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Poland

Summary. In [7], [9], [10] we presented a formalization of Kronecker’s
construction of a field extension E for a field F in which a given polynomial
p ∈ F [X]\F has a root [5], [6], [3]. A drawback of our formalization was that it
works only for polynomial-disjoint fields, that is for fields F with F ∩ F [X] = ∅.
The main purpose of Kronecker’s construction is that by induction one gets a
field extension of F in which p splits into linear factors. For our formalization this
means that the constructed field extension E again has to be polynomial-disjoint.

In this article, by means of Mizar system [2], [1], we first analyze whether
our formalization can be extended that way. Using the field of polynomials over
F with degree smaller than the degree of p to construct the field extension E
does not work: In this case E is polynomial-disjoint if and only if p is linear.
Using F [X]/<p> one can show that for F = Q and F = Zn the constructed field
extension E is again polynomial-disjoint, so that in particular algebraic number
fields can be handled.

For the general case we then introduce renamings of sets X as injective
functions f with dom(f) = X and rng(f) ∩ (X ∪ Z) = ∅ for an arbitrary set Z.
This, finally, allows to construct a field extension E of an arbitrary field F in
which a given polynomial p ∈ F [X]\F splits into linear factors. Note, however,
that to prove the existence of renamings we had to rely on the axiom of choice.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider sets X, Y. If Y ⊆ X, then X \ Y ∪ Y = X.

Let us consider natural numbers n, m. Now we state the propositions:

(2) (i) n+m = n+m, and

(ii) n ·m = n ·m.

(3) (i) n ⊆ m iff n ¬ m, and

(ii) n ∈ m iff n < m.

Let us consider a natural number n. Now we state the propositions:

(4) 2n = 2n.

(5) If n ­ 3, then n+ n < 2n.

(6) If n ­ 3, then n+ n ∈ 2n. The theorem is a consequence of (2), (5), (3),
and (4).

(7) N meets 2N.

Let us consider a set X. Now we state the propositions:

(8) There exists an object o such that o /∈ X.

(9) There exists a set Y such that

(i) X ⊆ Y , and

(ii) X ∩ Y = ∅.

(10) Let us consider sets X, Y. Suppose X ⊆ Y . Then there exists a set Z
such that

(i) Z ⊆ Y, and

(ii) Z = X .

(11) Let us consider a set X. Then there exists a set Y such that

(i) X = Y , and

(ii) X ∩ Y = ∅.
The theorem is a consequence of (9) and (10).

(12) Let us consider a field E. Then every subfield of E is a subring of E.

(13) Let us consider a field F , and a subring R of F . Then R is a subfield of
F if and only if R is a field.

Let F be a field and E be an extension of F . Note that there exists an exten-
sion of F which is E-extending. We introduce the notation E is F -infinite as an
antonym for E is F -finite. Let us consider a field F , an extension E of F , and
an E-extending extension K of F .
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(14) VecSp(E,F ) is a subspace of VecSp(K,F ).

(15) (i) K is F -infinite, or

(ii) E is F -finite and deg(E,F ) ¬ deg(K,F ).
The theorem is a consequence of (14).

(16) Let us consider a field F , a polynomial p over F , and a non zero poly-
nomial q over F . Then deg(p mod q) < deg q.

2. Linear Polynomials

Let R be a ring and p be a polynomial over R. We say that p is linear if and
only if

(Def. 1) deg p = 1.

Let R be a non degenerated ring. One can check that there exists a poly-
nomial over R which is linear and there exists a polynomial over R which is
non linear and there exists an element of the carrier of PolyRing(R) which is
linear and there exists an element of the carrier of PolyRing(R) which is non
linear and every polynomial over R which is zero is also non linear and every
polynomial over R which is constant is also non linear.

Let F be a field. Let us note that every polynomial over F which is linear
has also roots and every element of the carrier of PolyRing(F ) which is linear
is also irreducible and every element of the carrier of PolyRing(F ) which is non
linear and has roots is also reducible.

Let R be an integral domain, p be a linear polynomial over R, and q be
a non constant polynomial over R. Let us note that p ∗ q is non linear.

Let F be a field, p be a linear polynomial over F , and q be a non constant
polynomial over F . Let us note that p ∗ q has roots.

3. More on PolyRing(p)

Let F be a field and p be a non constant element of the carrier of PolyRing(F ).
The functor canHomP(p) yielding a function from F into PolyRing(p) is defined
by

(Def. 2) for every element a of F , it(a) = a�F .

One can verify that canHomP(p) is additive, multiplicative, unity-preserving,
and one-to-one and PolyRing(p) is F -homomorphic and F -monomorphic.

Let F be a polynomial-disjoint field and p be an irreducible element of
the carrier of PolyRing(F ). One can verify that embField(canHomP(p)) is add-
associative, right complementable, associative, distributive, and almost left in-
vertible and embField(canHomP(p)) is F -extending.
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The functor KrRootP(p) yielding an element of embField(canHomP(p)) is
defined by the term

(Def. 3) ((emb-iso(canHomP(p)))−1 · ((KroneckerIso(p))−1))(KrRoot(p)).

Now we state the proposition:

(17) Let us consider a polynomial-disjoint field F , and an irreducible element
p of the carrier of PolyRing(F ). Then ExtEval(p,KrRootP(p)) = 0F .
Proof: Set K = KroneckerField(F, p). Set E = embField(canHomP(p)).
Set h = (KroneckerIso(p)) · (emb-iso(canHomP(p))). Reconsider P = K

as an E-isomorphic field. Reconsider i1 = h as an isomorphism between E
and P . Reconsider i2 = i1

−1 as a homomorphism from P to E. Reconsider
t = pp as an element of the carrier of PolyRing(P ). (PolyHom(i2))(t) = p

by [4, (12)], [8, (17)]. �

4. On Embedding F into F [X]/<p> and PolyRing(p)

Now we state the propositions:

(18) Let us consider a field F , and a linear element p of the carrier
of PolyRing(F ). Then

(i) PolyRing(p) and F are isomorphic, and

(ii) the carrier of embField(canHomP(p)) = the carrier of F .

(19) Let us consider a strict field F , and a linear element p of the carrier of
PolyRing(F ). Then embField(canHomP(p)) = F . The theorem is a con-
sequence of (18).

(20) Let us consider a field F , and a linear element p of the carrier
of PolyRing(F ). Then

(i) PolyRing(F ){p}–ideal and F are isomorphic, and

(ii) the carrier of embField(embedding(p)) = the carrier of F .

The theorem is a consequence of (18) and (16).

(21) Let us consider a strict field F , and a linear element p of the carrier of
PolyRing(F ). Then embField(embedding(p)) = F . The theorem is a con-
sequence of (20).

(22) Let us consider a polynomial-disjoint field F , and an irreducible ele-
ment p of the carrier of PolyRing(F ). Then embField(canHomP(p)) is
polynomial-disjoint if and only if p is linear. The theorem is a consequen-
ce of (18).
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(23) Let us consider a field F , an irreducible element p of the carrier of
PolyRing(F ), and a polynomial-disjoint field E.
Suppose E = embField(embedding(p)). Then F is polynomial-disjoint.

Let n be a prime number and p be an irreducible element of the carrier of
PolyRing(Z/n). Let us observe that embField(embedding(p)) is add-associative,
right complementable, associative, distributive, and almost left invertible.

Let p be an irreducible element of the carrier of PolyRing(FQ). Let us note
that embField(embedding(p)) is add-associative, right complementable, associa-
tive, distributive, and almost left invertible.

(24) Let us consider a prime number n, and a non constant element p of
the carrier of PolyRing(Z/n). Then Z/n and PolyRing(Z/n){p}–ideal are disjoint.

(25) Let us consider a non constant element p of the carrier of PolyRing(FQ).
Then FQ and PolyRing(FQ)

{p}–ideal are disjoint.

Let n be a prime number and p be an irreducible element of the carrier
of PolyRing(Z/n). Let us note that embField(embedding(p)) is polynomial-
disjoint.

Let p be an irreducible element of the carrier of PolyRing(FQ). One can
check that embField(embedding(p)) is polynomial-disjoint.

Let R be a ring. We say that R is strong polynomial disjoint if and only if

(Def. 4) for every element a of R and for every ring S and for every element p of
the carrier of PolyRing(S), a 6= p.

Observe that ZR is strong polynomial disjoint and FQ is strong polynomial
disjoint and RF is strong polynomial disjoint.

Let n be a non trivial natural number. Note that Z/n is strong polynomial
disjoint and every ring which is strong polynomial disjoint is also polynomial-
disjoint and there exists a field which is strong polynomial disjoint and there
exists a field which is non strong polynomial disjoint.

(26) Let us consider a strong polynomial disjoint field F , an irreducible ele-
ment p of the carrier of PolyRing(F ), and a field E.
Suppose E = embField(embedding(p)). Then E is strong polynomial di-
sjoint.

5. Renamings

Let X be a non empty set and Z be a set.
A Renaming of X and Z is a function defined by

(Def. 5) dom it = X and it is one-to-one and rng it ∩ (X ∪ Z) = ∅.
Let r be a Renaming of X and Z. Let us note that dom r is non empty and

rng r is non empty and every Renaming of X and Z is X-defined and one-to-one.
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Let r be a Renaming of X and Z. Observe that the functor r−1 yields
a function from rng r into X. Now we state the proposition:

(27) Let us consider a non empty set X, a set Z, and a Renaming r of X and
Z. Then r−1 is onto.

Let F be a field, Z be a set, and r be a Renaming of the carrier of F and
Z. The functor ren-add(r) yielding a binary operation on rng r is defined by

(Def. 6) for every elements a, b of rng r, it(a, b) = r((r−1)(a) + (r−1)(b)).

The functor ren-mult(r) yielding a binary operation on rng r is defined by

(Def. 7) for every elements a, b of rng r, it(a, b) = r((r−1)(a) · (r−1)(b)).
The functor RenField(r) yielding a strict double loop structure is defined by

(Def. 8) the carrier of it = rng r and the addition of it = ren-add(r) and
the multiplication of it = ren-mult(r) and the one of it = r(1F ) and
the zero of it = r(0F ).

One can check that RenField(r) is non degenerated and RenField(r) is Abe-
lian, add-associative, right zeroed, and right complementable and RenField(r)
is commutative, associative, well unital, distributive, and almost left invertible.

One can check that the functor r−1 yields a function from RenField(r) into
F . Now we state the propositions:

(28) Let us consider a field F , a set Z, and a Renaming r of the carrier of F
and Z. Then r−1 is additive, multiplicative, unity-preserving, one-to-one,
and onto. The theorem is a consequence of (27).

(29) Let us consider a field F , and a set Z. Then there exists a field E such
that

(i) E and F are isomorphic, and

(ii) (the carrier of E) ∩ ((the carrier of F ) ∪ Z) = ∅.
The theorem is a consequence of (28).

6. Kronecker’s Construction

Let us consider a field F and a non constant element f of the carrier of
PolyRing(F ). Now we state the propositions:

(30) There exists an extension E of F such that f has a root in E.

(31) There exists an extension E of F such that f splits in E.
Proof: Define P[natural number] ≡ for every field F for every non con-
stant element f of the carrier of PolyRing(F ) such that deg f = $1 there
exists an extension E of F such that f splits in E. P[1]. For every non
zero natural number k, P[k]. Consider n being a natural number such that
deg f = n. �
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Summary. In this article the finiteness of graphs is refined and the mini-
mal and maximal degree of graphs are formalized in the Mizar system [3], based
on the formalization of graphs in [4].
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0. Introduction

The first section introduces the attributes vertex-finite and edge-finite,
which are a refinement of [4]’s finite. A notable result is the upper bound of
the size of certain graphs in terms of their order, e.g. that a simple finite graph
with order n and size m satisfies m ¬

(n
2

)
.

Parametrized attributes for the order and size of a graph are introduced
in the following section. The main purpose of this additional notation (e.g. G
is n-vertex instead of G.order() = n) is to be used in clusterings and reser-
vations in the future for easy access, e.g. reserve K2 for simple complete
2-vertex Graph.

The third section formalizes locally finite graphs, which are well known (cf.
[2], [5], [1]).
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The minimal and maximal degree of a graph are usually defined, together
with the degree of a vertex, right at the beginning of general graph theory text-
books, often followed by the Handshaking lemma (cf. [1], [2], [7], [6]). While
the Handshaking lemma is still not proven in this article, the last section intro-
duces the minimal and supremal degree of a graph, the latter being called the
maximal degree if a vertex attaining the supremal degree exists. This doesn’t
always have to be the case, of course: Take for example the sum of all complete
graphs

∑∞
n=1Kn. Therefore the property of a graph having a maximal degree is

formalized, too. All formalizations are done as well for in/out degrees and the
relationship between them and the undirected degrees is taken into account.

1. Upper Size of Graphs without Parallel Edges

Let us consider a non-directed-multi graph G. Now we state the propositions:

(1) There exists a one-to-one function f such that

(i) dom f = the edges of G, and

(ii) rng f ⊆ (the vertices of G)× (the vertices of G), and

(iii) for every object e such that e ∈ dom f holds f(e) = 〈〈(the source of
G)(e), (the target of G)(e)〉〉.

(2) G.size() ⊆ G.order() ·G.order(). The theorem is a consequence of (1).

(3) Let us consider a directed-simple graph G. Then there exists a one-to-one
function f such that

(i) dom f = the edges of G, and

(ii) rng f ⊆ ((the vertices of G)× (the vertices of G)) \ (idα), and

(iii) for every object e such that e ∈ dom f holds f(e) = 〈〈(the source of
G)(e), (the target of G)(e)〉〉,

where α is the vertices of G. The theorem is a consequence of (1).

(4) Let us consider a non-multi graph G. Then there exists a one-to-one
function f such that

(i) dom f = the edges of G, and

(ii) rng f ⊆ 2Set(the vertices of G) ∪ Sα, and

(iii) for every object e such that e ∈ dom f holds f(e) = {(the source of
G)(e), (the target of G)(e)},

where α is the vertices of G.

(5) Let us consider a simple graph G. Then there exists a one-to-one function
f such that
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(i) dom f = the edges of G, and

(ii) rng f ⊆ 2Set(the vertices of G), and

(iii) for every object e such that e ∈ dom f holds f(e) = {(the source of
G)(e), (the target of G)(e)}.

Proof: Consider f being a one-to-one function such that dom f = the edges
of G and rng f ⊆ 2Set(the vertices of G) ∪ Sα, where α is the vertices of
G and for every object e such that e ∈ dom f holds f(e) = {(the source
of G)(e), (the target of G)(e)}. rng f ∩ Sα = ∅, where α is the vertices of
G. �

2. Vertex- and Edge-finite Graphs

Let G be a graph. We say that G is vertex-finite if and only if

(Def. 1) the vertices of G is finite.

We say that G is edge-finite if and only if

(Def. 2) the edges of G is finite.

Let us consider a graph G. Now we state the propositions:

(6) G is vertex-finite if and only if G.order() is finite.

(7) G is edge-finite if and only if G.size() is finite.

(8) Let us consider graphs G1, G2. Suppose G1 ≈ G2. Then

(i) if G1 is vertex-finite, then G2 is vertex-finite, and

(ii) if G1 is edge-finite, then G2 is edge-finite.

Let V be a non empty, finite set, E be a set, and S, T be functions from E

into V . Observe that createGraph(V,E, S, T ) is vertex-finite.
Let V be an infinite set. Let us observe that createGraph(V,E, S, T ) is non

vertex-finite.
Let V be a non empty set and E be a finite set. Let us observe that

createGraph(V,E, S, T ) is edge-finite.
Let E be an infinite set. One can verify that createGraph(V,E, S, T ) is non

edge-finite and every graph which is finite is also vertex-finite and edge-finite
and every graph which is vertex-finite and edge-finite is also finite and every
graph which is edgeless is also edge-finite and every graph which is trivial is
also vertex-finite and every graph which is vertex-finite and non-directed-multi
is also edge-finite and every graph which is non vertex-finite and loopfull is also
non edge-finite and there exists a graph which is vertex-finite, edge-finite, and
simple and there exists a graph which is vertex-finite and non edge-finite and
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there exists a graph which is non vertex-finite and edge-finite and there exists
a graph which is non vertex-finite and non edge-finite.

Let G be a vertex-finite graph. Let us observe that G.order() is non zero and
natural.

Let us observe that the functor G.order() yields a non zero natural number.
Let G be an edge-finite graph. Let us note that G.size() is natural.

Now we state the propositions:

(9) Let us consider a vertex-finite, non-directed-multi graph G.
Then G.size() ¬ (G.order())2. The theorem is a consequence of (2).

(10) Let us consider a vertex-finite, directed-simple graph G. Then G.size() ¬
(G.order())2 −G.order(). The theorem is a consequence of (3).

(11) Let us consider a vertex-finite, non-multi graph G. Then G.size() ¬
(G.order())2+G.order()

2 . The theorem is a consequence of (4).

(12) Let us consider a vertex-finite, simple graph G.

Then G.size() ¬ (G.order())
2−G.order()
2 . The theorem is a consequence of (5).

Let G be a vertex-finite graph. One can verify that the vertices of G is finite
and every subgraph of G is vertex-finite and every directed graph complement
of G with loops is vertex-finite and edge-finite and every undirected graph com-
plement of G with loops is vertex-finite and edge-finite and every directed graph
complement of G is vertex-finite and edge-finite and every graph complement
of G is vertex-finite and edge-finite.

Let V be a finite set. One can check that every supergraph of G extended
by the vertices from V is vertex-finite.

Let v be an object. One can check that every supergraph of G extended by
v is vertex-finite.

Let e, w be objects. Note that every supergraph of G extended by e between
vertices v and w is vertex-finite and every supergraph of G extended by v, w
and e between them is vertex-finite.

Let E be a set. One can check that every graph given by reversing directions
of the edges E of G is vertex-finite.

Let v be an object and V be a set. Note that every supergraph of G extended
by vertex v and edges between v and V of G is vertex-finite and every graph by
adding a loop to each vertex of G in V is vertex-finite.

Let G be a graph and V be an infinite set. One can verify that every super-
graph of G extended by the vertices from V is non vertex-finite.

Let G be a non vertex-finite graph. Observe that the vertices of G is infinite
and every supergraph of G is non vertex-finite and every subgraph of G which
is spanning is also non vertex-finite and every directed graph complement of
G with loops is non vertex-finite and every undirected graph complement of G
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with loops is non vertex-finite and every directed graph complement of G is non
vertex-finite and every graph complement of G is non vertex-finite.

Let E be a set. Let us note that every subgraph of G induced by V and E

is non vertex-finite.
Let V be an infinite subset of the vertices of G. Note that every graph by

adding a loop to each vertex of G in V is non edge-finite.
Let G be an edge-finite graph. One can check that the edges of G is finite

and every subgraph of G is edge-finite.
Let V be a set. Note that every supergraph of G extended by the vertices

from V is edge-finite.
Let E be a set. Note that every graph given by reversing directions of the

edges E of G is edge-finite.
Let v be an object. Note that every supergraph of G extended by v is edge-

finite.
Let e, w be objects. Let us note that every supergraph of G extended by e

between vertices v and w is edge-finite and every supergraph of G extended by
v, w and e between them is edge-finite.

Let V be a finite set. Note that every supergraph of G extended by vertex
v and edges between v and V of G is edge-finite.

Let V be a finite subset of the vertices of G. Observe that every graph by
adding a loop to each vertex of G in V is edge-finite.

Let G be a non vertex-finite, edge-finite graph. Let us observe that there
exists a vertex of G which is isolated and every directed graph complement of
G with loops is non edge-finite and every undirected graph complement of G
with loops is non edge-finite and every directed graph complement of G is non
edge-finite and every graph complement of G is non edge-finite.

Let G be a non edge-finite graph. One can verify that the edges of G is
infinite and every supergraph of G is non edge-finite.

Let V be a set and E be an infinite subset of the edges of G. Let us observe
that every subgraph of G induced by V and E is non edge-finite.

Let E be a finite set. One can verify that every subgraph of G with edges E
removed is non edge-finite.

Let e be a set. Let us observe that every subgraph of G with edge e removed
is non edge-finite.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(13) Suppose F is weak subgraph embedding. Then

(i) if G2 is vertex-finite, then G1 is vertex-finite, and

(ii) if G2 is edge-finite, then G1 is edge-finite.
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(14) If F is onto, then if G1 is vertex-finite, then G2 is vertex-finite and if G1
is edge-finite, then G2 is edge-finite.

(15) If F is isomorphism, then (G1 is vertex-finite iff G2 is vertex-finite) and
(G1 is edge-finite iff G2 is edge-finite).

3. Order and Size of a Graph as Attributes

Let c be a cardinal number and G be a graph. We say that G is c-vertex if
and only if

(Def. 3) G.order() = c.

We say that G is c-edge if and only if

(Def. 4) G.size() = c.

Let us consider a graph G. Now we state the propositions:

(16) G is vertex-finite if and only if there exists a non zero natural number n
such that G is n-vertex.

(17) G is edge-finite if and only if there exists a natural number n such that
G is n-edge.

Let us consider graphs G1, G2 and a cardinal number c. Now we state the
propositions:

(18) Suppose the vertices of G1 = the vertices of G2. Then if G1 is c-vertex,
then G2 is c-vertex.

(19) Suppose the edges of G1 = the edges of G2. Then if G1 is c-edge, then
G2 is c-edge.

(20) If G1 ≈ G2, then if G1 is c-vertex, then G2 is c-vertex and if G1 is c-edge,
then G2 is c-edge.

(21) Every graph G is (G.order())-vertex and (G.size())-edge.

Let V be a non empty set, E be a set, and S, T be functions from E into
V . Let us observe that createGraph(V,E, S, T ) is V -vertex and E -edge.

Let a be a non zero cardinal number and b be a cardinal number. One can
verify that there exists a graph which is a-vertex and b-edge.

Let c be a cardinal number. Let us observe that there exists a graph which
is trivial and c-edge and every graph is non 0-vertex and every graph which is
trivial is also 1-vertex and every graph which is 1-vertex is also trivial.

Let n be a non zero natural number. One can verify that every graph which
is n-vertex is also vertex-finite.

Let c be a non zero cardinal number and G be a c-vertex graph. Observe that
every subgraph of G which is spanning is also c-vertex and every directed graph
complement of G with loops is c-vertex and every undirected graph complement
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of G with loops is c-vertex and every directed graph complement of G is c-vertex
and every graph complement of G is c-vertex.

Let E be a set. One can verify that every graph given by reversing directions
of the edges E of G is c-vertex.

Let V be a set. Let us note that every graph by adding a loop to each vertex
of G in V is c-vertex.

Let v, e, w be objects. Observe that every supergraph of G extended by e

between vertices v and w is c-vertex and every graph which is edgeless is also
0-edge and every graph which is 0-edge is also edgeless.

Let n be a natural number. Note that every graph which is n-edge is also
edge-finite.

Let c be a cardinal number, G be a c-edge graph, and E be a set. Note that
every graph given by reversing directions of the edges E of G is c-edge.

Let V be a set. Let us observe that every supergraph of G extended by the
vertices from V is c-edge.

Now we state the proposition:

(22) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and a cardinal number c. Suppose F is isomorphism. Then

(i) G1 is c-vertex iff G2 is c-vertex, and

(ii) G1 is c-edge iff G2 is c-edge.

4. Locally Finite Graphs

Let G be a graph. We say that G is locally-finite if and only if

(Def. 5) for every vertex v of G, v.edgesInOut() is finite.

Now we state the propositions:

(23) Let us consider a graph G. Then G is locally-finite if and only if for every
vertex v of G, v.degree() is finite.

(24) Let us consider graphs G1, G2. Suppose G1 ≈ G2. If G1 is locally-finite,
then G2 is locally-finite.

Let us consider a graph G. Now we state the propositions:

(25) G is locally-finite if and only if for every vertex v of G, v.edgesIn() is
finite and v.edgesOut() is finite.

(26) G is locally-finite if and only if for every vertex v of G, v.inDegree() is
finite and v.outDegree() is finite. The theorem is a consequence of (23).

Let us consider a non empty set V , a set E, and functions S, T from E into
V . Now we state the propositions:
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(27) Suppose for every element v of V , S−1({v}) is finite and T−1({v}) is
finite. Then createGraph(V,E, S, T ) is locally-finite. The theorem is a con-
sequence of (25).

(28) Suppose there exists an element v of V such that S−1({v}) is infinite
or T−1({v}) is infinite. Then createGraph(V,E, S, T ) is not locally-finite.
The theorem is a consequence of (25).

Let G be a non vertex-finite graph and V be an infinite subset of the vertices
of G. One can verify that every supergraph of G extended by vertex the vertices
of G and edges between the vertices of G and V of G is non locally-finite and
every graph which is edge-finite is also locally-finite and there exists a graph
which is locally-finite and there exists a graph which is non locally-finite.

Let G be a locally-finite graph. Note that every subgraph of G is locally-
finite.

Let X be a finite set. One can check that G.edgesInto(X) is finite and
G.edgesOutOf(X) is finite andG.edgesInOut(X) is finite andG.edgesBetween(X)
is finite.

Let Y be a finite set. Note that G.edgesBetween(X,Y ) is finite and
G.edgesDBetween(X,Y ) is finite.
Let v be a vertex of G. One can verify that v.edgesIn() is finite and
v.edgesOut() is finite and v.edgesInOut() is finite and v.inDegree() is finite

and v.outDegree() is finite and v.degree() is finite.
The functors: v.inDegree(), v.outDegree(), and v.degree() yield natural num-

bers. Let V be a set. Let us observe that every supergraph of G extended by
the vertices from V is locally-finite and every graph by adding a loop to each
vertex of G in V is locally-finite.

Let E be a set. Let us observe that every graph given by reversing directions
of the edges E of G is locally-finite.

Let v, e, w be objects. Let us note that every supergraph of G extended by
e between vertices v and w is locally-finite and every supergraph of G extended
by v, w and e between them is locally-finite.

Now we state the proposition:

(29) Let us consider a graph G2, an object v, a subset V of the vertices of
G2, and a supergraph G1 of G2 extended by vertex v and edges between v
and V of G2. Suppose v /∈ the vertices of G2. Then G2 is locally-finite and
V is finite if and only if G1 is locally-finite. The theorem is a consequence
of (23).

Let G be a locally-finite graph, v be an object, and V be a finite set. Let us
note that every supergraph of G extended by vertex v and edges between v and
V of G is locally-finite.
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Let G be a non locally-finite graph. Let us observe that every supergraph of
G is non locally-finite.

Let E be a finite set. Let us note that every subgraph of G with edges E
removed is non locally-finite.

Let e be a set. Let us observe that every subgraph of G with edge e removed
is non locally-finite.

Now we state the propositions:

(30) Let us consider a non locally-finite graph G1, a finite subset V of the ver-
tices of G1, and a subgraph G2 of G1 with vertices V removed. Suppose
for every vertex v of G1 such that v ∈ V holds v.edgesInOut() is finite.
Then G2 is not locally-finite. The theorem is a consequence of (24).

(31) Let us consider a non locally-finite graph G1, a vertex v of G1, and
a subgraph G2 of G1 with vertex v removed. If v.edgesInOut() is finite,
then G2 is not locally-finite. The theorem is a consequence of (30).

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(32) If F is weak subgraph embedding and G2 is locally-finite, then G1 is
locally-finite. The theorem is a consequence of (23).

(33) If F is onto and semi-directed-continuous and G1 is locally-finite, then
G2 is locally-finite. The theorem is a consequence of (23).

(34) If F is isomorphism, then G1 is locally-finite iff G2 is locally-finite. The
theorem is a consequence of (23) and (32).

5. Degree Properties in Graphs

Let G be a graph. The functors: ∆̄(G), ∆̄−(G), ∆̄+(G), δ(G), δ−(G), and
δ+(G) yielding cardinal numbers are defined by terms

(Def. 6)
⋃

the set of all v.degree() where v is a vertex of G.

(Def. 7)
⋃

the set of all v.inDegree() where v is a vertex of G,

(Def. 8)
⋃

the set of all v.outDegree() where v is a vertex of G,

(Def. 9)
⋂

the set of all v.degree() where v is a vertex of G,

(Def. 10)
⋂

the set of all v.inDegree() where v is a vertex of G,

(Def. 11)
⋂

the set of all v.outDegree() where v is a vertex of G,

respectively. Now we state the proposition:

(35) Let us consider a graph G, and a vertex v of G. Then

(i) δ(G) ⊆ v.degree() ⊆ ∆̄(G), and

(ii) δ−(G) ⊆ v.inDegree() ⊆ ∆̄−(G), and
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(iii) δ+(G) ⊆ v.outDegree() ⊆ ∆̄+(G).

Let us consider a graph G and a cardinal number c. Now we state the
propositions:

(36) δ(G) = c if and only if there exists a vertex v of G such that v.degree() =
c and for every vertex w of G, v.degree() ⊆ w.degree().

(37) δ−(G) = c if and only if there exists a vertex v ofG such that v.inDegree()
= c and for every vertex w of G, v.inDegree() ⊆ w.inDegree().

(38) δ+(G) = c if and only if there exists a vertex v of G such that
v.outDegree() = c and for every vertex w of G, v.outDegree()
⊆ w.outDegree().

Let us consider a graph G. Now we state the propositions:

(39) ∆̄−(G) ⊆ ∆̄(G).

(40) ∆̄+(G) ⊆ ∆̄(G).

(41) δ−(G) ⊆ δ(G). The theorem is a consequence of (37) and (36).

(42) δ+(G) ⊆ δ(G). The theorem is a consequence of (38) and (36).

(43) δ(G) ⊆ ∆̄(G).

(44) δ−(G) ⊆ ∆̄−(G).

(45) δ+(G) ⊆ ∆̄+(G).

(46) If there exists a vertex v of G such that v is isolated, then δ(G) = 0 and
δ−(G) = 0 and δ+(G) = 0. The theorem is a consequence of (36), (37),
and (38).

(47) If δ(G) = 0, then there exists a vertex v of G such that v is isolated. The
theorem is a consequence of (36).

Let us consider a graph G and a cardinal number c. Now we state the
propositions:

(48) If there exists a vertex v of G such that v.degree() = c and for every
vertex w of G, w.degree() ⊆ v.degree(), then ∆̄(G) = c.

(49) If there exists a vertex v of G such that v.inDegree() = c and for every
vertex w of G, w.inDegree() ⊆ v.inDegree(), then ∆̄−(G) = c.

(50) If there exists a vertex v of G such that v.outDegree() = c and for every
vertex w of G, w.outDegree() ⊆ v.outDegree(), then ∆̄+(G) = c.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(51) If F is weak subgraph embedding, then ∆̄(G1) ⊆ ∆̄(G2).

(52) If F is weak subgraph embedding and rngFV = the vertices of G2, then
δ(G1) ⊆ δ(G2). The theorem is a consequence of (36).

(53) If F is onto and semi-directed-continuous, then ∆̄(G2) ⊆ ∆̄(G1).
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(54) Suppose F is onto and semi-directed-continuous and dom(FV) =
the vertices of G1. Then δ(G2) ⊆ δ(G1). The theorem is a consequence of
(36).

(55) If F is isomorphism, then ∆̄(G1) = ∆̄(G2) and δ(G1) = δ(G2). The
theorem is a consequence of (51) and (52).

(56) If F is directed and weak subgraph embedding, then ∆̄−(G1) ⊆ ∆̄−(G2)
and ∆̄+(G1) ⊆ ∆̄+(G2).

(57) Suppose F is directed and weak subgraph embedding and rngFV =
the vertices of G2. Then

(i) δ−(G1) ⊆ δ−(G2), and

(ii) δ+(G1) ⊆ δ+(G2).

The theorem is a consequence of (37) and (38).

(58) If F is onto and semi-directed-continuous, then ∆̄−(G2) ⊆ ∆̄−(G1) and
∆̄+(G2) ⊆ ∆̄+(G1).

(59) Suppose F is onto and semi-directed-continuous and dom(FV) =
the vertices of G1. Then

(i) δ−(G2) ⊆ δ−(G1), and

(ii) δ+(G2) ⊆ δ+(G1).

The theorem is a consequence of (37) and (38).

(60) Suppose F is directed-isomorphism. Then

(i) ∆̄−(G1) = ∆̄−(G2), and

(ii) ∆̄+(G1) = ∆̄+(G2), and

(iii) δ−(G1) = δ−(G2), and

(iv) δ+(G1) = δ+(G2).

The theorem is a consequence of (56), (57), (58), and (59).

(61) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then

(i) ∆̄(G1) = ∆̄(G2), and

(ii) δ(G1) = δ(G2).

(62) Let us consider graphs G1, G2. Suppose G1 ≈ G2. Then

(i) ∆̄(G1) = ∆̄(G2), and

(ii) δ(G1) = δ(G2), and

(iii) ∆̄−(G1) = ∆̄−(G2), and

(iv) δ−(G1) = δ−(G2), and
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(v) ∆̄+(G1) = ∆̄+(G2), and

(vi) δ+(G1) = δ+(G2).

(63) Let us consider a graph G1, and a subgraph G2 of G1. Then

(i) ∆̄(G2) ⊆ ∆̄(G1), and

(ii) ∆̄−(G2) ⊆ ∆̄−(G1), and

(iii) ∆̄+(G2) ⊆ ∆̄+(G1).

The theorem is a consequence of (51) and (56).

(64) Let us consider a graph G1, and a spanning subgraph G2 of G1. Then

(i) δ(G2) ⊆ δ(G1), and

(ii) δ−(G2) ⊆ δ−(G1), and

(iii) δ+(G2) ⊆ δ+(G1).

The theorem is a consequence of (52) and (57).

Let us consider a graph G2, a set V , and a supergraph G1 of G2 extended
by the vertices from V . Now we state the propositions:

(65) (i) ∆̄(G1) = ∆̄(G2), and

(ii) ∆̄−(G1) = ∆̄−(G2), and

(iii) ∆̄+(G1) = ∆̄+(G2).
The theorem is a consequence of (63).

(66) If V \ (the vertices of G2) 6= ∅, then δ(G1) = 0 and δ−(G1) = 0 and
δ+(G1) = 0. The theorem is a consequence of (46).

Let G be a non edgeless graph. Observe that ∆̄(G) is non empty and ∆̄−(G)
is non empty and ∆̄+(G) is non empty.

Let G be a locally-finite graph. One can verify that δ(G) is natural and
δ−(G) is natural and δ+(G) is natural.

The functors: δ(G), δ−(G), and δ+(G) yield natural numbers.
Let us consider a locally-finite graph G and a natural number n. Now we

state the propositions:

(67) δ(G) = n if and only if there exists a vertex v of G such that v.degree() =
n and for every vertex w of G, v.degree() ¬ w.degree(). The theorem is
a consequence of (36).

(68) δ−(G) = n if and only if there exists a vertex v ofG such that v.inDegree()
= n and for every vertex w of G, v.inDegree() ¬ w.inDegree(). The the-
orem is a consequence of (37).

(69) δ+(G) = n if and only if there exists a vertex v ofG such that v.outDegree()
= n and for every vertex w of G, v.outDegree() ¬ w.outDegree(). The
theorem is a consequence of (38).
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Let us consider a graph G2, vertices v, w of G2, an object e, and a supergraph
G1 of G2 extended by e between vertices v and w. Now we state the propositions:

(70) If v 6= w, then δ(G1) = δ(G2) or δ(G1) = v.degree() ∩ w.degree() + 1.
The theorem is a consequence of (36) and (62).

(71) If v 6= w, then δ−(G1) = δ−(G2) or δ−(G1) = w.inDegree() + 1. The
theorem is a consequence of (37) and (62).

(72) If v 6= w, then δ+(G1) = δ+(G2) or δ+(G1) = v.outDegree() + 1. The
theorem is a consequence of (38) and (62).

Let us consider a locally-finite graph G2, vertices v, w of G2, an object e,
and a supergraph G1 of G2 extended by e between vertices v and w. Now we
state the propositions:

(73) If v 6= w, then δ(G1) = δ(G2) or δ(G1) = min(v.degree(), w.degree())+1.
The theorem is a consequence of (70).

(74) If v 6= w, then δ−(G1) = δ−(G2) or δ−(G1) = w.inDegree() + 1. The
theorem is a consequence of (71).

(75) If v 6= w, then δ+(G1) = δ+(G2) or δ+(G1) = v.outDegree() + 1. The
theorem is a consequence of (72).

(76) Let us consider a graph G2, an object v, and a supergraph G1 of G2
extended by vertex v and edges between v and the vertices of G2. Suppose
v /∈ the vertices of G2. Then δ(G1) = (δ(G2)+1)∩G2.order(). The theorem
is a consequence of (36).

(77) Let us consider a finite graph G2, an object v, and a supergraph G1
of G2 extended by vertex v and edges between v and the vertices of G2.
Suppose v /∈ the vertices of G2. Then δ(G1) = min(δ(G2) + 1, G2.order()).
The theorem is a consequence of (76).

(78) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then δ(G1) ⊆ δ(G2) + 2. The theorem is
a consequence of (36) and (62).

Let G be an edge-finite graph. One can check that ∆̄(G) is natural and
∆̄−(G) is natural and ∆̄+(G) is natural.

The functors: ∆̄(G), ∆̄−(G), and ∆̄+(G) yield natural numbers. Let G be
a graph. We say that G is with max degree if and only if

(Def. 12) there exists a vertex v ofG such that for every vertex w ofG, w.degree() ⊆
v.degree().

We say that G is with max indegree if and only if

(Def. 13) there exists a vertex v ofG such that for every vertex w ofG, w.inDegree()
⊆ v.inDegree().

We say that G is with max outdegree if and only if
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(Def. 14) there exists a vertex v ofG such that for every vertex w ofG, w.outDegree()
⊆ v.outDegree().

Let us consider a graph G. Now we state the propositions:

(79) If G is with max degree, then there exists a vertex v of G such that

(i) v.degree() = ∆̄(G), and

(ii) for every vertex w of G, w.degree() ⊆ v.degree().

The theorem is a consequence of (35).

(80) Suppose G is with max indegree. Then there exists a vertex v of G such
that

(i) v.inDegree() = ∆̄−(G), and

(ii) for every vertex w of G, w.inDegree() ⊆ v.inDegree().

The theorem is a consequence of (35).

(81) Suppose G is with max outdegree. Then there exists a vertex v of G such
that

(i) v.outDegree() = ∆̄+(G), and

(ii) for every vertex w of G, w.outDegree() ⊆ v.outDegree().

The theorem is a consequence of (35).

Let G be a graph. We introduce the notation G is without max degree as an
antonym for G is with max degree. We introduce the notation G is without max
indegree as an antonym for G is with max indegree. We introduce the notation
G is without max outdegree as an antonym for G is with max outdegree.

Let us note that every graph which is with max indegree and with max
outdegree is also with max degree and every graph which is vertex-finite is also
with max degree, with max indegree, and with max outdegree and every graph
which is edge-finite is also with max degree, with max indegree, and with max
outdegree.

Now we state the proposition:

(82) Every with max degree graph is with max indegree or with max outde-
gree. The theorem is a consequence of (79), (40), (35), and (39).

Let G be a with max degree graph. We introduce the notation ∆(G) as a
synonym of ∆̄(G).

Let G be a with max indegree graph. We introduce the notation ∆−(G) as
a synonym of ∆̄−(G).

Let G be a with max outdegree graph. We introduce the notation ∆+(G) as
a synonym of ∆̄+(G).

Let G be a locally-finite, with max degree graph. Let us note that ∆(G) is
natural.
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Note that the functor ∆(G) yields a natural number. Let G be a locally-
finite, with max indegree graph. Let us note that ∆−(G) is natural.

Note that the functor ∆−(G) yields a natural number. Let G be a locally-
finite, with max outdegree graph. Let us note that ∆+(G) is natural.

Note that the functor ∆+(G) yields a natural number.
Let us consider graphs G1, G2 and a partial graph mapping F from G1 to

G2. Now we state the propositions:

(83) If F is isomorphism, then G1 is with max degree iff G2 is with max
degree. The theorem is a consequence of (79) and (55).

(84) Suppose F is directed-isomorphism. Then

(i) G1 is with max indegree iff G2 is with max indegree, and

(ii) G1 is with max outdegree iff G2 is with max outdegree.

The theorem is a consequence of (80), (60), and (81).

(85) Let us consider graphs G1, G2. Suppose G1 ≈ G2. Then

(i) if G1 is with max degree, then G2 is with max degree, and

(ii) if G1 is with max indegree, then G2 is with max indegree, and

(iii) if G1 is with max outdegree, then G2 is with max outdegree.

The theorem is a consequence of (83) and (84).

(86) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then G1 is with max degree if and only
if G2 is with max degree. The theorem is a consequence of (83).

Let G be a with max degree graph and E be a set. Observe that every graph
given by reversing directions of the edges E of G is with max degree.

Let V be a set. Let us note that every supergraph of G extended by the
vertices from V is with max degree and every graph by adding a loop to each
vertex of G in V is with max degree.

Let v, e, w be objects. One can verify that every supergraph of G extended
by e between vertices v and w is with max degree and every supergraph of G
extended by v, w and e between them is with max degree.

Let v be an object and V be a set. One can verify that every supergraph of
G extended by vertex v and edges between v and V of G is with max degree.

Let G be a with max indegree graph. Observe that every graph given by
reversing directions of the edges of G is with max outdegree.

Let V be a set. One can verify that every supergraph of G extended by the
vertices from V is with max indegree and every graph by adding a loop to each
vertex of G in V is with max indegree.
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Let v, e, w be objects. Let us note that every supergraph of G extended by
e between vertices v and w is with max indegree and every supergraph of G
extended by v, w and e between them is with max indegree.

Let v be an object and V be a set. Let us note that every supergraph of G
extended by vertex v and edges between v and V of G is with max indegree.

Let G be a with max outdegree graph. One can check that every graph given
by reversing directions of the edges of G is with max indegree.

Let V be a set. Let us note that every supergraph of G extended by the
vertices from V is with max outdegree and every graph by adding a loop to
each vertex of G in V is with max outdegree.

Let v, e, w be objects. One can verify that every supergraph of G extended
by e between vertices v and w is with max outdegree and every supergraph of
G extended by v, w and e between them is with max outdegree.

Let v be an object and V be a set. One can verify that every supergraph of
G extended by vertex v and edges between v and V of G is with max outdegree.

Now we state the propositions:

(87) Let us consider a locally-finite, with max degree graph G, and a natural
number n. Then ∆(G) = n if and only if there exists a vertex v of G such
that v.degree() = n and for every vertex w of G, w.degree() ¬ v.degree().
The theorem is a consequence of (79) and (48).

(88) Let us consider a locally-finite, with max indegree graph G, and a natural
number n. Then ∆−(G) = n if and only if there exists a vertex v of G
such that v.inDegree() = n and for every vertex w of G, w.inDegree() ¬
v.inDegree(). The theorem is a consequence of (80) and (49).

(89) Let us consider a locally-finite, with max outdegree graph G, and a na-
tural number n. Then ∆+(G) = n if and only if there exists a ver-
tex v of G such that v.outDegree() = n and for every vertex w of G,
w.outDegree() ¬ v.outDegree(). The theorem is a consequence of (81)
and (50).

(90) Let us consider a cardinal number c, and a trivial, c-edge graph G. Then

(i) ∆−(G) = c, and

(ii) δ−(G) = c, and

(iii) ∆+(G) = c, and

(iv) δ+(G) = c, and

(v) ∆(G) = c+ c, and

(vi) δ(G) = c+ c.

The theorem is a consequence of (49), (37), (50), (38), (48), and (36).
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Let G be a graph and v be a vertex of G. We say that v is with min degree
if and only if

(Def. 15) v.degree() = δ(G).

We say that v is with min indegree if and only if

(Def. 16) v.inDegree() = δ−(G).

We say that v is with min outdegree if and only if

(Def. 17) v.outDegree() = δ+(G).

We say that v is with max degree if and only if

(Def. 18) v.degree() = ∆̄(G).

We say that v is with max indegree if and only if

(Def. 19) v.inDegree() = ∆̄−(G).

We say that v is with max outdegree if and only if

(Def. 20) v.outDegree() = ∆̄+(G).

Let us consider a graph G and vertices v, w of G. Now we state the propo-
sitions:

(91) If v is with min degree, then v.degree() ⊆ w.degree(). The theorem is
a consequence of (36).

(92) If v is with min indegree, then v.inDegree() ⊆ w.inDegree(). The theorem
is a consequence of (37).

(93) If v is with min outdegree, then v.outDegree() ⊆ w.outDegree(). The
theorem is a consequence of (38).

(94) If w is with max degree, then v.degree() ⊆ w.degree(). The theorem is
a consequence of (79).

(95) If w is with max indegree, then v.inDegree() ⊆ w.inDegree(). The the-
orem is a consequence of (80).

(96) If w is with max outdegree, then v.outDegree() ⊆ w.outDegree(). The
theorem is a consequence of (81).

Let G be a graph. Note that there exists a vertex of G which is with min
degree and there exists a vertex of G which is with min indegree and there
exists a vertex of G which is with min outdegree and every vertex of G which
is with min indegree and with min outdegree is also with min degree and every
vertex of G which is with max indegree and with max outdegree is also with
max degree and every vertex of G which is isolated is also with min degree, with
min indegree, and with min outdegree.

Let us consider a graph G. Now we state the propositions:

(97) G is with max degree if and only if there exists a vertex v of G such that
v is with max degree. The theorem is a consequence of (79).
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(98) G is with max indegree if and only if there exists a vertex v of G such
that v is with max indegree. The theorem is a consequence of (80).

(99) G is with max outdegree if and only if there exists a vertex v of G such
that v is with max outdegree. The theorem is a consequence of (81).

Let G be a with max degree graph. Observe that there exists a vertex of G
which is with max degree.

Let G be a with max indegree graph. One can check that there exists a vertex
of G which is with max indegree.

Let G be a with max outdegree graph. Observe that there exists a vertex of
G which is with max outdegree.
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intersection are defined as modes rather than functions in accordance with the
style of the early GLIB articles and to leave this formalization extendable by
graph decorators.

To denote the graph family, a Graph-yielding Function from [7] could
have been used. But since sets of graphs would be needed sooner or later in the
Mizar Mathematical Library [1] (e.g. to count all spanning trees of a graph),
the set attribute Graph-membered is rigorously introduced in the first section.

In the second section, the first condition of Wagner is formalized. It simply
means that for two graphs G and H from the family, their respective source and
target function tolerate each other (S(G) ≈ S(H) and T (G) ≈ T (H), cf. [3]).
As this property is indispensable for unions (or else in a union an edge could
point to different vertices), the set attribute was named \/-tolerating. The
graph union U for a ∪-tolerating set S is given by

U = (
⋃
G∈S V (G),

⋃
G∈S E(G),

⋃
G∈S S(G),

⋃
G∈S T (G)) .

While Wagner’s second condition is useful to ensure the resulting graph union
will be non-multi, it is not formalized in this article.

Since graphs without vertices are not allowed by the used definition [7], the
difference between ∪-tolerating and /\-tolerating is the additional condition
that

⋂
G∈S V (G) is non empty. Then the graph intersection I for a ∩-tolerating

set S is given by

I = (
⋂
G∈S V (G),

⋂
G∈S E(G),

⋂
G∈S S(G),

⋂
G∈S T (G)) .

To avoid confusion with intersection graphs of any kind, the mode was named
GraphMeet.

With this formalization the union of a graph with (any kind of) its comple-
ment will be complete and the intersection will be edgeless, just as intended by
[6].

1. Sets of Graphs

Let X be a set. We say that X is graph-membered if and only if

(Def. 1) for every object x such that x ∈ X holds x is a graph.

Observe that every set which is empty is also graph-membered.
Let F be a graph-yielding function. One can verify that rngF is graph-

membered.
Let G1 be a graph. Let us note that {G1} is graph-membered.
Let G2 be a graph. Let us observe that {G1, G2} is graph-membered and

there exists a set which is empty and graph-membered and there exists a set
which is trivial, finite, non empty, and graph-membered.
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Let X be a graph-membered set. One can check that every subset of X is
graph-membered.

Let Y be a set. Let us note that X ∩ Y is graph-membered and X \ Y is
graph-membered.

LetX, Y be graph-membered sets. Let us note thatX∪Y is graph-membered
and X−. Y is graph-membered.

Let us consider a set X. Now we state the propositions:

(1) If for every object Y such that Y ∈ X holds Y is a graph-membered set,
then

⋃
X is graph-membered.

(2) If there exists a graph-membered set Y such that Y ∈ X, then
⋂
X is

graph-membered.

Let X be a non empty, graph-membered set. Observe that every element
of X is function-like and relation-like and every element of X is N-defined and
finite and every element of X is graph-like.

Let S be a graph-membered set. We say that S is plain if and only if

(Def. 2) for every graph G such that G ∈ S holds G is plain.

We say that S is loopless if and only if

(Def. 3) for every graph G such that G ∈ S holds G is loopless.

We say that S is non-multi if and only if

(Def. 4) for every graph G such that G ∈ S holds G is non-multi.

We say that S is non-directed-multi if and only if

(Def. 5) for every graph G such that G ∈ S holds G is non-directed-multi.

We say that S is simple if and only if

(Def. 6) for every graph G such that G ∈ S holds G is simple.

We say that S is directed-simple if and only if

(Def. 7) for every graph G such that G ∈ S holds G is directed-simple.

We say that S is acyclic if and only if

(Def. 8) for every graph G such that G ∈ S holds G is acyclic.

We say that S is connected if and only if

(Def. 9) for every graph G such that G ∈ S holds G is connected.

We say that S is tree-like if and only if

(Def. 10) for every graph G such that G ∈ S holds G is tree-like.

We say that S is chordal if and only if

(Def. 11) for every graph G such that G ∈ S holds G is chordal.

We say that S is edgeless if and only if

(Def. 12) for every graph G such that G ∈ S holds G is edgeless.
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We say that S is loopfull if and only if

(Def. 13) for every graph G such that G ∈ S holds G is loopfull.

Let us observe that every graph-membered set which is empty is also plain,
loopless, non-multi, non-directed-multi, simple, directed-simple, acyclic, con-
nected, tree-like, chordal, edgeless, and loopfull and every graph-membered set
which is non-multi is also non-directed-multi and every graph-membered set
which is loopless and non-multi is also simple and every graph-membered set
which is loopless and non-directed-multi is also directed-simple.

Every graph-membered set which is simple is also loopless and non-multi
and every graph-membered set which is directed-simple is also loopless and non-
directed-multi and every graph-membered set which is acyclic is also simple and
every graph-membered set which is acyclic and connected is also tree-like and
every graph-membered set which is tree-like is also acyclic and connected.

Let G1 be a plain graph. Let us observe that {G1} is plain. Let G2 be a plain
graph. One can check that {G1, G2} is plain.

Let G1 be a loopless graph. One can verify that {G1} is loopless. Let G2 be
a loopless graph. Note that {G1, G2} is loopless.

Let G1 be a non-multi graph. One can check that {G1} is non-multi. Let G2
be a non-multi graph. Let us note that {G1, G2} is non-multi.

Let G1 be a non-directed-multi graph. Note that {G1} is non-directed-multi.
Let G2 be a non-directed-multi graph. Observe that {G1, G2} is non-directed-
multi.

Let G1 be a simple graph. Let us note that {G1} is simple. Let G2 be a simple
graph. One can verify that {G1, G2} is simple.

Let G1 be a directed-simple graph. Let us observe that {G1} is directed-
simple. LetG2 be a directed-simple graph. Note that {G1, G2} is directed-simple.

Let G1 be an acyclic graph. One can check that {G1} is acyclic. Let G2 be
an acyclic graph. Let us note that {G1, G2} is acyclic.

Let G1 be a connected graph. Note that {G1} is connected. Let G2 be a con-
nected graph. Observe that {G1, G2} is connected.

Let G1 be a tree-like graph. Let us note that {G1} is tree-like. Let G2 be
a tree-like graph. One can verify that {G1, G2} is tree-like.

Let G1 be a chordal graph. Let us observe that {G1} is chordal. Let G2 be
a chordal graph. One can check that {G1, G2} is chordal.

Let G1 be an edgeless graph. One can verify that {G1} is edgeless. Let G2
be an edgeless graph. Note that {G1, G2} is edgeless.

Let G1 be a loopfull graph. One can check that {G1} is loopfull. Let G2 be
a loopfull graph. Let us note that {G1, G2} is loopfull.

Let F be a plain, graph-yielding function. Observe that rngF is plain.
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Let F be a loopless, graph-yielding function. One can verify that rngF is
loopless.

Let F be a non-multi, graph-yielding function. Note that rngF is non-multi.
Let F be a non-directed-multi, graph-yielding function. Observe that rngF

is non-directed-multi.
Let F be a simple, graph-yielding function. One can verify that rngF is

simple.
Let F be a directed-simple, graph-yielding function. Observe that rngF is

directed-simple.
Let F be an acyclic, graph-yielding function. Note that rngF is acyclic.
Let F be a connected, graph-yielding function. Observe that rngF is con-

nected.
Let F be a tree-like, graph-yielding function. One can verify that rngF is

tree-like.
Let F be a chordal, graph-yielding function. Observe that rngF is chordal.
Let F be an edgeless, graph-yielding function. One can verify that rngF is

edgeless.
Let F be a loopfull, graph-yielding function. Note that rngF is loopfull.
Let X be a plain, graph-membered set. Observe that every subset of X is

plain.
Let X be a loopless, graph-membered set. Note that every subset of X is

loopless.
Let X be a non-multi, graph-membered set. One can verify that every subset

of X is non-multi.
Let X be a non-directed-multi, graph-membered set. Observe that every

subset of X is non-directed-multi.
Let X be a simple, graph-membered set. Note that every subset of X is

simple.
Let X be a directed-simple, graph-membered set. One can check that every

subset of X is directed-simple.
Let X be an acyclic, graph-membered set. One can verify that every subset

of X is acyclic.
Let X be a connected, graph-membered set. Observe that every subset of X

is connected.
Let X be a tree-like, graph-membered set. Note that every subset of X is

tree-like.
Let X be a chordal, graph-membered set. One can check that every subset

of X is chordal.
Let X be an edgeless, graph-membered set. Let us observe that every subset

of X is edgeless.
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Let X be a loopfull, graph-membered set. Let us note that every subset of
X is loopfull.

Let X be a plain, graph-membered set and Y be a set. Note that X ∩ Y is
plain and X \ Y is plain.

Let X, Y be plain, graph-membered sets. Observe that X ∪ Y is plain and
X−. Y is plain.

Let X be a loopless, graph-membered set and Y be a set. Note that X ∩ Y
is loopless and X \ Y is loopless.

Let X, Y be loopless, graph-membered sets. Observe that X ∪ Y is loopless
and X−. Y is loopless.

Let X be a non-multi, graph-membered set and Y be a set. Note that X ∩Y
is non-multi and X \ Y is non-multi.

Let X, Y be non-multi, graph-membered sets. Observe that X ∪ Y is non-
multi and X−. Y is non-multi.

Let X be a non-directed-multi, graph-membered set and Y be a set. Note
that X ∩ Y is non-directed-multi and X \ Y is non-directed-multi.

Let X, Y be non-directed-multi, graph-membered sets. Observe that X ∪ Y
is non-directed-multi and X−. Y is non-directed-multi.

Let X be a simple, graph-membered set and Y be a set. Note that X ∩ Y is
simple and X \ Y is simple.

Let X, Y be simple, graph-membered sets. Observe that X ∪ Y is simple
and X−. Y is simple.

Let X be a directed-simple, graph-membered set and Y be a set. Note that
X ∩ Y is directed-simple and X \ Y is directed-simple.

Let X, Y be directed-simple, graph-membered sets. Observe that X ∪ Y is
directed-simple and X−. Y is directed-simple.

Let X be an acyclic, graph-membered set and Y be a set. Note that X ∩ Y
is acyclic and X \ Y is acyclic.

Let X, Y be acyclic, graph-membered sets. Observe that X ∪ Y is acyclic
and X−. Y is acyclic.

Let X be a connected, graph-membered set and Y be a set. Note that X∩Y
is connected and X \ Y is connected.

Let X, Y be connected, graph-membered sets. Observe that X ∪ Y is con-
nected and X−. Y is connected.

Let X be a tree-like, graph-membered set and Y be a set. Note that X ∩ Y
is tree-like and X \ Y is tree-like.

Let X, Y be tree-like, graph-membered sets. Observe that X ∪Y is tree-like
and X−. Y is tree-like.

Let X be a chordal, graph-membered set and Y be a set. Note that X ∩ Y
is chordal and X \ Y is chordal.
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Let X, Y be chordal, graph-membered sets. Observe that X ∪ Y is chordal
and X−. Y is chordal.

Let X be an edgeless, graph-membered set and Y be a set. Note that X ∩Y
is edgeless and X \ Y is edgeless.

Let X, Y be edgeless, graph-membered sets. Observe that X ∪Y is edgeless
and X−. Y is edgeless.

Let X be a loopfull, graph-membered set and Y be a set. Note that X ∩ Y
is loopfull and X \ Y is loopfull.

Let X, Y be loopfull, graph-membered sets. Observe that X ∪ Y is loopfull
and X−. Y is loopfull. There exists a graph-membered set which is empty, plain,
loopless, non-multi, non-directed-multi, simple, directed-simple, acyclic, connec-
ted, tree-like, chordal, edgeless, and loopfull. There exists a graph-membered
set which is non empty, tree-like, acyclic, connected, simple, directed-simple,
loopless, non-multi, and non-directed-multi.

There exists a graph-membered set which is non empty, edgeless, and chordal
and there exists a graph-membered set which is non empty and loopfull and there
exists a graph-membered set which is non empty and plain.

Let S be a non empty, plain, graph-membered set. One can verify that every
element of S is plain.

Let S be a non empty, loopless, graph-membered set. Let us observe that
every element of S is loopless.

Let S be a non empty, non-multi, graph-membered set. Observe that every
element of S is non-multi.

Let S be a non empty, non-directed-multi, graph-membered set. Let us note
that every element of S is non-directed-multi.

Let S be a non empty, simple, graph-membered set. Note that every element
of S is simple.

Let S be a non empty, directed-simple, graph-membered set. Note that
every element of S is directed-simple.

Let S be a non empty, acyclic, graph-membered set. Note that every element
of S is acyclic.

Let S be a non empty, connected, graph-membered set. One can check that
every element of S is connected.

Let S be a non empty, tree-like, graph-membered set. One can verify that
every element of S is tree-like.

Let S be a non empty, chordal, graph-membered set. One can verify that
every element of S is chordal.

Let S be a non empty, edgeless, graph-membered set. Let us observe that
every element of S is edgeless.
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Let S be a non empty, loopfull, graph-membered set. Observe that every
element of S is loopfull.

Let S be a graph-membered set. The functors: the vertices of S, the edges
of S, the source of S, and the target of S yielding sets are defined by conditions

(Def. 14) for every object V , V ∈ the vertices of S iff there exists a graph G such
that G ∈ S and V = the vertices of G,

(Def. 15) for every object E, E ∈ the edges of S iff there exists a graph G such
that G ∈ S and E = the edges of G,

(Def. 16) for every object s, s ∈ the source of S iff there exists a graph G such
that G ∈ S and s = the source of G,

(Def. 17) for every object t, t ∈ the target of S iff there exists a graph G such that
G ∈ S and t = the target of G,

respectively. Let S be a non empty, graph-membered set. The functors: the ver-
tices of S, the edges of S, the source of S, and the target of S are defined by
terms

(Def. 18) the set of all the vertices of G where G is an element of S,

(Def. 19) the set of all the edges of G where G is an element of S,

(Def. 20) the set of all the source of G where G is an element of S,

(Def. 21) the set of all the target of G where G is an element of S,

respectively. One can verify that
⋃

(the vertices of S) is non empty.
Let S be a graph-membered set. Note that the source of S is functional and

the target of S is functional.
Let S be an empty, graph-membered set. Let us note that the vertices of S is

empty and the edges of S is empty and the source of S is empty and the target
of S is empty.

Let S be a non empty, graph-membered set. Let us observe that the vertices
of S is non empty and the edges of S is non empty and the source of S is non
empty and the target of S is non empty.

Let S be a trivial, graph-membered set. Note that the vertices of S is trivial
and the edges of S is trivial and the source of S is trivial and the target of S is
trivial.

Now we state the propositions:

(3) Let us consider a graph G. Then

(i) the vertices of {G} = {the vertices of G}, and

(ii) the edges of {G} = {the edges of G}, and

(iii) the source of {G} = {the source of G}, and

(iv) the target of {G} = {the target of G}.
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(4) Let us consider graphs G, H. Then

(i) the vertices of {G,H} = {the vertices of G, the vertices of H}, and

(ii) the edges of {G,H} = {the edges of G, the edges of H}, and

(iii) the source of {G,H} = {the source of G, the source of H}, and

(iv) the target of {G,H} = {the target of G, the target of H}.
(5) Let us consider a graph-membered set S. Then

(i) α ⊆ S , and

(ii) β ⊆ S , and

(iii) γ ⊆ S , and

(iv) δ ⊆ S ,

where α is the vertices of S, β is the edges of S, γ is the source of S, and
δ is the target of S.
Proof: Define P[object, object] ≡ there exists a graph G such that $1 = G

and $2 = the vertices of G. For every object x such that x ∈ S there exists
an object y such that P[x, y]. Consider f1 being a function such that
dom f1 = S and for every object x such that x ∈ S holds P[x, f1(x)].
Define Q[object, object] ≡ there exists a graph G such that $1 = G and
$2 = the edges of G. For every object x such that x ∈ S there exists
an object y such that Q[x, y]. Consider f2 being a function such that
dom f2 = S and for every object x such that x ∈ S holds Q[x, f2(x)].

Define R[object, object] ≡ there exists a graph G such that $1 = G

and $2 = the source of G. For every object x such that x ∈ S there
exists an object y such that R[x, y]. Consider f3 being a function such
that dom f3 = S and for every object x such that x ∈ S holds R[x, f3(x)].
Define T [object, object] ≡ there exists a graph G such that $1 = G and
$2 = the target of G. For every object x such that x ∈ S there exists
an object y such that T [x, y]. Consider f4 being a function such that
dom f4 = S and for every object x such that x ∈ S holds T [x, f4(x)]. �

Let S be a finite, graph-membered set. Let us observe that the vertices of S
is finite and the edges of S is finite and the source of S is finite and the target
of S is finite.

Let S be an edgeless, graph-membered set. Note that
⋃

(the edges of S) is
empty.

Let us consider graph-membered sets S1, S2. Now we state the propositions:

(6) (i) the vertices of S1 ∪ S2 = (the vertices of S1) ∪ (the vertices of S2),
and

(ii) the edges of S1 ∪ S2 = (the edges of S1) ∪ (the edges of S2), and
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(iii) the source of S1 ∪ S2 = (the source of S1) ∪ (the source of S2), and

(iv) the target of S1 ∪ S2 = (the target of S1) ∪ (the target of S2).

(7) (i) the vertices of S1 ∩ S2 ⊆ (the vertices of S1) ∩ (the vertices of S2),
and

(ii) the edges of S1 ∩ S2 ⊆ (the edges of S1) ∩ (the edges of S2), and

(iii) the source of S1 ∩ S2 ⊆ (the source of S1) ∩ (the source of S2), and

(iv) the target of S1 ∩ S2 ⊆ (the target of S1) ∩ (the target of S2).

(8) (i) (the vertices of S1) \ (the vertices of S2) ⊆ the vertices of S1 \ S2,
and

(ii) (the edges of S1) \ (the edges of S2) ⊆ the edges of S1 \ S2, and

(iii) (the source of S1) \ (the source of S2) ⊆ the source of S1 \ S2, and

(iv) (the target of S1) \ (the target of S2) ⊆ the target of S1 \ S2.
(9) (i) (the vertices of S1)−. (the vertices of S2) ⊆ the vertices of S1−. S2,

and

(ii) (the edges of S1)−. (the edges of S2) ⊆ the edges of S1−. S2, and

(iii) (the source of S1)−. (the source of S2) ⊆ the source of S1−. S2, and

(iv) (the target of S1)−. (the target of S2) ⊆ the target of S1−. S2.
The theorem is a consequence of (8) and (6).

2. Union of Graphs

Let G1, G2 be graphs. We say that G1 toleratesG2 if and only if

(Def. 22) the source of G1 tolerates the source of G2 and the target of G1 tolerates
the target of G2.

Let us observe that the predicate is reflexive and symmetric.
Let us consider graphs G1, G2. Now we state the propositions:

(10) If the edges of G1 misses the edges of G2, then G1 toleratesG2.

(11) Suppose the source of G1 ⊆ the source of G2 and the target of G1 ⊆
the target of G2. Then G1 toleratesG2.

(12) Let us consider a graph G1, and subgraphs G2, G3 of G1.
Then G2 toleratesG3.

(13) Let us consider a graphG1, and a subgraphG2 ofG1. ThenG1 toleratesG2.
The theorem is a consequence of (12).

Let us consider graphs G1, G2. Now we state the propositions:

(14) If G1 ≈ G2, then G1 toleratesG2. The theorem is a consequence of (13).
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(15) G1 toleratesG2 if and only if for every objects e, v1, w1, v2, w2 such
that e joins v1 to w1 in G1 and e joins v2 to w2 in G2 holds v1 = v2 and
w1 = w2.

(16) Let us consider a graph G1, a subset E of the edges of G1, and a graph
G2 given by reversing directions of the edges E of G1. Then G1 toleratesG2
if and only if E ⊆ G1.loops(). The theorem is a consequence of (15).

Let S be a graph-membered set. We say that S is ∪-tolerating if and only if

(Def. 23) for every graphs G1, G2 such that G1, G2 ∈ S holds G1 toleratesG2.

Let S be a non empty, graph-membered set. Observe that S is ∪-tolerating
if and only if the condition (Def. 24) is satisfied.

(Def. 24) for every elements G1, G2 of S, G1 toleratesG2.

One can verify that every graph-membered set which is empty is also ∪-
tolerating.

Let G be a graph. Observe that {G} is ∪-tolerating and there exists a graph-
membered set which is non empty and ∪-tolerating.

A graph union set is a non empty, ∪-tolerating, graph-membered set. Now
we state the proposition:

(17) Let us consider graphsG1,G2. ThenG1 toleratesG2 if and only if {G1, G2}
is ∪-tolerating.

Let S1 be a ∪-tolerating, graph-membered set and S2 be a set. Let us note
that S1 ∩ S2 is ∪-tolerating and S1 \ S2 is ∪-tolerating.

Now we state the proposition:

(18) Let us consider graph-membered sets S1, S2. Suppose S1 ∪ S2 is ∪-
tolerating. Then

(i) S1 is ∪-tolerating, and

(ii) S2 is ∪-tolerating.

Let S be a ∪-tolerating, graph-membered set. Let us note that the source
of S is compatible and the target of S is compatible and

⋃
(the source of S)

is function-like and relation-like and
⋃

(the target of S) is function-like and
relation-like and

⋃
(the source of S) is (

⋃
(the edges of S))-defined and (

⋃
(the ver-

tices of S))-valued and
⋃

(the target of S) is (
⋃

(the edges of S))-defined and
(
⋃

(the vertices of S))-valued and
⋃

(the source of S) is total and
⋃

(the target
of S) is total.

Let S be a graph union set.
A graph union of S is a graph defined by

(Def. 25) the vertices of it =
⋃

(the vertices of S) and the edges of it =
⋃

(the edges
of S) and the source of it =

⋃
(the source of S) and the target of it =⋃

(the target of S).
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Now we state the propositions:

(19) Let us consider a graph union set S, and a graph union G of S. Then
every element of S is a subgraph of G.

(20) Let us consider a graph union set S, a graph union G of S, and a graph
G′. Then G′ is a graph union of S if and only if G ≈ G′.

Let S be a graph union set. One can check that there exists a graph union of
S which is plain and there exists a graph union set which is loopless and there
exists a graph union set which is edgeless and there exists a graph union set
which is loopfull.

Let S be a loopless graph union set. Note that every graph union of S is
loopless.

Let S be an edgeless graph union set. Observe that every graph union of S
is edgeless.

Let S be a loopfull graph union set. One can check that every graph union
of S is loopfull.

Now we state the proposition:

(21) Let us consider graphs G, H. Then G is a graph union of {H} if and
only if G ≈ H. The theorem is a consequence of (3).

Let G1, G2 be graphs.
A graph union of G1 and G2 is a supergraph of G1 defined by

(Def. 26) (i) there exists a graph union set S such that S = {G1, G2} and it is
a graph union of S, if G1 toleratesG2,

(ii) it ≈ G1, otherwise.

Now we state the proposition:

(22) Let us consider graphs G1, G2, G. Suppose G1 toleratesG2. Then G is
a graph union of G1 and G2 if and only if the vertices of G = (the vertices
of G1) ∪ (the vertices of G2) and the edges of G = (the edges of G1) ∪
(the edges of G2) and the source of G = (the source of G1)+·(the source
of G2) and the target of G = (the target of G1)+·(the target of G2). The
theorem is a consequence of (4) and (17).

Let us consider graphs G1, G2 and a graph union G of G1 and G2. Now we
state the propositions:

(23) If G1 toleratesG2, then G is a supergraph of G2. The theorem is a con-
sequence of (19).

(24) If G1 toleratesG2, then G is a graph union of G2 and G1. The theorem
is a consequence of (23).

(25) Let us consider graphs G1, G2, G′, and a graph union G of G1 and G2.
Then G′ is a graph union of G1 and G2 if and only if G ≈ G′. The theorem
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is a consequence of (20).

Let G1, G2 be graphs. One can verify that there exists a graph union of G1
and G2 which is plain.

Now we state the proposition:

(26) Let us consider graphs G, G1, and a subgraph G2 of G1. Then G is
a graph union of G1 and G2 if and only if G ≈ G1. The theorem is
a consequence of (13) and (22).

Let G1, G2 be loopless graphs. Observe that every graph union of G1 and
G2 is loopless.

Let G1, G2 be edgeless graphs. Let us note that every graph union of G1
and G2 is edgeless.

Let G1, G2 be loopfull graphs. Note that every graph union of G1 and G2 is
loopfull.

Now we state the proposition:

(27) Let us consider a graph G1, a directed graph complement G2 of G1
with loops, a graph union G of G1 and G2, and vertices v, w of G. Then
there exists an object e such that e joins v to w in G. The theorem is
a consequence of (10), (22), and (23).

Let G1 be a graph and G2 be a directed graph complement of G1 with loops.
Let us observe that every graph union of G1 and G2 is loopfull and complete.

Now we state the proposition:

(28) Let us consider a graph G1, an undirected graph complement G2 of G1
with loops, a graph union G of G1 and G2, and vertices v, w of G. Then
there exists an object e such that e joins v and w in G. The theorem is
a consequence of (10), (22), and (23).

Let G1 be a graph and G2 be an undirected graph complement of G1 with
loops. Let us note that every graph union of G1 and G2 is loopfull and complete.

Now we state the proposition:

(29) Let us consider a graph G1, a directed graph complement G2 of G1,
a graph union G of G1 and G2, and vertices v, w of G. If v 6= w, then
there exists an object e such that e joins v to w in G. The theorem is
a consequence of (10), (22), and (23).

Let G1 be a graph and G2 be a directed graph complement of G1. One can
check that every graph union of G1 and G2 is complete.

Now we state the proposition:

(30) Let us consider a graph G1, a graph complement G2 of G1, a graph
union G of G1 and G2, and vertices v, w of G. If v 6= w, then there exists
an object e such that e joins v and w in G. The theorem is a consequence
of (10), (22), and (23).
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Let G1 be a graph and G2 be a graph complement of G1. Let us note that
every graph union of G1 and G2 is complete.

Let G1 be a non-directed-multi graph and G2 be a directed graph comple-
ment of G1 with loops. One can verify that every graph union of G1 and G2 is
non-directed-multi.

Let G1 be a non-multi graph and G2 be an undirected graph complement of
G1 with loops. Note that every graph union of G1 and G2 is non-multi.

Let G1 be a non-directed-multi graph and G2 be a directed graph comple-
ment of G1. Observe that every graph union of G1 and G2 is non-directed-multi.

Let G1 be a non-multi graph and G2 be a graph complement of G1. One can
verify that every graph union of G1 and G2 is non-multi.

3. Intersection of Graphs

Let S be a graph-membered set. We say that S is ∩-tolerating if and only if

(Def. 27)
⋂

(the vertices of S) 6= ∅ and for every graphs G1, G2 such that G1,
G2 ∈ S holds G1 toleratesG2.

Let S be a non empty, graph-membered set. One can verify that S is ∩-
tolerating if and only if the condition (Def. 28) is satisfied.

(Def. 28)
⋂

(the vertices of S) 6= ∅ and for every elementsG1,G2 of S,G1 toleratesG2.

Now we state the proposition:

(31) Let us consider a graph-membered set S. Then S is ∩-tolerating if and
only if S is ∪-tolerating and

⋂
(the vertices of S) 6= ∅.

LetG be a graph. Observe that {G} is ∩-tolerating and every graph-membered
set which is ∩-tolerating is also ∪-tolerating and non empty and there exists
a graph-membered set which is ∩-tolerating.

A graph meet set is a ∩-tolerating, graph-membered set. Let S be a graph
meet set. Note that

⋂
(the vertices of S) is non empty.

Now we state the propositions:

(32) Let us consider graphs G1, G2. Then G1 toleratesG2 and the vertices of
G1 meets the vertices of G2 if and only if {G1, G2} is ∩-tolerating. The
theorem is a consequence of (4) and (17).

(33) Let us consider non empty, graph-membered sets S1, S2. Suppose S1∪S2
is ∩-tolerating. Then

(i) S1 is ∩-tolerating, and

(ii) S2 is ∩-tolerating.

The theorem is a consequence of (6) and (18).
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Let S be a graph meet set. One can verify that
⋂

(the source of S) is function-
like and relation-like and

⋂
(the target of S) is function-like and relation-like

and
⋂

(the source of S) is (
⋂

(the edges of S))-defined and (
⋂

(the vertices of S))-
valued and

⋂
(the target of S) is (

⋂
(the edges of S))-defined and (

⋂
(the vertices

of S))-valued and
⋂

(the source of S) is total and
⋂

(the target of S) is total.
A graph meet of S is a graph defined by

(Def. 29) the vertices of it =
⋂

(the vertices of S) and the edges of it =
⋂

(the edges
of S) and the source of it =

⋂
(the source of S) and the target of it =⋂

(the target of S).

Now we state the propositions:

(34) Let us consider a graph meet set S, and a graph meet G of S. Then
every element of S is a supergraph of G.

(35) Let us consider a graph meet set S, a graph meet G of S, and a graph
G′. Then G′ is a graph meet of S if and only if G ≈ G′.

Let S be a graph meet set. Let us observe that there exists a graph meet of
S which is plain.

Now we state the proposition:

(36) Let us consider graphs G, H. Then G is a graph meet of {H} if and only
if G ≈ H. The theorem is a consequence of (3).

Let G1, G2 be graphs.
A graph meet of G1 and G2 is a subgraph of G1 defined by

(Def. 30) (i) there exists a graph meet set S such that S = {G1, G2} and it is
a graph meet of S, if G1 toleratesG2 and the vertices of G1 meets
the vertices of G2,

(ii) it ≈ G1, otherwise.

Now we state the proposition:

(37) Let us consider graphs G1, G2, G. Suppose G1 toleratesG2 and the ver-
tices of G1 meets the vertices of G2. Then G is a graph meet of G1 and
G2 if and only if the vertices of G = (the vertices of G1) ∩ (the vertices
of G2) and the edges of G = (the edges of G1) ∩ (the edges of G2) and
the source of G = (the source of G1)∩(the source of G2) and the target of
G = (the target of G1)∩ (the target of G2). The theorem is a consequence
of (4) and (32).

Let us consider graphs G1, G2 and a graph meet G of G1 and G2. Now we
state the propositions:

(38) If G1 toleratesG2 and the vertices of G1 meets the vertices of G2, then
G is a subgraph of G2. The theorem is a consequence of (34).
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(39) If G1 toleratesG2 and the vertices of G1 meets the vertices of G2, then
G is a graph meet of G2 and G1. The theorem is a consequence of (38).

(40) Let us consider graphs G1, G2, G′, and a graph meet G of G1 and G2.
Then G′ is a graph meet of G1 and G2 if and only if G ≈ G′. The theorem
is a consequence of (35).

Let G1, G2 be graphs. One can check that there exists a graph meet of G1
and G2 which is plain.

Now we state the propositions:

(41) Let us consider graphs G, G1, and a subgraph G2 of G1. Then G is
a graph meet of G1 and G2 if and only if G ≈ G2. The theorem is a con-
sequence of (13) and (37).

(42) Let us consider graphs G1, G2, and a graph meet G of G1 and G2.
Suppose the vertices of G1 meets the vertices of G2 and the edges of G1
misses the edges of G2. Then G is edgeless. The theorem is a consequence
of (10) and (37).

Let G1 be a graph and G2 be a directed graph complement of G1 with loops.
Let us observe that every graph meet of G1 and G2 is edgeless.

Let G2 be an undirected graph complement of G1 with loops. One can check
that every graph meet of G1 and G2 is edgeless.

Let G2 be a directed graph complement of G1. Let us note that every graph
meet of G1 and G2 is edgeless.

Let G2 be a graph complement of G1. Let us observe that every graph meet
of G1 and G2 is edgeless.
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isn’t used anywhere else) and the friendship theorem was formalized in [7] using
only relations.

In the first section the dominance and adjacency relation of a graph G are
rigorously introduced. G isn’t required to be without parallel edges for this,
therefore the relations of G and the graph given by removing parallel edges
(directed parallel for the dominance) as defined in [5] are the same.

The second section introduces the new functor definition for createGraph,
taking a non empty set V and a relation E ⊆ V × V and returning a graph
representing this relation. It is shown that the graph created this way from
a dominance relation of a graph G without directed parallel edges is directed
isomorphic to G itself.

Since undirected graphs are sometimes viewed as symmetric digraphs (cf. [3],
[4], [8], the last section introduces a mode getting a graph without parallel edges
of any kind by simply removing them from the functor result of the previous
section. Similar to before, it is shown that the graph created this way from an
adjacency relation of a graph G without parallel edges is isomorphic to G itself.

1. The Adjacency Relation

From now on G denotes a graph.
Let us consider G. The functor VertDomRel(G) yielding a binary relation

on the vertices of G is defined by the term

(Def. 1) (the source of G qua binary relation)` · (the target of G).

Let us consider objects v, w. Now we state the propositions:

(1) 〈〈v, w〉〉 ∈ VertDomRel(G) if and only if there exists an object e such that
e joins v to w in G.

(2) 〈〈v, w〉〉 ∈ (VertDomRel(G))` if and only if there exists an object e such
that e joins w to v in G. The theorem is a consequence of (1).

(3) G is loopless if and only if VertDomRel(G) is irreflexive.

Let G be a loopless graph. One can verify that VertDomRel(G) is irreflexive.
Let G be a non loopless graph. One can verify that VertDomRel(G) is non

irreflexive.
Let G be a non-multi graph. One can verify that VertDomRel(G) is anti-

symmetric.
Let G be a simple graph. One can check that VertDomRel(G) is asymmetric.
Now we state the proposition:

(4) Let us consider a graph G. Suppose there exist objects e1, e2, x, y such
that e1 joins x to y in G and e2 joins y to x in G. Then VertDomRel(G)
is not asymmetric.
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Proof: Set R = VertDomRel(G). There exist objects x, y such that x,
y ∈ fieldR and 〈〈x, y〉〉, 〈〈y, x〉〉 ∈ R. �

Let G be a non non-multi, non-directed-multi graph.
Note that VertDomRel(G) is non asymmetric.
Now we state the propositions:

(5) Let us consider a loopless graph G. Suppose field VertDomRel(G) =
the vertices of G. Then every component of G is not trivial. The theorem
is a consequence of (1).

(6) Let us consider a graph G. Suppose every component of G is not trivial.
Then field VertDomRel(G) = the vertices of G. The theorem is a consequ-
ence of (1).

(7) Let us consider a non trivial, connected graph G. Then field VertDomRel
(G) = the vertices of G. The theorem is a consequence of (6).

LetG be a complete graph. One can verify that VertDomRel(G) is connected.

(8) G is edgeless if and only if VertDomRel(G) is empty. The theorem is
a consequence of (1).

Let G be an edgeless graph. Let us observe that VertDomRel(G) is empty.
Let G be a non edgeless graph. One can verify that VertDomRel(G) is non

empty.
Now we state the proposition:

(9) G is loopfull if and only if VertDomRel(G) is total and reflexive.

Let G be a loopfull graph. Note that VertDomRel(G) is reflexive and total.
Let G be a vertex-finite graph. Let us observe that VertDomRel(G) is finite.

(10) VertDomRel(G) = Classes DEdgeParEqRel(G).
Proof: Set R = VertDomRel(G). Define P[object, object] ≡ there exists
an object e such that e joins ($1)1 to ($1)2 inG and $2 = [e]DEdgeParEqRel(G).
For every objects x, y1, y2 such that x ∈ R and P[x, y1] and P[x, y2] holds
y1 = y2. For every object x such that x ∈ R there exists an object y such
that P[x, y]. Consider f being a function such that dom f = R and for
every object x such that x ∈ R holds P[x, f(x)]. For every objects x1, x2
such that x1, x2 ∈ dom f and f(x1) = f(x2) holds x1 = x2. �

(11) VertDomRel(G) ⊆ G.size(). The theorem is a consequence of (10).

(12) Let us consider a non-directed-multi graph G. Then G.size() =

VertDomRel(G). The theorem is a consequence of (10).

Let us consider a vertex v of G. Now we state the propositions:

(13) (VertDomRel(G))◦v = v.outNeighbors(). The theorem is a consequence
of (1).
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(14) Coim(VertDomRel(G), v) = v.inNeighbors(). The theorem is a consequ-
ence of (1).

(15) Let us consider a subgraph H of G. Then VertDomRel(H) ⊆
VertDomRel(G). The theorem is a consequence of (1).

(16) Let us consider a subgraph H of G with directed-parallel edges removed.
Then VertDomRel(H) = VertDomRel(G). The theorem is a consequence
of (15) and (1).

(17) Let us consider a subgraphH ofG with loops removed. Then VertDomRel
(H) = (VertDomRel(G))\(idα), where α is the vertices of G. The theorem
is a consequence of (1) and (15).

(18) Let us consider a directed-simple graph H of G. Then VertDomRel(H) =
(VertDomRel(G)) \ (idα), where α is the vertices of G. The theorem is
a consequence of (17) and (16).

(19) Let us consider graphs G1, G2. If G1 ≈ G2, then VertDomRel(G1) =
VertDomRel(G2). The theorem is a consequence of (1).

(20) Let us consider a graph H given by reversing directions of the edges of
G. Then VertDomRel(H) = (VertDomRel(G))`. The theorem is a conse-
quence of (1).

(21) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V . Then VertDomRel(H) = VertDomRel(G) ∩ (V ×
V ). The theorem is a consequence of (1) and (15).

(22) Let us consider a set V , and a subgraph H of G with vertices V removed.
Suppose V ⊂ the vertices ofG. Then VertDomRel(H) = (VertDomRel(G))\
(V × (the vertices of G)∪ (the vertices of G)× V ). The theorem is a con-
sequence of (15) and (1).

Let us consider a non trivial graph G, a vertex v of G, and a subgraph H of
G with vertex v removed. Now we state the propositions:

(23) VertDomRel(H) = (VertDomRel(G)) \ ({v} × (the vertices of G)∪
(the vertices of G)× {v}). The theorem is a consequence of (22).

(24) If v is isolated, then VertDomRel(H) = VertDomRel(G).
Proof: Set V1 = {v}× (the vertices of G). Set V2 = (the vertices of G)×
{v}. (V1 ∪ V2) ∩VertDomRel(G) = ∅. �

(25) Let us consider a set V , and a supergraph H of G extended by the
vertices from V . Then VertDomRel(H) = VertDomRel(G). The theorem
is a consequence of (15) and (1).

(26) Let us consider objects v, e, w, and a supergraph H of G extended by e
between vertices v and w. Suppose there exists an object e0 such that e0
joins v to w in G. Then VertDomRel(H) = VertDomRel(G). The theorem
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is a consequence of (15), (1), and (19).

(27) Let us consider vertices v, w of G, an object e, and a supergraph H of
G extended by e between vertices v and w. Suppose e /∈ the edges of
G. Then VertDomRel(H) = VertDomRel(G) ∪ {〈〈v, w〉〉}. The theorem is
a consequence of (1) and (15).

(28) Let us consider a vertex v of G, objects e, w, and a supergraph H of G
extended by v, w and e between them. Suppose e /∈ the edges of G and
w /∈ the vertices of G. Then VertDomRel(H) = VertDomRel(G) ∪ {〈〈v,
w〉〉}. The theorem is a consequence of (27) and (25).

(29) Let us consider objects v, e, a vertex w of G, and a supergraph H of
G extended by v, w and e between them. Suppose e /∈ the edges of G
and v /∈ the vertices of G. Then VertDomRel(H) = VertDomRel(G)∪{〈〈v,
w〉〉}. The theorem is a consequence of (27) and (25).

(30) Let us consider a subset V of the vertices ofG, and a graphH by adding a
loop to each vertex of G in V . Then VertDomRel(H) = VertDomRel(G)∪
idV . The theorem is a consequence of (1) and (15).

(31) Let us consider a directed graph complement H of G with loops. Then
VertDomRel(H) = ((the vertices ofG)×(the vertices ofG))\(VertDomRel
(G)). The theorem is a consequence of (1).

Let us consider G. The functor VertAdjSymRel(G) yielding a binary relation
on the vertices of G is defined by the term

(Def. 2) VertDomRel(G) ∪ (VertDomRel(G))`.

Now we state the propositions:

(32) Let us consider objects v, w. Then 〈〈v, w〉〉 ∈ VertAdjSymRel(G) if and
only if there exists an object e such that e joins v and w in G. The theorem
is a consequence of (1) and (2).

(33) Let us consider vertices v, w of G. Then 〈〈v, w〉〉 ∈ VertAdjSymRel(G) if
and only if v and w are adjacent. The theorem is a consequence of (32).

(34) VertDomRel(G) ⊆ VertAdjSymRel(G).

(35) VertAdjSymRel(G) = (the source ofG qua binary relation)`·(the target
of G) ∪ (the target of G qua binary relation)` · (the source of G).

Let us consider G. One can check that VertAdjSymRel(G) is symmetric.
Now we state the proposition:

(36) G is loopless if and only if VertAdjSymRel(G) is irreflexive.

Let G be a loopless graph. One can verify that VertAdjSymRel(G) is irre-
flexive.

Let G be a non loopless graph. One can check that VertAdjSymRel(G) is
non irreflexive.
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Now we state the propositions:

(37) Let us consider a loopless graph G. Suppose VertAdjSymRel(G) is total.
Then every component of G is not trivial. The theorem is a consequence
of (5).

(38) Let us consider a graph G. Suppose every component of G is not trivial.
Then VertAdjSymRel(G) is total. The theorem is a consequence of (6).

Let G be a non trivial, connected graph. Note that VertAdjSymRel(G) is
total.

LetG be a complete graph. Let us note that VertAdjSymRel(G) is connected.
Now we state the proposition:

(39) G is edgeless if and only if VertAdjSymRel(G) is empty.

Let G be an edgeless graph. One can check that VertAdjSymRel(G) is empty.
Let G be a non edgeless graph. Note that VertAdjSymRel(G) is non empty.

(40) G is loopfull if and only if VertAdjSymRel(G) is total and reflexive.

Let G be a loopfull graph. Let us observe that VertAdjSymRel(G) is reflexive
and total.

Let G be a vertex-finite graph. Note that VertAdjSymRel(G) is finite.
Now we state the propositions:

(41) Classes DEdgeParEqRel(G) ⊆ VertAdjSymRel(G). The theorem is a con-
sequence of (34) and (10).

(42) Classes EdgeParEqRel(G) ⊆ VertAdjSymRel(G).
Proof: Set R = VertAdjSymRel(G). Define P[object, object] ≡ the-
re exists an object e such that e joins ($1)1 and ($1)2 in G and $2 =
[e]EdgeParEqRel(G). For every objects x, y1, y2 such that x ∈ R and P[x, y1]
and P[x, y2] holds y1 = y2. For every object x such that x ∈ R there
exists an object y such that P[x, y]. Consider f being a function such that
dom f = R and for every object x such that x ∈ R holds P[x, f(x)]. �

(43) Let us consider a non-directed-multi graph G. Then G.size() ⊆
VertAdjSymRel(G). The theorem is a consequence of (10), (12), and (41).

(44) Let us consider a vertex v of G. Then (VertAdjSymRel(G))◦v =
v.allNeighbors(). The theorem is a consequence of (32).

(45) Let us consider a subgraph H of G. Then VertAdjSymRel(H) ⊆
VertAdjSymRel(G). The theorem is a consequence of (15).

(46) Let us consider a subgraph H of G with parallel edges removed. Then
VertAdjSymRel(H) = VertAdjSymRel(G). The theorem is a consequence
of (45) and (32).

(47) Let us consider a subgraph H of G with loops removed.
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Then VertAdjSymRel(H) = (VertAdjSymRel(G))\(idα), where α is the ver-
tices of G. The theorem is a consequence of (17).

(48) Let us consider a simple graph H of G. Then VertAdjSymRel(H) =
(VertAdjSymRel(G)) \ (idα), where α is the vertices of G. The theorem is
a consequence of (47) and (46).

(49) Let us consider graphs G1, G2. Suppose G1 ≈ G2. Then VertAdjSymRel
(G1) = VertAdjSymRel(G2). The theorem is a consequence of (19).

(50) Let us consider a set E, and a graph H given by reversing directions of
the edges E of G. Then VertAdjSymRel(H) = VertAdjSymRel(G). The
theorem is a consequence of (32).

(51) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V . Then VertAdjSymRel(H) = VertAdjSymRel(G) ∩
(V × V ). The theorem is a consequence of (21).

(52) Let us consider a set V , and a subgraph H of G with vertices V removed.
Suppose V ⊂ the vertices of G. Then VertAdjSymRel(H) =
(VertAdjSymRel(G)) \ (V × (the vertices of G)∪ (the vertices of G)× V ).
The theorem is a consequence of (22).

Let us consider a non trivial graph G, a vertex v of G, and a subgraph H of
G with vertex v removed. Now we state the propositions:

(53) VertAdjSymRel(H) = (VertAdjSymRel(G)) \ ({v} × (the vertices of
G) ∪ (the vertices of G)× {v}). The theorem is a consequence of (52).

(54) If v is isolated, then VertAdjSymRel(H) = VertAdjSymRel(G). The
theorem is a consequence of (24).

(55) Let us consider a set V , and a supergraphH ofG extended by the vertices
from V . Then VertAdjSymRel(H) = VertAdjSymRel(G). The theorem is
a consequence of (25).

Let us consider vertices v, w of G, an object e, and a supergraph H of G
extended by e between vertices v and w. Now we state the propositions:

(56) If v and w are adjacent, then VertAdjSymRel(H) = VertAdjSymRel(G).
The theorem is a consequence of (26), (1), (27), and (49).

(57) Suppose e /∈ the edges ofG. Then VertAdjSymRel(H) = VertAdjSymRel
(G) ∪ {〈〈v, w〉〉, 〈〈w, v〉〉}. The theorem is a consequence of (27).

(58) Let us consider a vertex v of G, objects e, w, and a supergraph H of G
extended by v, w and e between them. Suppose e /∈ the edges of G and w /∈
the vertices of G. Then VertAdjSymRel(H) = VertAdjSymRel(G) ∪ {〈〈v,
w〉〉, 〈〈w, v〉〉}. The theorem is a consequence of (57) and (55).

(59) Let us consider objects v, e, a vertex w of G, and a supergraph H of G
extended by v, w and e between them. Suppose e /∈ the edges of G and v /∈
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the vertices of G. Then VertAdjSymRel(H) = VertAdjSymRel(G) ∪ {〈〈v,
w〉〉, 〈〈w, v〉〉}. The theorem is a consequence of (57) and (55).

(60) Let us consider an object v, a subset V of the vertices of G, and a super-
graph H of G extended by vertex v and edges between v and V of G. Sup-
pose v /∈ the vertices of G. Then VertAdjSymRel(H) = (VertAdjSymRel
(G)∪ {v}× V )∪ V ×{v}. The theorem is a consequence of (32) and (45).

(61) Let us consider a subset V of the vertices of G, and a graph H by
adding a loop to each vertex of G in V . Then VertAdjSymRel(H) =
VertAdjSymRel(G) ∪ idV . The theorem is a consequence of (30).

(62) Let us consider an undirected graph complement H of G with loops.
Then VertAdjSymRel(H) = ((the vertices of G) × (the vertices of G)) \
(VertAdjSymRel(G)). The theorem is a consequence of (32).

2. Create non-Directed-Multi Graphs from Relations

In the sequel V denotes a non empty set and E denotes a binary relation on
V .

Let us consider V and E. The functor createGraph(V,E) yielding a graph
is defined by the term

(Def. 3) createGraph(V,E, π1(V � V )�E, π2(V � V )�E).

Let us note that the edges of createGraph(V,E) is relation-like.
Now we state the propositions:

(63) Let us consider objects v, w. Then 〈〈v, w〉〉 ∈ E if and only if 〈〈v, w〉〉 joins
v to w in createGraph(V,E).

(64) Let us consider objects e, v, w. Suppose e joins v to w in createGraph(V,E).
Then e = 〈〈v, w〉〉. The theorem is a consequence of (63).

(65) VertDomRel(createGraph(V,E)) = E. The theorem is a consequence of
(1) and (63).

Let us consider V and E. One can verify that createGraph(V,E) is plain
and non-directed-multi.

Now we state the proposition:

(66) V is trivial if and only if createGraph(V,E) is trivial.

Let V be a trivial, non empty set and E be a binary relation on V . One can
check that createGraph(V,E) is trivial.

Let V be a non trivial set. Let us observe that createGraph(V,E) is non
trivial.

Now we state the proposition:
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(67) E is irreflexive if and only if createGraph(V,E) is loopless. The theorem
is a consequence of (65).

Let us consider V . Let E be an irreflexive binary relation on V . Let us note
that createGraph(V,E) is loopless.

Let E be a non irreflexive binary relation on V . Observe that createGraph(V,
E) is non loopless.
Now we state the proposition:

(68) E is antisymmetric if and only if createGraph(V,E) is non-multi. The
theorem is a consequence of (64) and (65).

Let us consider V . Let E be an antisymmetric binary relation on V . One
can check that createGraph(V,E) is non-multi.

Let V be a non trivial set and E be a non antisymmetric binary relation on
V . Note that createGraph(V,E) is non non-multi.

Let us consider V . Let E be an asymmetric binary relation on V . One can
verify that createGraph(V,E) is simple.

Now we state the proposition:

(69) If createGraph(V,E) is complete, then E is connected. The theorem is
a consequence of (65).

Let V be a non trivial set and E be a non connected binary relation on V .
Note that createGraph(V,E) is non complete.

Now we state the proposition:

(70) E is empty if and only if createGraph(V,E) is edgeless. The theorem is
a consequence of (65).

Let us consider V . Let E be an empty binary relation on V . One can verify
that createGraph(V,E) is edgeless.

Let E be a non empty binary relation on V . Note that createGraph(V,E) is
non edgeless.

Now we state the proposition:

(71) E is total and reflexive if and only if createGraph(V,E) is loopfull. The
theorem is a consequence of (65).

Let us consider V . Let E be a total, reflexive binary relation on V . Let us
note that createGraph(V,E) is loopfull.

Let E be a non total binary relation on V . Observe that createGraph(V,E)
is non loopfull.

Let V be a finite, non empty set and E be a binary relation on V . One can
check that createGraph(V,E) is finite.

Let us consider V . Let E be a finite binary relation on V . One can check
that createGraph(V,E) is edge-finite.
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Let us consider a vertex v of createGraph(V,E). Now we state the proposi-
tions:

(72) E◦v = v.outNeighbors(). The theorem is a consequence of (63) and (64).

(73) Coim(E, v) = v.inNeighbors(). The theorem is a consequence of (63) and
(64).

(74) Let us consider a set X. Then E�X = (createGraph(V,E)).edgesOutOf
(X). The theorem is a consequence of (63) and (64).

(75) Let us consider a set Y. Then Y �E = (createGraph(V,E)).edgesInto(Y ).
The theorem is a consequence of (63) and (64).

Let us consider sets X, Y. Now we state the propositions:

(76) (Y �E)�X = (createGraph(V,E)).edgesDBetween(X,Y ). The theorem is
a consequence of (75) and (74).

(77) (Y �E)�X ∪ (X�E)�Y = (createGraph(V,E)).edgesBetween(X,Y ). The
theorem is a consequence of (76).

Let us consider a vertex v of createGraph(V,E). Now we state the proposi-
tions:

(78) E�{v} = v.edgesOut(). The theorem is a consequence of (74).

(79) {v}�E = v.edgesIn(). The theorem is a consequence of (75).

(80) Let us consider a set X. Then E�X ∪X�E = (createGraph(V,E))
.edgesInOut(X). The theorem is a consequence of (74) and (75).

(81) domE = rng(the source of createGraph(V,E)). The theorem is a con-
sequence of (63) and (64).

(82) rngE = rng(the target of createGraph(V,E)). The theorem is a conse-
quence of (63) and (64).

(83) Let us consider a vertex v of createGraph(V,E). Then v is isolated if
and only if v /∈ fieldE. The theorem is a consequence of (63) and (64).

(84) E is symmetric if and only if VertAdjSymRel(createGraph(V,E)) = E.
The theorem is a consequence of (65).

(85) Let us consider a non empty set V1, a non empty subset V2 of V1, a binary
relation E1 on V1, and a binary relation E2 on V2. Suppose E2 ⊆ E1. Then
createGraph(V2, E2) is a subgraph of createGraph(V1, E1) induced by V2
and E2.

Let us consider a non-directed-multi graph G. Now we state the propositions:

(86) There exists a partial graph mapping F fromG to createGraph(the vertices
of G,VertDomRel(G)) such that

(i) F is directed-isomorphism, and

(ii) FV = idα, and
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(iii) for every object e such that e ∈ the edges of G holds (FE)(e) =
〈〈(the source of G)(e), (the target of G)(e)〉〉,

where α is the vertices of G.

(87) createGraph(the vertices ofG,VertDomRel(G)) isG-directed-isomorphic.
The theorem is a consequence of (86).

3. Create non-Multi Graphs from Symmetric Relations

In the sequel E denotes a symmetric binary relation on V .
Let us consider V and E.
A graph created from the symmetric relation V on E is a subgraph of

createGraph(V,E) with parallel edges removed. From now on G denotes a graph
created from the symmetric relation V on E.

Now we state the propositions:

(88) Let us consider objects v, w. Then 〈〈v, w〉〉 ∈ E if and only if 〈〈v, w〉〉 joins
v to w in G or 〈〈w, v〉〉 joins w to v in G. The theorem is a consequence of
(63).

(89) Let us consider vertices v, w of G. Then 〈〈v, w〉〉 ∈ E if and only if v and
w are adjacent. The theorem is a consequence of (88) and (63).

Let us consider V and E. Let us observe that every graph created from the
symmetric relation V on E is non-multi.

Now we state the proposition:

(90) The edges of G ⊆ E.

Let us consider graphs G1, G2 created from the symmetric relation V on E.
Now we state the propositions:

(91) The vertices of G1 = the vertices of G2.

(92) G2 is G1-isomorphic.

(93) V is trivial if and only if G is trivial.

Let V be a trivial, non empty set and E be a symmetric binary relation on
V . Observe that every graph created from the symmetric relation V on E is
trivial.

Let V be a non trivial set. Let us note that every graph created from the
symmetric relation V on E is non trivial.

Now we state the proposition:

(94) E is irreflexive if and only if G is loopless.

Let us consider V . Let E be a symmetric, irreflexive binary relation on V .
One can verify that every graph created from the symmetric relation V on E is
loopless.
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Let E be a symmetric, non irreflexive binary relation on V . Observe that
every graph created from the symmetric relation V on E is non loopless.

Now we state the proposition:

(95) If G is complete, then E is connected. The theorem is a consequence of
(69).

Let V be a non trivial set and E be a symmetric, non connected binary
relation on V . Note that every graph created from the symmetric relation V on
E is non complete.

Now we state the proposition:

(96) E is empty if and only if G is edgeless.

Let us consider V . Let E be an empty binary relation on V . Let us note that
every graph created from the symmetric relation V on E is edgeless.

Let E be a symmetric, non empty binary relation on V . One can check that
every graph created from the symmetric relation V on E is non edgeless.

Now we state the proposition:

(97) E is total and reflexive if and only if G is loopfull. The theorem is
a consequence of (71).

Let us consider V . Let E be a total, reflexive, symmetric binary relation
on V . Observe that every graph created from the symmetric relation V on E is
loopfull.

Let E be a symmetric, non total binary relation on V . Note that every graph
created from the symmetric relation V on E is non loopfull.

Let V be a finite, non empty set and E be a symmetric binary relation on
V . One can verify that every graph created from the symmetric relation V on
E is finite.

Now we state the propositions:

(98) Let us consider a vertex v of G. Then E◦v = v.allNeighbors(). The
theorem is a consequence of (72) and (73).

(99) Let us consider a set X. Then G.edgesInOut(X) ⊆ E�X ∪ X�E. The
theorem is a consequence of (80).

(100) Let us consider sets X, Y. Then G.edgesBetween(X,Y ) ⊆ (Y �E)�X ∪
(X�E)�Y. The theorem is a consequence of (77).

Let us consider a vertex v of G. Now we state the propositions:

(101) v.edgesOut() ⊆ E�{v}. The theorem is a consequence of (78).

(102) v.edgesIn() ⊆ {v}�E. The theorem is a consequence of (79).

(103) v is isolated if and only if v /∈ fieldE. The theorem is a consequence of
(83).



Unification of graphs and relations in Mizar 185

(104) Let us consider a graph G created from the symmetric relation V on E.
Then VertAdjSymRel(G) = E. The theorem is a consequence of (33) and
(89).

(105) Let us consider a non empty set V1, a non empty subset V2 of V1, a sym-
metric binary relation E1 on V1, a symmetric binary relation E2 on V2,
a graph G1 created from the symmetric relation V1 on E1, and a graph G2
created from the symmetric relation V2 on E2. Suppose E2 ⊆ E1. Then
there exists a partial graph mapping F from G2 to G1 such that

(i) F is weak subgraph embedding, and

(ii) FV = idV2 , and

(iii) for every objects v, w such that 〈〈v, w〉〉 ∈ the edges of G2 holds
(FE)(〈〈v, w〉〉) = 〈〈v, w〉〉 or (FE)(〈〈v, w〉〉) = 〈〈w, v〉〉.

Proof: Define P[object, object] ≡ there exist objects v, w such that $1 =
〈〈v, w〉〉 and $2 ∈ the edges of G1 and ($2 = 〈〈v, w〉〉 or $2 = 〈〈w, v〉〉). For
every objects x, y1, y2 such that x ∈ the edges of G2 and P[x, y1] and
P[x, y2] holds y1 = y2. For every object x such that x ∈ the edges of
G2 there exists an object y such that P[x, y]. Consider g being a function
such that dom g = the edges of G2 and for every object x such that x ∈
the edges of G2 holds P[x, g(x)]. For every objects x1, x2 such that x1,
x2 ∈ dom g and g(x1) = g(x2) holds x1 = x2. Consider v0, w0 being
objects such that 〈〈v, w〉〉 = 〈〈v0, w0〉〉 and g(〈〈v, w〉〉) ∈ the edges of G1 and
g(〈〈v, w〉〉) = 〈〈v0, w0〉〉 or g(〈〈v, w〉〉) = 〈〈w0, v0〉〉. �

(106) Let us consider a non-multi graph G1, and a graph G2 created from the
symmetric relation the vertices of G1 on VertAdjSymRel(G1). Then there
exists a partial graph mapping F from G1 to G2 such that

(i) F is isomorphism, and

(ii) FV = idα, and

(iii) for every object e such that e ∈ the edges of G1 holds (FE)(e) =
〈〈(the source ofG1)(e), (the target ofG1)(e)〉〉 or (FE)(e) = 〈〈(the target
of G1)(e), (the source of G1)(e)〉〉,

where α is the vertices of G1.
Proof: Set E0 = VertAdjSymRel(G). Set G0 = createGraph(the vertices
of G,E0). Consider E′ being a representative selection of the parallel edges
of G0 such that G′ is a subgraph of G0 induced by the vertices of G0
and E′. Define P[object, object] ≡ $2 ∈ E′ and ($2 = 〈〈(the source of
G)($1), (the target of G)($1)〉〉 or $2 = 〈〈(the target of G)($1), (the source
of G)($1)〉〉). For every objects x, y1, y2 such that x ∈ the edges of G
and P[x, y1] and P[x, y2] holds y1 = y2. For every object x such that
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x ∈ the edges of G there exists an object y such that P[x, y]. Consider g
being a function such that dom g = the edges of G and for every object x
such that x ∈ the edges of G holds P[x, g(x)]. �

(107) Let us consider a non-multi graph G1. Then every graph created from
the symmetric relation the vertices of G1 on VertAdjSymRel(G1) is G1-
isomorphic. The theorem is a consequence of (106).
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1. Introduction

From now on D denotes a non empty set, m, n, N denote natural numbers,
z2 denotes a non zero natural number, f1, f2, f3, f4, f5, f6 denote binominative
functions of D, p1, p2, p3, p4, p5, p6, p7 denote partial predicates of D, d, v
denote objects.

Observe that V , A denote sets, z denotes an element of V , val denotes
a function, loc denotes a V-valued function, d1 denotes a non-atomic nominative
data of V and A, and T denotes a nominative data with simple names from V

and complex values from A.
Let R1, R2 be binary relations. We say that R1 is valid w.r.t. R2 if and only

if

(Def. 1) rngR1 ⊆ domR2.

Let us consider V , loc, val, and N . We say that loc and val are different
w.r.t. N if and only if

(Def. 2) for every natural numbers m, n such that 1 ¬ m ¬ N and 1 ¬ n ¬ N

holds val(m) 6= loc/n.

Now we state the propositions:

(1) Suppose loc� SegN is one-to-one and SegN ⊆ dom loc. Let us consider
natural numbers i, j. Suppose 1 ¬ i ¬ N and 1 ¬ j ¬ N and i 6= j. Then
loc/i 6= loc/j .

(2) If V is not empty and v ∈ dom d1, then (d1∇za(v ⇒a)(d1))(z) = d1(v).

Let us consider D, f1, f2, f3, f4, f5, and f6. The functor PP-composition(f1,
f2, f3, f4, f5, f6) yielding a binominative function of D is defined by the term

(Def. 3) PP-composition(f1, f2, f3, f4, f5) • f6.
Now we state the proposition:

(3) Unconditional composition rule for 6 programs:
Suppose 〈p1, f1, p2〉 is an SFHT of D and 〈p2, f2, p3〉 is an SFHT of D and
〈p3, f3, p4〉 is an SFHT of D and 〈p4, f4, p5〉 is an SFHT of D and 〈p5,
f5, p6〉 is an SFHT of D and 〈p6, f6, p7〉 is an SFHT of D and 〈∼ p2, f2,

p3〉 is an SFHT of D and 〈∼ p3, f3, p4〉 is an SFHT of D and 〈∼ p4, f4,

p5〉 is an SFHT of D and 〈∼ p5, f5, p6〉 is an SFHT of D and 〈∼ p6, f6,

p7〉 is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6), p7〉 is
an SFHT of D.

Let us consider V , A, loc, val, and d1. Let z2 be a natural number. Assume
z2 > 0. The functor LocalOverlapSeq(A, loc, val, d1, z2) yielding a finite sequence
of elements of NDSC(V,A) is defined by
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(Def. 4) len it = z2 and it(1) = d1∇
(loc/1)
a (val(1) ⇒a)(d1) and for every natural

number n such that 1 ¬ n < len it holds it(n+1) = it(n)∇(loc/n+1)a (val(n+
1)⇒a)(it(n)).

Let f be a function. We say that f is (V,A)-nonatomicND yielding if and
only if

(Def. 5) for every object n such that n ∈ dom f holds f(n) is a non-atomic
nominative data of V and A.

Let f be a finite sequence. Let us observe that f is (V,A)-nonatomicND
yielding if and only if the condition (Def. 6) is satisfied.

(Def. 6) for every natural number n such that 1 ¬ n ¬ len f holds f(n) is a non-
atomic nominative data of V and A.

Let us consider d1. Observe that 〈d1〉 is (V,A)-nonatomicND yielding and
there exists a finite sequence which is (V,A)-nonatomicND yielding.

Now we state the proposition:

(4) Let us consider a (V,A)-nonatomicND yielding finite sequence f . If n ∈
dom f , then f(n) is a non-atomic nominative data of V and A.

Let us consider V ,A, loc, val, d1, and z2. One can check that LocalOverlapSeq
(A, loc, val, d1, z2) is (V,A)-nonatomicND yielding.
Let us consider n. Let us observe that (LocalOverlapSeq(A, loc, val, d1, z2))(n)

is function-like and relation-like.
Let us consider a natural number n. Now we state the propositions:

(5) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A. Then suppose 1 ¬ n < z2 and val(n+1) ∈ dom((LocalOverlapSeq
(A, loc, val, d1, z2))(n)). Then dom((LocalOverlapSeq(A, loc, val, d1, z2))(n+
1)) = {loc/n+1} ∪ dom((LocalOverlapSeq(A, loc, val, d1, z2))(n)).

(6) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A. Then suppose 1 ¬ n < z2 and val(n+1) ∈ dom((LocalOverlapSeq
(A, loc, val, d1, z2))(n)). Then dom((LocalOverlapSeq(A, loc, val, d1, z2))(n))
⊆ dom((LocalOverlapSeq(A, loc, val, d1, z2))(n+1)). The theorem is a con-
sequence of (5).

Let us consider V , A, loc, val, d1, and z2. We say that loc, val and z2 are
correct w.r.t. d1 if and only if

(Def. 7) V is not empty and V is without nonatomic nominative data w.r.t. A
and val is valid w.r.t. d1 and dom(LocalOverlapSeq(A, loc, val, d1, z2)) ⊆
dom val.

Now we state the proposition:

(7) Suppose loc, val and z2 are correct w.r.t. d1. Let us consider a natural
number n. Suppose 1 ¬ n ¬ z2. Then dom d1 ⊆ dom((LocalOverlapSeq(A,
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loc, val, d1, z2))(n)).
Proof: Set F = LocalOverlapSeq(A, loc, val, d1, z2). Define P[natural
number] ≡ if 1 ¬ $1 ¬ z2, then dom d1 ⊆ dom(F ($1)). For every natural
number k such that P[k] holds P[k+1]. For every natural number k, P[k].
�

Let us consider natural numbers m, n. Now we state the propositions:

(8) Suppose loc, val and z2 are correct w.r.t. d1. Then suppose 1 ¬ n ¬ m ¬
z2. Then dom((LocalOverlapSeq(A, loc, val, d1, z2))(n)) ⊆ dom
((LocalOverlapSeq(A, loc, val, d1, z2))(m)). The theorem is a consequence
of (7) and (6).

(9) Suppose loc, val and z2 are correct w.r.t. d1. Then if 1 ¬ n ¬ m ¬ z2,
then loc/n ∈ dom
((LocalOverlapSeq(A, loc, val, d1, z2))(m)). The theorem is a consequence
of (8) and (7).

(10) Suppose loc, val and z2 are correct w.r.t. d1. Then if (n ∈ dom val or 1 ¬
n ¬ z2) and 1 ¬ m ¬ z2, then val(n) ∈ dom((LocalOverlapSeq(A, loc, val,
d1, z2))(m)). The theorem is a consequence of (7).

Let us consider natural numbers j, m, n. Now we state the propositions:

(11) Suppose loc, val and z2 are correct w.r.t. d1 and loc and val are different
w.r.t. z2. Then suppose 1 ¬ n ¬ m < j ¬ z2. Then ((LocalOverlapSeq(A,
loc, val, d1, z2))(n))(val(j)) = (LocalOverlapSeq(A, loc, val, d1, z2))(m)
(val(j)).
Proof: Set F = LocalOverlapSeq(A, loc, val, d1, z2). Set l1 = val(j). De-
fine P[natural number] ≡ if n ¬ $1 < j ¬ z2, then F (n)(l1) = F ($1)(l1).
For every natural number k such that P[k] holds P[k+1]. For every natural
number k, P[k]. �

(12) Suppose loc, val and z2 are correct w.r.t. d1 and Seg z2 ⊆ dom loc and
loc� Seg z2 is one-to-one. Then suppose 1 ¬ j ¬ n ¬ m ¬ z2.
Then (LocalOverlapSeq(A, loc, val, d1, z2))(n)(loc/j) =
(LocalOverlapSeq(A, loc, val, d1, z2))(m)(loc/j).
Proof: Set F = LocalOverlapSeq(A, loc, val, d1, z2). Set l1 = loc/j . Define
P[natural number] ≡ if n ¬ $1 ¬ z2, then F (n)(l1) = F ($1)(l1). For every
natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �

(13) Let us consider a z2-element finite sequence val. Suppose Seg z2 ⊆ dom loc

and loc� Seg z2 is one-to-one and loc and val are different w.r.t. z2 and loc,
val and z2 are correct w.r.t. d1. If 1 ¬ n ¬ m ¬ z2, then ((LocalOverlapSeq
(A, loc, val, d1, z2))(m))(loc/n) = d1(val(n)).
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Proof: Set F = LocalOverlapSeq(A, loc, val, d1, z2). Define P[natural
number] ≡ if n ¬ $1 ¬ z2, then (F ($1))(loc/n) = d1(val(n)). For every
natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �

(14) Let us consider a z2-element finite sequence val. Suppose loc and val

are different w.r.t. z2 and loc, val and z2 are correct w.r.t. d1. Let us
consider natural numbers m, n. Suppose 1 ¬ m ¬ z2 and 1 ¬ n ¬ z2.
Then ((LocalOverlapSeq(A, loc, val, d1, z2))(m))(val(n)) = d1(val(n)).
Proof: Set F = LocalOverlapSeq(A, loc, val, d1, z2). Define P[natural
number] ≡ if 1 ¬ $1 ¬ z2, then (F ($1))(val(n)) = d1(val(n)). For every
natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �

(15) Let us consider a z2-element finite sequence val. Suppose loc, val and z2
are correct w.r.t. d1 and Seg z2 ⊆ dom loc and loc� Seg z2 is one-to-one and
loc and val are different w.r.t. z2. Let us consider natural numbers j, m, n.
Suppose 1 ¬ j < m ¬ n ¬ z2. Then ((LocalOverlapSeq(A, loc, val, d1, z2))
(n))(loc/m) = (LocalOverlapSeq(A, loc, val, d1, z2))(j)(val(m)).
Proof: Set F = LocalOverlapSeq(A, loc, val, d1, z2). Define P[natural
number] ≡ if m ¬ $1 ¬ z2, then (F ($1))(loc/m) = F (j)(val(m)). For
every natural number k such that P[k] holds P[k + 1]. For every natural
number k, P[k]. �

Let us consider V , A, loc, and val. Let z2 be a natural number. Assume 0 <
z2. The functor initial-assignments-Seq(A, loc, val, z2) yielding a finite sequence
of elements of NDSC(V,A)→̇NDSC(V,A) is defined by

(Def. 8) len it = z2 and it(1) = Asg(loc/1)(val(1)⇒a) and for every natural num-
ber n such that 1 ¬ n < z2 holds it(n+ 1) = it(n) • (Asg(loc/n+1)(val(n+
1)⇒a)).

The functor initial-assignments(A, loc, val, z2) yielding a binominative func-
tion over simple-named complex-valued nominative data of V and A is defined
by the term

(Def. 9) (initial-assignments-Seq(A, loc, val, z2))(z2).

2. Main Algorithm

Let us consider V , A, and loc. The functor Fibonacci-loop-body(A, loc) yiel-
ding a binominative function over simple-named complex-valued nominative da-
ta of V and A is defined by the term

(Def. 10) PP-composition(Asg(loc/6)((loc/4)⇒a),Asg(loc/4)((loc/5)⇒a),Asg(loc/5)

(addition(A, loc/6, loc/4)),Asg(loc/1)(addition(A, loc/1, loc/2))).
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The functor Fibonacci-main-loop(A, loc) yielding a binominative function
over simple-named complex-valued nominative data of V and A is defined by
the term

(Def. 11) WH(¬Equality(A, loc/1, loc/3),Fibonacci-loop-body(A, loc)).

Let us consider val. The functor Fibonacci-main-part(A, loc, val) yielding
a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 12) initial-assignments(A, loc, val, 6) • (Fibonacci-main-loop(A, loc)).

Let us consider z. The functor Fibonacci-program(A, loc, val, z) yielding a bi-
nominative function over simple-named complex-valued nominative data of V
and A is defined by the term

(Def. 13) Fibonacci-main-part(A, loc, val) • (Asgz((loc/4)⇒a)).

From now on n0 denotes a natural number.
Let us consider V , A, val, n0, and d. We say that val, n0, and d constitute

a valid input for the Fibonacci algorithm w.r.t. V and A if and only if

(Def. 14) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and {val(1), val(2), val(3), val(4), val(5), val(6)} ⊆ dom d1 and
d1(val(1)) = 0 and d1(val(2)) = 1 and d1(val(3)) = n0 and d1(val(4)) = 0
and d1(val(5)) = 1 and d1(val(6)) = 0.

The functor valid-Fibonacci-input(V,A, val, n0) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by

(Def. 15) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if val, n0, and d constitute a valid input for the Fibonacci algorithm w.r.t.
V and A, then it(d) = true and if val, n0, and d do not constitute a valid
input for the Fibonacci algorithm w.r.t. V and A, then it(d) = false.

One can check that valid-Fibonacci-input(V,A, val, n0) is total.
Let us consider z and d. We say that z, n0, and d constitute a valid output

for the Fibonacci algorithm w.r.t. A if and only if

(Def. 16) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and z ∈ dom d1 and d1(z) = Fib(n0).

The functor valid-Fibonacci-output(A, z, n0) yielding a partial predicate over
simple-named complex-valued nominative data of V and A is defined by

(Def. 17) dom it = {d, where d is a nominative data with simple names from V

and complex values from A : d ∈ dom(z ⇒a)} and for every object d such
that d ∈ dom it holds if z, n0, and d constitute a valid output for the
Fibonacci algorithm w.r.t. A, then it(d) = true and if z, n0, and d do
not constitute a valid output for the Fibonacci algorithm w.r.t. A, then
it(d) = false.
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Let us consider loc and d. We say that loc, n0, and d constitute an invariant
for the Fibonacci algorithm w.r.t. A if and only if

(Def. 18) there exists a non-atomic nominative data d1 of V and A such that d = d1
and {loc/1, loc/2, loc/3, loc/4, loc/5, loc/6} ⊆ dom d1 and d1(loc/2) = 1 and
d1(loc/3) = n0 and there exists a natural number I such that I = d1(loc/1)
and d1(loc/4) = Fib(I) and d1(loc/5) = Fib(I + 1).

The functor Fibonacci-inv(A, loc, n0) yielding a partial predicate over simple-
named complex-valued nominative data of V and A is defined by

(Def. 19) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if loc, n0, and d constitute an invariant for the Fibonacci algorithm w.r.t.
A, then it(d) = true and if loc, n0, and d do not constitute an invariant
for the Fibonacci algorithm w.r.t. A, then it(d) = false.

Let us observe that Fibonacci-inv(A, loc, n0) is total.
Now we state the propositions:

(16) Let us consider a 6-element finite sequence val. Suppose V is not empty
and V is without nonatomic nominative data w.r.t. A and Seg 6 ⊆ dom loc

and loc� Seg 6 is one-to-one and loc and val are different w.r.t. 6. Then
〈valid-Fibonacci-input(V,A, val, n0), initial-assignments(A, loc, val, 6),
Fibonacci-inv(A, loc, n0)〉 is an SFHT of NDSC(V,A).
Proof: Set i = loc/1. Set j = loc/2. Set n = loc/3. Set s = loc/4.
Set b = loc/5. Set c = loc/6. Set i1 = val(1). Set j1 = val(2). Set
n1 = val(3). Set s1 = val(4). Set b1 = val(5). Set c1 = val(6). Set I =
valid-Fibonacci-input(V,A, val, n0). Set i2 = Fibonacci-inv(A, loc, n0). Set
D3 = i1 ⇒a. Set D4 = j1 ⇒a. Set D5 = n1 ⇒a. Set D6 = s1 ⇒a. Set D1 =
b1 ⇒a. Set D2 = c1 ⇒a. Set U1 = SP(i2, D2, c). Set T1 = SP(U1, D1, b).
Set S1 = SP(T1, D6, s). Set R1 = SP(S1, D5, n). Set Q1 = SP(R1, D4, j).
Set P1 = SP(Q1, D3, i). I |= P1. �

(17) Suppose V is not empty and A is complex containing and V is witho-
ut nonatomic nominative data w.r.t. A and for every T , T is a value
on loc/1 and T is a value on loc/2 and T is a value on loc/4 and T is
a value on loc/6 and Seg 6 ⊆ dom loc and loc� Seg 6 is one-to-one. Then
〈Fibonacci-inv(A, loc, n0),Fibonacci-loop-body(A, loc),Fibonacci-inv(A,
loc, n0)〉 is an SFHT of NDSC(V,A). The theorem is a consequence of (1)
and (2).

(18) Suppose V is not empty and A is complex containing and V is witho-
ut nonatomic nominative data w.r.t. A and for every T , T is a value
on loc/1 and T is a value on loc/2 and T is a value on loc/4 and T is
a value on loc/6 and Seg 6 ⊆ dom loc and loc� Seg 6 is one-to-one. Then
〈Fibonacci-inv(A, loc, n0),Fibonacci-main-loop(A, loc),Equality(A, loc/1,
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loc/3)∧Fibonacci-inv(A, loc, n0)〉 is an SFHT of NDSC(V,A). The theorem
is a consequence of (17).

(19) Let us consider a 6-element finite sequence val. Suppose V is not empty
and A is complex containing and V is without nonatomic nominative data
w.r.t. A and for every T , T is a value on loc/1 and T is a value on loc/2
and T is a value on loc/4 and T is a value on loc/6 and Seg 6 ⊆ dom loc

and loc� Seg 6 is one-to-one and loc and val are different w.r.t. 6. Then
〈valid-Fibonacci-input(V,A, val, n0),Fibonacci-main-part(A, loc, val),
Equality(A, loc/1, loc/3)∧Fibonacci-inv(A, loc, n0)〉 is an SFHT of NDSC(V,
A). The theorem is a consequence of (16) and (18).

(20) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and for every T , T is a value on loc/1 and T is a value on loc/3.
Then Equality(A, loc/1, loc/3) ∧ Fibonacci-inv(A, loc, n0) |= SP
(valid-Fibonacci-output(A, z, n0), (loc/4)⇒a, z).
Proof: Set i = loc/1. Set j = loc/2. Set n = loc/3. Set s = loc/4. Set
b = loc/5. Set c = loc/6. Set D6 = s⇒a. Set E1 = {i, j, n, s, b, c}. Consider
d1 being a non-atomic nominative data of V and A such that d = d1 and
E1 ⊆ dom d1 and d1(j) = 1 and d1(n) = n0 and there exists a natural
number I such that I = d1(i) and d1(s) = Fib(I) and d1(b) = Fib(I + 1).
Reconsider d3 = d as a nominative data with simple names from V and
complex values from A. Set L = d3∇zaD6(d3). z, n0, and L constitute
a valid output for the Fibonacci algorithm w.r.t. A. �

(21) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and for every T , T is a value on loc/1 and T is a value on loc/3.
Then 〈Equality(A, loc/1, loc/3)∧Fibonacci-inv(A, loc, n0),Asgz((loc/4)⇒a

), valid-Fibonacci-output(A, z, n0)〉 is an SFHT of NDSC(V,A). The the-
orem is a consequence of (20).

(22) Suppose for every T , T is a value on loc/1 and T is a value on loc/3. Then
〈∼ (Equality(A, loc/1, loc/3)∧Fibonacci-inv(A, loc, n0)),Asgz((loc/4)⇒a),
valid-Fibonacci-output(A, z, n0)〉 is an SFHT of NDSC(V,A).

(23) Partial correctness of a Fibonacci algorithm:
Let us consider a 6-element finite sequence val. Suppose V is not emp-
ty and A is complex containing and V is without nonatomic nominative
data w.r.t. A and for every T , T is a value on loc/1 and T is a value
on loc/2 and T is a value on loc/3 and T is a value on loc/4 and T is
a value on loc/6 and Seg 6 ⊆ dom loc and loc� Seg 6 is one-to-one and loc

and val are different w.r.t. 6. Then 〈valid-Fibonacci-input(V,A, val, n0),
Fibonacci-program(A, loc, val, z), valid-Fibonacci-output(A, z, n0)〉 is an S-
FHT of NDSC(V,A). The theorem is a consequence of (19), (21), and (22).
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(v) a is weightless and positive iff a = 1, and

(vi) a is weightless and negative iff a = −1.

(2) (i) a is non light and negative iff a ¬ −1, and

(ii) a is non heavy and negative iff −1 ¬ a < 0, and

(iii) a is non heavy and positive iff 0 < a ¬ 1, and

(iv) a is non light and positive iff 1 ¬ a.

(3) a is weightless if and only if a = sgn(a).
Proof: If a is weightless, then a = sgn(a). If a = sgn(a), then a is
weightless. �

Let us note that every complex number which is zero is also weightless
and every complex number which is heavy is also non light and every complex
number which is non light is also non zero and every complex number which is
heavy is also non weightless and every non zero complex number which is light
is also non weightless and every integer which is light is also zero.

Every natural number which is trivial is also weightless and every natural
number which is non heavy is also trivial and every natural number which is
non zero is also non light and every natural number which is non trivial is also
heavy and every complex number which is weightless is also non heavy and every
complex number which is light is also non heavy and every non negative real
number which is non light is also positive.

There exists a positive real number which is heavy and there exists a negative
real number which is heavy and there exists a positive real number which is
light and there exists a negative real number which is light and there exists
a weightless integer which is positive and there exists a weightless integer which
is negative.

Let us consider a complex number a. Now we state the propositions:

(4) <(a) ­ −|a|.
(5) =(a) ­ −|a|.
(6) |<(a)|+ |=(a)| ­ |a|.
Let a be a complex number. Let us observe that a · (a−1) is trivial and a · a

is real and a · a2 is non negative and a
|a| is weightless.

The functor director(a) yielding a weightless complex number is defined by
the term

(Def. 4) a
|a| .

Let us consider a complex number a. Now we state the propositions:

(7) a = |a| · director(a).

(8) director(−a) = −director(a).
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Let a be a real number. We identify sgn(a) with director(a). Observe that
director(a) is integer.

Let a be a negative real number. One can verify that director(a) is negative.
Let a be a positive real number. Note that director(a) is positive.
Let us note that director(0) reduces to 0.
Let a be a non weightless complex number. Let us note that |a| is positive

and −a is non weightless and a is non weightless and a−1 is non weightless.
Let a be a weightless complex number. Observe that −a is weightless and

a is weightless and a−1 is weightless and a · a is weightless and |<(a)| is non
heavy and |=(a)| is non heavy and |a| − 1 is weightless and 1− |a| is weightless.

Let a be a weightless real number. One can verify that sgn(a) reduces to a.
Let a be a heavy complex number. One can verify that −a is heavy and a is

heavy and a−1 is light and a · a is heavy and |<(a)|+ |=(a)| is heavy and |a|− 1
is positive and 1− |a| is negative.

Let a be a non light complex number. Note that −a is non light and a is
non light and a−1 is non heavy and a · a is non light and |<(a)|+ |=(a)| is non
light and |a| − 1 is non negative and 1− |a| is non positive.

Let a be a light complex number. Observe that −a is light and a is light
and a · a is light and |a| − 1 is negative and 1− |a| is positive and <(a) is light
and =(a) is light and <(a) − 1 is negative and <(a) − 2 is heavy and =(a) − 1
is negative and =(a)− 2 is heavy.

Let a be a non zero, light complex number. Note that a−1 is heavy.
Let a be a non heavy complex number. Let us note that −a is non heavy

and a is non heavy and a · a is non heavy and |a| − 1 is non positive and 1− |a|
is non negative and <(a) is non heavy and =(a) is non heavy and <(a) − 1 is
non positive and =(a)− 1 is non positive.

Let a be a non zero, non heavy complex number. Let us observe that a−1 is
non light.

Let a be a complex number. The functor rsgn(a) yielding a non heavy com-
plex number is defined by the term

(Def. 5) <(director(a)).

The functor isgn(a) yielding a non heavy complex number is defined by the
term

(Def. 6) =(director(a)).

Let a be a real number. We identify sgn(a) with rsgn(a). One can check that
isgn(a) is zero and frac a is light and |a| + a is non negative and |a| − a is non
negative.

Let a be a heavy, positive real number. Observe that a − 1 is positive and
1− a is negative.
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Let a be a light, positive real number. One can check that a− 1 is negative
and 1− a is positive.

Now we state the propositions:

(9) Every non heavy complex number is light or weightless.

(10) Every non light complex number is heavy or weightless.

(11) Let us consider a heavy, positive real number a, and a non heavy real
number b. Then a > b > −a. The theorem is a consequence of (1).

(12) Let us consider a non light, positive real number a, and a light real
number b. Then a > b > −a. The theorem is a consequence of (1).

Let a be a heavy complex number and b be a non light complex number.
Observe that a · b is heavy.

Let a, b be non light complex numbers. Note that a · b is non light.
Let a be a light complex number and b be a non heavy complex number.

One can check that a · b is light.
Let a, b be non heavy complex numbers. Let us observe that a · b is non

heavy.
Let a, b be weightless complex numbers. Let us note that a · b is weightless.
Let a be a complex number. The functor cfrac(a) yielding a light complex

number is defined by the term

(Def. 7) director(a) · frac |a|.
Now we state the proposition:

(13) Let us consider a complex number a. Then cfrac(−a) = −cfrac(a). The
theorem is a consequence of (8).

Let a be a non negative real number. We identify cfrac(a) with frac a. Now
we state the proposition:

(14) Let us consider a complex number a, and a natural number n. Then
|a|n = |an|.
Proof: Define P[natural number] ≡ |a|$1 = |a$1 |. P[0]. For every natural
number k such that P[k] holds P[k+ 1]. For every natural number l, P[l].
�

Let a be a weightless complex number and n be a natural number. One can
check that an is weightless.

Let a be a weightless real number. One can verify that a2·n−1 is weightless.
Let a be a non light complex number. Let us note that an is non light.
Let a be a non light real number. One can check that a2·n−1 is non negative.
Let a be a light complex number and n be a non zero natural number. Note

that an is light and n
√
a is light.

Let a be a light real number. Let us observe that a2·n − 1 is negative.
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Let a be a non heavy complex number and n be a natural number. One can
check that an is non heavy.

Let a be a non heavy real number. Observe that a2·n − 1 is non positive.
Let a be a heavy complex number and n be a non zero natural number. Let

us observe that an is heavy and n
√
a is heavy.

Let a be a non weightless complex number. One can check that an is non
weightless.

Let a be a weightless complex number. Let us observe that n
√
a is weightless.

Let a be a non weightless complex number. Observe that n
√
a is non weigh-

tless.
Let a be a non light complex number. Note that n

√
a is non light.

Let a be a non heavy complex number. One can verify that n
√
a is non heavy.

Let a, b be weightless complex numbers. Observe that a
b is weightless.

Let a be a non heavy complex number and b be a heavy complex number.
Observe that a

b is light.
Let a be a light complex number and b be a non light complex number.

Observe that a
b is light.

Let a be a non light complex number and b be a non zero, light complex
number. Let us observe that a

b is heavy.
Let a be a heavy complex number and b be a non zero, non heavy complex

number. One can verify that a
b is heavy.

Let a be a heavy, positive real number and b be a non negative real number.
Note that a+ b is heavy.

Let a be a heavy, negative real number and b be a non positive real number.
Let us observe that a+ b is heavy.

Let a be a non light, positive real number and b be a positive real number.
One can check that a+ b is heavy.

Let a be a non light, negative real number and b be a negative real number.
Let us note that a+ b is heavy.

Let a be a non heavy real number and b be a heavy, positive real number.
Let us observe that a+ b is positive.

Let a be a light real number and b be a non light, positive real number. Note
that a+ b is positive.

Let a be a non heavy real number. Note that a+ b is non negative.
Let b be a heavy, negative real number. Observe that a+ b is negative.
Let a be a light real number and b be a non light, negative real number. One

can check that a+ b is negative.
Let a be a non heavy real number. One can check that a+ b is non positive.
Let a be a light, positive real number and c be a light, negative real number.

One can verify that a+ c is light.
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Let a be a non heavy, positive real number and c be a non heavy, negative
real number. Let us note that a+ c is non heavy.

Let a, b be real numbers. One can check that a−min(a, b) is non negative.
Let a, b be weightless real numbers. Observe that min(a, b) is weightless and

max(a, b) is weightless.
Let a, b be light real numbers. Note that min(a, b) is light and max(a, b) is

light.
Let a, b be heavy real numbers. One can verify that min(a, b) is heavy and

max(a, b) is heavy.
Let a, b be positive real numbers. Observe that min(a,b)max(a,b) is non heavy and

max(a,b)
min(a,b) is non light and a+b

a is heavy and a
a+b is light.

Let us consider real numbers a, b. Now we state the propositions:

(15) If a · b is positive, then |a− b| < |a+ b|.
(16) If a · b is negative, then |a− b| > |a+ b|.
(17) Let us consider non zero real numbers a, b. Then |a2 − b2| < |a2 + b2|.

The theorem is a consequence of (15).

(18) Let us consider positive real numbers a, b, c. If a < b, then b+c
a+c is heavy.

(19) Let us consider positive real numbers a, b. Then
a
b
+ b
a
2 ­ 1.

(20) Let us consider negative real numbers a, b. Then
a
b
+ b
a
2 ­ 1.

(21) Let us consider a negative real number a, and a positive real number b.

Then
a
b
+ b
a
2 ¬ −1.

Let a, b be non zero real numbers. Let us note that
a
b
+ b
a
2 is non light and

a
b + b

a is heavy.
Now we state the proposition:

(22) Let us consider non zero real numbers a, b. Then (ab + b
a)
2 ­ 4. The

theorem is a consequence of (1).

Let a, b be positive real numbers. Note that (a+2·b)·a
(a+b)2

is non heavy and b
a+a

b−1

is non light and (a+b)·(a
−1+b−1)
4 is non light.

Let a, b be light real numbers. Let us note that a+b
1+a·b is non heavy.

Let a, b, c, d be positive real numbers. Note that a
a+b+d + b

a+b+c + c
b+c+d +

d
a+c+d is heavy.

Let a be a non negative real number. Observe that |−a| reduces to a.
Observe that there exists a natural number which is trivial and non zero and

there exists a natural number which is trivial.
Let a, b be non zero real numbers. One can verify that min(a, b) is non zero

and max(a, b) is non zero.
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Let a be a non negative real number and b be a real number. Let us note
that max(a, b) is non negative.

Let a be a non positive real number. One can check that min(a, b) is non
positive.

Let a be a positive real number. One can verify that max(a, b) is positive.
Let a be a negative real number. One can verify that min(a, b) is negative.
Let a, b be non negative real numbers. Observe that min(a, b) is non negative.
Let a, b be non positive real numbers. One can verify that max(a, b) is non

positive.
Let a be a positive real number and b be a non negative real number. Observe

that a
a+b is non heavy and a+b

a is non light.
Let a, b be positive real numbers. One can verify that a

max(a,b) is non heavy
and a

min(a,b) is non light. Now we state the propositions:

(23) Let us consider real numbers a, b. If sgn(a) > sgn(b), then a > b.

(24) Let us consider non zero real numbers a, b. Suppose sgn(a) > sgn(b).
Then

(i) a is positive, and

(ii) b is negative.

Let a, b be real numbers. Let us note that max(a, b) − min(a, b) is non
negative.

One can check that (sgn(a− b)) · (max(a, b)−min(a, b)) reduces to a− b.
Let a be a real number. Note that a1 reduces to a and 1a reduces to 1. One

can check that a0 is natural and a0 is weightless.
Let a be a positive real number and b be a real number. One can check that

ab is positive.
Let a be a weightless, positive real number and b be a positive real number.

Let us note that ba reduces to b.
Let a be a heavy, positive real number. Observe that ab is heavy.
Let b be a negative real number. Note that ab is light.
Let a be a light, positive real number and b be a positive real number. Note

that ab is light.
Let b be a negative real number. Note that ab is heavy.
Let a be a non weightless, positive real number and b be a real number.

Observe that loga(a
b) reduces to b.

Let b be a positive real number. Observe that aloga b reduces to b.
Now we state the propositions:

(25) Let us consider positive real numbers a, b. Then a > b if and only if
1
a <

1
b .
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(26) Let us consider negative real numbers a, b. Then a > b if and only if
1
a <

1
b .

(27) Let us consider positive real numbers a, b. Then 1a >
1
b if and only if

−a > −b.
(28) Let us consider negative real numbers a, b. Then 1a >

1
b if and only if

−a > −b.
(29) Let us consider positive real numbers a, b. Then sgn( 1a−

1
b ) = sgn(b−a).

(30) Let us consider negative real numbers a, b. Then sgn( 1a−
1
b ) = sgn(b−a).

Let us consider non zero real numbers a, b. Now we state the propositions:

(31) sgn( 1a −
1
b ) = sgn(b − a) if and only if sgn(b) = sgn(a). The theorem is

a consequence of (29), (30), and (24).

(32) a+ b = a · b if and only if 1a + 1
b = 1.

Let us consider positive real numbers a, b. Now we state the propositions:

(33) a+ b > a · b if and only if 1a + 1
b > 1.

(34) a + b < a · b if and only if 1a + 1
b < 1. The theorem is a consequence of

(32) and (33).

(35) Let us consider a non heavy, positive real number a, and a positive real
number b. Then a+ b > a · b. The theorem is a consequence of (33).

(36) Let us consider non zero real numbers a, b. Then a− b = a · b if and only
if 1b −

1
a = 1.

(37) Let us consider positive real numbers a, b. If a− b = a · b, then b is light.
The theorem is a consequence of (1) and (36).

Let us consider positive real numbers a, b, c, d. Now we state the proposi-
tions:

(38) If a+ b = c+ d, then max(a, b)−max(c, d) = min(c, d)−min(a, b).

(39) If a+ b = c+ d, then max(a, b) = max(c, d) iff min(a, b) = min(c, d).

(40) If a+ b = c+d, then max(a, b) > max(c, d) iff min(a, b) < min(c, d). The
theorem is a consequence of (38).

(41) If a+ b = c+d and a · b = c ·d, then max(a, b) = max(c, d). The theorem
is a consequence of (38).

Let us consider positive real numbers a, b, c, d and a real number n. Now
we state the propositions:

(42) If a+ b = c+ d and a · b = c · d, then an + bn = cn + dn. The theorem is
a consequence of (41).

(43) If a+ b = c+ d and an + bn 6= cn + dn, then a · b 6= c · d.

Let us consider positive real numbers a, b, c, d. Now we state the proposi-
tions:
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(44) If a+ b = c+ d, then 1a + 1
b = 1

c + 1
d iff a · b = c · d.

(45) If a+ b = c+ d, then 1a + 1
b >

1
c + 1

d iff a · b < c · d.

(46) If a+ b ­ c+ d and a · b < c · d, then 1a + 1
b >

1
c + 1

d .

(47) If a · b < c · d and 1a + 1
b ¬

1
c + 1

d , then a+ b < c+ d.

(48) If a+ b ¬ c+ d and 1a + 1
b >

1
c + 1

d , then a · b < c · d.

(49) If a · b ­ c · d, then a+ b > c+ d or 1a + 1
b ¬

1
c + 1

d .

(50) Let us consider positive real numbers a, b, and real numbers n, m. Then

(i) am+n + bm+n = (am+bm)·(an+bn)+(an−bn)·(am−bm)
2 , and

(ii) am+n − bm+n = (am+bm)·(an−bn)+(an+bn)·(am−bm)
2 .

(51) Let us consider positive real numbers a, b, and a real number n. Then
an+1+ bn+1 = (an+bn)·(a+b)+(a−b)·(an−bn)

2 . The theorem is a consequence of
(50).

Let us consider positive real numbers a, b and positive real numbers n, m.
Now we state the propositions:

(52) an+m + bn+m ­ (a
n+bn)·(am+bm)

2 .
Proof: (an − bn) · (am − bm) ­ 0. �

(53) an+m + bn+m = (an+bn)·(am+bm)
2 if and only if a = b.

Proof: If a = b, then an+m + bn+m = (an+bn)·(am+bm)+0
2 . If a 6= b, then

(an − bn) · (am − bm) > 0. �

Let us consider positive real numbers a, b, c, d. Now we state the proposi-
tions:

(54) If a+ b ¬ c+ d and max(a, b) > max(c, d), then a · b < c · d.

(55) If a + b ¬ c + d and a · b > c · d, then max(a, b) < max(c, d) and
min(a, b) > min(c, d). The theorem is a consequence of (54).

(56) max(a, b) = max(c, d) and min(a, b) = min(c, d) if and only if a · b = c · d
and a+ b = c+ d. The theorem is a consequence of (41).

(57) Let us consider non negative real numbers a, b, and a positive real num-
ber c. Then a ­ b if and only if ac ­ bc.

(58) Let us consider non negative real numbers a, b, n. Then

(i) max(an, bn) = (max(a, b))n, and

(ii) min(an, bn) = (min(a, b))n.

The theorem is a consequence of (57).

(59) Let us consider positive real numbers a, b, c, d. Suppose a · b > c · d and
a
b ­

c
d or a · b ­ c · d and a

b >
c
d . Then a > c.

(60) Let us consider a positive real number a. Then 1− a < 1
1+a .
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(61) Let us consider a light, positive real number a. Then 1 + a < 1
1−a .

(62) Let us consider positive real numbers a, b, a non negative real number
m, and a positive real number n. If am + bm ¬ 1, then am+n + bm+n < 1.
The theorem is a consequence of (1).

(63) Let us consider positive real numbers a, b, a non positive real number
m, and a negative real number n. If am + bm ¬ 1, then am+n + bm+n < 1.
The theorem is a consequence of (62).

(64) Let us consider positive real numbers a, b, c, n, and a non negative real
number m. If am + bm ¬ cm, then am+n + bm+n < cm+n. The theorem is
a consequence of (62).

(65) Let us consider positive real numbers a, b, and a heavy, positive real
number n. Then an+ bn < (a+ b)n. The theorem is a consequence of (64).

Let k be a positive real number and n be a heavy, positive real number. Let
us observe that (k + 1)n − kn is heavy and positive.

Let k be a heavy, positive real number and n be a non negative real number.
One can verify that kn+1 − kn is positive.

Now we state the propositions:

(66) Let us consider a positive real number k, and a heavy, positive real
number n. Then (k+ 1)n > kn + 1. The theorem is a consequence of (65).

(67) Let us consider positive real numbers a, b, and a light, positive real
number n. Then an+ bn > (a+ b)n. The theorem is a consequence of (64).

(68) Let us consider a positive real number k, and a light, positive real number
n. Then (k + 1)n < kn + 1. The theorem is a consequence of (67).

(69) Let us consider a positive real number k, and a non positive real number
n. Then (k + 1)n < kn + 1.

(70) Let us consider positive real numbers a, b, and a non positive real number
n. Then an + bn > (a+ b)n. The theorem is a consequence of (69).

Let us consider positive real numbers a, b and a real number n. Now we
state the propositions:

(71) (a+ b)n > an + bn if and only if n is heavy and positive. The theorem is
a consequence of (1), (67), (70), and (65).

(72) (a+ b)n = an + bn if and only if n = 1. The theorem is a consequence of
(71), (70), and (67).

(73) (a+ b)n < an + bn if and only if n < 1. The theorem is a consequence of
(1), (71), and (72).

Let us consider positive real numbers a, b, c. Now we state the propositions:

(74) (a+ b) · (a+ c) > a · (a+ b+ c).

(75) a+b+c
a+b < a+c

a . The theorem is a consequence of (74).
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(76) Let us consider positive real numbers a, b, c, and a positive real number
n. Then (a+b+c)

n

(a+b)n < (a+c)
n

an . The theorem is a consequence of (75).

(77) Let us consider heavy, positive real numbers a, b. Then a+ b− 1 > a
b >

1
a+b−1 . The theorem is a consequence of (1).

(78) Let us consider positive real numbers a, b, c. Then a+b+c
a > a+b

a+c >
a

a+b+c .
The theorem is a consequence of (77).

Let us consider a light, positive real number a and a heavy, positive real
number n. Now we state the propositions:

(79) (1 + a)n · (1− a)n < (1 + an) · (1− an). The theorem is a consequence of
(65).

(80) (1+a)n

1+an < 1−an
(1−a)n . The theorem is a consequence of (79).

Let us consider a light, positive real number a. Now we state the propositions:

(81) (i) max(a, 1− a) ­ 12 , and

(ii) min(a, 1− a) ¬ 12 .
(82) 1

1+a + 1
1−a > 2.

(83) Let us consider a heavy, positive real number a. Then 1
a+1 + 1

a−1 >
2
a .

(84) Let us consider positive real numbers a, b, and a heavy, positive real
number n. Then (2·a+b)n+bn < 2·(a+b)n. The theorem is a consequence
of (65).

(85) Let us consider heavy, positive real numbers a, n. Then (a+ 1)n − (a−
1)n > 2n. The theorem is a consequence of (65).

(86) Let us consider a light, positive real number a, and a heavy, positive
real number n. Then 2n > (1 + a)n − (1 − a)n > 2 · an. The theorem is
a consequence of (1) and (65).

(87) Let us consider heavy, positive real numbers a, n, and a light, positive
real number b. Then (a+ 1)n− (a− 1)n > (a+ b)n− (a− b)n > 2 · bn. The
theorem is a consequence of (1) and (65).

(88) Let us consider positive real numbers a, b, and a positive real number n.
Then 2 · (a+ b)n > (a+ b)n + an > 2 · (an).

Let us consider positive real numbers a, b. Now we state the propositions:

(89) If a 6= b, then there exist real numbers n, m such that a = a
b
n and

b = a
b
m.

(90) If a 6= b, then there exist real numbers n, m such that a−b = a
b
n·(ab

m−1).
The theorem is a consequence of (89).

(91) Let us consider positive real numbers a, m, n. Then an+am = amin(n,m) ·
(1 + a|m−n|).
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(92) Let us consider non weightless, positive real numbers a, b. Then loga b =
1
logb a

. The theorem is a consequence of (1).

Let a be a heavy, positive real number and b be a positive real number. One
can check that loga(a+ b) is heavy and loga+b a is light.

Now we state the propositions:

(93) Let us consider a positive, non weightless real number a, and a positive
real number b. Then loga b = 0 if and only if b = 1.
Proof: |a| 6= 1. If loga b = 0, then b = 1. �

(94) Let us consider a non weightless, positive real number a, and a positive
real number b. Then loga b = 1 if and only if a = b. The theorem is
a consequence of (1).

(95) Let us consider positive real numbers a, b, and a non zero real number
n. Then an = bn if and only if a = b.
Proof: If a 6= b, then an 6= bn. �

(96) Let us consider a non weightless, positive real number a, and a positive
real number b. Then

(i) loga b = −log 1
a
b, and

(ii) log 1
a
b = loga

1
b , and

(iii) loga b = −loga
1
b , and

(iv) loga b = log 1
a

1
b .

The theorem is a consequence of (1).

(97) Let us consider a heavy, positive real number a, and a positive real
number b. Then a > b if and only if loga b < 1.
Proof: a > 1. If loga b < 1, then a > b. If a > b, then loga b < 1. �

(98) Let us consider a light, positive real number a, and a positive real number
b. Then a < b if and only if loga b < 1. The theorem is a consequence of
(97) and (96).

(99) Let us consider a heavy, positive real number a, and a positive real num-
ber b. Then a < b if and only if loga b > 1. The theorem is a consequence
of (97) and (94).

(100) Let us consider a light, positive real number a, and a positive real number
b. Then a > b if and only if loga b > 1. The theorem is a consequence of
(99) and (96).

Let us consider non weightless, positive real numbers a, b. Now we state the
propositions:

(101) If loga b ­ 1, then 0 < logb a ¬ 1. The theorem is a consequence of (92).
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(102) If loga b ¬ −1, then 0 > logb a ­ −1. The theorem is a consequence of
(92).

Let us consider heavy, positive real numbers a, b. Now we state the propo-
sitions:

(103) If loga b > logb a ­ 1, then a > b. The theorem is a consequence of (1).

(104) If logb a < 1, then a < b. The theorem is a consequence of (1) and (94).

Let us consider heavy, positive real numbers a, c and positive real numbers
b, d. Now we state the propositions:

(105) If loga b ¬ logc d and a < b, then c < d. The theorem is a consequence
of (99).

(106) If loga b ­ logc d and a > b, then c > d. The theorem is a consequence
of (97).

Let us consider a heavy, positive real number a, a light, positive real number
c, and positive real numbers b, d. Now we state the propositions:

(107) If loga b ¬ logc d and a < b, then c > d. The theorem is a consequence
of (99) and (100).

(108) If loga b ­ logc d and a > b, then c < d. The theorem is a consequence
of (97) and (98).

Let us consider light, positive real numbers a, c and positive real numbers
b, d. Now we state the propositions:

(109) If loga b ¬ logc d and a > b, then c > d. The theorem is a consequence
of (96) and (105).

(110) If loga b ­ logc d and a < b, then c < d. The theorem is a consequence
of (96) and (106).

Let us consider a light, positive real number a, a heavy, positive real number
c, and positive real numbers b, d. Now we state the propositions:

(111) If loga b ¬ logc d and a > b, then c < d. The theorem is a consequence
of (100) and (99).

(112) If loga b ­ logc d and a < b, then c > d. The theorem is a consequence
of (98) and (97).

Let us consider heavy, positive real numbers a, c and positive real numbers
b, d. Now we state the propositions:

(113) If loga b < logc d and a ¬ b, then c < d. The theorem is a consequence
of (97) and (99).

(114) If loga b ¬ logc d and a ¬ b, then c ¬ d. The theorem is a consequence
of (97).

(115) Let us consider positive real numbers a, b. If a > b, then log a
b
a > log a

b
b.
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1. Grothendieck Universes Axioms

From now on X, Y, Z denote sets, x, y, z denote objects, and A, B, C denote
ordinal numbers.

Let us consider X. We say that X is power-closed if and only if

(Def. 1) if Y ∈ X, then 2Y ∈ X.

We say that X is union-closed if and only if

(Def. 2) if Y ∈ X, then
⋃
Y ∈ X.

We say that X is Family-Union-closed if and only if

(Def. 3) for every Y and for every function f such that dom f = Y and rng f ⊆ X
and Y ∈ X holds

⋃
rng f ∈ X.

Note that every set which is Tarski is also power-closed and subset-closed
and every set which is transitive and Tarski is also union-closed and Family-
Union-closed and every set which is transitive and Family-Union-closed is also
union-closed and every set which is transitive and power-closed is also subset-
closed.

A Grothendieck is a transitive, power-closed, Family-Union-closed set.

2. Grothendieck Universe Operator

Let X be a set. A Grothendieck of X is a Grothendieck defined by

(Def. 4) X ∈ it .
Let G1, G2 be Grothendiecks. One can verify that G1 ∩ G2 is transitive,

power-closed, and Family-Union-closed.
Now we state the proposition:

(1) Let us consider Grothendiecks G1, G2 of X. Then G1∩G2 is a Grothen-
dieck of X.

Let X be a set. The functor GrothendieckUniverse(X) yielding a Grothen-
dieck of X is defined by

(Def. 5) for every Grothendieck G of X, it ⊆ G.

The scheme ClosedUnderReplacement deals with a set X and a Grothendieck
U of X and a unary functor F yielding a set and states that

(Sch. 1) {F(x), where x is an element of X : x ∈ X} ∈ U
provided

• if Y ∈ X , then F(Y ) ∈ U .

In the sequel U denotes a Grothendieck. Now we state the proposition:
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(2) Let us consider a function f . If dom f ∈ U and rng f ⊆ U , then rng f ∈
U .
Proof: Set A = dom f . Define S(set) = {f($1)}. Consider s being a func-
tion such that dom s = A and for every X such that X ∈ A holds
s(X) = S(X). rng s ⊆ U .

⋃
s ⊆ rng f . rng f ⊆

⋃
s. �

3. Set of all Sets up to Given Rank

Let x be an object. The functor Rrank(x) yielding a transitive set is defined
by the term

(Def. 6) Rrk(x).

Now we state the propositions:

(3) X ∈ RA if and only if there exists B such that B ∈ A and X ∈ 2RB .
Proof: If X ∈ RA, then there exists B such that B ∈ A and X ∈ 2RB .
�

(4) Y ∈ Rrank(X) if and only if there exists Z such that Z ∈ X and
Y ∈ 2Rrank(Z).
Proof: If Y ∈ Rrank(X), then there exists Z such that Z ∈ X and
Y ∈ 2Rrank(Z). �

(5) If x ∈ X and y ∈ Rrank(x), then y ∈ Rrank(X).

(6) If Y ∈ Rrank(X), then there exists x such that x ∈ X and Y ⊆
Rrank(x). The theorem is a consequence of (4).

(7) X ⊆ Rrank(X).

(8) If X ⊆ Rrank(Y ), then Rrank(X) ⊆ Rrank(Y ).

(9) If X ∈ Rrank(Y ), then Rrank(X) ∈ Rrank(Y ).

(10) (i) X ∈ Rrank(Y ), or

(ii) Rrank(Y ) ⊆ Rrank(X).

(11) (i) Rrank(X) ∈ Rrank(Y ), or

(ii) Rrank(Y ) ⊆ Rrank(X).

(12) If X ∈ U and X ≈ A, then A ∈ U .
Proof: Define P[ordinal number] ≡ for every X such that X ≈ $1 and
X ∈ U holds $1 ∈ U . For every ordinal number A such that for every
ordinal number C such that C ∈ A holds P[C] holds P[A]. For every
ordinal number O, P[O]. �

(13) If X ∈ Y ∈ U , then X ∈ U .

(14) If X ∈ U , then Rrank(X) ∈ U .
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Proof: Define P[ordinal number] ≡ for every set A such that rk(A) ∈ $1
and A ∈ U holds Rrank(A) ∈ U . For every A such that for every C such
that C ∈ A holds P[C] holds P[A]. For every ordinal number O, P[O]. �

(15) If A ∈ U , then RA ∈ U .
Proof: Define P[ordinal number] ≡ if $1 ∈ U , then R$1 ∈ U . For every A
such that for every C such that C ∈ A holds P[C] holds P[A]. For every
ordinal number O, P[O]. �

4. Tarski vs. Grothendieck Universe

Now we state the propositions:

(16) If X ⊆ U and X /∈ U , then there exists a function f such that f is
one-to-one and dom f = OnU and rng f = X.
Proof: For every set x such that x ∈ OnU holds x is an ordinal number
and x ⊆ OnU . Reconsider Λ = OnU as an ordinal number. There exists
a function THE such that for every set x such that ∅ 6= x ⊆ X holds
THE(x) ∈ x. Consider THE being a function such that for every set x
such that ∅ 6= x ⊆ X holds THE(x) ∈ x. Define R(set) = {rk(x), where
x is an element of $1 : x ∈ $1}. For every set A and for every object x,
x ∈ R(A) iff there exists a set a such that a ∈ A and x = rk(a).

DefineQ[set, object] ≡ $2 ∈ X\$1 and for every ordinal number B such
that B ∈ R(X \ $1) holds rk($2) ⊆ B. Define F(transfinite sequence) =
THE({x, where x is an element of X : Q[rng $1, x]}). Consider f being
a transfinite sequence such that dom f = Λ and for every ordinal number
A and for every transfinite sequence L such that A ∈ Λ and L = f�A
holds f(A) = F(L). For every ordinal number A such that A ∈ Λ holds
Q[rng(f�A), f(A)]. f is one-to-one. rng f ⊆ X. X ⊆ rng f . �

(17) Every Grothendieck is Tarski.
Proof: If X /∈ U , then X ≈ U . �

Let us note that every set which is transitive, power-closed, and Family-
Union-closed is also universal and every set which is universal is also transitive,
power-closed, and Family-Union-closed.

Now we state the propositions:

(18) Let us consider a Grothendieck G of X. Then T(X) ⊆ G.

(19) Let us consider an infinite set X. Then X /∈ T({X}).
Proof: Define B(set, set) = $2 ∪ 2$2 . Consider f being a function such
that dom f = N and f(0) = {{A}, ∅} and for every natural number n,
f(n+1) = B(n, f(n)). Set U =

⋃
f . DefineM[object, object] ≡ $1 ∈ f($2)

and $2 ∈ dom f and for every natural numbers i, j such that i < j = $2
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holds $1 /∈ f(i). For every object x such that x ∈ U there exists an object
y such that M[x, y].

Consider M being a function such that domM = U and for every
object x such that x ∈ U holdsM[x,M(x)]. U is subset-closed. For every
X such that X ∈ U holds 2X ∈ U . Define D[natural number] ≡ f($1)
is finite. For every natural number n such that D[n] holds D[n + 1]. For
every natural number n, D[n]. For every set x such that x ∈ dom f holds
f(x) is countable. For every X such that X ⊆ U holds X ≈ U or X ∈ U .
A /∈ U . �

(20) Let us consider an infinite set X. Then T({X}) ⊂ GrothendieckUniverse
({X}). The theorem is a consequence of (18) and (19).

(21) (i) GrothendieckUniverse(X) is a universal class, and

(ii) for every universal class U such that X ∈ U holds

GrothendieckUniverse(X) ⊆ U .

(22) Let us consider a transitive set X. Then T(X) =
GrothendieckUniverse(X). The theorem is a consequence of (18).
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The series of Mizar articles with MML identifiers beginning with YELLOW
(with numerals), e.g. [7] was written to explore this specific field in a more
detailed way, but the structures behind both approaches are different (although
from the informal viewpoint the difference is meaningless [10]). Still however,
the correspondence between relational structures and lattices in the form of the
Mizar structure LattRelStr with binary operations and the underlying ordering
relation available as parallel selectors in the merged structure was studied [8]. An
overview of the mechanization of lattice theory in the repository of Mizar texts
can be found in [6]. Most of described efforts were done more or less manually.

Our work can be seen as a step towards a Mizar support for [15] or [16],
where original proof objects by Otter/Prover9 were used. Some preliminary
works in this direction were already done in [9] by present authors. We use
the interface ott2miz [17] which allows for the automated translation of proofs;
these automatically generated proofs are usually quite lenghty, even after native
enhancements done by internal Mizar software for library revisions.

In the present development, we deal with the parts of Chap. 6 “Lattice-like
algebras” of [15], pp. 111–135, devoted to quasilattices.

The class of quasilattices (QLT) can be characterized from the standard
set of axioms for lattices (with idempotence for the join and meet operations
included), where absorption laws are replaced by the pair of link laws (called
QLT1 and QLT2 in the Mizar source – compare Def. 1 and Def. 2). Def. 8 and
Def. 9 provide standard examples of structures which are quasilatices, but not
necessarily lattices (absorption laws do not hold). In the latter one, the lattice
operations are given by

t 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

u 0 1 2
0 0 1 0
1 1 1 1
2 0 1 2

Then we prove, using Mizar formalism, the new form of distributivity for
QLT, that the standard distributivity implies its dual, and self-dual, a bit longer,
form of distributivity (QLT-1, QLT-2, QLT-3). Later we characterize Bowden’s
inequality (which forces quasilattices, and hence lattices, to be distributive –
QLT-4) and some modularity conditions (QLT-5 and QLT-6) – both in the
form of the equations (taking into account automatic treatment of the equality
predicate in Mizar [11] and the design of Prover9 this is more feasible), and in
the more common (at least from informal point of view) form of implication
with inequality. The final section shows that the meet operation need not be
unique in QLT (although in the class of lattices, starting with the same join
operation, the other operation is uniquely defined).
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1. Preliminaries

From now on L denotes a non empty lattice structure and v3, v101, v100,
v102, v103, v2, v1, v0 denote elements of L.

Let L be a non empty lattice structure. We say that L satisfies QLT1 if and
only if

(Def. 1) for every elements v0, v2, v1 of L, (v0u(v1tv2))t(v0uv1) = v0u(v1tv2).
We say that L satisfies QLT2 if and only if

(Def. 2) for every elements v0, v2, v1 of L, (v0t(v1uv2))u(v0tv1) = v0t(v1uv2).
We say that L is QLT-distributive if and only if

(Def. 3) for every elements v1, v2, v0 of L, v0 u (v1 t (v0 u v2)) = v0 u (v1 t v2).
Observe that every non empty lattice structure which is trivial is also QLT-

distributive and satisfies also QLT1 and QLT2 and every non empty lattice
structure which is trivial is also join-idempotent and meet-idempotent and
there exists a non empty lattice structure which is join-commutative, join-
associative, join-idempotent, meet-commutative, meet-associative, and meet-
idempotent and satisfies QLT1 and QLT2.

Let L be a join-commutative, non empty lattice structure. One can verify
that L satisfies QLT1 if and only if the condition (Def. 4) is satisfied.

(Def. 4) for every elements v0, v1, v2 of L, v0 u v1 v v0 u (v1 t v2).
Note that {0, 1, 2} is real-membered and every element of {0, 1, 2} is real.
Let x, y be elements of {0, 1, 2}. The functor OpEx2(x, y) yielding an element

of {0, 1, 2} is defined by the term

(Def. 5)

{
1, if x = 1 or y = 1,
min(x, y), if x 6= 1 and y 6= 1.

The functors: QLTEx1 and QLTEx2 yielding binary operations on {0, 1, 2}
are defined by conditions

(Def. 6) for every elements x, y of {0, 1, 2}, if x = y, then QLTEx1(x, y) = x and
if x 6= y, then QLTEx1(x, y) = 0,

(Def. 7) for every elements x, y of {0, 1, 2}, if x = 1 or y = 1, then QLTEx2(x, y) =
1 and if x 6= 1 and y 6= 1, then QLTEx2(x, y) = min(x, y),

respectively. Now we state the proposition:

(1) QLTEx1 6= QLTEx2.

The functors: QLTLattice1 and QLTLattice2 yielding strict, non empty lat-
tice structures are defined by terms

(Def. 8) 〈{0, 1, 2},QLTEx1,QLTEx1〉,
(Def. 9) 〈{0, 1, 2},QLTEx1,QLTEx2〉,
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respectively. Let us note that QLTEx1 is commutative, associative, and idempo-
tent and QLTEx2 is commutative, associative, and idempotent and QLTLattice1
is join-commutative, join-associative, and join-idempotent and QLTLattice1 is
meet-commutative, meet-associative, and meet-idempotent.

Let us consider elements v0, v1 of QLTLattice1. Now we state the proposi-
tions:

(2) If v1 = 0, then v0 u v1 = v1.

(3) If v1 = 0, then v0 t v1 = v1.

Observe that QLTLattice1 satisfies QLT1 and QLTLattice1 satisfies QLT2
and every element of QLTLattice2 is real and QLTLattice2 is join-commutative,
join-associative, and join-idempotent and QLTLattice2 is meet-commutative,
meet-associative, and meet-idempotent.

Observe also that QLTLattice2 satisfies QLT1 and QLTLattice2 satisfies
QLT2 and QLTLattice2 is non join-absorbing and QLTLattice2 is non meet-
absorbing and QLTLattice1 is non join-absorbing and QLTLattice1 is non meet-
absorbing.

A quasilattice is a join-commutative, join-associative, meet-commutative,
meet-associative, join-idempotent, meet-idempotent, non empty lattice struc-
ture satisfying QLT1 and QLT2.

2. Properties of Quasilattices: QLT-1

Now we state the propositions:

(4) Suppose for every v1 and v0, v0 u v1 = v1 u v0 and for every v0, v2,
and v1, (v0 u (v1 t v2)) t (v0 u v1) = v0 u (v1 t v2) and for every v0,
v0 t v0 = v0 and for every v2, v1, and v0, (v0 t v1) t v2 = v0 t (v1 t v2)
and for every v1 and v0, v0 t v1 = v1 t v0 and for every v0, v2, and v1,
(v0 t (v1 u v2)) u (v0 t v1) = v0 t (v1 u v2) and for every v1, v2, and v0,
v0 u (v1 t (v0 u v2)) = v0 u (v1 t v2). (v1 u v2) t (v1 u v3) = v1 u (v2 t v3).

(5) If L is meet-commutative, join-idempotent, join-associative, join-com-
mutative, and QLT-distributive and satisfies QLT1 and QLT2, then L is
distributive. The theorem is a consequence of (4).

Observe that every non empty lattice structure which is meet-commutative,
join-idempotent, join-associative, join-commutative, and QLT-distributive and
satisfies QLT1 and QLT2 is also distributive.
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3. QLT-2

Now we state the propositions:

(6) Suppose for every v0, v0uv0 = v0 and for every v2, v1, and v0, (v0uv1)u
v2 = v0 u (v1 u v2) and for every v1 and v0, v0 u v1 = v1 u v0 and for every
v0, v0 t v0 = v0 and for every v2, v1, and v0, (v0 t v1)t v2 = v0 t (v1 t v2)
and for every v0, v2, and v1, (v0 t (v1 u v2))u (v0 t v1) = v0 t (v1 u v2) and
for every v0, v2, and v1, v0u (v1tv2) = (v0uv1)t (v0uv2). v1t (v2uv3) =
(v1 t v2) u (v1 t v3).

(7) If L is meet-idempotent, meet-associative, meet-commutative, join-idem-
potent, join-associative, and distributive and satisfies QLT2, then L is
distributive’. The theorem is a consequence of (6).

Let us observe that every non empty lattice structure which is meet-idem-
potent, meet-associative, meet-commutative, join-idempotent, join-associative,
and distributive and satisfies QLT2 is also distributive’.

4. QLT-3

Let us consider L. We say that L is QLT-selfdistributive if and only if

(Def. 10) for every v2, v1, and v0, (((v0 u v1) t v2) u v1) t (v2 u v0) = (((v0 t v1) u
v2) t v1) u (v2 t v0).

Now we state the proposition:

(8) Suppose for every v0, v0uv0 = v0 and for every v2, v1, and v0, (v0uv1)u
v2 = v0 u (v1 u v2) and for every v1 and v0, v0 u v1 = v1 u v0 and for every
v0, v2, and v1, (v0 u (v1 t v2))t (v0 u v1) = v0 u (v1 t v2) and for every v0,
v0 t v0 = v0 and for every v2, v1, and v0, (v0 t v1) t v2 = v0 t (v1 t v2)
and for every v1 and v0, v0 t v1 = v1 t v0 and for every v0, v2, and v1,
(v0 t (v1 u v2)) u (v0 t v1) = v0 t (v1 u v2) and for every v2, v1, and v0,
(((v0 u v1) t v2) u v1) t (v2 u v0) = (((v0 t v1) u v2) t v1) u (v2 t v0).
v1 t (v2 u v3) = (v1 t v2) u (v1 t v3).

Let us note that every non empty lattice structure which is meet-idem-
potent, meet-associative, meet-commutative, join-idempotent, join-associative,
join-commutative, and QLT-selfdistributive and satisfies QLT1 and QLT2 is also
distributive’.
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5. QLT-4: Bowden Inequality

Let us consider L. We say that L satisfies Bowden inequality if and only if

(Def. 11) for every elements x, y, z of L, (x t y) u z v x t (y u z).
Let L be a join-commutative, non empty lattice structure. Observe that L

satisfies Bowden inequality if and only if the condition (Def. 12) is satisfied.

(Def. 12) for every elements v0, v2, v1 of L, (v0 t (v1 u v2)) t ((v0 t v1) u v2) =
v0 t (v1 u v2).

Now we state the proposition:

(9) Suppose for every v0, v0uv0 = v0 and for every v1 and v0, v0uv1 = v1uv0
and for every v0, v2, and v1, (v0u(v1tv2))t(v0uv1) = v0u(v1tv2) and for
every v0, v0tv0 = v0 and for every v2, v1, and v0, (v0tv1)tv2 = v0t(v1tv2)
and for every v1 and v0, v0 t v1 = v1 t v0 and for every v0, v2, and v1,
(v0 t (v1 u v2)) u (v0 t v1) = v0 t (v1 u v2) and for every v0, v2, and
v1, (v0 t (v1 u v2)) t ((v0 t v1) u v2) = v0 t (v1 u v2). v1 t (v2 u v3) =
(v1 t v2) u (v1 t v3).

Note that every non empty lattice structure which is meet-idempotent, meet-
associative, meet-commutative, join-idempotent, join-associative, and join-com-
mutative and satisfies QLT1, QLT2, and Bowden inequality is also distributive’.

6. Preliminaries to QLT-5: Modularity for Quasilattices

Let us consider L. We say that L is QLT-selfmodular if and only if

(Def. 13) for every v2, v1, and v0, (v0uv1)t(v2u(v0tv1)) = (v0tv1)u(v2t(v0uv1)).
Let L be a join-idempotent, non empty lattice structure and a, b be elements

of L. Let us note that the predicate a v b is reflexive.
Let us consider v1, v2, and v3. Now we state the propositions:

(10) Suppose for every v0, v0uv0 = v0 and for every v2, v1, and v0, (v0uv1)u
v2 = v0 u (v1 u v2) and for every v1 and v0, v0 u v1 = v1 u v0 and for every
v0, v2, and v1, (v0 u (v1 t v2))t (v0 u v1) = v0 u (v1 t v2) and for every v0,
v0 t v0 = v0 and for every v2, v1, and v0, (v0 t v1) t v2 = v0 t (v1 t v2)
and for every v1 and v0, v0 t v1 = v1 t v0 and for every v0, v2, and v1,
(v0 t (v1 u v2)) u (v0 t v1) = v0 t (v1 u v2) and for every v0, v1, and
v2 such that v0 t v1 = v1 holds v0 t (v2 u v1) = (v0 t v2) u v1. Then
(v1 u v2) t (v1 u v3) = v1 u (v2 t (v1 u v3)).

(11) Suppose for every v1 and v0, v0 u v1 = v1 u v0 and for every v0, v2,
and v1, (v0 u (v1 t v2)) t (v0 u v1) = v0 u (v1 t v2) and for every v0,
v0 t v0 = v0 and for every v2, v1, and v0, (v0 t v1) t v2 = v0 t (v1 t v2)
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and for every v1 and v0, v0 t v1 = v1 t v0 and for every v0, v2, and v1,
(v0 t (v1 u v2)) u (v0 t v1) = v0 t (v1 u v2) and for every v2, v1, and v0,
(v0 u v1) t (v0 u v2) = v0 u (v1 t (v0 u v2)). Then if v1 t v2 = v2, then
v1 t (v3 u v2) = (v1 t v3) u v2.

Let L be a meet-idempotent, join-idempotent, meet-commutative, join-
commutative, meet-associative, join-associative, non empty lattice structure
satisfying QLT1 and QLT2. Observe that L is modular if and only if the condi-
tion (Def. 14) is satisfied.

(Def. 14) for every elements v1, v2, v3 of L, (v1uv2)t(v1uv3) = v1u(v2t(v1uv3)).

7. QLT-5

Now we state the proposition:

(12) Suppose for every v0, v0uv0 = v0 and for every v2, v1, and v0, (v0uv1)u
v2 = v0 u (v1 u v2) and for every v1 and v0, v0 u v1 = v1 u v0 and for every
v0, v2, and v1, (v0 u (v1 t v2))t (v0 u v1) = v0 u (v1 t v2) and for every v0,
v0 t v0 = v0 and for every v2, v1, and v0, (v0 t v1) t v2 = v0 t (v1 t v2)
and for every v1 and v0, v0 t v1 = v1 t v0 and for every v0, v2, and v1,
(v0 t (v1 u v2)) u (v0 t v1) = v0 t (v1 u v2) and for every v2, v1, and v0,
(v0uv1)t (v2u (v0tv1)) = (v0tv1)u (v2t (v0uv1)). (v1uv2)t (v1uv3) =
v1 u (v2 t (v1 u v3)).

Let us note that every non empty lattice structure which is meet-idem-
potent, meet-associative, meet-commutative, join-idempotent, join-associative,
join-commutative, and QLT-selfmodular and satisfies QLT1 and QLT2 is also
modular.

8. QLT-6

Now we state the proposition:

(13) Suppose for every v0, v0uv0 = v0 and for every v2, v1, and v0, (v0uv1)u
v2 = v0 u (v1 u v2) and for every v1 and v0, v0 u v1 = v1 u v0 and for every
v0, v2, and v1, (v0 u (v1 t v2))t (v0 u v1) = v0 u (v1 t v2) and for every v0,
v0 t v0 = v0 and for every v2, v1, and v0, (v0 t v1) t v2 = v0 t (v1 t v2)
and for every v1 and v0, v0 t v1 = v1 t v0 and for every v0, v2, and v1,
(v0 t (v1 u v2)) u (v0 t v1) = v0 t (v1 u v2) and for every v2, v1, and
v0, ((v0 t v1) u v2) t v1 = ((v2 t v1) u v0) t v1. (v1 u v2) t (v1 u v3) =
v1 u (v2 t (v1 u v3)).

Let us consider L. We say that L is QLT-selfmodular’ if and only if
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(Def. 15) for every v2, v1, and v0, ((v0 t v1) u v2) t v1 = ((v2 t v1) u v0) t v1.
Observe that every non empty lattice structure which is meet-idempotent,

meet-associative, meet-commutative, join-idempotent, join-associative, join-com-
mutative, and QLT-selfmodular’ and satisfies QLT1 and QLT2 is also modular.

9. The Counterexample Needed to Prove QLT-7

Now we state the proposition:

(14) There exist quasilattices L1, L2 such that

(i) the carrier of L1 = the carrier of L2, and

(ii) the join operation of L1 = the join operation of L2, and

(iii) the meet operation of L1 6= the meet operation of L2.

The theorem is a consequence of (1).
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