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Functional Sequence in Norm Space

Hiroshi Yamazaki
Nagano Prefectural Institute of Technology
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Summary. In this article, we formalize in Mizar [1], [2] functional sequ-
ences and basic operations on functional sequences in norm space based on [5].
In the first section, we define functional sequence in norm space. In the second
section, we define pointwise convergence and prove some related theorems. In the
last section we define uniform convergence and limit of functional sequence.
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1. Preliminaries

From now on D denotes a non empty set, D1, D2, x, y, Z denote sets, n, k
denote natural numbers, p, x1, r denote real numbers, f denotes a function, Y
denotes a real normed space, and G, H, H1, H2, J denote sequences of partial
functions from D into the carrier of Y.

Now we state the proposition:

(1) f is a sequence of partial functions fromD1 intoD2 if and only if dom f =
N and for every x such that x ∈ N holds f(x) is a partial function from
D1 to D2.
Proof: If f is a sequence of partial functions from D1 into D2, then
dom f = N and for every x such that x ∈ N holds f(x) is a partial function
from D1 to D2 by [3, (46)]. �

Let us consider D. Let Y be a non empty normed structure, H be a sequence
of partial functions from D into the carrier of Y, and r be a real number. The
functor r ·H yielding a sequence of partial functions from D into the carrier of
Y is defined by
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(Def. 1) for every natural number n, it(n) = r ·H(n).

Let Y be a real normed space. The functor −H yielding a sequence of partial
functions from D into the carrier of Y is defined by

(Def. 2) for every natural number n, it(n) = −H(n).

One can verify that the functor is involutive.
Let Y be a non empty normed structure. The functor ‖H‖ yielding a sequ-

ence of partial functions from D into R is defined by

(Def. 3) for every natural number n, it(n) = ‖H(n)‖.
Let G, H be sequences of partial functions from D into the carrier of Y. The

functor G +H yielding a sequence of partial functions from D into the carrier
of Y is defined by

(Def. 4) for every natural number n, it(n) = G(n) +H(n).

Let Y be a real normed space. The functor G − H yielding a sequence of
partial functions from D into the carrier of Y is defined by the term

(Def. 5) G+−H.

Now we state the propositions:

(2) H1 = G−H if and only if for every n, H1(n) = G(n)−H(n).
Proof: If H1 = G − H, then for every n, H1(n) = G(n) − H(n) by [7,
(25)]. �

(3) (i) G+H = H +G, and

(ii) (G+H) + J = G+ (H + J).

(4) −H = (−1) ·H.

(5) (i) r · (G+H) = r ·G+ r ·H, and

(ii) r · (G−H) = r ·G− r ·H.
The theorem is a consequence of (2).

(6) r · p ·H = r · (p ·H).

(7) 1 ·H = H.

(8) ‖r ·H‖ = |r| · ‖H‖.

2. Pointwise Convergence

In the sequel x denotes an element of D, X denotes a set, S1, S2 denote
sequences of Y, and f denotes a partial function from D to the carrier of Y.

Let us consider D. Let Y be a non empty normed structure and H be
a sequence of partial functions from D into the carrier of Y. Let us consider x.
The functor H#x yielding a sequence of the carrier of Y is defined by

(Def. 6) for every n, it(n) = H(n)/x.
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Let us consider Y, H, and X. We say that H is point-convergent on X if
and only if

(Def. 7) X is common for elements of H and there exists f such that X = dom f
and for every x such that x ∈ X for every p such that p > 0 there exists
k such that for every n such that n  k holds ‖H(n)/x − f/x‖ < p.

Now we state the propositions:

(9) H is point-convergent on X if and only if X is common for elements
of H and there exists f such that X = dom f and for every x such that
x ∈ X holds H#x is convergent and lim(H#x) = f(x).

(10) H is point-convergent on X if and only if X is common for elements of
H and for every x such that x ∈ X holds H#x is convergent.
Proof: Define X [set] ≡ $1 ∈ X. Define U(element ofD) = (lim(H#$1))(∈
(the carrier of Y )). Consider f such that for every x, x ∈ dom f iff X [x]
and for every x such that x ∈ dom f holds f(x) = U(x) from [4, Sch. 3].
If H is point-convergent on X, then X is common for elements of H and
for every x such that x ∈ X holds H#x is convergent. �

3. Uniform Convergence and Limit of Functional Sequence

Let us consider D, Y, H, and X. We say that H is uniform-convergent on
X if and only if

(Def. 8) X is common for elements of H and there exists f such that X = dom f
and for every p such that p > 0 there exists k such that for every n and x
such that n  k and x ∈ X holds ‖H(n)/x − f/x‖ < p.

Assume H is point-convergent on X. The functor limXH yielding a partial
function from D to the carrier of Y is defined by

(Def. 9) dom it = X and for every x such that x ∈ dom it holds it(x) = lim(H#x).

Now we state the propositions:

(11) Suppose H is point-convergent on X. Then f = limXH if and only if
dom f = X and for every x such that x ∈ X for every p such that p > 0
there exists k such that for every n such that n  k holds ‖H(n)/x−f/x‖ <
p. The theorem is a consequence of (10).

(12) If H is uniform-convergent on X, then H is point-convergent on X.

(13) If Z ⊆ X and Z 6= ∅ and X is common for elements of H, then Z is
common for elements of H.

(14) Suppose Z ⊆ X and Z 6= ∅ and H is point-convergent on X. Then

(i) H is point-convergent on Z, and
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(ii) limXH�Z = limZH.

The theorem is a consequence of (13).

(15) If Z ⊆ X and Z 6= ∅ and H is uniform-convergent on X, then H is
uniform-convergent on Z. The theorem is a consequence of (13).

Let us consider a set x. Now we state the propositions:

(16) If X is common for elements of H, then if x ∈ X, then {x} is common
for elements of H.

(17) If H is point-convergent on X, then if x ∈ X, then {x} is common for
elements of H.

(18) Suppose {x} is common for elements of H1 and common for elements of
H2. Then

(i) H1#x+H2#x = (H1 +H2)#x, and

(ii) H1#x−H2#x = (H1 −H2)#x.

The theorem is a consequence of (2).

In the sequel x denotes an element of D.

(19) Suppose {x} is common for elements of H. Then

(i) ‖H‖#x = ‖H#x‖, and

(ii) (−H)#x = (−1) · (H#x).

(20) If {x} is common for elements of H, then (r ·H)#x = r · (H#x).

(21) Suppose X is common for elements of H1 and common for elements of
H2. If x ∈ X, then H1#x+H2#x = (H1 +H2)#x and H1#x−H2#x =
(H1 −H2)#x. The theorem is a consequence of (16) and (18).

(22) Suppose {x} is common for elements of H. Then

(i) ‖H‖#x = ‖H#x‖, and

(ii) (−H)#x = (−1) · (H#x).

Let us consider x. Now we state the propositions:

(23) If X is common for elements of H, then if x ∈ X, then (r · H)#x =
r · (H#x). The theorem is a consequence of (16) and (20).

(24) Suppose H1 is point-convergent on X and H2 is point-convergent on X.
Then if x ∈ X, then H1#x+H2#x = (H1+H2)#x and H1#x−H2#x =
(H1 −H2)#x.

(25) Suppose {x} is common for elements of H. Then

(i) ‖H‖#x = ‖H#x‖, and

(ii) (−H)#x = (−1) · (H#x).
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(26) If H is point-convergent on X, then for every x such that x ∈ X holds
(r ·H)#x = r · (H#x).

(27) If X is common for elements of H1 and common for elements of H2,
then X is common for elements of H1 +H2 and common for elements of
H1 −H2. The theorem is a consequence of (2).

(28) If X is common for elements of H, then X is common for elements of
‖H‖ and common for elements of −H.

(29) If X is common for elements of H, then X is common for elements of
r ·H.

(30) Suppose H1 is point-convergent on X and H2 is point-convergent on X.
Then

(i) H1 +H2 is point-convergent on X, and

(ii) limX(H1 +H2) = limXH1 + limXH2, and

(iii) H1 −H2 is point-convergent on X, and

(iv) limX(H1 −H2) = limXH1 − limXH2.

The theorem is a consequence of (10), (21), and (27).

(31) Suppose H is point-convergent on X. Then

(i) ‖H‖ is point-convergent on X, and

(ii) limX‖H‖ = ‖limXH‖, and

(iii) −H is point-convergent on X, and

(iv) limX(−H) = −limXH.

The theorem is a consequence of (16), (10), (19), and (28).

(32) If H is point-convergent on X, then r ·H is point-convergent on X and
limX(r ·H) = r · limXH. The theorem is a consequence of (10), (23), and
(29).

(33) H is uniform-convergent on X if and only if X is common for elements
of H and H is point-convergent on X and for every r such that 0 < r
there exists k such that for every n and x such that n  k and x ∈ X
holds ‖H(n)/x − (limXH)/x‖ < r. The theorem is a consequence of (12)
and (11).

From now on V , W denote real normed spaces and H denotes a sequence of
partial functions from the carrier of V into the carrier of W .

Now we state the proposition:

(34) If H is uniform-convergent on X and for every n, H(n)�X is continuous
on X, then limXH is continuous on X.
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Proof: Set l = limXH. H is point-convergent on X. For every point x0
of V such that x0 ∈ X holds l�X is continuous in x0 by [6, (62)], (33),
(11), [6, (61)]. �

Acknowledgement: I would like to thank Yasunari Shidama for useful
advice on formalizing theorems.
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Summary. In this paper we introduce some new definitions for sequences
of operations and extract general theorems about properties of iterative algori-
thms encoded in nominative data language [20] in the Mizar system [3], [1] in
order to simplify the process of proving algorithms in the future.

This paper continues verification of algorithms [10], [13], [12], [14] written in
terms of simple-named complex-valued nominative data [6], [8], [18], [11], [15],
[16].

The validity of the algorithm is presented in terms of semantic Floyd-Hoare
triples over such data [9]. Proofs of the correctness are based on an inference
system for an extended Floyd-Hoare logic [2], [4] with partial pre- and post-
conditions [17], [19], [7], [5].
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1. Composition Rules for Programs

Let D be a non empty set. One can verify that there exists a finite sequence
which is non empty and D-valued.

Let n be a natural number. One can verify that there exists a finite sequence
which is D-valued and n-element.

From now on D denotes a non empty set, f1, f2, f3, f4, f5, f6, f7, f8, f9,
f10 denote binominative functions of D, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11
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denote partial predicates of D, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10 denote total
partial predicates of D, n, m, N denote natural numbers, fD denotes a (D→̇D)-
valued finite sequence, fB denotes a (D→̇Boolean)-valued finite sequence, V , A
denote sets.

From now on val denotes a function, loc denotes a V-valued function, d1
denotes a non-atomic nominative data of V and A, p denotes a partial predicate
over simple-named complex-valued nominative data of V and A, d, v denote
objects, z2 denotes a non zero natural number, inp, pos denote finite sequences,
and prg denotes a non empty, (FPrg(NDSC(V,A)))-valued finite sequence.

Let us consider D, f1, f2, f3, f4, f5, f6, and f7. The functor PP-composition
(f1, f2, f3, f4, f5, f6, f7) yielding a binominative function of D is defined by the
term

(Def. 1) PP-composition(f1, f2, f3, f4, f5, f6) • f7.
Now we state the proposition:

(1) Unconditional composition rule for 7 programs:
Suppose 〈p1, f1, p2〉 is an SFHT of D and 〈p2, f2, p3〉 is an SFHT of D and
〈p3, f3, p4〉 is an SFHT of D and 〈p4, f4, p5〉 is an SFHT of D and 〈p5,
f5, p6〉 is an SFHT of D and 〈p6, f6, p7〉 is an SFHT of D and 〈p7, f7, p8〉
is an SFHT of D and 〈∼ p2, f2, p3〉 is an SFHT of D and 〈∼ p3, f3, p4〉
is an SFHT of D and 〈∼ p4, f4, p5〉 is an SFHT of D and 〈∼ p5, f5, p6〉
is an SFHT of D and 〈∼ p6, f6, p7〉 is an SFHT of D and 〈∼ p7, f7, p8〉
is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7), p8〉 is
an SFHT of D.

Let us consider D, f1, f2, f3, f4, f5, f6, f7, and f8. The functor PP-composit-
ion(f1, f2, f3, f4, f5, f6, f7, f8) yielding a binominative function of D is defined
by the term

(Def. 2) PP-composition(f1, f2, f3, f4, f5, f6, f7) • f8.
Now we state the proposition:

(2) Unconditional composition rule for 8 programs:
Suppose 〈p1, f1, p2〉 is an SFHT of D and 〈p2, f2, p3〉 is an SFHT of D and
〈p3, f3, p4〉 is an SFHT of D and 〈p4, f4, p5〉 is an SFHT of D and 〈p5,
f5, p6〉 is an SFHT of D and 〈p6, f6, p7〉 is an SFHT of D and 〈p7, f7, p8〉
is an SFHT of D and 〈p8, f8, p9〉 is an SFHT of D and 〈∼ p2, f2, p3〉 is
an SFHT of D and 〈∼ p3, f3, p4〉 is an SFHT of D and 〈∼ p4, f4, p5〉 is
an SFHT of D and 〈∼ p5, f5, p6〉 is an SFHT of D and 〈∼ p6, f6, p7〉 is
an SFHT of D and 〈∼ p7, f7, p8〉 is an SFHT of D and 〈∼ p8, f8, p9〉 is
an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7, f8), p9〉 is
an SFHT of D. The theorem is a consequence of (1).

Let us considerD, f1, f2, f3, f4, f5, f6, f7, f8, and f9. The functor PP-composi-
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tion(f1, f2, f3, f4, f5, f6, f7, f8, f9) yielding a binominative function of D is defi-
ned by the term

(Def. 3) PP-composition(f1, f2, f3, f4, f5, f6, f7, f8) • f9.
Now we state the proposition:

(3) Unconditional composition rule for 9 programs:
Suppose 〈p1, f1, p2〉 is an SFHT of D and 〈p2, f2, p3〉 is an SFHT of D
and 〈p3, f3, p4〉 is an SFHT of D and 〈p4, f4, p5〉 is an SFHT of D and
〈p5, f5, p6〉 is an SFHT of D and 〈p6, f6, p7〉 is an SFHT of D and 〈p7, f7,
p8〉 is an SFHT of D and 〈p8, f8, p9〉 is an SFHT of D and 〈p9, f9, p10〉
is an SFHT of D and 〈∼ p2, f2, p3〉 is an SFHT of D and 〈∼ p3, f3, p4〉
is an SFHT of D and 〈∼ p4, f4, p5〉 is an SFHT of D and 〈∼ p5, f5, p6〉
is an SFHT of D and 〈∼ p6, f6, p7〉 is an SFHT of D and 〈∼ p7, f7, p8〉
is an SFHT of D and 〈∼ p8, f8, p9〉 is an SFHT of D and 〈∼ p9, f9, p10〉
is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9),
p10〉 is an SFHT of D. The theorem is a consequence of (2).

Let us consider D, f1, f2, f3, f4, f5, f6, f7, f8, f9, and f10. The functor
PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10) yielding a binominative func-
tion of D is defined by the term

(Def. 4) PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9) • f10.
Now we state the propositions:

(4) Unconditional composition rule for 10 programs:
Suppose 〈p1, f1, p2〉 is an SFHT of D and 〈p2, f2, p3〉 is an SFHT of D and
〈p3, f3, p4〉 is an SFHT of D and 〈p4, f4, p5〉 is an SFHT of D and 〈p5, f5,
p6〉 is an SFHT of D and 〈p6, f6, p7〉 is an SFHT of D and 〈p7, f7, p8〉 is
an SFHT ofD and 〈p8, f8, p9〉 is an SFHT ofD and 〈p9, f9, p10〉 is an SFHT
of D and 〈p10, f10, p11〉 is an SFHT of D and 〈∼ p2, f2, p3〉 is an SFHT of
D and 〈∼ p3, f3, p4〉 is an SFHT of D and 〈∼ p4, f4, p5〉 is an SFHT of
D and 〈∼ p5, f5, p6〉 is an SFHT of D and 〈∼ p6, f6, p7〉 is an SFHT of
D and 〈∼ p7, f7, p8〉 is an SFHT of D and 〈∼ p8, f8, p9〉 is an SFHT of
D and 〈∼ p9, f9, p10〉 is an SFHT of D and 〈∼ p10, f10, p11〉 is an SFHT
of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10), p11〉 is
an SFHT of D. The theorem is a consequence of (3).

(5) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, p2〉 is an SFHT of D.
Then 〈p1, f1 • f2, p2〉 is an SFHT of D.

(6) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, p2〉 is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3), p2〉
is an SFHT of D. The theorem is a consequence of (5).

(7) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, p2〉 is an SFHT of D. Then
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〈p1,PP-composition(f1, f2, f3, f4), p2〉 is an SFHT of D. The theorem is
a consequence of (6).

(8) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and 〈q4,
f5, p2〉 is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5), p2〉 is
an SFHT of D. The theorem is a consequence of (7).

(9) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and
〈q4, f5, q5〉 is an SFHT of D and 〈q5, f6, p2〉 is an SFHT of D. Then 〈p1,
PP-composition(f1, f2, f3, f4, f5, f6), p2〉 is an SFHT of D. The theorem is
a consequence of (8).

(10) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and 〈q4,
f5, q5〉 is an SFHT of D and 〈q5, f6, q6〉 is an SFHT of D and 〈q6, f7, p2〉
is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7), p2〉 is
an SFHT of D. The theorem is a consequence of (9).

(11) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and
〈q4, f5, q5〉 is an SFHT of D and 〈q5, f6, q6〉 is an SFHT of D and 〈q6,
f7, q7〉 is an SFHT of D and 〈q7, f8, p2〉 is an SFHT of D. Then 〈p1,
PP-composition(f1, f2, f3, f4, f5, f6, f7, f8), p2〉 is an SFHT of D. The the-
orem is a consequence of (10).

(12) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of D
and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D and
〈q4, f5, q5〉 is an SFHT of D and 〈q5, f6, q6〉 is an SFHT of D and 〈q6,
f7, q7〉 is an SFHT of D and 〈q7, f8, q8〉 is an SFHT of D and 〈q8, f9, p2〉
is an SFHT of D. Then 〈p1,PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9),
p2〉 is an SFHT of D. The theorem is a consequence of (11).

(13) Suppose 〈p1, f1, q1〉 is an SFHT of D and 〈q1, f2, q2〉 is an SFHT of
D and 〈q2, f3, q3〉 is an SFHT of D and 〈q3, f4, q4〉 is an SFHT of D
and 〈q4, f5, q5〉 is an SFHT of D and 〈q5, f6, q6〉 is an SFHT of D and
〈q6, f7, q7〉 is an SFHT of D and 〈q7, f8, q8〉 is an SFHT of D and 〈q8,
f9, q9〉 is an SFHT of D and 〈q9, f10, p2〉 is an SFHT of D. Then 〈p1,
PP-composition(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10), p2〉 is an SFHT of D.
The theorem is a consequence of (12).

Let us consider D and fD. Assume 0 < len fD. The functor PP-composition-
Seq(fD) yielding a finite sequence of elements of D→̇D is defined by

(Def. 5) len it = len fD and it(1) = fD(1) and for every natural number n such
that 1 ¬ n < len fD holds it(n+ 1) = it(n) • fD(n+ 1).
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The functor PP-composition(fD) yielding a binominative function of D is
defined by the term

(Def. 6) (PP-compositionSeq(fD))(len PP-compositionSeq(fD)).

Let us consider fB. We say that fD and fB are composable if and only if

(Def. 7) 1 ¬ len fD and len fB = len fD + 1 and for every n such that 1 ¬ n ¬
len fD holds 〈fB(n), fD(n), fB(n + 1)〉 is an SFHT of D and for every n
such that 2 ¬ n ¬ len fD holds 〈∼ fB(n), fD(n), fB(n+ 1)〉 is an SFHT of
D.

Now we state the proposition:

(14) Composition rule for sequences of programs:
Suppose fD and fB are composable. Then 〈fB(1),PP-composition(fD),
fB(len fB)〉 is an SFHT of D.
Proof: Set G = PP-compositionSeq(fD). Define P[natural number] ≡ if
1 ¬ $1 ¬ len fD, then 〈fB(1), G($1), fB($1 + 1)〉 is an SFHT of D. For
every natural number k such that P[k] holds P[k + 1]. For every natural
number k, P[k]. �

2. Values and Locations Validation

Let us consider V and A. Let val be a finite sequence. The functor ⇒
(V,A, val) yielding a finite sequence of elements of NDSC(V,A)→̇NDSC(V,A) is
defined by

(Def. 8) len it = len val and for every natural number n such that 1 ¬ n ¬ len it
holds it(n) = val(n)⇒a.

Let us consider loc. Assume len val > 0. Let p be a partial predicate over
simple-named complex-valued nominative data of V andA. The functor ScPsuper-
posSeq(loc, val, p) yielding a finite sequence of elements of NDSC(V,A)→̇Boolean
is defined by

(Def. 9) len it = len val and it(1) = SP(p, val(len val) ⇒a, loc/ len val) and for
every natural number n such that 1 ¬ n < len it holds it(n + 1) =
SP(it(n), val(len val − n)⇒a, loc/ len val−n).

Now we state the proposition:

(15) Let us consider a non zero natural number z2, and a z2-element finite
sequence val. Suppose loc, val and z2 are correct w.r.t. d1 and 1 ¬ n ¬
len LocalOverlapSeq(A, loc, val, d1, z2) and 1 ¬ m ¬ len LocalOverlapSeq
(A, loc, val, d1, z2). Then (LocalOverlapSeq(A, loc, val, d1, z2))(n) ∈ dom
(val(m)⇒a).
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Let us consider V , A, inp, and d. Let val be a finite sequence. We say that
inp is a valid input of V , A, val and d if and only if

(Def. 10) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and val is valid w.r.t. d1 and for every natural number n such that
1 ¬ n ¬ len inp holds d1(val(n)) = inp(n).

The functor ValInp(V,A, val, inp) yielding a partial predicate over simple-
named complex-valued nominative data of V and A is defined by

(Def. 11) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if inp is a valid input of V , A, val and d, then it(d) = true and if inp is
not a valid input of V , A, val and d, then it(d) = false.

Observe that ValInp(V,A, val, inp) is total.
Let us consider d. Let Z, res be finite sequences. We say that res is a valid

output of V , A, Z and d if and only if

(Def. 12) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and Z is valid w.r.t. d1 and for every natural number n such that
1 ¬ n ¬ lenZ holds d1(Z(n)) = res(n).

Let Z, res be objects. The functor ValOut(V,A,Z, res) yielding a partial
predicate over simple-named complex-valued nominative data of V and A is
defined by

(Def. 13) dom it = {d, where d is a nominative data with simple names from V
and complex values from A : d ∈ dom(Z ⇒a)} and for every object d such
that d ∈ dom it holds if 〈res〉 is a valid output of V , A, 〈Z〉 and d, then
it(d) = true and if 〈res〉 is not a valid output of V , A, 〈Z〉 and d, then
it(d) = false.

Now we state the propositions:

(16) Let us consider a z2-element finite sequence val. Suppose loc, val and z2
are correct w.r.t. d1 and d = (LocalOverlapSeq(A, loc, val, d1, z2))(z2 − 1)

and 2 ¬ n + 1 < z2 and d∇(loc/ len val)a (val(len val) ⇒a)(d) ∈ dom p. Then

(LocalOverlapSeq(A, loc, val, d1, z2))(z2−n−1)∇(loc/ len val−n)a (val(len val−
n)⇒a)((LocalOverlapSeq(A, loc, val, d1, z2))(z2−n−1)) ∈ dom((ScPsuper
posSeq(loc, val, p))(n)).
Proof: Set S = ScPsuperposSeq(loc, val, p). Set L = LocalOverlapSeq(A,

loc, val, d1, z2). Define F(natural number) = L(z2 − $1 − 1)∇(loc/ len val−$1 )a

(val(len val − $1) ⇒a)(L(z2 − $1 − 1)). Define P[natural number] ≡ if
2 ¬ $1 + 1 < z2, then F($1) ∈ dom(S($1)). For every natural number k
such that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(17) Let us consider a z2-element finite sequence val. Suppose loc, val and z2
are correct w.r.t. d1 and d = (LocalOverlapSeq(A, loc, val, d1, z2))(z2 −
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1) and d∇(loc/ len val)a (val(len val) ⇒a)(d) ∈ dom p. Let us consider na-
tural numbers m, n. Suppose 1 ¬ m < z2 and 1 ¬ n < z2. Then
((ScPsuperposSeq(loc, val, p))(m))((LocalOverlapSeq(A, loc, val, d1, z2))
(z2 −m)) = (ScPsuperposSeq(loc, val, p))(n)((LocalOverlapSeq(A, loc,
val, d1, z2))(z2 − n)).
Proof: Set S = ScPsuperposSeq(loc, val, p). Set L = LocalOverlapSeq(A,
loc, val, d1, z2). Define P[natural number] ≡ if 1 ¬ $1 < z2, then (S(m))(L
(z2−m)) = S($1)(L(z2− $1)). For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(18) Let us consider a z2-element finite sequence val, objects d4, d5, and
a natural number N1. Suppose N1 = z2 − 2. Suppose loc, val and z2 are
correct w.r.t. d1 and d4 = (LocalOverlapSeq(A, loc, val, d1, z2))(z2−1) and

d4∇
(loc/ len val)
a (val(len val)⇒a)(d4) ∈ dom p and d5 = (LocalOverlapSeq(A,

loc, val, d1, z2))(N1)∇
(loc/N1+1)
a (val(N1 + 1)⇒a)((LocalOverlapSeq(A, loc,

val, d1, z2))(N1)) and d5∇
(loc/ len val)
a (val(len val) ⇒a)(d5) ∈ dom p. Then

((ScPsuperposSeq(loc, val, p))(1))((LocalOverlapSeq(A, loc, val, d1, z2))(z2−
1)) = p((LocalOverlapSeq(A, loc, val, d1, z2))(z2)). The theorem is a con-
sequence of (15).

(19) Let us consider a z2-element finite sequence val, and a partial predicate
over simple-named complex-valued nominative data p of V and A. Suppose
3 ¬ z2 and loc, val and z2 are correct w.r.t. d1 and (LocalOverlapSeq(A, loc,

val, d1, z2))(z2 − 1)∇(loc/ len val)a (val(len val)⇒a)((LocalOverlapSeq(A, loc,

val, d1, z2))(z2−1)) ∈ dom p and d1∇
(loc/1)
a (val(1)⇒a)(d1) ∈ dom((ScPsu-

perposSeq(loc, val, p))(z2−1)). Then ((ScPsuperposSeq(loc, val, p))(len Sc-
PsuperposSeq(loc, val, p)))(d1) = (SP((ScPsuperposSeq(loc, val, p))(z2 −
2), val(2) ⇒a, loc/2))((LocalOverlapSeq(A, loc, val, d1, z2))(1)). The the-
orem is a consequence of (16) and (17).

3. Sequences of Local Overlappings

Let us consider V , A, loc, d1, and pos. Let prg be a (FPrg(NDSC(V,A)))-
valued finite sequence. Assume len prg > 0. The functor PrgLocOverlapSeq(A,
loc, d1, prg, pos) yielding a finite sequence of elements of NDSC(V,A) is defined
by

(Def. 14) len it = len prg and it(1) = d1∇
(loc/pos(1))
a prg(1)(d1) and for every natural

number n such that:
1 ¬ n < len it holds it(n+ 1) = it(n)∇(loc/pos(n+1))a prg(n+ 1)(it(n)).

Let us consider prg. Note that PrgLocOverlapSeq(A, loc, d1, prg, pos) is (V,A)-
nonatomicND yielding.
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Let us consider n. One can verify that (PrgLocOverlapSeq(A, loc, d1, prg, pos))
(n) is function-like and relation-like.
We say that prg is domain closed w.r.t. loc, d1 and pos if and only if

(Def. 15) for every natural number n such that 1 ¬ n < len prg holds
(PrgLocOverlapSeq(A, loc, d1, prg, pos))(n) ∈ dom(prg(n+ 1)).

Now we state the proposition:

(20) Suppose 1 ¬ n ¬ len prg and (PrgLocOverlapSeq(A, loc, d1, prg, pos))(m)
∈ dom(prg(n)). Then prg(n)((PrgLocOverlapSeq(A, loc, d1, prg, pos))(m))
is a nominative data with simple names from V and complex values from
A.

Let us consider a natural number n. Now we state the propositions:

(21) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A. Then suppose 1 ¬ n < len prg and (PrgLocOverlapSeq(A, loc, d1,
prg, pos))(n) ∈ dom(prg(n+1)). Then dom((PrgLocOverlapSeq(A, loc, d1,
prg, pos))(n+1)) = {loc/pos(n+1)}∪dom((PrgLocOverlapSeq(A, loc, d1, prg,
pos))(n)). The theorem is a consequence of (20).

(22) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A. Then suppose 1 ¬ n < len prg and (PrgLocOverlapSeq(A, loc, d1,
prg, pos))(n) ∈ dom(prg(n+1)). Then dom((PrgLocOverlapSeq(A, loc, d1,
prg, pos))(n)) ⊆ dom((PrgLocOverlapSeq(A, loc, d1, prg, pos))(n+1)). The
theorem is a consequence of (21).

(23) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and dom(PrgLocOverlapSeq(A, loc, d1, prg, pos)) ⊆ dom prg and
d1 ∈ dom(prg(1)) and prg is domain closed w.r.t. loc, d1 and pos. Then if
1 ¬ n ¬ len prg, then dom d1 ⊆ dom((PrgLocOverlapSeq(A, loc, d1, prg,
pos))(n)).
Proof: Set F = PrgLocOverlapSeq(A, loc, d1, prg, pos). Define P[natural
number] ≡ if 1 ¬ $1 ¬ len prg, then dom d1 ⊆ dom(F ($1)). For every
natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �

Let us consider natural numbers m, n. Now we state the propositions:

(24) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and prg is domain closed w.r.t. loc, d1 and pos. Then suppose 1 ¬
n ¬ m ¬ len prg. Then dom((PrgLocOverlapSeq(A, loc, d1, prg, pos))(n)) ⊆
dom((PrgLocOverlapSeq(A, loc, d1, prg, pos))(m)). The theorem is a con-
sequence of (22).

(25) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and dom(PrgLocOverlapSeq(A, loc, d1, prg, pos)) ⊆ dom prg and
d1 ∈ dom(prg(1)) and prg is domain closed w.r.t. loc, d1 and pos. Then if
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1 ¬ n ¬ m ¬ len prg, then loc/pos(n) ∈ dom((PrgLocOverlapSeq(A, loc, d1,
prg, pos))(m)). The theorem is a consequence of (24).
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Summary. In this paper we define some properties about finite sequences
and verify the partial correctness of an algorithm computing n-th element of
Lucas sequence [23], [20] with given P and Q coefficients as well as two first
elements (x and y). The algorithm is encoded in nominative data language [22]
in the Mizar system [3], [1].

i := 0
s := x
b := y
c := x
while (i <> n)
c := s
s := b
ps := p*s
qc := q*c
b := ps - qc
i := i + j

return s

This paper continues verification of algorithms [10], [14], [12], [15], [13] writ-
ten in terms of simple-named complex-valued nominative data [6], [8], [19], [11],
[16], [17]. The validity of the algorithm is presented in terms of semantic Floyd-
Hoare triples over such data [9]. Proofs of the correctness are based on an in-
ference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and
post-conditions [18], [21], [7], [5].
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1. Introduction about Finite Sequences

Let n be a natural number and f be an n-element finite sequence. One can
verify that f� Seg n reduces to f .

Let A, B be sets and f1, f2, f3, f4, f5, f6 be partial functions from A to B.
One can check that 〈〈f1, f2, f3, f4, f5, f6〉〉 is (A→̇B)-valued.

Let V , A be sets and f1, f2, f3, f4, f5, f6 be binominative functions over
simple-named complex-valued nominative date of V and A.

Observe that 〈〈f1, f2, f3, f4, f5, f6〉〉 is (FPrg(NDSC(V,A)))-valued.
Let a1, a2, a3, a4, a5, a6 be objects. One can verify that 〈〈a1, a2, a3, a4, a5, a6〉〉(1)

reduces to a1 and 〈〈a1, a2, a3, a4, a5, a6〉〉(2) reduces to a2.
And 〈〈a1, a2, a3, a4, a5, a6〉〉(3) reduces to a3 and 〈〈a1, a2, a3, a4, a5, a6〉〉(4) redu-

ces to a4 and 〈〈a1, a2, a3, a4, a5, a6〉〉(5) reduces to a5 and 〈〈a1, a2, a3, a4, a5, a6〉〉(6)
reduces to a6.

Let a1, a2, a3, a4, a5, a6, a7, a8, a9 be objects. The functor 〈〈a1, a2, a3, a4, a5, a6,
a7, a8, a9〉〉 yielding a finite sequence is defined by the term

(Def. 1) 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 a 〈a9〉.
Now we state the proposition:

(1) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9, and a finite
sequence f . Then f = 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉 if and only if len f =
9 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and f(5) = a5
and f(6) = a6 and f(7) = a7 and f(8) = a8 and f(9) = a9.

Let a1, a2, a3, a4, a5, a6, a7, a8, a9 be objects. Let us observe that 〈〈a1, a2, a3, a4,
a5, a6, a7, a8, a9〉〉 is 9-element.

Let us observe that 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(1) reduces to a1 and 〈〈a1, a2,
a3, a4, a5, a6, a7, a8, a9〉〉(2) reduces to a2 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(3)
reduces to a3 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(4) reduces to a4.

And 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(5) reduces to a5 and 〈〈a1, a2, a3, a4, a5, a6,
a7, a8, a9〉〉(6) reduces to a6 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(7) reduces to a7
and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(8) reduces to a8 and 〈〈a1, a2, a3, a4, a5, a6, a7,
a8, a9〉〉(9) reduces to a9.

Now we state the proposition:

(2) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9. Then rng 〈〈a1, a2, a3,
a4, a5, a6, a7, a8, a9〉〉 = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

Let X be a non empty set and a1, a2, a3, a4, a5, a6, a7, a8, a9 be elements of
X. Note that the functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉 yields a finite sequence
of elements of X. Let a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be objects. The
functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 yielding a finite sequence is defined
by the term
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(Def. 2) 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉 a 〈a10〉.
Now we state the proposition:

(3) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, and a finite
sequence f . Then f = 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 if and only if
len f = 10 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and
f(5) = a5 and f(6) = a6 and f(7) = a7 and f(8) = a8 and f(9) = a9 and
f(10) = a10. The theorem is a consequence of (1).

Let a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be objects. One can check that
〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 is 10-element.

Let us observe that 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(1) reduces to a1 and
〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(2) reduces to a2 and 〈〈a1, a2, a3, a4, a5, a6, a7,
a8, a9, a10〉〉(3) reduces to a3 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(4) reduces
to a4 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(5) reduces to a5.

And 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(6) reduces to a6 and 〈〈a1, a2, a3, a4, a5,
a6, a7, a8, a9, a10〉〉(7) reduces to a7 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(8) re-
duces to a8 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(9) reduces to a9 and 〈〈a1, a2, a3,
a4, a5, a6, a7, a8, a9, a10〉〉(10) reduces to a10.

Now we state the proposition:

(4) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9, a10. Then
rng 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}.
The theorem is a consequence of (2).

LetX be a non empty set and a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be elements
of X. One can verify that the functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 yields
a finite sequence of elements of X.

2. Lucas Sequences

Let i, j be integers. Let us observe that the functor 〈〈i, j〉〉 yields an element of
Z×Z. From now on x, y, P ,Q denote integers, a, b, n denote natural numbers, V ,
A denote sets, val denotes a function, loc denotes a V-valued function, d1 denotes
a non-atomic nominative data of V and A, p denotes a partial predicate over
simple-named complex-valued nominative data of V and A, d denotes an object,
z denotes an element of V .
T denotes a nominative data with simple names from V and complex values

from A, s0 denotes a non zero natural number, x0, y0, p0, q0 denote integers,
and n0 denotes a natural number.

Let us consider x, y, P , and Q. The functor LucasSeq(x, y, P,Q) yielding
a sequence of Z× Z is defined by



282 adrian jaszczak

(Def. 3) it(0) = 〈〈x, y〉〉 and for every natural number n, it(n + 1) = 〈〈(it(n))2,
P · ((it(n))2)−Q · ((it(n))1)〉〉.

Let us consider n. The functor Lucas(x, y, P,Q, n) yielding an element of Z
is defined by the term

(Def. 4) ((LucasSeq(x, y, P,Q))(n))1.

Now we state the propositions:

(5) (i) Lucas(x, y, P,Q, 0) = x, and

(ii) Lucas(x, y, P,Q, 1) = y, and

(iii) for every n, Lucas(x, y, P,Q, n+ 2) = P · (Lucas(x, y, P,Q, n+ 1))−
Q · (Lucas(x, y, P,Q, n)).

(6) LucasSeq(0, 1, 1,−1) = Fib.
Proof: Set L = LucasSeq(0, 1, 1,−1). Set F = Fib. Define P[natural
number] ≡ L($1) = F ($1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(7) Lucas(0, 1, 1,−1, n) = Fib(n).

(8) LucasSeq(a, b, 1,−1) = GenFib(a, b).
Proof: Set L = LucasSeq(a, b, 1,−1). Set F = GenFib(a, b). Define
P[natural number] ≡ L($1) = F ($1). For every natural number k such
that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(9) Lucas(a, b, 1,−1, n) = GFib(a, b, n).

(10) LucasSeq(2, 1, 1,−1) = Lucas.
Proof: Set L = LucasSeq(2, 1, 1,−1). Set F = Lucas. Define P[natural
number] ≡ L($1) = F ($1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(11) Lucas(2, 1, 1,−1, n) = Luc(n).

3. Main Algorithm

Now we state the proposition:

(12) Suppose Seg 10 ⊆ dom loc and loc is valid w.r.t. d1. Then {loc/1, loc/2,
loc/3, loc/4, loc/5, loc/6, loc/7, loc/8, loc/9, loc/10} ⊆ dom d1.

Let us consider V , A, and loc. The functor LucasLoopBody(A, loc) yielding
a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 5) PP-composition(Asg(loc/6)((loc/4)⇒a),Asg(loc/4)((loc/5)⇒a),Asg(loc/9)

(multiplication(A, loc/7, loc/4)),Asg(loc/10)(multiplication(A, loc/8, loc/6)),
Asg(loc/5)(subtraction(A, (loc/9), (loc/10))),Asg(loc/1)(addition(A, loc/1,
loc/2))).
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The functor LucasMainLoop(A, loc) yielding a binominative function over
simple-named complex-valued nominative data of V and A is defined by the
term

(Def. 6) WH(¬Equality(A, loc/1, loc/3),LucasLoopBody(A, loc)).

Let us consider val. The functor LucasMainPart(A, loc, val) yielding a bino-
minative function over simple-named complex-valued nominative data of V and
A is defined by the term

(Def. 7) initial-assignments(A, loc, val, 10) • (LucasMainLoop(A, loc)).

Let us consider z. The functor LucasProg(A, loc, val, z) yielding a binomi-
native function over simple-named complex-valued nominative data of V and A
is defined by the term

(Def. 8) LucasMainPart(A, loc, val) • (Asgz((loc/4)⇒a)).
Let us consider x0, y0, p0, q0, and n0. The functor LucasInp(x0, y0, p0, q0, n0)

yielding a finite sequence is defined by the term

(Def. 9) 〈〈0, 1, n0, x0, y0, x0, p0, q0, 0, 0〉〉.
Observe that LucasInp(x0, y0, p0, q0, n0) is 10-element.
Let us consider V , A, and d. Let val be a finite sequence. We say that x0,

y0, p0, q0, n0 and d constitute a valid Lucas input w.r.t. V , A and val if and
only if

(Def. 10) LucasInp(x0, y0, p0, q0, n0) is a valid input of V , A, val and d.

The functor validLucasInp(V,A, val, x0, y0, p0, q0, n0) yielding a partial pre-
dicate over simple-named complex-valued nominative data of V and A is defined
by the term

(Def. 11) ValInp(V,A, val,LucasInp(x0, y0, p0, q0, n0)).

One can check that validLucasInp(V,A, val, x0, y0, p0, q0, n0) is total.
Let us consider z and d. We say that x0, y0, p0, q0, n0 and d constitute a

valid Lucas output w.r.t. A and z if and only if

(Def. 12) 〈Lucas(x0, y0, p0, q0, n0)〉 is a valid output of V , A, 〈z〉 and d.

The functor validLucasOut(A, z, x0, y0, p0, q0, n0) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by
the term

(Def. 13) ValOut(V,A, z,Lucas(x0, y0, p0, q0, n0)).

Let us consider loc and d. We say that x0, y0, p0, q0, n0 and d constitute a
Lucas inverse w.r.t. A and loc if and only if

(Def. 14) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and {loc/1, loc/2, loc/3, loc/4, loc/5, loc/6, loc/7, loc/8, loc/9, loc/10} ⊆
dom d1 and d1(loc/2) = 1 and d1(loc/3) = n0 and d1(loc/7) = p0 and
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d1(loc/8) = q0 and there exists a natural number I such that I = d1(loc/1)
and d1(loc/4) = Lucas(x0, y0, p0, q0, I) and d1(loc/5) =
Lucas(x0, y0, p0, q0, I + 1).

The functor LucasInv(A, loc, x0, y0, p0, q0, n0) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by

(Def. 15) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if x0, y0, p0, q0, n0 and d constitute a Lucas inverse w.r.t. A and loc, then
it(d) = true and if x0, y0, p0, q0, n0 and d do not constitute a Lucas
inverse w.r.t. A and loc, then it(d) = false.

Let us observe that LucasInv(A, loc, x0, y0, p0, q0, n0) is total. Let us consider
a 10-element finite sequence val. Now we state the propositions:

(13) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and Seg 10 ⊆ dom loc and loc� Seg 10 is one-to-one and loc and
val are different w.r.t. 10.

Then validLucasInp(V,A, val, x0, y0, p0, q0, n0) |= (ScPsuperposSeq(loc,
val,LucasInv(A, loc, x0, y0, p0, q0, n0)))(len ScPsuperposSeq(loc, val,Lucas-
Inv(A, loc, x0, y0, p0, q0, n0))).
Proof: Set s0 = 10. Set n = loc/3. Set i0 = LucasInp(x0, y0, p0, q0, n0).
Consider d1 being a non-atomic nominative data of V and A such that
d = d1 and val is valid w.r.t. d1 and for every natural number n such that
1 ¬ n ¬ len i0 holds d1(val(n)) = i0(n).

Set F = LocalOverlapSeq(A, loc, val, d1, s0). Reconsider L6 = F (10)
as a non-atomic nominative data of V and A. x0, y0, p0, q0, n0 and L6
constitute a Lucas inverse w.r.t. A and loc. �

(14) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and Seg 10 ⊆ dom loc and loc� Seg 10 is one-to-one and loc and
val are different w.r.t. 10. Then 〈validLucasInp(V,A, val, x0, y0, p0, q0, n0),
initial-assignments(A, loc, val, 10),LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an
SFHT of NDSC(V,A). The theorem is a consequence of (13).

(15) Suppose V is not empty and A is complex containing and V is without
nonatomic nominative data w.r.t.A and d1 ∈ dom(LucasLoopBody(A, loc))
and loc is valid w.r.t. d1 and Seg 10 ⊆ dom loc and for every T , T is a value
on loc/1 and T is a value on loc/2 and T is a value on loc/4 and T is a value
on loc/6 and T is a value on loc/7 and T is a value on loc/8 and T is a value
on loc/9 and T is a value on loc/10.

Then 〈〈(loc/4)⇒a, (loc/5)⇒a,multiplication(A, loc/7, loc/4),multiplica-
tion(A, loc/8, loc/6), subtraction(A, (loc/9), (loc/10)), addition(A, loc/1,
loc/2)〉〉 is domain closed w.r.t. loc, d1 and 〈〈6, 4, 9, 10, 5, 1〉〉. The theorem is
a consequence of (12).
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Let us consider a non empty set V and a V-valued, 10-element finite sequence
loc. Now we state the propositions:

(16) Suppose A is complex containing and V is without nonatomic nominative
data w.r.t. A and for every nominative data T with simple names from V
and complex values from A, T is a value on loc/1 and T is a value on loc/2
and T is a value on loc/4 and T is a value on loc/6 and T is a value on
loc/7 and T is a value on loc/8 and T is a value on loc/9 and T is a value
on loc/10 and loc is one-to-one. Then 〈LucasInv(A, loc, x0, y0, p0, q0, n0),
LucasLoopBody(A, loc),LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an SFHT of
NDSC(V,A). The theorem is a consequence of (15) and (5).

(17) Suppose A is complex containing and V is without nonatomic nominative
data w.r.t. A and for every nominative data T with simple names from V
and complex values from A, T is a value on loc/1 and T is a value on loc/2
and T is a value on loc/4 and T is a value on loc/6 and T is a value on
loc/7 and T is a value on loc/8 and T is a value on loc/9 and T is a value
on loc/10 and loc is one-to-one.

Then 〈LucasInv(A, loc, x0, y0, p0, q0, n0),LucasMainLoop(A, loc),Equa-
lity(A, loc/1, loc/3)∧LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an SFHT of NDSC
(V,A). The theorem is a consequence of (16).

(18) Let us consider a non empty set V , a V-valued, 10-element finite se-
quence loc, and a 10-element finite sequence val. Suppose A is complex
containing and V is without nonatomic nominative data w.r.t. A and for
every nominative data T with simple names from V and complex values
from A, T is a value on loc/1 and T is a value on loc/2 and T is a value on
loc/4 and T is a value on loc/6 and T is a value on loc/7 and T is a value
on loc/8 and T is a value on loc/9 and T is a value on loc/10 and loc is
one-to-one and loc and val are different w.r.t. 10.

Then 〈validLucasInp(V,A, val, x0, y0, p0, q0, n0),LucasMainPart(A, loc,
val),Equality(A, loc/1, loc/3)∧LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an SFHT
of NDSC(V,A). The theorem is a consequence of (14) and (17).

(19) Suppose V is not empty and V is without nonatomic nominative da-
ta w.r.t. A and for every T , T is a value on loc/1 and T is a value on
loc/3. Then Equality(A, loc/1, loc/3) ∧ LucasInv(A, loc, x0, y0, p0, q0, n0) |=
SP(validLucasOut(A, z, x0, y0, p0, q0, n0), (loc/4)⇒a, z).
Proof: Set i = loc/1. Set j = loc/2. Set n = loc/3. Set s = loc/4. Set
b = loc/5. Set c = loc/6. Set p = loc/7. Set q = loc/8. Set p1 = loc/9. Set
q1 = loc/10. Set D12 = s⇒a. Set E1 = {i, j, n, s, b, c, p, q, p1, q1}.

Consider d1 being a non-atomic nominative data of V and A such that
d = d1 and E1 ⊆ dom d1 and d1(j) = 1 and d1(n) = n0 and d1(p) = p0
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and d1(q) = q0 and there exists a natural number I such that I = d1(i)
and d1(s) = Lucas(x0, y0, p0, q0, I) and d1(b) = Lucas(x0, y0, p0, q0, I + 1).

Reconsider d2 = d as a nominative data with simple names from V
and complex values from A. Set L = d2∇zaD12(d2). x0, y0, p0, q0, n0 and
L constitute a valid Lucas output w.r.t. A and z. �

(20) Suppose V is not empty and V is without nonatomic nominative da-
ta w.r.t. A and for every T , T is a value on loc/1 and T is a value on
loc/3. Then 〈Equality(A, loc/1, loc/3) ∧ LucasInv(A, loc, x0, y0, p0, q0, n0),
Asgz((loc/4)⇒a), validLucasOut(A, z, x0, y0, p0, q0, n0)〉 is an SFHT of N-
DSC(V,A). The theorem is a consequence of (19).

(21) Suppose for every T , T is a value on loc/1 and T is a value on loc/3.
Then 〈∼ (Equality(A, loc/1, loc/3) ∧ LucasInv(A, loc, x0, y0, p0, q0, n0)),
Asgz((loc/4)⇒a), validLucasOut(A, z, x0, y0, p0, q0, n0)〉 is an SFHT of N-
DSC(V,A).

(22) Partial correctness of a Lucas algorithm:
Let us consider a non empty set V , a V-valued, 10-element finite sequence
loc, a 10-element finite sequence val, and an element z of V . Suppose A is
complex containing and V is without nonatomic nominative data w.r.t. A
and for every nominative data T with simple names from V and complex
values from A, T is a value on loc/1 and T is a value on loc/2 and T is
a value on loc/3 and T is a value on loc/4 and T is a value on loc/6 and T
is a value on loc/7 and T is a value on loc/8 and T is a value on loc/9 and
T is a value on loc/10 and loc is one-to-one and loc and val are different
w.r.t. 10.

Then 〈validLucasInp(V,A, val, x0, y0, p0, q0, n0),LucasProg(A, loc, val,
z), validLucasOut(A, z, x0, y0, p0, q0, n0)〉 is an SFHT of NDSC(V,A). The
theorem is a consequence of (18), (20), and (21).
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