists a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is strong subgraph embedding, then F is strong subgraph em-
bedding, and

(iv) if F0 is isomorphism, then F is isomorphism, and

(v) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (148).

(150) Let us consider a graph G3, a G3-isomorphic graph G4, objects v1, v2,
a supergraph G1 of G3 extended by v1, and a supergraph G2 of G4 exten-
ded by v2. Suppose v1 ∈ the vertices of G3 iff v2 ∈ the vertices of G4.
Then G2 is G1-isomorphic. The theorem is a consequence of (146).

(151) Let us consider a graph G3, a G3-directed-isomorphic graph G4, objects
v1, v2, a supergraph G1 of G3 extended by v1, and a supergraph G2 of G4

extended by v2. Suppose v1 ∈ the vertices of G3 iff v2 ∈ the vertices of
G4. Then G2 is G1-directed-isomorphic. The theorem is a consequence of
(147).

Let us consider graphs G3, G4, vertices v1, v3 of G3, vertices v2, v4 of G4,
objects e1, e2, a supergraph G1 of G3 extended by e1 between vertices v1 and v3,
a supergraph G2 of G4 extended by e2 between vertices v2 and v4, and a partial
graph mapping F0 from G3 to G4. Now we state the propositions:

(152) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1, v3 ∈
dom(F0V) and ((F0V)(v1) = v2 and (F0V)(v3) = v4 or (F0V)(v1) = v4 and
(F0V)(v3) = v2). Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V, F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one.

The theorem is a consequence of (5), (4), and (8).

(153) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1, v3 ∈
dom(F0V) and ((F0V)(v1) = v2 and (F0V)(v3) = v4 or (F0V)(v1) = v4 and
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(F0V)(v3) = v2). Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V, F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is isomorphism, then F is isomorphism.

The theorem is a consequence of (152).

(154) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1, v3 ∈
dom(F0V) and (F0V)(v1) = v2 and (F0V)(v3) = v4. Then there exists
a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V, F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is directed, then F is directed, and

(iii) if F0 is directed-isomorphism, then F is directed-isomorphism.

Proof: Consider F being a partial graph mapping from G1 to G2 such
that F = 〈〈F0V, F0E+·(e1 7−→. e2)〉〉 and if F0 is total, then F is total and if
F0 is onto, then F is onto and if F0 is one-to-one, then F is one-to-one. If
F0 is directed, then F is directed by [15, (16)], [12, (71),(70),(106)]. �

Let us consider graphs G3, G4, a vertex v3 of G3, a vertex v4 of G4, objects
e1, e2, v1, v2, a supergraph G1 of G3 extended by v1, v3 and e1 between them,
a supergraph G2 of G4 extended by v2, v4 and e2 between them, and a partial
graph mapping F0 from G3 to G4. Now we state the propositions:

(155) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1 /∈
the vertices of G3 and v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and
(F0V)(v3) = v4. Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and

(v) if F0 is directed, then F is directed.

Proof: Consider G5 being a supergraph of G3 extended by v1 such that
G1 is a supergraph of G5 extended by e1 between vertices v1 and v3.
Consider G6 being a supergraph of G4 extended by v2 such that G2 is
a supergraph of G6 extended by e2 between vertices v2 and v4.

Consider F1 being a partial graph mapping from G5 to G6 such that
F1 = 〈〈F0V+·(v1 7−→. v2), F0E〉〉 and if F0 is total, then F1 is total and if F0
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is onto, then F1 is onto and if F0 is one-to-one, then F1 is one-to-one and
if F0 is directed, then F1 is directed and if F0 is semi-continuous, then F1

is semi-continuous and if F0 is continuous, then F1 is continuous and if F0

is semi-directed-continuous, then F1 is semi-directed-continuous and if F0

is directed-continuous, then F1 is directed-continuous. v1, v3 ∈ dom(F1V)
and (F1V)(v1) = v2 and (F1V)(v3) = v4.

Consider F2 being a partial graph mapping from G1 to G2 such that
F2 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is total, then F2 is total and if
F1 is onto, then F2 is onto and if F1 is one-to-one, then F2 is one-to-
one. Consider F3 being a partial graph mapping from G1 to G2 such that
F3 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is directed, then F3 is directed and
if F1 is directed-isomorphism, then F3 is directed-isomorphism. �

(156) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1 /∈
the vertices of G3 and v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and
(F0V)(v3) = v4. Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is isomorphism, then F is isomorphism, and

(iv) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (155).

Let us consider graphs G3, G4, a vertex v3 of G3, a vertex v4 of G4, objects
e1, e2, v1, v2, a supergraph G1 of G3 extended by v3, v1 and e1 between them,
a supergraph G2 of G4 extended by v4, v2 and e2 between them, and a partial
graph mapping F0 from G3 to G4. Now we state the propositions:

(157) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1 /∈
the vertices of G3 and v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and
(F0V)(v3) = v4. Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and

(v) if F0 is directed, then F is directed.

Proof: Consider G5 being a supergraph of G3 extended by v1 such that
G1 is a supergraph of G5 extended by e1 between vertices v3 and v1.
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Consider G6 being a supergraph of G4 extended by v2 such that G2 is
a supergraph of G6 extended by e2 between vertices v4 and v2.

Consider F1 being a partial graph mapping from G5 to G6 such that
F1 = 〈〈F0V+·(v1 7−→. v2), F0E〉〉 and if F0 is total, then F1 is total and if F0

is onto, then F1 is onto and if F0 is one-to-one, then F1 is one-to-one and
if F0 is directed, then F1 is directed and if F0 is semi-continuous, then F1

is semi-continuous and if F0 is continuous, then F1 is continuous and if F0

is semi-directed-continuous, then F1 is semi-directed-continuous and if F0

is directed-continuous, then F1 is directed-continuous. v1, v3 ∈ dom(F1V)
and (F1V)(v1) = v2 and (F1V)(v3) = v4.

Consider F2 being a partial graph mapping from G1 to G2 such that
F2 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is total, then F2 is total and if
F1 is onto, then F2 is onto and if F1 is one-to-one, then F2 is one-to-
one. Consider F3 being a partial graph mapping from G1 to G2 such that
F3 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is directed, then F3 is directed and
if F1 is directed-isomorphism, then F3 is directed-isomorphism. �

(158) Suppose e1 /∈ the edges of G3 and e2 /∈ the edges of G4 and v1 /∈
the vertices of G3 and v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and
(F0V)(v3) = v4. Then there exists a partial graph mapping F from G1 to
G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is isomorphism, then F is isomorphism, and

(iv) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (157).

(159) Let us consider graphs G3, G4, a vertex v3 of G3, a vertex v4 of G4,
objects e1, e2, v1, v2, a supergraph G1 of G3 extended by v1, v3 and e1

between them, a supergraph G2 of G4 extended by v4, v2 and e2 between
them, and a partial graph mapping F0 from G3 to G4. Suppose e1 /∈
the edges of G3 and e2 /∈ the edges of G4 and v1 /∈ the vertices of G3 and
v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and (F0V)(v3) = v4. Then
there exists a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and
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(v) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(vi) if F0 is isomorphism, then F is isomorphism.

Proof: Consider G5 being a supergraph of G3 extended by v1 such that
G1 is a supergraph of G5 extended by e1 between vertices v1 and v3.
Consider G6 being a supergraph of G4 extended by v2 such that G2 is
a supergraph of G6 extended by e2 between vertices v4 and v2.

Consider F1 being a partial graph mapping from G5 to G6 such that
F1 = 〈〈F0V+·(v1 7−→. v2), F0E〉〉 and if F0 is total, then F1 is total and if F0

is onto, then F1 is onto and if F0 is one-to-one, then F1 is one-to-one and
if F0 is directed, then F1 is directed and if F0 is semi-continuous, then F1

is semi-continuous and if F0 is continuous, then F1 is continuous and if F0

is semi-directed-continuous, then F1 is semi-directed-continuous and if F0

is directed-continuous, then F1 is directed-continuous. v1, v3 ∈ dom(F1V)
and (F1V)(v1) = v2 and (F1V)(v3) = v4.

Consider F2 being a partial graph mapping from G1 to G2 such that
F2 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is total, then F2 is total and if F1

is onto, then F2 is onto and if F1 is one-to-one, then F2 is one-to-one. �

(160) Let us consider graphs G3, G4, a vertex v3 of G3, a vertex v4 of G4,
objects e1, e2, v1, v2, a supergraph G1 of G3 extended by v3, v1 and e1

between them, a supergraph G2 of G4 extended by v2, v4 and e2 between
them, and a partial graph mapping F0 from G3 to G4. Suppose e1 /∈
the edges of G3 and e2 /∈ the edges of G4 and v1 /∈ the vertices of G3 and
v2 /∈ the vertices of G4 and v3 ∈ dom(F0V) and (F0V)(v3) = v4. Then
there exists a partial graph mapping F from G1 to G2 such that

(i) F = 〈〈F0V+·(v1 7−→. v2), F0E+·(e1 7−→. e2)〉〉, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is one-to-one, then F is one-to-one, and

(v) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(vi) if F0 is isomorphism, then F is isomorphism.

Proof: Consider G5 being a supergraph of G3 extended by v1 such that
G1 is a supergraph of G5 extended by e1 between vertices v3 and v1.
Consider G6 being a supergraph of G4 extended by v2 such that G2 is
a supergraph of G6 extended by e2 between vertices v2 and v4.

Consider F1 being a partial graph mapping from G5 to G6 such that
F1 = 〈〈F0V+·(v1 7−→. v2), F0E〉〉 and if F0 is total, then F1 is total and if F0
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is onto, then F1 is onto and if F0 is one-to-one, then F1 is one-to-one and
if F0 is directed, then F1 is directed and if F0 is semi-continuous, then F1

is semi-continuous and if F0 is continuous, then F1 is continuous and if F0

is semi-directed-continuous, then F1 is semi-directed-continuous and if F0

is directed-continuous, then F1 is directed-continuous. v1, v3 ∈ dom(F1V)
and (F1V)(v1) = v2 and (F1V)(v3) = v4.

Consider F2 being a partial graph mapping from G1 to G2 such that
F2 = 〈〈F1V, F1E+·(e1 7−→. e2)〉〉 and if F1 is total, then F2 is total and if F1

is onto, then F2 is onto and if F1 is one-to-one, then F2 is one-to-one. �

(161) Let us consider a graph G, an object v, a set V , and supergraphs G1,
G2 of G extended by vertex v and edges between v and V of G. Then G2

is G1-isomorphic. The theorem is a consequence of (8), (53), and (143).

(162) Let us consider graphs G3, G4, objects v1, v2, sets V1, V2, a supergraph
G1 of G3 extended by vertex v1 and edges between v1 and V1 of G3,
a supergraph G2 of G4 extended by vertex v2 and edges between v2 and
V2 of G4, and a partial graph mapping F0 from G3 to G4. Suppose V1 ⊆
the vertices of G3 and V2 ⊆ the vertices of G4 and v1 /∈ the vertices of G3

and v2 /∈ the vertices of G4 and F0V�V1 is one-to-one and dom(F0V�V1) =
V1 and rng(F0V�V1) = V2. Then there exists a partial graph mapping F

from G1 to G2 such that

(i) FV = F0V+·(v1 7−→. v2), and

(ii) FE� dom(F0E) = F0E, and

(iii) if F0 is total, then F is total, and

(iv) if F0 is onto, then F is onto, and

(v) if F0 is one-to-one, then F is one-to-one, and

(vi) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(vii) if F0 is isomorphism, then F is isomorphism.

Proof: V1 ⊆ dom(F0V). Set f = F0V+·(v1 7−→. v2). Consider h1 being
a function from V1 into G1.edgesBetween(V1, {v1}) such that h1 is one-to-
one and onto and for every object w such that w ∈ V1 holds h1(w) joins w
and v1 inG1. Consider h2 being a function from V2 intoG2.edgesBetween(V2,

{v2}) such that h2 is one-to-one and onto and for every object w such that
w ∈ V2 holds h2(w) joins w and v2 in G2. Set g = F0E+·h2 · (F0V) · (h1

−1).
dom(F0E) misses dom(h2 · (F0V) · (h1

−1)). rngF0E misses rng h2 · (F0V) ·
(h1
−1). Consider E1 being a set such that V1 = E1 and E1 misses the edges

of G3 and the edges of G1 = (the edges of G3) ∪ E1 and for every object
w1 such that w1 ∈ V1 there exists an object e1 such that e1 ∈ E1 and e1
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joins w1 and v1 in G1 and for every object ẽ such that ẽ joins w1 and v1

in G1 holds e1 = ẽ.
Consider E2 being a set such that V2 = E2 and E2 misses the edges of

G4 and the edges of G2 = (the edges of G4) ∪E2 and for every object w2

such that w2 ∈ V2 there exists an object e2 such that e2 ∈ E2 and e2 joins
w2 and v2 in G2 and for every object ẽ such that ẽ joins w2 and v2 in G2

holds e2 = ẽ. Reconsider F = 〈〈f, g〉〉 as a partial graph mapping from G1

to G2. If F0 is total, then F is total. If F0 is onto, then F is onto. �

(163) Let us consider a graph G3, a G3-isomorphic graph G4, objects v1, v2,
a supergraph G1 of G3 extended by vertex v1 and edges between v1 and
the vertices of G3, and a supergraph G2 of G4 extended by vertex v2 and
edges between v2 and the vertices of G4. Suppose v1 ∈ the vertices of
G3 iff v2 ∈ the vertices of G4. Then G2 is G1-isomorphic. The theorem is
a consequence of (162) and (143).

Let us consider graphs G1, G2, a subgraph G3 of G1 with loops removed,
a subgraph G4 of G2 with loops removed, and a one-to-one partial graph map-
ping F0 from G1 to G2. Now we state the propositions:

(164) There exists a one-to-one partial graph mapping F from G3 to G4 such
that

(i) F = F0�G3, and

(ii) if F0 is total, then F is total, and

(iii) if F0 is onto, then F is onto, and

(iv) if F0 is directed, then F is directed, and

(v) if F0 is semi-directed-continuous, then F is semi-directed-continuous.

Proof: Reconsider F = G4�(F0�G3) as a one-to-one partial graph map-
ping from G3 to G4. If F0 is total, then F is total. If F0 is onto, then F is
onto. �

(165) There exists a one-to-one partial graph mapping F from G3 to G4 such
that

(i) F = F0�G3, and

(ii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(iii) if F0 is isomorphism, then F is isomorphism, and

(iv) if F0 is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (164).



About graph mappings 299

(166) Let us consider a graph G1, a G1-isomorphic graph G2, and a subgraph
G3 of G1 with loops removed. Then every subgraph of G2 with loops
removed is G3-isomorphic. The theorem is a consequence of (165).

(167) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and
a subgraph G3 of G1 with loops removed. Then every subgraph of G2 with
loops removed is G3-directed-isomorphic. The theorem is a consequence
of (165).

(168) Let us consider a graph G1, a G1-isomorphic graph G2, and a subgraph
G3 of G1 with parallel edges removed. Then every subgraph of G2 with
parallel edges removed is G3-isomorphic.
Proof: Consider G being a partial graph mapping from G1 to G2 such
that G is isomorphism. Consider E1 being a representative selection of
the parallel edges of G1 such that G3 is a subgraph of G1 induced by
the vertices of G1 and E1.

Consider E2 being a representative selection of the parallel edges of G2

such that G4 is a subgraph of G2 induced by the vertices of G2 and E2.
Define P[object, object] ≡ $2 ∈ E2 and 〈〈$1, $2〉〉 ∈ EdgeParEqRel(G2). For
every objects x, y1, y2 such that x ∈ the edges of G2 and P[x, y1] and
P[x, y2] holds y1 = y2. For every object x such that x ∈ the edges of G2

there exists an object y such that P[x, y].
Consider h being a function such that domh = the edges of G2 and for

every object x such that x ∈ the edges of G2 holds P[x, h(x)]. �

(169) Let us consider a graph G1, and subgraphs G2, G3 of G1 with parallel
edges removed. Then G3 is G2-isomorphic. The theorem is a consequence
of (53) and (168).

(170) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and
a subgraph G3 of G1 with directed-parallel edges removed. Then eve-
ry subgraph of G2 with directed-parallel edges removed is G3-directed-
isomorphic.
Proof: Consider G being a partial graph mapping from G1 to G2 such
that G is directed-isomorphism. Consider E1 being a representative selec-
tion of the directed-parallel edges of G1 such that G3 is a subgraph of G1

induced by the vertices of G1 and E1.
Consider E2 being a representative selection of the directed-parallel

edges of G2 such that G4 is a subgraph of G2 induced by the verti-
ces of G2 and E2. Define P[object, object] ≡ $2 ∈ E2 and 〈〈$1, $2〉〉 ∈
DEdgeParEqRel(G2). For every objects x, y1, y2 such that x ∈ the edges
of G2 and P[x, y1] and P[x, y2] holds y1 = y2. For every object x such that
x ∈ the edges of G2 there exists an object y such that P[x, y].
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Consider h being a function such that domh = the edges of G2 and for
every object x such that x ∈ the edges of G2 holds P[x, h(x)]. �

(171) Let us consider a graph G1, and subgraphs G2, G3 of G1 with directed-
parallel edges removed. Then G3 is G2-directed-isomorphic. The theorem
is a consequence of (53) and (170).

(172) Let us consider a graph G1, a G1-isomorphic graph G2, and a simple
graph G3 of G1. Then every simple graph of G2 is G3-isomorphic. The
theorem is a consequence of (166) and (168).

(173) Let us consider a graph G1, and simple graphs G2, G3 of G1. Then G3

is G2-isomorphic. The theorem is a consequence of (53) and (172).

(174) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and
a directed-simple graph G3 of G1. Then every directed-simple graph of
G2 is G3-directed-isomorphic. The theorem is a consequence of (167) and
(170).

(175) Let us consider a graph G1, and directed-simple graphs G2, G3 of G1.
Then G3 is G2-directed-isomorphic. The theorem is a consequence of (53)
and (174).

(176) Let us consider trivial, loopless graphs G1, G2, and a non empty partial
graph mapping F from G1 to G2. Then

(i) F is directed-isomorphism, and

(ii) F = 〈〈the vertex of G1 7−→. the vertex of G2, ∅〉〉.

(177) Let us consider trivial graphs G1, G2. Suppose G1.size() = G2.size().
Then there exists a partial graph mapping F from G1 to G2 such that F
is directed-isomorphism. The theorem is a consequence of (31).

(178) Let us consider trivial, loopless graphs G1, G2. Then G2 is G1-directed-
isomorphic and G1-isomorphic.
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v, w ∈ dom f are adjacent in G1, then their images f(v), f(w) are adjacent
in G2. The properties of f to be total (or a homomorphism), one-to-one (or
injective) and onto (or surjective) have the usual meaning for f as a partial
function. f is continuous if for any v, w ∈ dom f such that f(v) and f(w) are
adjacent, v and w are adjacent as well. f is an isomorphism if it is total, one-
to-one, onto and the cardinality of edges between to vertices v and w of G1 is
the same as the cardinality of the edges between f(v) and f(w). Corresponding
attributes for directed vertex mappings are given as well in this article.

The attribute continuous is the generalization for not necessarily simple
graphs of the continuous of [5]. The isomorphism attribute was inspired by [1].
It is shown that for graphs G1, G2 without multiple edges that a total bijective
and continuous vertex mapping f between them is already an isomorphism, just
like a graph isomorphism is usually described (cf. [4], [8], [5]). This article does
not go into depth like [6], but the inverse and composition of partial vertex
mappings are covered.

A partial graph mapping does not always induce a partial vertex mapping
(since any subset of the set of edges of G1 can be mapped) and a partial vertex
mapping can give rise to several partial graph mappings. In the second part of
this article it is shown when the induced partial vertex mapping exists and when
the induced partial graph mapping is unique. Furthermore it is formally stated
that for two graphs without parallel edges there exists a graph mapping that is
an isomorphism iff there exists a vertex mapping that is an isomorphism.

1. Vertex Mappings

Let G1, G2 be graphs.
A partial vertex mapping fromG1 toG2 is a partial function from the vertices

of G1 to the vertices of G2 defined by

(Def. 1) for every vertices v, w of G1 such that v, w ∈ dom it and v and w are
adjacent holds it/v and it/w are adjacent.

Now we state the proposition:

(1) Let us consider graphs G1, G2, and a partial function f from the vertices
of G1 to the vertices of G2. Then f is a partial vertex mapping from G1

to G2 if and only if for every objects v, w, e such that v, w ∈ dom f and
e joins v and w in G1 there exists an object ẽ such that ẽ joins f(v) and
f(w) in G2.

Let G1, G2 be graphs and f be a partial vertex mapping from G1 to G2. We
say that f is directed if and only if
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(Def. 2) for every objects v, w, e such that v, w ∈ dom f and e joins v to w in
G1 there exists an object ẽ such that ẽ joins f(v) to f(w) in G2.

We say that f is continuous if and only if

(Def. 3) for every vertices v, w of G1 such that v, w ∈ dom f and f/v and f/w
are adjacent holds v and w are adjacent.

We say that f is directed-continuous if and only if

(Def. 4) for every objects v, w, ẽ such that v, w ∈ dom f and ẽ joins f(v) to f(w)
in G2 there exists an object e such that e joins v to w in G1.

Let us consider graphs G1, G2 and a partial vertex mapping f from G1 to
G2. Now we state the propositions:

(2) f is continuous if and only if for every objects v, w, ẽ such that v,
w ∈ dom f and ẽ joins f(v) and f(w) in G2 there exists an object e such
that e joins v and w in G1.

(3) f is continuous if and only if for every vertices v, w of G1 such that v,
w ∈ dom f holds v and w are adjacent iff f/v and f/w are adjacent.

Let G1, G2 be graphs. One can check that every partial vertex mapping from
G1 to G2 which is directed-continuous is also continuous and every partial vertex
mapping from G1 to G2 which is empty is also one-to-one, directed-continuous,
directed, and continuous and every partial vertex mapping from G1 to G2 which
is total is also non empty and every partial vertex mapping from G1 to G2 which
is onto is also non empty.

Let G1 be a simple graph and G2 be a graph. Observe that every partial
vertex mapping from G1 to G2 which is directed-continuous is also directed.

Let G1 be a graph and G2 be a simple graph. Observe that every partial
vertex mapping from G1 to G2 which is directed and continuous is also directed-
continuous.

Let G1 be a trivial graph and G2 be a graph. Let us observe that every partial
vertex mapping from G1 to G2 is directed and every partial vertex mapping from
G1 to G2 which is continuous is also directed-continuous and every partial vertex
mapping from G1 to G2 which is non empty is also total.

Let G1 be a graph and G2 be a trivial graph. One can verify that every
partial vertex mapping from G1 to G2 which is non empty is also onto.

Let G2 be a trivial, loopless graph. Let us note that every partial vertex
mapping from G1 to G2 is directed-continuous and continuous.

Let G1, G2 be graphs. Observe that there exists a partial vertex mapping
from G1 to G2 which is empty, one-to-one, directed, continuous, and directed-
continuous.

Now we state the proposition:
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(4) Let us consider graphs G1, G2, and a partial function f from the vertices
of G1 to the vertices of G2. Then f is a directed partial vertex mapping
from G1 to G2 if and only if for every objects v, w, e such that v, w ∈ dom f

and e joins v to w in G1 there exists an object ẽ such that ẽ joins f(v) to
f(w) in G2. The theorem is a consequence of (1).

Let G1 be a loopless graph and G2 be a graph. One can verify that there
exists a partial vertex mapping from G1 to G2 which is non empty, one-to-one,
and directed.

Let G1, G2 be loopless graphs. Let us observe that there exists a partial
vertex mapping from G1 to G2 which is non empty, one-to-one, directed, conti-
nuous, and directed-continuous.

Let G1, G2 be non loopless graphs. One can verify that there exists a par-
tial vertex mapping from G1 to G2 which is non empty, one-to-one, directed,
continuous, and directed-continuous.

Now we state the propositions:

(5) Let us consider a graph G. Then idα is a directed, continuous, directed-
continuous partial vertex mapping from G to G, where α is the vertices of
G. The theorem is a consequence of (1) and (2).

(6) Let us consider graphs G1, G2, and a partial vertex mapping f from G1

to G2. Suppose f is total. Then

(i) if G2 is loopless, then G1 is loopless, and

(ii) if G2 is edgeless, then G1 is edgeless.

The theorem is a consequence of (1).

(7) Let us consider graphs G1, G2, and a continuous partial vertex mapping
f from G1 to G2. Suppose f is onto. Then

(i) if G1 is loopless, then G2 is loopless, and

(ii) if G1 is edgeless, then G2 is edgeless.

The theorem is a consequence of (2).

Let G1, G2 be graphs and f be a partial vertex mapping from G1 to G2. We
say that f is isomorphism if and only if

(Def. 5) f is total, one-to-one, and onto and for every vertices v, w of G1,

G1.edgesBetween({v}, {w}) = G2.edgesBetween({f(v)}, {f(w)}).

We say that f is directed-isomorphism if and only if

(Def. 6) f is total, one-to-one, and onto and for every vertices v, w of G1,

G1.edgesDBetween({v}, {w}) = G2.edgesDBetween({f(v)}, {f(w)}) and

G1.edgesDBetween({w}, {v}) = G2.edgesDBetween({f(w)}, {f(v)}).
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Let us note that every partial vertex mapping from G1 to G2 which is iso-
morphism is also total, one-to-one, onto, and continuous and every partial vertex
mapping from G1 to G2 which is directed-isomorphism is also total, one-to-one,
onto, isomorphism, continuous, directed, and directed-continuous.

Now we state the proposition:

(8) Let us consider non-multi graphs G1, G2, and a partial vertex map-
ping f from G1 to G2. Suppose f is total, one-to-one, and continuous.
Let us consider vertices v, w of G1. Then G1.edgesBetween({v}, {w}) =

G2.edgesBetween({f(v)}, {f(w)}). The theorem is a consequence of (2)
and (1).

Let G1, G2 be non-multi graphs and f be a partial vertex mapping from
G1 to G2. Note that f is isomorphism if and only if the condition (Def. 7) is
satisfied.

(Def. 7) f is total, one-to-one, onto, and continuous.

Observe that every partial vertex mapping from G1 to G2 which is total,
one-to-one, onto, and continuous is also isomorphism.

Now we state the proposition:

(9) Let us consider non-directed-multi graphs G1, G2, and a partial vertex
mapping f from G1 to G2. Suppose f is total, one-to-one, directed, and
directed-continuous. Let us consider vertices v, w of G1. Then

(i) G1.edgesDBetween({v}, {w}) = G2.edgesDBetween({f(v)}, {f(w)}),
and

(ii) G1.edgesDBetween({w}, {v}) = G2.edgesDBetween({f(w)}, {f(v)}).

Let G1, G2 be non-directed-multi graphs and f be a partial vertex map-
ping from G1 to G2. Observe that f is directed-isomorphism if and only if the
condition (Def. 8) is satisfied.

(Def. 8) f is total, one-to-one, onto, directed, and directed-continuous.

One can check that every partial vertex mapping from G1 to G2 which
is total, one-to-one, onto, directed, and directed-continuous is also directed-
isomorphism.

Let G be a graph. Let us observe that there exists a partial vertex mapping
from G to G which is directed-isomorphism and isomorphism.

Now we state the proposition:

(10) Let us consider a graph G. Then idα is a directed-isomorphism, isomor-
phism partial vertex mapping from G to G, where α is the vertices of G.
The theorem is a consequence of (5).

Let G1, G2 be graphs and f be a partial vertex mapping from G1 to G2. We
say that f is invertible if and only if
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(Def. 9) f is one-to-one and continuous.

Note that every partial vertex mapping from G1 to G2 which is invertible
is also one-to-one and continuous and every partial vertex mapping from G1 to
G2 which is one-to-one and continuous is also invertible and every partial vertex
mapping from G1 to G2 which is isomorphism is also invertible and every partial
vertex mapping from G1 to G2 which is directed-isomorphism is also invertible
and there exists a partial vertex mapping from G1 to G2 which is empty and
invertible.

Let G1, G2 be loopless graphs. Note that there exists a partial vertex map-
ping from G1 to G2 which is non empty, directed, and invertible.

Let G1, G2 be non loopless graphs. Observe that there exists a partial vertex
mapping from G1 to G2 which is non empty, directed, and invertible.

Let G1, G2 be graphs and f be an invertible partial vertex mapping from
G1 to G2. Note that the functor f−1 yields a partial vertex mapping from G2

to G1. Observe that f−1 is one-to-one, continuous, and invertible as a partial
vertex mapping from G2 to G1.

Let G1, G2, G3 be graphs, f be a partial vertex mapping from G1 to G2, and
g be a partial vertex mapping from G2 to G3. One can check that the functor
g · f yields a partial vertex mapping from G1 to G3.

Let us consider graphs G1, G2, G3, a partial vertex mapping f from G1 to G2,
and a partial vertex mapping g from G2 to G3. Now we state the propositions:

(11) If f is continuous and g is continuous, then g · f is continuous. The
theorem is a consequence of (2).

(12) If f is directed and g is directed, then g · f is directed.

(13) If f is directed-continuous and g is directed-continuous, then g · f is
directed-continuous.

(14) If f is isomorphism and g is isomorphism, then g · f is isomorphism.

(15) If f is directed-isomorphism and g is directed-isomorphism, then g · f is
directed-isomorphism.

2. The Relation Between Graph Mappings and Vertex Mappings

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(16) Suppose for every vertices v, w of G1 such that v, w ∈ dom(FV) and v

and w are adjacent there exists an object e such that e ∈ dom(FE) and e

joins v and w in G1. Then FV is a partial vertex mapping from G1 to G2.

(17) If dom(FE) = the edges of G1, then FV is a partial vertex mapping from
G1 to G2. The theorem is a consequence of (16).
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(18) If F is total, then FV is a partial vertex mapping from G1 to G2. The
theorem is a consequence of (17).

Let us consider graphs G1, G2 and a directed partial graph mapping F from
G1 to G2. Now we state the propositions:

(19) Suppose for every objects v, w such that v, w ∈ dom(FV) and there
exists an object e such that e joins v to w in G1 there exists an object e
such that e ∈ dom(FE) and e joins v to w in G1. Then FV is a directed
partial vertex mapping from G1 to G2. The theorem is a consequence of
(1).

(20) Suppose dom(FE) = the edges of G1. Then FV is a directed partial vertex
mapping from G1 to G2. The theorem is a consequence of (19).

(21) If F is total, then FV is a directed partial vertex mapping from G1 to
G2. The theorem is a consequence of (20).

Let us consider graphs G1, G2 and a semi-continuous partial graph mapping
F from G1 to G2. Now we state the propositions:

(22) Suppose FV is a partial vertex mapping from G1 to G2 and for every
vertices v, w of G1 such that v, w ∈ dom(FV) and (FV)/v and (FV)/w are
adjacent there exists an object ẽ such that ẽ ∈ rngFE and ẽ joins (FV)(v)
and (FV)(w) in G2. Then FV is a continuous partial vertex mapping from
G1 to G2. The theorem is a consequence of (2).

(23) Suppose dom(FE) = the edges of G1 and rngFE = the edges of G2. Then
FV is a continuous partial vertex mapping from G1 to G2. The theorem is
a consequence of (17) and (22).

(24) If F is total and onto, then FV is a continuous partial vertex mapping
from G1 to G2. The theorem is a consequence of (23).

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(25) If F is isomorphism, then there exists a partial vertex mapping f from
G1 to G2 such that FV = f and f is isomorphism. The theorem is a con-
sequence of (18).

(26) If F is directed-isomorphism, then there exists a directed partial vertex
mapping f from G1 to G2 such that FV = f and f is directed-isomorphism.
The theorem is a consequence of (21).

(27) Let us consider graphs G1, G2, a partial vertex mapping f from G1 to
G2, a representative selection of the parallel edges E1 of G1, and a re-
presentative selection of the parallel edges E2 of G2. Then there exists
a partial graph mapping F from G1 to G2 such that

(i) FV = f , and
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(ii) dom(FE) = E1 ∩G1.edgesBetween(dom f), and

(iii) rngFE ⊆ E2 ∩G2.edgesBetween(rng f).

Proof: Define P[object, object] ≡ there exist objects v, w such that v,
w ∈ dom f and $1 ∈ E1 and $2 ∈ E2 and $1 joins v and w in G1 and
$2 joins f(v) and f(w) in G2. For every objects e1, e2, e3 such that e1 ∈
E1 ∩G1.edgesBetween(dom f) and P[e1, e2] and P[e1, e3] holds e2 = e3.

For every object e1 such that e1 ∈ E1 ∩G1.edgesBetween(dom f) there
exists an object e2 such that P[e1, e2]. Consider g being a function such
that dom g = E1 ∩G1.edgesBetween(dom f) and for every object e1 such
that e1 ∈ E1∩G1.edgesBetween(dom f) holds P[e1, g(e1)]. For every object
y such that y ∈ rng g holds y ∈ E2 ∩G2.edgesBetween(rng f). �

Let G1, G2 be non-multi graphs and f be a partial vertex mapping from G1

to G2. The functor PVM2PGM(f) yielding a partial graph mapping from G1

to G2 is defined by

(Def. 10) itV = f and dom(itE) = G1.edgesBetween(dom f) and rng itE ⊆
G2.edgesBetween(rng f).

Now we state the proposition:

(28) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. Then PVM2PGM(f)V = f .

Let G1, G2 be non-multi graphs and f be a partial vertex mapping from G1

to G2. Observe that PVM2PGM(f)V reduces to f .
Now we state the proposition:

(29) Let us consider graphs G1, G2, a directed partial vertex mapping f from
G1 to G2, a representative selection of the directed-parallel edges E1 of
G1, and a representative selection of the directed-parallel edges E2 of G2.
Then there exists a directed partial graph mapping F from G1 to G2 such
that

(i) FV = f , and

(ii) dom(FE) = E1 ∩G1.edgesBetween(dom f), and

(iii) rngFE ⊆ E2 ∩G2.edgesBetween(rng f).

Proof: Define P[object, object] ≡ there exist objects v, w such that v,
w ∈ dom f and $1 ∈ E1 and $2 ∈ E2 and $1 joins v to w in G1 and
$2 joins f(v) to f(w) in G2. For every objects e1, e2, e3 such that e1 ∈
E1 ∩G1.edgesBetween(dom f) and P[e1, e2] and P[e1, e3] holds e2 = e3.

For every object e1 such that e1 ∈ E1 ∩G1.edgesBetween(dom f) there
exists an object e2 such that P[e1, e2]. Consider g being a function such
that dom g = E1 ∩G1.edgesBetween(dom f) and for every object e1 such
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that e1 ∈ E1∩G1.edgesBetween(dom f) holds P[e1, g(e1)]. For every object
y such that y ∈ rng g holds y ∈ E2 ∩G2.edgesBetween(rng f). �

Let G1, G2 be non-directed-multi graphs and f be a directed partial vertex
mapping from G1 to G2. The functor DPVM2PGM(f) yielding a directed partial
graph mapping from G1 to G2 is defined by

(Def. 11) itV = f and dom(itE) = G1.edgesBetween(dom f) and rng itE ⊆
G2.edgesBetween(rng f).

Now we state the proposition:

(30) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. Then DPVM2PGM(f)V = f .

Let G1, G2 be non-directed-multi graphs and f be a directed partial vertex
mapping from G1 to G2. One can check that DPVM2PGM(f)V reduces to f .

Now we state the propositions:

(31) Let us consider non-multi graphs G1, G2, and a directed partial vertex
mapping f from G1 to G2. Then PVM2PGM(f) = DPVM2PGM(f).

(32) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. If f is total, then PVM2PGM(f) is total.

(33) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. If f is total, then DPVM2PGM(f) is
total.

(34) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. If f is one-to-one, then PVM2PGM(f) is one-to-one.
Proof: Set g = PVM2PGM(f)E. For every objects x1, x2 such that x1,
x2 ∈ dom g and g(x1) = g(x2) holds x1 = x2. �

(35) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. If f is one-to-one, then DPVM2PGM(f)
is one-to-one.
Proof: Set g = DPVM2PGM(f)E. For every objects x1, x2 such that x1,
x2 ∈ dom g and g(x1) = g(x2) holds x1 = x2. �

(36) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. If f is onto and continuous, then PVM2PGM(f) is onto.
Proof: Set g = PVM2PGM(f)E. For every object e such that e ∈
the edges of G2 holds e ∈ rng g. �

(37) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. If f is onto and directed-continuous,
then DPVM2PGM(f) is onto.
Proof: Set g = DPVM2PGM(f)E. For every object e such that e ∈
the edges of G2 holds e ∈ rng g. �
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Let us consider non-multi graphs G1, G2 and a partial vertex mapping f

from G1 to G2. Now we state the propositions:

(38) If f is continuous and one-to-one, then PVM2PGM(f) is semi-continuous.
The theorem is a consequence of (2) and (34).

(39) If f is continuous, then PVM2PGM(f) is continuous. The theorem is
a consequence of (2).

Let us consider non-directed-multi graphs G1, G2 and a directed partial
vertex mapping f from G1 to G2. Now we state the propositions:

(40) If f is one-to-one, then DPVM2PGM(f) is semi-directed-continuous and
semi-continuous. The theorem is a consequence of (35).

(41) If f is directed-continuous, then DPVM2PGM(f) is directed-continuous.

(42) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. If f is one-to-one, then PVM2PGM(f) is one-to-one.

(43) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. If f is one-to-one, then DPVM2PGM(f)
is one-to-one.

(44) Let us consider non-multi graphs G1, G2, and a partial vertex mapping
f from G1 to G2. Suppose f is total and one-to-one. Then PVM2PGM(f)
is weak subgraph embedding. The theorem is a consequence of (32) and
(34).

(45) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f from G1 to G2. Suppose f is total and one-to-one. Then
DPVM2PGM(f) is weak subgraph embedding. The theorem is a consequ-
ence of (33) and (35).

Let us consider non-multi graphs G1, G2 and a partial vertex mapping f

from G1 to G2. Now we state the propositions:

(46) If f is total, one-to-one, and continuous, then PVM2PGM(f) is strong
subgraph embedding. The theorem is a consequence of (32), (34), and (39).

(47) If f is isomorphism, then PVM2PGM(f) is isomorphism. The theorem
is a consequence of (32), (34), and (36).

(48) Let us consider non-directed-multi graphs G1, G2, and a directed partial
vertex mapping f fromG1 toG2. Suppose f is directed-isomorphism. Then
DPVM2PGM(f) is directed-isomorphism. The theorem is a consequence
of (33), (35), (37), and (41).

(49) Let us consider non-multi graphs G1, G2. Then G2 is G1-isomorphic if
and only if there exists a partial vertex mapping f from G1 to G2 such
that f is isomorphism. The theorem is a consequence of (25) and (47).
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(50) Let us consider non-directed-multi graphsG1,G2. ThenG2 isG1-directed-
isomorphic if and only if there exists a directed partial vertex mapping f
from G1 to G2 such that f is directed-isomorphism. The theorem is a con-
sequence of (26) and (48).
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Now we state the propositions:
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Proof: If P = 〈〈0, 1, 0〉〉, then the represent point of P = P . If (P )3,3 = 1,
then the represent point of P = P by [5, (2)], [6, (3)]. �

(2) Let us consider a 5 or greater prime number p, an element z of the para-
meters of elliptic curve p, and elements P , O of ECSetProjCo((z)1). Suppose
O = 〈〈0, 1, 0〉〉. Then (P )3,3 = 0 if and only if P ≡ O. The theorem is a con-
sequence of (1).

(3) Let us consider a 5 or greater prime number p, an element z of the pa-
rameters of elliptic curve p, and an element P of ECSetProjCo((z)1). If
(P )3,3 = 0, then P ≡ (compellProjCo(z, p))(P ). The theorem is a consequ-
ence of (2).

(4) Let us consider elements P , O of ECSetProjCo((z)1). Suppose O = 〈〈0,
1, 0〉〉. Then (addellProjCo(z, p))(P, (compellProjCo(z, p))(P )) ≡ O. The the-
orem is a consequence of (2) and (3).

Let p be a 5 or greater prime number and z be an element of the parameters
of elliptic curve p. The functor EC-SetAffCo(z, p) yielding a non empty subset
of ECSetProjCo((z)1) is defined by the term

(Def. 1) {P , where P is an element of ECSetProjCo((z)1) : (P )3,3 = 1 or P = 〈〈0,
1, 0〉〉}.

Now we state the proposition:

(5) 〈〈0, 1, 0〉〉 is an element of EC-SetAffCo(z, p).

Let us consider a 5 or greater prime number p, an element z of the parameters
of elliptic curve p, and an element P of ECSetProjCo((z)1). Now we state the
propositions:

(6) The represent point of P is an element of EC-SetAffCo(z, p).

(7) If P ∈ EC-SetAffCo(z, p), then the represent point of P = P . The the-
orem is a consequence of (1).

Let us consider elements P , O of ECSetProjCo((z)1). Now we state the pro-
positions:

(8) If O = 〈〈0, 1, 0〉〉 and P 6≡ O, then (the represent point of P )3,3 = 1. The
theorem is a consequence of (2).

(9) Suppose O = 〈〈0, 1, 0〉〉 and the represent point of P ≡ O. Then

(i) the represent point of P = O, and

(ii) P ≡ O.

The theorem is a consequence of (2) and (1).

(10) Let us consider an element P of ProjCo(GF(p)). Then the represent
point of the represent point of P = the represent point of P . The theorem
is a consequence of (1).



Operations of points on elliptic curve in affine ... 317

(11) Let us consider elements P ,Q of ECSetProjCo((z)1). Suppose the represent
point of P ≡ the represent point of Q. Then the represent point of
P = the represent point of Q. The theorem is a consequence of (10).

Let p be a 5 or greater prime number and z be an element of the parameters
of elliptic curve p. The functor compell-AffCo(z, p) yielding a unary operation
on EC-SetAffCo(z, p) is defined by

(Def. 2) for every element P of EC-SetAffCo(z, p), it(P ) = the represent point
of (compellProjCo(z, p))(P ).

Let F be a function from EC-SetAffCo(z, p) into EC-SetAffCo(z, p) and
P be an element of EC-SetAffCo(z, p). Let us observe that the functor F (P )
yields an element of EC-SetAffCo(z, p). The functor addell-AffCo(z, p) yielding
a binary operation on EC-SetAffCo(z, p) is defined by

(Def. 3) for every elements P , Q of EC-SetAffCo(z, p), it(P,Q) = the represent
point of (addellProjCo(z, p))(P,Q).

Let F be a function from EC-SetAffCo(z, p)× EC-SetAffCo(z, p) into
EC-SetAffCo(z, p) and Q, R be elements of EC-SetAffCo(z, p). Let us obse-

rve that the functor F (Q,R) yields an element of EC-SetAffCo(z, p). Now we
state the proposition:

(12) Let us consider elements P , O of ECSetProjCo((z)1). Suppose O = 〈〈0, 1,
0〉〉. Then

(i) (addellProjCo(z, p))(P,O) ≡ P , and

(ii) (addellProjCo(z, p))(O,P ) ≡ P .

Let us consider elements P , O of EC-SetAffCo(z, p). Now we state the pro-
positions:

(13) If O = 〈〈0, 1, 0〉〉, then (addell-AffCo(z, p))(O,P ) = P . The theorem is
a consequence of (12) and (7).

(14) If O = 〈〈0, 1, 0〉〉, then (addell-AffCo(z, p))(P,O) = P . The theorem is
a consequence of (12) and (7).

(15) Let us consider an element O of EC-SetAffCo(z, p). Suppose O = 〈〈0, 1,
0〉〉. Then O is a unity w.r.t. addell-AffCo(z, p). The theorem is a consequ-
ence of (13) and (14).

(16) Let us consider elements P , O of EC-SetAffCo(z, p). Suppose O = 〈〈0, 1,
0〉〉. Then (addell-AffCo(z, p))(P, (compell-AffCo(z, p))(P )) = O. The the-
orem is a consequence of (7), (4), and (2).
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2. Commutative Property of Operations of Points on Elliptic
Curve

Now we state the propositions:

(17) Let us consider a 5 or greater prime number p, an element z of the para-
meters of elliptic curve p, and elements P ,Q,O, P3,Q3 of ECSetProjCo((z)1).
Suppose O = 〈〈0, 1, 0〉〉 and P 6≡ O and Q 6≡ O and P 6≡ Q. Suppose
P3 = (addellProjCo(z, p))(P,Q) and Q3 = (addellProjCo(z, p))(Q,P ). Then

(i) (Q3)1,3 = −(P3)1,3, and

(ii) (Q3)2,3 = −(P3)2,3, and

(iii) (Q3)3,3 = −(P3)3,3.

Proof: Reconsider g2 = 2 mod p as an element of GF(p). Set gf1PQ =
(Q)2,3 · ((P )3,3)− (P )2,3 · ((Q)3,3). Set gf2PQ = (Q)1,3 · ((P )3,3)− (P )1,3 ·
((Q)3,3). Set gf3PQ = gf1PQ

2 · ((P )3,3) · ((Q)3,3) − gf2PQ
3 − g2 · (gf2PQ2) ·

((P )1,3) · ((Q)3,3). Set gf1QP = (P )2,3 · ((Q)3,3) − (Q)2,3 · ((P )3,3). Set
gf2QP = (P )1,3 · ((Q)3,3) − (Q)1,3 · ((P )3,3). Set gf3QP = gf1QP

2 · ((Q)3,3) ·
((P )3,3)− gf2QP 3− g2 · (gf2QP 2) · ((Q)1,3) · ((P )3,3). gf3QP = gf3PQ. (Q3)1,3 =
−(P3)1,3. (Q3)2,3 = −(P3)2,3. (Q3)3,3 = −(P3)3,3. �

(18) Let us consider elements P , Q, O, P3, Q3 of ECSetProjCo((z)1), and
an element d of GF(p). Suppose O = 〈〈0, 1, 0〉〉 and d 6= 0GF(p) and
(Q)1,3 = d · ((P )1,3) and (Q)2,3 = d · ((P )2,3) and (Q)3,3 = d · ((P )3,3) and
P 6≡ O and Q 6≡ O and P ≡ Q and P3 = (addellProjCo(z, p))(P,Q) and
Q3 = (addellProjCo(z, p))(Q,P ). Then

(i) (Q3)1,3 = d6 · ((P3)1,3), and

(ii) (Q3)2,3 = d6 · ((P3)2,3), and

(iii) (Q3)3,3 = d6 · ((P3)3,3).

(19) Let us consider elements P , Q of ECSetProjCo((z)1).
Then (addellProjCo(z, p))(P,Q) ≡ (addellProjCo(z, p))(Q,P ). The theorem
is a consequence of (17) and (18).

(20) Let us consider elements P , Q of EC-SetAffCo(z, p).
Then (addell-AffCo(z, p))(P,Q) = (addell-AffCo(z, p))(Q,P ). The the-
orem is a consequence of (19).

Let p be a 5 or greater prime number and z be an element of the para-
meters of elliptic curve p. One can verify that addell-AffCo(z, p) is non empty,
commutative, and unital.

The functor 0-EC(z, p) yielding an element of EC-SetAffCo(z, p) is defined
by the term
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(Def. 4) 〈〈0, 1, 0〉〉.
Let us consider p and z. Let us observe that 〈EC-SetAffCo(z, p), addell-AffCo
(z, p)〉 is Abelian and 〈EC-SetAffCo(z, p), addell-AffCo(z, p), 0-EC(z, p)〉 is

left zeroed and right zeroed and 〈EC-SetAffCo(z, p), addell-AffCo(z, p), 0-EC(z, p)〉
is complementable.

Let p be a 5 or greater prime number and z be an element of the parameters
of elliptic curve p. One can verify that 〈EC-SetAffCo(z, p), addell-AffCo(z, p)〉
is unital.

Now we state the proposition:

(21) Let us consider a 5 or greater prime number p, and an element z of
the parameters of elliptic curve p. Then 1〈EC-SetAffCo(z,p),addell-AffCo(z,p)〉 =
0-EC(z, p). The theorem is a consequence of (15).

Let p be a 5 or greater prime number and z be an element of the parameters
of elliptic curve p. One can check that 〈EC-SetAffCo(z, p), addell-AffCo(z, p)〉 is
commutative, group-like, and non empty.

Now we state the propositions:

(22) Let us consider elements P1, P2, Q of ECSetProjCo((z)1). Suppose P1 ≡
P2. Then (addellProjCo(z, p))(P1, Q) ≡ (addellProjCo(z, p))(P2, Q). The the-
orem is a consequence of (19).

(23) Let us consider elements P , Q1, Q2 of ECSetProjCo((z)1). Suppose Q1 ≡
Q2. Then (addellProjCo(z, p))(P,Q1) ≡ (addellProjCo(z, p))(P,Q2). The the-
orem is a consequence of (19) and (22).

(24) Let us consider elements P1, P2, Q1, Q2 of ECSetProjCo((z)1). Suppose
P1 ≡ P2 and Q1 ≡ Q2. Then (addellProjCo(z, p))(P1, Q1) ≡
(addellProjCo(z, p))(P2, Q2). The theorem is a consequence of (22) and (23).

(25) Let us consider elements P , O of ECSetProjCo((z)1). Suppose O = 〈〈0, 1,
0〉〉. Then P ≡ O if and only if (compellProjCo(z, p))(P ) ≡ O.

(26) Let us consider elements P , Q of ECSetProjCo((z)1), and an element a
of GF(p). Suppose a 6= 0GF(p) and (P )1,3 = a · ((Q)1,3) and (P )2,3 =
a · ((Q)2,3) and (P )3,3 = a · ((Q)3,3). Then P ≡ Q.

(27) Let us consider elements P , Q of ECSetProjCo((z)1), and elements g2,
gf1, gf2, gf3 of GF(p). Suppose P 6≡ Q and (P )3,3 = 1 and (Q)3,3 = 1 and
g2 = 2 mod p and gf1 = (Q)2,3 − (P )2,3 and gf2 = (Q)1,3 − (P )1,3 and
gf3 = gf1

2 − gf23 − g2 · (gf22) · ((P )1,3). Then (addellProjCo(z, p))(P,Q) =
〈〈gf2 · gf3, gf1 · (gf22 · ((P )1,3)− gf3)− gf23 · ((P )2,3), gf23〉〉. The theorem is
a consequence of (2).

(28) Let us consider elements P , Q of ECSetProjCo((z)1), and elements g2,
g3, g4, g8, gf1, gf2, gf3, gf4 of GF(p). Suppose P ≡ Q and (P )3,3 = 1 and
(Q)3,3 = 1 and g2 = 2 mod p and g3 = 3 mod p and g4 = 4 mod p and g8 =
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8 mod p and gf1 = (z)1+g3 ·(((P )1,3)2) and gf2 = (P )2,3 and gf3 = (P )1,3 ·
((P )2,3) · gf2 and gf4 = gf1

2 − g8 · gf3. Then (addellProjCo(z, p))(P,Q) =
〈〈g2 · gf4 · gf2, gf1 · (g4 · gf3 − gf4)− g8 · (((P )2,3)2) · (gf22), g8 · (gf23)〉〉. The
theorem is a consequence of (2).

Let us consider elements P , Q of ECSetProjCo((z)1). Now we state the pro-
positions:

(29) Suppose (P )3,3 = 1 and (Q)3,3 = 1.
Then (compellProjCo(z, p))((addellProjCo(z, p))(P,Q)) ≡ (addellProjCo(z, p))
((compellProjCo(z, p))(P ), (compellProjCo(z, p))(Q)). The theorem is a con-
sequence of (27), (28), and (26).

(30) (compellProjCo(z, p))((addellProjCo(z, p))(P,Q)) ≡ (addellProjCo(z, p))
((compellProjCo(z, p))(P ), (compellProjCo(z, p))(Q)). The theorem is a con-
sequence of (25), (8), (29), (24), and (2).

(31) Let us consider elements P , O of ECSetProjCo((z)1). Suppose O = 〈〈0, 1,
0〉〉 and P 6≡ O. Then (P )2,3 = 0GF(p) if and only if
(addellProjCo(z, p))(P, P ) ≡ O.
Proof: Reconsider g8 = 8 mod p as an element of GF(p).
((addellProjCo(z, p))(P, P ))3,3 = 0. g8 6= 0GF(p). (P )3,3 6= 0 by [4, (23)], [5,
(28)]. �
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