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Summary. Timothy Makarios (with Isabelle/HOL1) and John Harrison
(with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane
satisfy all of Tarski’s axioms except his Euclidean axiom” [2],[3],[4],[5].

With the Mizar system [1] we use some ideas taken from Tim Makarios’s
MSc thesis [10] to formalize some definitions (like the absolute) and lemmas
necessary for the verification of the independence of the parallel postulate. In
this article we prove that our constructed model (we prefer “Beltrami-Klein”
name over “Klein-Beltrami”, which can be seen in the naming convention for
Mizar functors, and even MML identifiers) satisfies the congruence symmetry, the
congruence equivalence relation, and the congruence identity axioms formulated
by Tarski (and formalized in Mizar as described briefly in [8]).
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1. Preliminaries

Now we state the propositions:

(1) Let us consider real numbers x, y. If x · y < 0, then 0 < x
x−y < 1.

(2) Let us consider a non zero real number a, and real numbers b, r. Suppose
r =
√
a2 + b2. Then

(i) r is positive, and

1https://www.isa-afp.org/entries/Tarskis_Geometry.html
2https://github.com/jrh13/hol-light/blob/master/100/independence.ml
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(ii) (ar )2 + ( br )2 = 1.

(3) Let us consider a non zero real number a, and real numbers b, c, d, e.
Suppose a · b = c− d · e. Then b2 = c2

a2
− 2 · c·da·a · e+ d2

a2
· e2.

Let us consider complex numbers a, b, c. Now we state the propositions:

(4) If a 6= 0, then a2·b·c
a2

= b · c.
(5) If a 6= 0, then 2·a2·b·c

a2
= 2 · b · c. The theorem is a consequence of (4).

(6) Let us consider a real number a. If 1 < a, then 1
a − 1 < 0.

(7) Let us consider real numbers a, b. If 0 < a and 1 < b, then a
b − a < 0.

The theorem is a consequence of (6).

(8) Let us consider a non zero real number a, and real numbers b, c, d.
Suppose a2+ c2 = b2 and 1 < b2. Then (b2)2

a2
− 2 · b2·ca·a ·d+ c2

a2
·d2+d2 6= 1.

The theorem is a consequence of (5) and (7).

(9) Let us consider real numbers a, b, c. If a · (−b) = c and a · c = b, then
c = 0 and b = 0.

(10) Let us consider a positive real number a. Then
√
a
a = 1√

a
.

2. Planar Lemmas

Let a be a non zero real number and b, c be real numbers. Observe that [a,
b, c] is non zero as an element of E3

T and [c, a, b] is non zero as an element of E3
T

and [b, c, a] is non zero as an element of E3
T.

Let P be an element of the real projective plane. Assume P ∈ (the absolute)∪
(the BK-model). The functor #P yielding a non zero element of E3

T is defined
by

(Def. 1) the direction of it = P and it(3) = 1.

Now we state the propositions:

(11) Let us consider an element P of the real projective plane. Then there
exists an element Q of the BK-model such that P 6= Q.

From now on P denotes an element of the BK-model.

(12) There exist elements P1, P2 of the absolute such that

(i) P1 6= P2, and

(ii) P1, P and P2 are collinear.

The theorem is a consequence of (11).

(13) Let us consider an element Q of the absolute. Then there exists an ele-
ment R of the BK-model such that

(i) P 6= R, and
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(ii) P , Q and R are collinear.

(14) Let us consider a line L of Inc-ProjSp(the real projective plane). Suppose
P ∈ L. Then there exist elements P1, P2 of the absolute such that

(i) P1 6= P2, and

(ii) P1, P2 ∈ L.

Let N be an invertible square matrix over RF of dimension 3. The functor
Line-homography(N) yielding a function from the lines of Inc-ProjSp(the real
projective plane) into the lines of Inc-ProjSp(the real projective plane) is defined
by

(Def. 2) for every line x of Inc-ProjSp(the real projective plane), it(x) =
{(the homography of N)(P ), where P is a point of Inc-ProjSp(the real
projective plane) : P lies on x}.

In the sequel N , N1, N2 denote invertible square matrices over RF of dimen-
sion 3 and l, l1, l2 denote elements of the lines of Inc-ProjSp(the real projective
plane). Now we state the propositions:

(15) (Line-homography(N1))((Line-homography(N2))(l)) =
(Line-homography(N1 ·N2))(l).
Proof: Reconsider l2 = (Line-homography(N2))(l) as a line of Inc-ProjSp
(the real projective plane). {(the homography ofN1)(P ), where P is a point
of Inc-ProjSp(the real projective plane) : P lies on l2} = {(the homography
ofN1·N2)(P ), where P is a point of Inc-ProjSp(the real projective plane) :
P lies on l} by [9, (3), (4), (5)], [6, (13)]. �

(16) (Line-homography(I3×3
RF ))(l) = l.

Proof: Set X = {(the homography of I3×3
RF )(P ), where P is a point of

Inc-ProjSp(the real projective plane) : P lies on l}. X ⊆ l. l ⊆ X. �

(17) (i) (Line-homography(N))((Line-homography(N`))(l)) = l, and

(ii) (Line-homography(N`))((Line-homography(N))(l)) = l.
The theorem is a consequence of (15) and (16).

(18) If (Line-homography(N))(l1) = (Line-homography(N))(l2), then l1 = l2.
The theorem is a consequence of (17).

The functor SetLineHom3 yielding a set is defined by the term

(Def. 3) the set of all Line-homography(N) whereN is an invertible square matrix
over RF of dimension 3.

Observe that SetLineHom3 is non empty. Let h1, h2 be elements of SetLine-
Hom3. The functor h1 ◦ h2 yielding an element of SetLineHom3 is defined by
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(Def. 4) there exist invertible square matrices N1, N2 over RF of dimension 3
such that h1 = Line-homography(N1) and h2 = Line-homography(N2)
and it = Line-homography(N1 ·N2).

Now we state the propositions:

(19) Let us consider elements h1, h2 of SetLineHom3. Suppose h1 =
Line-homography(N1) and h2 = Line-homography(N2).
Then Line-homography(N1 ·N2) = h1 ◦ h2. The theorem is a consequence
of (15).

(20) Let us consider elements x, y, z of SetLineHom3. Then (x ◦ y) ◦ z =
x ◦ (y ◦ z). The theorem is a consequence of (19).

The functor BinOpLineHom3 yielding a binary operation on SetLineHom3
is defined by

(Def. 5) for every elements h1, h2 of SetLineHom3, it(h1, h2) = h1 ◦ h2.

The functor GroupLineHom3 yielding a strict multiplicative magma is defi-
ned by the term

(Def. 6) 〈SetLineHom3,BinOpLineHom3〉.
Let us observe that GroupLineHom3 is non empty, associative, and group-

like. Now we state the propositions:

(21) 1GroupLineHom3 = Line-homography(I3×3
RF ).

(22) Let us consider elements h, g of GroupLineHom3, and invertible square
matricesN ,N1 over RF of dimension 3. Suppose h = Line-homography(N)
and g = Line-homography(N1) andN1 = N`. Then g = h−1. The theorem
is a consequence of (21).

In the sequel P denotes a point of the projective space over E3
T and l denotes

a line of Inc-ProjSp(the real projective plane).

(23) If (the homography of N)(P ) ∈ l, then P ∈ (Line-homography(N`))(l).

(24) If P ∈ (Line-homography(N))(l), then (the homography of N`)(P ) ∈ l.
(25) P ∈ l if and only if (the homography of N)(P ) ∈ (Line-homography(N))

(l). The theorem is a consequence of (23) and (17).

(26) Let us consider non zero elements u, v, w of E3
T. Suppose (u)3 = 1

and (v)1 = −(u)2 and (v)2 = (u)1 and (v)3 = 0 and (w)3 = 1 and
〈|u, v, w|〉 = 0. Then ((u)1)2 + ((u)2)2 − (u)1 · (w)1 − (u)2 · (w)2 = 0.

(27) Let us consider a non zero real number a, and real numbers b, c. Then
a · [ ba ,

c
a , 1] = [b, c, a].

Let us consider non zero elements u, v, w of E3
T. Now we state the proposi-

tions:
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(28) Suppose (u)1 6= 0 and (u)3 = 1 and (v)1 = −(u)2 and (v)2 = (u)1 and
(v)3 = 0 and (w)3 = 1 and 〈|u, v, w|〉 = 0 and 1 < ((u)1)2+ ((u)2)2. Then
((w)1)2+ ((w)2)2 6= 1. The theorem is a consequence of (26), (2), (3), and
(8).

(29) Suppose (u)2 6= 0 and (u)3 = 1 and (v)1 = −(u)2 and (v)2 = (u)1 and
(v)3 = 0 and (w)3 = 1 and 〈|u, v, w|〉 = 0 and 1 < ((u)1)2+ ((u)2)2. Then
((w)1)2+ ((w)2)2 6= 1. The theorem is a consequence of (26), (2), (3), and
(8).

(30) Let us consider an element P of the absolute. Then there exists a non
zero element u of E3

T such that

(i) u(3) = 1, and

(ii) P = the direction of u.

(31) Let us consider real numbers a, b, c, d, and non zero elements u, v
of E3

T. Suppose u = [a, b, 1] and v = [c, d, 0]. Then the direction of u 6=
the direction of v.

(32) Let us consider a non zero element u of E3
T. Suppose u(1)2 + u(2)2 < 1

and u(3) = 1. Then the direction of u is an element of the BK-model.

(33) Let us consider real numbers a, b. Suppose a2+b2 ¬ 1. Then the direction
of [a, b, 1] ∈ (the BK-model) ∪ (the absolute). The theorem is a consequ-
ence of (32).

(34) If P /∈ (the BK-model) ∪ (the absolute), then there exists l such that
P ∈ l and l misses the absolute. The theorem is a consequence of (9),
(30), (27), (31), (33), (28), and (29).

(35) Let us consider a point P of the real projective plane, an element h of
the subgroup of K-isometries, and an invertible square matrix N over RF

of dimension 3. Suppose h = the homography of N . Then P is an element
of the absolute if and only if (the homography of N)(P ) is an element of
the absolute.

Let us consider an element P of the BK-model, an element h of the subgroup
of K-isometries, and an invertible square matrix N over RF of dimension 3.

(36) If h = the homography of N , then (the homography of N)(P ) is an ele-
ment of the BK-model.
Proof: Set h1 = (the homography of N)(P ). h1 is not an element of
the absolute by (35), [7, (1)]. Consider l such that h1 ∈ l and l mis-
ses the absolute. Reconsider L = (Line-homography(N`))(l) as a line of
the real projective plane. Reconsider L′ = L as a line of Inc-ProjSp(the real
projective plane). Consider P1, P2 being elements of the absolute such that
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P1 6= P2 and P1 ∈ L′ and P2 ∈ L′. (The homography of N)(P1) is an ele-
ment of the absolute. (The homography ofN)(P1) ∈ (Line-homography(N))
(L). (The homography of N)(P1) ∈ l. �

(37) Suppose h = the homography of N . Then there exists a non zero element
u of E3

T such that

(i) (the homography of N)(P ) = the direction of u, and

(ii) u(3) = 1.

The theorem is a consequence of (36).

3. The Construction of Beltrami-Klein Model

The functor BK-model-Betweenness yielding a relation between
(the BK-model)× (the BK-model) and the BK-model is defined by

(Def. 7) for every elements a, b, c of the BK-model, 〈〈〈〈a, b〉〉, c〉〉 ∈ it iff
BK-to-REAL2(b) ∈ L(BK-to-REAL2(a),BK-to-REAL2(c)).

The functor BK-model-Equidistance yielding a relation between
(the BK-model)×(the BK-model) and (the BK-model)×(the BK-model) is

defined by

(Def. 8) for every elements a, b, c, d of the BK-model, 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ it
iff there exists an element h of the subgroup of K-isometries and the-
re exists an invertible square matrix N over RF of dimension 3 such
that h = the homography of N and (the homography of N)(a) = c and
(the homography of N)(b) = d.

The functor BK-model-Plane yielding a Tarski plane is defined by the term

(Def. 9) 〈〈the BK-model,BK-model-Betweenness,BK-model-Equidistance 〉〉.

4. Congruence Symmetry

Now we state the proposition:

(38) BK-model-Plane satisfies the axiom of congruence symmetry.

5. Congruence Equivalence Relation

Now we state the proposition:

(39) BK-model-Plane satisfies the axiom of congruence equivalence relation.
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6. Congruence Identity

Now we state the proposition:

(40) BK-model-Plane satisfies the axiom of congruence identity.
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Summary. Timothy Makarios (with Isabelle/HOL1) and John Harrison
(with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane
satisfy all of Tarski’s axioms except his Euclidean axiom” [2],[3],[4, 5].

With the Mizar system [1] we use some ideas taken from Tim Makarios’s
MSc thesis [10] to formalize some definitions and lemmas necessary for the veri-
fication of the independence of the parallel postulate. In this article, which is the
continuation of [8], we prove that our constructed model satisfies the axioms of
segment construction, the axiom of betweenness identity, and the axiom of Pasch
due to Tarski, as formalized in [11] and related Mizar articles.
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1. Preliminaries

Let us consider real numbers a, b. Now we state the propositions:

(1) If a 6= b, then 1− a
a−b = − b

a−b .

(2) If 0 < a · b, then 0 < a
b .

Now we state the propositions:

(3) Let us consider real numbers a, b, c. Suppose 0 ¬ a ¬ 1 and 0 < b · c.
Then 0 ¬ a·c

(1−a)·b+a·c ¬ 1.

1https://www.isa-afp.org/entries/Tarskis_Geometry.html
2https://github.com/jrh13/hol-light/blob/master/100/independence.ml
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(4) Let us consider real numbers a, b, c. Suppose (1− a) · b+ a · c 6= 0. Then
1− a·c

(1−a)·b+a·c = (1−a)·b
(1−a)·b+a·c .

(5) Let us consider real numbers a, b, c, d. If b 6= 0, then
a·b
c
·d
b = a·d

c .

(6) Let us consider an element u of E3
T. Then u = [u(1), u(2), u(3)].

(7) Let us consider an element P of the BK-model. Then BK-to-REAL2(P ) ∈
TarskiEuclid2Space.

Let P be a point of BK-model-Plane. The functor BKtoT2(P ) yielding a po-
int of TarskiEuclid2Space is defined by

(Def. 1) there exists an element p of the BK-model such that P = p and it =
BK-to-REAL2(p).

Let P be a point of TarskiEuclid2Space. Assume P̂ ∈ the inside of circle(0,0,1).
The functor T2toBK(P ) yielding a point of BK-model-Plane is defined by

(Def. 2) there exists a non zero element u of E3
T such that it = the direction of u

and (u)3 = 1 and P̂ = [(u)1, (u)2].

Let us consider a point P of BK-model-Plane. Now we state the propositions:

(8) ˆBKtoT2(P ) ∈ the inside of circle(0,0,1).

(9) T2toBK(BKtoT2(P )) = P .

(10) Let us consider a point P of TarskiEuclid2Space. Suppose P̂ is an element
of the inside of circle(0,0,1). Then BKtoT2(T2toBK(P )) = P .

(11) Let us consider a point P of BK-model-Plane, and an element p of
the BK-model. Suppose P = p. Then

(i) BKtoT2(P ) = BK-to-REAL2(p), and

(ii) ˆBKtoT2(P ) = BK-to-REAL2(p).

(12) Let us consider points P , Q, R of BK-model-Plane, and points P2, Q2, R2

of TarskiEuclid2Space. Suppose P2 = BKtoT2(P ) and Q2 = BKtoT2(Q)
and R2 = BKtoT2(R). Then Q lies between P and R if and only if Q2 lies
between P2 and R2. The theorem is a consequence of (11).

(13) Let us consider elements P , Q of E2
T. If P 6= Q, then P (1) 6= Q(1) or

P (2) 6= Q(2).

(14) Let us consider real numbers a, b, and elements P , Q of E2
T. If P 6= Q

and (1 − a) · P + a · Q = (1 − b) · P + b · Q, then a = b. The theorem is
a consequence of (13).

(15) Let us consider points P , Q of BK-model-Plane. If ˆBKtoT2(P ) =
ˆBKtoT2(Q), then P = Q. The theorem is a consequence of (11).

Let P , Q, R be points of BK-model-Plane. Assume Q lies between P and R
and P 6= R. The functor length(P,Q,R) yielding a real number is defined by
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(Def. 3) 0 ¬ it ¬ 1 and ˆBKtoT2(Q) = (1− it) · ( ˆBKtoT2(P )) + it · ( ˆBKtoT2(R)).

Let us consider points P , Q of BK-model-Plane. Now we state the proposi-
tions:

(16) (i) P lies between P and Q, and

(ii) Q lies between P and Q.
The theorem is a consequence of (12).

(17) If P 6= Q, then length(P, P,Q) = 0 and length(P,Q,Q) = 1. The the-
orem is a consequence of (16).

(18) Let us consider a square matrix N over RF of dimension 3. Suppose
N = 〈〈2, 0,−1〉, 〈0,

√
3, 0〉, 〈1, 0,−2〉〉. Then

(i) DetN = (−3) ·
√

3, and

(ii) N is invertible.

(19) Let us consider elements a11, a12, a13, a21, a22, a23, a31, a32, a33, b11,
b12, b13, b21, b22, b23, b31, b32, b33, a1, a2, a3, a4, a5, a6, a7, a8, a9 of RF,
and square matrices A, B over RF of dimension 3.

Suppose A = 〈〈a11, a12, a13〉, 〈a21, a22, a23〉, 〈a31, a32, a33〉〉 and B =
〈〈b11, b12, b13〉, 〈b21, b22, b23〉, 〈b31, b32, b33〉〉 and a1 = a11 · b11 + a12 · b21 +
a13·b31 and a2 = a11·b12+a12·b22+a13·b32 and a3 = a11·b13+a12·b23+a13·b33

and a4 = a21 · b11 + a22 · b21 + a23 · b31.
Suppose a5 = a21 ·b12+a22 ·b22+a23 ·b32 and a6 = a21 ·b13+a22 ·b23+a23 ·

b33 and a7 = a31 ·b11+a32 ·b21+a33 ·b31 and a8 = a31 ·b12+a32 ·b22+a33 ·b32

and a9 = a31 · b13 + a32 · b23 + a33 · b33.
Then A ·B = 〈〈a1, a2, a3〉, 〈a4, a5, a6〉, 〈a7, a8, a9〉〉.

Let us consider square matrices N1, N2 over RF of dimension 3. Now we
state the propositions:

(20) Suppose N1 = 〈〈2, 0,−1〉, 〈0,
√

3, 0〉, 〈1, 0,−2〉〉 and N2 = 〈〈23 , 0,−
1
3〉, 〈0,

1√
3
, 0〉, 〈13 , 0,−

2
3〉〉. Then N1 ·N2 = 〈〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉〉. The theorem

is a consequence of (19).

(21) Suppose N2 = 〈〈2, 0,−1〉, 〈0,
√

3, 0〉, 〈1, 0,−2〉〉 and N1 = 〈〈23 , 0,−
1
3〉, 〈0,

1√
3
, 0〉, 〈13 , 0,−

2
3〉〉. Then N1 ·N2 = 〈〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉〉. The theorem

is a consequence of (19).

(22) Suppose N1 = 〈〈2, 0,−1〉, 〈0,
√

3, 0〉, 〈1, 0,−2〉〉 and N2 = 〈〈23 , 0,−
1
3〉, 〈0,

1√
3
, 0〉, 〈13 , 0,−

2
3〉〉. Then N1 is inverse of N2. The theorem is a consequence

of (20) and (21).

Let us consider an invertible square matrix N over RF of dimension 3. Now
we state the propositions:



12 roland coghetto

(23) Suppose N = 〈〈23 , 0,−
1
3〉, 〈0,

1√
3
, 0〉, 〈13 , 0,−

2
3〉〉. Then (the homography

of N)◦(the absolute) ⊆ the absolute.
Proof: (The homography of N)◦(the absolute) ⊆ the absolute by [7,
(89)], [9, (7)]. �

(24) Suppose N = 〈〈2, 0,−1〉, 〈0,
√

3, 0〉, 〈1, 0,−2〉〉. Then (the homography
of N)◦(the absolute) = the absolute.
Proof: (The homography of N)◦(the absolute) ⊆ the absolute.
The absolute ⊆ (the homography of N)◦(the absolute) by [6, (19)], (22),
(23). �

(25) Let us consider real numbers a, b, r, and elements P , Q, R of E2
T. Suppose

Q ∈ L(P,R) and P , R ∈ the inside of circle(a,b,r). Then Q ∈ the inside
of circle(a,b,r).

(26) Let us consider non zero elements u, v of E3
T. Suppose the direction of

u = the direction of v and u(3) 6= 0 and u(3) = v(3). Then u = v.

(27) Let us consider an element R of the projective space over E3
T, elements

P , Q of the BK-model, non zero elements u, v, w of E3
T, and a real number

r. Suppose 0 ¬ r ¬ 1 and P = the direction of u and Q = the direction
of v and R = the direction of w and u(3) = 1 and v(3) = 1 and w =
r · u+ (1− r) · v. Then R is an element of the BK-model.
Proof: Consider u2 being a non zero element of E3

T such that the direction
of u2 = P and u2(3) = 1 and BK-to-REAL2(P ) = [u2(1), u2(2)]. u = u2.
Reconsider r4 = [u2(1), u2(2)] as an element of E2

T. Consider v2 being a non
zero element of E3

T such that the direction of v2 = Q and v2(3) = 1 and
BK-to-REAL2(Q) = [v2(1), v2(2)]. v = v2. Reconsider r6 = [v2(1), v2(2)]
as an element of E2

T. Reconsider r8 = [w(1), w(2)] as an element of E2
T.

r8 = r · r4 + (1 − r) · r6. Consider R3 being an element of E2
T such that

R3 = r8 and REAL2-to-BK(r8) = the direction of [(R3)1, (R3)2, 1]. �

(28) Let us consider an invertible square matrix N over RF of dimension 3,
elements n11, n12, n13, n21, n22, n23, n31, n32, n33 of RF, points P , Q of
the projective space over E3

T, and non zero elements u, v of E3
T. Suppose

N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction
of u and Q = the direction of v and Q = (the homography of N)(P ) and
u(3) = 1. Then there exists a non zero real number a such that

(i) v(1) = a · (n11 · u(1) + n12 · u(2) + n13), and

(ii) v(2) = a · (n21 · u(1) + n22 · u(2) + n23), and

(iii) v(3) = a · (n31 · u(1) + n32 · u(2) + n33).

(29) Let us consider an invertible square matrix N over RF of dimension
3, elements n11, n12, n13, n21, n22, n23, n31, n32, n33 of RF, an element
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P of the BK-model, a point Q of the projective space over E3
T, and non

zero elements u, v of E3
T. Suppose N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31,

n32, n33〉〉 and P = the direction of u and Q = the direction of v and
Q = (the homography of N)(P ) and u(3) = 1 and v(3) = 1. Then

(i) n31 · u(1) + n32 · u(2) + n33 6= 0, and

(ii) v(1) = n11·u(1)+n12·u(2)+n13
n31·u(1)+n32·u(2)+n33

, and

(iii) v(2) = n21·u(1)+n22·u(2)+n23
n31·u(1)+n32·u(2)+n33

.

The theorem is a consequence of (28).

(30) Let us consider an invertible square matrix N over RF of dimension
3, an element h of the subgroup of K-isometries, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, an element P of the BK-model, and
a non zero element u of E3

T. Suppose h = the homography of N and
N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction
of u and u(3) = 1. Then n31 · u(1) + n32 · u(2) + n33 6= 0. The theorem is
a consequence of (29).

(31) Let us consider an invertible square matrix N over RF of dimension
3, elements n11, n12, n13, n21, n22, n23, n31, n32, n33 of RF, an element
P of the absolute, a point Q of the projective space over E3

T, and non
zero elements u, v of E3

T. Suppose N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31,

n32, n33〉〉 and P = the direction of u and Q = the direction of v and
Q = (the homography of N)(P ) and u(3) = 1 and v(3) = 1. Then

(i) n31 · u(1) + n32 · u(2) + n33 6= 0, and

(ii) v(1) = n11·u(1)+n12·u(2)+n13
n31·u(1)+n32·u(2)+n33

, and

(iii) v(2) = n21·u(1)+n22·u(2)+n23
n31·u(1)+n32·u(2)+n33

.

The theorem is a consequence of (28).

(32) Let us consider an invertible square matrix N over RF of dimension 3,
an element h of the subgroup of K-isometries, elements n11, n12, n13, n21,
n22, n23, n31, n32, n33 of RF, an element P of the absolute, and a non
zero element u of E3

T. Suppose h = the homography of N and N = 〈〈n11,

n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction of u and
u(3) = 1. Then n31·u(1)+n32·u(2)+n33 6= 0. The theorem is a consequence
of (31).

(33) Let us consider an invertible square matrix N over RF of dimension
3, an element h of the subgroup of K-isometries, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, an element P of the BK-model, and
a non zero element u of E3

T. Suppose h = the homography of N and
N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction
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of u and u(3) = 1. Then (the homography of N)(P ) = the direction of
[n11·u(1)+n12·u(2)+n13
n31·u(1)+n32·u(2)+n33

, n21·u(1)+n22·u(2)+n23
n31·u(1)+n32·u(2)+n33

, 1]. The theorem is a consequence
of (29).

(34) Let us consider an invertible square matrix N over RF of dimension
3, an element h of the subgroup of K-isometries, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, an element P of the absolute, and
a non zero element u of E3

T. Suppose h = the homography of N and
N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉 and P = the direction
of u and u(3) = 1. Then (the homography of N)(P ) = the direction of
[n11·u(1)+n12·u(2)+n13
n31·u(1)+n32·u(2)+n33

, n21·u(1)+n22·u(2)+n23
n31·u(1)+n32·u(2)+n33

, 1]. The theorem is a consequence
of (31).

(35) Let us consider a subset A of E3
T, a convex, non empty subset B of E2

T,
a real number r, and an element x of E3

T. Suppose A = {x, where x is
an element of E3

T : [(x)1, (x)2] ∈ B and (x)3 = r}. Then A is non empty
and convex.

(36) Let us consider elements n1, n2, n3 of RF, and elements n, u of E3
T.

Suppose n = 〈n1, n2, n3〉 and u(3) = 1. Then |(n, u)| = n1 · u(1) + n2 ·
u(2) + n3.

(37) Let us consider a convex, non empty subset A of E3
T, and elements n,

u, v of E3
T. Suppose for every element w of E3

T such that w ∈ A holds
|(n,w)| 6= 0 and u, v ∈ A. Then 0 < |(n, u)| · |(n, v)|.
Proof: Set x = |(n, u)|. Set y = |(n, v)|. Reconsider l = x

x−y as a non zero
real number. Reconsider w = l · v + (1− l) · u as an element of E3

T. x 6= y.
1− l = − y

x−y . |(n,w)| = 0. �

Let us consider elements n31, n32, n33 of RF and elements u, v of E2
T. Now

we state the propositions:

(38) Suppose u, v ∈ the inside of circle(0,0,1) and for every element w of E2
T

such that w ∈ the inside of circle(0,0,1) holds n31·w(1)+n32·w(2)+n33 6= 0.
Then 0 < (n31 · u(1) + n32 · u(2) + n33) · (n31 · v(1) + n32 · v(2) + n33). The
theorem is a consequence of (35), (36), and (37).

(39) Suppose u ∈ the inside of circle(0,0,1) and v ∈ circle(0, 0, 1) and for
every element w of E2

T such that w ∈ the closed inside of circle(0,0,1)
holds n31 ·w(1) + n32 ·w(2) + n33 6= 0. Then 0 < (n31 · u(1) + n32 · u(2) +
n33) · (n31 · v(1) + n32 · v(2) + n33). The theorem is a consequence of (35),
(36), and (37).

(40) Let us consider real numbers l, r, elements u, v, w of E3
T, and real numbers

n11, n12, n13, n21, n22, n23, n31, n32, n33, m1, m2, m3, m4, m5, m6, m7,
m8, m9.



Klein-Beltrami model. Part IV 15

Suppose m3 6= 0 and m6 6= 0 and m9 6= 0 and r = l·m6
(1−l)·m3+l·m6

and (1 − l) · m3 + l · m6 6= 0 and w = (1 − l) · u + l · v and m1 =
n11 · u(1) + n12 · u(2) + n13 and m2 = n21 · u(1) + n22 · u(2) + n23 and
m3 = n31 · u(1) + n32 · u(2) + n33 and m4 = n11 · v(1) + n12 · v(2) + n13.

Suppose m5 = n21 ·v(1)+n22 ·v(2)+n23 and m6 = n31 ·v(1)+n32 ·v(2)+
n33 andm7 = n11·w(1)+n12·w(2)+n13 andm8 = n21·w(1)+n22·w(2)+n23

and m9 = n31 · w(1) + n32 · w(2) + n33.
Then (1− r) · [m1m3 ,

m2
m3
, 1] + r · [m4m6 ,

m5
m6
, 1] = [m7m9 ,

m8
m9
, 1]. The theorem is

a consequence of (4) and (5).

(41) Let us consider an invertible square matrix N over RF of dimension
3, an element h of the subgroup of K-isometries, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, and an element P of the BK-model.
Suppose h = the homography of N and N = 〈〈n11, n12, n13〉, 〈n21, n22,

n23〉, 〈n31, n32, n33〉〉. Then (the homography of N)(P ) = the direction of
[n11·(BK-to-REAL2(P ))1+n12·(BK-to-REAL2(P ))2+n13
n31·(BK-to-REAL2(P ))1+n32·(BK-to-REAL2(P ))2+n33

,
n21·(BK-to-REAL2(P ))1+n22·(BK-to-REAL2(P ))2+n23
n31·(BK-to-REAL2(P ))1+n32·(BK-to-REAL2(P ))2+n33

, 1].
The theorem is a consequence of (33).

(42) Let us consider an element h of the subgroup of K-isometries, an in-
vertible square matrix N over RF of dimension 3, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, and an element u2 of E2

T. Suppose
h = the homography of N and N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31,

n32, n33〉〉 and u2 ∈ the inside of circle(0,0,1). Then n31 ·u2(1)+n32 ·u2(2)+
n33 6= 0. The theorem is a consequence of (30).

(43) Let us consider a positive real number r, and an element u of E2
T. If

u ∈ circle(0, 0, r), then u is not zero.

(44) Let us consider an element h of the subgroup of K-isometries, an in-
vertible square matrix N over RF of dimension 3, elements n11, n12, n13,
n21, n22, n23, n31, n32, n33 of RF, and an element u2 of E2

T. Suppose
h = the homography of N and N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31,

n32, n33〉〉 and u2 ∈ the closed inside of circle(0,0,1). Then n31 · u2(1) +
n32 ·u2(2)+n33 6= 0. The theorem is a consequence of (30), (43), and (32).

(45) Let us consider real numbers a, b, c, d, e, f , r. Suppose (1 − r) · [a, b,
1] + r · [c, d, 1] = [e, f, 1]. Then (1− r) · [a, b] + r · [c, d] = [e, f ].

(46) Let us consider points P , Q, R, P ′, Q′, R′ of BK-model-Plane, elements
p, q, r, p′, q′, r′ of the BK-model, an element h of the subgroup of K-
isometries, and an invertible square matrix N over RF of dimension 3.
Suppose h = the homography of N and Q lies between P and R and
P = p and Q = q and R = r and p′ = (the homography of N)(p) and
q′ = (the homography of N)(q) and r′ = (the homography of N)(r) and



16 roland coghetto

P ′ = p′ and Q′ = q′ and R′ = r′. Then Q′ lies between P ′ and R′.
Proof: Consider n11, n12, n13, n21, n22, n23, n31, n32, n33 being ele-
ments of RF such that N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉.
Consider u being a non zero element of E3

T such that the direction of
u = p and u(3) = 1 and BK-to-REAL2(p) = [u(1), u(2)]. Consider v
being a non zero element of E3

T such that the direction of v = r and
v(3) = 1 and BK-to-REAL2(r) = [v(1), v(2)]. Consider w being a non
zero element of E3

T such that the direction of w = q and w(3) = 1 and
BK-to-REAL2(q) = [w(1), w(2)].

Reconsider m1 = n11 · u(1) + n12 · u(2) + n13, m2 = n21 · u(1) + n22 ·
u(2)+n23, m3 = n31 ·u(1)+n32 ·u(2)+n33, m4 = n11 ·v(1)+n12 ·v(2)+n13,
m5 = n21 · v(1) + n22 · v(2) + n23, m6 = n31 · v(1) + n32 · v(2) + n33, m7 =
n11·w(1)+n12·w(2)+n13,m8 = n21·w(1)+n22·w(2)+n23,m9 = n31·w(1)+
n32 · w(2) + n33 as a real number. BKtoT2(P ) = BK-to-REAL2(p) and

ˆBKtoT2(P ) = BK-to-REAL2(p) and BKtoT2(Q) = BK-to-REAL2(q)
and ˆBKtoT2(Q) = BK-to-REAL2(q) and BKtoT2(R) = BK-to-REAL2(r)
and ˆBKtoT2(R) = BK-to-REAL2(r). Consider l being a real number such
that 0 ¬ l ¬ 1 and ˆBKtoT2(Q) = (1− l) · ( ˆBKtoT2(P ))+ l · ( ˆBKtoT2(R)).

Set r = l·m6
(1−l)·m3+l·m6 . (1 − r) · [m1m3 ,

m2
m3
, 1] + r · [m4m6 ,

m5
m6
, 1] = [m7m9 ,

m8
m9
, 1]. 0 ¬ r ¬ 1. BKtoT2(P ′) = BK-to-REAL2(p′) and ˆBKtoT2(P ′) =

BK-to-REAL2(p′) and BKtoT2(Q′) = BK-to-REAL2(q′) and ˆBKtoT2(Q′) =
BK-to-REAL2(q′) and BKtoT2(R′) = BK-to-REAL2(r′) and ˆBKtoT2(R′) =
BK-to-REAL2(r′). �

Let P be a point of the projective space over E3
T. We say that P is point at

∞ if and only if

(Def. 4) there exists a non zero element u of E3
T such that P = the direction of

u and (u)3 = 0.

Now we state the proposition:

(47) Let us consider a point P of the projective space over E3
T. Suppose there

exists a non zero element u of E3
T such that P = the direction of u and

(u)3 6= 0. Then P is not point at ∞.

Note that there exists a point of the projective space over E3
T which is point

at∞ and there exists a point of the projective space over E3
T which is non point

at ∞.
Let P be a non point at∞ point of the projective space over E3

T. The functor
RP3toREAL2(P ) yielding an element of R2 is defined by

(Def. 5) there exists a non zero element u of E3
T such that P = the direction of

u and (u)3 = 1 and it = [(u)1, (u)2].
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The functor RP3toT2(P ) yielding a point of TarskiEuclid2Space is defined
by the term

(Def. 6) RP3toREAL2(P ).

Now we state the propositions:

(48) Let us consider non point at ∞ elements P , Q, R, P ′, Q′, R′ of the pro-
jective space over E3

T, an element h of the subgroup of K-isometries, and
an invertible square matrix N over RF of dimension 3.

Suppose h = the homography of N and P , Q ∈ the BK-model and R ∈
the absolute and P ′ = (the homography ofN)(P ) andQ′ = (the homogra-
phy of N)(Q) and R′ = (the homography of N)(R) and RP3toT2(Q) lies
between RP3toT2(P ) and RP3toT2(R).

Then RP3toT2(Q′) lies between RP3toT2(P ′) and RP3toT2(R′).
Proof: Consider n11, n12, n13, n21, n22, n23, n31, n32, n33 being elements
of RF such that N = 〈〈n11, n12, n13〉, 〈n21, n22, n23〉, 〈n31, n32, n33〉〉. Con-
sider u being a non zero element of E3

T such that P = the direction
of u and (u)3 = 1 and RP3toREAL2(P ) = [(u)1, (u)2]. Consider v be-
ing a non zero element of E3

T such that R = the direction of v and
(v)3 = 1 and RP3toREAL2(R) = [(v)1, (v)2]. Consider w being a non
zero element of E3

T such that Q = the direction of w and (w)3 = 1 and
RP3toREAL2(Q) = [(w)1, (w)2].

Reconsider m1 = n11 ·u(1)+n12 ·u(2)+n13, m2 = n21 ·u(1)+n22 ·u(2)+
n23, m3 = n31 · u(1) + n32 · u(2) + n33, m4 = n11 · v(1) + n12 · v(2) + n13,
m5 = n21 · v(1) + n22 · v(2) + n23, m6 = n31 · v(1) + n32 · v(2) + n33,
m7 = n11 · w(1) + n12 · w(2) + n13, m8 = n21 · w(1) + n22 · w(2) + n23,
m9 = n31 · w(1) + n32 · w(2) + n33 as a real number.

Consider l being a real number such that 0 ¬ l ¬ 1 and ˆRP3toT2(Q) =
(1−l)·( ˆRP3toT2(P ))+l·( ˆRP3toT2(R)). Set r = l·m6

(1−l)·m3+l·m6 . (1−r)·[m1m3 ,
m2
m3
, 1] + r · [m4m6 ,

m5
m6
, 1] = [m7m9 ,

m8
m9
, 1]. 0 ¬ r ¬ 1. �

(49) Let us consider real numbers a, b, c, and elements u, v, w of E3
T. Suppose

a 6= 0 and a+ b+ c = 0 and a ·u+ b · v+ c ·w = 0E3T . Then u ∈ Line(v, w).

(50) Let us consider non point at ∞ points P , Q, R of the projective space
over E3

T, and non zero elements u, v, w of E3
T. Suppose P = the direction

of u and Q = the direction of v and R = the direction of w and (u)3 = 1
and (v)3 = 1 and (w)3 = 1. Then P , Q and R are collinear if and only if
u, v and w are collinear. The theorem is a consequence of (49).

(51) Let us consider elements u, v, w of E3
T. Suppose u ∈ L(v, w). Then [(u)1,

(u)2] ∈ L([(v)1, (v)2], [(w)1, (w)2]).

(52) Let us consider elements u, v, w of E2
T. Suppose u ∈ L(v, w). Then [(u)1,

(u)2, 1] ∈ L([(v)1, (v)2, 1], [(w)1, (w)2, 1]).
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Proof: Consider r being a real number such that 0 ¬ r and r ¬ 1 and
u = (1 − r) · v + r · w. Reconsider u′ = [(u)1, (u)2, 1], v′ = [(v)1, (v)2, 1],
w′ = [(w)1, (w)2, 1] as an element of E3

T. u′ = (1− r) · v′ + r · w′. �
(53) Let us consider non point at ∞ points P , Q, R of the projective spa-

ce over E3
T. Then P , Q and R are collinear if and only if RP3toT2(P ),

RP3toT2(Q) and RP3toT2(R) are collinear. The theorem is a consequen-
ce of (50), (51), and (52).

(54) Let us consider elements u, v, w of E2
T. Suppose u, v and w are colline-

ar. Then [(u)1, (u)2, 1], [(v)1, (v)2, 1] and [(w)1, (w)2, 1] are collinear. The
theorem is a consequence of (52).

(55) Let us consider non point at ∞ elements P , Q, P1 of the projective
space over E3

T. Suppose P , Q ∈ the BK-model and P1 ∈ the absolute.
Then RP3toT2(P1) does not lie between RP3toT2(Q) and RP3toT2(P ).
The theorem is a consequence of (52) and (27).

The functor Dir001 yielding a non point at∞ element of the projective space
over E3

T is defined by the term

(Def. 7) the direction of [0, 0, 1].

The functor Dir101 yielding a non point at∞ element of the projective space
over E3

T is defined by the term

(Def. 8) the direction of [1, 0, 1].

Now we state the propositions:

(56) Let us consider non point at∞ elements P , Q of the projective space over
E3

T. Suppose P , Q ∈ the absolute. Then RP3toT2(Dir001) RP3toT2(P ) ∼=
RP3toT2(Dir001) RP3toT2(Q).

(57) Let us consider non point at∞ elements P , Q, R of the projective space
over E3

T, and non zero elements u, v, w of E3
T. Suppose P , Q ∈ the absolute

and P 6= Q and P = the direction of u and Q = the direction of v and
R = the direction of w and (u)3 = 1 and (v)3 = 1 and w = [ (u)1+(v)1

2 ,
(u)2+(v)2

2 , 1]. Then R ∈ the BK-model.
Proof: Reconsider u′ = [u(1), u(2)], v′ = [v(1), v(2)] as an element of
E2

T. u′ 6= v′. Reconsider r8 = [(w)1, (w)2] as an element of the inside of
circle(0,0,1). Consider R3 being an element of E2

T such that R3 = r8 and
REAL2-to-BK(r8) = the direction of [(R3)1, (R3)2, 1]. �

(58) Let us consider points R1, R2 of TarskiEuclid2Space. Suppose R̂1, R̂2 ∈
circle(0, 0, 1) and R1 6= R2. Then there exists an element P of BK-model-
Plane such that BKtoT2(P ) lies between R1 and R2. The theorem is
a consequence of (47), (57), and (26).

(59) Let us consider non point at ∞ elements P , Q of the projective space
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over E3
T. If RP3toT2(P ) = RP3toT2(Q), then P = Q.

(60) Let us consider non point at ∞ elements R1, R2 of the projective space
over E3

T. Suppose R1, R2 ∈ the absolute and R1 6= R2. Then there exi-
sts an element P of BK-model-Plane such that BKtoT2(P ) lies between
RP3toT2(R1) and RP3toT2(R2). The theorem is a consequence of (59)
and (58).

(61) Let us consider points P , Q, R of TarskiEuclid2Space. Suppose Q lies be-
tween P and R and P̂ , R̂ ∈ the inside of circle(0,0,1). Then Q̂ ∈ the inside
of circle(0,0,1).

Let us consider a non point at ∞ element P of the projective space over E3
T.

(62) If P ∈ the absolute, then RP3toREAL2(P ) ∈ circle(0, 0, 1).

(63) If P ∈ the BK-model, then RP3toREAL2(P ) ∈ the inside of circle(0,0,1).
The theorem is a consequence of (26).

(64) Let us consider a non point at∞ point P of the projective space over E3
T,

and an element Q of the BK-model. If P = Q, then RP3toREAL2(P ) =
BK-to-REAL2(Q). The theorem is a consequence of (26).

(65) Let us consider non point at ∞ elements P , Q, R1, R2 of the projecti-
ve space over E3

T. Suppose P 6= Q and P ∈ the BK-model and R1, R2 ∈
the absolute and RP3toT2(Q) lies between RP3toT2(P ) and RP3toT2(R1)
and RP3toT2(Q) lies between RP3toT2(P ) and RP3toT2(R2). Then R1 =
R2. The theorem is a consequence of (60), (59), (62), (64), (8), and (61).

(66) Let us consider non point at ∞ elements P , Q, P1, P2 of the projective
space over E3

T. Suppose P 6= Q and P , Q ∈ the BK-model and P1, P2 ∈
the absolute and P1 6= P2 and P , Q and P1 are collinear and P , Q and P2

are collinear. Then

(i) RP3toT2(P ) lies between RP3toT2(Q) and RP3toT2(P1), or

(ii) RP3toT2(P ) lies between RP3toT2(Q) and RP3toT2(P2).

The theorem is a consequence of (55), (53), and (65).

Let us consider elements P , Q of the BK-model. Now we state the proposi-
tions:

(67) Suppose P 6= Q. Then there exists an element R of the absolute such
that for every non point at∞ elements p, q, r of the projective space over
E3

T such that p = P and q = Q and r = R holds RP3toT2(p) lies between
RP3toT2(q) and RP3toT2(r). The theorem is a consequence of (47) and
(66).

(68) Suppose P 6= Q. Then there exists an element R of the absolute such
that for every non point at∞ elements p, q, r of the projective space over
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E3
T such that p = P and q = Q and r = R holds RP3toT2(q) lies between

RP3toT2(p) and RP3toT2(r). The theorem is a consequence of (67).

(69) The direction of [1, 0, 1] is an element of the absolute.

(70) Let us consider points a, b of BK-model-Plane. Then aa ∼= bb. The
theorem is a consequence of (69).

(71) Every element of the BK-model is a non point at ∞ element of the pro-
jective space over E3

T. The theorem is a consequence of (47).

(72) Every element of the absolute is a non point at ∞ element of the pro-
jective space over E3

T. The theorem is a consequence of (47).

(73) Let us consider an element P of the BK-model, and a non point at∞ ele-
ment P ′ of the projective space over E3

T. If P = P ′, then RP3toREAL2(P ′) =
BK-to-REAL2(P ). The theorem is a consequence of (26).

(74) Let us consider points a, q, b, c of BK-model-Plane. Then there exists
a point x of BK-model-Plane such that

(i) a lies between q and x, and

(ii) ax ∼= bc.

The theorem is a consequence of (71), (68), (72), (12), (70), (48), and (73).

(75) Let us consider points P , Q of BK-model-Plane.
If BKtoT2(P ) = BKtoT2(Q), then P = Q.

(76) Let us consider real numbers a, b, r, and elements P , Q, R of E2
T. Sup-

pose P , R ∈ the inside of circle(a,b,r). Then L(P,R) ⊆ the inside of
circle(a,b,r).

2. The Axiom of Segment Construction

Now we state the proposition:

(77) BK-model-Plane satisfies the axiom of segment construction.

3. The Axiom of Betweenness Identity

Now we state the proposition:

(78) BK-model-Plane satisfies the axiom of betweenness identity. The the-
orem is a consequence of (12) and (75).
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4. The Axiom of Pasch

Now we state the proposition:

(79) BK-model-Plane satisfies the axiom of Pasch. The theorem is a conse-
quence of (12), (8), (25), and (10).
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1. Preliminaries not Directly Related to Graphs

Let us consider sets X, Y, Z. Now we state the propositions:

(1) If Z ⊆ X, then X ∪ Y \ Z = X ∪ Y.
(2) X ∩ Z misses Y \ Z.

(3) Let us consider objects x, y. Then {x, y} \ {the element of {x, y}} = ∅ if
and only if x = y.

Let us consider objects a, b, x, y. Now we state the propositions:

(4) Suppose a 6= b and x = the element of {a, b} and y = the element of
{a, b} \ {the element of {a, b}}. Then

(i) x = a and y = b, or

(ii) x = b and y = a.

(5) {a, b} = {x, y} if and only if x = a and y = b or x = b and y = a.

(6) Let us consider a set X, and a non empty set Y. Then X ⊂ Y if and
only if X is a proper subset of Y.

Let X be a non empty set. One can check that idX is non irreflexive and
X × X is non irreflexive and non asymmetric and there exists a binary relation
on X which is non irreflexive and non asymmetric and there exists a binary
relation on X which is symmetric, irreflexive, and non total and there exists
a binary relation on X which is symmetric, non irreflexive, and non empty.

Let X be a non trivial set. Observe that idX is non connected and there exists
a binary relation on X which is symmetric and non connected and X × X

is non antisymmetric and there exists a binary relation on X which is non
antisymmetric.

Now we state the propositions:

(7) Let us consider binary relations R, S, and a set X. Then (R ∪ S)◦X =
R◦X ∪ S◦X.

(8) Let us consider binary relations R, S, and a set Y. Then (R∪S)−1(Y ) =
R−1(Y ) ∪ S−1(Y ).

(9) Let us consider a binary relation R, and sets X, Y. Then (Y �R)�X =
(Y �R) ∩ (R�X).

(10) Let us consider a symmetric binary relation R, and an object x. Then
R◦x = Coim(R, x).

(11) Let us consider a set X, and a binary relation R on X. Then R is
irreflexive if and only if idX misses R.

(12) Let us consider objects x, y. Then ({〈〈x, y〉〉} qua binary relation)` = {〈〈y,
x〉〉}.
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(13) Let us consider a set X, objects x, y, and a symmetric binary relation
R on X. If 〈〈x, y〉〉 ∈ R, then 〈〈y, x〉〉 ∈ R.

Let a, b be cardinal numbers. Note that a∩b is cardinal and a∪b is cardinal.
Let X be a ⊆-linear set. One can check that ⊆X is connected and 〈X,⊆〉 is

connected.
Now we state the propositions:

(14) Let us consider a non empty set X. Suppose for every set a such that
a ∈ X holds a is a cardinal number. Then there exists a cardinal number
A such that

(i) A ∈ X, and

(ii) A =
⋂
X.

Proof: Define P[ordinal number] ≡ $1 ∈ X and $1 is a cardinal num-
ber. There exists an ordinal number A such that P[A]. Consider A being
an ordinal number such that P[A] and for every ordinal number B such
that P[B] holds A ⊆ B. �

(15) Let us consider a set X. Suppose for every set a such that a ∈ X holds
a is a cardinal number. Then

⋂
X is a cardinal number. The theorem is

a consequence of (14).

Let f be a cardinal yielding function and x be an object. Note that f(x) is
cardinal.

Let X be a functional set. Note that
⋂
X is function-like and relation-like.

Now we state the propositions:

(16) Let us consider a set X. Then 4 ⊆ X if and only if there exist objects
w, x, y, z such that w, x, y, z ∈ X and w 6= x and w 6= y and w 6= z and
x 6= y and x 6= z and y 6= z.
Proof: If 4 ⊆ X , then there exist objects w, x, y, z such that w, x, y,
z ∈ X and w 6= x and w 6= y and w 6= z and x 6= y and x 6= z and y 6= z.
�

(17) Let us consider a set X. Suppose 4 ⊆ X . Let us consider objects w, x,
y. Then there exists an object z such that

(i) z ∈ X, and

(ii) w 6= z, and

(iii) x 6= z, and

(iv) y 6= z.

The theorem is a consequence of (16).

(18) Let us consider a set X. Then SX misses 2SetX.
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(19) Let us consider sets X, Y. Suppose X = Y . Then 2SetX = 2SetY .
Proof: Consider g being a function such that g is one-to-one and dom g =
X and rng g = Y. Define K(set) = the element of $1. Define L(set) =
the element of $1\{K($1)}. Define F(object) = {g(K($1(∈ 2X))), g(L($1(∈
2X)))}. Consider f being a function such that dom f = 2SetX and for
every object x such that x ∈ 2SetX holds f(x) = F(x). �

(20) Let us consider a finite set X. Then 2SetX =

(
X

2

)
. The theorem is

a consequence of (19).

2. Into GLIB 000

Now we state the propositions:

(21) Let us consider a graph G, a vertex v of G, and objects e, w. If v is
isolated, then e does not join v and w in G.

(22) Let us consider a graph G, a vertex v of G, and objects e, w. Suppose v
is isolated. Then

(i) e does not join v to w in G, and

(ii) e does not join w to v in G.

The theorem is a consequence of (21).

(23) Let us consider a graph G, and a vertex v of G. Then v is isolated if and
only if v /∈ rng(the source of G) ∪ rng(the target of G). The theorem is
a consequence of (22).

(24) Let us consider a graph G, a vertex v of G, and an object e. If v is
endvertex, then e does not join v and v in G.

(25) Let us consider a graph G, and a vertex v of G. Then

(i) v.edgesIn() = (the target of G)−1({v}), and

(ii) v.edgesOut() = (the source of G)−1({v}).

Let us consider a trivial graph G and a vertex v of G. Now we state the
propositions:

(26) (i) v.edgesIn() = the edges of G, and

(ii) v.edgesOut() = the edges of G, and

(iii) v.edgesInOut() = the edges of G.

(27) (i) v.inDegree() = G.size(), and

(ii) v.outDegree() = G.size(), and
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(iii) v.degree() = G.size() +G.size().
The theorem is a consequence of (26).

(28) Let us consider a graph G, and sets X, Y. Then G.edgesBetween(X,Y ) =
G.edgesDBetween(X,Y ) ∪G.edgesDBetween(Y,X).

(29) Let us consider a graph G, and a vertex v of G. Then v.edgesInOut() =
G.edgesBetween(the vertices of G, {v}). The theorem is a consequence of
(28).

Let us consider a graph G and sets X, Y. Now we state the propositions:

(30) G.edgesDBetween(X,Y ) = G.edgesOutOf(X) ∩G.edgesInto(Y ).

(31) G.edgesDBetween(X,Y ) ⊆ G.edgesBetween(X,Y ).

Let us consider a graph G and a vertex v of G. Now we state the propositions:

(32) If for every object e, e does not join v and v in G, then v.edgesInOut() =
v.degree().
Proof: v.edgesIn() ∩ v.edgesOut() = ∅. �

(33) v is isolated if and only if v.edgesIn() = ∅ and v.edgesOut() = ∅.
(34) v is isolated if and only if v.inDegree() = 0 and v.outDegree() = 0. The

theorem is a consequence of (33).

(35) v is isolated if and only if v.degree() = 0. The theorem is a consequence
of (34).

Let us consider a graph G and a set X. Now we state the propositions:

(36) G.edgesInto(X) =
⋃
{v.edgesIn(), where v is a vertex of G : v ∈ X}.

(37) G.edgesOutOf(X) =
⋃
{v.edgesOut(), where v is a vertex of G : v ∈

X}.
(38) G.edgesInOut(X) =

⋃
{v.edgesInOut(), where v is a vertex of G : v ∈

X}.
Let us consider a graph G and sets X, Y. Now we state the propositions:

(39) G.edgesDBetween(X,Y ) =
⋃
{v.edgesOut()∩w.edgesIn(), where v, w are

vertices of G : v ∈ X and w ∈ Y }.
(40) G.edgesBetween(X,Y ) ⊆

⋃
{v.edgesInOut() ∩ w.edgesInOut(), where

v, w are vertices of G : v ∈ X and w ∈ Y }.
(41) SupposeX misses Y. ThenG.edgesBetween(X,Y ) =

⋃
{v.edgesInOut()∩

w.edgesInOut(), where v, w are vertices of G : v ∈ X and w ∈ Y }. The
theorem is a consequence of (40).

(42) Let us consider a graph G1, a set E, a subgraph G2 of G1 with edges E
removed, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v2.edgesIn() = v1.edgesIn() \ E, and

(ii) v2.edgesOut() = v1.edgesOut() \ E, and
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(iii) v2.edgesInOut() = v1.edgesInOut() \ E.

(43) Let us consider graphs G1, G2, and a set V . Then G2 is a subgraph of
G1 with vertices V removed if and only if G2 is a subgraph of G1 with
vertices V ∩ (the vertices of G1) removed.

(44) Let us consider a graph G1, a set V , a subgraph G2 of G1 with ver-
tices V removed, a vertex v1 of G1, and a vertex v2 of G2. Suppose
V ⊂ the vertices of G1 and v1 = v2. Then

(i) v2.edgesIn() = v1.edgesIn() \ (G1.edgesOutOf(V )), and

(ii) v2.edgesOut() = v1.edgesOut() \ (G1.edgesInto(V )), and

(iii) v2.edgesInOut() = v1.edgesInOut() \ (G1.edgesInOut(V )).

Proof: v1.edgesOut()∩G1.edgesOutOf(V ) = ∅. v1.edgesIn()∩G1.edgesInto
(V ) = ∅. �

(45) Let us consider a non trivial graph G1, a vertex v of G1, a subgraph G2

of G1 with vertex v removed, a vertex v1 of G1, and a vertex v2 of G2.
Suppose v1 = v2. Then

(i) v2.edgesIn() = v1.edgesIn() \ (v.edgesOut()), and

(ii) v2.edgesOut() = v1.edgesOut() \ (v.edgesIn()), and

(iii) v2.edgesInOut() = v1.edgesInOut() \ (v.edgesInOut()).

The theorem is a consequence of (44).

3. Into GLIB 002

Now we state the proposition:

(46) Let us consider a graph G, a component C of G, a vertex v1 of G, and
a vertex v2 of C. Suppose v1 = v2. Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().
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4. Into GLIB 006

Now we state the propositions:

(47) Let us consider a graph G2, a set V , a supergraph G1 of G2 extended
by the vertices from V , a vertex v1 of G1, and a vertex v2 of G2. Suppose
v1 = v2. Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

(48) Let us consider a graph G2, objects v, w, e, a supergraph G1 of G2

extended by e between vertices v and w, a vertex v1 of G1, and a vertex
v2 of G2. Suppose v1 = v2 and v2 6= v and v2 6= w. Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

(49) Let us consider a graph G2, vertices v, w of G2, an object e, a supergraph
G1 of G2 extended by e between vertices v and w, and a vertex v1 of G1.
Suppose e /∈ the edges of G2 and v1 = v and v 6= w. Then

(i) v1.edgesIn() = v.edgesIn(), and

(ii) v1.inDegree() = v.inDegree(), and

(iii) v1.edgesOut() = v.edgesOut() ∪ {e}, and

(iv) v1.outDegree() = v.outDegree() + 1, and

(v) v1.edgesInOut() = v.edgesInOut() ∪ {e}, and

(vi) v1.degree() = v.degree() + 1.

(50) Let us consider a graph G2, vertices v, w of G2, an object e, a supergraph
G1 of G2 extended by e between vertices v and w, and a vertex w1 of G1.
Suppose e /∈ the edges of G2 and w1 = w and v 6= w. Then

(i) w1.edgesIn() = w.edgesIn() ∪ {e}, and
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(ii) w1.inDegree() = w.inDegree() + 1, and

(iii) w1.edgesOut() = w.edgesOut(), and

(iv) w1.outDegree() = w.outDegree(), and

(v) w1.edgesInOut() = w.edgesInOut() ∪ {e}, and

(vi) w1.degree() = w.degree() + 1.

(51) Let us consider a graph G2, a vertex v of G2, an object e, a supergraph
G1 of G2 extended by e between vertices v and v, and a vertex v1 of G1.
Suppose e /∈ the edges of G2 and v1 = v. Then

(i) v1.edgesIn() = v.edgesIn() ∪ {e}, and

(ii) v1.inDegree() = v.inDegree() + 1, and

(iii) v1.edgesOut() = v.edgesOut() ∪ {e}, and

(iv) v1.outDegree() = v.outDegree() + 1, and

(v) v1.edgesInOut() = v.edgesInOut() ∪ {e}, and

(vi) v1.degree() = v.degree() + 2.

5. Into GLIB 007

Now we state the propositions:

(52) Let us consider a graph G3, a set E, a graph G4 given by reversing
directions of the edges E of G3, a supergraph G1 of G3, and a graph G2

given by reversing directions of the edges E of G1. Suppose E ⊆ the edges
of G3. Then G2 is a supergraph of G4.

(53) Let us consider a graph G2, and an object v. Then every supergraph of
G2 extended by v is a supergraph of G2 extended by vertex v and edges
between v and ∅ of G2.

(54) Let us consider a graph G1, a set E, a graph G2 given by reversing
directions of the edges E of G1, a vertex v1 of G1, and a vertex v2 of G2.
Suppose v1 = v2 and E ⊆ the edges of G1. Then

(i) v2.edgesIn() = v1.edgesIn() \ E ∪ v1.edgesOut() ∩ E, and

(ii) v2.edgesOut() = v1.edgesOut() \ E ∪ v1.edgesIn() ∩ E.

(55) Let us consider a graph G1, a graph G2 given by reversing directions of
the edges of G1, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2.
Then

(i) v2.edgesIn() = v1.edgesOut(), and

(ii) v2.inDegree() = v1.outDegree(), and
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(iii) v2.edgesOut() = v1.edgesIn(), and

(iv) v2.outDegree() = v1.inDegree().

(56) Let us consider a graph G1, a set E, a graph G2 given by reversing
directions of the edges E of G1, a vertex v1 of G1, and a vertex v2 of G2.
Suppose v1 = v2. Then

(i) v2.edgesInOut() = v1.edgesInOut(), and

(ii) v2.degree() = v1.degree().

The theorem is a consequence of (54) and (2).

(57) Let us consider a graph G2, an object v, a set V , a supergraph G1 of
G2 extended by vertex v and edges between v and V of G2, and a vertex
w of G1. Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and
v = w. Then

(i) w.allNeighbors() = V , and

(ii) w.degree() = V .

The theorem is a consequence of (29), (32), and (35).

(58) Let us consider a graph G2, an object v, a set V , a supergraph G1 of G2

extended by vertex v and edges between v and V of G2, a vertex v1 of G1,
and a vertex v2 of G2. Suppose v1 = v2 and v2 /∈ V . Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

(59) Let us consider a graph G2, an object v, a subset V of the vertices of G2,
a supergraph G1 of G2 extended by vertex v and edges between v and V

of G2, a vertex v1 of G1, and a vertex v2 of G2. Suppose v /∈ the vertices
of G2 and v1 = v2 and v2 ∈ V . Then

(i) v1.allNeighbors() = v2.allNeighbors() ∪ {v}, and

(ii) v1.degree() = v2.degree() + 1.

(60) Let us consider a graph G2, an object v, a set V , a supergraph G1 of G2

extended by vertex v and edges between v and V of G2, a vertex v1 of G1,
and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v1.degree() ⊆ v2.degree() + 1, and



32 sebastian koch

(ii) v1.inDegree() ⊆ v2.inDegree() + 1, and

(iii) v1.outDegree() ⊆ v2.outDegree() + 1.

The theorem is a consequence of (58).

6. Into GLIB 008

Now we state the propositions:

(61) Let us consider a graph G. Then G is edgeless if and only if for every
vertices v, w of G, v and w are not adjacent.

(62) Let us consider a loopless graph G. Then G is edgeless if and only if for
every vertices v, w of G such that v 6= w holds v and w are not adjacent.
The theorem is a consequence of (61).

7. Into GLIB 009

Now we state the propositions:

(63) Let us consider a graph G. Then G.loops() = dom((the source of G) ∩
(the target of G)).

(64) Let us consider graphs G1, G2, and a set E. Then G2 is a graph given
by reversing directions of the edges E of G1 if and only if G2 is a graph
given by reversing directions of the edges E \ (G1.loops()) of G1.

(65) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v2.inNeighbors() = v1.inNeighbors() \ {v1}, and

(ii) v2.outNeighbors() = v1.outNeighbors() \ {v1}, and

(iii) v2.allNeighbors() = v1.allNeighbors() \ {v1}.
(66) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges

removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v2.allNeighbors() = v1.allNeighbors().

(67) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2.
Then

(i) v2.inNeighbors() = v1.inNeighbors(), and

(ii) v2.outNeighbors() = v1.outNeighbors(), and

(iii) v2.allNeighbors() = v1.allNeighbors().
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(68) Let us consider a graph G1, a simple graph G2 of G1, a vertex v1 of
G1, and a vertex v2 of G2. Suppose v1 = v2. Then v2.allNeighbors() =
v1.allNeighbors() \ {v1}. The theorem is a consequence of (65) and (66).

(69) Let us consider a graph G1, a directed-simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v2.inNeighbors() = v1.inNeighbors() \ {v1}, and

(ii) v2.outNeighbors() = v1.outNeighbors() \ {v1}, and

(iii) v2.allNeighbors() = v1.allNeighbors() \ {v1}.
The theorem is a consequence of (65) and (67).

Let G be a non loopless graph. One can verify that every subgraph of G with
parallel edges removed is non loopless and every subgraph of G with directed-
parallel edges removed is non loopless.

Let G be a non edgeless graph. Note that every subgraph of G with parallel
edges removed is non edgeless and every subgraph of G with directed-parallel
edges removed is non edgeless.

Now we state the propositions:

(70) Let us consider a graph G, and a representative selection of the parallel

edges E of G. Then E = Classes EdgeParEqRel(G).
Proof: Define F(object) = [$1]EdgeParEqRel(G). Consider f being a func-
tion such that dom f = E and for every object x such that x ∈ E holds
f(x) = F(x). �

(71) Let us consider a graph G, and a representative selection of the directed-

parallel edges E of G. Then E = Classes DEdgeParEqRel(G).
Proof: Define F(object) = [$1]DEdgeParEqRel(G). Consider f being a func-
tion such that dom f = E and for every object x such that x ∈ E holds
f(x) = F(x). �

(72) Let us consider a graph G, a set X, a subset E of the edges of G, and
a graph H given by reversing directions of the edges X of G. Then E

is a representative selection of the parallel edges of G if and only if E is
a representative selection of the parallel edges of H.

(73) Let us consider a graph G, a non empty subset V of the vertices of G,
a subgraph H of G induced by V , and a representative selection of the
parallel edges E of G. Then E ∩ G.edgesBetween(V ) is a representative
selection of the parallel edges of H.

(74) Let us consider a graph G, a non empty subset V of the vertices of G,
a subgraph H of G induced by V , and a representative selection of the
directed-parallel edges E of G. Then E ∩ G.edgesBetween(V ) is a repre-
sentative selection of the directed-parallel edges of H.
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Let us consider a graph G, a set V , a supergraph H of G extended by the
vertices from V , and a subset E of the edges of G. Now we state the propositions:

(75) E is a representative selection of the parallel edges of G if and only if E
is a representative selection of the parallel edges of H.

(76) E is a representative selection of the directed-parallel edges of G if and
only if E is a representative selection of the directed-parallel edges of H.

Note that there exists a graph which is non non-multi and non-directed-
multi.

Let GF be a graph-yielding function. We say that GF is plain if and only if

(Def. 1) for every object x such that x ∈ domGF there exists a graph G such
that GF (x) = G and G is plain.

Let G be a plain graph. Note that 〈G〉 is plain and N 7−→ G is plain.
Let GF be a non empty, graph-yielding function. One can check that GF is

plain if and only if the condition (Def. 2) is satisfied.

(Def. 2) for every element x of domGF , GF (x) is plain.

Let GSq be a graph sequence. Note that GSq is plain if and only if the
condition (Def. 3) is satisfied.

(Def. 3) for every natural number n, GSq(n) is plain.

Observe that every graph-yielding function which is empty is also plain and
there exists a graph sequence which is plain and there exists a graph-yielding
finite sequence which is non empty and plain.

Let GF be a plain, non empty, graph-yielding function and x be an element
of domGF . Let us observe thatGF (x) is plain. LetGSq be a plain graph sequence
and x be a natural number. Let us observe that GSq(x) is plain. Let p be a plain,
graph-yielding finite sequence and n be a natural number. One can check that
p�n is plain and p�n is plain. Let m be a natural number.

Observe that smid(p,m, n) is plain and 〈p(m), . . . , p(n)〉 is plain. Let p, q
be plain, graph-yielding finite sequences. One can check that p a q is plain and
p aa q is plain. Let G1, G2 be plain graphs. Let us observe that 〈G1, G2〉 is
plain. Let G3 be a plain graph. One can verify that 〈G1, G2, G3〉 is plain.

8. Into GLIB 010

Let us consider graphs G1, G2. Now we state the propositions:

(77) If G1 ≈ G2, then there exists a partial graph mapping F from G1 to G2

such that F = idG1 and F is directed-isomorphism.

(78) If G1 ≈ G2, then G2 is G1-directed-isomorphic. The theorem is a conse-
quence of (77).
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(79) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then there exists a partial graph mapping
F from G1 to G2 such that

(i) F = idG1 , and

(ii) F is isomorphism.

(80) Let us consider a graph G1, and a set E. Then every graph given by
reversing directions of the edges E of G1 is G1-isomorphic. The theorem
is a consequence of (79).

(81) Let us consider graphs G1, G2, and a partial graph mapping F from G1

to G2. Suppose F is directed-continuous and isomorphism. Then

(i) G1 is non-directed-multi iff G2 is non-directed-multi, and

(ii) G1 is directed-simple iff G2 is directed-simple.

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a vertex v of G1. Now we state the propositions:

(82) If v ∈ dom(FV), then (FE)◦(v.edgesInOut()) ⊆ (FV)/v.edgesInOut().

(83) Suppose F is directed and v ∈ dom(FV). Then

(i) (FE)◦(v.edgesIn()) ⊆ (FV)/v.edgesIn(), and

(ii) (FE)◦(v.edgesOut()) ⊆ (FV)/v.edgesOut().

(84) Suppose F is onto and semi-continuous and v ∈ dom(FV).
Then (FE)◦(v.edgesInOut()) = (FV)/v.edgesInOut(). The theorem is a con-
sequence of (82).

(85) Suppose F is onto and semi-directed-continuous and v ∈ dom(FV). Then

(i) (FE)◦(v.edgesIn()) = (FV)/v.edgesIn(), and

(ii) (FE)◦(v.edgesOut()) = (FV)/v.edgesOut().

The theorem is a consequence of (83).

(86) If F is isomorphism, then (FE)◦(v.edgesInOut()) = (FV)/v.edgesInOut().
The theorem is a consequence of (84).

(87) Suppose F is directed-isomorphism. Then

(i) (FE)◦(v.edgesIn()) = (FV)/v.edgesIn(), and

(ii) (FE)◦(v.edgesOut()) = (FV)/v.edgesOut().

The theorem is a consequence of (85).

Let G1 be a graph and G2 be an edgeless graph. Note that every partial
graph mapping from G1 to G2 is directed.

Let us consider graphs G1, G2 and a partial graph mapping F0 from G1 to
G2. Now we state the propositions:
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(88) Suppose F0E is one-to-one. Then there exists a subset E of the edges of
G2 such that for every graph G3 given by reversing directions of the edges
E of G2.

There exists a partial graph mapping F from G1 to G3 such that
F = F0 and F is directed and if F0 is not empty, then F is not empty
and if F0 is total, then F is total and if F0 is one-to-one, then F is one-
to-one and if F0 is onto, then F is onto and if F0 is semi-continuous, then
F is semi-continuous and if F0 is continuous, then F is continuous. The
theorem is a consequence of (79).

(89) Suppose F0E is one-to-one. Then there exists a subset E of the edges of
G2 such that for every graph G3 given by reversing directions of the edges
E of G2.

There exists a partial graph mapping F from G1 to G3 such that
F = F0 and F is directed and if F0 is weak subgraph embedding, then
F is weak subgraph embedding and if F0 is strong subgraph embedding,
then F is strong subgraph embedding and if F0 is isomorphism, then F is
isomorphism. The theorem is a consequence of (88).

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a vertex v of G1. Now we state the propositions:

(90) Suppose F is directed and weak subgraph embedding. Then

(i) v.inDegree() ⊆ (FV)/v.inDegree(), and

(ii) v.outDegree() ⊆ (FV)/v.outDegree().

The theorem is a consequence of (83).

(91) If F is weak subgraph embedding, then v.degree() ⊆ (FV)/v.degree().
The theorem is a consequence of (89) and (56).

(92) Suppose F is onto and semi-directed-continuous and v ∈ dom(FV). Then

(i) (FV)/v.inDegree() ⊆ v.inDegree(), and

(ii) (FV)/v.outDegree() ⊆ v.outDegree().

The theorem is a consequence of (85).

(93) If F is onto and semi-directed-continuous and v ∈ dom(FV),
then (FV)/v.degree() ⊆ v.degree(). The theorem is a consequence of (92).

(94) If F is directed-isomorphism, then v.inDegree() = (FV)/v.inDegree() and
v.outDegree() = (FV)/v.outDegree(). The theorem is a consequence of (92)
and (90).

(95) If F is isomorphism, then v.degree() = (FV)/v.degree(). The theorem is
a consequence of (89), (94), and (56).
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9. Into CHORD

Now we state the proposition:

(96) Let us consider a graph G, and vertices u, v, w of G. Suppose v is
endvertex and u 6= w. Then

(i) u and v are not adjacent, or

(ii) v and w are not adjacent.

Proof: Consider e being an object such that v.edgesInOut() = {e} and
e does not join v and v in G. Consider v′ being a vertex of G such that e
joins v and v′ in G. Consider e8 being an object such that e8 joins v and
u in G. There exists no object e′ such that e′ joins v and w in G. �

Let us consider a graph G and a vertex v of G. Now we state the propositions:

(97) Suppose 3 ⊆ G.order() and v is endvertex. Then there exist vertices u,
w of G such that

(i) u 6= v, and

(ii) w 6= v, and

(iii) u 6= w, and

(iv) u and v are adjacent, and

(v) v and w are not adjacent.

The theorem is a consequence of (96).

(98) Suppose 4 ⊆ G.order() and v is endvertex. Then there exist vertices x,
y, z of G such that

(i) v 6= x, and

(ii) v 6= y, and

(iii) v 6= z, and

(iv) x 6= y, and

(v) x 6= z, and

(vi) y 6= z, and

(vii) v and x are adjacent, and

(viii) v and y are not adjacent, and

(ix) v and z are not adjacent.

The theorem is a consequence of (97), (17), and (96).

Let GF be a graph-yielding function. We say that GF is chordal if and only
if
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(Def. 4) for every object x such that x ∈ domGF there exists a graph G such
that GF (x) = G and G is chordal.

Let G be a chordal graph. Let us note that 〈G〉 is chordal and N 7−→ G is
chordal.

Let GF be a non empty, graph-yielding function. Note that GF is chordal if
and only if the condition (Def. 5) is satisfied.

(Def. 5) for every element x of domGF , GF (x) is chordal.

Let GSq be a graph sequence. Let us note that GSq is chordal if and only if
the condition (Def. 6) is satisfied.

(Def. 6) for every natural number n, GSq(n) is chordal.

Let us observe that every graph-yielding function which is empty is also
chordal and there exists a graph sequence which is chordal and there exists
a graph-yielding finite sequence which is non empty and chordal.

Let GF be a chordal, non empty, graph-yielding function and x be an ele-
ment of domGF . One can verify that GF (x) is chordal. Let GSq be a chordal
graph sequence and x be a natural number. One can verify that GSq(x) is chor-
dal.

Let p be a chordal, graph-yielding finite sequence and n be a natural number.
Note that p�n is chordal and p�n is chordal. Let m be a natural number. Let us
observe that smid(p,m, n) is chordal and 〈p(m), . . . , p(n)〉 is chordal.

Let p, q be chordal, graph-yielding finite sequences. Note that paq is chordal
and p aa q is chordal.

Let G1, G2 be chordal graphs. One can verify that 〈G1, G2〉 is chordal. Let
G3 be a chordal graph. One can check that 〈G1, G2, G3〉 is chordal.

10. Into GLIB 011

Now we state the propositions:

(99) Let us consider non-directed-multi graphs G1, G2, a directed partial
vertex mapping f from G1 to G2, and a vertex v of G1. Suppose f is
directed-isomorphism. Then

(i) v.inDegree() = f/v.inDegree(), and

(ii) v.outDegree() = f/v.outDegree().

The theorem is a consequence of (94).

(100) Let us consider non-multi graphsG1,G2, a partial vertex mapping f from
G1 to G2, and a vertex v of G1. If f is isomorphism, then v.degree() =
f/v.degree(). The theorem is a consequence of (95).
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[8], [2], [1]. A similar definition can be given for simple digraphs [1]. The loop
variants are introduced on the base of similarity between graphs and relations.

In contrast to the literature the definitions formalized allow to take the
complement of any graphs, with parallel edges simply being ignored. So any
complement of a graph is also a complement of that graph with its parallel
edges removed. Furthermore on a technical note, the vertex sets of the graph
and its complement are required to be the same, while the edge sets have to be
disjoint. This choice was made to ensure the union of a graph and its comple-
ment would be complete and its intersection edgeless. Since the edge set of the
complement graph is otherwise unspecified, for each complement type all possi-
ble complements of a graph are only isomorphic to each other. Other theorems
include:

• Involutiveness of the graph complement: If a graph is of the right type
(e.g. simple for undirected complement without loops), then it is the com-
plement of its complement.

• The complement of an edgeless graph is complete.

• The undirected complement without loops of a complete graph is edgeless.

• The complement of an unconnected graph is connected.

• The neighbors of a vertex in a complement without loops of a graph is the
complement of the neighbors in the original graph.

• If a graph has order at least 3, no vertex can be an endvertex in both that
graph and its directed complement without loops (the directed K2 is a
counterexample for order equal to 2.)

• If a graph has order at least 4, no vertex can be an endvertex in both that
graph and its undirected complement without loops (P3 with its comple-
ment K2 +K1 is a counterexample for order equal to 3.)

The last section briefly introduces the property of a graph to be self-comple-
mentary for all four variants, but without going into depth. However, it is shown
that these four variants are mutually exclusive, except for K1 which is self-
complementary with respect to the directed or undirected complement, without
loops in both cases.
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1. Loopfull Graphs

Let G be a graph. We say that G is loopfull if and only if

(Def. 1) for every vertex v of G, there exists an object e such that e joins v and
v in G.

Let us consider a graph G. Now we state the propositions:

(1) G is loopfull if and only if for every vertex v of G, there exists an object
e such that e joins v to v in G.

(2) G is loopfull if and only if for every vertex v of G, v and v are adjacent.

One can verify that every graph which is loopfull is also non loopless and
every graph which is trivial and non loopless is also loopfull and there exists
a graph which is loopfull and complete and there exists a graph which is non
loopfull.

Now we state the proposition:

(3) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then G1 is loopfull if and only if G2 is
loopfull.

Let G be a loopfull graph and E be a set. One can check that every graph
given by reversing directions of the edges E of G is loopfull.

Let G be a non loopfull graph. Let us observe that every graph given by
reversing directions of the edges E of G is non loopfull.

Now we state the propositions:

(4) Let us consider graphs G1, G2. If G1 ≈ G2, then if G1 is loopfull, then
G2 is loopfull.

(5) Let us consider a loopfull graph G2, and a supergraph G1 of G2. Suppose
the vertices of G1 = the vertices of G2. Then G1 is loopfull.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(6) Suppose rngFV = the vertices of G2 and G1.loops() ⊆ dom(FE). Then
if G1 is loopfull, then G2 is loopfull.

(7) If F is total and onto, then if G1 is loopfull, then G2 is loopfull. The
theorem is a consequence of (6).

(8) Suppose F is semi-continuous and dom(FV) = the vertices of G1 and
G2.loops() ⊆ rngFE. Then if G2 is loopfull, then G1 is loopfull.

(9) If F is total, onto, and semi-continuous, then if G2 is loopfull, then G1

is loopfull. The theorem is a consequence of (8).

(10) If F is isomorphism, then G1 is loopfull iff G2 is loopfull.
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Let G be a loopfull graph and V be a set. Let us observe that every subgraph
of G induced by V is loopfull and every subgraph of G with vertices V removed
is loopfull and every subgraph of G with vertex V removed is loopfull.

Let G be a non loopfull graph. Let us observe that every spanning subgraph
of G is non loopfull.

Let E be a set. Let us note that every subgraph of G induced by the vertices
of G and E is non loopfull and every subgraph of G with edges E removed is
non loopfull and every subgraph of G with edge E removed is non loopfull.

Now we state the proposition:

(11) Let us consider a graph G2, a set V , and a supergraph G1 of G2 extended
by the vertices from V . Suppose V \ (the vertices of G2) 6= ∅. Then G1 is
not loopfull.

Let G be a non loopfull graph and V be a set. Observe that every supergraph
of G extended by the vertices from V is non loopfull.

Let G be a loopfull graph and v, e, w be objects. One can verify that every
supergraph of G extended by e between vertices v and w is loopfull.

Now we state the propositions:

(12) Let us consider a graph G2, a vertex v of G2, objects e, w, and a su-
pergraph G1 of G2 extended by v, w and e between them. Suppose e /∈
the edges of G2 and w /∈ the vertices of G2. Then G1 is not loopfull.

(13) Let us consider a graph G2, objects v, e, a vertex w of G2, and a su-
pergraph G1 of G2 extended by v, w and e between them. Suppose e /∈
the edges of G2 and v /∈ the vertices of G2. Then G1 is not loopfull.

Let G be a non loopfull graph and v, e, w be objects. Let us observe that
every supergraph of G extended by v, w and e between them is non loopfull.

Now we state the proposition:

(14) Let us consider a graph G2, an object v, a subset V of the vertices of
G2, and a supergraph G1 of G2 extended by vertex v and edges between
v and V of G2. Suppose v /∈ the vertices of G2. Then G1 is not loopfull.

Let G be a non loopfull graph, v be an object, and V be a set. One can check
that every supergraph of G extended by vertex v and edges between v and V

of G is non loopfull.
Let G be a loopfull graph. Let us note that every subgraph of G with parallel

edges removed is loopfull and every subgraph of G with directed-parallel edges
removed is loopfull.

Let G be a non loopfull graph. Note that every subgraph of G with parallel
edges removed is non loopfull and every subgraph of G with directed-parallel
edges removed is non loopfull.
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Let GF be a graph-yielding function. We say that GF is loopfull if and only
if

(Def. 2) for every object x such that x ∈ domGF there exists a graph G such
that GF (x) = G and G is loopfull.

Let G be a loopfull graph. Let us note that 〈G〉 is loopfull and N 7−→ G is
loopfull.

Let GF be a non empty, graph-yielding function. Note that GF is loopfull if
and only if the condition (Def. 3) is satisfied.

(Def. 3) for every element x of domGF , GF (x) is loopfull.

Let GSq be a graph sequence. Let us note that GSq is loopfull if and only if
the condition (Def. 4) is satisfied.

(Def. 4) for every natural number n, GSq(n) is loopfull.

Let us observe that every graph-yielding function which is empty is also
loopfull and every graph-yielding function which is non empty and loopfull is
also non loopless and there exists a graph sequence which is loopfull and there
exists a graph-yielding finite sequence which is non empty and loopfull.

Let GF be a loopfull, non empty, graph-yielding function and x be an ele-
ment of domGF . Note that GF (x) is loopfull.

Let GSq be a loopfull graph sequence and x be a natural number. Note that
GSq(x) is loopfull.

Let p be a loopfull, graph-yielding finite sequence and n be a natural number.
Observe that p�n is loopfull and p�n is loopfull.

Let m be a natural number. One can check that smid(p,m, n) is loopfull and
〈p(m), . . . , p(n)〉 is loopfull.

Let p, q be loopfull, graph-yielding finite sequences. Observe that p a q is
loopfull and p aa q is loopfull.

Let G1, G2 be loopfull graphs. Note that 〈G1, G2〉 is loopfull.
Let G3 be a loopfull graph. Let us note that 〈G1, G2, G3〉 is loopfull.

2. Adding Loops to a Graph

Let G be a graph and V be a set.
A graph by adding a loop to each vertex of G in V is a supergraph of G

defined by

(Def. 5) (i) the vertices of it = the vertices of G and there exists a set E and
there exists a one-to-one function f such that E misses the edges of
G and the edges of it = (the edges of G) ∪ E and dom f = E and
rng f = V and the source of it = (the source of G)+·f and the target
of it = (the target of G)+·f , if V ⊆ the vertices of G,
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(ii) it ≈ G, otherwise.

A graph by adding a loop to each vertex of G is a graph by adding a loop
to each vertex of G in the vertices of G. Now we state the proposition:

(15) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then the vertices of G1 = the vertices of G2.

Let us consider a graph G2, a set V , a graph G1 by adding a loop to each
vertex of G2 in V , and objects e, v, w. Now we state the propositions:

(16) If v 6= w, then e joins v to w in G1 iff e joins v to w in G2.

(17) If v 6= w, then e joins v and w in G1 iff e joins v and w in G2. The
theorem is a consequence of (16).

(18) Let us consider a graph G2, a subset V of the vertices of G2, a graph
G1 by adding a loop to each vertex of G2 in V , and a vertex v of G1. If
v ∈ V , then v and v are adjacent.

(19) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then G1.order() = G2.order().

(20) Let us consider a graph G2, a subset V of the vertices of G2, and a graph
G1 by adding a loop to each vertex ofG2 in V . ThenG1.size() = G2.size()+
V .

(21) Let us consider graphs G1, G2. Then G1 is a graph by adding a loop to
each vertex of G2 in ∅ if and only if G1 ≈ G2. The theorem is a consequence
of (15).

(22) Every graph is a graph by adding a loop to each vertex of G in ∅.
(23) Let us consider a graph G, subsets V1, V2 of the vertices of G, a graph

G1 by adding a loop to each vertex of G in V1, and a graph G2 by adding
a loop to each vertex of G1 in V2. Suppose V1 misses V2. Then G2 is
a graph by adding a loop to each vertex of G in V1 ∪ V2. The theorem is
a consequence of (15).

(24) Let us consider a graph G3, subsets V1, V2 of the vertices of G3, and
a graph G1 by adding a loop to each vertex of G3 in V1 ∪ V2. Suppose V1

misses V2. Then there exists a graph G2 by adding a loop to each vertex
of G3 in V1 such that G1 is a graph by adding a loop to each vertex of G2

in V2.

(25) Let us consider a loopless graph G2, a subset V of the vertices of G2,
and a graph G1 by adding a loop to each vertex of G2 in V . Then

(i) the edges of G2 misses G1.loops(), and

(ii) the edges of G1 = (the edges of G2) ∪G1.loops().
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(26) Let us consider a loopless graph G1, a set V , a graph G2 by adding a loop
to each vertex of G1 in V , and a subgraph G3 of G2 with loops removed.
Then G1 ≈ G3. The theorem is a consequence of (25).

(27) Let us consider graphs G1, G2, and a vertex v of G2. Then G1 is a graph
by adding a loop to each vertex of G2 in {v} if and only if there exists
an object e such that e /∈ the edges of G2 and G1 is a supergraph of G2

extended by e between vertices v and v.

(28) Let us consider a graph G2, a finite subset V of the vertices of G2, and
a graph G1 by adding a loop to each vertex of G2 in V . Then there exists
a non empty, graph-yielding finite sequence p such that

(i) p(1) ≈ G2, and

(ii) p(len p) = G1, and

(iii) len p = V + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exists
a vertex v of G2 and there exists an object e such that p(n + 1) is
a supergraph of p(n) extended by e between vertices v and v and
v ∈ V and e /∈ the edges of p(n).

Proof: Define P[natural number] ≡ for every graph G2 for every finite
subset V of the vertices of G2 for every graph G1 by adding a loop to
each vertex of G2 in V such that V = $1 there exists a non empty, graph-
yielding finite sequence p such that p(1) ≈ G2 and p(len p) = G1 and
len p = V + 1.

For every element n of dom p such that n ¬ len p − 1 there exists
a vertex v of G2 and there exists an object e such that p(n + 1) is a su-
pergraph of p(n) extended by e between vertices v and v and v ∈ V and
e /∈ the edges of p(n). P[0]. For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(29) Let us consider graphs G3, G4, sets V1, V2, a graph G1 by adding a loop
to each vertex of G3 in V1, a graph G2 by adding a loop to each vertex
of G4 in V2, and a partial graph mapping F0 from G3 to G4. Suppose
V1 ⊆ the vertices of G3 and V2 ⊆ the vertices of G4 and F0V�V1 is one-
to-one and dom(F0V�V1) = V1 and rng(F0V�V1) = V2. Then there exists
a partial graph mapping F from G1 to G2 such that

(i) FV = F0V, and

(ii) FE�dom(F0E) = F0E, and

(iii) if F0 is not empty, then F is not empty, and

(iv) if F0 is total, then F is total, and
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(v) if F0 is onto, then F is onto, and

(vi) if F0 is one-to-one, then F is one-to-one, and

(vii) if F0 is directed, then F is directed, and

(viii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(ix) if F0 is isomorphism, then F is isomorphism, and

(x) if F0 is directed-isomorphism, then F is directed-isomorphism.

Proof: Reconsider f = F0V as a partial function from the vertices of G1 to
the vertices of G2. Consider E1 being a set, f1 being a one-to-one function
such that E1 misses the edges of G3 and the edges of G1 = (the edges
of G3) ∪ E1 and dom f1 = E1 and rng f1 = V1 and the source of G1 =
(the source of G3)+·f1 and the target of G1 = (the target of G3)+·f1.

Consider E2 being a set, f2 being a one-to-one function such that E2

misses the edges of G4 and the edges of G2 = (the edges of G4) ∪ E2 and
dom f2 = E2 and rng f2 = V2 and the source of G2 = (the source of
G4)+·f2 and the target of G2 = (the target of G4)+·f2. Set h = f2

−1 ·
(F0V�V1) · f1. Set g = F0E+·h. Reconsider F = 〈〈f, g〉〉 as a partial graph
mapping from G1 to G2. If F0 is total, then F is total. If F0 is onto, then
F is onto by [7, (6)]. If F0 is one-to-one, then F is one-to-one. If F0 is
directed, then F is directed by [4, (70), (71)]. �

(30) Let us consider a graph G3, a G3-isomorphic graph G4, and a graph G1

by adding a loop to each vertex of G3. Then every graph by adding a loop
to each vertex of G4 is G1-isomorphic. The theorem is a consequence of
(29).

(31) Let us consider a graph G3, a G3-directed-isomorphic graph G4, and
a graph G1 by adding a loop to each vertex of G3. Then every graph by
adding a loop to each vertex of G4 is G1-directed-isomorphic. The theorem
is a consequence of (29).

(32) Let us consider graphs G3, G4, a set V , a graph G1 by adding a loop to
each vertex of G3 in V , and a graph G2 by adding a loop to each vertex
of G4 in V . If G3 ≈ G4, then G2 is G1-directed-isomorphic. The theorem
is a consequence of (29).

(33) Let us consider a graph G3, sets V , E, a graph G4 given by reversing
directions of the edges E of G3, and a graph G1 by adding a loop to each
vertex of G3 in V . Then every graph by adding a loop to each vertex of
G4 in V is G1-isomorphic. The theorem is a consequence of (29).

(34) Let us consider a graph G3, sets E, V , a graph G4 given by reversing
directions of the edges E of G3, a graph G1 by adding a loop to each vertex
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of G3 in V , and a graph G2 given by reversing directions of the edges E
of G1. Suppose E ⊆ the edges of G3. Then G2 is a graph by adding a loop
to each vertex of G4 in V . The theorem is a consequence of (15).

(35) Let us consider a graph G3, a subset V1 of the vertices of G3, a non
empty subset V2 of the vertices of G3, a subgraph G4 of G3 induced by V2,
and a graph G1 by adding a loop to each vertex of G3 in V1. Then every
subgraph of G1 induced by V2 is a graph by adding a loop to each vertex
of G4 in V1 ∩ V2.

(36) Let us consider a graph G2, a set V , a graph G1 by adding a loop to
each vertex of G2 in V , a vertex v1 of G1, and a vertex v2 of G2. Suppose
v1 /∈ V and v1 = v2. Then

(i) v1 is isolated iff v2 is isolated, and

(ii) v1 is endvertex iff v2 is endvertex.

The theorem is a consequence of (17).

(37) Let us consider a graph G2, a set V , a graph G1 by adding a loop to
each vertex of G2 in V , and a path P of G1. Then

(i) P is a path of G2, or

(ii) there exist objects v, e such that e joins v and v in G1 and P =
G1.walkOf(v, e, v).

The theorem is a consequence of (15).

(38) Let us consider a graph G2, a set V , a graph G1 by adding a loop to
each vertex of G2 in V , and a walk W of G1. Suppose W.edges() mis-
ses (G1.loops()) \ (G2.loops()). Then W is a walk of G2. The theorem is
a consequence of (15).

Let G be a graph. Observe that every graph by adding a loop to each vertex
of G is loopfull.

Let V be a non empty subset of the vertices of G. Observe that every graph
by adding a loop to each vertex of G in V is non loopless.

Now we state the proposition:

(39) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then G1 is finite if and only if G2 is finite. The
theorem is a consequence of (15).

Let G be a finite graph and V be a set. Observe that every graph by adding
a loop to each vertex of G in V is finite.

Let G be a non finite graph. Note that every graph by adding a loop to each
vertex of G in V is non finite.

Now we state the proposition:



50 sebastian koch

(40) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then G1 is connected if and only if G2 is
connected. The theorem is a consequence of (15) and (37).

Let G be a connected graph and V be a set. Let us observe that every graph
by adding a loop to each vertex of G in V is connected.

Let G be a non connected graph. Let us note that every graph by adding a
loop to each vertex of G in V is non connected.

Now we state the proposition:

(41) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then G1 is chordal if and only if G2 is chordal.
The theorem is a consequence of (17) and (37).

Let G be a chordal graph and V be a set. Let us observe that every graph
by adding a loop to each vertex of G in V is chordal.

Let G be a non edgeless graph. Let us note that every graph by adding a
loop to each vertex of G in V is non edgeless.

Let G be a loopfull graph. Note that every graph by adding a loop to each
vertex of G in V is loopfull.

Let G be a simple graph. Let us note that every graph by adding a loop to
each vertex of G in V is non-multi.

Let G be a directed-simple graph. Note that every graph by adding a loop
to each vertex of G in V is non-directed-multi.

Let us consider a graph G2, a subset V of the vertices of G2, a graph G1 by
adding a loop to each vertex of G2 in V , a vertex v1 of G1, and a vertex v2 of
G2. Now we state the propositions:

(42) Suppose v1 = v2 and v1 ∈ V . Then there exists an object e such that

(i) e joins v1 to v1 in G1, and

(ii) e /∈ the edges of G2, and

(iii) v1.edgesIn() = v2.edgesIn() ∪ {e}, and

(iv) v1.edgesOut() = v2.edgesOut() ∪ {e}, and

(v) v1.edgesInOut() = v2.edgesInOut() ∪ {e}.
(43) If v1 = v2 and v1 ∈ V , then v1.inDegree() = v2.inDegree() + 1 and

v1.outDegree() = v2.outDegree() + 1 and v1.degree() = v2.degree() + 2.
The theorem is a consequence of (42).

(44) Suppose v1 = v2 and v1 /∈ V . Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and
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(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

3. Directed Graph Complement with Loops

Let G be a graph.
A directed graph complement of G with loops is a non-directed-multi graph

defined by

(Def. 6) the vertices of it = the vertices of G and the edges of it misses the edges
of G and for every vertices v, w of G, there exists an object e1 such that
e1 joins v to w in G iff there exists no object e2 such that e2 joins v to w
in it.

Now we state the proposition:

(45) Let us consider graphs G1, G2, G3, and a directed graph complement G4

of G1 with loops. Suppose G1 ≈ G2 and G3 ≈ G4. Then G3 is a directed
graph complement of G2 with loops.

Let G be a graph. Observe that there exists a directed graph complement of
G with loops which is plain.

Now we state the propositions:

(46) Let us consider a graph G1, a directed graph complement G2 of G1 with
loops, and objects e1, e2, v, w. If e1 joins v to w in G1, then e2 does not
join v to w in G2.

(47) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then every directed graph complement of G1 with
loops is a directed graph complement of G2 with loops. The theorem is
a consequence of (46).

(48) Let us consider graphs G1, G2, a subgraph G3 of G1 with directed-
parallel edges removed, a subgraph G4 of G2 with directed-parallel edges
removed, a directed graph complement G5 of G1 with loops, and a direc-
ted graph complement G6 of G2 with loops. Suppose G4 is G3-directed-
isomorphic. Then G6 is G5-directed-isomorphic. The theorem is a conse-
quence of (47).

(49) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and a di-
rected graph complement G3 of G1 with loops. Then every directed graph
complement of G2 with loops is G3-directed-isomorphic. The theorem is
a consequence of (48).
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(50) Let us consider a graph G1, and directed graph complements G2, G3

of G1 with loops. Then G3 is G2-directed-isomorphic. The theorem is
a consequence of (49).

(51) Let us consider a graph G1, a graph G2 given by reversing directions of
the edges of G1, and a directed graph complement G3 of G1 with loops.
Then every graph given by reversing directions of the edges of G3 is a di-
rected graph complement of G2 with loops. The theorem is a consequence
of (46).

(52) Let us consider a graph G1, a non empty subset V of the vertices of G1,
a subgraph G2 of G1 induced by V , and a directed graph complement G3

of G1 with loops. Then every subgraph of G3 induced by V is a directed
graph complement of G2 with loops. The theorem is a consequence of (46).

(53) Let us consider a graph G1, a proper subset V of the vertices of G1,
a subgraph G2 of G1 with vertices V removed, and a directed graph com-
plement G3 of G1 with loops. Then every subgraph of G3 with vertices V
removed is a directed graph complement of G2 with loops. The theorem
is a consequence of (52).

(54) Let us consider a non-directed-multi graph G1, and a directed graph
complement G2 of G1 with loops. Then G1 is a directed graph complement
of G2 with loops.

Let us consider a graph G1 and a directed graph complement G2 of G1 with
loops. Now we state the propositions:

(55) G1.order() = G2.order().

(56) (i) G1 is trivial iff G2 is trivial, and

(ii) G1 is loopfull iff G2 is loopless, and

(iii) G1 is loopless iff G2 is loopfull.
The theorem is a consequence of (55), (1), and (46).

Let G be a trivial graph. One can verify that every directed graph comple-
ment of G with loops is trivial. Let G be a non trivial graph. One can check
that every directed graph complement of G with loops is non trivial. Let G be
a loopfull graph. Note that every directed graph complement of G with loops is
loopless.

Let G be a non loopfull graph. Let us note that every directed graph com-
plement of G with loops is non loopless. Let G be a loopless graph. Observe that
every directed graph complement of G with loops is loopfull. Let G be a non
loopless graph. Let us observe that every directed graph complement of G with
loops is non loopfull.

Now we state the proposition:
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(57) Let us consider a graph G1, and a directed graph complement G2 of G1

with loops. Suppose the edges of G1 = G1.loops(). Then G2 is complete.

Let G be an edgeless graph. One can verify that every directed graph com-
plement of G with loops is complete. Let G be a non connected graph. One can
check that every directed graph complement of G with loops is connected.

Now we state the propositions:

(58) Let us consider a graph G1, a directed graph complement G2 of G1 with
loops, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) if v1 is isolated, then v2 is not isolated, and

(ii) if v1 is endvertex, then v2 is not endvertex.

(59) Let us consider a graph G1, a directed graph complement G2 of G1 with
loops, and vertices v, w of G1. Suppose there exists no object e such that
e joins v and w in G1. Then there exists an object e such that e joins v
and w in G2.
Proof: There exists no object e such that e joins v to w in G1. Consider
e being an object such that e joins v to w in G2. �

Let us consider a graph G1, a directed graph complement G2 of G1 with
loops, a vertex v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(60) Suppose v1 = v2. Then

(i) v2.inNeighbors() = (the vertices of G2) \ (v1.inNeighbors()), and

(ii) v2.outNeighbors() = (the vertices of G2) \ (v1.outNeighbors()).

(61) Suppose v1 = v2 and v1 is isolated. Then

(i) v2.inNeighbors() = the vertices of G2, and

(ii) v2.outNeighbors() = the vertices of G2, and

(iii) v2.allNeighbors() = the vertices of G2.

The theorem is a consequence of (60).

4. Undirected Graph Complement with Loops

Let G be a graph.
An undirected graph complement of G with loops is a non-multi graph de-

fined by

(Def. 7) the vertices of it = the vertices of G and the edges of it misses the edges
of G and for every vertices v, w of G, there exists an object e1 such that
e1 joins v and w in G iff there exists no object e2 such that e2 joins v and
w in it.
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Now we state the proposition:

(62) Let us consider graphs G1, G2, G3, and an undirected graph comple-
ment G4 of G1 with loops. Suppose G1 ≈ G2 and G3 ≈ G4. Then G3 is
an undirected graph complement of G2 with loops.

Let G be a graph. Note that there exists an undirected graph complement
of G with loops which is plain.

Now we state the propositions:

(63) Let us consider a graph G1, and a non-multi graph G2. Then G2 is an un-
directed graph complement of G1 with loops if and only if the vertices of
G2 = the vertices of G1 and the edges of G2 misses the edges of G1 and
for every vertices v1, w1 of G1 and for every vertices v2, w2 of G2 such
that v1 = v2 and w1 = w2 holds v1 and w1 are adjacent iff v2 and w2 are
not adjacent.

(64) Let us consider a graph G1, an undirected graph complement G2 of G1

with loops, and objects e1, e2, v, w. If e1 joins v and w in G1, then e2 does
not join v and w in G2.

(65) Let us consider a graph G1, and a subgraph G2 of G1 with parallel
edges removed. Then every undirected graph complement of G1 with loops
is an undirected graph complement of G2 with loops. The theorem is
a consequence of (64).

(66) Let us consider graphs G1, G2, a subgraph G3 of G1 with parallel edges
removed, a subgraph G4 of G2 with parallel edges removed, an undirec-
ted graph complement G5 of G1 with loops, and an undirected graph
complement G6 of G2 with loops. If G4 is G3-isomorphic, then G6 is G5-
isomorphic. The theorem is a consequence of (65).

(67) Let us consider a graph G1, a G1-isomorphic graph G2, and an undirec-
ted graph complement G3 of G1 with loops. Then every undirected graph
complement of G2 with loops is G3-isomorphic. The theorem is a conse-
quence of (66).

(68) Let us consider a graph G1, and undirected graph complements G2, G3

of G1 with loops. Then G3 is G2-isomorphic. The theorem is a consequence
of (67).

(69) Let us consider a graph G1, a non empty subset V of the vertices of G1,
a subgraph G2 of G1 induced by V , and an undirected graph complement
G3 of G1 with loops. Then every subgraph of G3 induced by V is an undi-
rected graph complement of G2 with loops. The theorem is a consequence
of (64).

(70) Let us consider a graph G1, a proper subset V of the vertices of G1,
a subgraph G2 of G1 with vertices V removed, and an undirected graph
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complement G3 of G1 with loops. Then every subgraph of G3 with vertices
V removed is an undirected graph complement of G2 with loops. The
theorem is a consequence of (69).

(71) Let us consider a non-multi graph G1, and an undirected graph comple-
ment G2 of G1 with loops. Then G1 is an undirected graph complement
of G2 with loops.

Let us consider a graph G1 and an undirected graph complement G2 of G1

with loops. Now we state the propositions:

(72) G1.order() = G2.order().

(73) (i) G1 is trivial iff G2 is trivial, and

(ii) G1 is loopfull iff G2 is loopless, and

(iii) G1 is loopless iff G2 is loopfull.
The theorem is a consequence of (72) and (64).

Let G be a trivial graph. Observe that every undirected graph complement
of G with loops is trivial.

Let G be a non trivial graph. Let us observe that every undirected graph
complement of G with loops is non trivial.

Let G be a loopfull graph. One can verify that every undirected graph com-
plement of G with loops is loopless.

Let G be a non loopfull graph. One can check that every undirected graph
complement of G with loops is non loopless.

Let G be a loopless graph. Note that every undirected graph complement of
G with loops is loopfull.

Let G be a non loopless graph. Let us note that every undirected graph
complement of G with loops is non loopfull.

Now we state the proposition:

(74) Let us consider a graph G1, and an undirected graph complement G2

of G1 with loops. Suppose the edges of G1 = G1.loops(). Then G2 is
complete.

Let G be an edgeless graph. Observe that every undirected graph comple-
ment of G with loops is complete.

Now we state the proposition:

(75) Let us consider a complete graph G1, and an undirected graph com-
plement G2 of G1 with loops. Then the edges of G2 = G2.loops(). The
theorem is a consequence of (64).

Let G be a complete, loopfull graph. Observe that every undirected graph
complement of G with loops is edgeless.
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Let G be a non connected graph. Note that every undirected graph comple-
ment of G with loops is connected.

Let us consider a graph G1, an undirected graph complement G2 of G1 with
loops, a vertex v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(76) If v1 = v2, then if v1 is isolated, then v2 is not isolated and if v1 is
endvertex, then v2 is not endvertex.

(77) If v1 = v2, then v2.allNeighbors() = (the vertices ofG2)\(v1.allNeighbors
()).

(78) If v1 = v2 and v1 is isolated, then v2.allNeighbors() = the vertices of G2.
The theorem is a consequence of (77).

5. Directed Graph Complement without Loops

Let G be a graph.
A directed graph complement of G is a directed-simple graph defined by

(Def. 8) there exists a directed graph complement G′ of G with loops such that
it is a subgraph of G′ with loops removed.

Now we state the proposition:

(79) Let us consider graphs G1, G2, G3, and a directed graph complement
G4 of G1. Suppose G1 ≈ G2 and G3 ≈ G4. Then G3 is a directed graph
complement of G2. The theorem is a consequence of (45).

Let G be a graph. One can check that there exists a directed graph comple-
ment of G which is plain. Now we state the propositions:

(80) Let us consider a graph G1, and a directed-simple graph G2. Then G2

is a directed graph complement of G1 if and only if the vertices of G2 =
the vertices of G1 and the edges of G2 misses the edges of G1 and for every
vertices v, w of G1 such that v 6= w holds there exists an object e1 such
that e1 joins v to w in G1 iff there exists no object e2 such that e2 joins v
to w in G2. The theorem is a consequence of (46), (26), and (1).

(81) Let us consider a graph G1, a directed graph complement G2 of G1, and
objects e1, e2, v, w. If e1 joins v to w in G1, then e2 does not join v to w
in G2. The theorem is a consequence of (80).

(82) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
every directed graph complement of G1 is a directed graph complement of
G2. The theorem is a consequence of (80) and (81).

(83) Let us consider graphs G1, G2, a directed-simple graph G3 of G1, a di-
rected-simple graph G4 of G2, a directed graph complement G5 of G1,
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and a directed graph complement G6 of G2. Suppose G4 is G3-directed-
isomorphic. Then G6 is G5-directed-isomorphic. The theorem is a conse-
quence of (82) and (80).

(84) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and
a directed graph complement G3 of G1. Then every directed graph com-
plement of G2 is G3-directed-isomorphic. The theorem is a consequence of
(83).

(85) Let us consider a graph G1, and directed graph complements G2, G3 of
G1. Then G3 is G2-directed-isomorphic. The theorem is a consequence of
(84).

(86) Let us consider a graph G1, a graph G2 given by reversing directions of
the edges of G1, and a directed graph complement G3 of G1. Then every
graph given by reversing directions of the edges of G3 is a directed graph
complement of G2. The theorem is a consequence of (80) and (81).

(87) Let us consider a graph G1, a non empty subset V of the vertices of
G1, a subgraph G2 of G1 induced by V , and a directed graph complement
G3 of G1. Then every subgraph of G3 induced by V is a directed graph
complement of G2. The theorem is a consequence of (80) and (81).

(88) Let us consider a graph G1, a proper subset V of the vertices of G1,
a subgraph G2 of G1 with vertices V removed, and a directed graph com-
plement G3 of G1. Then every subgraph of G3 with vertices V removed is
a directed graph complement of G2. The theorem is a consequence of (80)
and (87).

(89) Let us consider a directed-simple graph G1, and a directed graph com-
plement G2 of G1. Then G1 is a directed graph complement of G2. The
theorem is a consequence of (80).

Let us consider a graph G1 and a directed graph complement G2 of G1. Now
we state the propositions:

(90) G1.order() = G2.order().

(91) G1 is trivial if and only if G2 is trivial. The theorem is a consequence of
(90).

Let G be a trivial graph. One can verify that every directed graph comple-
ment of G is trivial. Let G be a non trivial graph. One can check that every
directed graph complement of G is non trivial. Now we state the proposition:

(92) Let us consider a graph G1, and a directed graph complement G2 of G1.
Suppose the edges of G1 = G1.loops(). Then G2 is complete. The theorem
is a consequence of (80).

Let G be an edgeless graph. One can check that every directed graph com-
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plement of G is complete. Let G be a trivial, edgeless graph. Let us observe that
every directed graph complement of G is edgeless. Let G be a non connected
graph. One can check that every directed graph complement of G is connected.
Now we state the proposition:

(93) Let us consider a non trivial graph G1, a directed graph complement G2

of G1, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then if v1 is
isolated, then v2 is not isolated. The theorem is a consequence of (80).

Let us consider a graph G1, a directed graph complement G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(94) If v1 = v2 and 3 ⊆ G1.order(), then if v1 is endvertex, then v2 is not
endvertex.
Proof: Consider u, w being vertices of G1 such that u 6= v1 and w 6= v1

and u 6= w and u and v1 are adjacent and v1 and w are not adjacent.
There exists no object e such that e joins v1 to w in G1. Consider e1 being
an object such that e1 joins v1 to w in G2. There exists no object e such
that e joins w to v1 in G1. Consider e2 being an object such that e2 joins w
to v1 in G2. Consider e′ being an object such that v2.edgesInOut() = {e′}
and e′ does not join v2 and v2 in G2. �

(95) Suppose v1 = v2. Then

(i) v2.inNeighbors() = (the vertices of G2) \ (v1.inNeighbors() ∪ {v2}),
and

(ii) v2.outNeighbors() = (the vertices of G2)\(v1.outNeighbors()∪{v2}).

The theorem is a consequence of (60).

(96) Suppose v1 = v2 and v1 is isolated. Then

(i) v2.inNeighbors() = (the vertices of G2) \ {v2}, and

(ii) v2.outNeighbors() = (the vertices of G2) \ {v2}, and

(iii) v2.allNeighbors() = (the vertices of G2) \ {v2}.

The theorem is a consequence of (95).

6. Undirected Graph Complement without Loops

Let G be a graph.
A graph complement of G is a simple graph defined by

(Def. 9) there exists an undirected graph complement G′ of G with loops such
that it is a subgraph of G′ with loops removed.

Now we state the proposition:
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(97) Let us consider graphs G1, G2, G3, and a graph complement G4 of G1.
Suppose G1 ≈ G2 and G3 ≈ G4. Then G3 is a graph complement of G2.
The theorem is a consequence of (62).

Let G be a graph. Observe that there exists a graph complement of G which
is plain. Let us consider a graph G1 and a simple graph G2. Now we state the
propositions:

(98) G2 is a graph complement of G1 if and only if the vertices of G2 =
the vertices of G1 and the edges of G2 misses the edges of G1 and for
every vertices v, w of G1 such that v 6= w holds there exists an object e1

such that e1 joins v and w in G1 iff there exists no object e2 such that e2

joins v and w in G2. The theorem is a consequence of (64) and (26).

(99) G2 is a graph complement of G1 if and only if the vertices of G2 =
the vertices of G1 and the edges of G2 misses the edges of G1 and for
every vertices v1, w1 of G1 and for every vertices v2, w2 of G2 such that
v1 = v2 and w1 = w2 and v1 6= w1 holds v1 and w1 are adjacent iff v2 and
w2 are not adjacent. The theorem is a consequence of (98).

(100) Let us consider a graph G1, a graph complement G2 of G1, and objects
e1, e2, v, w. If e1 joins v and w in G1, then e2 does not join v and w in
G2. The theorem is a consequence of (98).

(101) Let us consider a graph G1, and a simple graph G2 of G1. Then every
graph complement of G1 is a graph complement of G2. The theorem is
a consequence of (98) and (100).

(102) Let us consider graphs G1, G2, a simple graph G3 of G1, a simple graph
G4 of G2, a graph complement G5 of G1, and a graph complement G6

of G2. If G4 is G3-isomorphic, then G6 is G5-isomorphic. The theorem is
a consequence of (101) and (98).

(103) Let us consider a graph G1, a G1-isomorphic graph G2, and a graph com-
plement G3 of G1. Then every graph complement of G2 is G3-isomorphic.
The theorem is a consequence of (102).

(104) Let us consider a graph G1, and graph complements G2, G3 of G1. Then
G3 is G2-isomorphic. The theorem is a consequence of (103).

(105) Let us consider a graph G1, an object v, a subset V of the vertices of G1,
a supergraph G2 of G1 extended by vertex v and edges between v and V

of G1, and a graph complement G3 of G1. Suppose v /∈ the vertices of G1

and the edges of G2 misses the edges of G3. Then there exists a supergraph
G4 of G3 extended by vertex v and edges between v and (the vertices of
G1) \ V of G3 such that G4 is a graph complement of G2. The theorem is
a consequence of (98).

(106) Let us consider a graph G1, an object v, a supergraph G2 of G1 extended
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by v, and a graph complement G3 of G1. Suppose v /∈ the vertices of G1.
Then there exists a supergraph G4 of G3 extended by vertex v and edges
between v and the vertices of G3 such that G4 is a graph complement of
G2. The theorem is a consequence of (98) and (105).

(107) Let us consider a graph G1, an object v, a supergraph G2 of G1 exten-
ded by vertex v and edges between v and the vertices of G1, a graph
complement G3 of G1, and a supergraph G4 of G3 extended by v. Suppose
v /∈ the vertices of G1 and the edges of G2 misses the edges of G3. Then
G4 is a graph complement of G2. The theorem is a consequence of (105)
and (97).

(108) Let us consider a graph G1, a non empty subset V of the vertices of G1,
a subgraph G2 of G1 induced by V , and a graph complement G3 of G1.
Then every subgraph of G3 induced by V is a graph complement of G2.
The theorem is a consequence of (98) and (100).

(109) Let us consider a graph G1, a proper subset V of the vertices of G1,
a subgraph G2 of G1 with vertices V removed, and a graph complement
G3 of G1. Then every subgraph of G3 with vertices V removed is a graph
complement of G2. The theorem is a consequence of (98) and (108).

(110) Let us consider a simple graph G1, and a graph complement G2 of G1.
Then G1 is a graph complement of G2. The theorem is a consequence of
(98).

Let us consider a graph G1 and a graph complement G2 of G1. Now we state
the propositions:

(111) G1.order() = G2.order().

(112) G1 is trivial if and only if G2 is trivial. The theorem is a consequence of
(111).

LetG be a trivial graph. Observe that every graph complement ofG is trivial.
Let G be a non trivial graph. Let us observe that every graph complement of G
is non trivial. Now we state the proposition:

(113) Let us consider a graph G1, and a graph complement G2 of G1. Then

(i) G1 is complete iff G2 is edgeless, and

(ii) the edges of G1 = G1.loops() iff G2 is complete.

The theorem is a consequence of (99) and (98).

Let G be a complete graph. Observe that every graph complement of G is
edgeless.

Let G be a non complete graph. Let us observe that every graph complement
of G is non edgeless.
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Let G be an edgeless graph. One can verify that every graph complement of
G is complete.

LetG be a non connected graph. One can check that every graph complement
of G is connected.

Now we state the propositions:

(114) Let us consider a non trivial graph G1, a graph complement G2 of G1,
a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then if v1 is isolated,
then v2 is not isolated. The theorem is a consequence of (98).

(115) Let us consider a graph G1, a graph complement G2 of G1, a vertex v1

of G1, and a vertex v2 of G2. Suppose v1 = v2 and G1.order() = 2. Then

(i) if v1 is endvertex, then v2 is isolated, and

(ii) if v1 is isolated, then v2 is endvertex.

The theorem is a consequence of (111), (98), and (100).

(116) Let us consider a simple graph G1, a graph complement G2 of G1, a ver-
tex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2 and G1.order() = 2.
Then

(i) v1 is endvertex iff v2 is isolated, and

(ii) v1 is isolated iff v2 is endvertex.

The theorem is a consequence of (110), (111), and (115).

Let us consider a graph G1, a graph complement G2 of G1, a vertex v1 of
G1, and a vertex v2 of G2. Now we state the propositions:

(117) If v1 = v2 and 4 ⊆ G1.order(), then if v1 is endvertex, then v2 is not
endvertex. The theorem is a consequence of (99).

(118) If v1 = v2, then v2.allNeighbors() = (the vertices ofG2)\(v1.allNeighbors
() ∪ {v2}). The theorem is a consequence of (77).

(119) If v1 = v2 and v1 is isolated, then v2.allNeighbors() = (the vertices of
G2) \ {v2}. The theorem is a consequence of (118).

7. Self-complementary Graphs

Let G be a graph. We say that G is self-DLcomplementary if and only if

(Def. 10) every directed graph complement of G with loops is G-directed-isomor-
phic.

We say that G is self-Lcomplementary if and only if

(Def. 11) every undirected graph complement of G with loops is G-isomorphic.

We say that G is self-Dcomplementary if and only if



62 sebastian koch

(Def. 12) every directed graph complement of G is G-directed-isomorphic.

We say that G is self-complementary if and only if

(Def. 13) every graph complement of G is G-isomorphic.

Let us consider a graph G. Now we state the propositions:

(120) G is self-DLcomplementary if and only if there exists a directed graph
complement H of G with loops such that H is G-directed-isomorphic. The
theorem is a consequence of (50).

(121) G is self-Lcomplementary if and only if there exists an undirected graph
complement H of G with loops such that H is G-isomorphic. The theorem
is a consequence of (68).

(122) G is self-Dcomplementary if and only if there exists a directed graph
complement H of G such that H is G-directed-isomorphic. The theorem
is a consequence of (85).

(123) G is self-complementary if and only if there exists a graph complement
H of G such that H is G-isomorphic. The theorem is a consequence of
(104).

Let us observe that every graph which is self-DLcomplementary is also non
loopless, non loopfull, non-directed-multi, and connected and every graph which
is self-Lcomplementary is also non loopless, non loopfull, non-multi, and con-
nected and every graph which is self-Dcomplementary is also directed-simple
and connected and every graph which is self-complementary is also simple and
connected.

Every graph which is trivial and edgeless is also self-Dcomplementary
and self-complementary and every graph which is self-Dcomplementary and
self-complementary is also trivial and edgeless and every graph which is self-
DLcomplementary is also non trivial, non self-Lcomplementary, non self-Dcom-
plementary, and non self-complementary and every graph which is self-Lcom-
plementary is also non trivial, non self-DLcomplementary, non self-Dcomple-
mentary, and non self-complementary and there exists a graph which is self-
Dcomplementary and self-complementary.
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The various concepts for the Boolean operations, the logic gate elements ne-
eded to define the digital circuit, and the connections are defined and have been
proved [1]. For logic gate elements that compose a calculation circuit using many
Boolean operations, we have prepared a practical collection of logic gates [13].
To construct the adder circuit structure for the RSD numeric representation,
we then formalized the definitions and properties of the Generalized Full Adder
Circuits (GFAs) to have three inputs and two outputs [14]. Since we have to
scale the size of evaluation up to this formal verification method on a real-size
calculation circuit, we have already completed formalize the concept of the 4-2
Binary Addition Cell primitives (FTAs) [12] to construct the structures of cal-
culation units for a very fast multiplication algorithm for VLSI implementation
[10].

There is the Wallace tree multiplication method [11] as achieved high-speed
multiplier, which is connected like the tree using the usual full adder (FA) circuit
cell. Since it transforms the Wallace tree multiplication method to improve
the high-speed computation and circuit regularity, there is also a refinement
multiplication method using the 7-3 Compressor Circuit [6].

We show the component symbol and the block diagram of a 7-3 Compressor
Circuit implementation in Figure 1 and Figure 2 using four GFAs. First two
GFAs take six of the seven inputs (x1,x2,x3,x5,x6,x7) and generate two sum
(A1,A2) and two carry outputs (C1,C2) in Layer-I (after 2-steps). The sum
outputs are combined with the seventh input (x4) in another GFA to generate
the s0 output of the 7-3 Compressor in Layer-II (after 4-steps). The carry output
of this GFA is combined with the carry outputs from the two first level GFAs
using fourth GFA to yield s1 and s2, with weights of two and four respectively
in Layer-III (after 6-steps).

x1 x2 x3 x4 x5 x6 x7 Inputs : x1,x2,...,x7 (without pair)
| | | | | | |
+-*--*--*--*--*--*--*-+
| |
| STC TYPE-0 |
| |
+------*---*---*------+

| | |
s2 s1 s0 Outputs : s2,s1,s0 (pair)

Composition : Cascading tree together with four GFA TYPE-0
Function : [s2:s1:s0] = bit_count_of_<x1,x2,...,x7>

Fig.1 7-3 Compressor Circuit (Seven-to-Three Compressor:STC): TYPE-0,
Component Symbol.
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7-inputs x1 x2 x3 x4 x5 x6 x7 ..............
| / / / | / /

+---*---* / / +---*---* /
| GFA *__/ / | GFA *__/
| TYPE0 | / | TYPE0 | LAYER-I
*---*---+ / *---*---+ (2-steps)
/ | / / / |

C1 ___/ A1| / C2/ A2/ ..................V......
/ _____|_____/____/ /
/ / | / /
/ / +---*---* /
/ / | GFA *_______/ LAYER-II
/ / | TYPE0 | (4-steps)
/ / *---*---+ |

C1| C2/ C3/ A3/ ........................V......
+---*---* / /
| GFA *____/ /
| TYPE0 | ____/ LAYER-III
*---*---+ / (6-steps)
/ | / |
s2 s1 s0 3-outputs ..............................V......

Intermediate Outputs (2-steps):
C1 := GFA0CarryOutput(x1,x2,x3)
C2 := GFA0CarryOutput(x5,x6,x7)
A1 := GFA0AdderOutput(x1,x2,x3)
A2 := GFA0AdderOutput(x5,x6,x7)
Intermediate Output (4-steps):
C3 := GFA0CarryOutput(A1,A2,x4)
External Outputs (4,6-steps):
s0 := GFA0AdderOutput(A1,A2,x4) (=A3)
s1 := GFA0AdderOutput(C1,C2,C3)
s2 := GFA0CarryOutput(C1,C2,C3)

Composite Circuit Structure:
( ( BitGFA0Str(x1,x2,x3) +* BitGFA0Str(x5,x6,x7) ) # STC0IIStr
+* BitGFA0Str(A1,A2,x4) ) # STC0IStr
+* BitGFA0Str(C1,C2,C3) # STC0Str
--->
STC0Str(x1,x2,x3,x4,x5,x6,x7)

Fig.2 7-3 Compressor Circuit, Block Diagram and Calculation Stability:
Following(s,6) is stable.



68 katsumi wasaki

1. Properties of ‘Intermediate’
STC Circuit Structure (LAYER-I)

Let x1, x2, x3, x4 be non pair objects. Let us note that {x1, x2, x3, x4} has
no pairs.

Let x5 be a non pair object. Observe that {x1, x2, x3, x4, x5} has no pairs.
Let x6 be a non pair object. Let us note that {x1, x2, x3, x4, x5, x6} has no

pairs.
Let x7 be a non pair object. One can verify that {x1, x2, x3, x4, x5, x6, x7}

has no pairs.
Let x1, x2, x3, x5, x6, x7 be sets. The functor STC0IIStr(x1, x2, x3, x5, x6, x7)

yielding an unsplit, non void, strict, non empty many sorted signature with
arity held in gates and Boolean denotation held in gates is defined by the term

(Def. 1) BitGFA0Str(x1, x2, x3)+·BitGFA0Str(x5, x6, x7).

The functor STC0IICirc(x1, x2, x3, x5, x6, x7) yielding a strict, Boolean cir-
cuit of STC0IIStr(x1, x2, x3, x5, x6, x7) with denotation held in gates is defined
by the term

(Def. 2) BitGFA0Circ(x1, x2, x3)+·BitGFA0Circ(x5, x6, x7).

Let us consider sets x1, x2, x3, x5, x6, x7. Now we state the propositions:

(1) InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) = (({〈〈〈x1, x2〉, xor2 〉〉,
GFA0AdderOutput(x1, x2, x3)}∪ {〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3,

x1〉, and2 〉〉,GFA0CarryOutput(x1, x2, x3)}) ∪ {〈〈〈x5, x6〉, xor2 〉〉,GFA0Ad-
derOutput(x5, x6, x7)}) ∪ {〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉,
and2 〉〉,GFA0CarryOutput(x5, x6, x7)}.

(2) InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) is a binary relation.

Let us consider non pair sets x1, x2, x3, x5, x6, x7. Now we state the pro-
positions:

(3) InputVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) = {x1, x2, x3, x5, x6, x7}.
(4) InputVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) has no pairs.

Let us consider sets x1, x2, x3, x5, x6, x7. Now we state the propositions:

(5) x1, x2, x3, x5, x6, x7, 〈〈〈x1, x2〉, xor2 〉〉, GFA0AdderOutput(x1, x2, x3),
〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, GFA0CarryOutput(x1,

x2, x3), 〈〈〈x5, x6〉, xor2 〉〉, GFA0AdderOutput(x5, x6, x7), 〈〈〈x5, x6〉, and2 〉〉,
〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉, GFA0CarryOutput(x5, x6, x7) ∈ the
carrier of STC0IIStr(x1, x2, x3, x5, x6, x7).

(6) 〈〈〈x1, x2〉, xor2 〉〉, GFA0AdderOutput(x1, x2, x3), 〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2,

x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, GFA0CarryOutput(x1, x2, x3), 〈〈〈x5, x6〉, xor2 〉〉,
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GFA0AdderOutput(x5, x6, x7), 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉,
and2 〉〉, GFA0CarryOutput(x5, x6, x7) ∈ InnerVertices(STC0IIStr(x1, x2,

x3, x5, x6, x7)). The theorem is a consequence of (1).

(7) Let us consider non pair sets x1, x2, x3, x5, x6, x7. Then x1, x2, x3, x5,
x6, x7 ∈ InputVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)). The theorem is
a consequence of (3).

Let x1, x2, x3, x5, x6, x7 be sets. The functors: STC0IICarryOutC1(x1, x2, x3,

x5, x6, x7), STC0IIAdderOutA1(x1, x2, x3, x5, x6, x7), STC0IICarryOutC2(x1,

x2, x3, x5, x6, x7), and STC0IIAdderOutA2(x1, x2, x3, x5, x6, x7) yielding ele-
ments of InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) are defined by terms

(Def. 3) GFA0CarryOutput(x1, x2, x3),

(Def. 4) GFA0AdderOutput(x1, x2, x3),

(Def. 5) GFA0CarryOutput(x5, x6, x7),

(Def. 6) GFA0AdderOutput(x5, x6, x7),

respectively. Now we state the propositions:

(8) Let us consider non pair sets x1, x2, x3, x5, x6, x7, a state s of STC0IICirc
(x1, x2, x3, x5, x6, x7), and elements a1, a2, a3, a5, a6, a7 of Boolean. Sup-
pose a1 = s(x1) and a2 = s(x2) and a3 = s(x3) and a5 = s(x5) and
a6 = s(x6) and a7 = s(x7). Then

(i) (Following(s, 2))(STC0IICarryOutC1(x1, x2, x3, x5, x6, x7)) = (a1 ∧
a2 ∨ a2 ∧ a3) ∨ a3 ∧ a1, and

(ii) (Following(s, 2))(STC0IIAdderOutA1(x1, x2, x3, x5, x6, x7)) = (a1 ⊕
a2)⊕ a3, and

(iii) (Following(s, 2))(STC0IICarryOutC2(x1, x2, x3, x5, x6, x7)) = (a5 ∧
a6 ∨ a6 ∧ a7) ∨ a7 ∧ a5, and

(iv) (Following(s, 2))(STC0IIAdderOutA2(x1, x2, x3, x5, x6, x7)) = (a5 ⊕
a6)⊕ a7, and

(v) (Following(s, 2))(x1) = a1, and

(vi) (Following(s, 2))(x2) = a2, and

(vii) (Following(s, 2))(x3) = a3, and

(viii) (Following(s, 2))(x5) = a5, and

(ix) (Following(s, 2))(x6) = a6, and

(x) (Following(s, 2))(x7) = a7.

The theorem is a consequence of (7).

(9) Let us consider non pair sets x1, x2, x3, x5, x6, x7, and a state s of
STC0IICirc(x1, x2, x3, x5, x6, x7). Then Following(s, 2) is stable.
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2. Properties of ‘Intermediate’
STC Circuit Structure (LAYER-II)

Let x1, x2, x3, x4, x5, x6, x7 be sets. The functor STC0IStr(x1, x2, x3, x4, x5,

x6, x7) yielding an unsplit, non void, strict, non empty many sorted signa-
ture with arity held in gates and Boolean denotation held in gates is defined by
the term

(Def. 7) STC0IIStr(x1, x2, x3, x5, x6, x7)+·BitGFA0Str(GFA0AdderOutput(x1,

x2, x3),GFA0AdderOutput(x5, x6, x7), x4).

The functor STC0ICirc(x1, x2, x3, x4, x5, x6, x7) yielding a strict, Boolean
circuit of STC0IStr(x1, x2, x3, x4, x5, x6, x7) with denotation held in gates is de-
fined by the term

(Def. 8) STC0IICirc(x1, x2, x3, x5, x6, x7)+·BitGFA0Circ(GFA0AdderOutput(x1,

x2, x3),GFA0AdderOutput(x5, x6, x7), x4).

Let us consider sets x1, x2, x3, x4, x5, x6, x7.
Now we state the propositions:

(10) InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) =
{〈〈〈x1, x2〉, xor2 〉〉,GFA0AdderOutput(x1, x2, x3)}∪
{〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉,GFA0CarryOutput(x1,

x2, x3)}∪
{〈〈〈x5, x6〉, xor2 〉〉,GFA0AdderOutput(x5, x6, x7)}∪
{〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉,GFA0CarryOutput(x5,

x6, x7)}∪
{〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, xor2 〉〉,

GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4)}∪

{〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉,
〈〈〈GFA0AdderOutput(x5, x6, x7), x4〉, and2 〉〉, 〈〈〈x4,GFA0AdderOutput
(x1, x2, x3)〉, and2 〉〉,GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4)}.

The theorem is a consequence of (1).

(11) InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) is a binary relation.

(12) Let us consider non pair sets x1, x2, x3, x5, x6, x7, and a set x4. Suppo-
se x4 6= 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉,
xor2 〉〉 and x4 6= 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5,

x6, x7)〉, and2 〉〉 and x4 /∈ InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)).
Then InputVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) = {x1, x2, x3, x4,

x5, x6, x7}. The theorem is a consequence of (1) and (3).

Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7.
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(13) InputVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) = {x1, x2, x3, x4, x5, x6,

x7}. The theorem is a consequence of (12).

(14) InputVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) has no pairs. The the-
orem is a consequence of (13).

Let us consider sets x1, x2, x3, x4, x5, x6, x7.

(15) x1, x2, x3, x4, x5, x6, x7, 〈〈〈x1, x2〉, xor2 〉〉, GFA0AdderOutput(x1, x2, x3),
〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, GFA0CarryOutput(x1,

x2, x3), 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉,
xor2 〉〉, GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0Adder
Output(x5, x6, x7), x4), 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOut−
put(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0AdderOutput(x5, x6, x7), x4〉, and2 〉〉, 〈〈〈x4,

GFA0AdderOutput(x1, x2, x3)〉, and2 〉〉 ∈ the carrier of STC0IStr(x1, x2,

x3, x4, x5, x6, x7).
And also GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0

AdderOutput(x5, x6, x7), x4), 〈〈〈x5, x6〉, xor2 〉〉,GFA0AdderOutput(x5, x6,

x7), 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉, GFA0CarryOut−
put(x5, x6, x7) ∈ the carrier of STC0IStr(x1, x2, x3, x4, x5, x6, x7).
The theorem is a consequence of (5).

(16) 〈〈〈x1, x2〉, xor2 〉〉, GFA0AdderOutput(x1, x2, x3), 〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2,

x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, GFA0CarryOutput(x1, x2, x3), 〈〈〈GFA0Adder
Output(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, xor2 〉〉,GFA0Adder
Output(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7), x4),
〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉,
〈〈〈GFA0AdderOutput(x5, x6, x7), x4〉, and2 〉〉, 〈〈〈x4,GFA0AdderOutput
(x1, x2, x3)〉, and2 〉〉, GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4), 〈〈〈x5, x6〉, xor2 〉〉, GFA0AdderOutput
(x5, x6, x7), 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉, GFA0Carry
Output(x5, x6, x7) ∈ InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)). The
theorem is a consequence of (10).

(17) Let us consider non pair sets x1, x2, x3, x5, x6, x7, and a set x4. Suppo-
se x4 6= 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉,
xor2 〉〉 and x4 6= 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5,

x6, x7)〉, and2 〉〉 and x4 /∈ InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)).
Then x1, x2, x3, x4, x5, x6, x7 ∈ InputVertices(STC0IStr(x1, x2, x3, x4, x5,

x6, x7)). The theorem is a consequence of (12).

(18) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7. Then x1, x2,
x3, x4, x5, x6, x7 ∈ InputVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)). The
theorem is a consequence of (13).
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Let x1, x2, x3, x4, x5, x6, x7 be sets. The functors: STC0ICarryOutC1(x1, x2,

x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7), STC0ICarry
OutC3(x1, x2, x3, x4, x5, x6, x7), and STC0IAdderOutA3(x1, x2, x3, x4, x5, x6,

x7) yielding elements of InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) are
defined by terms

(Def. 9) GFA0CarryOutput(x1, x2, x3),

(Def. 10) GFA0CarryOutput(x5, x6, x7),

(Def. 11) GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4),

(Def. 12) GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4),

respectively.
Now we state the propositions:

(19) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7, a state s of
STC0ICirc(x1, x2, x3, x4, x5, x6, x7), and elements a1, a2, a3, a4, a5, a6,
a7 of Boolean. Suppose a1 = s(x1) and a2 = s(x2) and a3 = s(x3) and
a4 = s(x4) and a5 = s(x5) and a6 = s(x6) and a7 = s(x7). Then

(i) (Following(s, 2))(STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7)) = (a1∧
a2 ∨ a2 ∧ a3) ∨ a3 ∧ a1, and

(ii) (Following(s, 2))(STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7)) = (a5∧
a6 ∨ a6 ∧ a7) ∨ a7 ∧ a5, and

(iii) (Following(s, 4))(STC0ICarryOutC3(x1, x2, x3, x4, x5, x6, x7)) =
(((a1⊕a2)⊕a3)∧ ((a5⊕a6)⊕a7)∨ ((a5⊕a6)⊕a7)∧a4)∨a4∧ ((a1⊕
a2)⊕ a3), and

(iv) (Following(s, 4))(STC0IAdderOutA3(x1, x2, x3, x4, x5, x6, x7)) =
(((((a1 ⊕ a2)⊕ a3)⊕ a4)⊕ a5)⊕ a6)⊕ a7, and

(v) (Following(s, 4))(x1) = a1, and

(vi) (Following(s, 4))(x2) = a2, and

(vii) (Following(s, 4))(x3) = a3, and

(viii) (Following(s, 4))(x4) = a4, and

(ix) (Following(s, 4))(x5) = a5, and

(x) (Following(s, 4))(x6) = a6, and

(xi) (Following(s, 4))(x7) = a7.

(20) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7, and a state s
of STC0ICirc(x1, x2, x3, x4, x5, x6, x7). Then Following(s, 4) is stable. The
theorem is a consequence of (9).
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3. Properties of STC Circuit Structure (LAYER-III)

Let x1, x2, x3, x4, x5, x6, x7 be sets. The functor STC0Str(x1, x2, x3, x4, x5,

x6, x7) yielding an unsplit, non void, strict, non empty many sorted signa-
ture with arity held in gates and Boolean denotation held in gates is defined by
the term

(Def. 13) STC0IStr(x1, x2, x3, x4, x5, x6, x7)+·BitGFA0Str(STC0ICarryOutC1(x1,

x2, x3, x4, x5, x6, x7),STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7),STC0I
CarryOutC3(x1, x2, x3, x4, x5, x6, x7)).

The functor STC0Circ(x1, x2, x3, x4, x5, x6, x7) yielding a strict, Boolean cir-
cuit of STC0Str(x1, x2, x3, x4, x5, x6, x7) with denotation held in gates is defined
by the term

(Def. 14) STC0ICirc(x1, x2, x3, x4, x5, x6, x7)+·BitGFA0Circ(STC0ICarryOutC1
(x1, x2, x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7),
STC0ICarryOutC3(x1, x2, x3, x4, x5, x6, x7)).

Let us consider sets x1, x2, x3, x4, x5, x6, x7. Now we state the propositions:

(21) InnerVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) =
InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7))∪
{〈〈〈STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2,

x3, x4, x5, x6, x7)〉, xor2 〉〉,GFA0AdderOutput(STC0ICarryOutC1(x1, x2,

x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7), STC0ICa−
rryOutC3(x1, x2, x3, x4, x5, x6, x7))}∪

{〈〈〈STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2,

x3, x4, x5, x6, x7)〉, and2 〉〉, 〈〈〈STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7),
STC0ICarryOutC3(x1, x2, x3, x4, x5, x6, x7)〉, and2 〉〉, 〈〈〈STC0ICarryOut
C3(x1, x2, x3, x4, x5, x6, x7),STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7)〉,
and2 〉〉,GFA0CarryOutput(STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7),
STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7), STC0ICarryOutC3(x1, x2,

x3, x4, x5, x6, x7))}.
(22) InnerVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) = {〈〈〈x1, x2〉, xor2 〉〉,

GFA0AdderOutput(x1, x2, x3)}∪ {〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3,

x1〉, and2 〉〉,GFA0CarryOutput(x1, x2, x3)}∪{〈〈〈x5, x6〉, xor2 〉〉,GFA0Adder
Output(x5, x6, x7)} ∪ {〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉,
GFA0CarryOutput(x5, x6, x7)}∪{〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0
AdderOutput(x5, x6, x7)〉, xor2 〉〉,GFA0AdderOutput(GFA0AdderOutput
(x1, x2, x3),GFA0AdderOutput(x5, x6, x7), x4)} ∪ {〈〈〈GFA0AdderOutput
(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0AdderOutput
(x5, x6, x7), x4〉, and2 〉〉, 〈〈〈x4,GFA0AdderOutput(x1, x2, x3)〉, and2 〉〉,GFA0
CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7),
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x4)} ∪ {〈〈〈GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput(x5, x6, x7)〉,
xor2 〉〉, GFA0AdderOutput(GFA0CarryOutput(x1, x2, x3),GFA0Carry
Output(x5, x6, x7), GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4))} ∪ {〈〈〈GFA0CarryOutput(x1, x2, x3),
GFA0CarryOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0CarryOutput(x5, x6, x7),
GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3), GFA0AdderOutput
(x5, x6, x7), x4)〉, and2 〉〉, 〈〈〈GFA0CarryOutput(GFA0AdderOutput(x1, x2,

x3),GFA0AdderOutput(x5, x6, x7), x4), GFA0CarryOutput(x1, x2, x3)〉,
and2 〉〉, GFA0CarryOutput(GFA0CarryOutput(x1, x2, x3), GFA0Carry
Output(x5, x6, x7), GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4))}. The theorem is a consequence of (21)
and (10).

(23) InnerVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) is a binary relation.

Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7.

(24) InputVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) = {x1, x2, x3, x4, x5, x6,

x7}. The theorem is a consequence of (10), (14), and (13).

(25) InputVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) has no pairs. The the-
orem is a consequence of (24).

Let us consider sets x1, x2, x3, x4, x5, x6, x7.

(26) x1, x2, x3, x4, x5, x6, x7, 〈〈〈x1, x2〉, xor2 〉〉, 〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉,
and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, 〈〈〈x5, x6〉, xor2 〉〉, 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉,
〈〈〈x7, x5〉, and2 〉〉, GFA0AdderOutput(x1, x2, x3), GFA0CarryOutput(x1, x2,

x3), GFA0AdderOutput(x5, x6, x7), GFA0CarryOutput(x5, x6, x7), 〈〈〈GFA0
AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, xor2 〉〉, 〈〈〈GFA0Ad
derOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0Add
erOutput(x5, x6, x7), x4〉, and2 〉〉,〈〈〈x4,GFA0AdderOutput(x1, x2, x3)〉, and2〉〉
∈ the carrier of STC0Str(x1, x2, x3, x4, x5, x6, x7).

And also GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0Add
erOutput(x5, x6, x7), x4),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4), 〈〈〈GFA0CarryOutput(x1, x2, x3),GFA0
CarryOutput(x5, x6, x7)〉, xor2 〉〉,GFA0AdderOutput(GFA0CarryOutput(x1,

x2, x3),GFA0CarryOutput(x5, x6, x7),GFA0CarryOutput(GFA0AdderOut−
put(x1, x2, x3),GFA0AdderOuput(x5, x6, x7), x4)), 〈〈〈GFA0CarryOutput(x1,

x2, x3),GFA0CarryOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0CarryOutput(x5, x6,

x7),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5,x6,x7), x4)〉, and2 〉〉,〈〈〈GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4),GFA0CarryOutput(x1, x2, x3)〉, and2 〉〉,
GFA0CarryOutput(GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput(x5,

x6, x7),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOut
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put(x5, x6, x7), x4)) ∈ the carrier of STC0Str(x1, x2, x3, x4, x5, x6, x7).
The theorem is a consequence of (15).

(27) 〈〈〈x1, x2〉, xor2 〉〉, 〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, 〈〈〈x5,

x6〉, xor2 〉〉, 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉, GFA0Add
erOutput(x1, x2, x3), GFA0CarryOutput(x1, x2, x3), GFA0AdderOutput
(x5, x6, x7), GFA0CarryOutput(x5, x6, x7), 〈〈〈GFA0AdderOutput(x1, x2,

x3),GFA0AdderOutput(x5,x6, x7)〉,xor2 〉〉, 〈〈〈GFA0AdderOutput(x1,x2, x3),
GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0AdderOutput(x5, x6, x7),
x4〉, and2 〉〉, 〈〈〈x4,GFA0AdderOutput(x1, x2, x3)〉, and2 〉〉, GFA0AdderOut
put(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7), x4)
GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5,

x6,x7),x4), 〈〈〈GFA0CarryOutput(x1,x2, x3),GFA0CarryOutput(x5,x6, x7)〉,
xor2 〉〉, GFA0AdderOutput(GFA0CarryOutput(x1, x2, x3),GFA0CarryOut
put(x5, x6, x7), GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3), GFA0
Adder Output(x5, x6, x7), x4)) ∈ InnerVertices(STC0Str(x1, x2, x3, x4, x5,

x6, x7)).
And also 〈〈〈GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput

(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0CarryOutput(x5, x6, x7),GFA0CarryOutput
(GFA0AdderOutput(x1,x2, x3),GFA0AdderOutput(x5, x6, x7), x4)〉, and2 〉〉,
〈〈〈GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4),GFA0CarryOutput(x1, x2, x3)〉, and2 〉〉, GFA0CarryOutput
(GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput(x5, x6, x7),GFA0Carry
Output(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7), x4))
∈ Inner Vertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)). The theorem is a con-
sequence of (22).

(28) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7. Then x1, x2,
x3, x4, x5, x6, x7 ∈ InputVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)). The
theorem is a consequence of (24).

Let x1, x2, x3, x4, x5, x6, x7 be sets. The functors: STC0OutS0(x1, x2, x3, x4,

x5, x6, x7), STC0OutS1(x1, x2, x3, x4, x5, x6, x7), and STC0OutS2(x1, x2, x3,

x4, x5, x6, x7) yielding elements of InnerVertices(STC0Str(x1, x2, x3, x4, x5, x6,

x7)) are defined by terms

(Def. 15) GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4),

(Def. 16) GFA0AdderOutput(GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput
(x5, x6, x7),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0Ad−
derOutput(x5, x6, x7), x4)),

(Def. 17) GFA0CarryOutput(GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput
(x5, x6, x7),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0Ad−
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derOutput(x5, x6, x7), x4)),

respectively. Now we state the propositions:

(29) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7, a state s of
STC0Circ(x1, x2, x3, x4, x5, x6, x7), and elements a1, a2, a3, a4, a5, a6, a7

of Boolean. Suppose a1 = s(x1) and a2 = s(x2) and a3 = s(x3) and
a4 = s(x4) and a5 = s(x5) and a6 = s(x6) and a7 = s(x7). Then

(i) (Following(s, 4))(STC0OutS0(x1, x2, x3, x4, x5, x6, x7)) =

(((((a1 ⊕ a2)⊕ a3)⊕ a4)⊕ a5)⊕ a6)⊕ a7, and

(ii) (Following(s, 6))(STC0OutS1(x1, x2, x3, x4, x5, x6, x7)) = (((a1∧a2∨
a2 ∧ a3) ∨ a3 ∧ a1)⊕ ((a5 ∧ a6 ∨ a6 ∧ a7) ∨ a7 ∧ a5))⊕ ((((a1 ⊕ a2)⊕
a3)∧ ((a5 ⊕ a6)⊕ a7)∨ ((a5 ⊕ a6)⊕ a7)∧ a4)∨ a4 ∧ ((a1 ⊕ a2)⊕ a3)),
and

(iii) (Following(s, 6))(STC0OutS2(x1, x2, x3, x4, x5, x6, x7)) = (((a1∧a2∨
a2∧a3)∨a3∧a1)∧ ((a5∧a6∨a6∧a7)∨a7∧a5)∨ ((a5∧a6∨a6∧a7)∨
a7∧a5)∧ ((((a1⊕a2)⊕a3)∧ ((a5⊕a6)⊕a7)∨ ((a5⊕a6)⊕a7)∧a4)∨
a4 ∧ ((a1 ⊕ a2)⊕ a3)))∨ ((((a1 ⊕ a2)⊕ a3)∧ ((a5 ⊕ a6)⊕ a7)∨ ((a5 ⊕
a6)⊕ a7)∧ a4)∨ a4 ∧ ((a1⊕ a2)⊕ a3))∧ ((a1 ∧ a2 ∨ a2 ∧ a3)∨ a3 ∧ a1),
and

(iv) (Following(s, 6))(x1) = a1, and

(v) (Following(s, 6))(x2) = a2, and

(vi) (Following(s, 6))(x3) = a3, and

(vii) (Following(s, 6))(x4) = a4, and

(viii) (Following(s, 6))(x5) = a5, and

(ix) (Following(s, 6))(x6) = a6, and

(x) (Following(s, 6))(x7) = a7.

(30) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7, and a state s
of STC0Circ(x1, x2, x3, x4, x5, x6, x7). Then Following(s, 6) is stable. The
theorem is a consequence of (20).
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Summary. This article formalized rings of fractions in the Mizar system
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1. Preliminaries:
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(Def. 1) there exists an element r1 of R such that r1 6= 0R and r · r1 = 0R.

Let A be a non degenerated, commutative ring. Let us observe that there
exists an element of A which is zero-divisible.

Let us consider A.
A zero-divisor of A is a zero-divisible element of A. Now we state the pro-

positions:

(1) 0A is a zero-divisor of A.

(2) 1A is not a zero-divisor of A.

Let us consider A. The functor ZeroDivSet(A) yielding a subset of A is
defined by the term

(Def. 2) {a, where a is an element of A : a is a zero-divisor of A}.

The functor NonZeroDivSet(A) yielding a subset of A is defined by the term

(Def. 3) ΩA \ (ZeroDivSet(A)).

Let us note that ZeroDivSet(A) is non empty and NonZeroDivSet(A) is non
empty.

Now we state the propositions:

(3) 0A /∈ NonZeroDivSet(A). The theorem is a consequence of (1).

(4) If A is an integral domain, then {0A} = ZeroDivSet(A). The theorem is
a consequence of (1).

(5) {1R} is multiplicatively closed.

Let us consider R. One can check that there exists a non empty subset of R
which is multiplicatively closed.

Let us consider A. Let V be a subset of A. We say that V is without zero if
and only if

(Def. 4) 0A /∈ V .

Let us observe that there exists a non empty, multiplicatively closed subset
of A which is without zero.

Now we state the propositions:

(6) ΩA \ p is multiplicatively closed.

(7) Let us consider a proper ideal J of A. Then multClSet(J, a) is multipli-
catively closed.

Let us consider A. One can check that NonZeroDivSet(A) is multiplicatively
closed.

Let us consider R. The functor UnitSet(R) yielding a subset of R is defined
by the term

(Def. 5) {a, where a is an element of R : a is a unit of R}.

Let us observe that UnitSet(R) is non empty.
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Now we state the proposition:

(8) If r1 ∈ UnitSet(R), then r1 is right mult-cancelable.
Proof: Consider r2 such that r2 · r1 = 1R. For every elements u, v of R
such that u · r1 = v · r1 holds u = v. �

Let us consider R. Let r be an element of R. Assume r ∈ UnitSet(R). The
functor recip(r) yielding an element of R is defined by

(Def. 6) it · r = 1R.

We introduce the notation r−1 as a synonym of recip(r).
Let u, v be elements of R. The functor u/v yielding an element of R is

defined by the term

(Def. 7) u · recip(u).

Let us consider a unit u of R and an element v of R. Now we state the
propositions:

(9) If f inherits ring homomorphism, then f(u) is a unit of R1 and f(u)−1 =
f(u−1).

(10) If f inherits ring homomorphism, then f(v · (u−1)) = f(v) · (f(u)−1).
The theorem is a consequence of (9).

2. Equivalence Relation of Fractions

In the sequel S denotes a non empty, multiplicatively closed subset of R.
Let us considerR and S. The functor Frac(S) yielding a subset of (the carrier

of R)× (the carrier of R) is defined by

(Def. 8) for every set x, x ∈ it iff there exist elements a, b of R such that x = 〈〈a,
b〉〉 and b ∈ S.

Now we state the proposition:

(11) Frac(S) = ΩR × S.

Let us consider R and S. Let us observe that Frac(S) is non empty.
The functor frac1(S) yielding a function from R into Frac(S) is defined by

(Def. 9) for every object o such that o ∈ the carrier of R holds it(o) = 〈〈o, 1R〉〉.
From now on u, v, w, x, y, z denote elements of Frac(S).
Let us consider R and S. Let u, v be elements of Frac(S). The functor

FracAdd(u, v) yielding an element of Frac(S) is defined by the term

(Def. 10) 〈〈(u)1 · (v)2 + (v)1 · (u)2, (u)2 · (v)2〉〉.
One can verify that the functor is commutative.

The functor FracMult(u, v) yielding an element of Frac(S) is defined by the
term
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(Def. 11) 〈〈(u)1 · (v)1, (u)2 · (v)2〉〉.
One can check that the functor is commutative.

Let us consider x and y. The functors: x + y and x · y yielding elements of
Frac(S) are defined by terms

(Def. 12) FracAdd(x, y),

(Def. 13) FracMult(x, y),

respectively. Now we state the propositions:

(12) FracAdd(x,FracAdd(y, z)) = FracAdd(FracAdd(x, y), z).

(13) FracMult(x,FracMult(y, z)) = FracMult(FracMult(x, y), z).

Let us consider R and S. Let x, y be elements of Frac(S). We say that
x =FrS y if and only if

(Def. 14) there exists an element s1 of R such that s1 ∈ S and ((x)1 ·((y)2)−(y)1 ·
((x)2)) · s1 = 0R.

Now we state the propositions:

(14) If 0R ∈ S, then x =FrS y.

(15) x =FrS x.

(16) If x =FrS y, then y =FrS x.

(17) If x =FrS y and y =FrS z, then x =FrS z.

Let us consider R and S. The functor EqRel(S) yielding an equivalence
relation of Frac(S) is defined by

(Def. 15) 〈〈u, v〉〉 ∈ it iff u =FrS v.

Now we state the propositions:

(18) x ∈ [y]EqRel(S) if and only if x =FrS y.

(19) [x]EqRel(S) = [y]EqRel(S) if and only if x =FrS y.
Proof: Set E = EqRel(S). If [x]E = [y]E , then x =FrS y. x ∈ [y]E . �

(20) If x =FrS u and y =FrS v, then FracMult(x, y) =FrS FracMult(u, v).

(21) If x =FrS u and y =FrS v, then FracAdd(x, y) =FrS FracAdd(u, v).

(22) (x+ y) · z =FrS x · z + y · z.
Let us consider R and S. The functors: 0S×SR and IS×SR yielding elements of

Frac(S) are defined by terms

(Def. 16) 〈〈0R, 1R〉〉,
(Def. 17) 〈〈1R, 1R〉〉,

respectively. Now we state the proposition:

(23) Let us consider an element s of S. If x = 〈〈s, s〉〉, then x =FrS I
S×S
R .
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3. Construction of Ring of Fractions

Let us consider R and S. The functor FracRing(S) yielding a strict double
loop structure is defined by

(Def. 18) the carrier of it = Classes EqRel(S) and 1it = [IS×SR ]EqRel(S) and 0it =

[0S×SR ]EqRel(S) and for every elements x, y of it, there exist elements a, b
of Frac(S) such that x = [a]EqRel(S) and y = [b]EqRel(S) and (the addition
of it)(x, y) = [a+ b]EqRel(S) and for every elements x, y of it, there exist
elements a, b of Frac(S) such that x = [a]EqRel(S) and y = [b]EqRel(S) and
(the multiplication of it)(x, y) = [a · b]EqRel(S).

We introduce the notation S∼R as a synonym of FracRing(S).
One can verify that S∼R is non empty.
Now we state the proposition:

(24) 0R ∈ S if and only if S∼R is degenerated. The theorem is a consequence
of (19).

In the sequel a, b, c denote elements of Frac(S) and x, y, z denote elements
of S∼R.

Now we state the propositions:

(25) There exists an element a of Frac(S) such that x = [a]EqRel(S).

(26) If x = [a]EqRel(S) and y = [b]EqRel(S), then x · y = [a · b]EqRel(S). The
theorem is a consequence of (19) and (20).

(27) x · y = y · x. The theorem is a consequence of (25) and (26).

(28) If x = [a]EqRel(S) and y = [b]EqRel(S), then x + y = [a+ b]EqRel(S). The
theorem is a consequence of (19) and (21).

(29) S∼R is a ring.
Proof: x + y = y + x. (x + y) + z = x + (y + z). x + 0S∼R = x. x is
right complementable. (x + y) · z = x · z + y · z. x · (y + z) = x · y + x · z
and (y + z) · x = y · x + z · x. (x · y) · z = x · (y · z). x · (1S∼R) = x and
1S∼R · x = x. �

Let us consider R and S. One can verify that S∼R is commutative, Abelian,
add-associative, right zeroed, right complementable, associative, well unital, and
distributive.

Now we state the proposition:

(30) There exist elements r1, r2 of R such that

(i) r2 ∈ S, and

(ii) z = [〈〈r1, r2〉〉]EqRel(S).

The theorem is a consequence of (25).
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In the sequel S denotes a without zero, non empty, multiplicatively closed
subset of A.

Let us consider A and S. The canonical homomorphism of S into quotient
field yielding a function from A into S∼A is defined by

(Def. 19) for every object o such that o ∈ the carrier of A holds it(o) =
[(frac1(S))(o)]EqRel(S).

Let us observe that the canonical homomorphism of S into quotient field is
additive, multiplicative, and unity-preserving.

Now we state the propositions:

(31) Let us consider elements a, b of A. Then (the canonical homomorphism
of S into quotient field)(a − b) = (the canonical homomorphism of S
into quotient field)(a)− (the canonical homomorphism of S into quotient
field)(b).

(32) Suppose 0A /∈ S. Then ker the canonical homomorphism of S into
quotient field ⊆ ZeroDivSet(A).
Proof: For every o such that o ∈ ker the canonical homomorphism of S
into quotient field holds o ∈ ZeroDivSet(A). �

(33) Suppose 0A /∈ S and A is an integral domain. Then

(i) ker the canonical homomorphism of S into quotient field = {0A}, and

(ii) the canonical homomorphism of S into quotient field is one-to-one.

Proof: ker the canonical homomorphism of S into quotient field ⊆ ZeroDiv
Set(A). ZeroDivSet(A) = {0A}. For every objects x, y such that x, y ∈
dom(the canonical homomorphism of S into quotient field) and (the canoni-
cal homomorphism of S into quotient field)(x) = (the canonical homomor-
phism of S into quotient field)(y) holds x = y. �

4. Localization in Terms of Prime Ideals

From now on p denotes an element of the spectrum of A.
Let us consider A and p. The functor Loc(A, p) yielding a subset of A is

defined by the term

(Def. 20) ΩA \ p.

One can check that Loc(A, p) is non empty and Loc(A, p) is multiplicatively
closed and Loc(A, p) is without zero.

The functor A∼p yielding a ring is defined by the term

(Def. 21) Loc(A, p)∼A.

One can verify that A∼p is non degenerated and A∼p is commutative.
The functor LocIdeal(p) yielding a subset of ΩA∼p is defined by the term
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(Def. 22) {y, where y is an element of A∼p : there exists an element a of
Frac(Loc(A, p)) such that a ∈ p× Loc(A, p) and y = [a]EqRel(Loc(A,p))}.

Observe that LocIdeal(p) is non empty.
In the sequel a, m, n denote elements of A∼p.
Now we state the propositions:

(34) LocIdeal(p) is a proper ideal of A∼p.
Proof: Reconsider M = LocIdeal(p) as a subset of A∼p. For every ele-
ments m, n of A∼p such that m, n ∈ M holds m + n ∈ M . For every
elements x, m of A∼p such that m ∈M holds x ·m ∈M . M is proper by
[2, (19)], (19). �

(35) Let us consider an object x. Suppose x ∈ ΩA∼p \ (LocIdeal(p)). Then x

is a unit of A∼p. The theorem is a consequence of (25) and (11).

(36) (i) A∼p is local, and

(ii) LocIdeal(p) is a maximal ideal of A∼p.
Proof: Reconsider J = LocIdeal(p) as a proper ideal of A∼p. A∼p is
local. J is a maximal ideal of A∼p by [8, (8), (11)], (35). �

5. Universal Property of Ring of Fractions

From now on f denotes a function from A into B.
Now we state the proposition:

(37) Let us consider an element s of S. Suppose f inherits ring homomorphism
and f◦S ⊆ UnitSet(B). Then f(s) is a unit of B.

Let us consider A, B, S, and f . Assume f inherits ring homomorphism and
f◦S ⊆ UnitSet(B). The functor UnivMap(S, f) yielding a function from S∼A
into B is defined by

(Def. 23) for every object x such that x ∈ the carrier of S∼A there exist elements
a, s of A such that s ∈ S and x = [〈〈a, s〉〉]EqRel(S) and it(x) = f(a) ·
(f(s)−1).

Now we state the propositions:

(38) If f inherits ring homomorphism and f◦S ⊆ UnitSet(B),
then UnivMap(S, f) is additive.
Proof: For every elements x, y of S∼A, (UnivMap(S, f))(x+ y) =
(UnivMap(S, f))(x) + (UnivMap(S, f))(y). �

(39) If f inherits ring homomorphism and f◦S ⊆ UnitSet(B),
then UnivMap(S, f) is multiplicative.
Proof: For every elements x, y of S∼A, (UnivMap(S, f))(x · y) =
(UnivMap(S, f))(x) · (UnivMap(S, f))(y). �
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(40) If f inherits ring homomorphism and f◦S ⊆ UnitSet(B),
then UnivMap(S, f) is unity-preserving.
Proof: (UnivMap(S, f))(1S∼A) = 1B. �

(41) If f inherits ring homomorphism and f◦S ⊆ UnitSet(B),
then UnivMap(S, f) inherits ring homomorphism.

(42) Suppose f inherits ring homomorphism and f◦S ⊆ UnitSet(B). Then
f = (UnivMap(S, f)) · (the canonical homomorphism of S into quotient
field).
Proof: Set g1 = (UnivMap(S, f)) · (the canonical homomorphism of
S into quotient field). For every object x such that x ∈ dom f holds
f(x) = g1(x) by (19), (37), [5, (8)]. �

6. The Total-Quotient Ring
and the Quotient Field of Integral Domain

Let us consider A. The functor TotalQuotRing(A) yielding a ring is defined
by the term

(Def. 24) NonZeroDivSet(A)∼A.

Observe that TotalQuotRing(A) is non degenerated.
In the sequel x denotes an object.
Now we state the proposition:

(43) If A is a field, then IdealsA = {{0A}, the carrier of A}.
Proof: If x ∈ IdealsA, then x ∈ {{0A}, the carrier of A}.
If x ∈ {{0A}, the carrier of A}, then x ∈ IdealsA. �

From now on A denotes an integral domain.

(44) (i) NonZeroDivSet(A) = ΩA \ {0A}, and

(ii) NonZeroDivSet(A) is a without zero, non empty, multiplicatively
closed subset of A.

The theorem is a consequence of (4).

(45) Let us consider an element a of A. Then a ∈ NonZeroDivSet(A) if and
only if a 6= 0A. The theorem is a consequence of (44).

(46) TotalQuotRing(A) is a field. The theorem is a consequence of (4), (30),
and (19).

(47) Let us consider an integral domain A. Then the field of quotients of A
is ring isomorphic to TotalQuotRing(A).
Proof: Set S = NonZeroDivSet(A). Set B = the field of quotients of
A. Set f = the canonical homomorphism of A into quotient field. f◦S ⊆
UnitSet(B). Reconsider S = NonZeroDivSet(A) as a without zero, non
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empty, multiplicatively closed subset of A. UnivMap(S, f) inherits ring
homomorphism. TotalQuotRing(A) is a field. Set g = UnivMap(S, f). For
every object y such that y ∈ ΩB holds y ∈ rng g. �
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Summary. The subset sum problem is a basic problem in the field of
theoretical computer science, especially in the complexity theory [8]. The input
is a sequence of positive integers and a target positive integer. The task is to
determine if there exists a subsequence of the input sequence with sum equal
to the target integer. It is known that the problem is NP-hard [2] and can be
solved by dynamic programming in pseudo-polynomial time [1]. In this article
we formalize the recurrence relation of the dynamic programming.

MSC: 90C39 68Q25 68V20

Keywords: dynamic programming; subset sum problem; complexity theory

MML identifier: PRSUBSET, version: 8.1.09 5.60.1371

1. Preliminaries

Let x be a finite sequence and I be a set. The functor Seq(x, I) yielding
a finite sequence is defined by the term

(Def. 1) Seq(x�I).
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Let D be a set and x be a D-valued finite sequence. One can check that
Seq(x, I) is D-valued.

Let x be a real-valued finite sequence. Let us observe that Seq(x, I) is real-
valued.

Let D be a set, x be a D-valued finite sequence, and i be a natural number.
Let us observe that x�i is D-valued as a finite sequence-like function.

Let x be a real-valued finite sequence. One can verify that x�i is real-valued
as a finite sequence-like function.

2. Summing Up Finite Sequences

Let x be an R-valued finite sequence and a be a real number. We say that
the sum of x is equal to a if and only if

(Def. 2) there exists a set I such that I ⊆ domx and
∑

Seq(x, I) = a.

The functor Qx yielding a function from Seg lenx×R into Boolean is defined
by

(Def. 3) for every natural number i and for every real number s such that 1 ¬
i ¬ lenx holds if the sum of x�i is equal to s, then it(i, s) = true and if
the sum of x�i is not equal to s, then it(i, s) = false.

Let A be a subset of N, i be a natural number, s be a real number, and f

be a function from A× R into Boolean. Let us note that f(i, s) is Boolean.
Let a, b be objects. The functor a=Σ b yielding an object is defined by the

term

(Def. 4) (a = b→ true, false).
Note that a=Σ b is Boolean.
Let a, b be extended reals. The functor a¬Σ b yielding an object is defined

by the term

(Def. 5) (a > b→ false, true).
Let us note that a¬Σ b is Boolean.
Now we state the propositions:

(1) Let us consider a real number s, and an R-valued finite sequence x.
Suppose 1 ¬ lenx. Then Qx(1, s) = (x(1) =Σ s) ∨ (s=Σ 0).

(2) Let us consider functions f , g, and sets X, Y. Suppose rng g ⊆ X. Then
(f�(X ∪ Y )) · g = (f�X) · g.
Proof: For every object i, i ∈ dom((f�(X ∪ Y )) · g) iff i ∈ dom g and
g(i) ∈ dom(f�X). For every object i such that i ∈ dom((f�(X ∪ Y )) · g)
holds ((f�(X ∪ Y )) · g)(i) = (f�X)(g(i)). �
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(3) Let us consider an R-valued finite sequence x, a natural number i, and
a set I0. Suppose I0 ⊆ Seg i and Seg(i + 1) ⊆ domx. Then Seq(x�(i +
1), I0 ∪ {i+ 1}) = Seq(x�i, I0) a 〈x(i+ 1)〉. The theorem is a consequence
of (2).

(4) Let us consider a real-valued finite sequence x. If x 6= ∅ and x is positive,
then 0 <

∑
x.

(5) Let us consider a real-valued finite sequence x, and a natural number i.
Suppose x is positive and 1 ¬ i ¬ lenx. Then

(i) x�i is positive, and

(ii) x�i 6= ∅.

Proof: For every natural number j such that j ∈ dom(x�i) holds 0 <

(x�i)(j) by [4, (112)]. �

(6) Let us consider a real-valued finite sequence x, and a set I. Suppose x
is positive and I ⊆ domx and I 6= ∅. Then

(i) Seq(x, I) is positive, and

(ii) Seq(x, I) 6= ∅.

Proof: For every natural number j such that j ∈ dom(Seq(x, I)) holds
0 < (Seq(x, I))(j). �

3. Recurrence Relation of Dynamic Programming
for the Subset Sum Problem

Now we state the proposition:

(7) Let us consider an R-valued finite sequence x. Suppose x is positive. Let
us consider a natural number i, and a real number s. Suppose 1 ¬ i < lenx.
Then Qx(i+ 1, s) = Qx(i, s) ∨ (x(i+ 1)¬Σ s) ∧Qx(i, s− x(i+ 1)).
Proof: Qx(i+1, s) = true iff Qx(i, s)∨(x(i+1)¬Σ s)∧Qx(i, s−x(i+1)) =
true. �
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Summary. In the Mizar system ([1], [2]), Józef Białas has already given
the one-dimensional Lebesgue measure [4]. However, the measure introduced by
Białas limited the outer measure to a field with finite additivity. So, although it
satisfies the nature of the measure, it cannot specify the length of measurable
sets and also it cannot determine what kind of set is a measurable set. From the
above, the authors first determined the length of the interval by the outer measu-
re. Specifically, we used the compactness of the real space. Next, we constructed
the pre-measure by limiting the outer measure to a semialgebra of intervals. Fur-
thermore, by repeating the extension of the previous measure, we reconstructed
the one-dimensional Lebesgue measure [7], [3].
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1. Properties of Intervals

Now we state the propositions:

(1) Let us consider non empty intervals A, B. Suppose A is open interval
and B is open interval and A ∪B is an interval. Then

(i) A ∪B is open interval, and

(ii) A meets B, and

(iii) inf A < supB or inf B < supA.
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(2) Let us consider open interval subsets A, B of R. If A meets B, then
A ∪ B is an open interval subset of R. The theorem is a consequence of
(1).

(3) Let us consider an interval A, and open interval subsets B, C of R. If
A ⊆ B ∪ C and A meets B and A meets C, then B meets C.

Let us consider non empty sets A, B and extended real numbers p, q, r, s.
Now we state the propositions:

(4) If A = [p, q] and B = [r, s] and A misses B, then q < r or s < p.

(5) If A = [p, q] and B = [r, s[ and A misses B, then q < r or s ¬ p.
(6) If A = [p, q] and B = ]r, s] and A misses B, then q ¬ r or s < p.

(7) If A = [p, q] and B = ]r, s[ and A misses B, then q ¬ r or s ¬ p.
(8) If A = [p, q[ and B = [r, s[ and A misses B, then q ¬ r or s ¬ p.
(9) If A = [p, q[ and B = ]r, s] and A misses B, then q ¬ r or s < p.

(10) If A = [p, q[ and B = ]r, s[ and A misses B, then q ¬ r or s ¬ p.
(11) If A = ]p, q] and B = ]r, s] and A misses B, then q ¬ r or s ¬ p.
(12) If A = ]p, q] and B = ]r, s[ and A misses B, then q ¬ r or s ¬ p.
(13) If A = ]p, q[ and B = ]r, s[ and A misses B, then q ¬ r or s ¬ p.
(14) Let us consider non empty intervals A, B, and extended real numbers p,

q, r, s. Suppose A = [p, q] and B = [r, s] and A misses B. Then A ∪ B is
not an interval. The theorem is a consequence of (4).

Let us consider non empty intervals A, B and extended real numbers p, q,
r, s. Now we state the propositions:

(15) If A = [p, q] and B = [r, s[ and A misses B and A ∪ B is an interval,
then p = s and A ∪B = [r, q]. The theorem is a consequence of (5).

(16) If A = [p, q] and B = ]r, s] and A misses B and A ∪ B is an interval,
then q = r and A ∪B = [p, s]. The theorem is a consequence of (6).

(17) Suppose A = [p, q] and B = ]r, s[ and A misses B and A∪B is an interval.
Then

(i) p = s and A ∪B = ]r, q], or

(ii) q = r and A ∪B = [p, s[.

The theorem is a consequence of (7).

(18) Suppose A = [p, q[ and B = [r, s[ and A misses B and A∪B is an interval.
Then

(i) p = s and A ∪B = [r, q[, or

(ii) q = r and A ∪B = [p, s[.

The theorem is a consequence of (8).



Reconstruction of the one-dimensional Lebesgue measure 95

(19) Let us consider non empty intervals A, B, and extended real numbers p,
q, r, s. Suppose A = [p, q[ and B = ]r, s] and A misses B. Then A ∪ B is
not an interval. The theorem is a consequence of (9).

Let us consider non empty intervals A, B and extended real numbers p, q,
r, s. Now we state the propositions:

(20) Suppose A = [p, q[ and B = ]r, s[ and A misses B and A∪B is an interval.
Then

(i) p = s, and

(ii) A ∪B = ]r, q[.

The theorem is a consequence of (10).

(21) Suppose A = ]p, q] and B = ]r, s] and A misses B and A∪B is an interval.
Then

(i) p = s and A ∪B = ]r, q], or

(ii) q = r and A ∪B = ]p, s].

The theorem is a consequence of (11).

(22) Suppose A = ]p, q] and B = ]r, s[ and A misses B and A∪B is an interval.
Then

(i) q = r, and

(ii) A ∪B = ]p, s[.

The theorem is a consequence of (12).

(23) Let us consider non empty intervals A, B, and extended real numbers p,
q, r, s. Suppose A = ]p, q[ and B = ]r, s[ and A misses B. Then A ∪ B is
not an interval. The theorem is a consequence of (13).

(24) Let us consider real numbers a, b, and a subset I of R1. If I = [a, b],
then I is compact.

2. Tools for Extended Real Sequences

Let f be a finite sequence of elements of R. The functor maxp f yielding
a natural number is defined by

(Def. 1) if len f = 0, then it = 0 and if len f > 0, then it ∈ dom f and for every
natural number i and for every extended reals r1, r2 such that i ∈ dom f

and r1 = f(i) and r2 = f(it) holds r1 ¬ r2 and for every natural number
j such that j ∈ dom f and f(j) = f(it) holds it ¬ j.

The functor minp f yielding a natural number is defined by
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(Def. 2) if len f = 0, then it = 0 and if len f > 0, then it ∈ dom f and for every
natural number i and for every extended reals r1, r2 such that i ∈ dom f

and r1 = f(i) and r2 = f(it) holds r1 ­ r2 and for every natural number
j such that j ∈ dom f and f(j) = f(it) holds it ¬ j.

The functors: max f and min f yielding extended reals are defined by terms

(Def. 3) f(maxp f),

(Def. 4) f(minp f),

respectively.
Let us consider a finite sequence f of elements of R and a natural number

i. Now we state the propositions:

(25) If 1 ¬ i ¬ len f , then f(i) ¬ f(maxp f) and f(i) ¬ max f .

(26) If 1 ¬ i ¬ len f , then f(i) ­ f(minp f) and f(i) ­ min f .

Let us consider a function F and objects x, y. Now we state the propositions:

(27) If x, y ∈ domF , then Swap(F, x, y) = F · (Swap(iddomF , x, y)).

(28) If x, y ∈ domF , then F and Swap(F, x, y) are fiberwise equipotent. The
theorem is a consequence of (27).

Now we state the proposition:

(29) Let us consider a set X, a function F , and objects x, y. Suppose x /∈ X
and y /∈ X. Then F �X = Swap(F, x, y)�X.

3. Open Covering of Intervals

Let A be a subset of R.
An open interval covering of A is an interval covering of A defined by

(Def. 5) for every element n of N, it(n) is open interval.

Let F be an open interval covering of A and n be an element of N. One
can verify that the functor F (n) yields an open interval subset of R. Let F be
a sequence of 2R.

An open interval covering of F is an interval covering of F defined by

(Def. 6) for every element n of N, it(n) is an open interval covering of F (n).

Let H be an open interval covering of F and n be an element of N. Let us
note that the functor H(n) yields an open interval covering of F (n). Let A be
a subset of R. The functor Svc2(A) yielding a subset of R is defined by

(Def. 7) for every extended real number x, x ∈ it iff there exists an open interval
covering F of A such that x = vol(F ).

Let us note that Svc2(A) is non empty. Now we state the propositions:

(30) Let us consider a subset A of R. Then
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(i) Svc2(A) ⊆ Svc(A), and

(ii) inf Svc(A) ¬ inf Svc2(A).

(31) Let us consider a sequence F of 2R, an open interval covering G of F ,
and a sequence H of N × N. Suppose rngH = N × N. Then On(G,H) is
an open interval covering of

⋃
rngF .

(32) Let us consider a subset A of R, and a sequence G of 2R. Suppose A ⊆⋃
rngG and for every element n of N, G(n) is open interval. Then G is

an open interval covering of A.

(33) Let us consider a sequence F of 2R, and a sequence G of (2R)N. Suppose
for every element n of N, G(n) is an open interval covering of F (n). Then
G is an open interval covering of F .

(34) Let us consider a sequence H of N × N. Suppose H is one-to-one and
rngH = N × N. Let us consider a natural number k. Then there exists
an element m of N such that for every sequence F of 2R for every open
interval covering G of F , (Ser((On(G,H)) vol))(k) ¬ (Ser vol(G))(m).

(35) Let us consider a sequence F of 2R, and an open interval covering G of
F . Then inf Svc2(

⋃
rngF ) ¬

∑
vol(G). The theorem is a consequence of

(34) and (31).

Let F be a non empty family of subsets of R. One can verify that an element
of F is a subset of R. Now we state the propositions:

(36) Let us consider an element A of IntervalsR. Suppose A is open interval.
Then there exists an open interval covering F of A such that

(i) F (0) = A, and

(ii) for every natural number n such that n 6= 0 holds F (n) = ∅, and

(iii)
⋃

rngF = A, and

(iv)
∑

((F ) vol) = ∅A.

Proof: Define P[natural number, set] ≡ if $1 = 0, then $2 = A and if
$1 6= 0, then $2 = ∅R. For every element n of N, there exists an element
E of 2R such that P[n,E]. Consider F being a function from N into 2R

such that for every element n of N, P[n, F (n)]. For every natural number
n such that n 6= 0 holds F (n) = ∅. For every object n, 0 ¬ ((F ) vol)(n).
Define P[natural number] ≡ ((

∑κ
α=0(F ) vol(α))κ∈N)($1) = ∅A. For every

natural number n such that P[n] holds P[n+1]. For every natural number
n, P[n].

∑
((F ) vol) = ∅A by [6, (2)], [9, (32)], [5, (52)]. �

(37) Let us consider subsets A, B of R, and an interval covering F of A. If
B ⊆ A, then F is an interval covering of B.
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(38) Let us consider subsets A, B of R, and an open interval covering F of
A. If B ⊆ A, then F is an open interval covering of B. The theorem is
a consequence of (37).

(39) Let us consider subsets A, B of R, an interval covering F of A, and
an interval covering G of B. If F = G, then (F ) vol = (G) vol.

(40) Let us consider a finite sequence F of elements of 2R, and a natural
number k. Suppose for every natural number n such that n ∈ domF holds
F (n) is an open interval subset of R and for every natural number n such
that 1 ¬ n < lenF holds

⋃
rng(F �n) meets F (n+ 1). Then

⋃
rng(F �k) is

an open interval subset of R.
Proof: Define P[natural number] ≡

⋃
rng(F �$1) is an open interval sub-

set of R. For every natural number k such that P[k] holds P[k + 1]. For
every natural number k, P[k]. �

(41) Let us consider a non empty, closed interval subset A of R, and a finite
sequence F of elements of 2R. Suppose A ⊆

⋃
rngF and for every natural

number n such that n ∈ domF holds A meets F (n) and for every natural
number n such that n ∈ domF holds F (n) is an open interval subset of
R. Then there exists a finite sequence G of elements of 2R such that

(i) F and G are fiberwise equipotent, and

(ii) for every natural number n such that 1 ¬ n < lenG holds
⋃

rng(G�n)
meets G(n+ 1).

Proof: Define P[natural number] ≡ if $1 ¬ lenF , then there exists a finite
sequence G of elements of 2R such that F and G are fiberwise equipotent
and for every natural number n such that 1 ¬ n < $1 holds

⋃
rng(G�n)

meets G(n + 1). For every non zero natural number k such that P[k]
holds P[k + 1]. For every non zero natural number k, P[k]. Consider G
being a finite sequence of elements of 2R such that F and G are fiberwise
equipotent and for every natural number n such that 1 ¬ n < lenF holds⋃

rng(G�n) meets G(n+ 1). �

4. Measure of Intervals by OS-Meas

Let us consider an element I of IntervalsR. Now we state the propositions:

(42) If I is open interval, then (OS-Meas)(I) ¬ ∅I. The theorem is a conse-
quence of (36) and (30).

(43) If I 6= ∅ and I is right open interval, then (OS-Meas)(I) ¬ ∅I. The
theorem is a consequence of (36), (38), (39), and (30).
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(44) If I is an interval, then (OS-Meas)(I) ¬ ∅I. The theorem is a consequ-
ence of (42) and (43).

(45) Let us consider a non empty, closed interval subset A of R, a finite
sequence F of elements of 2R, and a finite sequence G of elements of R.
Suppose A ⊆

⋃
rngF and lenF = lenG and for every natural number n

such that n ∈ domF holds F (n) is an open interval subset of R and for
every natural number n such that n ∈ domF holds G(n) = ∅F (n) and for
every natural number n such that n ∈ domF holds A meets F (n). Then
∅A ¬

∑
G.

Proof: Consider F1 being a finite sequence of elements of 2R such that
F and F1 are fiberwise equipotent and for every natural number n such
that 1 ¬ n < lenF1 holds

⋃
rng(F1�n) meets F1(n+ 1). Consider P being

a permutation of domF such that F = F1 ·P . Reconsider G1 = G · (P−1)
as a finite sequence of elements of R. For every natural number n such
that n ∈ domF1 holds G1(n) = ∅F1(n). Define P[natural number] ≡ if
$1 ∈ domF1, then ∅

⋃
rng(F1�$1) ¬

∑
(G1�$1). For every natural num-

ber k such that P[k] holds P[k + 1]. For every natural number k, P[k].⋃
rng(F1� lenF1) is an open interval subset of R. �

(46) Let us consider a non empty set X, a sequence f of X, and natural
numbers i, j. Then there exists a sequence g of X such that

(i) for every natural number n such that n 6= i and n 6= j holds f(n) =
g(n), and

(ii) f(i) = g(j), and

(iii) f(j) = g(i).

Proof: Define P[object, object] ≡ if $1 6= i and $1 6= j, then $2 = f($1)
and if $1 = i, then $2 = f(j) and if $1 = j, then $2 = f(i). For every
element n of N, there exists an element x of X such that P[n, x]. Consider
g being a function from N into X such that for every element n of N,
P[n, g(n)]. �

(47) Let us consider sequences f , g of R. Suppose f is non-negative and there
exists a natural number N such that (Ser f)(N) ¬ (Ser g)(N) and for every
natural number n such that n > N holds f(n) ¬ g(n). Then

∑
f ¬

∑
g.

Proof: Consider N being a natural number such that (Ser f)(N) ¬
(Ser g)(N) and for every natural number n such that n > N holds f(n) ¬
g(n). Define P[natural number] ≡ (Ser f)(N + $1) ¬ (Ser g)(N + $1). For
every natural number k such that P[k] holds P[k + 1]. For every natural
number m, P[m]. For every extended real x such that x ∈ rng Ser f there
exists an extended real y such that y ∈ rng Ser g and x ¬ y. �
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(48) Let us consider sequences f , g of R, and natural numbers j, k. Suppose
k < j and for every natural number n such that n < j holds f(n) = g(n).
Then (Ser f)(k) = (Ser g)(k).
Proof: Define P[natural number] ≡ if $1 ¬ k, then (Ser f)($1) =
(Ser g)($1). For every natural number m such that P[m] holds P[m + 1].
For every natural number m, P[m]. �

(49) Let us consider sequences f , g of R, and natural numbers i, j. Suppose
f is non-negative and i ­ j and for every natural number n such that
n 6= i and n 6= j holds f(n) = g(n) and f(i) = g(j) and f(j) = g(i). Then
(Ser f)(i) = (Ser g)(i).
Proof: For every element k of N, 0 ¬ g(k). �

(50) Let us consider sequences f , g of R, and natural numbers i, j. Suppose
f is non-negative and f(i) = g(j) and f(j) = g(i) and for every natural
number n such that n 6= i and n 6= j holds f(n) = g(n). Let us consider
a natural number n. If n ­ i and n ­ j, then (Ser f)(n) = (Ser g)(n).
Proof: Define P[natural number] ≡ if $1 ­ i and $1 ­ j, then (Ser f)($1) =
(Ser g)($1). For every natural number k such that P[k] holds P[k+ 1]. For
every natural number k, P[k]. �

(51) Let us consider sequences f , g of R, and natural numbers i, j. Suppose
f is non-negative and i ­ j and for every natural number n such that
n 6= i and n 6= j holds f(n) = g(n) and f(i) = g(j) and f(j) = g(i). Then∑
f =

∑
g.

Proof: For every element k of N, 0 ¬ g(k). �

(52) Let us consider a subset A of R, interval coverings F1, F2 of A, and
natural numbers n,m. Suppose for every natural number k such that k 6= n

and k 6= m holds F1(k) = F2(k) and F1(n) = F2(m) and F1(m) = F2(n).
Then vol(F1) = vol(F2). The theorem is a consequence of (51).

(53) Let us consider a subset A of R, interval coverings F1, F2 of A, and
natural numbers n,m. Suppose for every natural number k such that k 6= n

and k 6= m holds F1(k) = F2(k) and F1(n) = F2(m) and F1(m) = F2(n).
Let us consider a natural number k. Suppose k ­ n and k ­ m. Then
(Ser((F1) vol))(k) = (Ser((F2) vol))(k). The theorem is a consequence of
(50).

(54) Let us consider a non empty set X, a sequence s2 of X, and a finite
sequence f of elements of X. Suppose rng f ⊆ rng s2. Then there exists
a natural number N such that rng f ⊆ rng(s2�ZN ).
Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of X such that lenF = $1 and rngF ⊆ rng s2 there exists a natural
number N such that rngF ⊆ rng(s2�ZN ). For every natural number k
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such that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(55) Let us consider a non empty subset A of R, an interval covering F of
A, and a one-to-one finite sequence G of elements of 2R. Suppose rngG ⊆
rngF . Then there exists an interval covering F1 of A such that

(i) for every natural number n such that n ∈ domG holds G(n) = F1(n),
and

(ii) vol(F1) = vol(F ).

Proof: Define P[natural number] ≡ there exists an interval covering F0

of A such that for every natural number n such that n ∈ dom(G�$1) holds
(G�$1)(n) = F0(n) and F0 and F are fiberwise equipotent and vol(F0) =
vol(F ). P[0]. For every natural number k such that P[k] holds P[k + 1].
For every natural number k, P[k]. �

(56) Let us consider a non empty subset A of R, an interval covering F of
A, a one-to-one finite sequence G of elements of 2R, and a finite sequence
H of elements of R. Suppose rngG ⊆ rngF and domG = domH and for
every natural number n, H(n) = ∅G(n). Then

∑
H ¬ vol(F ).

Proof: Consider F1 being an interval covering of A such that for every
natural number n such that n ∈ domG holds G(n) = F1(n) and vol(F1) =
vol(F ). Consider S being a sequence of R such that

∑
H = S(lenH) and

S(0) = 0 and for every natural number n such that n < lenH holds
S(n + 1) = S(n) + H(n + 1). Define P[natural number] ≡ if $1 ¬ lenH,
then S($1) ¬ (Ser((F1) vol))($1). For every natural number n such that
P[n] holds P[n+ 1]. For every natural number n, P[n]. �

(57) Let us consider an interval I. Then ∅I = (OS-Meas)(I). The theorem is
a consequence of (44).

5. Construction of the One-Dimensional Lebesgue Measure

Let F be a finite sequence of elements of IntervalsR and n be a natural
number. Let us note that the functor F (n) yields an interval subset of R. The
functor pre-Meas yielding a non-negative, zeroed function from IntervalsR into
R is defined by the term

(Def. 8) OS-Meas � IntervalsR.

Now we state the propositions:

(58) Let us consider an element I of IntervalsR. Then (pre-Meas)(I) = ∅I.
The theorem is a consequence of (57).

(59) Let us consider an interval I. Then (pre-Meas)(I) = ∅I. The theorem is
a consequence of (58).
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(60) Let us consider elements A, B of IntervalsR. Suppose A misses B and A∪
B is an interval. Then (pre-Meas)(A∪B) = (pre-Meas)(A)+(pre-Meas)(B).
The theorem is a consequence of (58), (14), (15), (59), (16), (17), (19), (18),
(20), (21), (22), and (23).

(61) Let us consider a non empty, disjoint valued finite sequence F of elements
of IntervalsR. Suppose

⋃
F is an interval. Then there exists a natural

number n such that

(i) n ∈ domF , and

(ii) (
⋃
F ) \ F (n) is an interval.

The theorem is a consequence of (26).

(62) Let us consider an interval A. Then (pre-Meas) · 〈A〉 = 〈(pre-Meas)(A)〉.
Proof: Reconsider F = 〈A〉 as a finite sequence of elements of IntervalsR.
For every natural number n such that n ∈ dom((pre-Meas) · F ) holds
((pre-Meas) · F )(n) = 〈(pre-Meas)(A)〉(n). �

(63) Let us consider a disjoint valued finite sequence F of elements of IntervalsR.
Suppose

⋃
F ∈ IntervalsR. Then there exists a disjoint valued finite sequ-

ence G of elements of IntervalsR such that

(i) F and G are fiberwise equipotent, and

(ii) for every natural number n such that n ∈ domG holds
⋃

(G�n) ∈
IntervalsR and (pre-Meas)(

⋃
(G�n)) =

∑
(pre-Meas) · (G�n).

Proof: Define P[natural number] ≡ for every disjoint valued finite se-
quence H of elements of IntervalsR such that lenH = $1 and

⋃
H ∈

IntervalsR there exists a disjoint valued finite sequence G of elements of
IntervalsR such that H and G are fiberwise equipotent and for every na-
tural number n such that n ∈ domG holds

⋃
(G�n) ∈ IntervalsR and

(pre-Meas)(
⋃

(G�n)) =
∑

(pre-Meas) · (G�n). For every natural number k
such that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(64) Let us consider finite sequences F , G of elements of R. Then

(i) if F is without −∞ and G is without −∞, then F a G is without
−∞, and

(ii) if F is without +∞ and G is without +∞, then F a G is without
+∞.

(65) Let us consider a finite sequence F of elements of R, and a natural
number k. Then

(i) if F is without −∞, then F�k is without −∞, and

(ii) if F is without +∞, then F�k is without +∞.
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(66) Let us consider a finite sequence F of elements of R. Then

(i) if F is without −∞, then
∑
F 6= −∞, and

(ii) if F is without +∞, then
∑
F 6= +∞.

Proof: Consider S being a sequence of R such that
∑
F = S(lenF )

and S(0) = 0 and for every natural number n such that n < lenF holds
S(n+1) = S(n)+F (n+1). Define P[natural number] ≡ if $1 ¬ lenF , then
S($1) 6= +∞. For every natural number n such that P[n] holds P[n+ 1].
For every natural number n, P[n]. �

(67) Let us consider without −∞ finite sequences R1, R2 of elements of R. If
R1 and R2 are fiberwise equipotent, then

∑
R1 =

∑
R2.

Proof: Define P[natural number] ≡ for every without −∞ finite sequen-
ces f , g of elements of R such that f and g are fiberwise equipotent and
len f = $1 holds

∑
f =

∑
g. For every natural number n such that P[n]

holds P[n+ 1]. P[0]. For every natural number n, P[n]. �

(68) Let us consider a disjoint valued finite sequence F of elements of IntervalsR.
Suppose

⋃
F ∈ IntervalsR. Then (pre-Meas)(

⋃
F ) =

∑
(pre-Meas) ·F . The

theorem is a consequence of (63), (59), and (67).

(69) Let us consider a disjoint valued function K from N into IntervalsR.
Suppose

⋃
K ∈ IntervalsR. Then (pre-Meas)(

⋃
K) ¬

∑
(pre-Meas) ·K.

Proof: Reconsider F = K as a sequence of 2R. For every element n of N,
((OS-Meas) · F )(n) = ((pre-Meas) ·K)(n). �

One can verify that the functor pre-Meas yields a pre-measure of IntervalsR.
The functor J-Meas yielding a measure on the field generated by IntervalsR is
defined by

(Def. 9) for every set A such that A ∈ the field generated by IntervalsR for
every disjoint valued finite sequence F of elements of IntervalsR such that
A =

⋃
F holds it(A) =

∑
(pre-Meas) · F .

Note that the functor J-Meas yields an induced measure of IntervalsR and
pre-Meas. Now we state the proposition:

(70) J-Meas is completely-additive.

The functor B-Meas yielding a σ-measure on the Borel sets is defined by the
term

(Def. 10) σ-Meas(the Caratheodory measure determined by J-Meas)�(the Borel
sets).

Let us consider an interval A. Now we state the propositions:

(71) (J-Meas)(A) = ∅A. The theorem is a consequence of (62) and (59).

(72) (B-Meas)(A) = ∅A. The theorem is a consequence of (71).
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(73) A ∈ the Borel sets.

The functor L-Field yielding a σ-field of subsets of R is defined by the term

(Def. 11) COM(the Borel sets,B-Meas).

The functor L-Meas yielding a σ-measure on L-Field is defined by the term

(Def. 12) COM(B-Meas).

Observe that L-Meas is complete. Now we state the propositions:

(74) ∅ is a set with measure zero w.r.t. B-Meas. The theorem is a consequence
of (72).

(75) Let us consider a real number a. Then {a} is a set with measure zero
w.r.t. B-Meas. The theorem is a consequence of (72).

(76) The Borel sets ⊆ L-Field. The theorem is a consequence of (74).

(77) Let us consider an interval A. Then (L-Meas)(A) = ∅A. The theorem is
a consequence of (73), (74), and (72).
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Summary. We continue the formal development of rough inclusion func-
tions (RIFs), continuing the research on the formalization of rough sets [15] – a
well-known tool of modelling of incomplete or partially unknown information. In
this article we give the formal characterization of complementary RIFs, following
a paper by Gomolińska [4]. We expand this framework introducing Jaccard index,
Steinhaus generate metric, and Marczewski-Steinhaus metric space [1]. This is
the continuation of [9]; additionally we implement also parts of [2], [3], and the
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0. Introduction

In the paper, continuing our development of rough inclusion functions (RIFs),
we deal with functions complementary to RIFs, and consider distance operators
obtained from such functions.

Quite large part of the Mizar formalization of rough sets [5], [8] was done
by means of the notion of a generalized approximation space understood as a
pair 〈U, ρ〉, where ρ is an indiscernibility relation defined on the universe U .
This reflects the standpoint of Skowron and Stepaniuk [16], based on tolerance
relations instead of equivalence relations (claimed by Pawlak) and further ge-
neralized by Zhu [17], among many others. The framework build in a similar
manner is contained in [10] and [11].
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In the alternative approach, used by Gomolińska [3], approximation spaces
are treated as triples of the form A = (U, I, κ), where U is a non-empty set called
the universe, I : U 7→ ℘U is an uncertainty mapping, and κ : ℘U × ℘U 7→ [0, 1]
is a rough inclusion function. The formalization of uncertainty mappings was
discussed in [13], and the current submission goes further in this direction. Still
however, we can merge our existing approaches via theory merging mechanism
[6], having in mind that we should avoid duplications in the repository of Mizar
texts as much as we can [12].

After filling some gaps in the Mizar Mathematical Library, proving preli-
minary facts needed later, in Sect. 2 we continue the development of functions
complementary to RIFs. Given arbitrary preRIF f (where preRIF stands for a
general mapping from the Cartesian square of the powerset of the universe into
the unit interval, without any additional assumptions), we introduce the Mizar
functor CMap f (see Def. 1), which is of much more general interest. Then we
prove a list of properties of the complementary function on three well-known
RIFs (see [9]): κ£, κ1, and κ2.

Let us briefly recall these three mappings. The first one, standard rough
inclusion function, κ£ based on the ideas of Jan Łukasiewicz [14] is defined as
follows:

κ£(X,Y ) =

{ |X∩Y |
|X| , if X 6= ∅

1, otherwise

Two others are

κ1(X,Y ) =

{ |Y |
|X∪Y | , if X ∪ Y 6= ∅
1, otherwise

and

κ2(X,Y ) =
|(U −X) ∪ Y |

|U |
.

Additionally, we introduce a new type for an object complementary to RIF,
called just co-RIF.

Our testbed for chosen formal approach was Section 4, where full formali-
zation of Proposition 4 from [3] was presented. This was also a step towards
defining three metrics: δL, δ1, and δ2 (Def. 3, 4, and 5, respectively). It is worth
noticing that even if we can deal with fixed rough approximation space, say R,
we give this variable explicitly both in definitions of all three κ functions, and
consequently in corresponding distances δ.

Section 5 contains the definition and very basic properties of Jaccard simi-
larity coefficient Js, widely used in data mining and information retrieval. We
adopt the setting allowing both sets to be empty at the same time (then the
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value of Jaccard index is set to 1). Based on that, in Sect. 6 we define Jaccard
distance (or Marczewski distance) for arbitrary subsets A,B of the universe as
1− Js(A,B).

We met some difficulties in proofs of the triangle inequality for such metrics,
and in order to make it easier for us, we decided to implement some more ideas
from the theory of distances. Namely, we introduced the symmetric difference
metric (Def. 11). Then, using newly defined construction of Steinhaus generate
metric (Def. 10), we can obtain from any distance a new one. The crucial fact was
that the Jaccard distance is precisely Steinhaus generate metric from symmetric
difference distance, hence all ordinary properties of a metric space can be easily
obtained by means of this construction.

In the last section, we show that the value of Marczewski metric on two
subsets A, B of given rough approximation space R is equal to δ1(A,B). As δ1

satisfies the triangle inequality, so does Marczewski metric.

1. Preliminaries

Let us consider finite sets x1, x2. Now we state the propositions:

(1) x1−. x2 = x1 \ x2 + x2 \ x1 .

(2) 2·x1−. x2
x1+x2+x1−. x2

= x1−. x2
x1∪x2

.

Now we state the propositions:

(3) Let us consider sets A, B, C. Then A−. C = (A−. B)−. (B−. C).

(4) Let us consider finite sets A, B. Suppose A ∪ B 6= ∅. Then 1 − A∩B
A∪B

=

A−. B
A∪B

.

(5) Let us consider a finite set R, and subsets X, Y of R. Then X ∪ Y =
X ∩ Y if and only if X = Y.

Observe that there exists a metric space which is finite and non empty.

2. Complementary Rough Inclusion Functions

From now on R denotes a finite approximation space and X, Y, Z denote
subsets of R.

Let R be a finite approximation space and f be a preRIF of R. The functor
CMap f yielding a preRIF of R is defined by

(Def. 1) for every subsets x, y of R, it(x, y) = 1− f(x, y).

Now we state the propositions:
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(6) Let us consider a preRIF f of R. Then CMap CMap f = f .
Proof: Set g = CMap f . For every element x of 2α × 2α, (CMap g)(x) =
f(x), where α is the carrier of R. �

(7) If X 6= ∅, then (CMapκ£(R))(X,Y ) = X\Y
X

.

(8) If X = ∅, then (CMapκ£(R))(X,Y ) = 0.

(9) If X 6= ∅, then (CMapκ£(R))(X,Y ) = κ£(X,Y c).

(10) If X ∪ Y 6= ∅, then (CMapκ1(R))(X,Y ) = X\Y
X∪Y

.

(11) If X ∪ Y = ∅, then (CMapκ1(R))(X,Y ) = 0.

(12) (CMapκ2(R))(X,Y ) = X\Y
ΩR

.

(13) SupposeX 6= ∅. Then κ£(X,Y ) = (CMapκ1(R))(X,Y c)
κ1(Y c,X) = (CMapκ2(R))(X,Y c)

κ2(ΩR,X) .

3. Introducing co-RIFs

Let us consider R. Let f be a preRIF of R. We say that f is co-RIF-like if
and only if

(Def. 2) CMap f is a RIF of R.

Let f be a RIF of R. Let us observe that CMap f is co-RIF-like and there
exists a preRIF of R which is co-RIF-like.

A co-RIF of R is a co-RIF-like preRIF of R.

4. Proposition 6 from [4]

From now on κ denotes a RIF of R. Now we state the propositions:

(14) (CMapκ)(X,Y ) = 0 if and only if X ⊆ Y.
(15) (CMapκ£(R))(X,Y ) = 0 if and only if X ⊆ Y.
Proof: If (CMapκ£(R))(X,Y ) = 0, then X ⊆ Y. �

(16) If Y ⊆ Z, then (CMapκ)(X,Z) ¬ (CMapκ)(X,Y ).

(17) If Y ⊆ Z, then (CMapκ£(R))(X,Z) ¬ (CMapκ£(R))(X,Y ).

(18) (CMapκ2(R))(X,Y ) ¬ (CMapκ1(R))(X,Y ) ¬ (CMapκ£(R))(X,Y ).

(19) Let us consider real numbers a, b, c. If a ¬ b and 0 ¬ c < b and 0 < b,
then a

b ­
a−c
b−c .

(20) If X 6= ∅ and Y = ∅, then (CMapκ1(R))(X,Y ) = 1. The theorem is
a consequence of (10).

(21) If X = ∅ and Y 6= ∅, then (CMapκ1(R))(X,Y ) = 0. The theorem is
a consequence of (10).
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(22) (CMapκ1(R))(X,Y )+(CMapκ1(R))(Y, Z) ­ (CMapκ1(R))(X,Z). The
theorem is a consequence of (14) and (20).

(23) 0 ¬ (CMapκ£(R))(X,Y ) ¬ 1.

(24) 0 ¬ (CMapκ1(R))(X,Y ) + (CMapκ1(R))(Y,X) ¬ 1. The theorem is
a consequence of (11) and (10).

(25) 0 ¬ (CMapκ2(R))(X,Y ) + (CMapκ2(R))(Y,X) ¬ 1. The theorem is
a consequence of (12).

(26) Suppose X = ∅ and Y 6= ∅ or X 6= ∅ and Y = ∅.
Then (CMapκ£(R))(X,Y )+(CMapκ£(R))(Y,X) = (CMapκ1(R))(X,Y )
+(CMapκ1(R))(Y,X) = 1.

Let us consider R. The functors: δL(R), δ1(R), and δ2(R) yielding preRIFs
of R are defined by conditions

(Def. 3) for every subsets x, y of R, δL(R)(x, y) =
(CMapκ£(R))(x,y)+(CMapκ£(R))(y,x)

2 ,

(Def. 4) for every subsets x, y of R, δ1(R)(x, y) =
(CMapκ1(R))(x, y) + (CMapκ1(R))(y, x),

(Def. 5) for every subsets x, y of R, δ2(R)(x, y) =
(CMapκ2(R))(x, y) + (CMapκ2(R))(y, x),

respectively. Now we state the propositions:

(27) (δL(R))(X,Y ) = 0 if and only if X = Y. The theorem is a consequence
of (14).

(28) (δL(R))(X,Y ) = (δL(R))(Y,X).

(29) If X 6= ∅ and Y = ∅ or X = ∅ and Y 6= ∅, then (δL(R))(X,Y ) = 1
2 .

(30) Suppose X 6= ∅ and Y 6= ∅. Then (δL(R))(X,Y ) =
X\Y

X
+ Y \X

Y
2 . The

theorem is a consequence of (7).

(31) (δ1(R))(X,Y ) = X−. Y
X∪Y

. The theorem is a consequence of (10) and (14).

(32) (δ2(R))(X,Y ) = X−. Y
ΩR

. The theorem is a consequence of (12).

(33) (δ1(R))(X,Y ) + (δ1(R))(Y,Z) ­ (δ1(R))(X,Z). The theorem is a conse-
quence of (22).

(34) (δ1(R))(X,Y ) = 0 if and only if X = Y. The theorem is a consequence
of (14).

(35) (δ1(R))(X,Y ) = (δ1(R))(Y,X).

(36) (δ2(R))(X,Y ) = 0 if and only if X = Y. The theorem is a consequence
of (14).

(37) (δ2(R))(X,Y ) = (δ2(R))(Y,X).
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(38) (CMapκ2(R))(X,Y )+(CMapκ2(R))(Y, Z) ­ (CMapκ2(R))(X,Z). The
theorem is a consequence of (12).

(39) (δ2(R))(X,Y ) + (δ2(R))(Y,Z) ­ (δ2(R))(X,Z). The theorem is a conse-
quence of (38).

5. Jaccard Index Measuring Similarity of Sets

LetR be a finite set andA,B be subsets ofR. The functor JaccardIndex(A,B)
yielding an element of [0, 1] is defined by the term

(Def. 6)

 A∩B
A∪B

, if A ∪B 6= ∅,
1, otherwise.

Let us consider a finite set R and subsets A, B of R. Now we state the
propositions:

(40) JaccardIndex(A,B) = 1 if and only if A = B. The theorem is a conse-
quence of (5).

(41) JaccardIndex(A,B) = JaccardIndex(B,A).

6. Marczewski-Steinhaus Metric

Let X be a non empty set and f be a function from X ×X into R. Observe
that f is non-negative yielding if and only if the condition (Def. 7) is satisfied.

(Def. 7) for every elements x, y of X, f(x, y) ­ 0.

One can verify that there exists a function from X × X into R which is
discernible, symmetric, reflexive, and triangle and every function from X × X
into R which is reflexive, symmetric, and triangle is also non-negative yielding.

Now we state the proposition:

(42) Let us consider a non empty set X, a non-negative yielding, discernible,
triangle, reflexive function f from X ×X into R, and elements x, y of X.
If x 6= y, then f(x, y) > 0.

Let R be a finite set. The functor JaccardDistR yielding a function from
2R × 2R into R is defined by

(Def. 8) for every subsets A, B of R, it(A,B) = 1− JaccardIndex(A,B).

Let R be a finite 1-sorted structure. The functor MarczewskiDistanceR yiel-
ding a function from 2(the carrier of R) × 2(the carrier of R) into R is defined by the
term

(Def. 9) JaccardDist ΩR.
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7. Steinhaus Generate Metric

Let X be a non empty set, p be an element of X, and f be a function from
X ×X into R. The functor SteinhausGen(f, p) yielding a function from X ×X
into R is defined by

(Def. 10) for every elements x, y of X, it(x, y) = 2·f(x,y)
f(x,p)+f(y,p)+f(x,y) .

Let f be a non-negative yielding function from X ×X into R. Observe that
SteinhausGen(f, p) is non-negative yielding.

Let f be a non-negative yielding, reflexive function from X×X into R. One
can verify that SteinhausGen(f, p) is reflexive.

Let f be a non-negative yielding, discernible function from X × X into R.
Let us observe that SteinhausGen(f, p) is discernible.

Let f be a non-negative yielding, symmetric function from X × X into R.
Let us note that SteinhausGen(f, p) is symmetric.

Let f be a discernible, symmetric, triangle, reflexive function from X ×X
into R. Let us observe that SteinhausGen(f, p) is triangle.

8. Marczewski-Steinhaus Metric is Generated by Symmetric
Difference Metric

Let X be a finite set. The functor SymmetricDiffDistX yielding a function
from 2X × 2X into R is defined by

(Def. 11) for every subsets x, y of X, it(x, y) = x−. y .

One can check that SymmetricDiffDistX is reflexive, discernible, symmetric,
and triangle.

The functor SymDifMetrSpaceX yielding a metric structure is defined by
the term

(Def. 12) 〈2X , SymmetricDiffDistX〉.
One can verify that SymDifMetrSpaceX is non empty and SymDifMetrSpace
X is reflexive, discernible, symmetric, and triangle.
Now we state the propositions:

(43) Let us consider a finite set R, and subsets A, B of R.

Then (JaccardDistR)(A,B) = A−. B
A∪B

. The theorem is a consequence of

(4).

(44) Let us consider a finite set X.
Then JaccardDistX = SteinhausGen(SymmetricDiffDistX, ∅X). The the-
orem is a consequence of (43) and (2).
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9. Steinhaus Metric Spaces

Let M be a finite, non empty metric space. One can check that the distance
of M is symmetric, reflexive, discernible, and triangle.

Let M be a finite, non empty metric structure and p be an element of M .
The functor SteinhausMetrSpace(M,p) yielding a metric structure is defined by
the term

(Def. 13) 〈the carrier of M,SteinhausGen((the distance of M), p)〉.
Let M be a metric structure. We say that M is with nonnegative distance

if and only if

(Def. 14) the distance of M is non-negative yielding.

Let A be a finite, non empty set. Note that the discrete metric of A is finite,
non empty, and non-negative yielding and there exists a metric space which is
finite, non empty, and with nonnegative distance.

Let M be a finite, non empty, with nonnegative distance metric structure
and p be an element of M . Let us observe that SteinhausMetrSpace(M,p) is
with nonnegative distance.

Let M be a finite, non empty, with nonnegative distance, discernible metric
structure. Observe that SteinhausMetrSpace(M,p) is discernible.

Let M be a finite, non empty, with nonnegative distance, reflexive metric
structure. Let us note that SteinhausMetrSpace(M,p) is reflexive.

Let M be a finite, non empty, with nonnegative distance, symmetric metric
structure. Note that SteinhausMetrSpace(M,p) is symmetric.

Let M be a finite, non empty, discernible, symmetric, reflexive, triangle
metric structure. Let us observe that SteinhausMetrSpace(M,p) is triangle.

Let R be a finite 1-sorted structure. Observe that MarczewskiDistanceR is
reflexive, discernible, and symmetric.

Now we state the proposition:

(45) Let us consider a finite approximation space R, and subsets A, B of
R. Then (MarczewskiDistanceR)(A,B) = (δ1(R))(A,B). The theorem is
a consequence of (43) and (31).

Let R be a finite 1-sorted structure. Note that MarczewskiDistanceR is
triangle.
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1. Problem 1

One can verify that there exists an integer which is positive.
Now we state the propositions:

(1) Let us consider a positive integer n. Then n + 1 | n2 + 1 if and only if
n = 1.
Proof: If n+ 1 | n2 + 1, then n = 1 by [6, (2)]. �

(2) Let us consider integers i, n. If |i| = n, then i = n or i = −n.

(3) Let us consider a natural number n. Suppose n | 24. Then

(i) n = 1, or

(ii) n = 2, or

(iii) n = 3, or
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(iv) n = 4, or

(v) n = 6, or

(vi) n = 8, or

(vii) n = 12, or

(viii) n = 24.

(4) Let us consider an integer t. Suppose t | 24. Then

(i) t = −1, or

(ii) t = 1, or

(iii) t = −2, or

(iv) t = 2, or

(v) t = −3, or

(vi) t = 3, or

(vii) t = −4, or

(viii) t = 4, or

(ix) t = −6, or

(x) t = 6, or

(xi) t = −8, or

(xii) t = 8, or

(xiii) t = −12, or

(xiv) t = 12, or

(xv) t = −24, or

(xvi) t = 24.

The theorem is a consequence of (3) and (2).

2. Problem 2

Now we state the proposition:

(5) Let us consider an integer x. Suppose x− 3 | x3 − 3. Then

(i) x = −21, or

(ii) x = −9, or

(iii) x = −5, or

(iv) x = −3, or
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(v) x = −1, or

(vi) x = 0, or

(vii) x = 1, or

(viii) x = 2, or

(ix) x = 4, or

(x) x = 5, or

(xi) x = 6, or

(xii) x = 7, or

(xiii) x = 9, or

(xiv) x = 11, or

(xv) x = 15, or

(xvi) x = 27.

The theorem is a consequence of (4).

3. Problem 3

Now we state the proposition:

(6) {n, where n is a positive integer : 5 | 4 · (n2) + 1 and 13 | 4 · (n2) + 1} is
infinite.
Proof: Set S = {n, where n is a positive integer : 5 | 4 · (n2) + 1 and
13 | 4 · (n2) + 1}. Define F(natural number) = 65 · $1 + 56. Consider f
being a many sorted set indexed by N such that for every element n of
N, f(n) = F(n). Set R = rng f . R ⊆ S. For every element m of N, there
exists an element n of N such that n ­ m and n ∈ R. �

4. Problem 4

Now we state the proposition:

(7) Let us consider a positive integer n. Then 169 | 33·n+3 − 26 · n− 27.
Proof: Reconsider k = n as a natural number. Define P[natural number] ≡
169 | 33·$1+3 − 26 · $1 − 27. For every natural number k such that 1 ¬ k

holds P[k]. �
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5. Problem 5

Now we state the proposition:

(8) Let us consider a natural number k. Then 19 | 226·k+2 + 3.

6. Problem 6 (due to Kraitchik)

Now we state the proposition:

(9) 13 | 270 + 370.

7. Problem 7

Now we state the propositions:

(10) 11 · 31 · 61 | 2015 − 1.

(11) Let us consider an integer a, and a natural number m. Then a−1 | am−1.
Proof: Define P[natural number] ≡ a − 1 | a$1 − 1. For every natural
number k, P[k]. �

(12) Let us consider a natural number a, a positive integer m, and a finite
0-sequence f of Z. Suppose a > 1 and len f = m− 1 and for every natural
number i such that i ∈ dom f holds f(i) = ai+1 − 1. Then am − 1 div(a−
1) =

∑
f +m.

Proof: Define P[natural number] ≡ for every finite 0-sequence f of Z
such that len f = $1 and for every natural number i such that i ∈ dom f

holds f(i) = ai+1 − 1 holds a$1+1 − 1 div(a − 1) =
∑
f + ($1 + 1). P[0].

For every natural number k, P[k]. �

8. Problem 8

Now we state the proposition:

(13) Let us consider a positive integer m, and a natural number a. Suppose
a > 1. Then gcd(am − 1 div(a− 1), a− 1) = gcd(a− 1,m).
Proof: Reconsider m0 = m as a natural number. Reconsider m1 = m0−1
as a natural number. Define F(natural number) = a$1+1 − 1. Consider
f being a finite 0-sequence such that len f = m1 and for every natural
number i such that i ∈ m1 holds f(i) = F(i) from [5, Sch.2]. rng f ⊆ Z.
am − 1 div(a− 1) =

∑
f +m. �
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9. Problem 9

Now we state the propositions:

(14) Let us consider finite 0-sequences s1, s2 of N, and a natural number n.
Suppose len s1 = n+1 and for every natural number i such that i ∈ dom s1

holds s1(i) = i5 and len s2 = n + 1 and for every natural number i such
that i ∈ dom s2 holds s2(i) = i3. Then

∑
s2 | 3 · (

∑
s1).

Proof: Define F(natural number) = $1
3. Consider S2 being a sequence

of real numbers such that for every natural number i, S2(i) = F(i). Define
G(natural number) = $1

5.
Consider S1 being a sequence of real numbers such that for every

natural number i, S1(i) = G(i). �

(15) Let us consider integers a, b, and a positive natural number m. Then∑
〈
(m

0

)
a0bm, . . . ,

(m
m

)
amb0〉 = am + bm +

∑
(〈
(m

0

)
a0bm, . . . ,

(m
m

)
amb0〉�m)�1.

(16) Let us consider natural numbers n, k. If n is odd, then n | kn+(n− k)n.
The theorem is a consequence of (15).

10. Problem 10

Now we state the proposition:

(17) Let us consider a finite sequence s of elements of N, and a natural number
n. Suppose n > 1 and len s = n − 1 and for every natural number i such
that i ∈ dom s holds s(i) = in. If n is odd, then n |

∑
s.

Proof: rng(s+ Rev(s)) ⊆ N. If n is odd, then n |
∑
s by [3, (3)]. �
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Summary.We continue in the Mizar system [2] the formalization of fuzzy
implications according to the book of Baczyński and Jayaram “Fuzzy Implica-
tions” [1]. In this article we define fuzzy negations and show their connections
with previously defined fuzzy implications [4] and [5] and triangular norms and
conorms [6]. This can be seen as a step towards building a formal framework
of fuzzy connectives [10]. We introduce formally Sugeno negation, boundary ne-
gations and show how these operators are pointwise ordered. This work is a
continuation of the development of fuzzy sets [12], [3] in Mizar [7] started in [11]
and partially described in [8]. This submission can be treated also as a part of
a formal comparison of fuzzy and rough approaches to incomplete or uncertain
information within the Mizar Mathematical Library [9].
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0. Introduction

The main aim of this Mizar article was to implement a formal counterpart
of (the part of) Chapter 1.4, pp. 13–20 of Baczyński and Jayaram book “Fuzzy
Implications” [1]. This is the fourth submission in the series formalizing this
textbook, following [4], [5], and [6].

After filling some gaps – proving lemmas about monotone functions absent
in the Mizar Mathematical Library, in Section 2 we recall the notion of conjugate
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fuzzy implications, and formally implement a method of generating a new fuzzy
implication from a given one. We prove that If inherits corresponding properties
of f , such as (NP) – the left neutrality property, (EP) – the exchange principle,
(IP) – the identity principle, and (OP) – the ordering property, providing also
registrations of clusters which guarantee the automatic handling of adjectives
(their adjunction to the respective radix type), thus making a formalization
work a bit easier.

Section 3, which is a fundamental part of this paper, contains elementary
definitions needed to cope with fuzzy negations, and Sect. 4 provides a method
of generating fuzzy negation from a given fuzzy implication. There are also con-
crete examples given in Section 5: the classical (standard) fuzzy complement NC

introduced at the beginning, two boundary (in the sense of the natural ordering
of the functions) negations ND1 and ND2 (Def. 17 and 18, respectively). Section
6 shows which negations are generated from nine well-known fuzzy implications,
so it can be treated as the formal counterpart of Table 1.7, p. 18 [1].

Fuzzy implication I Fuzzy negation NI

ILK NC

IGD ND1

IRC NC

IKD NC

IGG ND1

IRS ND1

IYG ND1

IWB ND2

IFD NC

Section 7 is devoted to Sugeno negation (Def. 21), which can be used as a
useful method of constructing examples of fuzzy negations (for example, substi-
tuting λ = 0 in the Sugeno negation, we obtain the standard fuzzy complemen-
tation). We conclude with some properties of conjugate fuzzy negations.

1. Preliminaries

Now we state the proposition:

(1) Let us consider real numbers x, r. If 0 ¬ x ¬ 1 and r > −1, then
x · r + 1 > 0.

Let us consider a real number z. Now we state the propositions:

(2) If z ∈ [0, 1] and z 6= 0, then there exists an element w of [0, 1] such that
w < z.
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(3) If z ∈ [0, 1] and z 6= 1, then there exists an element w of [0, 1] such that
w > z.

Note that there exists a unary operation on [0, 1] which is bijective and incre-
asing and every unary operation on [0, 1] which is bijective and non-decreasing
is also increasing and every unary operation on [0, 1] which is bijective and in-
creasing is also non-decreasing. Let f be a bijective, increasing unary operation
on [0, 1]. One can check that f−1 is real-valued and function-like and (f�[0, 1])−1

is real-valued. Now we state the propositions:

(4) Let us consider a one-to-one unary operation f on [0, 1], and an element
d of [0, 1]. If d ∈ rng f , then (f−1)(d) ∈ dom f .

(5) Let us consider a bijective, increasing unary operation f on [0, 1]. Then
f−1 is increasing.

Let f be a bijective, increasing unary operation on [0, 1]. Let us note that
f−1 is increasing. Let us consider a unary operation f on [0, 1]. Now we state
the propositions:

(6) f is non-decreasing if and only if for every elements a, b of [0, 1] such
that a ¬ b holds f(a) ¬ f(b).

(7) f is non-increasing if and only if for every elements a, b of [0, 1] such
that a ¬ b holds f(a) ­ f(b).

(8) f is decreasing if and only if for every elements a, b of [0, 1] such that
a < b holds f(a) > f(b).

(9) f is increasing if and only if for every elements a, b of [0, 1] such that
a < b holds f(a) < f(b).

(10) Let us consider an increasing, bijective unary operation f on [0, 1]. Then

(i) f(0) = 0, and

(ii) f(1) = 1.

Let f be a bijective, increasing unary operation on [0, 1]. Observe that f−1

is bijective and increasing as a unary operation on [0, 1].

2. Conjugate Fuzzy Implications

The functor Φ yielding a set is defined by the term

(Def. 1) the set of all f where f is a bijective, increasing unary operation on [0, 1].

Let f be a binary operation on [0, 1] and ϕ be a bijective, increasing unary
operation on [0, 1]. The functor fϕ yielding a binary operation on [0, 1] is defined
by

(Def. 2) for every elements x1, x2 of [0, 1], it(x1, x2) = (ϕ−1)(f(ϕ(x1), ϕ(x2))).
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Let f , g be binary operations on [0, 1]. We say that f , g are conjugate if and
only if

(Def. 3) there exists a bijective, increasing unary operation ϕ on [0, 1] such that
g = fϕ.

Let I be a fuzzy implication and f be a bijective, non-decreasing unary
operation on [0, 1]. Let us note that If is antitone w.r.t. 1st coordinate, isotone
w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak.

(11) Let us consider a fuzzy implication I, and a bijective, increasing unary
operation f on [0, 1]. Then If is a fuzzy implication.

Let us note that there exists a fuzzy implication which satisfies (NP), (OP),
(EP), and (IP). Let us consider a fuzzy implication I and a bijective, increasing
unary operation f on [0, 1]. Now we state the propositions:

(12) If I satisfies (NP), then If satisfies (NP). The theorem is a consequence
of (10).

(13) If I satisfies (EP), then If satisfies (EP).

(14) If I satisfies (IP), then If satisfies (IP). The theorem is a consequence
of (10).

(15) If I satisfies (OP), then If satisfies (OP).
Proof: Set g = If . If g(x, y) = 1, then x ¬ y. f(x) ¬ f(y).
(f−1)(I(f(x), f(y))) = 1. �

Let I be fuzzy implication satisfying (NP) and f be a bijective, increasing
unary operation on [0, 1]. Let us observe that If satisfies (NP). Let I be fuz-
zy implication satisfying (EP). Observe that If satisfies (EP). Let I be fuzzy
implication satisfying (IP). Let us note that If satisfies (IP). Let I be fuzzy
implication satisfying (OP). Note that If satisfies (OP). Now we state the pro-
position:

(16) Let us consider a fuzzy implication I, and a bijective, increasing unary
operation f on [0, 1]. Then If = f−1 · I · (f × f).
Proof: Set g = If . For every object x such that x ∈ dom g holds g(x) =
(f−1 · I · (f × f))(x). �

3. Fuzzy Negations

Let N be a unary operation on [0, 1]. We say that N is satisfying (N1) if
and only if

(Def. 4) N(0) = 1 and N(1) = 0.

We say that N is satisfying (N2) if and only if

(Def. 5) N is non-increasing.
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The functor NC yielding a unary operation on [0, 1] is defined by

(Def. 6) for every element x of [0, 1], it(x) = 1− x.

Note that NC is satisfying (N1) and satisfying (N2) and NC is bijective and
decreasing and there exists a unary operation on [0, 1] which is bijective and
decreasing and there exists a unary operation on [0, 1] which is satisfying (N1)
and satisfying (N2).

A fuzzy negation is a satisfying (N1), satisfying (N2) unary operation on
[0, 1]. Let f be a unary operation on [0, 1]. We say that f is continuous if and
only if

(Def. 7) there exists a function g from I into I such that f = g and g is continuous.

Let N be a unary operation on [0, 1]. We say that N is involutive if and only
if

(Def. 8) for every element x of [0, 1], N(N(x)) = x.

We say that N is satisfying (N3) if and only if

(Def. 9) N is decreasing.

We say that N is satisfying (N4) if and only if

(Def. 10) N is continuous.

We say that N is satisfying (N5) if and only if

(Def. 11) N is involutive.

We say that N is strict if and only if

(Def. 12) N is satisfying (N3) and satisfying (N4).

We say that N is strong if and only if

(Def. 13) N is satisfying (N5).

We say that N is non-vanishing if and only if

(Def. 14) for every element x of [0, 1], N(x) = 0 iff x = 1.

We say that N is non-filling if and only if

(Def. 15) for every element x of [0, 1], N(x) = 1 iff x = 0.

4. Generating Fuzzy Negations from Fuzzy Implications

Now we state the proposition:

(17) Let us consider a decreasing, bijective unary operation f on [0, 1]. Then

(i) f(0) = 1, and

(ii) f(1) = 0.

Let I be a binary operation on [0, 1]. The functor NI yielding a unary ope-
ration on [0, 1] is defined by
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(Def. 16) for every element x of [0, 1], it(x) = I(x, 0).

Let I be binary operation on [0, 1] satisfying (I1), (I3), and (I5). Note that
NI is satisfying (N1) and satisfying (N2).

Now we state the proposition:

(18) Let us consider a fuzzy implication I. Then NI is a fuzzy negation.

5. Boundary Fuzzy Negations

The functors: ND1 and ND2 yielding unary operations on [0, 1] are defined
by conditions

(Def. 17) for every element x of [0, 1], if x = 0, then ND1(x) = 1 and if x 6= 0, then
ND1(x) = 0,

(Def. 18) for every element x of [0, 1], if x = 1, then ND2(x) = 0 and if x 6= 1, then
ND2(x) = 1,

respectively. Let f1, f2 be unary operations on [0, 1]. We say that f1 ¬ f2 if and
only if

(Def. 19) for every element a of [0, 1], f1(a) ¬ f2(a).

Let us note that ND1 is satisfying (N1) and satisfying (N2) and ND2 is
satisfying (N1) and satisfying (N2).

Now we state the proposition:

(19) Let us consider a fuzzy negation N . Then ND1 ¬ N ¬ ND2.

6. Fuzzy Negations Generated by Nine Fuzzy Implications

Now we state the propositions:

(20) NILK = NC .
Proof: Set I = ILK. Set f = NI . Set g = NC . For every element x of
[0, 1], f(x) = g(x). �

(21) NIGD = ND1.

(22) NIRC = NC .

(23) NIKD = NC .
Proof: Set I = IKD. Set f = NI . Set g = NC . For every element x of
[0, 1], f(x) = g(x). �

(24) NIGG = ND1.

(25) NIRS = ND1.

(26) NIYG = ND1.

(27) NIWB = ND2.
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(28) NIFD = NC .
Proof: Set I = IFD. Set f = NI . Set g = NC . For every element x of
[0, 1], f(x) = g(x). �

(29) Let us consider binary operation I on [0, 1] satisfying (EP) and (OP).
Then NI is a fuzzy negation.

(30) Let us consider binary operation I on [0, 1] satisfying (EP) and (OP),
and an element x of [0, 1]. Then x ¬ (NI)((NI)(x)).

(31) Let us consider binary operation I on [0, 1] satisfying (EP) and (OP).
Then (NI) · (NI) · (NI) = NI . The theorem is a consequence of (7) and
(30).

7. Sugeno Negation

Let x, λ be real numbers. We say that λ is greater than x if and only if

(Def. 20) λ > x.

One can verify that there exists a real number which is greater than (−1).
Let λ be a real number. Assume λ > −1. The functor SugenoNegationλ

yielding a unary operation on [0, 1] is defined by

(Def. 21) for every element x of [0, 1], it(x) = 1−x
1+λ·x .

Now we state the proposition:

(32) NC = SugenoNegation 0.

Let λ be a greater than (−1) real number. Note that SugenoNegationλ is
satisfying (N1) and satisfying (N2).

8. Conjugate Fuzzy Negations

Let f be a unary operation on [0, 1] and ϕ be a bijective, increasing unary
operation on [0, 1]. The functor fϕ yielding a unary operation on [0, 1] is defined
by

(Def. 22) for every element x of [0, 1], it(x) = (ϕ−1)(f(ϕ(x))).

Now we state the proposition:

(33) Let us consider a fuzzy negation I, and a bijective, increasing unary
operation f on [0, 1]. Then If = f−1 · I · f .
Proof: Set g = If . For every object x such that x ∈ dom g holds g(x) =
(f−1 · I · f)(x). �

Let f , g be unary operations on [0, 1]. We say that f , g are conjugate if and
only if
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(Def. 23) there exists a bijective, increasing unary operation ϕ on [0, 1] such that
g = fϕ.

Let N be a fuzzy negation and ϕ be a bijective, increasing unary operation
on [0, 1]. One can check that Nϕ is satisfying (N1) and satisfying (N2).

Now we state the proposition:

(34) Let us consider a fuzzy implication I, and a bijective, increasing unary
operation ϕ on [0, 1]. Then (NI)ϕ = NIϕ . The theorem is a consequence
of (10).
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