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Derivation of Commutative Rings and
the Leibniz Formula for Power of Derivation
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Summary. In this article we formalize in Mizar [1], [2] a derivation of
commutative rings, its definition and some properties. The details are to be
referred to [5], [7]. A derivation of a ring, say D, is defined generally as a map
from a commutative ring A to A-ModuleM with specific conditions. However we
start with simpler case, namely domD = rngD. This allows to define a derivation
in other rings such as a polynomial ring.

A derivation is a map D : A −→ A satisfying the following conditions:

(i) D(x+ y) = Dx+Dy,

(ii) D(xy) = xDy + yDx, ∀x, y ∈ A.

Typical properties are formalized such as:

D(
n∑
i=1

xi) =
n∑
i=1

Dxi

and

D(
n∏
i=1

xi) =
n∑
i=1

x1x2 · · ·Dxi · · ·xn (∀xi ∈ A).

We also formalized the Leibniz Formula for power of derivation D :

Dn(xy) =
n∑
i=0

(
n

i

)
DixDn−iy.

Lastly applying the definition to the polynomial ring of A and a derivation of
polynomial ring was formalized. We mentioned a justification about compati-
bility of the derivation in this article to the same object that has treated as
differentiations of polynomial functions [3].
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1. Preliminaries

From now on L denotes an Abelian, left zeroed, add-associative, associative,
right zeroed, right complementable, distributive, non empty double loop struc-
ture, a, b, c denote elements of L, R denotes a non degenerated commutative
ring, and n, m, i, j, k denote natural numbers.

Now we state the propositions:

(1) n · a+ n · b = n · (a+ b).
Proof: Define P[natural number] ≡ $1 · a+ $1 · b = $1 · (a+ b). For every
natural number n such that P[n] holds P[n+1]. For every natural number
n, P[n]. �

(2) (n · a) · b = a · (n · b).
Proof: Define P[natural number] ≡ ($1·a)·b = a·($1·b). For every natural
number n such that P[n] holds P[n+1]. For every natural number n, P[n].
�

(3) n · (0L) = 0L.
Proof: Define P[natural number] ≡ $1 · (0L) = 0L. For every natural
number n such that P[n] holds P[n + 1]. For every natural number n,
P[n]. �

(4) 0L · n = 0L.
Proof: Define P[natural number] ≡ 0L · $1 = 0L. For every natural num-
ber n such that P[n] holds P[n + 1]. For every natural number n, P[n].
�

2. Definition of Derivation of Rings and its Properties

From now on D denotes a function from R into R and x, y, z denote elements
of R.

Definition of derivation of rings.
Let us consider R. Let ∆ be a function from R into R. We say that ∆ is

derivation if and only if

(Def. 1) for every elements x, y of R, ∆(x + y) = ∆(x) + ∆(y) and ∆(x · y) =
x ·∆(y) + y ·∆(x).

Observe that every function from R into R which is derivation is also additive
and there exists a function from R into R which is derivation.

A derivation of R is derivation function from R into R. The functor DerR
yielding a subset of (ΩR)ΩR is defined by the term

(Def. 2) {f , where f is a function from R into R : f is derivation}.
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Let us observe that DerR is non empty.
From now on D denotes a derivation of R.
Now we state the propositions:

(5) (i) D(1R) = 0R, and

(ii) D(0R) = 0R.

(6) D(n · x) = n ·D(x).
Proof: Define P[natural number] ≡D($1·x) = $1·D(x). For every natural
number n such that P[n] holds P[n+1]. For every natural number n, P[n].
�

(7) D(xm+1) = (m+ 1) · (xm ·D(x)).
Proof: Define P[natural number] ≡ D(x$1+1) = ($1 +1) ·(x$1 ·D(x)). For
every natural number n such that P[n] holds P[n+ 1]. For every natural
number n, P[n]. �

(8) (i) Dn+1 = D · (Dn), and

(ii) domD = the carrier of R, and

(iii) dom(Dn) = the carrier of R, and

(iv) Dn is a (the carrier of R)-valued function.

(9) (Dn+1)(x) = D((Dn)(x)). The theorem is a consequence of (8).

(10) If z · y = 1R, then y2 ·D(x · z) = y ·D(x)− x ·D(y).

In the sequel s denotes a finite sequence of elements of the carrier of R and
h denotes a function from R into R.

Let us consider R, s, and h. One can check that the functor h·s yields a finite
sequence of elements of the carrier of R. Now we state the proposition:

(11) If h is additive, then h(
∑
s) =

∑
(h · s).

Proof: Define P[natural number] ≡ for every h and s such that len s = $1

and h is additive holds h(
∑
s) =

∑
(h·s). P[0] by [4, (6)]. For every natural

number n such that P[n] holds P[n+1]. For every natural number n, P[n].
�

(12) Formula (f1 + f2 + · · ·+ fn)′ = f ′1 + f ′2 + · · ·+ f ′n:
D(
∑
s) =

∑
(D · s).

Let us consider R, D, and s. The functor DProd(D, s) yielding a finite
sequence of elements of the carrier of R is defined by

(Def. 3) len it = len s and for every i such that i ∈ dom it holds it(i) =∏
Replace(s, i,D(s/i)).

Now we state the propositions:

(13) If len s = 1, then
∑

DProd(D, s) = D(
∏
s).
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(14) Let us consider a finite sequence t of elements of the carrier of R. If
len t  1, then

∑
DProd(D, t) = D(

∏
t).

Proof: Define P[non zero natural number] ≡ for every s such that len s =
$1 holds

∑
DProd(D, s) = D(

∏
s). P[1]. For every non zero natural num-

ber k such that P[k] holds P[k + 1]. For every non zero natural number
k, P[k]. �

3. Proof of the Leibniz Formula for Power of Derivations

The Leibniz formula for power of a derivation of a commutative ring.
Let us consider R, D, and n. Let x, y be elements of R. The functor

LBZ(D,n, x, y) yielding a finite sequence of elements of the carrier of R is defined
by

(Def. 4) len it = n + 1 and for every i such that i ∈ dom it holds it(i) =
( n
i−′1

)
·

(Dn+1−′i)(x) · (Di−′1)(y).

Now we state the propositions:

(15) LBZ(D, 0, x, y) = 〈x · y〉.
(16) LBZ(D, 1, x, y) = 〈y ·D(x), x ·D(y)〉.

Let us consider R, D, and m. Let x, y be elements of R. The functor
LBZ0(D,m, x, y) yielding a finite sequence of elements of the carrier of R is
defined by

(Def. 5) len it = m and for every i such that i ∈ dom it holds it(i) = (
( m
i−′1

)
+(m

i

)
) · (Dm+1−′i)(x) · (Di)(y).

The functor LBZ1(D,m, x, y) yielding a finite sequence of elements of the car-
rier of R is defined by

(Def. 6) len it = m and for every i such that i ∈ dom it holds it(i) =
( m
i−′1

)
·

(Dm+1−′i)(x) · (Di)(y).

The functor LBZ2(D,m, x, y) yielding a finite sequence of elements of the car-
rier of R is defined by

(Def. 7) len it = m and for every i such that i ∈ dom it holds it(i) =
(m
i

)
·

(Dm+1−′i)(x) · (Di)(y).

Now we state the propositions:

(17) D(
∑

LBZ0(D,n, x, y)) =
∑
D · (LBZ0(D,n, x, y)).

(18) LBZ0(D,m, x, y) = LBZ1(D,m, x, y) + LBZ2(D,m, x, y).
Proof: Set p = LBZ1(D,m, x, y). Set q = LBZ2(D,m, x, y). Set r =
LBZ0(D,m, x, y). For every k such that 1 ¬ k ¬ len(p + q) holds (p +
q)(k) = r(k). �
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(19)
∑

LBZ0(D,n, x, y) =
∑

LBZ1(D,n, x, y)+
∑

LBZ2(D,n, x, y). The the-
orem is a consequence of (18).

(20) D·(LBZ0(D,n, x, y)) = (LBZ2(D,n+1, x, y))�n+1+(LBZ1(D,n+1, x, y))�1.
Proof: Set p = LBZ2(D,n+1, x, y). Set q = LBZ1(D,n+1, x, y). Set r =
LBZ0(D,n, x, y). Reconsider p1 = p�n+1 as a finite sequence of elements
of the carrier of R. Reconsider q1 = q�1 as a finite sequence of elements of
the carrier of R. For every i such that 1 ¬ i ¬ lenD · r holds (D · r)(i) =
(p1 + q1)(i). �

(21)
∑
D · (LBZ0(D,n, x, y)) = −(LBZ1(D,n+ 1, x, y))/1 +

∑
LBZ0(D,n+

1, x, y)− (LBZ2(D,n+ 1, x, y))/n+1. The theorem is a consequence of (20)
and (19).

(22) LBZ(D,n+1, x, y) = (〈(Dn+1)(x)·y〉aLBZ0(D,n, x, y))a〈x·(Dn+1)(y)〉.
Proof: Set p = LBZ(D,n + 1, x, y). Set q = LBZ0(D,n, x, y). Set r =
(〈(Dn+1)(x) · y〉a q)a 〈x · (Dn+1)(y)〉. For every k such that 1 ¬ k ¬ len p
holds p(k) = r(k). �

(23)
∑

((〈(Dn+1)(x) · y〉 a LBZ0(D,n, x, y)) a 〈x · (Dn+1)(y)〉) = (Dn+1)(x) ·
y +

∑
LBZ0(D,n, x, y) + x · (Dn+1)(y).

(24) D(
∑

LBZ(D,n+1, x, y)) =
∑

LBZ(D,n+2, x, y). The theorem is a con-
sequence of (9), (21), (11), (22), and (23).

(25) The Leibniz formula for power of derivation:
(Dn)(x · y) =

∑
LBZ(D,n, x, y). The theorem is a consequence of (16),

(9), (24), and (15).

4. Example of Derivation of Polynomial Ring over a Commutative
Ring

Let us consider R. Let f be a function from PolyRing(R) into PolyRing(R)
and p be an element of the carrier of PolyRing(R). Observe that the functor f(p)
yields an element of the carrier of PolyRing(R). Let R be a ring. The functor
Der1(R) yielding a function from PolyRing(R) into PolyRing(R) is defined by

(Def. 8) for every element f of the carrier of PolyRing(R) and for every natural
number i, it(f)(i) = (i+ 1) · f(i+ 1).

Let us consider R. One can verify that Der1(R) is additive.
In the sequel R denotes an integral domain and f , g denote elements of

the carrier of PolyRing(R).
Now we state the proposition:

(26) Let us consider an element f of the carrier of PolyRing(R), and a polyno-
mial f1 over R. Suppose f = f1 and f1 is constant. Then (Der1(R))(f) =
0.R.
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Proof: For every element i of N, (Der1(R))(f)(i) = (0.R)(i). �

In the sequel a denotes an element of R. Now we state the propositions:

(27) Let us consider a natural number i, and an element p of the carrier of
PolyRing(R). Then ((a�R) ∗ p)(i) = a · p(i).

(28) Let us consider elements f , g of the carrier of PolyRing(R), and an ele-
ment a ofR. Suppose f = a�R. Then (Der1(R))(f ·g) = (a�R)∗(Der1(R))(g).
Proof: For every natural number n, (Der1(R))(f · g)(n) = ((a�R) ∗
(Der1(R))(g))(n). �

Let us consider an element f of the carrier of PolyRing(R) and an element
a of R. Now we state the propositions:

(29) If f = anpoly(a, 0), then (Der1(R))(f) = 0.R.
Proof: For every element n of N, (Der1(R))(f)(n) = (0.R)(n). �

(30) If f = anpoly(a, 1), then (Der1(R))(f) = anpoly(a, 0).
Proof: For every element n of N, (Der1(R))(f)(n) = (anpoly(a, 0))(n).
�

(31) Let us consider polynomials p, q over R. Suppose p = anpoly(1R, 1). Let
us consider an element i of N. Then

(i) (p ∗ q)(i+ 1) = q(i), and

(ii) (p ∗ q)(0) = 0R.

Proof: For every element i of N, (p ∗ q)(i+ 1) = q(i). Consider F1 being
a finite sequence of elements of the carrier of R such that lenF1 = 0 + 1
and (p ∗ q)(0) =

∑
F1 and for every element k of N such that k ∈ domF1

holds F1(k) = p(k −′ 1) · q(0 + 1−′ k). �

(32) Let us consider elements f , g of the carrier of PolyRing(R). Suppose f =
anpoly(1R, 1). Then (Der1(R))(f ·g) = (Der1(R))(f) ·g+f · (Der1(R))(g).
Proof: Reconsider d1 = (Der1(R))(f), d2 = (Der1(R))(g) as a polyno-
mial over R. Reconsider f1 = f , g1 = g as a polynomial over R. For every
element i of N, (Der1(R))(f · g)(i) = (d1 ∗ g1 + f1 ∗ d2)(i). �

(33) Let us consider constant elements f , g of the carrier of PolyRing(R).
Then (Der1(R))(f · g) = (Der1(R))(f) · g+ f · (Der1(R))(g). The theorem
is a consequence of (29).

(34) Let us consider elements f , g of the carrier of PolyRing(R). Suppose f
is constant. Then (Der1(R))(f · g) = (Der1(R))(f) · g + f · (Der1(R))(g).
The theorem is a consequence of (29) and (28).

(35) Let us consider elements x, y of the carrier of PolyRing(R). Suppose x is
not constant. Then (Der1(R))(x · y) = (Der1(R))(x) · y+x · (Der1(R))(y).
Proof: Define P[natural number] ≡ for every elements f , g of the carrier
of PolyRing(R) for every elements f0, g0 of the carrier of PolyRing(R) such
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that f0 = f and g0 = g and deg f0 − 1 = $1 holds (Der1(R))(f0 · g0) =
(Der1(R))(f0) · g0 + f0 · (Der1(R))(g0). For every natural number k such
that for every natural number n such that n < k holds P[n] holds P[k] by
[8, (4)]. For every natural number n, P[n]. �

(36) (Der1(R))(f · g) = (Der1(R))(f) · g + f · (Der1(R))(g). The theorem is
a consequence of (35) and (34).

Let us consider R. Let us observe that Der1(R) is derivation.
Now we state the propositions:

(37) Let us consider an element x of PolyRing(R), and a polynomial f over
R. If x = f , then for every natural number n, xn = fn.
Proof: Define P[natural number] ≡ x$1 = f$1 . For every natural number
n such that P[n] holds P[n+ 1] by [6, (19)]. For every natural number n,
P[n]. �

(38) Let us consider an element x of PolyRing(R). Suppose x = anpoly(1R, 1).
Then there exists an element y of PolyRing(R) such that

(i) y = anpoly(1R, n), and

(ii) (Der1(R))(xn+1) = (n+ 1) · y.

The theorem is a consequence of (30), (37), and (7).

From now on p denotes a polynomial over RF.
Let us consider p. The functor p′ yielding a sequence of RF is defined by

(Def. 9) for every natural number n, it(n) = p(n+ 1) · (n+ 1).

Now we state the proposition:

(39) Let us consider an element p0 of PolyRing(RF), and a polynomial p over
RF. If p0 = p, then p′ = (Der1(RF))(p0).
Proof: For every n, (p′)(n) = (Der1(RF))(p0)(n). �
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Summary. In this article we formalize in Mizar [1], [2] the inverse function
theorem for the class of C1 functions between Banach spaces. In the first section,
we prove several theorems about open sets in real norm space, which are needed in
the proof of the inverse function theorem. In the next section, we define a function
to exchange the order of a product of two normed spaces, namely Exh(x, y) ∈
X × Y 7→ (y, x) ∈ Y × X, and formalized its bijective isometric property and
several differentiation properties. This map is necessary to change the order of
the arguments of a function when deriving the inverse function theorem from the
implicit function theorem proved in [6].

In the third section, using the implicit function theorem, we prove a theorem
that is a necessary component of the proof of the inverse function theorem. In
the last section, we finally formalized an inverse function theorem for class of
C1 functions between Banach spaces. We referred to [9], [10], and [3] in the
formalization.
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1. Preliminaries

From now on S, T , W , Y denote real normed spaces, f , f1, f2 denote partial
functions from S to T , Z denotes a subset of S, and i, n denote natural numbers.

Now we state the propositions:

1This study has been supported in part by JSPS KAKENHI Grant Numbers JP20K19863
and JP17K00182.

c© 2021 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)9

https://sciendo.com/journal/forma
https://orcid.org/0000-0003-1110-4342
http://zbmath.org/classification/?q=cc:26B10
http://zbmath.org/classification/?q=cc:47A05
http://zbmath.org/classification/?q=cc:47J07
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/ndiff10.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


10 kazuhisa nakasho and yuichi futa

(1) Let us consider real normed spaces X, Y, a partial function f from X

to Y, a subset A of X, and a subset B of Y. Suppose dom f = A and f is
continuous on A and A is open and B is open. Then f−1(B) is open.
Proof: For every point a of X such that a ∈ f−1(B) there exists a real
number s such that s > 0 and Ball(a, s) ⊆ f−1(B). �

(2) Let us consider real normed spaces X, Y, a point x of X, a point y of Y,
a point z of X × Y, and real numbers r1, r2. Suppose 0 < r1 and 0 < r2

and z = 〈〈x, y〉〉. Then there exists a real number s such that

(i) s = min(r1, r2), and

(ii) s > 0, and

(iii) Ball(z, s) ⊆ Ball(x, r1)× Ball(y, r2).

(3) Let us consider real normed spaces X, Y, and a subset V of X×Y. Then
V is open if and only if for every point x of X and for every point y of Y
such that 〈〈x, y〉〉 ∈ V there exist real numbers r1, r2 such that 0 < r1 and
0 < r2 and Ball(x, r1)× Ball(y, r2) ⊆ V .
Proof: For every point z of X × Y such that z ∈ V there exists a real
number s such that s > 0 and Ball(z, s) ⊆ V . �

(4) Let us consider real normed spaces X, Y, a subset V of X × Y, and
a subset D of X. Suppose D is open and V = D×(the carrier of Y ). Then
V is open.
Proof: For every point x of X and for every point y of Y such that 〈〈x,
y〉〉 ∈ V there exist real numbers r1, r2 such that 0 < r1 and 0 < r2 and
Ball(x, r1)× Ball(y, r2) ⊆ V . �

(5) Let us consider real normed spaces X, Y, a subset V of X × Y, and
a subset D of Y. Suppose D is open and V = (the carrier of X)×D. Then
V is open.
Proof: For every point x of X and for every point y of Y such that 〈〈x,
y〉〉 ∈ V there exist real numbers r1, r2 such that 0 < r1 and 0 < r2 and
Ball(x, r1)× Ball(y, r2) ⊆ V . �

2. A Map Reversing the Order of Product of Two Norm Spaces

Now we state the proposition:

(6) Let us consider real numbers x, y, and elements u, v of R2. Suppose
u = 〈x, y〉 and v = 〈y, x〉. Then |u| = |v|.

Let X, Y be real normed spaces. The functor Exch(X,Y ) yielding a linear
operator from X × Y into Y ×X is defined by
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(Def. 1) it is one-to-one, onto, and isometric and for every point x of X and for
every point y of Y, it(x, y) = 〈〈y, x〉〉.

Now we state the propositions:

(7) Let us consider real normed spaces X, Y, a subset Z of X × Y, and
objects x, y. Then 〈〈x, y〉〉 ∈ Z if and only if 〈〈y, x〉〉 ∈ (Exch(Y,X))−1(Z).

(8) Let us consider real normed spaces X, Y, a non empty set Z, a partial
function f from X × Y to Z, and a function I from Y × X into X × Y.
Suppose for every point y of Y for every point x of X, I(y, x) = 〈〈x, y〉〉.
Then

(i) dom(f · I) = I−1(dom f), and

(ii) for every point x of X and for every point y of Y, f ·I(y, x) = f(x, y).

Proof: For every object w, w ∈ dom(f · I) iff w ∈ I−1(dom f). �

(9) Let us consider real normed spaces X, Y, Z, a partial function f from Y

to Z, a linear operator I from X into Y, and a subset V of Y. Suppose f is
differentiable on V and I is one-to-one, onto, and isometric. Let us consider
a point y of Y. Suppose y ∈ V . Then (f ′�V )(y) = (f ·I ′�I−1(V ))/(I−1)(y) ·(I−1).
Proof: Consider J being a linear operator from Y into X such that
J = I−1 and J is one-to-one, onto, and isometric. Set g = f · I. Set U =
I−1(V ). For every point y of Y such that y ∈ dom(f ′�V ) holds (f ′�V )(y) =
(g′�U )/J(y) · (I−1) by [4, (31)]. �

(10) Let us consider real normed spaces X, Y, Z, a subset V of Y, a partial
function g from Y to Z, and a linear operator I from X into Y. Suppose
I is one-to-one, onto, and isometric and g is differentiable on V . Then g′�V
is continuous on V if and only if g · I ′�I−1(V ) is continuous on I−1(V ).
Proof: Consider J being a linear operator from Y into X such that
J = I−1 and J is one-to-one, onto, and isometric. Set f = g · I. Set
U = I−1(V ). Set F = f ′�U . Set G = g′�V . If G is continuous on V , then F

is continuous on U . If F is continuous on U , then G is continuous on V .
�

(11) Let us consider real normed spaces X, Y, Z, a partial function f from
X × Y to Z, a subset U of X × Y, and a function I from Y ×X into X ×
Y. Suppose for every point y of Y for every point x of X, I(y, x) = 〈〈x, y〉〉.
Let us consider a point a of X, a point b of Y, a point u of X × Y, and
a point v of Y ×X. Suppose u ∈ U and u = 〈〈a, b〉〉 and v = 〈〈b, a〉〉. Then

(i) f · (reproj1(u)) = f · I · (reproj2(v)), and

(ii) f · (reproj2(u)) = f · I · (reproj1(v)).

Proof: For every object x, x ∈ dom(f · (reproj1(u))) iff x ∈ dom(f · I ·
(reproj2(v))). For every object y, y ∈ dom(f · (reproj2(u))) iff y ∈ dom(f ·
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I · (reproj1(v))). For every object x such that x ∈ dom(f · (reproj1(u)))
holds (f · (reproj1(u)))(x) = (f · I · (reproj2(v)))(x). For every object y
such that y ∈ dom(f · (reproj2(u))) holds (f · (reproj2(u)))(y) = (f · I ·
(reproj1(v)))(y). �

Let us consider real normed spaces X, Y, Z, a partial function f from X ×
Y to Z, a subset U of X×Y, a linear operator I from Y ×X into X×Y, a point
a of X, a point b of Y, a point u of X × Y, and a point v of Y × X. Now we
state the propositions:

(12) Suppose U = dom f and f is differentiable on U and I is one-to-one,
onto, and isometric and for every point y of Y and for every point x of
X, I(y, x) = 〈〈x, y〉〉. Then suppose u ∈ U and u = 〈〈a, b〉〉 and v = 〈〈b, a〉〉.
Then

(i) f is partially differentiable in u w.r.t. 1 iff f · I is partially differen-
tiable in v w.r.t. 2, and

(ii) f is partially differentiable in u w.r.t. 2 iff f · I is partially differen-
tiable in v w.r.t. 1.

(13) Suppose U = dom f and f is differentiable on U and I is one-to-one,
onto, and isometric and for every point y of Y and for every point x of
X, I(y, x) = 〈〈x, y〉〉. Then suppose u ∈ U and u = 〈〈a, b〉〉 and v = 〈〈b, a〉〉.
Then

(i) partdiff(f, u) w.r.t. 1 = partdiff(f · I, v) w.r.t. 2, and

(ii) partdiff(f, u) w.r.t. 2 = partdiff(f · I, v) w.r.t. 1.

3. Properties of the Differentiation of the Inverse Mapping

Now we state the propositions:

(14) Let us consider a real normed space F , non trivial real Banach spaces G,
E, a subset Z of E × F , a partial function f from E × F to G, a point a
of E, a point b of F , a point c of G, and a point z of E ×F . Suppose Z is
open and dom f = Z and f is differentiable on Z and f ′�Z is continuous on
Z and 〈〈a, b〉〉 ∈ Z and f(a, b) = c and z = 〈〈a, b〉〉 and partdiff(f, z) w.r.t. 1
is invertible. Then there exist real numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1)× Ball(b, r2) ⊆ Z, and

(iv) for every point y of F such that y ∈ Ball(b, r2) there exists a point x
of E such that x ∈ Ball(a, r1) and f(x, y) = c, and
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(v) for every point y of F such that y ∈ Ball(b, r2) for every points x1, x2

of E such that x1, x2 ∈ Ball(a, r1) and f(x1, y) = c and f(x2, y) = c

holds x1 = x2, and

(vi) there exists a partial function g from F to E such that dom g =
Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2)
and g(b) = a and for every point y of F such that y ∈ Ball(b, r2) holds
f(g(y), y) = c and g is differentiable on Ball(b, r2) and g′�Ball(b,r2)

is
continuous on Ball(b, r2) and for every point y of F and for every
point z of E × F such that y ∈ Ball(b, r2) and z = 〈〈g(y), y〉〉 holds
g′(y) = −(Inv partdiff(f, z) w.r.t. 1) · (partdiff(f, z) w.r.t. 2) and for
every point y of F and for every point z of E × F such that y ∈
Ball(b, r2) and z = 〈〈g(y), y〉〉 holds partdiff(f, z) w.r.t. 1 is invertible,
and

(vii) for every partial functions g1, g2 from F to E such that dom g1 =
Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F such
that y ∈ Ball(b, r2) holds f(g1(y), y) = c and dom g2 = Ball(b, r2) and
rng g2 ⊆ Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2)
holds f(g2(y), y) = c holds g1 = g2.

Proof: Set I = Exch(F,E). Consider J being a linear operator from
E × F into F × E such that J = I−1 and J is one-to-one, onto, and
isometric. Set Z1 = J◦Z. Set f1 = f · I. dom f1 = I−1(dom f). Reconsider
z1 = 〈〈b, a〉〉 as a point of F × E. f1

′
�Z1 is continuous on Z1. f1(b, a) = c.

partdiff(f, z) w.r.t. 1 = partdiff(f1, z1) w.r.t. 2. Consider r2, r1 being real
numbers such that 0 < r2 and 0 < r1 and Ball(b, r2) × Ball(a, r1) ⊆ Z1

and for every point y of F such that y ∈ Ball(b, r2) there exists a point
x of E such that x ∈ Ball(a, r1) and f1(y, x) = c and for every point y
of F such that y ∈ Ball(b, r2) for every points x1, x2 of E such that x1,
x2 ∈ Ball(a, r1) and f1(y, x1) = c and f1(y, x2) = c holds x1 = x2 and
there exists a partial function g from F to E such that dom g = Ball(b, r2)
and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2) and g(b) = a and
for every point y of F such that y ∈ Ball(b, r2) holds f1(y, g(y)) = c.

g is differentiable on Ball(b, r2) and g′�Ball(b,r2)
is continuous on Ball(b, r2)

and for every point y of F and for every point z of F × E such that y ∈
Ball(b, r2) and z = 〈〈y, g(y)〉〉 holds g′(y) = −(Inv partdiff(f1, z) w.r.t. 2)·
(partdiff(f1, z) w.r.t. 1) and for every point y of F and for every point z of
F×E such that y ∈ Ball(b, r2) and z = 〈〈y, g(y)〉〉 holds partdiff(f1, z) w.r.t. 2
is invertible.

For every partial functions g1, g2 from F to E such that dom g1 =
Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F such that
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y ∈ Ball(b, r2) holds f1(y, g1(y)) = c and dom g2 = Ball(b, r2) and rng g2 ⊆
Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2) holds
f1(y, g2(y)) = c holds g1 = g2. For every object s such that s ∈ Ball(a, r1)×
Ball(b, r2) holds s ∈ Z. For every point y of F such that y ∈ Ball(b, r2)
there exists a point x of E such that x ∈ Ball(a, r1) and f(x, y) = c.

For every point y of F such that y ∈ Ball(b, r2) for every points x1,
x2 of E such that x1, x2 ∈ Ball(a, r1) and f(x1, y) = c and f(x2, y) =
c holds x1 = x2. There exists a partial function g from F to E such
that dom g = Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is continuous on
Ball(b, r2) and g(b) = a and for every point y of F such that y ∈ Ball(b, r2)
holds f(g(y), y) = c.

g is differentiable on Ball(b, r2) and g′�Ball(b,r2)
is continuous on Ball(b, r2)

and for every point y of F and for every point z of E × F such that y ∈
Ball(b, r2) and z = 〈〈g(y), y〉〉 holds g′(y) = −(Inv partdiff(f, z) w.r.t. 1)·
(partdiff(f, z) w.r.t. 2) and for every point y of F and for every point z of
E×F such that y ∈ Ball(b, r2) and z = 〈〈g(y), y〉〉 holds partdiff(f, z) w.r.t. 1
is invertible.

For every partial functions g1, g2 from F to E such that dom g1 =
Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F such that
y ∈ Ball(b, r2) holds f(g1(y), y) = c and dom g2 = Ball(b, r2) and rng g2 ⊆
Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2) holds
f(g2(y), y) = c holds g1 = g2. �

(15) Let us consider non trivial real Banach spaces E, F , a subset D of E,
a partial function f from E to F , a partial function f1 from E × F to F ,
and a subset Z of E × F . Suppose D is open and dom f = D and D 6= ∅
and f is differentiable on D and f ′�D is continuous on D and Z = D ×
(the carrier of F ) and dom f1 = Z and for every point s of E and for every
point t of F such that s ∈ D holds f1(s, t) = f/s − t. Then

(i) f1 is differentiable on Z, and

(ii) f1
′
�Z is continuous on Z, and

(iii) for every point x of E and for every point y of F and for every
point z of E × F such that x ∈ D and z = 〈〈x, y〉〉 there exists
a point I of the real norm space of bounded linear operators from
F into F such that I = idα and partdiff(f1, z) w.r.t. 1 = f ′(x) and
partdiff(f1, z) w.r.t. 2 = −I,

where α is the carrier of F .
Proof: Z is open. For every point z of E×F such that z ∈ Z holds f1 is
partially differentiable in z w.r.t. 1 and partdiff(f1, z) w.r.t. 1 = f ′((z)1).
For every point x0 of E×F and for every real number r such that x0 ∈ Z
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and 0 < r there exists a real number s such that 0 < s and for every point
x1 of E×F such that x1 ∈ Z and ‖x1−x0‖ < s holds ‖(f1 �1 Z)/x1−(f1 �1

Z)/x0‖ < r by [8, (15)]. Reconsider J = FuncUnit(F ) as a point of the real
norm space of bounded linear operators from F into F .

For every point z of E × F such that z ∈ Z holds f1 is partially
differentiable in z w.r.t. 2 and partdiff(f1, z) w.r.t. 2 = −J . For every point
x0 of E×F and for every real number r such that x0 ∈ Z and 0 < r there
exists a real number s such that 0 < s and for every point x1 of E×F such
that x1 ∈ Z and ‖x1 − x0‖ < s holds ‖(f1 �2 Z)/x1 − (f1 �2 Z)/x0‖ < r.
For every point x of E and for every point y of F and for every point z of
E × F such that x ∈ D and z = 〈〈x, y〉〉 there exists a point I of the real
norm space of bounded linear operators from F into F such that I = idα
and partdiff(f1, z) w.r.t. 1 = f ′(x) and partdiff(f1, z) w.r.t. 2 = −I, where
α is the carrier of F . �

(16) Let us consider non trivial real Banach spaces E, F , a subset Z of E,
a partial function f from E to F , a point a of E, and a point b of F .
Suppose Z is open and dom f = Z and f is differentiable on Z and f ′�Z
is continuous on Z and a ∈ Z and f(a) = b and f ′(a) is invertible. Then
there exist real numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1) ⊆ Z, and

(iv) for every point y of F such that y ∈ Ball(b, r2) there exists a point x
of E such that x ∈ Ball(a, r1) and f/x = y, and

(v) for every point y of F such that y ∈ Ball(b, r2) for every points x1, x2

of E such that x1, x2 ∈ Ball(a, r1) and f/x1 = y and f/x2 = y holds
x1 = x2, and

(vi) there exists a partial function g from F to E such that dom g =
Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2)
and g(b) = a and for every point y of F such that y ∈ Ball(b, r2)
holds f/g/y = y and g is differentiable on Ball(b, r2) and g′�Ball(b,r2)
is continuous on Ball(b, r2) and for every point y of F such that
y ∈ Ball(b, r2) holds g′(y) = Inv f ′(g/y) and for every point y of F
such that y ∈ Ball(b, r2) holds f ′(g/y) is invertible, and

(vii) for every partial functions g1, g2 from F to E such that dom g1 =
Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F such
that y ∈ Ball(b, r2) holds f/g1(y) = y and dom g2 = Ball(b, r2) and
rng g2 ⊆ Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2)
holds f/g2(y) = y holds g1 = g2.
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Proof: Reconsider Z = D × (the carrier of F ) as a subset of E × F . Z
is open. Define P[object, object] ≡ there exists a point x of E and there
exists a point y of F such that $1 = 〈〈x, y〉〉 and $2 = f/x − y. For every
object z such that z ∈ Z there exists an object y such that y ∈ the carrier
of F and P[z, y].

Consider f1 being a function from Z into the carrier of F such that for
every object x such that x ∈ Z holds P[x, f1(x)]. For every point s of E and
for every point t of F such that s ∈ D holds f1(s, t) = f/s − t. Reconsider
z = 〈〈a, b〉〉 as a point of E×F . f1 is differentiable on Z. f1

′
�Z is continuous

on Z. There exists a point J of the real norm space of bounded linear
operators from F into F such that J = idα and partdiff(f1, z) w.r.t. 1 =
f ′(a) and partdiff(f1, z) w.r.t. 2 = −J , where α is the carrier of F .

Consider r1, r2 being real numbers such that 0 < r1 and 0 < r2

and Ball(a, r1) × Ball(b, r2) ⊆ Z and for every point x of F such that
x ∈ Ball(b, r2) there exists a point y of E such that y ∈ Ball(a, r1) and
f1(y, x) = 0F and for every point x of F such that x ∈ Ball(b, r2) for
every points y1, y2 of E such that y1, y2 ∈ Ball(a, r1) and f1(y1, x) = 0F
and f1(y2, x) = 0F holds y1 = y2 and there exists a partial function g

from F to E such that dom g = Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is
continuous on Ball(b, r2) and g(b) = a and for every point x of F such that
x ∈ Ball(b, r2) holds f1(g(x), x) = 0F and g is differentiable on Ball(b, r2).

g′�Ball(b,r2)
is continuous on Ball(b, r2) and for every point y of F and

for every point z of E × F such that y ∈ Ball(b, r2) and z = 〈〈g(y),
y〉〉 holds g′(y) = −(Inv partdiff(f1, z) w.r.t. 1) · (partdiff(f1, z) w.r.t. 2) and
for every point y of F and for every point z of E × F such that y ∈
Ball(b, r2) and z = 〈〈g(y), y〉〉 holds partdiff(f1, z) w.r.t. 1 is invertible and
for every partial functions g1, g2 from F to E such that dom g1 = Ball(b, r2)
and rng g1 ⊆ Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2)
holds f1(g1(y), y) = 0F and dom g2 = Ball(b, r2) and rng g2 ⊆ Ball(a, r1)
and for every point y of F such that y ∈ Ball(b, r2) holds f1(g2(y), y) = 0F
holds g1 = g2. For every object s such that s ∈ Ball(a, r1) holds s ∈ D.
For every point y of F such that y ∈ Ball(b, r2) there exists a point x of
E such that x ∈ Ball(a, r1) and f/x = y. For every point y of F such that
y ∈ Ball(b, r2) for every points x1, x2 of E such that x1, x2 ∈ Ball(a, r1)
and f/x1 = y and f/x2 = y holds x1 = x2.

There exists a partial function g from F to E such that dom g =
Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2) and
g(b) = a and for every point y of F such that y ∈ Ball(b, r2) holds
f/g/y = y and g is differentiable on Ball(b, r2) and g′�Ball(b,r2)

is continuous
on Ball(b, r2) and for every point y of F such that y ∈ Ball(b, r2) holds
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g′(y) = Inv f ′(g/y) and for every point y of F such that y ∈ Ball(b, r2) holds
f ′(g/y) is invertible by (15), [5, (26),(27)]. For every partial functions g1,
g2 from F to E such that dom g1 = Ball(b, r2) and rng g1 ⊆ Ball(a, r1)
and for every point y of F such that y ∈ Ball(b, r2) holds f/g1(y) = y and
dom g2 = Ball(b, r2) and rng g2 ⊆ Ball(a, r1) and for every point y of F
such that y ∈ Ball(b, r2) holds f/g2(y) = y holds g1 = g2. �

4. Inverse Function Theorem for Class of C1 Functions

Now we state the propositions:

(17) Let us consider non trivial real Banach spaces E, F , a subset Z of E,
a partial function f from E to F , a point a of E, and a point b of F .
Suppose Z is open and dom f = Z and f is differentiable on Z and f ′�Z is
continuous on Z and a ∈ Z and f(a) = b and f ′(a) is invertible.

Then there exists a subset A of E and there exists a subset B of F and
there exists a partial function g from F to E such that A is open and B is
open and A ⊆ dom f and a ∈ A and b ∈ B and f◦A = B and dom g = B

and rng g = A and dom(f�A) = A and rng(f�A) = B and f�A is one-to-
one and g is one-to-one and g = (f�A)−1 and f�A = g−1 and g(b) = a and
g is continuous on B and differentiable on B and g′�B is continuous on B

and for every point y of F such that y ∈ B holds f ′(g/y) is invertible and
for every point y of F such that y ∈ B holds g′(y) = Inv f ′(g/y).
Proof: Consider r1, r2 being real numbers such that 0 < r1 and 0 < r2

and Ball(a, r1) ⊆ Z and for every point y of F such that y ∈ Ball(b, r2)
there exists a point x of E such that x ∈ Ball(a, r1) and f/x = y and for
every point y of F such that y ∈ Ball(b, r2) for every points x1, x2 of E
such that x1, x2 ∈ Ball(a, r1) and f/x1 = y and f/x2 = y holds x1 = x2 and
there exists a partial function g from F to E such that dom g = Ball(b, r2)
and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2) and g(b) = a and
for every point y of F such that y ∈ Ball(b, r2) holds f/g/y = y.

g is differentiable on Ball(b, r2) and g′�Ball(b,r2)
is continuous on Ball(b, r2)

and for every point y of F such that y ∈ Ball(b, r2) holds g′(y) = Inv f ′(g/y)
and for every point y of F such that y ∈ Ball(b, r2) holds f ′(g/y) is in-
vertible and for every partial functions g1, g2 from F to E such that
dom g1 = Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F
such that y ∈ Ball(b, r2) holds f/g1(y) = y and dom g2 = Ball(b, r2) and
rng g2 ⊆ Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2)
holds f/g2(y) = y holds g1 = g2.

Consider I1 being a partial function from F to E such that dom I1 =
Ball(b, r2) and rng I1 ⊆ Ball(a, r1) and I1 is continuous on Ball(b, r2)



18 kazuhisa nakasho and yuichi futa

and I1(b) = a and for every point y of F such that y ∈ Ball(b, r2)
holds f/I1/y = y and I1 is differentiable on Ball(b, r2) and I1

′
�Ball(b,r2)

is continuous on Ball(b, r2) and for every point y of F such that y ∈
Ball(b, r2) holds I1

′(y) = Inv f ′(I1/y) and for every point y of F such
that y ∈ Ball(b, r2) holds f ′(I1/y) is invertible. Set B = Ball(b, r2). Set
A = Ball(a, r1) ∩ f−1(B). For every object s such that s ∈ B holds
s ∈ f◦Ball(a, r1). f−1(B) is open. For every object s, s ∈ f◦A iff s ∈ B.

For every objects y1, y2 such that y1, y2 ∈ dom I1 and I1(y1) = I1(y2)
holds y1 = y2. For every objects x1, x2 such that x1, x2 ∈ dom(f�A)
and (f�A)(x1) = (f�A)(x2) holds x1 = x2. For every object x such that
x ∈ dom((f�A)−1) holds ((f�A)−1)(x) = I1(x). �

(18) Let us consider non trivial real Banach spaces E, F , a subset Z of E,
a partial function f from E to F , a point a of E, and a point b of F .
Suppose Z is open and dom f = Z and f is differentiable on Z and f ′�Z
is continuous on Z and a ∈ Z and f(a) = b and f ′(a) is invertible. Let
us consider a real number r1. Suppose 0 < r1. Then there exists a real
number r2 such that

(i) 0 < r2, and

(ii) Ball(b, r2) ⊆ f◦Ball(a, r1).

The theorem is a consequence of (17) and (1).

(19) Let us consider non trivial real Banach spaces E, F , a subset Z of E,
and a partial function f from E to F . Suppose Z is open and dom f = Z

and f is differentiable on Z and f ′�Z is continuous on Z and for every point
x of E such that x ∈ Z holds f ′(x) is invertible. Then

(i) for every point x of E and for every real number r1 such that x ∈ Z
and 0 < r1 there exists a point y of F and there exists a real number
r2 such that y = f(x) and 0 < r2 and Ball(y, r2) ⊆ f◦Ball(x, r1),
and

(ii) f◦Z is open.

Proof: For every point x of E and for every real number r1 such that
x ∈ Z and 0 < r1 there exists a point y of F and there exists a real
number r2 such that y = f(x) and 0 < r2 and Ball(y, r2) ⊆ f◦Ball(x, r1).
For every point y of F such that y ∈ f◦Z there exists a real number r
such that 0 < r and Ball(y, r) ⊆ f◦Z by [7, (20)]. �
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Summary. This article contains many auxiliary theorems which were mis-
sing in the Mizar Mathematical Library to the best of the author’s knowledge.
Most of them regard graph theory as formalized in the GLIB series and are needed
in upcoming articles.
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0. Introduction

A generalized approach to graph theory as it was done in [2, 4] in contrast to
[9, 3] is rather uncommon. To avoid duplication of the same theorems in different
formalization frameworks in the Mizar Mathematical Library [1], a generalized
approach to formalization is preferable (cf. [8, 7]). However, due to the sheer
amount of “obvious facts” such an approach brings with it, it is only natural
some of them not immediately needed slip the initial formalization process. This
article, like its precedessor [5], aims to fill some of the gaps that emerged.

Many theorems in this article regard the property of a walk in a graph to
be the shortest one, which have been rather neglected in the author’s work on
graphs in Mizar until now. Another good portion is concered with theorems
about graph mappings which are missing from [7]. Further worthy of note is the
theorem that combines adding an edge or adjacent vertex with the reversal of
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the edge to be added and the two theorems noting that a connected graph is
unicyclic if and only if the connected subgraph it can be constructed from by
adding an edge is a tree.

1. Preliminaries not Directly Related to Graphs

Now we state the propositions:

(1) Let us consider sets X1, X2, X3, X4, X5, X6, X7. Then it is not true
that X1 ∈ X2 and X2 ∈ X3 and X3 ∈ X4 and X4 ∈ X5 and X5 ∈ X6 and
X6 ∈ X7 and X7 ∈ X1.

(2) Let us consider sets X1, X2, X3, X4, X5, X6, X7, X8. Then it is not true
that X1 ∈ X2 and X2 ∈ X3 and X3 ∈ X4 and X4 ∈ X5 and X5 ∈ X6 and
X6 ∈ X7 and X7 ∈ X8 and X8 ∈ X1.

One can verify that every function which is one-to-one and constant is also
trivial. Now we state the proposition:

(3) Let us consider a function f . Then f is non empty and constant if and
only if there exists an object y such that rng f = {y}.

Let X be a set. Observe that there exists a many sorted set indexed by X

which is one-to-one and there exists an X-defined function which is total and
one-to-one.

Let X be a non empty set. One can check that there exists an X-defined
function which is total, one-to-one, and non empty.

The scheme LambdaDf deals with non empty sets C, D and a unary functor
F yielding an object and states that

(Sch. 1) There exists a function f from C into D such that for every element x
of C, f(x) = F(x)

provided

• for every element x of C, F(x) ∈ D.

Now we state the proposition:

(4) Let us consider a one-to-one function f , and an object y. Suppose rng f =
{y}. Then there exists an object x such that f = x 7−→. y.

Let f be a one-to-one function. Note that f` is one-to-one. Let f be a func-
tion and g be a one-to-one function. Let us observe that 〈f, g〉 is one-to-one and
〈g, f〉 is one-to-one. Now we state the propositions:

(5) Let us consider an empty function f . Then ◦f = ∅7−→. ∅.
Let f be a one-to-one function. One can check that ◦f is one-to-one.
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(6) Let us consider a non empty, one-to-one function f , and a non emp-
ty subset X of 2dom f . Then rng(◦f�X) = the set of all f◦x where x is
an element of X.

(7) Let us consider a function f , and one-to-one functions g, h. Suppose
h = f+·g. Then h−1� rng g = g−1.

(8) Let us consider functions f , g, h. If rng f ⊆ domh, then (g+·h)·f = h·f .

(9) Let us consider a function f , and a one-to-one function g. Then (f+·g) ·
(g−1) = idrng g. The theorem is a consequence of (8).

Observe that every binary relation which is reflexive and connected is also
strongly connected. Now we state the propositions:

(10) Let us consider a set X, and a binary relation R on X. Then R is
antisymmetric if and only if R \ (idX) is asymmetric.

(11) Let us consider a set X. Suppose X is mutually-disjoint. Then X \ {∅}
is a partition of

⋃
X.

Let X be a set. Let us note that every partition of X is mutually-disjoint.

(12) Let us consider cardinal numbers M , N , and a function f . Suppose

M ⊆ dom f and for every object x such that x ∈ dom f holds N ⊆ f(x).
Then M ·N ⊆

∑
Card f .

(13) Let us consider sets X, x. Suppose x ∈ X. Then (disjoint Card idX)(x) =
x × {x}.

(14) Let us consider a setX. SupposeX is mutually-disjoint. Then
∑

Card idX =⋃
X . The theorem is a consequence of (11) and (13).

(15) Let us consider a set X, and cardinal numbers M , N . Suppose X is
mutually-disjoint and M ⊆ X and for every set Y such that Y ∈ X holds
N ⊆ Y . Then M · N ⊆

⋃
X . The theorem is a consequence of (12) and

(14).

(16) Let us consider a compatible, functional set F . Suppose for every func-
tion f1 such that f1 ∈ F holds f1 is one-to-one and for every function
f2 such that f2 ∈ F and f1 6= f2 holds rng f1 misses rng f2. Then

⋃
F is

one-to-one.

2. Into GLIB 000

LetG be a non trivial graph. Observe that there exists a subset of the vertices
of G which is non empty and proper. Now we state the propositions:

(17) Let us consider a graph G, and a set X. Then G.edgesBetween(X,X) =
G.edgesBetween(X).
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(18) Let us consider a graph G. Then G is trivial if and only if the vertices
of G is trivial.

(19) Let us consider a graph G1. Then every subgraph of G1 is a subgraph of
G1 induced by the vertices of G2 and the edges of G2.

(20) Let us consider graphs G1, G2, and a spanning subgraph G3 of G1. If
G2 ≈ G3, then G2 is a spanning subgraph of G1.

(21) Let us consider a graph G, and an object e. Suppose e ∈ the edges of G.
Then e ∈ G.edgesBetween({(the source of G)(e), (the target of G)(e)}).

(22) Let us consider a graph G. Then G ≈ createGraph(the vertices of
G, the edges of G, the source of G, the target of G).

(23) Let us consider a graph G, and a vertex v of G. Then v is endvertex if
and only if v.degree() = 1.
Proof: v.inDegree() = 1 and v.outDegree() = 0 or v.inDegree() = 0 and
v.outDegree() = 1. �

(24) Let us consider a loopless graph G, and a vertex v of G. Then

(i) v.inNeighbors() ⊆ (the vertices of G) \ {v}, and

(ii) v.outNeighbors() ⊆ (the vertices of G) \ {v}, and

(iii) v.allNeighbors() ⊆ (the vertices of G) \ {v}.

(25) Let us consider a graphG. Suppose for every vertex v ofG, v.inNeighbors()
⊆ (the vertices of G) \ {v} or v.outNeighbors() ⊆ (the vertices of G) \ {v}
or v.allNeighbors() ⊆ (the vertices of G) \ {v}. Then G is loopless.

Let X be a set and G be a graph. Let us note that X 7−→ G is graph-yielding.
Let x be an object. Let us note that x 7−→. G is graph-yielding.
Let X be a set. Let us note that there exists a many sorted set indexed by

X which is graph-yielding.
Let X be a non empty set. One can verify that there exists a many sorted

set indexed by X which is non empty and graph-yielding.
Let f be a graph-yielding many sorted set indexed by X and x be an element

of X. One can verify that the functor f(x) yields a graph.

3. Into GLIB 001

Let G be a graph and P be a path of G. One can verify that
P .vertexSeq()�P .length() is one-to-one. Now we state the propositions:

(26) Let us consider a graph G, and a path P of G. Then P .length() ⊆
G.order().

(27) Let us consider a graphG, and a trail T ofG. Then T .length() ⊆ G.size().
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(28) Let us consider a graph G, and a walk W of G. Suppose lenW = 3 or
W.length() = 1. Then there exists an object e such that

(i) e joins W.first() and W.last() in G, and

(ii) W = G.walkOf(W.first(), e,W .last()).

(29) Let us consider a graph G, a walk W of G, and an object e. Suppose
e ∈ W.edges() and e /∈ G.loops() and W is circuit-like. Then there exists
an object e0 such that

(i) e0 ∈W.edges(), and

(ii) e0 6= e.

Proof: Consider n being an odd element of N such that n < lenW and
W (n+ 1) = e. lenW > 3. �

(30) Let us consider a graph G, a path P of G, and odd elements n, m of N.
Suppose n < m ¬ lenP and (n 6= 1 or m 6= lenP ). Then P .cut(n,m) is
open.

(31) Let us consider a graph G, a closed walk W of G, and an odd element n
of N. Suppose n < lenW . Then

(i) (W.cut(n+2, lenW )).append((W.cut(1, n))) is a walk from W (n+2)
to W (n), and

(ii) if W is trail-like, then (W.cut(n+2, lenW )).edges() misses (W.cut(1,

n)).edges() and ((W.cut(n+2, lenW )).append((W.cut(1, n)))).edges

() = W.edges() \ {W (n+ 1)}, and

(iii) if W is path-like, then (W.cut(n+2, lenW )).vertices()∩(W.cut(1, n))

.vertices() = {W.first()} and ifW (n+1) /∈ G.loops(), then (W.cut(n+
2, lenW )).append((W.cut(1, n))) is open and (W.cut(n+ 2, lenW ))

.append((W.cut(1, n))) is path-like.

Proof: Set W7 = W.cut(n+ 2, lenW ). Set W8 = W.cut(1, n). Set W ′ =
W7.append(W8). If W is trail-like, then W7.edges() misses W8.edges() and
W ′.edges() = W.edges() \ {W (n+ 1)}. If W (n+ 1) /∈ G.loops(), then W ′

is open. �

(32) Let us consider a graph G, a walk W1 of G, and objects e, x, y. Suppose
e joins x and y in G and e ∈W1.edges() and W1 is cycle-like. Then there
exists a path W2 of G such that

(i) W2 is a walk from x to y, and

(ii) W2.edges() = W1.edges() \ {e}, and

(iii) if e /∈ G.loops(), then W2 is open.



26 sebastian koch

The theorem is a consequence of (31).

(33) Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2.
Then lenW1 ¬ lenW2 if and only if W1.length() ¬W2.length().

(34) Let us consider a graph G, and a walk W of G. Then W.length() =
W.reverse().length().

(35) Let us consider a graph G, a walk W of G, and an object e. If e /∈
W.last().edgesInOut(), then W.addEdge(e) = W .

(36) Let us consider a graph G, a walk W of G, and objects e, x. Suppose e
joins W.last() and x in G. Then (W.addEdge(e)).length() = W.length()+
1.

(37) Let us consider a graph G1, a set E, a subgraph G2 of G1 with edges E
removed, and a walk W1 of G1. If W1.edges() misses E, then W1 is a walk
of G2.

4. Into GLIB 002

Let us consider graphs G1, G2 and a component G3 of G1. Now we state the
propositions:

(38) If G2 ≈ G3, then G2 is a component of G1.

(39) If G1 ≈ G2, then G3 is a component of G2.

Now we state the proposition:

(40) Let us consider a tree-like graph G, and a spanning subgraph H of G. If
H is connected, then G ≈ H.
Proof: The edges of G ⊆ the edges of H. �

Let G be a graph. Note that every element of G.componentSet() is non
empty and G.componentSet() is mutually-disjoint.

5. Into CHORD

Now we state the propositions:

(41) Let us consider a graph G, and vertices v, w of G. Then v and w are
adjacent if and only if w ∈ v.allNeighbors().

(42) Let us consider a graph G, a set S, and a vertex v of G. Suppose v /∈ S
and S meets G.reachableFrom(v). Then G.adjacentSet(S) 6= ∅.
Proof: Consider w being an object such that w ∈ S and w ∈ G.reachable
From(v). Consider W being a walk of G such that W is a walk from v

to w. There exists an odd natural number n such that n < lenW and
W (n) /∈ S and W (n + 2) ∈ S. Consider n being an odd natural number
such that n < lenW and W (n) /∈ S and W (n+ 2) ∈ S. �
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Let G be a non trivial, connected graph and S be a non empty, proper subset
of the vertices of G. One can check that G.adjacentSet(S) is non empty.

Now we state the propositions:

(43) Let us consider a complete graphG, and a vertex v ofG. Then (the vertices
of G) \ {v} ⊆ v.allNeighbors().

(44) Let us consider a loopless, complete graph G, and a vertex v of G. Then
v.allNeighbors() = (the vertices of G)\{v}. The theorem is a consequence
of (43).

(45) Let us consider a simple, complete graph G, and a vertex v of G. Then
v.degree() + 1 = G.order(). The theorem is a consequence of (44).

Let G be a graph. Observe that every walk of G which is trivial is also
minimum length and there exists a walk of G which is minimum length and
path-like.

Let W be a minimum length walk of G. One can check that W.reverse() is
minimum length.

Now we state the propositions:

(46) Let us consider a graph G1, a subgraph G2 of G1, a walk W1 of G1, and
a walk W2 of G2. If W1 = W2 and W1 is minimum length, then W2 is
minimum length.

(47) Let us consider a graph G, a vertex v of G, and a walk W of G. Suppose
W is a walk from v to v. Then W is minimum length if and only if
W = G.walkOf(v).

(48) Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2.
Suppose G1 ≈ G2 and W1 = W2 and W1 is minimum length. Then W2 is
minimum length.

6. Into GLIB 006

Now we state the propositions:

(49) Let us consider graphs G1, G2. Suppose the vertices of G2 ⊆ the vertices
of G1 and for every objects e, x, y such that e joins x to y in G2 holds e
joins x to y in G1. Then

(i) G2 is a subgraph of G1, and

(ii) G1 is a supergraph of G2.

(50) Let us consider a graph G1, a subgraph G3 of G1, objects v, e, w, and
a supergraph G2 of G3 extended by e between vertices v and w. If e joins
v to w in G1, then G2 is a subgraph of G1.
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(51) Let us consider a tree-like graph G, vertices v1, v2 of G, an object e, and
a supergraph H of G extended by e between vertices v1 and v2. Suppose
e /∈ the edges of G. Then

(i) H is not acyclic, and

(ii) for every walks W1, W2 of H such that W1 is cycle-like and W2 is
cycle-like holds W1.edges() = W2.edges().

Proof: e ∈ W1.edges(). e ∈ W2.edges(). Consider W3 being a path of H
such that W3 is a walk from v1 to v2 and W3.edges() = W1.edges() \ {e}
and if e /∈ H.loops(), then W3 is open. Consider W4 being a path of H
such that W4 is a walk from v1 to v2 and W4.edges() = W2.edges() \ {e}
and if e /∈ H.loops(), then W4 is open. �

(52) Let us consider a connected graph G. Suppose there exist vertices v1,
v2 of G and there exists an object e and there exists a supergraph H of
G extended by e between vertices v1 and v2 such that e /∈ the edges of
G and for every walks W1, W2 of H such that W1 is cycle-like and W2 is
cycle-like holds W1.edges() = W2.edges(). Then G is tree-like.
Proof: G is acyclic by [6, (75),(24),(105)], [8, (16)]. �

(53) Let us consider a graph G2, objects v, e, w, and a supergraph G1 of G2

extended by v, w and e between them. Then

(i) the vertices of G1 ⊆ (the vertices of G2) ∪ {v, w}, and

(ii) the edges of G1 ⊆ (the edges of G2) ∪ {e}.

(54) Let us consider a graph G2, vertices v, v2 of G2, objects e, w, a su-
pergraph G1 of G2 extended by v, w and e between them, and a ver-
tex v1 of G1. Suppose v1 = v2 and v /∈ G2.reachableFrom(v2) and e /∈
the edges of G2 and w /∈ the vertices of G2. Then G1.reachableFrom(v1) =
G2.reachableFrom(v2).

(55) Let us consider a graph G2, vertices w, v2 of G2, objects v, e, a su-
pergraph G1 of G2 extended by v, w and e between them, and a ver-
tex v1 of G1. Suppose v1 = v2 and w /∈ G2.reachableFrom(v2) and e /∈
the edges of G2 and v /∈ the vertices of G2. Then G1.reachableFrom(v1) =
G2.reachableFrom(v2).

(56) Let us consider a graph G2, a vertex v of G2, objects e, w, a supergraph
G1 of G2 extended by v, w and e between them, and a vertex v1 of G1.
Suppose v1 = v and e /∈ the edges of G2 and w /∈ the vertices of G2. Then
G1.reachableFrom(v1) = (G2.reachableFrom(v)) ∪ {w}.

(57) Let us consider a graph G2, objects v, e, a vertex w of G2, a supergraph
G1 of G2 extended by v, w and e between them, and a vertex v1 of G1.
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Suppose v1 = w and e /∈ the edges of G2 and v /∈ the vertices of G2. Then
G1.reachableFrom(v1) = (G2.reachableFrom(w)) ∪ {v}.

(58) Let us consider a graph G2, a vertex v of G2, objects e, w, and a su-
pergraph G1 of G2 extended by v, w and e between them. Suppose e /∈
the edges of G2 and w /∈ the vertices of G2. Then G1.componentSet() =
G2.componentSet() \ {G2.reachableFrom(v)} ∪ {(G2.reachableFrom(v)) ∪
{w}}. The theorem is a consequence of (54) and (56).

(59) Let us consider a graph G2, objects v, e, a vertex w of G2, and a su-
pergraph G1 of G2 extended by v, w and e between them. Suppose e /∈
the edges of G2 and v /∈ the vertices of G2. Then G1.componentSet() =
G2.componentSet()\{G2.reachableFrom(w)}∪{(G2.reachableFrom(w))∪
{v}}. The theorem is a consequence of (55) and (57).

(60) Let us consider a graph G2, objects v, e, w, a supergraph G1 of G2

extended by v, w and e between them, a walk W1 of G1, and a walk W2 of
G2. If W1 = W2 and W2 is minimum length, then W1 is minimum length.
The theorem is a consequence of (48).

(61) Let us consider a non trivial, connected graph G1, and a non spanning
subgraph G2 of G1. Then there exist objects v, e, w such that

(i) v 6= w, and

(ii) e joins v to w in G1, and

(iii) e /∈ the edges of G2, and

(iv) every supergraph of G2 extended by v, w and e between them is
a subgraph of G1, and

(v) v ∈ the vertices of G2 and w /∈ the vertices of G2 or v /∈ the vertices
of G2 and w ∈ the vertices of G2.

Proof: Set S = the vertices ofG2. Set v0 = the element ofG1.adjacentSet
(S). Consider w0 being a vertex of G1 such that w0 ∈ S and v0 and w0

are adjacent. Consider e being an object such that e joins v0 and w0 in
G1. e /∈ the edges of G2. �

(62) Let us consider a graphG2, a vertex v ofG2, objects e, w, x, a supergraph
G1 of G2 extended by v, w and e between them, a walk W1 of G1, and
a walk W2 of G2. Suppose W1 = W2 and W2 is minimum length and a walk
from x to v and e /∈ the edges of G2. Then W1.addEdge(e) is minimum
length. The theorem is a consequence of (60) and (35).

(63) Let us consider a graphG2, objects v, e, x, a vertex w ofG2, a supergraph
G1 of G2 extended by v, w and e between them, a walk W1 of G1, and
a walk W2 of G2. Suppose W1 = W2 and W2 is minimum length and a walk
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from x to w and e /∈ the edges of G2. Then W1.addEdge(e) is minimum
length. The theorem is a consequence of (60) and (35).

Observe that there exists a graph-yielding function which is non empty,
non non-directed-multi, and non non-multi and there exists a graph-yielding
function which is non empty, non acyclic, and non connected and there exists
a graph-yielding function which is non empty and non edgeless and there exists
a graph-yielding function which is non empty and non loopfull.

7. Into GLIB 007

Now we state the propositions:

(64) Let us consider graphs G2, G3, sets V , E, a supergraph G1 of G3 exten-
ded by the vertices from V , and a graph G4 given by reversing directions
of the edges E of G3. Then G2 is a graph given by reversing directions of
the edges E of G1 if and only if G2 is a supergraph of G4 extended by the
vertices from V . The theorem is a consequence of (49).

(65) Let us consider graphs G2, G3, objects v, e, w, and a supergraph G1 of
G3 extended by e between vertices v and w. Suppose e /∈ the edges of G3.
Then G2 is a graph given by reversing directions of the edges {e} of G1

if and only if G2 is a supergraph of G3 extended by e between vertices w
and v. The theorem is a consequence of (49).

(66) Let us consider graphs G2, G3, objects v, e, w, and a supergraph G1 of
G3 extended by v, w and e between them. Suppose e /∈ the edges of G3.
Then G2 is a graph given by reversing directions of the edges {e} of G1

if and only if G2 is a supergraph of G3 extended by w, v and e between
them. The theorem is a consequence of (65).

(67) Let us consider a graph G1, a set E, a graph G2 given by reversing
directions of the edges E of G1, a walk W1 of G1, and a walk W2 of G2. If
W1 = W2, then W1 is minimum length iff W2 is minimum length.

8. Into GLIB 008

Now we state the proposition:

(68) Let us consider an edgeless graph G1, and a graph G2. Then G1 is a sub-
graph of G2 if and only if the vertices of G1 ⊆ the vertices of G2.

One can check that there exists a graph which is loopless and non edgeless.
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9. Into GLIB 009

Let G be a graph. Note that there exists a subgraph of G which is plain,
spanning, and acyclic and there exists a subgraph of G which is plain and tree-
like and there exists a component of G which is plain.

Now we state the proposition:

(69) Let us consider a plain graph G. Then G = createGraph(the vertices of
G, the edges of G, the source of G, the target of G).

Let us consider a graph G and a subgraph H of G with loops removed. Now
we state the propositions:

(70) the edges of G = G.loops() if and only if H is edgeless.

(71) Every loopless subgraph of G is a subgraph of H.
Proof: (The edges of H ′) ∩G.loops() = ∅. �

(72) Let us consider a graph G1, and a subgraph G2 of G1 with loops removed.
Then every minimum length walk of G1 is a walk of G2. The theorem is
a consequence of (37).

(73) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
a walk W1 of G1, and a walk W2 of G2. If W1 = W2, then W1 is minimum
length iff W2 is minimum length. The theorem is a consequence of (46),
(37), and (47).

(74) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
vertices v1, w1 of G1, and vertices v2, w2 of G2. Suppose v1 = v2 and
w1 = w2 and v1 6= w1. Then v1 and w1 are adjacent if and only if v2 and
w2 are adjacent. The theorem is a consequence of (41).

(75) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges
removed, vertices v1, w1 of G1, and vertices v2, w2 of G2. Suppose v1 = v2

and w1 = w2. Then v1 and w1 are adjacent if and only if v2 and w2 are
adjacent. The theorem is a consequence of (41).

(76) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, vertices v1, w1 of G1, and vertices v2, w2 of G2. Suppose
v1 = v2 and w1 = w2. Then v1 and w1 are adjacent if and only if v2 and
w2 are adjacent. The theorem is a consequence of (41).

(77) Let us consider a graph G1, a simple graph G2 of G1, vertices v1, w1 of
G1, and vertices v2, w2 of G2. Suppose v1 = v2 and w1 = w2 and v1 6= w1.
Then v1 and w1 are adjacent if and only if v2 and w2 are adjacent. The
theorem is a consequence of (75) and (74).

(78) Let us consider a graph G1, a directed-simple graph G2 of G1, vertices
v1, w1 of G1, and vertices v2, w2 of G2. Suppose v1 = v2 and w1 = w2
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and v1 6= w1. Then v1 and w1 are adjacent if and only if v2 and w2 are
adjacent. The theorem is a consequence of (76) and (74).

10. Into GLIB 010

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
a vertex v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(79) If v2 = (FV)(v1) and F is total, then (FV)◦(G1.reachableFrom(v1)) ⊆
G2.reachableFrom(v2).

(80) Suppose v1 ∈ dom(FV) and v2 = (FV)(v1) and F is one-to-one and onto.
Then G2.reachableFrom(v2) ⊆ (FV)◦(G1.reachableFrom(v1)).

(81) If v2 = (FV)(v1) and F is isomorphism, then (FV)◦(G1.reachableFrom(v1))
= G2.reachableFrom(v2). The theorem is a consequence of (79) and (80).

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(82) Suppose F is isomorphism. Then G2.componentSet() = the set of all
(FV)◦C where C is an element ofG1.componentSet(). The theorem is a con-
sequence of (81).

(83) If F is isomorphism, thenG1.numComponents() = G2.numComponents().
The theorem is a consequence of (6) and (82).

LetG be a loopless graph. Let us note that every graph which isG-isomorphic
is also loopless. Now we state the proposition:

(84) Let us consider graphs G1, G2, G3, G4, an empty partial graph mapping
F1 from G1 to G2, and an empty partial graph mapping F2 from G3 to
G4. Then F1 = F2.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(85) (i) F � domF = F , and

(ii) rngF �F = F .
The theorem is a consequence of (84).

(86) If F is total, then rngF �F is total. The theorem is a consequence of
(85).

(87) If F is onto, then F � domF is onto. The theorem is a consequence of
(85).

Let us consider graphs G1, G2. Now we state the propositions:

(88) Every partial graph mapping from G1 to G2 is a partial graph mapping
from G1 to rngF . The theorem is a consequence of (85).
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(89) Every partial graph mapping from G1 to G2 is a partial graph mapping
from domF to G2. The theorem is a consequence of (85).

(90) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and subsets X, Y of the vertices of G1. Suppose F is total. Then
(FE)◦(G1.edgesBetween(X,Y )) ⊆ G2.edgesBetween((FV)◦X, (FV)◦Y ).
Proof: Set f = FE�G1.edgesBetween(X,Y ). For every object y such that
y ∈ rng f holds y ∈ G2.edgesBetween((FV)◦X, (FV)◦Y ). �

(91) Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a set V . Then (FE)◦(G1.edgesBetween(V )) ⊆ G2.edgesBetween((FV)◦V ).

(92) Let us consider graphs G1, G2, a partial graph mapping F from G1 to
G2, and subsets X, Y of the vertices of G1. Suppose F is weak subgraph
embedding and onto.
Then (FE)◦(G1.edgesBetween(X,Y )) = G2.edgesBetween((FV)◦X, (FV)◦Y ).
The theorem is a consequence of (90).

(93) Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a set V . Suppose F is continuous. Then (FE)◦(G1.edgesBetween(V )) =
G2.edgesBetween((FV)◦V ). The theorem is a consequence of (91).

Let us consider graphs G1, G2, a non empty, one-to-one partial graph map-
ping F from G1 to G2, and an F-valued walk W2 of G2. Now we state the
propositions:

(94) (F−1(W2)).vertices() = (FV)−1(W2.vertices()).

(95) (F−1(W2)).edges() = (FE)−1(W2.edges()).

(96) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, an F-valued walk W2 of G2, and objects v,
w. Suppose W2 is a walk from v to w. Then F−1(W2) is a walk from
(F−1

V)(v) to (F−1
V)(w).

(97) Let us consider graphs G1, G2, a one-to-one partial graph mapping F

from G1 to G2, a vertex v1 of G1, and a vertex v2 of G2. Suppose v2 =
(FV)(v1) and F is isomorphism. Then (FV)−1(G2.reachableFrom(v2)) =
G1.reachableFrom(v1). The theorem is a consequence of (81).

(98) Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a subgraphH ofG2. Then (FE)−1(the edges ofH) ⊆ G1.edgesBetween
((FV)−1(the vertices of H)).

(99) Let us consider graphs G1, G2, a non empty partial graph mapping
F from G1 to G2, a subgraph H2 of rngF , and a subgraph H1 of G1

induced by (FV)−1(the vertices of H2) and (FE)−1(the edges of H2). Then
rng(F �H1) ≈ H2. The theorem is a consequence of (98).

(100) Let us consider graphs G1, G2, a non empty partial graph mapping F
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from G1 to G2, a non empty subset V2 of the vertices of rngF , and a sub-
graph H of rngF induced by V2. Suppose G1.edgesBetween((FV)−1(the
vertices of H)) ⊆ dom(FE). Then (FE)−1(the edges of H) = G1.edges
Between((FV)−1(the vertices of H)). The theorem is a consequence of (98).

(101) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, a non empty subset V2 of the vertices of rngF , a sub-
graph H2 of rngF induced by V2, and a subgraph H1 of G1 induced by
(FV)−1(the vertices ofH2). SupposeG1.edgesBetween((FV)−1(the vertices
of H2)) ⊆ dom(FE). Then rng(F �H1) ≈ H2. The theorem is a consequence
of (100).

(102) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, a non empty subset V of the vertices of domF , and a sub-
graph H of G1 induced by V . Suppose F is continuous. Then rng(F �H)
is a subgraph of G2 induced by (FV)◦V . The theorem is a consequence of
(93).

(103) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, a subgraph H2 of rngF , and a subgraph H1 of G1 induced
by (FV)−1(the vertices of H2) and (FE)−1(the edges of H2). Then every
walk of H1 is an F -defined walk of G1.
Proof: the vertices of H1 = (FV)−1(the vertices of H2) and the edges of
H1 = (FE)−1(the edges of H2). �

(104) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, a subgraph H2 of rngF , a subgraph H1 of G1 induced by
(FV)−1(the vertices of H2) and (FE)−1(the edges of H2), and an F -defined
walk W1 of G1. If W1 is a walk of H1, then F ◦W1 is a walk of H2.
Proof: the vertices of H1 = (FV)−1(the vertices of H2) and the edges
of H1 = (FE)−1(the edges of H2). (F ◦W1).vertices() ⊆ the vertices of H2.
(F ◦W1).edges() ⊆ the edges of H2. �

(105) Let us consider graphs G1, G2, a non empty partial graph mapping F

from G1 to G2, and a subgraph H of rngF . Then every walk of H is
an F-valued walk of G2.

(106) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, a subgraph H2 of rngF , a subgraph H1 of G1

induced by (FV)−1(the vertices of H2) and (FE)−1(the edges of H2), and
an F-valued walk W2 of G2. If W2 is a walk of H2, then F−1(W2) is a walk
of H1.
Proof: the vertices of H1 = (FV)−1(the vertices of H2) and the edges of
H1 = (FE)−1(the edges of H2). (F−1(W2)).vertices() ⊆ the vertices of H1.
(F−1(W2)).edges() ⊆ the edges of H1. �



Miscellaneous graph preliminaries. Part I 35

(107) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and an acyclic subgraph H2 of rngF . Then eve-
ry subgraph of G1 induced by (FV)−1(the vertices of H2) and (FE)−1(the
edges of H2) is acyclic. The theorem is a consequence of (103) and (104).

(108) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F from G1 to G2, and a connected subgraph H2 of rngF . Then
every subgraph ofG1 induced by (FV)−1(the vertices ofH2) and (FE)−1(the
edges of H2) is connected. The theorem is a consequence of (98), (105),
(106), and (96).

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
a subgraph H of G1, and a partial graph mapping F ′ from H to rng(F �H). Now
we state the propositions:

(109) Suppose F ′ = F �H. Then

(i) if F ′ is not empty, then F ′ is onto, and

(ii) if F is total, then F ′ is total, and

(iii) if F is one-to-one, then F ′ is one-to-one, and

(iv) if F is directed, then F ′ is directed, and

(v) if F is semi-continuous, then F ′ is semi-continuous, and

(vi) if F is continuous and FE is one-to-one, then F ′ is continuous, and

(vii) if F is semi-directed-continuous, then F ′ is semi-directed-continuous,
and

(viii) if F is directed-continuous and FE is one-to-one, then F ′ is directed-
continuous.

The theorem is a consequence of (85) and (86).

(110) Suppose F ′ = F �H. Then

(i) if F is weak subgraph embedding, then F ′ is weak subgraph embed-
ding, and

(ii) if F is strong subgraph embedding, then F ′ is isomorphism, and

(iii) if F is directed and strong subgraph embedding, then F ′ is directed-
isomorphism.

The theorem is a consequence of (109).
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11. Into GLIB 013

Now we state the propositions:

(111) Let us consider a vertex-finite, directed-simple graph G1, a directed
graph complement G2 of G1, a vertex v1 of G1, and a vertex v2 of G2.
Suppose v1 = v2. Then

(i) v2.inDegree() = G1.order()− (v1.inDegree() + 1), and

(ii) v2.outDegree() = G1.order()− (v1.outDegree() + 1), and

(iii) v2.degree() = 2 · (G1.order())− (v1.degree() + 2).

(112) Let us consider a vertex-finite, simple graph G1, a graph complement
G2 of G1, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v2.degree() = G1.order()− (v1.degree() + 1).

(113) Let us consider a vertex-finite, directed-simple graph G, and a vertex v
of G. Then

(i) v.inDegree() < G.order(), and

(ii) v.outDegree() < G.order().

(114) Let us consider a vertex-finite, simple graph G, and a vertex v of G.
Then v.degree() < G.order().

One can check that every graph which is 1-edge is also non-multi.

12. Into GLIB 014

Let S be a ∪-tolerating, graph-membered set. Observe that every subset of
S is ∪-tolerating.

Now we state the proposition:

(115) Let us consider graph-membered sets S1, S2. Suppose S1 ⊆ S2. Then

(i) the vertices of S1 ⊆ the vertices of S2, and

(ii) the edges of S1 ⊆ the edges of S2, and

(iii) the source of S1 ⊆ the source of S2, and

(iv) the target of S1 ⊆ the target of S2.

Let us consider a graph union set S, a graph union G of S, and objects e,
v, w. Now we state the propositions:

(116) If e joins v to w in G, then there exists an element H of S such that e
joins v to w in H.

(117) If e joins v and w in G, then there exists an element H of S such that e
joins v and w in H. The theorem is a consequence of (116).
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Let us consider graph union sets S1, S2, a graph union G1 of S1, and a graph
union G2 of S2. Now we state the propositions:

(118) If for every element H2 of S2, there exists an element H1 of S1 such that
H2 is a subgraph of H1, then G2 is a subgraph of G1. The theorem is
a consequence of (116).

(119) If S2 ⊆ S1, then G2 is a subgraph of G1. The theorem is a consequence
of (118).

Let us consider graphs G1, G2 and a graph union G of G1 and G2. Now we
state the propositions:

(120) If G1 toleratesG2 and the vertices of G1 misses the vertices of G2, then
G.order() = G1.order() +G2.order().

(121) If G1 toleratesG2 and the edges of G1 misses the edges of G2, then
G.size() = G1.size() +G2.size().

(122) Let us consider connected graphs G1, G2, and a graph union G of G1

and G2. If the vertices of G1 meets the vertices of G2, then G is connected.

(123) Let us consider graphs G1, G2, a graph union G of G1 and G2, and a walk
W of G. Suppose G1 toleratesG2 and the vertices of G1 misses the vertices
of G2. Then W is a walk of G1 or a walk of G2.

(124) Let us consider graphs G1, G2, a graph union G of G1 and G2, a vertex v1

of G1, and a vertex v of G. Suppose the vertices of G1 misses the vertices
of G2. If v = v1, then G.reachableFrom(v) = G1.reachableFrom(v1). The
theorem is a consequence of (123).

(125) Let us consider graphs G1, G2, a graph union G of G1 and G2, a vertex
v2 of G2, and a vertex v of G. Suppose G1 toleratesG2 and the vertices
of G1 misses the vertices of G2. If v = v2, then G.reachableFrom(v) =
G2.reachableFrom(v2). The theorem is a consequence of (123).

(126) Let us consider graphs G1, G2, and a graph union G of G1 and G2.
Suppose G1 toleratesG2 and the vertices of G1 misses the vertices of G2.
Then

(i) G.componentSet() = G1.componentSet() ∪G2.componentSet(), and

(ii) G.numComponents() = G1.numComponents()+G2.numComponents().

The theorem is a consequence of (124) and (125).
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13. Into GLUNIR00

Let us consider a non empty set V and a binary relation E on V . Now we
state the propositions:

(127) createGraph(V,E).loops() = E ∩ idV .

(128) createGraph(V,E \(idV )) is a subgraph of createGraph(V,E) with loops
removed. The theorem is a consequence of (127).
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1. Preliminaries

Let L1, L2 be double loop structures. We say that L1 ≈ L2 if and only if

(Def. 1) the double loop structure of L1 = the double loop structure of L2.

One can verify that the predicate is reflexive and symmetric.
Now we state the propositions:

(1) Let us consider rings R, S. Then R ≈ S if and only if there exists
a function f from R into S such that f = idR and f is isomorphism.

(2) Let us consider strict rings R, S. Then R ≈ S if and only if R = S.

Let F1, F2 be fields. Let us note that F1 ≈ F2 if and only if the condition
(Def. 2) is satisfied.

c© 2021 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)39

https://sciendo.com/journal/forma
https://orcid.org/0000-0001-9587-8737
http://zbmath.org/classification/?q=cc:12F05
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/field_7.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


40 christoph schwarzweller et al.

(Def. 2) F1 is a subfield of F2 and F2 is a subfield of F1.

Now we state the proposition:

(3) Let us consider a field F , an extension E of F , and a subset T of E.
Then FAdj(F, T ) ≈ F if and only if T is a subset of F .

Let us consider a field F and extensions E1, E2 of F . Now we state the
propositions:

(4) If E1 ≈ E2, then VecSp(E1, F ) = VecSp(E2, F ).

(5) If E1 ≈ E2, then deg(E1, F ) = deg(E2, F ). The theorem is a consequence
of (4).

Let F be a field and E be an extension of F . Note that there exists an exten-
sion of F which is E-homomorphic and there exists an extension of F which is
E-monomorphic and there exists an extension of F which is E-isomorphic.

Let R be a ring and a, b be elements of R. One can check that the functor
{a, b} yields a subset of R. Let F be a field, V be a vector space over F , and a

be an element of V . Note that the functor {a} yields a subset of V . Let a, b be
elements of V . Let us observe that the functor {a, b} yields a subset of V . Let
us note that every basis of V is linearly independent.

Now we state the proposition:

(6) Let us consider a field F , a vector space V over F , and a subset X of V .
Then X is linearly independent if and only if for every linear combinations
l1, l2 of X such that

∑
l1 =

∑
l2 holds l1 = l2.

Let F be a field and E be an extension of F . Observe that every basis of
VecSp(E,F ) is non empty and deg(E,F ) is non zero.

Let E be an F -finite extension of F . Observe that every basis of VecSp(E,F )
is finite. Let us consider a field F and an extension E of F . Now we state the
propositions:

(7) deg(E,F ) = 1 if and only if the carrier of E = the carrier of F .

(8) deg(E,F ) = 1 if and only if E ≈ F . The theorem is a consequence of
(7).

(9) deg(E,F ) = 1 if and only if {1E} is a basis of VecSp(E,F ). The theorem
is a consequence of (7).

Let F be a field and E be an extension of F . One can check that there exists
a subset of VecSp(E,F ) which is non empty, finite, and linearly independent.

Now we state the proposition:

(10) Let us consider a field F , an extension E of F , and subsets T1, T2 of E.
Suppose T1 ⊆ T2. Then FAdj(F, T1) is a subfield of FAdj(F, T2).

Let F be a field and p be a polynomial over F . The functor Coeff(p) yielding
a subset of F is defined by the term
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(Def. 3) {p(i), where i is an element of N : p(i) 6= 0F }.

Let us note that Coeff(p) is finite. Now we state the propositions:

(11) Let us consider a field F , an extension E of F , and a polynomial p over
E. Suppose Coeff(p) ⊆ the carrier of F . Then p is a polynomial over F .

(12) Let us consider a field F , an extension E of F , and a non zero polynomial
p over E. Suppose Coeff(p) ⊆ the carrier of F . Then p is a non zero
polynomial over F . The theorem is a consequence of (11).

(13) Let us consider a ring R, a ring extension S of R, an element p of
the carrier of PolyRing(R), and an element q of the carrier of PolyRing(S).
If p = q, then Roots(S, p) = Roots(q).

Let R be an integral domain and p be a non zero element of the carrier of
PolyRing(R). Note that Roots(p) is finite. Let S be a domain ring extension of R.
One can check that Roots(S, p) is finite. Let F be a field and E be an extension
of F . Let us observe that there exists an extension of E which is F -extending.
Let E be an F -finite extension of F . Note that there exists an F -extending
extension of E which is F -finite and there exists an F -extending extension of E
which is E-finite. Now we state the propositions:

(14) Let us consider a field F , an element p of the carrier of PolyRing(F ),
an extension E of F , an E-extending extension U of F , an element a of
E, and an element b of U . If a = b, then ExtEval(p, a) = ExtEval(p, b).

(15) Let us consider a field F , an element p of the carrier of PolyRing(F ),
an extension E of F , and an element q of the carrier of PolyRing(E).
Suppose q = p. Let us consider an E-extending extension U of F , and
an element a of U . Then ExtEval(q, a) = ExtEval(p, a).

Let R be a ring, S be a ring extension of R, and a be an element of R. The
functor @(a, S) yielding an element of S is defined by the term

(Def. 4) a.

Let a be an element of S. We say that a is R-membered if and only if

(Def. 5) a ∈ the carrier of R.

One can verify that there exists an element of S which is R-membered.
Let a be an element of S. Assume a is R-membered. The functor @(R, a)

yielding an element of R is defined by the term

(Def. 6) a.

Let a be an R-membered element of S. Let us observe that @(R, a) reduces
to a. Let F be a field and E be an extension of F . One can check that there
exists an element of E which is non zero and F-algebraic.

Let a be an element of F . One can check that @(a,E) is F-algebraic.
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Let K be an E-extending extension of F and a be an F-algebraic element of
E. Note that @(a,K) is F-algebraic.

2. More on Finite Extensions

Now we state the propositions:

(16) Let us consider a field F , an extension E of F , and an E-extending
extension K of F . Then every linear combination of VecSp(K,F ) is a linear
combination of VecSp(K,E).

(17) Let us consider a field F , an extension E of F , an E-extending extension
K of F , a subset BE of VecSp(K,E), and a subset BF of VecSp(K,F ).
Suppose BF ⊆ BE . Then every linear combination of BF is a linear com-
bination of BE . The theorem is a consequence of (16).

(18) Let us consider a field F , an extension E of F , an E-extending exten-
sion K of F , a finite subset BE of VecSp(K,E), a finite subset BF of
VecSp(K,F ), a linear combination l1 of BF , and a linear combination l2
of BE . If l1 = l2 and BF ⊆ BE , then

∑
l1 =

∑
l2.

Proof: by induction on card(the support of l1).

Let F be a field, E be an extension of F , K be an F -extending extension
of E, BE be a subset of VecSp(E,F ), and BK be a subset of VecSp(K,E). The
functor Base(BE , BK) yielding a subset of VecSp((K qua extension of F ), F )
is defined by the term

(Def. 7) {a · b, where a, b are elements of K : a ∈ BE and b ∈ BK}.

Let BE be a non empty subset of VecSp(E,F ) and BK be a non empty
subset of VecSp(K,E). One can verify that Base(BE , BK) is non empty.

Now we state the propositions:

(19) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, a linearly independent subset BE of VecSp(E,F ), a linearly
independent subset BK of VecSp(K,E), and elements a1, a2, b1, b2 of K.
Suppose a1, a2 ∈ BE and b1, b2 ∈ BK . If a1 · b1 = a2 · b2, then a1 = a2 and
b1 = b2.

(20) Let us consider a field F , an extension E of F , an F -extending extension
K of E, a non empty, linearly independent subset BE of VecSp(E,F ),
and a non empty, linearly independent subset BK of VecSp(K,E). Then

Base(BE , BK) = BE ×BK .
Proof: Define P[object, object] ≡ there exist elements a, b of K such
that a ∈ BE and b ∈ BK and $1 = a · b and $2 = 〈〈a, b〉〉. Consider f being
a function from Base(BE , BK) into BE × BK such that for every object
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x such that x ∈ Base(BE , BK) holds P[x, f(x)]. rng f = BE × BK . f is
one-to-one. �

(21) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, a non empty, finite, linearly independent subset BE of
VecSp(E,F ), and a non empty, finite, linearly independent subset BK of

VecSp(K,E). Then Base(BE , BK) = BE · BK . The theorem is a conse-
quence of (20).

Let F be a field, E be an extension of F , K be an F -extending extension
of E, BE be a non empty, finite, linearly independent subset of VecSp(E,F ),
and BK be a non empty, finite, linearly independent subset of VecSp(K,E).
Observe that Base(BE , BK) is finite.

Let BK be a non empty, linearly independent subset of VecSp(K,E), l be
a linear combination of Base(BE , BK), and b be an element of K. The functor
down(l, b) yielding a linear combination of BE is defined by

(Def. 8) for every element a of K such that a ∈ BE and b ∈ BK holds it(a) =
l(a · b) and for every element a of E such that a /∈ BE or b /∈ BK holds
it(a) = 0F .

Let BK be a non empty, finite, linearly independent subset of VecSp(K,E).
The functor down l yielding a linear combination of BK is defined by

(Def. 9) for every element b of K such that b ∈ BK holds it(b) =
∑

down(l, b).

Let E be an F -finite extension of F , BE be a basis of VecSp(E,F ), and l1
be a linear combination of BK . The functor lift(l1, BE) yielding a linear combi-
nation of Base(BE , BK) is defined by

(Def. 10) for every element b of K such that b ∈ BK there exists a linear combi-
nation l2 of BE such that

∑
l2 = l1(b) and for every element a of K such

that a ∈ BE and a · b ∈ Base(BE , BK) holds it(a · b) = l2(a).

Now we state the propositions:

(22) Let us consider a field F , an F -finite extension E of F , an E-finite, F -
extending extension K of E, a basis BE of VecSp(E,F ), a basis BK of
VecSp(K,E), and a linear combination l of Base(BE , BK). Then lift(down l,
BE) = l. The theorem is a consequence of (6).

(23) Let us consider a field F , an F -finite extension E of F , an E-finite, F -
extending extension K of E, a basis BE of VecSp(E,F ), a basis BK of
VecSp(K,E), and a linear combination l of BK . Then down lift(l, BE) = l.

(24) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, a non empty, finite, linearly independent subset BE of
VecSp(E,F ), a non empty, finite, linearly independent subset BK of
VecSp(K,E), and linear combinations l, l1, l2 of Base(BE , BK). Suppo-
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se l = l1 + l2. Let us consider an element b of K. Then down(l, b) =
down(l1, b) + down(l2, b).

(25) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, a non empty, finite, linearly independent subset BE of
VecSp(E,F ), a non empty, finite, linearly independent subset BK of
VecSp(K,E), and linear combinations l, l1, l2 of Base(BE , BK). If l =
l1 + l2, then down l = down l1 + down l2. The theorem is a consequence of
(24).

Let us consider a field F , an F -finite extension E of F , an E-finite, F -
extending extension K of E, a basis BE of VecSp(E,F ), a basis BK of VecSp(K,
E), and a linear combination l of Base(BE , BK). Now we state the propositions:

(26)
∑
l =

∑
down l.

Proof: by induction on card(the support of l).

(27) If
∑
l = 0VecSp((K qua extension of F ),F ), then the support of l = ∅. The

theorem is a consequence of (26).

Let us consider a field F , an F -finite extension E of F , an E-finite, F -
extending extension K of E, a basis BE of VecSp(E,F ), and a basis BK of
VecSp(K,E). Now we state the propositions:

(28) Lin(Base(BE , BK)) = the vector space structure of VecSp((K qua exten-
sion of F ), F ). The theorem is a consequence of (23) and (26).

(29) Base(BE , BK) is a basis of VecSp((K qua extension of F ), F ). The the-
orem is a consequence of (27) and (28).

(30) Let us consider a field F , an F -finite extension E of F , and an E-finite, F -
extending extension K of E. Then deg(K,F ) = (deg(K,E)) · (deg(E,F )).
The theorem is a consequence of (29) and (21).

(31) Let us consider a field F , an extension E of F , and an E-extending
extension K of F . Suppose K is F -finite. Then

(i) E is F -finite, and

(ii) deg(E,F ) ¬ deg(K,F ), and

(iii) K is E-finite, and

(iv) deg(K,E) ¬ deg(K,F ).

Proof: Set BF = the basis of VecSp(K,F ). Reconsider BE = BF as
a finite subset of VecSp(K,E). Lin(BE) = VecSp(K,E). Consider I being
a subset of VecSp(K,E) such that I ⊆ BE and I is linearly independent
and Lin(I) = VecSp(K,E). �

Let F be a field and E be an F -finite extension of F . One can check that
every E-finite, F -extending extension of E is F -finite.
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3. Algebraic Extensions

Let F be a field and E be an extension of F . We say that E is F-algebraic
if and only if

(Def. 11) every element of E is F-algebraic.

One can verify that every extension of F which is F -finite is also F-algebraic.
Let E be an F-algebraic extension of F . Note that every element of E is

F-algebraic. Now we state the propositions:

(32) Let us consider a field F , and an extension E of F . Then E is F-algebraic
if and only if for every element a of E, FAdj(F, {a}) is F -finite.

(33) Let us consider a field F , an extension E of F , and an element a of E.
Then a is F-algebraic if and only if there exists an F -finite extension B of
F such that E is B-extending and a ∈ B.

Let F be a field, E be an extension of F , and T be a subset of E. We say
that T is F-algebraic if and only if

(Def. 12) for every element a of E such that a ∈ T holds a is F-algebraic.

One can verify that there exists a subset of E which is finite and F-algebraic.
Now we state the propositions:

(34) Let us consider a field F , an extension E of F , an element b of E, a subset
T of E, an extension E1 of FAdj(F, T ), and an element b1 of E1. Suppose
E1 = E and b1 = b. Then FAdj(F, {b} ∪ T ) = FAdj(FAdj(F, T ), {b1}).
Proof: {b} ∪ T ⊆ the carrier of FAdj(FAdj(F, T ), {b1}) by [6, (35),(36)].
FAdj(F, T ) is a subfield of FAdj(F, {b} ∪ T ). �

(35) Let us consider a field F , an extension E of F , an element b of E, a subset
T of E, an extension E1 of FAdj(F, {b}), and a subset T1 of E1. Suppose
E1 = E and T1 = T . Then FAdj(F, {b} ∪ T ) = FAdj(FAdj(F, {b}), T1).
Proof: {b} ∪ T ⊆ the carrier of FAdj(FAdj(F, {b}), T1) by [6, (35),(36)].
FAdj(F, {b}) is a subfield of FAdj(F, {b} ∪ T ). �

Let F be a field, E be an extension of F , and T be a finite, F-algebraic
subset of E. One can verify that FAdj(F, T ) is F -finite.

Now we state the propositions:

(36) Let us consider a field F , an extension E of F , and an F-algebraic ele-
ment a of E. Then E ≈ FAdj(F, {a}) if and only if deg MinPoly(a, F ) =
deg(E,F ). The theorem is a consequence of (5), (31), (30), and (8).

(37) Let us consider a field F , and an extension E of F . Then E is F -finite
if and only if there exists a finite, F-algebraic subset T of E such that
E ≈ FAdj(F, T ).
Proof: by induction on deg(E,F ).
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Let F be a field, E be an extension of F , and p be a non zero element of
the carrier of PolyRing(F ). Note that Roots(E, p) is F-algebraic.

Now we state the proposition:

(38) Let us consider a field F , an extension E of F , and a non zero element p
of the carrier of PolyRing(F ). Then FAdj(F,Roots(E, p)) is F-algebraic.

Let us consider a field F , an extension E of F , and an E-extending extension
K of F . Now we state the propositions:

(39) If K is E-algebraic and E is F-algebraic, then K is F-algebraic. The
theorem is a consequence of (12), (15), and (33).

(40) If K is F-algebraic, then K is E-algebraic and E is F-algebraic. The
theorem is a consequence of (15).

4. The Field of Algebraic Elements

Let F be a field, E be an extension of F , and a, b be F-algebraic elements
of E. Observe that FAdj(F, {a, b}) is F -finite and 0E is F-algebraic and 1E is
F-algebraic.

Let a, b be F-algebraic elements of E. One can verify that a+b is F-algebraic
and a− b is F-algebraic and a · b is F-algebraic.

Let a be an F-algebraic element of E. Let us note that −a is F-algebraic.
Let a be a non zero, F-algebraic element of E. Let us observe that a−1 is

F-algebraic.
The functor Alg-Elem(E) yielding a subset of E is defined by the term

(Def. 13) the set of all a where a is an F-algebraic element of E.

The functor Field-Alg-Elem(E) yielding a strict double loop structure is
defined by

(Def. 14) the carrier of it = Alg-Elem(E) and the addition of it = (the addition of
E) � (the carrier of it) and the multiplication of it = (the multiplication
of E) � (the carrier of it) and the one of it = 1E and the zero of it = 0E .

We introduce the notation F-Alg(E) as a synonym of Field-Alg-Elem(E).
Observe that F-Alg(E) is non degenerated and F-Alg(E) is Abelian, add-

associative, right zeroed, and right complementable and F-Alg(E) is commutati-
ve, associative, well unital, distributive, and almost left invertible and F-Alg(E)
is F -extending and F-Alg(E) is F-algebraic. Now we state the propositions:

(41) Let us consider a field F , and an extension E of F . Then F-Alg(E) is
an extension of F .

(42) Let us consider a field F , and an extension E of F . Then E is an extension
of F-Alg(E).
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(43) Let us consider a field F , an extension E of F , and an extension K of
E. Then F-Alg(K) is an extension of F-Alg(E).

(44) Let us consider a field F , and an F-algebraic extension E of F . Then
F-Alg(E) ≈ E.
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Summary. In this article, using the Mizar system [1], [2], first we give
a definition of a functional space which is constructed from all continuous func-
tions defined on a compact topological space [5]. We prove that this functional
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1. Real Vector Space of Continuous Functions

From now on S denotes a non empty topological space, T denotes a linear
topological space, and X denotes a non empty subset of the carrier of S.

Now we state the propositions:

(1) Let us consider a non empty topological space X, a non empty linear
topological space S, functions f , g from X into S, and a point x of X.
Suppose f is continuous at x and g is continuous at x. Then f + g is
continuous at x.
Proof: For every neighbourhood G of (f + g)(x), there exists a neighbo-
urhood H of x such that (f + g)◦H ⊆ G. �
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(2) Let us consider a non empty topological space X, a non empty linear
topological space S, a function f from X into S, a point x of X, and a real
number a. If f is continuous at x, then a · f is continuous at x.
Proof: For every neighbourhood G of (a · f)(x), there exists a neighbo-
urhood H of x such that (a · f)◦H ⊆ G. �

(3) Let us consider a non empty topological space X, a non empty linear
topological space S, and functions f , g from X into S. If f is continuous
and g is continuous, then f + g is continuous.
Proof: For every point x of X, f + g is continuous at x. �

(4) Let us consider a non empty topological space X, a non empty linear
topological space S, a function f from X into S, and a real number a. If
f is continuous, then a · f is continuous. The theorem is a consequence of
(2).

Let S be a non empty topological space and T be a non empty linear
topological space. The continuous functions of S and T yielding a subset of
RealVectSpace((the carrier of S), T ) is defined by the term

(Def. 1) {f , where f is a function from the carrier of S into the carrier of T : f
is continuous}.

Let us observe that the continuous functions of S and T is non empty and
functional.

Let us consider a non empty topological space S and a non empty linear
topological space T . Now we state the propositions:

(5) The continuous functions of S and T is linearly closed.
Proof: Set W = the continuous functions of S and T . For every vectors v,
u of RealVectSpace((the carrier of S), T ) such that v, u ∈ the continuous
functions of S and T holds v+u ∈ the continuous functions of S and T . For
every real number a and for every vector v of RealVectSpace((the carrier
of S), T ) such that v ∈W holds a · v ∈W . �

(6) 〈the continuous functions of S and T,Zero(the continuous functions
of S and T,RealVectSpace((the carrier of S), T )),Add(the continuous
functions of S and T,RealVectSpace((the carrier of S), T )),Mult(the con-
tinuous functions of S and T,RealVectSpace((the carrier of S), T ))〉 is
a subspace of RealVectSpace((the carrier of S), T ).

Let S be a non empty topological space and T be a non empty linear topo-
logical space.

One can verify that 〈the continuous functions of S and T,Zero(the continuous
functions of S and T,RealVectSpace((the carrier of S), T )),Add(the continuous
functions of S and T,RealVectSpace((the carrier of S), T )),Mult(the continuous
functions of S and T,RealVectSpace((the carrier of S), T ))〉 is Abelian, add-
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associative, right zeroed, right complementable, vector distributive, scalar di-
stributive, scalar associative, and scalar unital.

The R-vector space of continuous functions of S and T yielding a strict real
linear space is defined by the term

(Def. 2) 〈the continuous functions of S and T,Zero(the continuous functions
of S and T,RealVectSpace((the carrier of S), T )),Add(the continuous
functions of S and T,RealVectSpace((the carrier of S), T )),Mult(the con-
tinuous functions of S and T,RealVectSpace((the carrier of S), T ))〉.

Observe that the R-vector space of continuous functions of S and T is consti-
tuted functions. Let f be a vector of the R-vector space of continuous functions
of S and T and v be an element of S. Let us note that the functor f(v) yields
a vector of T . Now we state the propositions:

(7) Let us consider a non empty topological space S, a non empty linear
topological space T , and vectors f , g, h of the R-vector space of continuous
functions of S and T . Then h = f + g if and only if for every element x of
S, h(x) = f(x) + g(x). The theorem is a consequence of (5).

(8) Let us consider a non empty topological space S, a non empty linear
topological space T , vectors f , h of the R-vector space of continuous func-
tions of S and T , and a real number a. Then h = a · f if and only if for
every element x of S, h(x) = a · f(x). The theorem is a consequence of
(5).

(9) Let us consider a non empty topological space S, and a non empty
linear topological space T . Then 0α = (the carrier of S) 7−→ 0T , where α
is the R-vector space of continuous functions of S and T . The theorem is
a consequence of (5).

Let S be a non empty topological space and T be a non empty linear topo-
logical space. Let us note that the carrier of the R-vector space of continuous
functions of S and T is functional.

2. Real Vector Space of Continuous Functions (Norm Space
Version)

In the sequel S, T denote real normed spaces and X denotes a non empty
subset of the carrier of S.

Now we state the proposition:

(10) Let us consider a point x of T . Then (the carrier of S) 7−→ x is continuous
on the carrier of S.

Let S, T be real normed spaces. The continuous functions of S and T yielding
a subset of RealVectSpace((the carrier of S), T ) is defined by the term
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(Def. 3) {f , where f is a function from the carrier of S into the carrier of T : f
is continuous on the carrier of S}.

One can check that the continuous functions of S and T is non empty and
functional.

Let us consider real normed spaces S, T . Now we state the propositions:

(11) The continuous functions of S and T is linearly closed.
Proof: Set W = the continuous functions of S and T . For every vectors v,
u of RealVectSpace((the carrier of S), T ) such that v, u ∈ the continuous
functions of S and T holds v+u ∈ the continuous functions of S and T . For
every real number a and for every vector v of RealVectSpace((the carrier
of S), T ) such that v ∈W holds a · v ∈W by [4, (27)]. �

(12) 〈the continuous functions of S and T,Zero(the continuous functions
of S and T,RealVectSpace((the carrier of S), T )),Add(the continuous
functions of S and T,RealVectSpace((the carrier of S), T )),Mult(the con-
tinuous functions of S and T,RealVectSpace((the carrier of S), T ))〉 is
a subspace of RealVectSpace((the carrier of S), T ).

Let S, T be real normed spaces. Observe that 〈the continuous functions of S
and T,Zero(the continuous functions of S and T,RealVectSpace((the carrier of
S), T )),Add(the continuous functions of S and T,RealVectSpace((the carrier of
S), T )),Mult(the continuous functions of S and T,RealVectSpace((the carrier
of S), T ))〉 is Abelian, add-associative, right zeroed, right complementable, vec-
tor distributive, scalar distributive, scalar associative, and scalar unital.

The R-vector space of continuous functions of S and T yielding a strict real
linear space is defined by the term

(Def. 4) 〈the continuous functions of S and T,Zero(the continuous functions
of S and T,RealVectSpace((the carrier of S), T )),Add(the continuous
functions of S and T,RealVectSpace((the carrier of S), T )),Mult(the con-
tinuous functions of S and T,RealVectSpace((the carrier of S), T ))〉.

Note that the R-vector space of continuous functions of S and T is consti-
tuted functions.

Let f be a vector of the R-vector space of continuous functions of S and T

and v be an element of S. One can check that the functor f(v) yields a vector
of T . Now we state the propositions:

(13) Let us consider real normed spaces S, T , and vectors f , g, h of the R-
vector space of continuous functions of S and T . Then h = f + g if and
only if for every element x of S, h(x) = f(x) + g(x). The theorem is
a consequence of (11).

(14) Let us consider real normed spaces S, T , vectors f , h of the R-vector
space of continuous functions of S and T , and a real number a. Then
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h = a · f if and only if for every element x of S, h(x) = a · f(x). The
theorem is a consequence of (11).

Let us consider real normed spaces S, T . Now we state the propositions:

(15) The R-vector space of continuous functions of S and T is a subspace of
RealVectSpace((the carrier of S), T ).

(16) 0α = (the carrier of S) 7−→ 0T , where α is the R-vector space of conti-
nuous functions of S and T . The theorem is a consequence of (11).

Let S, T be real normed spaces and f be an object. Assume f ∈ the continuous
functions of S and T . The functor PartFuncs(f, S, T ) yielding a function from
S into T is defined by

(Def. 5) it = f and it is continuous on the carrier of S.

3. Normed Topological Linear Space

We consider normed real linear topological structures which extend real li-
near topological structures and normed structures and are systems

〈〈a carrier, a zero, an addition, an external multiplication,

a topology, a norm 〉〉

where the carrier is a set, the zero is an element of the carrier, the addition
is a binary operation on the carrier, the external multiplication is a function
from R × (the carrier) into the carrier, the topology is a family of subsets of
the carrier, the norm is a function from the carrier into R.

Let X be a non empty set, O be an element of X, F be a binary operation
on X, G be a function from R×X into X, T be a family of subsets of X, and
N be a function from X into R. Observe that 〈〈X,O, F,G, T,N〉〉 is non empty
and there exists a normed real linear topological structure which is strict and
non empty.

Let X be a non empty normed real linear topological structure. We say that
X is normed structure if and only if

(Def. 6) there exists a real normed space R such that R = the normed structure
of X and the topology of X = the topology of TopSpaceNormR.

One can verify that there exists a non empty normed real linear topological
structure which is strict, add-continuous, mult-continuous, topological space-
like, Abelian, add-associative, right zeroed, right complementable, vector distri-
butive, scalar distributive, scalar associative, scalar unital, discernible, reflexive,
real normed space-like, normed structure, and T2.
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A normed linear topological space is a strict, add-continuous, mult-continuo-
us, topological space-like, Abelian, add-associative, right zeroed, right com-
plementable, vector distributive, scalar distributive, scalar associative, scalar
unital, discernible, reflexive, real normed space-like, normed structure, T2,
non empty normed real linear topological structure. Now we state the proposi-
tions:

(17) Every normed linear topological space is a linear topological space.

(18) Every normed linear topological space is a real normed space.

(19) Let us consider a normed linear topological space X, and a real normed
space R. Suppose R = the normed structure of X. Let us consider points
x, y of X, points x1, y1 of R, and a real number a. Suppose x1 = x and
y1 = y. Then

(i) x+ y = x1 + y1, and

(ii) a · x = a · x1, and

(iii) x− y = x1 − y1, and

(iv) ‖x‖ = ‖x1‖.

Let us consider a normed linear topological space X, a sequence S of X, and
a point x of X. Now we state the propositions:

(20) S is convergent to x if and only if for every real number r such that
0 < r there exists a natural number m such that for every natural number
n such that m ¬ n holds ‖S(n) − x‖ < r. The theorem is a consequence
of (19).

(21) S is convergent and x = limS if and only if for every real number r
such that 0 < r there exists a natural number m such that for every
natural number n such that m ¬ n holds ‖S(n)− x‖ < r. The theorem is
a consequence of (20).

(22) Let us consider a normed linear topological space X, and a sequence S
of X. Suppose S is convergent. Let us consider a real number r. Suppose
0 < r. Then there exists a natural number m such that for every natural
number n such that m ¬ n holds ‖S(n) − limS‖ < r. The theorem is
a consequence of (20).

(23) Let us consider a normed linear topological space X, and a subset V of
X. Then V is open if and only if for every point x of X such that x ∈ V
there exists a real number r such that r > 0 and {y, where y is a point
of X : ‖x− y‖ < r} ⊆ V . The theorem is a consequence of (19).

Let us consider a normed linear topological space X, a point x of X, a real
number r, and a subset V of X. Now we state the propositions:
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(24) If V = {y, where y is a point of X : ‖x − y‖ < r}, then V is open. The
theorem is a consequence of (19).

(25) Suppose V = {y, where y is a point of X : ‖x − y‖ ¬ r}. Then V is
closed. The theorem is a consequence of (19).

Now we state the propositions:

(26) Let us consider a normed linear topological space X, a real normed space
R, a sequence t of X, and a sequence s of R. Suppose R = the normed
structure of X and t = s and t is convergent. Then

(i) s is convergent, and

(ii) lim s = lim t.

The theorem is a consequence of (22) and (19).

(27) Let us consider a normed linear topological space X, a real normed space
R, a sequence s of X, and a sequence t of R. Suppose R = the normed
structure of X and s = t. Then s is convergent if and only if t is convergent.
The theorem is a consequence of (26), (19), and (21).

(28) Let us consider a normed linear topological space X, and a subset V
of X. Then V is closed if and only if for every sequence s1 of X such
that rng s1 ⊆ V and s1 is convergent holds lim s1 ∈ V . The theorem is
a consequence of (26) and (27).

(29) Let us consider a normed linear topological space X, a real normed
space R, a subset V of X, and a subset W of R. Suppose R = the normed
structure of X and the topology of X = the topology of TopSpaceNormR

and V = W . Then V is closed if and only if W is closed. The theorem is
a consequence of (27), (26), and (28).

(30) Let us consider a normed linear topological space X, a subset V of X,
and a point x of X. Then V is a neighbourhood of x if and only if there
exists a real number r such that r > 0 and {y, where y is a point of
X : ‖y − x‖ < r} ⊆ V . The theorem is a consequence of (23) and (24).

(31) Let us consider a normed linear topological space X, and a subset V of
X. Then V is compact if and only if for every sequence s1 of X such that
rng s1 ⊆ V there exists a sequence s2 of X such that s2 is subsequence of
s1 and convergent and lim s2 ∈ V . The theorem is a consequence of (27)
and (26).

(32) Let us consider a normed linear topological space X, a real normed
space R, a subset V of X, and a subset W of R. Suppose R = the normed
structure of X and the topology of X = the topology of TopSpaceNormR

and V = W . Then V is compact if and only if W is compact. The theorem
is a consequence of (31), (26), and (27).
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4. Real Norm Space of Continuous Functions

Now we state the propositions:

(33) Let us consider sets X, X1, a real normed space S, and a partial function
f from S to R. Suppose f is continuous on X and X1 ⊆ X. Then f is
continuous on X1.
Proof: f�X1 is continuous in r. �

(34) Let us consider a non empty, compact topological space S, a normed
linear topological space T , and a set x. Suppose x ∈ the continuous
functions of S and T . Then x ∈ BdFuncs((the carrier of S), T ).

(35) Let us consider a non empty, compact topological space S, and a normed
linear topological space T . Then the R-vector space of continuous func-
tions of S and T is a subspace of the set of bounded real sequences from
the carrier of S into T . The theorem is a consequence of (34) and (5).

Let S be a non empty, compact topological space and T be a normed linear
topological space. The continuous functions norm of S and T yielding a function
from the continuous functions of S and T into R is defined by the term

(Def. 7) BdFuncsNorm((the carrier of S), T )�(the continuous functions of S and
T ).

The R-norm space of continuous functions of S and T yielding a strict nor-
med structure is defined by the term

(Def. 8) 〈the continuous functions of S and T,Zero(the continuous functions
of S and T,RealVectSpace((the carrier of S), T )),Add(the continuous
functions of S and T,RealVectSpace((the carrier of S), T )),Mult(the con-
tinuous functions of S and T,RealVectSpace((the carrier of S), T )), the co-
ntinuous functions norm of S and T 〉.

One can check that the R-norm space of continuous functions of S and T is
non empty.

Now we state the propositions:

(36) Let us consider a non empty, compact topological space S, a normed
linear topological space T , a point x of the R-norm space of continuous
functions of S and T , and a point y of the real normed space of bounded
functions from the carrier of S into T . If x = y, then ‖x‖ = ‖y‖.

(37) Let us consider a non empty, compact topological space S, a normed
linear topological space T , a point f of the R-norm space of continuous
functions of S and T , and a function g from S into T . Suppose f = g. Let us
consider a point t of S. Then ‖g(t)‖ ¬ ‖f‖. The theorem is a consequence
of (34).
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(38) Let us consider a non empty, compact topological space S, a normed
linear topological space T , points x1, x2 of the R-norm space of continuous
functions of S and T , and points y1, y2 of the real normed space of bounded
functions from the carrier of S into T . If x1 = y1 and x2 = y2, then
x1 + x2 = y1 + y2. The theorem is a consequence of (5).

(39) Let us consider a non empty, compact topological space S, a normed
linear topological space T , a real number a, a point x of the R-norm space
of continuous functions of S and T , and a point y of the real normed
space of bounded functions from the carrier of S into T . If x = y, then
a · x = a · y. The theorem is a consequence of (5).

Let S be a non empty, compact topological space and T be a normed linear
topological space. One can verify that the R-norm space of continuous functions
of S and T is non empty, right complementable, Abelian, add-associative, ri-
ght zeroed, vector distributive, scalar distributive, scalar associative, and scalar
unital.

Let us consider a non empty, compact topological space S and a normed
linear topological space T . Now we state the propositions:

(40) (The carrier of S) 7−→ 0T = 0α, where α is the R-norm space of conti-
nuous functions of S and T . The theorem is a consequence of (9).

(41) 0α = 0β, where α is the R-norm space of continuous functions of S and
T and β is the real normed space of bounded functions from the carrier of
S into T . The theorem is a consequence of (40).

Let us consider a non empty, compact topological space S, a normed linear
topological space T , and a point F of the R-norm space of continuous functions
of S and T . Now we state the propositions:

(42) 0 ¬ ‖F‖. The theorem is a consequence of (34).

(43) If F = 0α, then 0 = ‖F‖, where α is the R-norm space of continuous
functions of S and T . The theorem is a consequence of (34) and (40).

(44) Let us consider a non empty, compact topological space S, a normed
linear topological space T , points F , G, H of the R-norm space of conti-
nuous functions of S and T , and functions f , g, h from S into T . Suppose
f = F and g = G and h = H. Then H = F + G if and only if for every
element x of S, h(x) = f(x) + g(x). The theorem is a consequence of (7).

(45) Let us consider a real number a, a non empty, compact topological space
S, a normed linear topological space T , points F , G of the R-norm space
of continuous functions of S and T , and functions f , g from S into T .
Suppose f = F and g = G. Then G = a ·F if and only if for every element
x of S, g(x) = a · f(x). The theorem is a consequence of (8).

(46) Let us consider a real number a, a non empty, compact topological space
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S, a normed linear topological space T , and points F , G of the R-norm
space of continuous functions of S and T . Then

(i) ‖F‖ = 0 iff F = 0α, and

(ii) ‖a · F‖ = |a| · ‖F‖, and

(iii) ‖F +G‖ ¬ ‖F‖+ ‖G‖,

where α is the R-norm space of continuous functions of S and T . The
theorem is a consequence of (34), (38), (36), (41), and (39).

Let S be a non empty, compact topological space and T be a normed linear
topological space. Let us observe that the R-norm space of continuous functions
of S and T is reflexive, discernible, and real normed space-like.

Now we state the propositions:

(47) Let us consider a non empty, compact topological space S, a normed
linear topological space T , points x1, x2 of the R-norm space of continuous
functions of S and T , and points y1, y2 of the real normed space of bounded
functions from the carrier of S into T . If x1 = y1 and x2 = y2, then
x1 − x2 = y1 − y2. The theorem is a consequence of (39) and (38).

(48) Let us consider a non empty, compact topological space S, a normed
linear topological space T , points F , G, H of the R-norm space of conti-
nuous functions of S and T , and functions f , g, h from S into T . Suppose
f = F and g = G and h = H. Then H = F − G if and only if for every
element x of S, h(x) = f(x)− g(x). The theorem is a consequence of (44).

(49) Let us consider a non empty topological space S, a normed linear to-
pological space T , a sequence H of partial functions from the carrier of
S into the carrier of T , and a function L1 from S into T . Suppose H is
uniform-convergent on the carrier of S and for every natural number n,
there exists a function H1 from S into T such that H1 = H(n) and H1 is
continuous and L1 = limαH. Then L1 is continuous, where α is the carrier
of S.
Proof: For every point x of S, L1 is continuous at x by (30), [7, (33),(11)].
�

(50) Let us consider a non empty, compact topological space S, a normed
linear topological space T , and a subset Y of the carrier of the real normed
space of bounded functions from the carrier of S into T . Suppose Y =
the continuous functions of S and T . Then Y is closed. The theorem is
a consequence of (49).

(51) Let us consider a non empty, compact topological space S, and a nor-
med linear topological space T . Suppose T is complete. Let us consider
a sequence s3 of the R-norm space of continuous functions of S and T .
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If s3 is Cauchy sequence by norm, then s3 is convergent. The theorem is
a consequence of (34), (47), (36), and (50).

(52) Let us consider a non empty, compact topological space S, and a nor-
med linear topological space T . Suppose T is complete. Then the R-norm
space of continuous functions of S and T is complete. The theorem is
a consequence of (51).

5. Some Properties of Support

Let X be a zero structure and f be a (the carrier of X)-valued function. The
functor support f yielding a set is defined by

(Def. 9) for every object x, x ∈ it iff x ∈ dom f and f/x 6= 0X .

Now we state the proposition:

(53) Let us consider a zero structure X, and a (the carrier of X)-valued func-
tion f . Then support f ⊆ dom f .

Let X be a non empty topological space, T be a real linear space, and f

be a function from X into T . One can verify that the functor support f yields
a subset of X. Now we state the propositions:

(54) Let us consider a non empty topological space X, a real linear space T ,
and functions f , g from X into T . Then support(f + g) ⊆ support f ∪
support g.

(55) Let us consider a non empty topological space X, a real linear space T ,
a function f from X into T , and a real number a. Then support(a · f) ⊆
support f .

6. Space of Real-valued Continuous Functionals with Bounded
Support

Let X be a non empty topological space and T be a normed linear topo-
logical space. The functor C0Functions(X,T ) yielding a non empty subset of
RealVectSpace((the carrier of X), T ) is defined by the term

(Def. 10) {f , where f is a function from the carrier of X into the carrier of T : f
is continuous and there exists a non empty subset Y of X such that Y is
compact and support f ⊆ Y }.

Now we state the propositions:

(56) Let us consider a non empty topological space X, a normed linear topo-
logical space T , and elements v, u of RealVectSpace((the carrier of X), T ).
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Suppose v, u ∈ C0Functions(X,T ). Then v+u ∈ C0Functions(X,T ). The
theorem is a consequence of (5) and (54).

(57) Let us consider a non empty topological space X, a normed linear topolo-
gical space T , a real number a, and an element u of RealVectSpace((the car-
rier ofX), T ). Suppose u ∈ C0Functions(X,T ). Then a·u ∈ C0Functions(X,
T ). The theorem is a consequence of (5) and (55).

(58) Let us consider a non empty topological space X, and a normed linear
topological space T . Then C0Functions(X,T ) is linearly closed.

Let X be a non empty topological space and T be a normed linear topological
space. Let us note that C0Functions(X,T ) is non empty and linearly closed.

The functor RVSPC0Functions(X,T ) yielding a real linear space is defined
by the term

(Def. 11) 〈C0Functions(X,T ),Zero(C0Functions(X,T ),RealVectSpace((the carrier
ofX), T )),Add(C0Functions(X,T ),RealVectSpace((the carrier ofX), T )),
Mult(C0Functions(X,T ),RealVectSpace((the carrier of X), T ))〉.

Now we state the propositions:

(59) Let us consider a non empty topological space X, and a normed li-
near topological space T . Then RVSPC0Functions(X,T ) is a subspace of
RealVectSpace((the carrier of X), T ).

(60) Let us consider a non empty topological space X, a normed linear to-
pological space T , and a set x. Suppose x ∈ C0Functions(X,T ). Then
x ∈ BdFuncs((the carrier of X), T ).
Proof: Consider f being a function from the carrier of X into the carrier
of T such that f = x and f is continuous and there exists a non empty
subset Y of X such that Y is compact and support f ⊆ Y. Consider Y
being a non empty subset of X such that Y is compact and support f ⊆ Y.
Consider K being a real number such that 0 ¬ K and for every point x
of X such that x ∈ Y holds ‖f(x)‖ ¬ K. For every element x of X,
‖f(x)‖ ¬ K. �

Let X be a non empty topological space and T be a normed linear to-
pological space. The functor NormC0Functions(X,T ) yielding a function from
C0Functions(X,T ) into R is defined by the term

(Def. 12) BdFuncsNorm((the carrier of X), T )� C0Functions(X,T ).

The functor NormSpC0Functions(X,T ) yielding a normed structure is defi-
ned by the term

(Def. 13) 〈C0Functions(X,T ),Zero(C0Functions(X,T ),RealVectSpace((the carrier
ofX), T )),Add(C0Functions(X,T ),RealVectSpace((the carrier ofX), T )),
Mult(C0Functions(X,T ),RealVectSpace((the carrier of X), T )),
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NormC0Functions(X,T )〉.
Let us note that NormSpC0Functions(X,T ) is strict and non empty.
Now we state the proposition:

(61) Let us consider a non empty topological space X, a normed linear to-
pological space T , and a set x. Suppose x ∈ C0Functions(X,T ). Then
x ∈ the continuous functions of X and T .

Let us consider a non empty topological space X and a normed linear topo-
logical space T . Now we state the propositions:

(62) 0RVSPC0Functions(X,T ) = X 7−→ 0T .

(63) 0NormSpC0Functions(X,T ) = X 7−→ 0T . The theorem is a consequence of
(62).

(64) Let us consider a non empty topological space X, a normed linear to-
pological space T , points x1, x2 of NormSpC0Functions(X,T ), and points
y1, y2 of the real normed space of bounded functions from the carrier of
X into T . If x1 = y1 and x2 = y2, then x1 + x2 = y1 + y2.

(65) Let us consider a non empty topological space X, a normed linear topo-
logical space T , a real number a, a point x of NormSpC0Functions(X,T ),
and a point y of the real normed space of bounded functions from the car-
rier of X into T . If x = y, then a · x = a · y.

(66) Let us consider a real number a, a non empty topological space X, a nor-
med linear topological space T , and points F , G of NormSpC0Functions(X,
T ). Then

(i) ‖F‖ = 0 iff F = 0NormSpC0Functions(X,T ), and

(ii) ‖a · F‖ = |a| · ‖F‖, and

(iii) ‖F +G‖ ¬ ‖F‖+ ‖G‖.

Proof: ‖F‖ = 0 iff F = 0NormSpC0Functions(X,T ). ‖a · F‖ = |a| · ‖F‖.
‖F +G‖ ¬ ‖F‖+ ‖G‖ by (60), (64) [6, (21)]. �

(67) Let us consider a non empty topological space X, and a normed linear
topological space T . Then NormSpC0Functions(X,T ) is real normed space-
like.

Let X be a non empty topological space and T be a normed linear topological
space. Let us note that NormSpC0Functions(X,T ) is reflexive, discernible, real
normed space-like, vector distributive.

And let us observe that NormSpC0Functions(X,T ) is scalar distributive,
scalar associative, scalar unital, Abelian, add-associative, right zeroed, and right
complementable.

Now we state the proposition:
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(68) Let us consider a non empty topological space X, and a normed linear
topological space T . Then NormSpC0Functions(X,T ) is a real normed
space.
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Summary. In this paper problems 14, 15, 29, 30, 34, 78, 83, 97, and 116
from [6] are formalized, using the Mizar formalism [1], [2], [3]. Some properties
related to the divisibility of prime numbers were proved. It has been shown that
the equation of the form p2 + 1 = q2 + r2, where p, q, r are prime numbers, has
at least four solutions and it has been proved that at least five primes can be
represented as the sum of two fourth powers of integers. We also proved that for
at least one positive integer, the sum of the fourth powers of this number and its
successor is a composite number. And finally, it has been shown that there are
infinitely many odd numbers k greater than zero such that all numbers of the
form 22

n

+ k (n = 1, 2, . . . ) are composite.
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1. Preliminaries

Let D be a non empty set, f be a D-valued finite sequence, and i be a natural
number. One can verify that f�i is D-valued.

From now on a, b, i, k, m, n denote natural numbers, s, z denote non zero
natural numbers, and c denotes a complex number.

Now we state the propositions:

(1) c5 = c · c · c · c · c.
(2) c6 = c · c · c · c · c · c. The theorem is a consequence of (1).
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(3) c7 = c · c · c · c · c · c · c. The theorem is a consequence of (2).

(4) c8 = c · c · c · c · c · c · c · c. The theorem is a consequence of (3).

(5) c9 = c · c · c · c · c · c · c · c · c. The theorem is a consequence of (4).

(6) c10 = c · c · c · c · c · c · c · c · c · c. The theorem is a consequence of (5).

(7) If a = n− 1 and k < n, then k = 0 or ... or k = a.

(8) −1 div 3 = −1.

(9) −1 mod 3 = 2. The theorem is a consequence of (8).

(10) 30 is not prime.

2. Divisibility of Natural Numbers

Now we state the propositions:

(11) If n < 31 and n is prime, then n = 2 or n = 3 or n = 5 or n = 7 or
n = 11 or n = 13 or n = 17 or n = 19 or n = 23 or n = 29. The theorem
is a consequence of (10).

(12) If k < 961 and n ·n ¬ k and n is prime, then n = 2 or n = 3 or n = 5 or
n = 7 or n = 11 or n = 13 or n = 17 or n = 19 or n = 23 or n = 29. The
theorem is a consequence of (11).

(13) 113 is prime.
Proof: For every element n of N such that 1 < n and n · n ¬ 113 and n

is prime holds n - 113. �

(14) 337 is prime.
Proof: For every element n of N such that 1 < n and n · n ¬ 337 and n

is prime holds n - 337. �

(15) 881 is prime.
Proof: For every element n of N such that 1 < n and n · n ¬ 881 and n

is prime holds n - 881 by [4, (9)], (12). �

(16) If k < a, then a · b+ k mod a = k.

(17) a | as + az.

(18) a | as − az.
(19) a | as · (az).

Let p, q be prime natural numbers. One can verify that p · q is non prime.
Now we state the propositions:

(20) 11 | 2341 − 2. The theorem is a consequence of (6).

(21) 31 | 2341 − 2. The theorem is a consequence of (1).

(22) There exists k such that n = z · k + 0 or ... or n = z · k + (z − 1).
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(23) There exists k such that n = 3 · k or n = 3 · k + 1 or n = 3 · k + 2. The
theorem is a consequence of (22).

(24) There exists k such that n = 4 · k or n = 4 · k + 1 or n = 4 · k + 2 or
n = 4 · k + 3. The theorem is a consequence of (22).

(25) There exists k such that n = 5 · k or n = 5 · k + 1 or n = 5 · k + 2 or
n = 5 · k + 3 or n = 5 · k + 4. The theorem is a consequence of (22).

(26) There exists k such that n = 6 · k or n = 6 · k + 1 or n = 6 · k + 2 or
n = 6 ·k+ 3 or n = 6 ·k+ 4 or n = 6 ·k+ 5. The theorem is a consequence
of (22).

(27) There exists k such that n = 7 · k or n = 7 · k + 1 or n = 7 · k + 2 or
n = 7 · k+ 3 or n = 7 · k+ 4 or n = 7 · k+ 5 or n = 7 · k+ 6. The theorem
is a consequence of (22).

(28) There exists k such that n = 8 · k or n = 8 · k + 1 or n = 8 · k + 2 or
n = 8 ·k+ 3 or n = 8 ·k+ 4 or n = 8 ·k+ 5 or n = 8 ·k+ 6 or n = 8 ·k+ 7.
The theorem is a consequence of (22).

(29) There exists k such that n = 9 · k or n = 9 · k + 1 or n = 9 · k + 2 or
n = 9 · k+ 3 or n = 9 · k+ 4 or n = 9 · k+ 5 or n = 9 · k+ 6 or n = 9 · k+ 7
or n = 9 · k + 8. The theorem is a consequence of (22).

(30) There exists k such that n = 10 · k or n = 10 · k + 1 or n = 10 · k + 2
or n = 10 · k + 3 or n = 10 · k + 4 or n = 10 · k + 5 or n = 10 · k + 6
or n = 10 · k + 7 or n = 10 · k + 8 or n = 10 · k + 9. The theorem is
a consequence of (22).

(31) 3 - n if and only if there exists k such that n = 3 · k + 1 or n = 3 · k + 2.
The theorem is a consequence of (23).

(32) 4 - n if and only if there exists k such that n = 4 · k + 1 or n = 4 · k + 2
or n = 4 · k + 3. The theorem is a consequence of (24).

(33) 5 - n if and only if there exists k such that n = 5 · k + 1 or n = 5 · k + 2
or n = 5 · k + 3 or n = 5 · k + 4. The theorem is a consequence of (25).

(34) 6 - n if and only if there exists k such that n = 6 ·k+1 or n = 6 ·k+2 or
n = 6 ·k+ 3 or n = 6 ·k+ 4 or n = 6 ·k+ 5. The theorem is a consequence
of (26).

(35) 7 - n if and only if there exists k such that n = 7 ·k+1 or n = 7 ·k+2 or
n = 7 · k+ 3 or n = 7 · k+ 4 or n = 7 · k+ 5 or n = 7 · k+ 6. The theorem
is a consequence of (27).

(36) 8 - n if and only if there exists k such that n = 8 ·k+1 or n = 8 ·k+2 or
n = 8 ·k+ 3 or n = 8 ·k+ 4 or n = 8 ·k+ 5 or n = 8 ·k+ 6 or n = 8 ·k+ 7.
The theorem is a consequence of (28).

(37) 9 - n if and only if there exists k such that n = 9 ·k+1 or n = 9 ·k+2 or
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n = 9 · k+ 3 or n = 9 · k+ 4 or n = 9 · k+ 5 or n = 9 · k+ 6 or n = 9 · k+ 7
or n = 9 · k + 8. The theorem is a consequence of (29).

(38) 10 - n if and only if there exists k such that n = 10 ·k+1 or n = 10 ·k+2
or n = 10 · k + 3 or n = 10 · k + 4 or n = 10 · k + 5 or n = 10 · k + 6
or n = 10 · k + 7 or n = 10 · k + 8 or n = 10 · k + 9. The theorem is
a consequence of (30).

(39) 22z mod 3 = 1.
Proof: Define P[non zero natural number] ≡ 22$1 mod 3 = 1. P[1] by [5,
(1)]. For every s such that P[s] holds P[s+ 1]. For every s, P[s]. �

Let n be an integer. We say that n is composite if and only if

(Def. 1) 2 ¬ n and n is not prime.

One can check that there exists an integer which is composite and there exists
a natural number which is composite and every integer which is composite is
also positive and every integer which is prime is also non composite and every
integer which is composite is also non prime.

Let m, n be composite natural numbers. Observe that m · n is composite.
Now we state the proposition:

(40) If n is composite, then 4 ¬ n.

3. Main Problems

Now we state the propositions:

(41) Suppose 1 ¬ i ¬ len〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 −m.

Then am | 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉(i).

(42) n2 | (n+ 1)n − 1.
Proof: Set P = 〈

(n
0

)
n01n, . . . ,

(n
n

)
nn10〉. Set c = lenP . Set F = P�c. For

every natural number b such that b ∈ domF holds n2 | F (b). �

(43) (2n − 1)2 | 2(2n−1)·n − 1. The theorem is a consequence of (42).

(44) (i) 6 - 26 − 2, and

(ii) 6 | 36 − 3, and

(iii) there exists no natural number n such that n < 6 and n - 2n − 2 and
n | 3n − 3.

The theorem is a consequence of (2), (34), (7), and (32).

(45) Let us consider a non zero natural number a. Then there exists a non
prime natural number n such that n | an−a. The theorem is a consequence
of (18), (20), and (21).

(46) If 7 - a, then there exists k such that a2 = 7 · k + 1 or a2 = 7 · k + 2 or
a2 = 7 · k + 4. The theorem is a consequence of (35).
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(47) There exists k such that a2 = 7 · k or a2 = 7 · k + 1 or a2 = 7 · k + 2 or
a2 = 7 · k + 4. The theorem is a consequence of (46).

(48) If 7 - a, then a2 mod 7 = 1 or a2 mod 7 = 2 or a2 mod 7 = 4. The
theorem is a consequence of (46) and (16).

(49) (i) a2 mod 7 = 0, or

(ii) a2 mod 7 = 1, or

(iii) a2 mod 7 = 2, or

(iv) a2 mod 7 = 4.
The theorem is a consequence of (46) and (16).

(50) Suppose there exists k such that a = 7·k+1 or a = 7·k+2 or a = 7·k+4
and there exists k such that b = 7 · k + 1 or b = 7 · k + 2 or b = 7 · k + 4.
Then there exists k such that a+ b = 7 · k + 1 or ... or a+ b = 7 · k + 6.

(51) Suppose (amod 7 = 1 or amod 7 = 2 or amod 7 = 4) and (bmod 7 = 1 or
bmod 7 = 2 or bmod 7 = 4). Then a+bmod 7 = 1 or ... or a+bmod 7 = 6.
The theorem is a consequence of (16).

(52) If 7 | a2 + b2, then 7 | a and 7 | b. The theorem is a consequence of (48)
and (49).

(53) (i) 132 + 1 = 72 + 112, and

(ii) 172 + 1 = 112 + 132, and

(iii) 232 + 1 = 132 + 192, and

(iv) 312 + 1 = 112 + 292.

(54) (i) 2 = 14 + 14, and

(ii) 17 = 14 + 24, and

(iii) 97 = 24 + 34, and

(iv) 257 = 14 + 44, and

(v) 641 = 24 + 54.

(55) 04 + (0 + 1)4 is not composite.

(56) 14 + (1 + 1)4 is not composite.

(57) 24 + (2 + 1)4 is not composite.

(58) 34 + (3 + 1)4 is not composite.

(59) 44 + (4 + 1)4 is not composite.

(60) (i) 54 + (5 + 1)4 is composite, and

(ii) there exists no natural number n such that n < 5 and n4 + (n+ 1)4

is composite.
The theorem is a consequence of (13), (56), (57), (58), and (59).
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(61) If 1 ¬ a, then 22n + (6 · a− 1) > 6.

(62) 3 | 22z + (6 · a− 1). The theorem is a consequence of (9) and (39).

(63) If 1 ¬ a, then 22z +(6 ·a−1) is not prime. The theorem is a consequence
of (62) and (61).

(64) If 1 ¬ a, then 22z +(6 ·a−1) is composite. The theorem is a consequence
of (61) and (63).

(65) Let us consider a non zero natural number z. Then {k, where k is a na-
tural number : k is odd and 22z + k is composite} is infinite.
Proof: Set S = {k, where k is a natural number : k is odd and 22z +
k is composite}. Define F(natural number) = 6 · $1 − 1. Consider f being
a many sorted set indexed by N+ such that for every element n of N+,
f(n) = F(n). Set R = rng f . R ⊆ S. For every element m of N, there
exists an element n of N such that n  m and n ∈ R. �
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