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Summary. In this article, we prove, using the Mizar [2] formalism, a num-
ber of properties that correspond to the AIM Conjecture. In the first section, we
define division operations on loops, inner mappings T , L and R, commutators and
associators and basic attributes of interest. We also consider subloops and homo-
morphisms. Particular subloops are the nucleus and center of a loop and kernels
of homomorphisms. Then in Section 2, we define a set Mlt Q of multiplicative
mappings of Q and cosets (mostly following Albert 1943 for cosets [1]). Next, in
Section 3 we define the notion of a normal subloop and construct quotients by
normal subloops. In the last section we define the set InnAut of inner mappings
of Q, define the notion of an AIM loop and relate this to the conditions on T , L,
and R defined by satisfies TT, etc. We prove in Theorem (67) that the nucleus
of an AIM loop is normal and finally in Theorem (68) that the AIM Conjecture
follows from knowing every AIM loop satisfies aa1, aa2, aa3, Ka, aK1, aK2 and
aK3.

The formalization follows M.K. Kinyon, R. Veroff, P. Vojtechovsky [4] (in
[3]) as well as Veroff’s Prover9 files.
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1. Loops – Introduction

From now on Q, Q1, Q2 denote multiplicative loops and x, y, z, w, u, v
denote elements of Q. Let X be a 1-sorted structure.

A permutation of X is a permutation of the carrier of X. Let Y be a 1-sorted
structure. The functor Y X yielding a set is defined by the term

(Def. 1) (the carrier of Y )α, where α is the carrier of X.

Let X, Y be 1-sorted structures. Let us observe that Y X is functional.
Let Q be an invertible, left mult-cancelable, non empty multiplicative loop

structure and x, y be elements of Q. The functor x \ y yielding an element of Q
is defined by

(Def. 2) x · it = y.

Let Q be an invertible, right mult-cancelable, non empty multiplicative loop
structure. The functor x/y yielding an element of Q is defined by

(Def. 3) it · y = x.

Let us consider Q, x, and y. Note that x \ (x · y) reduces to y and x · (x \ y)
reduces to y and x · y/y reduces to x and (x/y) · y reduces to x.

Let Q be an invertible, left mult-cancelable, non empty multiplicative loop
structure and u, x be elements of Q. The functor T(u, x) yielding an element of
Q is defined by the term

(Def. 4) x \ (u · x).

Let u, x, y be elements of Q. The functor L(u, x, y) yielding an element of
Q is defined by the term

(Def. 5) y · x \ (y · (x · u)).

Let Q be an invertible, right mult-cancelable, non empty multiplicative loop
structure. The functor R(u, x, y) yielding an element of Q is defined by the term

(Def. 6) u · x · y/(x · y).

Let us consider Q. We say that Q satisfies TT if and only if

(Def. 7) for every elements u, x, y of Q, T(T(u, x), y) = T(T(u, y), x).

We say that Q satisfies TL if and only if

(Def. 8) for every elements u, x, y, z of Q, T(L(u, x, y), z) = L(T(u, z), x, y).

We say that Q satisfies TR if and only if

(Def. 9) for every elements u, x, y, z of Q, T(R(u, x, y), z) = R(T(u, z), x, y).

We say that Q satisfies LR if and only if

(Def. 10) for every elements u, x, y, z, w ofQ, L(R(u, x, y), z, w) = R(L(u, z, w), x, y).

We say that Q satisfies LL if and only if

(Def. 11) for every elements u, x, y, z, w ofQ, L(L(u, x, y), z, w) = L(L(u, z, w), x, y).



AIM loops and the AIM conjecture 323

We say that Q satisfies RR if and only if

(Def. 12) for every elements u, x, y, z, w ofQ, R(R(u, x, y), z, w) = R(R(u, z, w), x, y).

Let us consider x and y. The functor K(x, y) yielding an element of Q is
defined by the term

(Def. 13) y · x \ (x · y).

Let us consider z. The functor a(x, y, z) yielding an element of Q is defined
by the term

(Def. 14) x · (y · z) \ (x · y · z).
Let Q be a multiplicative loop. We say that Q satisfies aa1 if and only if

(Def. 15) for every elements x, y, z, u, w of Q, a(a(x, y, z), u, w) = 1Q.

We say that Q satisfies aa2 if and only if

(Def. 16) for every elements x, y, z, u, w of Q, a(x, a(y, z, u), w) = 1Q.

We say that Q satisfies aa3 if and only if

(Def. 17) for every elements x, y, z, u, w of Q, a(x, y, a(z, u, w)) = 1Q.

We say that Q satisfies Ka if and only if

(Def. 18) for every elements x, y, z, u of Q, K(a(x, y, z), u) = 1Q.

We say that Q satisfies aK1 if and only if

(Def. 19) for every elements x, y, z, u of Q, a(K(x, y), z, u) = 1Q.

We say that Q satisfies aK2 if and only if

(Def. 20) for every elements x, y, z, u of Q, a(x, K(y, z), u) = 1Q.

We say that Q satisfies aK3 if and only if

(Def. 21) for every elements x, y, z, u of Q, a(x, y, K(z, u)) = 1Q.

Let us observe that there exists a multiplicative loop which is strict and
satisfies TT, TL, TR, LR, LL, RR, aa1, aa2, aa3, Ka, aK1, aK2, and aK3.

Now we state the propositions:

(1) If x · y = u and x · z = u, then y = z.

(2) If y · x = u and z · x = u, then y = z.

(3) If x · y = x · z, then y = z.

(4) If y · x = z · x, then y = z.

Let us consider Q and x. Let us observe that 1Q \x reduces to x and x/(1Q)
reduces to x. Let us consider y. Observe that y/(x\y) reduces to x and (y/x)\y
reduces to x. Now we state the propositions:

(5) x \ x = 1Q.

(6) x/x = 1Q.

(7) If x \ y = 1Q, then x = y.

(8) If x/y = 1Q, then x = y.
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(9) If a(x, y, z) = 1Q, then x · (y · z) = (x · y) · z.
(10) If K(x, y) = 1Q, then x · y = y · x.

(11) If a(x, y, z) = 1Q, then L(z, y, x) = z. The theorem is a consequence of
(9).

Let us considerQ. The functors: Nucll(Q), Nuclm(Q), Nuclr(Q), and Comm(Q)
yielding subsets of Q are defined by conditions

(Def. 22) x ∈ Nucll(Q) iff for every y and z, (x · y) · z = x · (y · z),
(Def. 23) y ∈ Nuclm(Q) iff for every x and z, (x · y) · z = x · (y · z),
(Def. 24) z ∈ Nuclr(Q) iff for every x and y, (x · y) · z = x · (y · z),
(Def. 25) x ∈ Comm(Q) iff for every y, x · y = y · x,

respectively. The functor Nucl(Q) yielding a subset of Q is defined by the term

(Def. 26) (Nucll(Q) ∩Nuclm(Q)) ∩Nuclr(Q).

Now we state the proposition:

(12) x ∈ Nucl(Q) if and only if x ∈ Nucll(Q) and x ∈ Nuclm(Q) and x ∈
Nuclr(Q).

Let us consider Q. The functor Cent(Q) yielding a subset of Q is defined by
the term

(Def. 27) Comm(Q) ∩Nucl(Q).

Let Q1, Q2 be multiplicative loops and f be a function from Q1 into Q2. We
say that f is unity-preserving if and only if

(Def. 28) f(1Q1) = 1Q2 .

We say that f is quasi-homomorphic if and only if

(Def. 29) for every elements x, y of Q1, f(x · y) = f(x) · f(y).

We say that f is homomorphic if and only if

(Def. 30) f is unity-preserving and quasi-homomorphic.

Observe that every function from Q1 into Q2 which is unity-preserving and
quasi-homomorphic is also homomorphic and every function from Q1 into Q2

which is homomorphic is also unity-preserving and quasi-homomorphic and
ΩQ1 7−→ 1Q2 is homomorphic as a function from Q1 into Q2 and there exi-
sts a function from Q1 into Q2 which is homomorphic.

Let us consider Q and Q2. Let f be a homomorphic function from Q into
Q2. The functor Ker f yielding a subset of Q is defined by

(Def. 31) x ∈ it iff f(x) = 1Q2 .

Let us consider a homomorphic function f from Q1 into Q2 and elements x,
y of Q1. Now we state the propositions:

(13) f(x \ y) = f(x) \ f(y).

(14) f(x/y) = f(x)/f(y).
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(15) Let us consider a homomorphic function f from Q1 into Q2. Suppose
for every element y of Q2, there exists an element x of Q1 such that
f(x) = y and for every elements x, y, z of Q1, a(x, y, z) ∈ Ker f . Then Q2

is associative. The theorem is a consequence of (13) and (9).

(16) Let us consider multiplicative loop Q1 satisfying aa1, aa2, aa3, aK1, aK2,
and aK3, a multiplicative loop Q2, and a homomorphic function f from
Q1 into Q2. Suppose for every element y of Q2, there exists an element x of
Q1 such that f(x) = y and Nucl(Q1) ⊆ Ker f . Then Q2 is a commutative
multiplicative group. The theorem is a consequence of (9), (12), (13), (10),
and (15).

(17) Let us consider multiplicative loop Q1 satisfying aa1, aa2, aa3, and Ka,
a multiplicative loop Q2, and a homomorphic function f from Q1 into Q2.
Suppose for every element y of Q2, there exists an element x of Q1 such
that f(x) = y and Cent(Q1) ⊆ Ker f . Then Q2 is a multiplicative group.
The theorem is a consequence of (10), (9), (12), and (15).

Let Q be a non empty multiplicative loop structure. A sub-loop structure of
Q is a non empty multiplicative loop structure defined by

(Def. 32) the carrier of it ⊆ the carrier of Q and the multiplication of it =
(the multiplication of Q) � (the carrier of it) and the one of it = the one
of Q.

Let Q be a multiplicative loop. Let us note that there exists a sub-loop
structure of Q which is well unital, invertible, cancelable, non empty, and strict.

A sub-loop of Q is a well unital, invertible, cancelable sub-loop structure
of Q. Let Q be a non empty multiplicative loop structure, H be a sub-loop
structure of Q, and A be a subset of H. The functor @A yielding a subset of Q
is defined by the term

(Def. 33) A.

Let us considerQ. LetH1,H2 be subsets ofQ. The functor LoopClose1(H1, H2)
yielding a subset of Q is defined by

(Def. 34) x ∈ it iff x ∈ H1 or x = 1Q or there exists y and there exists z such that
y, z ∈ H2 and (x = y · z or x = y \ z or x = y/z).

Let H be a subset of Q. The functor lp(H) yielding a strict sub-loop of Q is
defined by

(Def. 35) H ⊆ Ωit and for every sub-loop H2 of Q such that H ⊆ ΩH2 holds
Ωit ⊆ ΩH2 .

Now we state the propositions:

(18) Let us consider a subset H of Q. Suppose 1Q ∈ H and for every x and
y such that x, y ∈ H holds x · y ∈ H and for every x and y such that x,
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y ∈ H holds x \ y ∈ H and for every x and y such that x, y ∈ H holds
x/y ∈ H. Then Ωlp(H) = H.
Proof: Reconsider O = 1Q as an element of H.
Set m2 = (the multiplication of Q) � H. Set L4 = 〈H,m2, O〉 by [5, (1)].
L4 is a sub-loop of Q. �

(19) Let us consider a homomorphic function f from Q into Q2.
Then Ωlp(Ker f) = Ker f . The theorem is a consequence of (13), (14), and
(18).

(20) 1Q ∈ Nucll(Q).

(21) 1Q ∈ Nuclm(Q).

(22) 1Q ∈ Nuclr(Q).

(23) 1Q ∈ Nucl(Q). The theorem is a consequence of (20), (21), (12), and
(22).

Let us consider Q. Note that Nucll(Q) is non empty and Nuclm(Q) is non
empty and Nuclr(Q) is non empty and Nucl(Q) is non empty.

(24) If x, y ∈ Nucl(Q), then x · y ∈ Nucl(Q). The theorem is a consequence
of (12).

(25) If x, y ∈ Nucl(Q), then x \ y ∈ Nucl(Q). The theorem is a consequence
of (12) and (1).

(26) If x, y ∈ Nucl(Q), then x/y ∈ Nucl(Q). The theorem is a consequence
of (12) and (2).

(27) Ωlp(Nucl(Q)) = Nucl(Q). The theorem is a consequence of (23), (24), (25),
(26), and (18).

(28) Ωlp(Cent(Q)) = Cent(Q). The theorem is a consequence of (23), (12), (24),
(25), (26), and (18).

2. Multiplicative Mappings and Cosets

Let X be a functional set. We say that X is composition-closed if and only
if

(Def. 36) for every elements f , g of X such that f , g ∈ X holds f · g ∈ X.

We say that X is inverse-closed if and only if

(Def. 37) for every element f of X such that f ∈ X holds f−1 ∈ X.

Let A be a set. One can verify that {idA} is composition-closed and inverse-
closed and there exists a functional set which is composition-closed, inverse-
closed, and non empty.

Let Q be a multiplicative loop structure. Let us note that there exists a sub-
set of QQ which is composition-closed, inverse-closed, and non empty.
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Let Q be a non empty multiplicative loop structure, H be a subset of Q,
and S be a subset of QQ. We say that H is left-right-mult-closed w.r.t. S if and
only if

(Def. 38) for every element u of Q such that u ∈ H holds (curry(the multiplication
of Q))(u), (curry′(the multiplication of Q))(u) ∈ S.

The functor MltClos1(H,S) yielding a subset of QQ is defined by

(Def. 39) for every object f , f ∈ it iff there exists an element u of Q such that u ∈
H and f = (curry′(the multiplication of Q))(u) or there exists an element
u of Q such that u ∈ H and f = (curry(the multiplication of Q))(u) or
there exist permutations g, h of Q such that g, h ∈ S and f = g · h or
there exists a permutation g of Q such that g ∈ S and f = g−1.

Now we state the propositions:

(29) Let us consider a subset H of Q, and a function ϕ from 2Q
Q

into 2Q
Q

.
Suppose for every subset X of QQ, ϕ(X) = MltClos1(H,X). Then ϕ is
⊆-monotone.

(30) Let us consider a subset H of Q, and a function ϕ from 2Q
Q

into 2Q
Q

.
Suppose for every subset X of QQ, ϕ(X) = MltClos1(H,X). Let us con-
sider a subset Y of QQ. Suppose ϕ(Y ) ⊆ Y. Then

(i) for every element u of Q such that u ∈ H holds

(curry(the multiplication of Q))(u) ∈ Y, and

(ii) for every element u of Q such that u ∈ H holds

(curry′(the multiplication of Q))(u) ∈ Y.

(31) Let us consider a subset H of Q, and a function ϕ from 2Q
Q

into 2Q
Q

.
Suppose for every subset X of QQ, ϕ(X) = MltClos1(H,X). Let us con-
sider a subset Y of QQ. Suppose for every subset S of QQ such that
ϕ(S) ⊆ S holds Y ⊆ S. Let us consider an element f of QQ. If f ∈ Y, then
f is a permutation of Q.
Proof: Set S3 = the set of all f where f is a permutation of Q. S3 ⊆
QQ. ϕ(S3) ⊆ S3. �

(32) Let us consider a subset H of Q, and a function ϕ from 2Q
Q

into 2Q
Q

.
Suppose for every subset X of QQ, ϕ(X) = MltClos1(H,X). Let us con-
sider a subset Y of QQ. Suppose Y is a fixpoint of ϕ and for every subset
S of QQ such that ϕ(S) ⊆ S holds Y ⊆ S. Then Y is composition-closed
and inverse-closed. The theorem is a consequence of (31).

(33) (curry(the multiplication of Q))(u) is a permutation of Q.
Proof: Set f = (curry(the multiplication of Q))(u). Define G(element
of Q) = u \ $1. Consider g being a function from Q into Q such that for
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every element x of Q, g(x) = G(x). For every element x of Q, (g · f)(x) =
(idQ)(x). For every element x of Q, (f · g)(x) = (idQ)(x). �

(34) (curry′(the multiplication of Q))(u) is a permutation of the carrier of Q.
Proof: Set f = (curry′(the multiplication of Q))(u). Define G(element
of Q) = $1/u. Consider g being a function from Q into Q such that for
every element x of Q, g(x) = G(x). For every element x of Q, (g · f)(x) =
(idQ)(x). For every element x of Q, (f · g)(x) = (idQ)(x). �

Let us consider Q. Let H be a subset of Q. The functor Mlt(H) yielding
a composition-closed, inverse-closed subset of QQ is defined by

(Def. 40) H is left-right-mult-closed w.r.t. it and for every composition-closed,
inverse-closed subset X of QQ such that H is left-right-mult-closed w.r.t.
X holds it ⊆ X.

Let us consider a subset H of Q and an element u of Q. Now we state the
propositions:

(35) If u ∈ H, then (curry(the multiplication of Q))(u) ∈ Mlt(H).

(36) If u ∈ H, then (curry′(the multiplication of Q))(u) ∈ Mlt(H).

(37) Let us consider a subset H of Q, and a function ϕ from 2Q
Q

into 2Q
Q

.
Suppose for every subset X of QQ, ϕ(X) = MltClos1(H,X). Then

(i) Mlt(H) is a fixpoint of ϕ, and

(ii) for every subset S of QQ such that ϕ(S) ⊆ S holds Mlt(H) ⊆ S.

The theorem is a consequence of (36), (35), (33), (34), and (31).

(38) Let us consider a subset H of Q, and an element f of QQ. If f ∈ Mlt(H),
then f is a permutation of Q.
Proof: Define M(subset of QQ) = MltClos1(H, $1). Consider ϕ being
a function from 2Q

Q
into 2Q

Q
such that for every subset X of QQ, ϕ(X) =

M(X). For every subset S of QQ such that ϕ(S) ⊆ S holds Mlt(H) ⊆ S.
�

Let us consider Q. Let H be a subset of Q and x be an element of Q. The
functor x ·H yielding a subset of Q is defined by

(Def. 41) y ∈ it iff there exists a permutation h of Q such that h ∈ Mlt(H) and
y = h(x).

Let H be a sub-loop of Q. The functor x ·H yielding a subset of Q is defined
by the term

(Def. 42) x · (@ΩH).

Let N be a sub-loop of Q. The functor Cosets(N) yielding a family of subsets
of Q is defined by

(Def. 43) for every subset H of Q, H ∈ it iff there exists x such that H = x ·N .
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Let us note that Cosets(N) is non empty.

3. Normal Subloop

Let Q be a multiplicative loop structure and H1, H2 be subsets of Q. The
functors: H1 ·H2 and H1 \H2 yielding subsets of Q are defined by conditions

(Def. 44) for every element x of Q, x ∈ H1 ·H2 iff there exist elements y, z of Q
such that y ∈ H1 and z ∈ H2 and x = y · z,

(Def. 45) for every element x of Q, x ∈ H1 \H2 iff there exist elements y, z of Q
such that y ∈ H1 and z ∈ H2 and x = y \ z,

respectively. Let Q be a multiplicative loop and H be a sub-loop of Q. We say
that H is normal if and only if

(Def. 46) for every elements x, y of Q, x · H · (y · H) = (x · y) · H and for every
element z of Q, if (x ·H) · (y ·H) = x ·H · (z ·H), then y ·H = z ·H and
if (y ·H) · (x ·H) = z ·H · (x ·H), then y ·H = z ·H.

Let us consider Q. One can verify that there exists a sub-loop of Q which is
normal.

Let N be a normal sub-loop of Q. The functor SubLoopAsCoset(N) yielding
an element of Cosets(N) is defined by the term

(Def. 47) 1Q ·N .

The functor CosetLoopOp(N) yielding a binary operation on Cosets(N) is
defined by

(Def. 48) for every elements H1, H2 of Cosets(N), it(H1, H2) = H1 ·H2.

The functor Q/N yielding a strict multiplicative loop structure is defined
by the term

(Def. 49) 〈Cosets(N),CosetLoopOp(N),SubLoopAsCoset(N)〉.
One can check that Q/N is non empty and Q/N is well unital, invertible,

and cancelable.
The functor QuotientHom(Q,N) yielding a function from Q into Q/N is

defined by

(Def. 50) for every x, it(x) = x ·N .

Let us observe that QuotientHom(Q,N) is homomorphic.
Now we state the propositions:

(39) Let us consider a sub-loop H of Q, x, y, and elements x1, y1 of H. If
x = x1 and y = y1, then x · y = x1 · y1.

(40) Let us consider a sub-loop H of Q, x, and y. Suppose x, y ∈ the carrier
of H. Then x · y ∈ the carrier of H. The theorem is a consequence of (39).
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(41) Let us consider a sub-loop H of Q, x, y, and elements x1, y1 of H. If
x = x1 and y = y1, then x \ y = x1 \ y1. The theorem is a consequence of
(39).

(42) Let us consider a sub-loop H of Q, x, and y. Suppose x, y ∈ the carrier
of H. Then x\y ∈ the carrier of H. The theorem is a consequence of (41).

(43) Let us consider a sub-loop H of Q, x, y, and elements x1, y1 of H. If
x = x1 and y = y1, then x/y = x1/y1. The theorem is a consequence of
(39).

(44) Let us consider a sub-loop H of Q, x, and y. Suppose x, y ∈ the carrier
of H. Then x/y ∈ the carrier of H. The theorem is a consequence of (43).

The scheme MltInd deals with a multiplicative loop Q and a subset H of Q
and a unary predicate P and states that

(Sch. 1) For every function f from Q into Q such that f ∈ Mlt(H) holds P[f ]

provided

• for every element u of Q such that u ∈ H for every function f from Q into
Q such that for every element x of Q, f(x) = x · u holds P[f ] and

• for every element u of Q such that u ∈ H for every function f from Q into
Q such that for every element x of Q, f(x) = u · x holds P[f ] and

• for every permutations g, h of Q such that P[g] and P[h] holds P[g · h]
and

• for every permutation g of Q such that P[g] holds P[g−1].

Now we state the proposition:

(45) Let us consider a sub-loop N of Q, and a function f from Q into Q.
Suppose f ∈ Mlt(@ΩN ). x ∈ @ΩN if and only if f(x) ∈ @ΩN .
Proof: Reconsider H = @ΩN as a subset of Q. Define P[function from
Q into Q] ≡ for every x, x ∈ H iff $1(x) ∈ H. For every element u of Q
such that u ∈ H for every function f from Q into Q such that for every
element x of Q, f(x) = x ·u holds P[f ]. For every element u of Q such that
u ∈ H for every function f from Q into Q such that for every element x
of Q, f(x) = u · x holds P[f ]. For every permutations g, h of Q such that
P[g] and P[h] holds P[g · h]. For every permutation g of Q such that P[g]
holds P[g−1]. For every function f from Q into Q such that f ∈ Mlt(H)
holds P[f ]. �

Let us consider a normal sub-loop N of Q. Now we state the propositions:

(46) The carrier of N = 1Q ·N .
Proof: The carrier of N ⊆ 1Q ·N . �
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(47) Ker QuotientHom(Q,N) = @ΩN .
Proof: Set f = QuotientHom(Q,N). For every x, x ∈ Ker f iff x ∈ @ΩN .
�

(48) Let us consider a multiplicative loop Q2, a homomorphic function f

from Q into Q2, and a function h from Q into Q. If h ∈ Mlt(Ker f), then
f · h = f .
Proof: Set H = Ker f . Define P[function from Q into Q] ≡ f · $1 = f .
For every element u of Q such that u ∈ H for every function h from Q

into Q such that for every element x of Q, h(x) = x · u holds P[h]. For
every element u of Q such that u ∈ H for every function h from Q into
Q such that for every element x of Q, h(x) = u · x holds P[h]. For every
permutation g of Q such that P[g] holds P[g−1]. For every function f from
Q into Q such that f ∈ Mlt(H) holds P[f ]. �

Let us consider a multiplicative loop Q2, a homomorphic function f from Q

into Q2, x, and y. Now we state the propositions:

(49) y ∈ x · (Ker f) if and only if f(x) = f(y).
Proof: If y ∈ x · (Ker f), then f(x) = f(y). There exists a permutation
h of Q such that h ∈ Mlt(Ker f) and y = h(x). �

(50) y ∈ x · (lp(Ker f)) if and only if f(x) = f(y). The theorem is a consequ-
ence of (19) and (49).

(51) x · (lp(Ker f)) = y · (lp(Ker f)) if and only if f(x) = f(y). The theorem
is a consequence of (50).

(52) Let us consider a multiplicative loop Q2, and a homomorphic function
f from Q into Q2. Then lp(Ker f) is normal.
Proof: Set H = lp(Ker f). For every x and y, x·H ·(y ·H) = (x·y)·H. For
every x and y, x ·H ·(y ·H) = (x ·y) ·H and for every z, if (x ·H) ·(y ·H) =
x ·H · (z ·H), then y ·H = z ·H and if (y ·H) · (x ·H) = z ·H · (x ·H),
then y ·H = z ·H. �

(53) (i) 1Q ∈ Ωlp(Cent(Q)), and

(ii) 1Q ∈ Cent(Q).
The theorem is a consequence of (28).

(54) Let us consider a function f from Q into Q. Suppose f ∈ Mlt(Cent(Q)).
Then there exists z such that

(i) z ∈ Cent(Q), and

(ii) for every x, f(x) = x · z.
Proof: Set H = Cent(Q). Define P[function from Q into Q] ≡ there
exists z such that z ∈ H and for every x, $1(x) = x · z. For every element
u of Q such that u ∈ H for every function f from Q into Q such that for
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every element x of Q, f(x) = u · x holds P[f ]. For every permutations g,
h of Q such that P[g] and P[h] holds P[g · h]. For every permutation g of
Q such that P[g] holds P[g−1]. For every function f from Q into Q such
that f ∈ Mlt(H) holds P[f ]. �

(55) y ∈ x · (lp(Cent(Q))) if and only if there exists z such that z ∈ Cent(Q)
and y = x · z.
Proof: If y ∈ x · (lp(Cent(Q))), then there exists z such that z ∈ Cent(Q)
and y = x · z. Reconsider h = (curry′(the multiplication of Q))(z) as
a permutation of Q. There exists a permutation h of Q such that h ∈
Mlt(Cent(Q)) and h(x) = y. �

(56) x · (lp(Cent(Q))) = y · (lp(Cent(Q))) if and only if there exists z such
that z ∈ Cent(Q) and y = x · z.
Proof: If x · (lp(Cent(Q))) = y · (lp(Cent(Q))), then there exists z such
that z ∈ Cent(Q) and y = x · z. If there exists z such that z ∈ Cent(Q)
and y = x · z, then x · (lp(Cent(Q))) = y · (lp(Cent(Q))). �

(57) lp(Cent(Q)) is normal.
Proof: Set H = lp(Cent(Q)). For every x and y, x ·H ·(y ·H) = (x ·y) ·H.
For every x and y, x·H ·(y·H) = (x·y)·H and for every z, if (x·H)·(y·H) =
x ·H · (z ·H), then y ·H = z ·H and if (y ·H) · (x ·H) = z ·H · (x ·H),
then y ·H = z ·H. �

4. AIM Conjecture

Let Q be a multiplicative loop. The functor InnAut(Q) yielding a subset of
QQ is defined by

(Def. 51) for every object f , f ∈ it iff there exists a function g from Q into Q such
that f = g and g ∈ Mlt(ΩQ) and g(1Q) = 1Q.

Observe that InnAut(Q) is non empty, composition-closed, and inverse-
closed.

Now we state the proposition:

(58) Let us consider a function f from Q into Q. Then f ∈ InnAut(Q) if and
only if f ∈ Mlt(ΩQ) and f(1Q) = 1Q.

Let Q be a multiplicative loop. We say that Q is an AIM if and only if

(Def. 52) for every functions f , g from Q into Q such that f , g ∈ InnAut(Q) holds
f · g = g · f .

Let us consider Q and x. The functor T(x) yielding a function from Q into
Q is defined by

(Def. 53) for every u, it(u) = T(u, x).
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Now we state the proposition:

(59) T(x) ∈ InnAut(Q).
Proof: Set f = T(x). Reconsider g = (curry(the multiplication of Q))(x)
as a permutation of the carrier of Q.
Reconsider h = (curry′(the multiplication of Q))(x) as a permutation of
the carrier of Q. f = g−1 · h. g ∈ Mlt(ΩQ). h ∈ Mlt(ΩQ). �

Let us consider Q, x, and y. The functor L(x, y) yielding a function from Q

into Q is defined by

(Def. 54) for every u, it(u) = L(u, x, y).

Now we state the proposition:

(60) L(x, y) ∈ InnAut(Q).
Proof: Set f = L(x, y). Reconsider g = (curry(the multiplication of
Q))(y · x) as a permutation of the carrier of Q.
Reconsider h = (curry(the multiplication of Q))(x) as a permutation of
the carrier of Q.
Reconsider k = (curry(the multiplication of Q))(y) as a permutation of
the carrier of Q. f = g−1 · (k · h). g ∈ Mlt(ΩQ). h, k ∈ Mlt(ΩQ). �

Let us consider Q, x, and y. The functor R(x, y) yielding a function from Q

into Q is defined by

(Def. 55) for every u, it(u) = R(u, x, y).

Now we state the proposition:

(61) R(x, y) ∈ InnAut(Q).
Proof: Set f = R(x, y). Reconsider g = (curry′(the multiplication of
Q))(x · y) as a permutation of the carrier of Q.
Reconsider h = (curry′(the multiplication of Q))(x) as a permutation of
the carrier of Q.
Reconsider k = (curry′(the multiplication of Q))(y) as a permutation of
the carrier of Q. f = g−1 · (k · h). g ∈ Mlt(ΩQ). h, k ∈ Mlt(ΩQ). �

Observe that Trivial-multLoopStr is an AIM and there exists a multiplicative
loop which is non empty, strict, and AIM and every AIM multiplicative loop
satisfies TT, TL, TR, LR, LL, and RR.

Now we state the propositions:

(62) Let us consider a function f from Q into Q. Suppose f ∈ Mlt(Nucl(Q)).
Then there exists u and there exists v such that u, v ∈ Nucl(Q) and for
every x, f(x) = u · (x · v).
Proof: Set H = Nucl(Q). Define P[function from Q into Q] ≡ there
exists u and there exists v such that u, v ∈ Nucl(Q) and for every x,
$1(x) = u · (x · v). For every element u of Q such that u ∈ H for every
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function f from Q into Q such that for every element x of Q, f(x) = x · u
holds P[f ]. For every element u of Q such that u ∈ H for every function f
from Q into Q such that for every element x of Q, f(x) = u ·x holds P[f ].
For every permutations g, h of the carrier of Q such that P[g] and P[h]
holds P[g · h]. For every permutation g of Q such that P[g] holds P[g−1].
For every function f from Q into Q such that f ∈ Mlt(H) holds P[f ]. �

(63) y ∈ x · (lp(Nucl(Q))) if and only if there exists u and there exists v such
that u, v ∈ Nucl(Q) and y = u · (x · v).
Proof: If y ∈ x ·(lp(Nucl(Q))), then there exists u and there exists v such
that u, v ∈ Nucl(Q) and y = u · (x · v). There exists a permutation h of
the carrier of Q such that h ∈ Mlt(Nucl(Q)) and h(x) = y. �

(64) x · (lp(Nucl(Q))) = y · (lp(Nucl(Q))) if and only if there exists u and
there exists v such that u, v ∈ Nucl(Q) and y = u · (x · v). The theorem is
a consequence of (23), (63), (12), (27), (44), (42), and (40).

Let us consider AIM multiplicative loop Q and elements x, u of Q. Now we
state the propositions:

(65) If u ∈ Nucl(Q), then T(u, x) ∈ Nucl(Q).
Proof: u ∈ Nucll(Q) and u ∈ Nuclm(Q) and u ∈ Nuclr(Q). For every
elements y, z of Q, (T(u, x) · y) · z = T(u, x) · (y · z). For every elements
y, z of Q, (y · z) · T(u, x) = y · (z · T(u, x)). For every elements y, z of Q,
(y · T(u, x)) · z = y · (T(u, x) · z). �

(66) If u ∈ Nucl(Q), then x · u/x ∈ Nucl(Q).
Proof: u ∈ Nucll(Q) and u ∈ Nuclm(Q) and u ∈ Nuclr(Q). Define
T (element of Q) = x · $1/x. Consider t being a function from Q into
Q such that for every element v of Q, t(v) = T (v). t ∈ InnAut(Q). For
every elements y, z of Q, (T (u) · y) · z = T (u) · (y · z). For every elements
y, z of Q, (y · z) · T (u) = y · (z · T (u)). For every elements y, z of Q,
(y · T (u)) · z = y · (T (u) · z). �

Now we state the proposition:

(67) If Q is an AIM, then lp(Nucl(Q)) is normal.
Proof: Set H = lp(Nucl(Q)). For every elements x, y of Q, there exists
an element v of Q such that v ∈ Nucl(Q) and y = x · v iff there exist
elements u, v of Q such that u, v ∈ Nucl(Q) and y = u · (x · v). For every
elements x, y of Q, y ∈ x ·H iff there exists an element v of Q such that
v ∈ Nucl(Q) and y = x·v. For every elements x, y ofQ, x·H = y·H iff there
exists an element v of Q such that v ∈ Nucl(Q) and y = x · v. For every x
and y, x ·H ·(y ·H) = (x ·y) ·H. For every x and y, x ·H ·(y ·H) = (x ·y) ·H
and for every z, if (x ·H) · (y ·H) = x ·H · (z ·H), then y ·H = z ·H and
if (y ·H) · (x ·H) = z ·H · (x ·H), then y ·H = z ·H. �
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Let Q be AIM multiplicative loop. Let us observe that lp(Nucl(Q)) is normal.
Let Q be a multiplicative loop. One can check that lp(Cent(Q)) is normal.
Now we state the proposition:

(68) Main Theorem: The AIM Conjecture
The AIM Conjecture follows from knowing every AIM loop satisfies aa1,
aa2, aa3, Ka, aK1, aK2 and aK3. This theorem justifies using first-order
theorem provers to try to prove the AIM Conjecture:
Suppose for every multiplicative loop Q such that Q satisfies TT, TL, TR,
LR, LL, and RR holds Q satisfies aa1, aa2, aa3, Ka, aK1, aK2, and aK3.
Let us consider AIM multiplicative loop Q. Then

(i) Q/ lp(Nucl(Q)) is a commutative multiplicative group, and

(ii) Q/ lp(Cent(Q)) is a multiplicative group.

The theorem is a consequence of (47), (27), (16), (28), and (17).
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In the alternative approach, used by Gomolińska [4], approximation spaces
are treated as triples of the form

A = (U, I, κ),

where U is a non-empty set called the universe, I : U 7→ ℘U is an uncertainty
mapping, and κ : ℘U × ℘U 7→ [0, 1] is a rough inclusion function. The forma-
lization of uncertainty mappings was discussed in [13], and this article tries to
define the missing part of the above definition, with future possibility of merging
approaches via theory merging mechanism [7], avoiding duplication as much as
we can [12].

We start with some preliminaries, which cover gaps in the existing state of
the Mizar Mathematical Library. Section 2 deals with the standard rough inc-
lusion function, which appears in some form in the research by Jan Łukasiewicz
[15], obviously without any reference for rough sets. This pretty general Mizar
functor κ£ is defined as follows:

κ£(X,Y ) =

{ |X∩Y |
|X| , if X 6= ∅

1, otherwise

For a given universe U , rough inclusion functions (RIFs for short) are the
mappings κ from ℘U × ℘U into unit interval which satisfy two properties:

rif1(κ)⇔ ∀X,Y⊆U (κ(X,Y ) = 1⇔ X ⊆ Y )

rif2(κ)⇔ ∀X,Y,Z⊆U (Y ⊆ Z ⇒ κ(X,Y ) ¬ κ(X,Z))

This is discussed in Sect. 3; corresponding Mizar modes RIF and preRIF are
also introduced.

Besides κ£, there are two relatively well-known RIFs:

κ1(X,Y ) =

{ |Y |
|X∪Y | , if X ∪ Y 6= ∅
1, otherwise

κ2(X,Y ) =
|(U −X) ∪ Y |

|U |
.

Section 4 contains their definitions, both of the form of Mizar functors, and as
set-theoretic functions.

It should be mentioned that in this Mizar translation (and also in the so-
urce code), predicative form of the properties of RIFs, as, for example, rif1(κ)
is replaced by the phrase “κ satisfies (RIF1)” (and for others, respectively). In
Sect. 5 we formulate some additional characteristic properties of rough inclu-
sions; in Sect. 6 we show that, under the assumption that rif1 holds, rif2 can be
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replaced by rif∗2. We introduce also some weakened versions of rough inclusions:
quasi-RIF and weak quasi-RIF.

All three considered RIFs (κ£, κ1, κ2) are distinct. Gomolińska takes U =
{0, 1, 2, . . . , 9},X = {0, . . . , 4}, Y = {2, . . . , 6}. Then κ£(X,Y ) = 3/5, κ1(X,Y ) =
5/7, and κ2(X,Y ) = 4/5. In Sect. 9, we constructed an example, which in Mizar
is the functor ExampleRIFSpace, claiming that U = {1, 2, 3, 4, 5}, X = {1, 2},
Y = {2, 3, 4} with κ£(X,Y ) = 1/2, κ1(X,Y ) = 3/4, and κ2(X,Y ) = 4/5.Obvio-
usly, the indiscernibility relation does not matter, and so we took the identity as
the simplest. The proofs, based on our specific example, are significantly shorter
than those proposed by Gomolińska.

In the final section, we formalized two theorems from another Gomolińska’s
paper [2], which was already translated into Mizar [13], but without the notion
of RIF; now we can fill this gap.

1. Preliminaries

Now we state the propositions:

(1) Let us consider real numbers a, b, c. If b > 0 and a ¬ b and c  0, then
a
b ¬

a+c
b+c .

Observe that there exists an approximation space which is strict and finite.
Let R be a finite 1-sorted structure. One can check that every subset of R

is finite.
From now on R denotes a 1-sorted structure and X, Y denote subsets of R.

(2) X ⊆ Y if and only if Xc ∪ Y = ΩR.
Proof: If X ⊆ Y, then Xc ∪ Y = ΩR. �

From now on R denotes a finite 1-sorted structure and X, Y denote subsets
of R. Now we state the propositions:

(3) X ∪ Y = Y if and only if X ⊆ Y.
(4) If Xc ∪ Y = ΩR , then Xc ∪ Y = ΩR.

Let R be a non empty 1-sorted structure and X be a subset of R. Note that
ΩR ∪X reduces to ΩR and ΩR ∩X reduces to X.

2. Standard Rough Inclusion Function

From now on R denotes a finite approximation space and X, Y, Z, W denote
subsets of R.

Let R be a finite approximation space and X, Y be subsets of R. The functor
κ£(X,Y ) yielding an element of [0, 1] is defined by the term
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(Def. 1)

 X∩Y
X

, if X 6= ∅,
1, otherwise.

Now we state the propositions:

(5) κ£(∅R, X) = 1.

(6) κ£(X,Y ) = 1 if and only if X ⊆ Y.
(7) If Y ⊆ Z, then κ£(X,Y ) ¬ κ£(X,Z).

(8) If Z ⊆ Y ⊆ X, then κ£(X,Z) ¬ κ£(Y,Z).

(9) κ£(X,Y ∪ Z) ¬ κ£(X,Y ) + κ£(X,Z).

(10) If X 6= ∅ and Y misses Z, then κ£(X,Y ∪ Z) = κ£(X,Y ) + κ£(X,Z).

3. Rough Inclusion Functions

Let R be a 1-sorted structure.
A pre-rough inclusion function of R is a function from 2(the carrier of R) ×

2(the carrier of R) into [0, 1].
A preRIF of R is a pre-rough inclusion function of R.
The scheme BinOpEq deals with a non empty 1-sorted structure R and

a binary functor F yielding an element of [0, 1] and states that

(Sch. 1) For every preRIFs f1, f2 of R such that for every subsets x, y of R,
f1(x, y) = F(x, y) and for every subsets x, y of R, f2(x, y) = F(x, y)
holds f1 = f2.

Let R be a finite approximation space. The functor κ£(R) yielding a preRIF
of R is defined by

(Def. 2) for every subsets x, y of R, it(x, y) = κ£(x, y).

4. Defining Two New RIFs

Let R be a finite approximation space and X, Y be subsets of R. The functor
κ1(X,Y ) yielding an element of [0, 1] is defined by the term

(Def. 3)

 Y

X∪Y
, if X ∪ Y 6= ∅,

1, otherwise.

The functor κ2(X,Y ) yielding an element of [0, 1] is defined by the term

(Def. 4) Xc∪Y
ΩR

.

The functor κ1(R) yielding a preRIF of R is defined by

(Def. 5) for every subsets x, y of R, it(x, y) = κ1(x, y).
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The functor κ2(R) yielding a preRIF of R is defined by

(Def. 6) for every subsets x, y of R, it(x, y) = κ2(x, y).

Now we state the propositions:

(11) κ1(X,Y ) = 1 if and only if X ⊆ Y. The theorem is a consequence of (3).

(12) κ2(X,Y ) = 1 if and only if X ⊆ Y. The theorem is a consequence of (2)
and (4).

(13) If κ1(X,Y ) = 0, then Y = ∅.
(14) If X 6= ∅, then κ1(X,Y ) = 0 iff Y = ∅. The theorem is a consequence of

(13).

(15) κ2(X,Y ) = 0 if and only if X = ΩR and Y = ∅.
(16) If Y ⊆ Z, then κ1(X,Y ) ¬ κ1(X,Z). The theorem is a consequence of

(1).

(17) If Y ⊆ Z, then κ2(X,Y ) ¬ κ2(X,Z).

(18) κ1(∅R, X) = 1. The theorem is a consequence of (11).

(19) κ2(∅R, X) = 1. The theorem is a consequence of (12).

5. Characteristic Properties of Rough Inclusions

Let R be a non empty relational structure and κ be a preRIF of R. We say
that κ satisfies (RIF1) if and only if

(Def. 7) for every subsets X, Y of R, κ(X,Y ) = 1 iff X ⊆ Y.
We say that κ satisfies (RIF2) if and only if

(Def. 8) for every subsets X, Y, Z of R such that Y ⊆ Z holds κ(X,Y ) ¬ κ(X,Z).

We say that κ satisfies (RIF3) if and only if

(Def. 9) for every subset X of R such that X 6= ∅ holds κ(X, ∅R) = 0.

We say that κ satisfies (RIF4) if and only if

(Def. 10) for every subsets X, Y of R such that κ(X,Y ) = 0 holds X misses Y.

We say that κ satisfies (RIF0) if and only if

(Def. 11) for every subsets X, Y of R such that X ⊆ Y holds κ(X,Y ) = 1.

We say that κ satisfies (RIF−1
0 ) if and only if

(Def. 12) for every subsets X, Y of R such that κ(X,Y ) = 1 holds X ⊆ Y.
We say that κ satisfies (RIF∗2) if and only if

(Def. 13) for every subsets X, Y, Z of R such that κ(Y, Z) = 1 holds κ(X,Y ) ¬
κ(X,Z).



342 adam grabowski

Observe that every preRIF of R which satisfies (RIF1) satisfies also (RIF0)
and (RIF−1

0 ) and every preRIF of R which satisfies (RIF0) and (RIF−1
0 ) satisfies

also (RIF1).
Let R be a finite approximation space. One can check that κ£(R) satisfies

(RIF1) and κ£(R) satisfies (RIF2) and κ1(R) satisfies (RIF1) and κ1(R) satisfies
(RIF2) and κ2(R) satisfies (RIF1) and κ2(R) satisfies (RIF2).

Let us consider R. Note that there exists a preRIF of R which satisfies (RIF1)
and (RIF2).

6. On the Connections between Postulates

Now we state the proposition:

(20) Let us consider preRIF κ of R satisfying (RIF1). Then κ satisfies (RIF2)
if and only if κ satisfies (RIF∗2).

Let us consider R. Let us observe that every preRIF of R satisfying (RIF1)
which satisfies (RIF2) satisfies also (RIF∗2) and every preRIF of R satisfying
(RIF1) which satisfies (RIF∗2) satisfies also (RIF2) and κ£(R) satisfies (RIF0)
and (RIF∗2) and there exists a pre-rough inclusion function of R which satisfies
(RIF0), (RIF1), (RIF2), and (RIF∗2).

A rough inclusion function ofR is pre-rough inclusion function ofR satisfying
(RIF1) and (RIF2).

A quasi-rough inclusion function of R is preRIF of R satisfying (RIF0) and
(RIF∗2).

A weak quasi-rough inclusion function of R is preRIF of R satisfying (RIF0)
and (RIF2).

A RIF of R is a rough inclusion function of R.
A q-RIF of R is a quasi-rough inclusion function of R.
A weak q-RIF of R is a weak quasi-rough inclusion function of R.

7. Formalization of Proposition 2 [4]

Now we state the propositions:

(21) If X 6= ∅ and Z∪W = ΩR and Z misses W , then κ£(X,Z)+κ£(X,W ) =
1.

(22) If κ£(X,Y ) = 0, then X misses Y.

(23) If X 6= ∅, then κ£(X,Y ) = 0 iff X misses Y. The theorem is a consequ-
ence of (22).

(24) If X 6= ∅, then κ£(X, ∅R) = 0.
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Now we state the propositions:

(25) If X 6= ∅ and X misses Y, then κ£(X,Z\Y ) = κ£(X,Z∪Y ) = κ£(X,Z).
The theorem is a consequence of (23), (10), (7), and (9).

(26) If Z misses W , then κ£(Y ∪ Z,W ) ¬ κ£(Y,W ) ¬ κ£(Y \ Z,W ).

(27) If Z misses Y and Z ⊆ W , then κ£(Y \ Z,W ) ¬ κ£(Y,W ) ¬ κ£(Y ∪
Z,W ).

8. Formalization of Proposition 4 [4]

Let us consider R. Let X be a non empty subset of R. Let us note that
κ£(X, ∅R) is empty.

Now we state the propositions:

(28) If κ1(X,Y ) = 0, then X misses Y. The theorem is a consequence of (14).

(29) If κ2(X,Y ) = 0, then X misses Y. The theorem is a consequence of (15).

Let us consider R. Observe that κ£(R) satisfies (RIF4) and κ1(R) satisfies
(RIF4) and κ2(R) satisfies (RIF4).

(30) κ£(X,Y ) ¬ κ1(X,Y ) ¬ κ2(X,Y ). The theorem is a consequence of (1),
(18), and (19).

(31) κ1(X,Y ) = κ£(X ∪Y, Y ). The theorem is a consequence of (6) and (11).

(32) κ2(X,Y ) = κ£(ΩR, X
c ∪ Y ) = κ£(ΩR, X

c) + κ£(ΩR, X ∩ Y ).

(33) κ£(X,Y ) = κ£(X,X ∩ Y ) = κ1(X,X ∩ Y ) = κ1(X \ Y,X ∩ Y ).

(34) If X∪Y = ΩR, then κ1(X,Y ) = κ2(X,Y ). The theorem is a consequence
of (2).

(35) If X 6= ∅, then 1−κ£(X,Y ) = κ£(X,Y c). The theorem is a consequence
of (10) and (6).

9. Concrete Example

Let X be a set. The functor DiscreteApproxSpace(X) yielding a strict rela-
tional structure is defined by the term

(Def. 14) 〈X, idX〉.
Let us note that DiscreteApproxSpace(X) has equivalence relation.
Let X be a non empty set. Observe that DiscreteApproxSpace(X) is non

empty.
Let X be a finite set. Let us observe that DiscreteApproxSpace(X) is finite.
The functor ExampleRIFSpace yielding a strict, finite approximation space

is defined by the term
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(Def. 15) DiscreteApproxSpace({1, 2, 3, 4, 5}).
Now we state the propositions:

(36) Let us consider subsets X, Y of ExampleRIFSpace. Suppose X = {1, 2}
and Y = {2, 3, 4}. Then κ£(X,Y ) 6= κ£(Y,X).

(37) Let us consider subsets X, Y, U of ExampleRIFSpace. Suppose X =
{1, 2} and Y = {1, 2, 3} and U = {2, 4, 5}. Then κ£(X,U) 6¬ κ£(Y,U).

(38) Let us consider subsets X, Y of ExampleRIFSpace. Suppose X = {1, 2}
and Y = {2, 3, 4}. Then κ£(X,Y ), κ1(X,Y ), κ2(X,Y ) are mutually diffe-
rent.

10. Continuing Formalization of Theorem 4.1 [2]

Let us consider a finite approximation space R, an element u of R, and
subsets x, y of R. Now we state the propositions:

(39) If u ∈ (f1(R))(x) and (IR)(u) = y, then κ£(y, x) > 0. The theorem is
a consequence of (22).

(40) If u ∈ (Flip f1(R))(x) and (IR)(u) = y, then κ£(y, x) = 1. The theorem
is a consequence of (6).
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