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Summary. Józef Białas and Yatsuka Nakamura has completely formalized
a proof of Urysohn’s lemma in the article [4], in the context of a topological space
defined via open sets. In the Mizar Mathematical Library (MML), the topological
space is defined in this way by Beata Padlewska and Agata Darmochwał in the
article [18]. In [7] the topological space is defined via neighborhoods. It is well
known that these definitions are equivalent [5, 6].

In the definitions, an abstract structure (i.e. the article [17, STRUCT 0] and
its descendants, all of them directly or indirectly using Mizar structures [3]) have
been used (see [10], [9]). The first topological definition is based on the Mizar
structure TopStruct and the topological space defined via neighborhoods with
the Mizar structure: FMT Space Str. To emphasize the notion of a neighborho-
od, we rename FMT TopSpace (topology from neighbourhoods) to NTopSpace (a
neighborhood topological space).

Using Mizar [2], we transport the Urysohn’s lemma from TopSpace to NTop-
Space.

In some cases, Mizar allows certain techniques for transporting proofs, defi-
nitions or theorems. Generally speaking, there is no such automatic translating.

In Coq, Isabelle/HOL or homotopy type theory transport is also studied,
sometimes with a more systematic aim [14], [21], [11], [12], [8], [19]. In [1], two
co-existing Isabelle libraries: Isabelle/HOL and Isabelle/Mizar, have been aligned
in a single foundation in the Isabelle logical framework.

In the MML, they have been used since the beginning: reconsider, registra-
tion, cluster, others were later implemented [13]: identify.

In some proofs, it is possible to define particular functors between different
structures, mainly useful when results are already obtained in a given structure.
This technique is used, for example, in [15] to define two functors MXR2MXF and
MXF2MXF between Matrix of REAL and Matrix of F-Real and to transport the
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definition of the addition from one structure to the other: [...] A + B -> Matrix
of REAL equals MXF2MXR ((MXR2MXF A) + (MXR2MXF B)) [...].

In this paper, first we align the necessary topological concepts. For the for-
malization, we were inspired by the works of Claude Wagschal [20]. It allows
us to transport more naturally the Urysohn’s lemma ([4, URYSOHN3:20]) to the
topological space defined via neighborhoods.

Nakasho and Shidama have developed a solution to explore the notions in-
troduced in various ways https://mimosa-project.github.io/mmlreference/
current/ [16].

The definitions can be directly linked in the HTML version of the Mizar
library (example: Urysohn’s lemma http://mizar.org/version/current/html/
urysohn3.html#T20).

MSC: 54A05 03B35 68V20

Keywords: filter; topology via neighborhoods; transfer principle; transport of
structure; align

MML identifier: FINTOPO8, version: 8.1.10 5.64.1388

1. Some Redefinitions: Neighborhood Topological Space

From now on T denotes a topological space and A, B denote subsets of T .
Now we state the proposition:

(1) If A misses B, then IntA misses IntB.

A neighborhood topological space is a topology from neighbourhoods. Let
X be a non empty topological space. We introduce the notation Top2NTop(X)
as a synonym of TopSpace2FMTX.

LetX be a topology from neighbourhoods. We introduce the notation NTop2-
Top(X) as a synonym of FMT2TopSpaceX.

2. Alignment of Topological Space Concepts Defined via Open
Sets and Defined via Neighbourhoods

Let N1 be a non empty neighborhood topological space. Observe that ΩN1

is open and ∅N1 is open.
Let N1 be a U-FMT filter, non empty, strict formal topological space and

x be an element of N1. Note that the functor UF (x) yields a filter of the carrier
of N1.
[20, definition 2.11.2, p. 89]:
Let N1 be a U-FMT filter, non empty, strict formal topological space and

F be a filter of the carrier of N1. The functor LimFilter(F ) yielding a subset of
N1 is defined by the term
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(Def. 1) {x, where x is a point of N1 : F is finer than UF (x)}.

[20, definition 2.11.3, p. 92 and Proposition 2.11.4, p. 90]:
Let N1, N2 be U-FMT filter, non empty, strict formal topological spaces,

f be a function from N1 into N2, and F be a filter of the carrier of N1. The
functor limF f yielding a subset of N2 is defined by the term

(Def. 2) LimFilter(the image of filter F under f).

[20, definition 2.10.1 (1), p. 83]:
Let N be a neighborhood topological space, A be a subset of N , and x be

a point of N . We say that x is interior point of A if and only if

(Def. 3) A is a neighbourhood of x.

[20, definition 2.10.1 (2), p. 83]:
Let N be a neighborhood topological space, A be a subset of N , and x be

a point of N . We say that x is adherent point of A if and only if

(Def. 4) for every element V of UF (x), V meets A.

The functor IntA yielding a subset of N is defined by the term

(Def. 5) {x, where x is a point of N : x is interior point of A}.

[20, definition 2.13.1, p. 97]:
Let N1, N2 be neighborhood topological spaces, f be a function from N1

into N2, and x be a point of N1. We say that f is continuous at x if and only if

(Def. 6) for every filter F of the carrier of N1 such that x ∈ LimFilter(F ) holds
f(x) ∈ limF f .

We say that f is continuous if and only if

(Def. 7) for every point x of N1, f is continuous at x.

Note that there exists a function from N1 into N2 which is continuous.
Let N be a neighborhood topological space and A be a subset of N .
[20, definition 2.10.1 (1), p. 83]: IntA is open.
[20, definition 2.10.1 (2), p. 83]:
Let N be a neighborhood topological space and A be a subset of N . The

functor A yielding a subset of N is defined by the term

(Def. 8) {x, where x is a point of N : x is adherent point of A}.

[20, definition 2.9.3, p. 81]:
Let N1 be a neighborhood topological space and A be a subset of N1. We

say that A is closed if and only if

(Def. 9) ΩN1 \A is an open subset of N1.

One can check that there exists a subset of N1 which is closed and ΩN1 is
closed as a subset of N1 and ∅N1 is closed as a subset of N1 and there exists
a subset of N1 which is non empty and closed.
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Let S, T be non empty topological spaces and f be a function from S

into T . The functor Top2NTop(f) yielding a function from Top2NTop(S) into
Top2NTop(T ) is defined by the term

(Def. 10) f .

Let T1 be a non empty topological space, T2 be a non empty, strict topo-
logical space, and f be a continuous function from T1 into T2. Observe that
the functor Top2NTop(f) yields a continuous function from Top2NTop(T1) into
Top2NTop(T2) and is defined by the term

(Def. 11) f .

[20, definition 2.17.1, p. 111]:
Let N be a neighborhood topological space. We say that N is T2 if and only

if

(Def. 12) for every filter F of the carrier of N , LimFilter(F ) is trivial.

One can check that there exists a neighborhood topological space which is
T2.

Let N be a neighborhood topological space. We say that N is normal if and
only if

(Def. 13) for every closed subsets A, B of N such that A misses B there exists
a neighbourhood V of A and there exists a neighbourhood W of B such
that V misses W .

Let x be a point ofN . The functor NTop2Top(x) yielding a point of NTop2Top
(N) is defined by the term

(Def. 14) x.

Let T be a non empty topological space and x be a point of T . The functor
Top2NTop(x) yielding a point of Top2NTop(T ) is defined by the term

(Def. 15) x.

Let N be a neighborhood topological space and S be a subset of N . The
functor NTop2Top(S) yielding a subset of NTop2Top(N) is defined by the term

(Def. 16) S.

Let T be a non empty topological space and S be a subset of T . The functor
Top2NTop(S) yielding a subset of Top2NTop(T ) is defined by the term

(Def. 17) S.

One can verify that there exists a neighborhood topological space which is
non empty and normal.

Let T1, T2 be neighborhood topological spaces and f be a function from T1
into T2. The functor NTop2Top(f) yielding a function from NTop2Top(T1) into
NTop2Top(T2) is defined by the term

(Def. 18) f .
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The functor FMT-R1 yielding a neighborhood topological space is defined
by the term

(Def. 19) Top2NTop(R111).
Now we state the proposition:

(2) The carrier of FMT-R1 = R.

One can verify that FMT-R1 is real-membered.

3. Some Properties of a Neighborhood Topology

From now on N , N1, N2 denote neighborhood topological spaces, A, B
denote subsets of N , O denotes an open subset of N , a denotes a point of N ,
X denotes a subset of N1, Y denotes a subset of N2, x denotes a point of N1,
y denotes a point of N2, f denotes a function from N1 into N2, and f1 denotes
a continuous function from N1 into N2.

Now we state the propositions:

(3) O is an open subset of NTop2Top(N).

(4) A is a subset of NTop2Top(N).

(5) (i) ΩN is open, and

(ii) ∅N is open.

(6) N 7−→ y is continuous.

(7) a is interior point of A if and only if there exists an open subset O of N
such that a ∈ O and O ⊆ A.

(8) If a ∈ O, then a is interior point of O.

(9) IntA =
⋃
{O, where O is an open subset of N : O ⊆ A}.

(10) IntA ⊆ A.

(11) [20, definition 2.10.1, p. 83]:
If A ⊆ B, then IntA ⊆ IntB.

(12) [20, definition 2.10.2, p. 83]:
A is open if and only if IntA = A.

(13) IntA = Int IntA.

(14) Let us consider a non empty, strict neighborhood topological space N ,
a subset A of N , and a point x of N . Suppose A is a neighbourhood of x.
Then IntA is an open neighbourhood of x. The theorem is a consequence
of (12).

(15) The image of filter UF (x) under f = {M , where M is a subset of N2 :
f−1(M) ∈ UF (x)}.
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(16) If f is continuous at x and y = f(x), then for every element V of UF (y),
there exists an element W of UF (x) such that f◦W ⊆ V .

(17) If y = f(x) and for every element V of UF (y), there exists an element
W of UF (x) such that f◦W ⊆ V , then f is continuous at x.

(18) [20, definition 2.13.1, p. 97]:
If y = f(x), then f is continuous at x iff for every element V of UF (y),
there exists an element W of UF (x) such that f◦W ⊆ V .

(19) [20, proposition 2.13.3, p. 99]:
If f is continuous at x and x is adherent point of X and y = f(x) and
Y = f◦X, then y is adherent point of Y.

(20) [20, theorem 2.13.4, p. 99, (1) ⇒ (2)]:
f1
◦X ⊆ f1◦X.

(21) Every closed subset of N is a closed subset of NTop2Top(N).

(22) [20, proposition 2.10.2, p. 84]:
If B = ΩN \A, then ΩN \A = IntB.

(23) [20, proposition 2.10.2, p. 84]:
If B = ΩN \A, then ΩN \ (IntA) = B.

(24) A ⊆ A.

(25) [20, 2.10.6, p. 84]:
A is closed if and only if A = A.

(26) [20, 2.10.5, p.84]:
If A ⊆ B, then A ⊆ B.

(27) [20, theorem 2.13.4, p. 99, (2) ⇒ (3)]:
If for every subset X of N1, f◦X ⊆ f◦X, then for every closed subset S
of N2, f−1(S) is a closed subset of N1.

(28) [20, definition 2.9.3, p. 81]:
If B = ΩN \A, then A is open iff B is closed.

(29) If A = ΩN \B, then A is open iff B is closed.

(30) [20, theorem 2.13.4, p. 99, (3) ⇒ (4)]:
If for every closed subset S of N2, f−1(S) is a closed subset of N1, then
for every open subset S of N2, f−1(S) is an open subset of N1.

(31) [20, theorem 2.13.4, p. 99, (4) ⇒ (1)]:
If for every open subset S of N2, f−1(S) is an open subset of N1, then f

is continuous.

(32) [20, theorem 2.13.4, p. 99, (1) ⇔ (4)]:
f is continuous if and only if for every open subset O of N2, f−1(O) is
an open subset of N1.
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(33) [20, theorem 2.13.4, p. 99, (1) ⇔ (3)]:
f is continuous if and only if for every closed subset O of N2, f−1(O) is
a closed subset of N1.

(34) IntA = Int NTop2Top(A).

(35) If A is a neighbourhood of a, then NTop2Top(A) is a neighbourhood of
NTop2Top(a). The theorem is a consequence of (34).

(36) If A is a neighbourhood of B, then NTop2Top(A) is a neighbourhood of
NTop2Top(B).

(37) If A misses B, then NTop2Top(A) misses NTop2Top(B).

(38) If A misses B, then IntA misses IntB.

From now on N denotes a T2 neighborhood topological space.
Now we state the propositions:

(39) Let us consider points x, y of N . Suppose x 6= y. Then there exists
an element V1 of UF (x) and there exists an element V2 of UF (y) such that
V1 misses V2.

(40) NTop2Top(N) is a T2, non empty, strict topological space. The theorem
is a consequence of (39).

(41) Let us consider a non empty, normal neighborhood topological space N .
Then NTop2Top(N) is normal. The theorem is a consequence of (36) and
(1).

Let N be a non empty, normal neighborhood topological space. One can
verify that NTop2Top(N) is normal.

4. Some Connections between Neighborhood Topology and
Open-Set Topology

In the sequel T denotes a non empty topological space, A, B denote subsets
of T , F denotes a closed subset of T , and O denotes an open subset of T .

Now we state the propositions:

(42) A is a subset of Top2NTop(T ).

(43) F is a closed subset of Top2NTop(T ).

(44) O is an open subset of Top2NTop(T ).

(45) If A misses B, then Top2NTop(A) misses Top2NTop(B).

(46) Let us consider a T2, non empty topological space T . Then Top2NTop(T )
is a T2 neighborhood topological space.

In the sequel T denotes a non empty, strict topological space, A, B denote
subsets of T , and x denotes a point of T .

Now we state the propositions:
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(47) IntA = Int Top2NTop(A).

(48) If A is a neighbourhood of B, then Top2NTop(A) is a neighbourhood of
Top2NTop(B).

(49) If A is a neighbourhood of x, then Top2NTop(A) is a neighbourhood of
Top2NTop(x).

(50) Let us consider a non empty, normal, strict topological space T . Then
Top2NTop(T ) is normal.

Let T be a non empty, normal, strict topological space. Note that Top2NTop
(T ) is normal.

5. Transport from R1 to FMT-R1

From now on A denotes a subset of FMT-R1, x denotes a point of FMT-R1,
y denotes a point of the metric space of real numbers, z denotes a point of
(the metric space of real numbers)top, and r denotes a real number.

Now we state the propositions:

(51) NTop2Top(FMT-R1) = R111.
(52) The carrier of FMT-R1 = R.

(53) Let us consider a neighborhood topological space N , and a function f

fromN into FMT-R1. Then NTop2Top(f) is a function from NTop2Top(N)
into R111.

(54) Let us consider a non empty topological space T , and a function f

from T into R111. Then Top2NTop(f) is a function from Top2NTop(T )
into Top2NTop(R111).

(55) A is open if and only if for every real number x such that x ∈ A there
exists r such that r > 0 and ]x− r, x+ r[ ⊆ A.

(56) {]a, b[, where a, b are real numbers : a < b} is a basis of R111.
(57) {]a, b[, where a, b are real numbers : a < b} is a basis of FMT-R1.
Proof: Set B = {]a, b[, where a, b are real numbers : a < b}. B ⊆ 2α,
where α is the carrier of FMT-R1. B ⊆ the open set family of FMT-R1.
�

(58) If r > 0, then ]x − r, x + r[ is a neighbourhood of x. The theorem is
a consequence of (57).

(59) Let us consider an object x. Then x is a point of FMT-R1 if and only if
x is a point of the metric space of real numbers.

(60) If x = y, then Ball(y, r) = ]x− r, x+ r[.

(61) If x = y and r > 0, then Ball(y, r) is a neighbourhood of x. The theorem
is a consequence of (58).
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(62) If x = z, then Balls z is a family of subsets of FMT-R1.
(63) Let us consider a family S of subsets of FMT-R1. If x = z and S =

Balls z, then [S] = UF (x). The theorem is a consequence of (61), (14), and
(55).

The functor gen-NS-R1 yielding a function from the carrier of FMT-R1 into

22
(the carrier of FMT-R1)

is defined by

(Def. 20) for every real number r, there exists a point x of (the metric space of
real numbers)top such that x = r and it(r) = Ballsx.

The functor gen-R1 yielding a non empty, strict formal topological space is
defined by the term

(Def. 21) 〈the carrier of FMT-R1, gen-NS-R1〉.
Now we state the propositions:

(64) The carrier of gen-R1 = R.

(65) Let us consider an element x of gen-R1. Then there exists a point y of
(the metric space of real numbers)top such that

(i) x = y, and

(ii) UF (x) = Balls y.

(66) dom[gen-R1] = R.

(67) gen-filter gen-R1 = FMT-R1. The theorem is a consequence of (64), (65),
and (58).

6. Transporting Urysohn’s Lemma ([4, URYSOHN3:20]) from an
Open-Set Topological Space to the Associated Neighborhood

Topological Space

Now we state the proposition:

(68) Main result Urysohn’s lemma in a neighborhood topological
space:
Let us consider a non empty, normal neighborhood topological space N ,
and closed subsets A, B of N . Suppose A misses B. Then there exists
a function F from N into FMT-R1 such that

(i) F is continuous, and

(ii) for every point x of N , 0 ¬ F (x) ¬ 1 and if x ∈ A, then F (x) = 0
and if x ∈ B, then F (x) = 1.
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[11] Brian Huffman and Ondřej Kunčar. Lifting and transfer: A modular design for quotients
in Isabelle/HOL. In International Conference on Certified Programs and Proofs, pages
131–146. Springer, 2013.
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[19] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. Equivalences for free: univalent

http://dx.doi.org/10.4230/lipics.itp.2019.9
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://fm.mizar.org/2001-9/pdf9-3/urysohn3.pdf
http://dx.doi.org/10.1515/forma-2015-0023
http://dx.doi.org/10.1007/978-3-030-41425-2_2
http://dx.doi.org/10.1007/978-3-030-41425-2_2
http://dx.doi.org/10.1007/978-3-030-41425-2_2
http://logika.uwb.edu.pl/studies/download.php?volid=31&artid=ak&format=PDF
http://dx.doi.org/10.2478/v10037-006-0004-1
http://dx.doi.org/10.1007/978-3-319-20615-8_25
http://mizar.org/version/current/html/struct_0.html
http://fm.mizar.org/1990-1/pdf1-1/pre_topc.pdf


A case study of transporting Urysohn’s lemma from ... 237

parametricity for effective transport. Proceedings of the ACM on Programming Languages,
2(ICFP):1–29, 2018.

[20] Claude Wagschal. Topologie et analyse fonctionnelle. Hermann, 1995.
[21] Theo Zimmermann and Hugo Herbelin. Automatic and transparent transfer of theorems

along isomorphisms in the Coq proof assistant. arXiv preprint arXiv:1505.05028, 2015.

Accepted September 25, 2020



238 roland coghetto



FORMALIZED MATHEMATICS

Vol. 28, No. 3, Pages 239–249, 2020
DOI: 10.2478/forma-2020-0021 https://www.sciendo.com/

Extended Natural Numbers and Counters

Sebastian Koch
Johannes Gutenberg University

Mainz, Germany1

Summary. This article introduces extended natural numbers, i.e. the set
N ∪ {+∞}, in Mizar [4], [3] and formalizes a way to list a cardinal numbers of
cardinals. Both concepts have applications in graph theory.
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0. Introduction

Extended natural numbers have often been used in the literature to define dis-
tances in graphs that are not necessarily connected, to set the distance between
vertices of different components to +∞, see e.g. [5], [7], [8]. Therefore it is only
natural to formalize these numbers in preparation for a formalization of distances
in graphs. On the other hand, one usually does not see the list of counters from
the second part of this article in the literature. The generalistic motivation
to introduce these is a rather simple one, however. n-partite finite graphs are
rather known and constructions like Kω,ω arise sometimes. The index objects of
these alone could be formalized using Cardinal-yielding XFinSequence (cf.
[14], [1]), but a generalization for the index object to be any cardinality long
seemed to be appropriate. This allows for easy notation of more graphs than
just with the finite amount of indices. For example K1,2,3,..., where the index
ranges over all natural numbers, is an easy notation for a graph that does not
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have a finite independence number and also no infinite subset of vertices that
form an independent set.

In the first section the set N = N ∪ {+∞} of extended natural numbers is
introduced to the Mizar system [6] as a subset of the extended real numbers
R = R ∪ {−∞,+∞} defined in [12]. Basic theorems will be proven, often spe-
cializations of theorems from [10], [13] or generalizations of theorems from [2].
The second section will introduce sets of extended natural numbers and proceed
in a similar fashion to [11]. The third section does the same with relations that
only have extended natural numbers in their range, similar to [9]. Section 4
deals with some ordinal preliminaries. Not all are needed for the last section, but
the author felt they would fit better here than into a graph preliminary article.
Finally, the last section introduces relations with cardinal domain, as only a
cardinal domain (in lieu of an ordinal one) is needed for counting purposes. The
article ends with the definition of Counters and Counters+, two expandable
modes with the latter not allowing 0 in its range.

1. Extended Natural Numbers

The functor N yielding a subset of R is defined by the term

(Def. 1) N ∪ {+∞}.
Now we state the proposition:

(1) N ⊂ N ⊂ R.
Proof: −∞ /∈ N. �

Observe that N is non empty and infinite.
Let x be an object. We say that x is extended natural if and only if

(Def. 2) x ∈ N.

Let us observe that +∞ is extended natural and every object which is exten-
ded natural is also extended real and every object which is natural is also exten-
ded natural and every set which is finite and extended natural is also natural.

There exists an object which is zero and extended natural and there exists
an object which is non zero and extended natural and there exists a number
which is extended natural and every element of N is extended natural.

An extended natural is an extended natural extended real. Let x be an exten-
ded natural. Note that x(∈ N) reduces to x.

One can check that sethood property holds for extended naturals.
Now we state the proposition:

(2) Let us consider an object x. Then x is an extended natural if and only
if x is a natural number or x = +∞.
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Note that every object which is zero is also extended natural and every
extended real which is extended natural is also non negative and every extended
natural is non negative and every extended natural which is non zero is also
positive.

From now on N , M , K denote extended naturals.
Let us consider N and M . Observe that min(N,M) is extended natural and

max(N,M) is extended natural and N + M is extended natural and N ·M is
extended natural.

Now we state the propositions:

(3) 0 ¬ N .

(4) If 0 6= N , then 0 < N .

(5) 0 < N + 1.

(6) If M ∈ N and N ¬M , then N ∈ N.

(7) If N < M , then N ∈ N.

(8) If N ¬M , then N ·K ¬M ·K.

(9) (i) N = 0, or

(ii) there exists K such that N = K + 1.
The theorem is a consequence of (2).

(10) If N +M = 0, then N = 0 and M = 0.

Let M be an extended natural and N be a non zero extended natural. One
can check that M +N is non zero and N +M is non zero.

Now we state the propositions:

(11) If N ¬M + 1, then N ¬M or N = M + 1.

(12) If N ¬M ¬ N + 1, then N = M or M = N + 1.

(13) If N ¬M , then there exists K such that M = N +K.

(14) N ¬ N +M .

(15) If N ¬M , then N ¬M +K.

(16) If N < 1, then N = 0.

(17) If N ·M = 1, then N = 1.

(18) K < K +N if and only if 1 ¬ N and K 6= +∞.

(19) If K 6= 0 and N = M ·K, then M ¬ N .

(20) If M ¬ N , then M ·K ¬ N ·K.

(21) (K +M) +N = K + (M +N).

(22) K · (N +M) = K ·N +K ·M .
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2. Sets of Extended Natural Numbers

Let X be a set. We say that X is extended natural-membered if and only if

(Def. 3) for every object x such that x ∈ X holds x is extended natural.

Note that every set which is empty is also extended natural-membered and
every set which is natural-membered is also extended natural-membered.

Every set which is extended natural-membered is also extended real-membered
and N is extended natural-membered and there exists a set which is non empty
and extended natural-membered. Now we state the proposition:

(23) Let us consider a set X. Then X is extended natural-membered if and
only if X ⊆ N.

In the sequel X denotes an extended natural-membered set.
Let us consider X. Let us observe that every element of X is extended

natural. Now we state the propositions:

(24) Let us consider a non empty, extended natural-membered set X. Then
there exists N such that N ∈ X.

(25) If for every N , N ∈ X, then X = N.

(26) Let us consider a set Y. If Y ⊆ X, then Y is extended natural-membered.

Let us consider X. One can verify that every subset of X is extended
natural-membered. Let us consider N . Let us observe that {N} is extended
natural-membered. Let us consider M . Let us note that {N,M} is extended
natural-membered. Let us consider K. One can verify that {N,M,K} is exten-
ded natural-membered.

Let us consider X. Let Y be an extended natural-membered set. One can
verify that X ∪ Y is extended natural-membered.

Let Y be a set. One can verify that X ∩ Y is extended natural-membered
and X \ Y is extended natural-membered.

Let Y be an extended natural-membered set. One can check that X−. Y is
extended natural-membered.

Let Y be a set. One can check that X ⊆ Y if and only if the condition (Def.
4) is satisfied.

(Def. 4) if N ∈ X, then N ∈ Y.
Let Y be an extended natural-membered set. One can check that X = Y if

and only if the condition (Def. 5) is satisfied.

(Def. 5) N ∈ X iff N ∈ Y.
One can verify that X misses Y if and only if the condition (Def. 6) is

satisfied.

(Def. 6) there exists no N such that N ∈ X and N ∈ Y.
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Now we state the propositions:

(27) Let us consider a set F . Suppose for every setX such thatX ∈ F holdsX
is extended natural-membered. Then

⋃
F is extended natural-membered.

(28) Let us consider sets F , X. Suppose X ∈ F and X is extended natural-
membered. Then

⋂
F is extended natural-membered.

The scheme ENMSeparation deals with a unary predicate P and states that

(Sch. 1) There exists an extended natural-membered set X such that for every
N , N ∈ X iff P[N ].

Let X be an extended natural-membered set. Let us note that an upper
bound of X can equivalently be formulated as follows:

(Def. 7) for every N such that N ∈ X holds N ¬ it .
One can check that a lower bound of X can equivalently be formulated as

follows:

(Def. 8) for every N such that N ∈ X holds it ¬ N .

Let us note that every extended natural-membered set is lower bounded and
every extended natural-membered set which is non empty is also left-ended.

Let us consider X. Note that there exists an upper bound of X which is
extended natural and there exists a lower bound of X which is extended natural
and inf X is extended natural.

Let X be a non empty, extended natural-membered set. Let us note that
supX is extended natural and every extended natural-membered set which is
non empty and upper bounded is also right-ended.

Let X be a left-ended, extended natural-membered set. One can verify that
the functor minX yields an extended natural and is defined by

(Def. 9) it ∈ X and for every N such that N ∈ X holds it ¬ N .

Let X be a right-ended, extended natural-membered set. One can verify that
the functor maxX yields an extended natural and is defined by

(Def. 10) it ∈ X and for every N such that N ∈ X holds N ¬ it .

3. Relations with Extended Natural Numbers in Range

Let R be a binary relation. We say that R is extended natural-valued if and
only if

(Def. 11) rngR ⊆ N.

Let us note that every binary relation which is empty is also extended
natural-valued and every binary relation which is natural-valued is also exten-
ded natural-valued and every binary relation which is extended natural-valued
is also (N)-valued and extended real-valued.
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Every binary relation which is (N)-valued is also extended natural-valued
and there exists a function which is extended natural-valued.

Let R be an extended natural-valued binary relation. One can check that
rngR is extended natural-membered.

Now we state the proposition:

(29) Let us consider a binary relation R, and an extended natural-valued
binary relation S. If R ⊆ S, then R is extended natural-valued.

Let R be an extended natural-valued binary relation. Observe that every
subset of R is extended natural-valued.

Let R, S be extended natural-valued binary relations. One can verify that
R ∪ S is extended natural-valued.

Let R be an extended natural-valued binary relation and S be a binary
relation. One can check that R ∩ S is extended natural-valued and R \ S is
extended natural-valued and S ·R is extended natural-valued.

Let R, S be extended natural-valued binary relations. Note that R−. S is
extended natural-valued.

Let R be an extended natural-valued binary relation and X be a set. Let
us note that R◦X is extended natural-membered and R�X is extended natural-
valued and X�R is extended natural-valued.

Let x be an object. Let us observe that R◦x is extended natural-membered.
Let us consider X. One can check that idX is extended natural-valued.
Let f be a function. Note that f is extended natural-valued if and only if

the condition (Def. 12) is satisfied.

(Def. 12) for every object x such that x ∈ dom f holds f(x) is extended natural.

Now we state the proposition:

(30) Let us consider a function f . Then f is extended natural-valued if and
only if for every object x, f(x) is extended natural.

Let f be an extended natural-valued function and x be an object. Observe
that f(x) is extended natural.

Let X be a set. Let us consider N . One can verify that X 7−→ N is extended
natural-valued.

Let f , g be extended natural-valued functions. Note that f+·g is extended
natural-valued.

Let x be an object. Let us consider N . Let us observe that x 7−→. N is extended
natural-valued.

Let Z be a set. Let us consider X. Note that every relation between Z and X
is extended natural-valued and Z ×X is extended natural-valued as a relation
between Z and X and there exists a function which is non empty, constant, and
extended natural-valued.
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Now we state the proposition:

(31) Let us consider a non empty, constant, extended natural-valued function
f . Then there exists N such that for every object x such that x ∈ dom f

holds f(x) = N .

4. Ordinal Preliminaries

Now we state the proposition:

(32) Let us consider a function f . Then f is ordinal yielding if and only if for
every object x such that x ∈ dom f holds f(x) is an ordinal number.

One can check that every set which is ordinal is also ⊆-linear.
Let f be an ordinal yielding function and x be an object. Observe that f(x)

is ordinal.
Let A, B be non-empty transfinite sequences. Note that AaB is non-empty.
Now we state the propositions:

(33) Let us consider a set X, and an object x. Then X 7−→ x = X .

(34) Let us consider a cardinal number c, and an object x. Then c 7−→ x = c.
The theorem is a consequence of (33).

Let X be a trivial set. One can verify that X is trivial.
Let c1 be a cardinal number and c2 be a non empty cardinal number. Note

that c1 + c2 is non empty.
Now we state the propositions:

(35) Let us consider an ordinal number A. Then A 6= 0 and A 6= 1 if and only
if A is not trivial.

(36) Let us consider an ordinal number A, and an infinite cardinal number
B. If A ∈ B, then A+B = B.
Proof: Define F(ordinal number) = A+ $1. Consider f being a sequence
of ordinal numbers such that dom f = B and for every ordinal number C
such that C ∈ B holds f(C) = F(C). �

Let f be a cardinal yielding function and g be a function. Observe that f · g
is cardinal yielding and every function which is natural-valued is also cardinal
yielding.

Let f be an empty function. Let us observe that disjoint f is empty.
Let f be an empty yielding function. One can verify that disjoint f is empty

yielding.
Let f be a non empty yielding function. One can check that disjoint f is non

empty yielding.
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Let f be an empty yielding function. One can verify that
⋃
f is empty and

every function which is cardinal yielding is also ordinal yielding.
Now we state the proposition:

(37) Let us consider a function f , and a permutation p of dom f .
Then Card(f · p) = (Card f) · p.

Let A be a transfinite sequence. Note that CardA is transfinite sequence-like.
Now we state the proposition:

(38) Let us consider transfinite sequences A, B. Then Card(AaB) = CardAa

CardB.

Let f be a trivial function. One can check that Card f is trivial.
Let f be a non trivial function. Note that Card f is non trivial.
Let A, B be cardinal yielding transfinite sequences. Note that A a B is

cardinal yielding.
Let c1 be a cardinal number. Note that 〈c1〉 is cardinal yielding.
Let c2 be a cardinal number. Let us observe that 〈c1, c2〉 is cardinal yielding.
Let c3 be a cardinal number. One can verify that 〈c1, c2, c3〉 is cardinal yiel-

ding.
Let X1, X2, X3 be non empty sets. One can verify that 〈X1, X2, X3〉 is

non-empty.
Let A be an infinite ordinal number. Let us note that 〈A〉 is non natural-

valued.
Let x be an object. Let us observe that 〈A, x〉 is non natural-valued and

〈x,A〉 is non natural-valued.
Let y be an object. Observe that 〈A, x, y〉 is non natural-valued and 〈x,A, y〉

is non natural-valued and 〈x, y,A〉 is non natural-valued and there exists a finite
0-sequence which is non empty, non-empty, and natural-valued and 〈x〉 is one-
to-one.

Now we state the propositions:

(39) Let us consider objects x, y. Then

(i) dom〈x, y〉 = {0, 1}, and

(ii) rng〈x, y〉 = {x, y}.
(40) Let us consider objects x, y, z. Then

(i) dom〈x, y, z〉 = {0, 1, 2}, and

(ii) rng〈x, y, z〉 = {x, y, z}.
Let x be an object. One can verify that 〈x〉 is trivial.
Let y be an object. Let us note that 〈x, y〉 is non trivial.
Let z be an object. Let us note that 〈x, y, z〉 is non trivial and there exists

a finite 0-sequence which is non empty and trivial.
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Let D be a non empty set. One can check that there exists a finite 0-sequence
of D which is non empty and trivial.

Now we state the propositions:

(41) Let us consider a non empty, trivial transfinite sequence p. Then there
exists an object x such that p = 〈x〉.

(42) Let us consider a non empty set D, and a non empty, trivial transfinite
sequence p of elements of D. Then there exists an element x of D such
that p = 〈x〉. The theorem is a consequence of (41).

(43) 〈0〉 = id1.

(44) 〈0, 1〉 = id2. The theorem is a consequence of (39).

(45) 〈0, 1, 2〉 = id3. The theorem is a consequence of (40).

(46) Let us consider objects x, y. Then 〈x, y〉 · 〈1, 0〉 = 〈y, x〉. The theorem is
a consequence of (39).

Let us consider objects x, y, z. Now we state the propositions:

(47) 〈x, y, z〉 · 〈0, 2, 1〉 = 〈x, z, y〉. The theorem is a consequence of (40).

(48) 〈x, y, z〉 · 〈1, 0, 2〉 = 〈y, x, z〉. The theorem is a consequence of (40).

(49) 〈x, y, z〉 · 〈1, 2, 0〉 = 〈y, z, x〉. The theorem is a consequence of (40).

(50) 〈x, y, z〉 · 〈2, 0, 1〉 = 〈z, x, y〉. The theorem is a consequence of (40).

(51) 〈x, y, z〉 · 〈2, 1, 0〉 = 〈z, y, x〉. The theorem is a consequence of (40).

(52) Let us consider objects x, y. If x 6= y, then 〈x, y〉 is one-to-one. The
theorem is a consequence of (39).

(53) Let us consider objects x, y, z. If x 6= y and x 6= z and y 6= z, then
〈x, y, z〉 is one-to-one. The theorem is a consequence of (40).

5. Relations with Cardinal Domain

Let R be a binary relation. We say that R is with cardinal domain if and
only if

(Def. 13) there exists a cardinal number c such that domR = c.

One can verify that every binary relation which is empty is also with cardinal
domain and every binary relation which is finite and transfinite sequence-like
is also with cardinal domain and every binary relation which is with cardinal
domain is also transfinite sequence-like.

Let c be a cardinal number. Let us observe that every many sorted set
indexed by c is with cardinal domain.

Let x be an object. Let us note that c 7−→ x is with cardinal domain.
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Let X be a set. Let us note that every denumeration of X is with cardinal
domain.

Let c be a cardinal number. One can verify that every permutation of c is
with cardinal domain and there exists a function which is non empty, trivial, non-
empty, with cardinal domain, and cardinal yielding and there exists a function
which is non empty, non trivial, non-empty, finite, with cardinal domain, and
cardinal yielding.

There exists a function which is non empty, non-empty, infinite, with cardinal
domain, and natural-valued and there exists a function which is non trivial, non-
empty, with cardinal domain, cardinal yielding, and non natural-valued.

Let R be a with cardinal domain binary relation. One can check that domR

is cardinal.
Let f be a with cardinal domain function. We identify f with dom f . Let

R be a with cardinal domain binary relation and P be a total, (rngR)-defined
binary relation. One can verify that R · P is with cardinal domain.

Let g be a function and f be a denumeration of dom g. Let us observe that
g · f is with cardinal domain.

Let f be a with cardinal domain function and p be a permutation of dom f .
Observe that f · p is with cardinal domain.

Now we state the proposition:

(54) Let us consider with cardinal domain transfinite sequences A, B. Suppose
domA ∈ domB. Then A a B is with cardinal domain. The theorem is
a consequence of (36).

Let p be a finite 0-sequence and B be a with cardinal domain transfinite
sequence. Observe that p a B is with cardinal domain.

A Counters is a non empty, with cardinal domain, cardinal yielding function.
A Counters+ is a non empty, non-empty, with cardinal domain, cardinal

yielding function.
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Let F be a field. Note that {0F }–ideal is maximal.
Let R be a non degenerated, non almost left invertible commutative ring.

Let us note that {0R}–ideal is non maximal.
Let R be a ring. We say that R has a subfield if and only if

(Def. 1) there exists a field F such that F is a subring of R.

Observe that there exists a ring which has a subfield.
Let R be a ring which has a subfield.
A subfield of R is a field defined by

(Def. 2) it is a subring of R.

Now we state the proposition:

(2) Let us consider a non degenerated ring R, and a non zero polynomial p
over R. Then p(deg p) = LC p.

Let R be a non degenerated ring and p be a non zero polynomial over R.
One can verify that LM(p) is non zero.

Let us consider a ring R and a polynomial p over R. Now we state the
propositions:

(3) deg LM(p) = deg p.

(4) LC LM(p) = LC p.

(5) Let us consider a non degenerated ring R, and a non zero polynomial p
over R. Then deg(p − LM(p)) < deg p. The theorem is a consequence of
(2), (3), and (4).

(6) Let us consider a ring R, a polynomial p over R, and a natural number
i. Then (〈0R, 1R〉 ∗ p)(i+ 1) = p(i).

(7) Let us consider a ring R, and a polynomial p over R. Then (〈0R, 1R〉 ∗
p)(0) = 0R.

(8) Let us consider an integral domain R, and a non zero polynomial p over
R. Then deg(〈0R, 1R〉 ∗ p) = deg p+ 1.

(9) Let us consider a commutative ring R, a polynomial p over R, and an ele-
ment a of R. Then eval(〈0R, 1R〉 ∗ p, a) = a · (eval(p, a)). The theorem is
a consequence of (1).

(10) Let us consider a ring R, a ring extension S of R, an element p of
the carrier of PolyRing(R), an element a of R, and an element b of S. If
b = a, then ExtEval(p, b) = eval(p, a).

(11) Let us consider a field F , an element p of the carrier of PolyRing(F ),
an extension E of F , an E-extending extension K of F , an element a of
E, and an element b of K. If a = b, then ExtEval(p, a) = ExtEval(p, b).

Let L be a non empty zero structure, a, b be elements of L, f be a (the carrier
of L)-valued function, and x, y be objects. Observe that f+·[x 7−→ a, y 7−→ b] is
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(the carrier of L)-valued.
Let f be a finite-Support sequence of L. One can verify that f+·[x 7−→

a, y 7−→ b] is finite-Support as a sequence of L.

2. On Subrings and Subfields

Now we state the propositions:

(12) Let us consider strict rings R1, R2. Suppose R1 is a subring of R2 and
R2 is a subring of R1. Then R1 = R2.

(13) Let us consider a ring S, and subrings R1, R2 of S. Then R1 is a subring
of R2 if and only if the carrier of R1 ⊆ the carrier of R2.

(14) Let us consider a ring S, and strict subrings R1, R2 of S. Then R1 =
R2 if and only if the carrier of R1 = the carrier of R2. The theorem is
a consequence of (13) and (12).

Let us consider a ring S, a subring R of S, elements x, y of S, and elements
x1, y1 of R. Now we state the propositions:

(15) If x = x1 and y = y1, then x+ y = x1 + y1.

(16) If x = x1 and y = y1, then x · y = x1 · y1.
(17) Let us consider a ring S, a subring R of S, an element x of S, and an ele-

ment x1 of R. If x = x1, then −x = −x1. The theorem is a consequence
of (15).

(18) Let us consider a field E, a subfield F of E, a non zero element x of
E, and an element x1 of F . If x = x1, then x−1 = x1

−1. The theorem is
a consequence of (16).

(19) Let us consider a ring S, a subring R of S, an element x of S, an element
x1 of R, and an element n of N. If x = x1, then xn = x1

n.
Proof: Define P[natural number] ≡ for every element x of S for every
element x1 of R such that x = x1 holds x$1 = x1

$1 . For every natural
number k, P[k]. �

(20) Let us consider a ring S, a subring R of S, elements x1, x2 of S, and
elements y1, y2 of R. Suppose x1 = y1 and x2 = y2. Then 〈x1, x2〉 =
〈y1, y2〉.

(21) Let us consider a commutative ring R, a commutative ring extension S

of R, elements x1, x2 of S, elements y1, y2 of R, and an element n of N.
Suppose x1 = y1 and x2 = y2. Then 〈x1, x2〉n = 〈y1, y2〉n.

(22) Let us consider an integral domain R, a domain ring extension S of R,
a non zero element n of N, and an element a of S.
Then ExtEval(〈0R, 1R〉n, a) = an. The theorem is a consequence of (21).
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(23) Let us consider a ring R, a ring extension S of R, an element a of R,
and an element b of S. If a = b, then a�R = b�S.

(24) Let us consider a field F , an extension E of F , an element p of the carrier
of PolyRing(F ), and an element q of the carrier of PolyRing(E). If p = q,
then NormPoly p = NormPoly q. The theorem is a consequence of (18)
and (16).

(25) Let us consider a field F , an extension E of F , an element p of the carrier
of PolyRing(F ), and an element a of E. Then ExtEval(p, a) = 0E if and
only if ExtEval(NormPoly p, a) = 0E . The theorem is a consequence of
(24).

(26) Let us consider a ring R, a ring extension S of R, an element a of S,
and a polynomial p over R. Then ExtEval(−p, a) = −ExtEval(p, a). The
theorem is a consequence of (17).

(27) Let us consider a ring R, a ring extension S of R, an element a of S,
and polynomials p, q over R. Then ExtEval(p − q, a) = ExtEval(p, a) −
ExtEval(q, a). The theorem is a consequence of (26).

(28) Let us consider a ring R, a ring extension S of R, an element a of S, and
a constant polynomial p over R. Then ExtEval(p, a) = LC p.

(29) Let us consider a non degenerated ring R, a ring extension S of R,
elements a, b of S, and a non zero polynomial p over R. Suppose b = LC p.
Then ExtEval(Leading-Monomial p, a) = b · (adeg p).

3. Ring and Field Adjunctions

Let R be a ring, S be a ring extension of R, and T be a subset of S. The
functor /\(R, T ) yielding a non empty subset of S is defined by the term

(Def. 3) {x, where x is an element of S : for every subring U of S such that R is
a subring of U and T is a subset of U holds x ∈ U}.

The functor RingAdjunction(R, T ) yielding a strict double loop structure is
defined by

(Def. 4) the carrier of it = /\(R, T ) and the addition of it = (the addition of
S) � /\(R, T ) and the multiplication of it = (the multiplication of S) �
/\(R, T ) and the one of it = 1S and the zero of it = 0S .

We introduce the notation RAdj(R, T ) as a synonym of RingAdjunction(R, T ).
One can check that RAdj(R, T ) is non empty.
Let R be a non degenerated ring. Let us observe that RAdj(R, T ) is non

degenerated.



Ring and field adjunctions, algebraic elements and ... 255

Let R be a ring. Observe that RAdj(R, T ) is Abelian, add-associative, right
zeroed, and right complementable.

Let R be a commutative ring and S be a commutative ring extension of R.
One can check that RAdj(R, T ) is commutative.

Let R be a ring and S be a ring extension of R. Let us observe that
RAdj(R, T ) is associative, well unital, and distributive.

Now we state the propositions:

(30) Let us consider a ring R, and a ring extension S of R. Then every subset
T of S is a subset of RAdj(R, T ).

(31) Let us consider a ring R, a ring extension S of R, and a subset T of S.
Then R is a subring of RAdj(R, T ).

(32) Let us consider a ring R, a ring extension S of R, a subset T of S, and
a subring U of S. Suppose R is a subring of U and T is a subset of U .
Then RAdj(R, T ) is a subring of U .

(33) Let us consider a strict ring R, a ring extension S of R, and a subset T
of S. Then RAdj(R, T ) = R if and only if T is a subset of R. The theorem
is a consequence of (30).

Let R be a ring, S be a ring extension of R, and T be a subset of S. Let
us note that the functor RAdj(R, T ) yields a strict subring of S. One can check
that RAdj(R, T ) is R-extending.

Let F be a field, R be a ring extension of F , and T be a subset of R. Let us
note that RAdj(F, T ) has a subfield.

Now we state the proposition:

(34) Let us consider a field F , a ring extension R of F , and a subset T of R.
Then F is a subfield of RAdj(F, T ). The theorem is a consequence of (31).

Let F be a field, E be an extension of F , and T be a subset of E. The functor
/\(F, T ) yielding a non empty subset of E is defined by the term

(Def. 5) {x, where x is an element of E : for every subfield U of E such that F
is a subfield of U and T is a subset of U holds x ∈ U}.

The functor FieldAdjunction(F, T ) yielding a strict double loop structure is
defined by

(Def. 6) the carrier of it = /\(F, T ) and the addition of it = (the addition of
E) � /\(F, T ) and the multiplication of it = (the multiplication of E) �
/\(F, T ) and the one of it = 1E and the zero of it = 0E .

We introduce the notation FAdj(F, T ) as a synonym of FieldAdjunction(F, T ).
One can check that FAdj(F, T ) is non degenerated and FAdj(F, T ) is Abelian,
add-associative, right zeroed, and right complementable and FieldAdjunction(F,
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T ) is commutative, associative, well unital, distributive, and almost left in-
vertible.

Now we state the propositions:

(35) Let us consider a field F , and an extension E of F . Then every subset
T of E is a subset of FAdj(F, T ).

(36) Let us consider a field F , an extension E of F , and a subset T of E.
Then F is a subfield of FAdj(F, T ).

(37) Let us consider a field F , an extension E of F , a subset T of E, and
a subfield U of E. Suppose F is a subfield of U and T is a subset of U .
Then FAdj(F, T ) is a subfield of U .

(38) Let us consider a strict field F , an extension E of F , and a subset T of
E. Then FAdj(F, T ) = F if and only if T is a subset of F . The theorem is
a consequence of (35).

Let F be a field, E be an extension of F , and T be a subset of E. Let us
observe that the functor FAdj(F, T ) yields a strict subfield of E. Let us note
that FAdj(F, T ) is F -extending.

Let us consider a field F , an extension E of F , and a subset T of E. Now
we state the propositions:

(39) RAdj(F, T ) is a subring of FAdj(F, T ).

(40) RAdj(F, T ) = FAdj(F, T ) if and only if RAdj(F, T ) is a field. The the-
orem is a consequence of (31), (30), (37), (39), and (12).

4. Algebraic Elements

Let R be a non degenerated commutative ring, S be a commutative ring
extension of R, and a be an element of S. Observe that HomExtEval(a,R)
is additive, multiplicative, and unity-preserving and every commutative ring
extension of R is (PolyRing(R))-homomorphic.

Let F be a field. Let us note that there exists an extension of F which is
(PolyRing(F ))-homomorphic.

Let E be an extension of F and a be an element of E. We say that a is
F-algebraic if and only if

(Def. 7) ker HomExtEval(a, F ) 6= {0PolyRing(F )}.
We introduce the notation a is F-transcendental as an antonym for a is

F-algebraic. Now we state the proposition:

(41) Let us consider a ring R, a ring extension S of R, and an element a of
S. Then AnnPoly(a,R) = ker HomExtEval(a,R).
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Let us consider a field F , an extension E of F , and an element a of E. Now
we state the propositions:

(42) a is F-algebraic if and only if a is integral over F . The theorem is a con-
sequence of (25).

(43) a is F-algebraic if and only if there exists a non zero polynomial p over
F such that ExtEval(p, a) = 0E . The theorem is a consequence of (42).

Let F be a field and E be an extension of F . Note that there exists an element
of E which is F-algebraic.

Let us consider a field F , a (PolyRing(F ))-homomorphic extension E of F ,
and an element a of E. Now we state the propositions:

(44) RAdj(F, {a}) = Im HomExtEval(a, F ). The theorem is a consequence of
(20), (32), and (14).

(45) The carrier of RAdj(F, {a}) = the set of all ExtEval(p, a) where p is
a polynomial over F . The theorem is a consequence of (44).

5. On Linear Combinations and Polynomials

Now we state the propositions:

(46) Let us consider a field F , a vector space V over F , a subspace W of V ,
and a linear combination l1 of W . Then there exists a linear combination
l2 of V such that

(i) the support of l2 = the support of l1, and

(ii) for every element v of V such that v ∈ the support of l2 holds l2(v) =
l1(v).

Proof: Consider f being a function such that l1 = f and dom f =
the carrier of W and rng f ⊆ the carrier of F . Define P[element of
V, element of F ] ≡ $1 ∈ the support of l1 and $2 = f($1) or $1 /∈
the support of l1 and $2 = 0F . For every element x of the carrier of V ,
there exists an element y of the carrier of F such that P[x, y]. Consider
g being a function from V into F such that for every element x of V ,
P[x, g(x)]. �

(47) Let us consider a field F , an extension E of F , an element a of E,
an element n of N, and a linear combination l of VecSp(E,F ). Then there
exists a polynomial p over F such that

(i) deg p ¬ n, and

(ii) for every element i of N such that i ¬ n holds p(i) = l(ai).
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Proof: Define P[object, object] ≡ there exists a natural number i such
that i ¬ n and $1 = i and $2 = l(ai) or there exists a natural number i
such that i > n and $1 = i and $2 = 0F . For every element x of N, there
exists an element y of the carrier of F such that P[x, y]. Consider p being
a function from N into the carrier of F such that for every element x of N,
P[x, p(x)]. For every natural number i such that i ¬ n holds p(i) = l(ai).
For every natural number i such that i  n+ 1 holds p(i) = 0F . �

(48) Let us consider a field F , an extension E of F , an element a of E,
an element n of N, a linear combination l of VecSp(E,F ), and a non
zero polynomial p over F . Suppose l(adeg p) = LC p and the support of
l = {adeg p}. Then

∑
l = ExtEval(LM(p), a). The theorem is a consequence

of (35) and (29).

(49) Let us consider a field F , an extension E of F , an element a of E, an ele-
ment n of N, and a subset M of VecSp(E,F ). Suppose M = {ai, where
i is an element of N : i ¬ n} and for every elements i, j of N such that
i < j ¬ n holds ai 6= aj . Let us consider a linear combination l of M , and
a polynomial p over F . Suppose deg p ¬ n and for every element i of N
such that i ¬ n holds p(i) = l(ai). Then ExtEval(p, a) =

∑
l.

Proof: Define P[natural number] ≡ for every linear combination l of M
such that the support of l = $1 for every polynomial p over F such that
deg p ¬ n and for every element i of N such that i ¬ n holds p(i) = l(ai)
holds

∑
l = ExtEval(p, a). P[0] by [8, (13)]. For every natural number k,

P[k]. Consider n being a natural number such that α = n, where α is
the support of l. �

6. Minimal Polynomials

Let F be a field, E be an extension of F , and a be an F-algebraic element
of E. We introduce the notation MinPoly(a, F ) as a synonym of the minimal
polynomial of a over F .

Note that MinPoly(a, F ) is monic and irreducible.
Let us consider a field F , an extension E of F , an F-algebraic element a of E,

and an element p of the carrier of PolyRing(F ). Now we state the propositions:

(50) p = MinPoly(a, F ) if and only if p is monic and irreducible and ker Hom-
ExtEval(a, F ) = {p}–ideal. The theorem is a consequence of (42) and (41).

(51) p = MinPoly(a, F ) if and only if p is monic and ExtEval(p, a) = 0E and
for every non zero polynomial q over F such that ExtEval(q, a) = 0E holds
deg p ¬ deg q. The theorem is a consequence of (42) and (50).

(52) p = MinPoly(a, F ) if and only if p is monic and irreducible and ExtEval(p,
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a) = 0E . The theorem is a consequence of (42) and (50).

(53) ExtEval(p, a) = 0E if and only if MinPoly(a, F ) | p. The theorem is
a consequence of (50) and (51).

(54) Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Then MinPoly(a, F ) = rpoly(1, a) if and only if a ∈ the carrier of
F . The theorem is a consequence of (10), (52), and (17).

(55) Let us consider a field F , an extension E of F , an F-algebraic element a
of E, and elements i, j of N. If i < j < deg MinPoly(a, F ), then ai 6= aj .
The theorem is a consequence of (7), (6), (17), (52), and (53).

(56) Let us consider a field F , a (PolyRing(F ))-homomorphic extension E of
F , and an element a of E. Then a is F-algebraic if and only if FAdj(F, {a}) =
RAdj(F, {a}). The theorem is a consequence of (50), (44), and (40).

(57) Let us consider a field F , a (PolyRing(F ))-homomorphic extension E

of F , and a non zero element a of E. Then a is F-algebraic if and only
if a−1 ∈ RAdj(F, {a}). The theorem is a consequence of (56), (35), (18),
(45), (17), (28), and (43).

(58) Let us consider a field F , an extension E of F , and an element a of E.
Then a is F-transcendental if and only if RAdj(F, {a}) and PolyRing(F )
are isomorphic. The theorem is a consequence of (44) and (56).

(59) Let us consider a field F , a (PolyRing(F ))-homomorphic extension E of
F , and an F-algebraic element a of E.
Then PolyRing(F )/{MinPoly(a, F )}–ideal and FAdj(F, {a}) are isomor-
phic. The theorem is a consequence of (50), (44), and (56).

7. A Basis of the Vector Space VecSp(FAdj(F, {a}), F )

Let F be a field, E be an extension of F , and a be an F-algebraic element of
E. The functor Base(a) yielding a non empty subset of VecSp(FAdj(F, {a}), F )
is defined by the term

(Def. 8) {an, where n is an element of N : n < deg MinPoly(a, F )}.

One can verify that Base(a) is finite. Now we state the propositions:

(60) Let us consider a field F , an extension E of F , an F-algebraic element a
of E, and a polynomial p over F . Then ExtEval(p, a) ∈ Lin(Base(a)). The
theorem is a consequence of (51).

(61) Let us consider a field F , an extension E of F , an F-algebraic element a
of E, and a linear combination l of Base(a). Then there exists a polynomial
p over F such that

(i) deg p < deg MinPoly(a, F ), and
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(ii) for every element i of N such that i < deg MinPoly(a, F ) holds p(i) =
l(ai).

The theorem is a consequence of (46) and (47).

(62) Let us consider a field F , an extension E of F , an F-algebraic element
a of E, a linear combination l of Base(a), and a non zero polynomial p
over F . Suppose l(adeg p) = LC p and the support of l = {adeg p}. Then∑
l = ExtEval(LM(p), a). The theorem is a consequence of (35), (36),

(19), and (29).

(63) Let us consider a field F , an extension E of F , an F-algebraic element
a of E, a linear combination l of Base(a), and a polynomial p over F .
Suppose deg p < deg MinPoly(a, F ) and for every element i of N such that
i < deg MinPoly(a, F ) holds p(i) = l(ai). Then

∑
l = ExtEval(p, a).

Proof: Define P[natural number] ≡ for every linear combination l of
Base(a) such that the support of l = $1 for every polynomial p over F
such that deg p < deg MinPoly(a, F ) and for every element i of N such
that i < deg MinPoly(a, F ) holds p(i) = l(ai) holds

∑
l = ExtEval(p, a).

P[0]. For every natural number k, P[k]. Consider n being a natural number
such that α = n, where α is the support of l. �

(64) Let us consider a field F , an extension E of F , an F-algebraic element
a of E, and a linear combination l of Base(a). Suppose

∑
l = 0F . Then

l = 0LCVecSp(FAdj(F,{a}),F ) . The theorem is a consequence of (61), (63), and
(53).

(65) Let us consider a field F , a (PolyRing(F ))-homomorphic extension E

of F , and an F-algebraic element a of E. Then Base(a) is a basis of
VecSp(FAdj(F, {a}), F ). The theorem is a consequence of (64), (56), (45),
and (60).

Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Now we state the propositions:

(66) Base(a) = deg MinPoly(a, F ).
Proof: Set m = deg MinPoly(a, F ). Define P[object, object] ≡ there exi-
sts an element x of Segm and there exists an element y of N such that
$1 = x and y = x − 1 and $2 = ay. Consider f being a function such
that dom f = Segm and for every object x such that x ∈ Segm holds
P[x, f(x)]. �

(67) deg(FAdj(F, {a}), F ) = deg MinPoly(a, F ). The theorem is a consequen-
ce of (66) and (65).

Let F be a field, E be an extension of F , and a be an F-algebraic element
of E. Let us note that FAdj(F, {a}) is F -finite.
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Now we state the proposition:

(68) Let us consider a field F , an extension E of F , and an element a of E.
Then a is F-algebraic if and only if FAdj(F, {a}) is F -finite. The theorem
is a consequence of (27), (22), (43), (35), (19), (47), (11), and (49).
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