Contents

Pappus's Hexagon Theorem in Real Projective Plane
By Roland Coghetto 69

On Weakly Associative Lattices and Near Lattices
By Damian Sawicki and Adam Grabowski 77

Ascoli-Arzelà Theorem
By Hiroshi Yamazaki et al. 87

On Primary Ideals. Part I
By Yasushige Watase 95
Some Properties of Membership Functions Composed of Trian-
gle Functions and Piecewise Linear Functions
By TAKASHI Mitsuishi 103

Pappus's Hexagon Theorem in Real Projective Plane ${ }^{1}$

Roland Coghetto
cafr-MSA2P asbl
Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. In this article we prove, using Mizar 2, [1, the Pappus's hexagon theorem in the real projective plane: "Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs $A b$ and $a B, A c$ and $a C, B c$ and $b C$ are collinear, $\left\lfloor^{2}\right.$

More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10] (where TOP-REAL3 is a metric space defined in [5) satisfies the Pappus's axiom defined in 11 by Wojciech Leończuk and Krzysztof Prażmowski. Eugeniusz Kusak and Wojciech Leończuk formalized the Hessenberg theorem early in the MML 99. With this result, the real projective plane is Desarguesian.

For proving the Pappus's theorem, two different proofs are given. First, we use the techniques developed in the section "Projective Proofs of Pappus's Theorem" in the chapter "Pappos's Theorem: Nine proofs and three variations" (12]. Secondly, Pascal's theorem (4) is used.

In both cases, to prove some lemmas, we use Prover 9^{3} the successor of the Otter prover and ott 2 miz by Josef Urbar ${ }^{4}$ [13], [8, [7].

In Coq, the Pappus's theorem is proved as the application of GrassmannCayley algebra [6] and more recently in Tarski's geometry [3].

MSC: 51N15 03B35 68V20

Keywords: Pappus's Hexagon Theorem; real projective plan; GrassmannPlücker relation; Prover9

MML identifier: PAPPUS, version: 8.1.11 5.66.1402

[^0]
1. Preliminaries

From now on $a, b, c, d, e, f, g, h, i$ denote real numbers and M denotes a square matrix over \mathbb{R} of dimension 3 .

Now we state the propositions:
(1) \quad Suppose $M=\langle\langle a, b, c\rangle,\langle d, e, f\rangle,\langle g, h, i\rangle\rangle$. Then $\operatorname{Det} M=a \cdot e \cdot i-c \cdot e$. $g-a \cdot f \cdot h+b \cdot f \cdot g-b \cdot d \cdot i+c \cdot d \cdot h$.
(2) Let us consider elements P_{1}, P_{4}, P_{5} of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and elements $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose p_{1} is not zero and $P_{1}=$ the direction of p_{1} and p_{4} is not zero and $P_{4}=$ the direction of p_{4} and p_{5} is not zero and $P_{5}=$ the direction of p_{5} and P_{1}, P_{4} and P_{5} are collinear. Then $\langle | p_{1}, p_{2}, p_{4}| \rangle \cdot\langle | p_{1}, p_{3}, p_{5}| \rangle=\langle | p_{1}, p_{2}, p_{5}| \rangle \cdot\langle | p_{1}, p_{3}, p_{4}| \rangle$.
(3) Let us consider non zero real numbers $r_{416}, r_{415}, r_{413}, r_{418}, r_{419}, r_{412}$, $r_{712}, r_{746}, r_{716}, r_{742}, r_{715}, r_{743}, r_{713}, r_{745}, r_{749}, r_{718}, r_{719}, r_{748}$. Suppose $\left(-r_{412}\right) \cdot\left(-r_{713}\right)=\left(-r_{413}\right) \cdot\left(-r_{712}\right)$ and $\left(-r_{415}\right) \cdot\left(-r_{719}\right)=\left(-r_{419}\right) \cdot\left(-r_{715}\right)$ and $\left(-r_{418}\right) \cdot\left(-r_{716}\right)=\left(-r_{416}\right) \cdot\left(-r_{718}\right)$ and $\left(-r_{745}\right) \cdot r_{416}=\left(-r_{746}\right) \cdot r_{415}$ and $\left(-r_{748}\right) \cdot r_{413}=\left(-r_{743}\right) \cdot r_{418}$ and $\left(-r_{742}\right) \cdot r_{419}=\left(-r_{749}\right) \cdot r_{412}$ and $r_{712} \cdot r_{746}=r_{716} \cdot r_{742}$ and $r_{715} \cdot r_{743}=r_{713} \cdot r_{745}$. Then $r_{718} \cdot r_{749}=r_{719} \cdot r_{748}$.

2. Some Technical Lemmas Proved by Prover9 and Translated with Help of ott2miz

From now on P_{2} denotes a projective space defined in terms of collinearity and $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}$ denote elements of P_{2}.

Now we state the propositions:
(4) Suppose $c_{2} \neq c_{1}$ and $c_{3} \neq c_{1}$ and $c_{3} \neq c_{2}$ and $c_{4} \neq c_{2}$ and $c_{4} \neq c_{3}$ and $c_{5} \neq c_{1}$ and $c_{6} \neq c_{1}$ and $c_{6} \neq c_{5}$ and $c_{7} \neq c_{5}$ and $c_{7} \neq c_{6}$ and c_{1}, c_{4} and c_{7} are not collinear and c_{1}, c_{4} and c_{2} are collinear and c_{1}, c_{4} and c_{3} are collinear and c_{1}, c_{7} and c_{5} are collinear and c_{1}, c_{7} and c_{6} are collinear and c_{4}, c_{5} and c_{8} are collinear and c_{7}, c_{2} and c_{8} are collinear and c_{4}, c_{6} and c_{9} are collinear and c_{3}, c_{7} and c_{9} are collinear and c_{2}, c_{6} and c_{10} are collinear and c_{3}, c_{5} and c_{10} are collinear. Then
(i) c_{4}, c_{7} and c_{2} are not collinear, and
(ii) c_{4}, c_{10} and c_{3} are not collinear, and
(iii) c_{4}, c_{7} and c_{3} are not collinear, and
(iv) c_{4}, c_{10} and c_{2} are not collinear, and
(v) c_{4}, c_{7} and c_{5} are not collinear, and
(vi) c_{4}, c_{10} and c_{8} are not collinear, and
(vii) c_{4}, c_{7} and c_{8} are not collinear, and
(viii) c_{4}, c_{10} and c_{5} are not collinear, and
(ix) c_{4}, c_{7} and c_{9} are not collinear, and
(x) c_{4}, c_{10} and c_{6} are not collinear, and
(xi) c_{4}, c_{7} and c_{6} are not collinear, and (xii) c_{4}, c_{10} and c_{9} are not collinear, and (xiii) c_{7}, c_{10} and c_{5} are not collinear, and (xiv) c_{7}, c_{4} and c_{6} are not collinear, and (xv) c_{7}, c_{10} and c_{9} are not collinear, and (xvi) c_{7}, c_{4} and c_{3} are not collinear, and (xvii) c_{7}, c_{10} and c_{3} are not collinear, and (xviii) c_{7}, c_{4} and c_{9} are not collinear, and (xix) c_{7}, c_{10} and c_{2} are not collinear, and $(\mathrm{xx}) c_{7}, c_{4}$ and c_{8} are not collinear, and (xxi) c_{10}, c_{4} and c_{2} are not collinear, and (xxii) c_{10}, c_{7} and c_{6} are not collinear, and (xxiii) c_{10}, c_{4} and c_{6} are not collinear, and (xxiv) c_{10}, c_{7} and c_{2} are not collinear, and (xxv) c_{10}, c_{4} and c_{5} are not collinear, and (xxvi) c_{10}, c_{7} and c_{3} are not collinear, and (xxvii) c_{10}, c_{4} and c_{3} are not collinear, and (xxviii) c_{10}, c_{7} and c_{5} are not collinear.
(5) Suppose $c_{2} \neq c_{1}$ and $c_{3} \neq c_{2}$ and $c_{5} \neq c_{1}$ and $c_{7} \neq c_{5}$ and $c_{7} \neq c_{6}$ and c_{1}, c_{4} and c_{7} are not collinear and c_{1}, c_{4} and c_{2} are collinear and c_{1}, c_{4} and c_{3} are collinear and c_{1}, c_{7} and c_{5} are collinear and c_{1}, c_{7} and c_{6} are collinear and c_{4}, c_{5} and c_{8} are collinear and c_{7}, c_{2} and c_{8} are collinear and c_{2}, c_{6} and c_{10} are collinear and c_{3}, c_{5} and c_{10} are collinear.
Then c_{10}, c_{7} and c_{8} are not collinear.
(6) Suppose c_{1}, c_{4} and c_{7} are not collinear and c_{1}, c_{4} and c_{2} are collinear and c_{1}, c_{4} and c_{3} are collinear and c_{1}, c_{7} and c_{5} are collinear and c_{1}, c_{7} and c_{6} are collinear and c_{4}, c_{5} and c_{8} are collinear and c_{7}, c_{2} and c_{8} are collinear and c_{4}, c_{6} and c_{9} are collinear and c_{3}, c_{7} and c_{9} are collinear and c_{2}, c_{6} and c_{10} are collinear and c_{3}, c_{5} and c_{10} are collinear. Then
(i) c_{4}, c_{2} and c_{3} are collinear, and
(ii) c_{4}, c_{5} and c_{8} are collinear, and
(iii) c_{4}, c_{9} and c_{6} are collinear, and
(iv) c_{7}, c_{5} and c_{6} are collinear, and
(v) c_{7}, c_{9} and c_{3} are collinear, and
(vi) c_{7}, c_{2} and c_{8} are collinear, and
(vii) c_{10}, c_{2} and c_{6} are collinear, and
(viii) c_{10}, c_{5} and c_{3} are collinear.
(7) Suppose $c_{3} \neq c_{1}$ and $c_{3} \neq c_{2}$ and $c_{6} \neq c_{1}$ and $c_{6} \neq c_{5}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{5} and c_{6} are collinear. Then
(i) c_{2}, c_{3} and c_{5} are not collinear, and
(ii) c_{2}, c_{3} and c_{6} are not collinear, and
(iii) c_{2}, c_{5} and c_{6} are not collinear, and
(iv) c_{3}, c_{5} and c_{6} are not collinear.
(8) Suppose $c_{3} \neq c_{1}$ and $c_{4} \neq c_{1}$ and $c_{4} \neq c_{3}$ and $c_{3} \neq c_{2}$ and $c_{4} \neq c_{2}$ and $c_{6} \neq c_{1}$ and $c_{7} \neq c_{1}$ and $c_{7} \neq c_{6}$ and $c_{6} \neq c_{5}$ and $c_{7} \neq c_{5}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{2} and c_{4} are collinear and c_{1}, c_{5} and c_{6} are collinear and c_{1}, c_{5} and c_{7} are collinear. Then
(i) c_{1}, c_{3} and c_{6} are not collinear, and
(ii) c_{1}, c_{3} and c_{4} are collinear, and
(iii) c_{1}, c_{6} and c_{7} are collinear, and
(iv) $c_{3} \neq c_{1}$, and
(v) $c_{2} \neq c_{1}$, and
(vi) $c_{3} \neq c_{2}$, and
(vii) $c_{4} \neq c_{3}$, and
(viii) $c_{4} \neq c_{2}$, and
(ix) $c_{6} \neq c_{1}$, and
(x) $c_{5} \neq c_{1}$, and
(xi) $c_{6} \neq c_{5}$, and
(xii) $c_{7} \neq c_{6}$, and
(xiii) $c_{7} \neq c_{5}$, and
(xiv) c_{1}, c_{4} and c_{7} are not collinear, and
$(\mathrm{xv}) c_{1}, c_{4}$ and c_{3} are collinear, and
(xvi) c_{1}, c_{4} and c_{2} are collinear, and
(xvii) c_{1}, c_{7} and c_{6} are collinear, and
(xviii) c_{1}, c_{7} and c_{5} are collinear.
(9) Suppose $c_{4} \neq c_{2}$ and $c_{4} \neq c_{3}$ and $c_{8} \neq c_{2}$ and c_{2}, c_{3} and c_{6} are not collinear. Then
(i) c_{2}, c_{3} and c_{4} are not collinear, or
(ii) c_{2}, c_{6} and c_{8} are not collinear, or
(iii) c_{3}, c_{4} and c_{8} are not collinear.
(10) Suppose $c_{4} \neq c_{1}$ and $c_{6} \neq c_{5}$ and c_{1}, c_{2} and c_{5} are not collinear. Then
(i) c_{1}, c_{2} and c_{4} are not collinear, or
(ii) c_{1}, c_{5} and c_{6} are not collinear, or
(iii) c_{4}, c_{6} and c_{8} are not collinear, or
(iv) $c_{8} \neq c_{5}$.
(11) Suppose $c_{4} \neq c_{2}$ and $c_{6} \neq c_{1}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{4} are collinear and c_{1}, c_{5} and c_{6} are collinear and c_{4}, c_{6} and c_{8} are collinear. Then $c_{8} \neq c_{2}$.
(12) If c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{2} and c_{4} are collinear, then c_{2}, c_{3} and c_{4} are collinear.
(13) If c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{5} and c_{6} are collinear and c_{1}, c_{5} and c_{7} are collinear, then c_{5}, c_{6} and c_{7} are collinear.
(14) If $c_{3} \neq c_{1}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{5} and c_{7} are collinear, then $c_{7} \neq c_{3}$.
(15) Suppose $c_{4} \neq c_{1}$ and $c_{4} \neq c_{3}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{2} and c_{4} are collinear and c_{4}, c_{5} and c_{9} are collinear. Then $c_{9} \neq c_{3}$.
(16) Suppose $c_{4} \neq c_{1}$ and $c_{4} \neq c_{2}$ and $c_{6} \neq c_{1}$ and $c_{7} \neq c_{6}$ and $c_{7} \neq c_{5}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{4} are collinear and c_{1}, c_{5} and c_{6} are collinear and c_{1}, c_{5} and c_{7} are collinear and c_{2}, c_{7} and c_{9} are collinear and c_{4}, c_{5} and c_{9} are collinear. Then c_{9}, c_{2} and c_{5} are not collinear.

3. The Real Projective Plane and Pappus's Theorem

From now on $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ denote elements of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Now we state the propositions:
(17) Pappus theorem as "Pappos's Theorem: Nine proofs and three variations" [12] VERSION:
Suppose $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear.
Then r_{1}, r_{2} and r_{3} are collinear.
(18) The projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is a Pappian, Desarguesian projective plane defined in terms of collinearity.

4. Proof: Special Case of Pascal's Theorem

In the sequel $v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, v_{100}$, $v_{101}, v_{102}, v_{103}$ denote elements of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Now we state the propositions:
(19) Suppose $c_{1} \neq c_{2}$ and $c_{1} \neq c_{3}$ and $c_{2} \neq c_{3}$ and $c_{2} \neq c_{4}$ and $c_{3} \neq c_{4}$ and $c_{1} \neq c_{5}$ and $c_{1} \neq c_{6}$ and $c_{5} \neq c_{6}$ and $c_{5} \neq c_{7}$ and $c_{6} \neq c_{7}$ and c_{1}, c_{4} and c_{7} are not collinear and c_{1}, c_{4} and c_{2} are collinear and c_{1}, c_{4} and c_{3} are collinear and c_{1}, c_{7} and c_{5} are collinear and c_{1}, c_{7} and c_{6} are collinear and c_{4}, c_{5} and c_{8} are collinear and c_{7}, c_{2} and c_{8} are collinear and c_{4}, c_{6} and c_{9} are collinear and c_{3}, c_{7} and c_{9} are collinear and c_{2}, c_{6} and c_{10} are collinear and c_{3}, c_{5} and c_{10} are collinear.

Then it is not true that c_{4}, c_{2} and c_{7} are collinear or c_{4}, c_{3} and c_{7} are collinear or c_{2}, c_{3} and c_{7} are collinear or c_{4}, c_{2} and c_{5} are collinear or c_{4}, c_{2} and c_{6} are collinear or c_{4}, c_{3} and c_{5} are collinear or c_{4}, c_{3} and c_{6} are collinear or c_{2}, c_{7} and c_{5} are collinear or c_{2}, c_{7} and c_{6} are collinear or c_{3}, c_{7} and c_{5} are collinear or c_{3}, c_{7} and c_{6} are collinear or c_{2}, c_{3} and c_{5} are collinear or c_{2}, c_{3} and c_{6} are collinear or c_{7}, c_{5} and c_{4} are collinear or c_{7}, c_{6}.

And c_{4} are collinear or c_{5}, c_{6} and c_{4} are collinear or c_{5}, c_{6} and c_{2} are collinear or c_{4}, c_{5} and c_{8} are not collinear or c_{4}, c_{6} and c_{9} are not collinear or c_{2}, c_{7} and c_{8} are not collinear or c_{2}, c_{6} and c_{10} are not collinear or c_{3}, c_{7} and c_{9} are not collinear or c_{3}, c_{5} and c_{10} are not collinear.
(20) $\operatorname{conic}(0,0,0,0,0,0)=$ the carrier of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$.
(21) Suppose $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear.
Then $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ form the Pascal configuration.
(22) Pappus theorem as a special case of Pascal's theorem:

Suppose $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear.

And o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear.
Then r_{1}, r_{2} and r_{3} are collinear.
Proof: p_{1}, p_{2} and p_{3} are collinear. Consider u_{1}, u_{2}, u_{3} being elements of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $p_{1}=$ the direction of u_{1} and $p_{2}=$ the direction of u_{2} and $p_{3}=$ the direction of u_{3} and u_{1} is not zero and u_{2} is not zero and u_{3} is not zero and u_{1}, u_{2} and u_{3} are lineary dependent. Set $x_{1}=$ $\left(u_{2}\right)_{\mathbf{2}} \cdot\left(\left(u_{3}\right)_{\mathbf{3}}\right)-\left(u_{2}\right)_{\mathbf{3}} \cdot\left(\left(u_{3}\right)_{\mathbf{2}}\right)$. Set $x_{2}=\left(u_{2}\right)_{\mathbf{3}} \cdot\left(\left(u_{3}\right)_{\mathbf{1}}\right)-\left(u_{2}\right)_{\mathbf{1}} \cdot\left(\left(u_{3}\right)_{\mathbf{3}}\right)$. Set $x_{3}=\left(u_{2}\right)_{\mathbf{1}} \cdot\left(\left(u_{3}\right)_{\mathbf{2}}\right)-\left(u_{2}\right)_{\mathbf{2}} \cdot\left(\left(u_{3}\right)_{\mathbf{1}}\right) . q_{1}, q_{2}$ and q_{3} are collinear.

Consider v_{1}, v_{2}, v_{3} being elements of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $q_{1}=$ the direction of v_{1} and $q_{2}=$ the direction of v_{2} and $q_{3}=$ the direction of v_{3} and v_{1} is not zero and v_{2} is not zero and v_{3} is not zero and v_{1}, v_{2} and v_{3} are lineary dependent. Set $y_{1}=\left(v_{2}\right)_{\mathbf{2}} \cdot\left(\left(v_{3}\right)_{\mathbf{3}}\right)-\left(v_{2}\right)_{\mathbf{3}} \cdot\left(\left(v_{3}\right)_{\mathbf{2}}\right)$. Set $y_{2}=$ $\left(v_{2}\right)_{\mathbf{3}} \cdot\left(\left(v_{3}\right)_{\mathbf{1}}\right)-\left(v_{2}\right)_{\mathbf{1}} \cdot\left(\left(v_{3}\right)_{\mathbf{3}}\right)$. Set $y_{3}=\left(v_{2}\right)_{\mathbf{1}} \cdot\left(\left(v_{3}\right)_{\mathbf{2}}\right)-\left(v_{2}\right)_{\mathbf{2}} \cdot\left(\left(v_{3}\right)_{\mathbf{1}}\right)$. Set $x_{4}=x_{1} \cdot y_{1}$. Set $x_{5}=x_{2} \cdot y_{2}$. Set $x_{6}=x_{3} \cdot y_{3}$. Set $x_{7}=x_{1} \cdot y_{2}+x_{2} \cdot y_{1}$. Set $x_{8}=x_{1} \cdot y_{3}+x_{3} \cdot y_{1}$. Set $x_{1}=x_{2} \cdot y_{3}+x_{3} \cdot y_{2}$. For every point u of $\mathcal{E}_{\mathrm{T}}^{3}, \operatorname{qfconic}\left(x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{1}, u\right)=\left|\left(u, u_{2} \times u_{3}\right)\right| \cdot\left|\left(u, v_{2} \times v_{3}\right)\right|$.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pą. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Gabriel Braun and Julien Narboux. A synthetic proof of Pappus' theorem in Tarski's geometry. Journal of Automated Reasoning, 58(2):23, 2017. dol $10.1007 /$ S10817-016-9374-4.
[4] Roland Coghetto. Pascal's theorem in real projective plane. Formalized Mathematics, 25(2):107-119, 2017. doi 10.1515/forma-2017-0011.
[5] Agata Darmochwał. The Euclidean space Formalized Mathematics, 2(4):599-603, 1991.
[6] Laurent Fuchs and Laurent Thery. A formalization of Grassmann-Cayley algebra in Coq and its application to theorem proving in projective geometry. In Automated Deduction in Geometry, pages 51-67. Springer, 2010.
[7] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211-221, 2015. doi 10.1007/s10817-015-9333-5.
[8] Adam Grabowski. Solving two problems in general topology via types In Types for Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18, 2004, Revised Selected Papers, pages 138153, 2004. doi 10.1007/11617990_9 http://dblp.uni-trier.de/rec/bib/conf/ types/Grabowski04.
[9] Eugeniusz Kusak and Wojciech Leończuk. Hessenberg theorem. Formalized Mathematics, 2(2):217-219, 1991.
[10] Woiciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761-766, 1990.
[11] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part I Formalized Mathematics, 1(4):767-776, 1990.
[12] Jürgen Richter-Gebert. Pappos's Theorem: Nine Proofs and Three Variations, pages 3-31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi 10.1007/978-3-642-17286-1_1
[13] Piotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.

Accepted June 30, 2021

On Weakly Associative Lattices and Near Lattices

Damian Sawicki
Institute of Informatics
University of Białystok Poland

Adam Grabowskio
Institute of Informatics
University of Białystok
Poland

Abstract

Summary. The main aim of this article is to introduce formally two generalizations of lattices, namely weakly associative lattices and near lattices, which can be obtained from the former by certain weakening of the usual well-known axioms. We show selected propositions devoted to weakly associative lattices and near lattices from Chapter 6 of [15, dealing also with alternative versions of classical axiomatizations. Some of the results were proven in the Mizar [1, [2] system with the help of Prover9 [14] proof assistant.

MSC: 68V20 06B05 06B75
Keywords: weakly associative lattice; near lattice
MML identifier: LATWAL_1, version: 8.1.11 5.66.1402

0. Introduction

Lattice theory is widely represented in the Mizar Mathematical Library, with Żukowski's first article [18, following Birkhoff [3] and Grätzer [11], [12]. In parallel, the theory of partially ordered sets was developed 4] treated generally as relational structures, even if informally the notions are quite similar [9], 7]. The review of the mechanization of lattice theory in Mizar, with the example of the solution of the Robbins problem, is contained in [6].

Our work can be seen as a step towards a Mizar support for [15] or [16], where original proof objects by OTTER/Prover9 were used. Some preliminary works in this direction were already done in [8] by present authors. We use the interface ott2miz [17] which allows for the automated translation of proofs;
these automatically generated proofs are usually quite lengthy, even after native enhancements done by internal Mizar software for library revisions.

Weakly associative lattices were studied in [5]. In the present development, we deal with the parts of Chap. 6 "Lattice-like algebras" of [15], pp. 111-135, devoted to this class of lattices. In this sense, we continue the work started by Kulesza and Grabowski in [13], devoted to the formalization of quasi-lattices.

The class of weakly associative lattices (or WA-lattices, WAL) can be characterized from the standard set of axioms for lattices (with idempotence for the join and meet operations included), where the ordinary associative laws are replaced by the so-called part-preservation laws. The characteristic axiom is however W3 (or, dual W3' - compare Def. 1 and Def. 2). Section 2 contains also equivalent formulation of these axioms, using ordering relation on lattices. The earlier seems to be a bit more feasible taking into account the role of equality in the Mizar system [10] and the design of Prover9.

In Section 3 we show how described binary lattice operations can be associated with the corresponding ordering relation. Obviously, the associativity can only be shown under some conditions for elements (see theorems (15) and (16)). If we assume distributivity, the relation is transitive, as in usual lattices. Section 4 contains the proof that adding the distributivity condition to the set of usual WAL axioms, the associativity can be proven.

Then we deal with another generalization of lattices, i.e. near lattices (absorption law is weakened). Def. 6 and Def. 7 provide standard examples of these structures which are not necessarily lattices (see Def. 10 for the definition of the structure). The lattice operations are given by

\sqcup	0	1	2					
0	0	1	0					
1	1	1	2					
2	0	2	2	\quad	\square	0	1	2
:---:	:---:	:---:	:---:					
0	0	0	2					
1	0	1	1					
2	2	1	2					

Associativity laws do not hold here, so this is not a lattice.
The rest of the article is devoted to alternative axiomatizations of WAL. WAL-3 - equivalent set of axioms describing WAL is expressed in the form of five separate attributes to make Mizar registrations mechanism working (see Def. 11-Def. 15). It is shown that these adjectives imply the standard attributes for lattices.

In Section 8 WAL-4 is defined (the short sigle axiom system for WAL). We conclude with the proof if WAL-4 holds, then lattice operations are idempotent.

Some of the proofs were produced by means of Prover9, so they are definitely lengthy. The enhancement of the lemmas, including their shortening, reorganization and clustering, can be interesting and useful future work.

1. Preliminaries

From now on L denotes a non empty lattice structure and $v_{100}, v_{102}, v_{2}, v_{1}$, v_{0}, v_{3}, v_{101} denote elements of L.

Let us consider v_{0}, v_{1}, and v_{2}. Now we state the propositions:
(1) Suppose for every $v_{0}, v_{0} \sqcap v_{0}=v_{0}$ and for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every $v_{0}, v_{0} \sqcup v_{0}=v_{0}$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup v_{1}\right)\right) \sqcap v_{1}=v_{1}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{1}\right)\right) \sqcup v_{1}=v_{1}$ and for every v_{1}, v_{2}, and $v_{0}, v_{0} \sqcap\left(v_{1} \sqcup\left(v_{0} \sqcup v_{2}\right)\right)=v_{0}$. Then $\left(v_{0} \sqcap v_{1}\right) \sqcap v_{2}=v_{0} \sqcap\left(v_{1} \sqcap v_{2}\right)$.
(2) Suppose for every $v_{0}, v_{0} \sqcap v_{0}=v_{0}$ and for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every $v_{0}, v_{0} \sqcup v_{0}=v_{0}$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup v_{1}\right)\right) \sqcap v_{1}=v_{1}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{1}\right)\right) \sqcup v_{1}=v_{1}$ and for every v_{1}, v_{2}, and $v_{0}, v_{0} \sqcap\left(v_{1} \sqcup\left(v_{0} \sqcup v_{2}\right)\right)=v_{0}$. Then $\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$.
Let us consider v_{1} and v_{2}. Now we state the propositions:
(3) Suppose for every $v_{0}, v_{0} \sqcup v_{0}=v_{0}$ and for every v_{1}, v_{2}, and $v_{0}, v_{0} \sqcap\left(v_{1} \sqcup\right.$ $\left.\left(v_{0} \sqcup v_{2}\right)\right)=v_{0}$. Then $v_{1} \sqcap\left(v_{1} \sqcup v_{2}\right)=v_{1}$.
(4) Suppose for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every $v_{0}, v_{0} \sqcup v_{0}=v_{0}$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{2}, v_{1}, and v_{0}, $\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{1}\right)\right) \sqcup v_{1}=v_{1}$. Then $v_{1} \sqcup\left(v_{1} \sqcap v_{2}\right)=v_{1}$.

2. Definition of Attributes

Let L be a non empty lattice structure. We say that L is satisfying W3 if and only if
(Def. 1) for every elements v_{2}, v_{1}, v_{0} of $L,\left(\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup v_{1}\right)\right) \sqcap v_{1}=v_{1}$. We say that L is satisfying W3' if and only if
(Def. 2) for every elements v_{2}, v_{1}, v_{0} of $L,\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{1}\right)\right) \sqcup v_{1}=v_{1}$.
Let L be a meet-absorbing, join-absorbing, meet-commutative, non empty lattice structure. Let us note that L is satisfying W3 if and only if the condition (Def. 3) is satisfied.
(Def. 3) for every elements v_{2}, v_{1}, v_{0} of $L, v_{1} \sqsubseteq\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup v_{1}\right)$.
Let us consider L. Observe that L is satisfying W3' if and only if the condition (Def. 4) is satisfied.
(Def. 4) for every v_{2}, v_{1}, and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{1}\right) \sqsubseteq v_{1}$.

Let us note that every non empty lattice structure which is meet-commutative, join-idempotent, join-commutative, and satisfying W3' is also quasi-meet-absorbing and every non empty lattice structure which is meet-commutative, meetidempotent, join-commutative, and satisfying W3 is also join-absorbing and every non empty lattice structure which is trivial is also satisfying W3' and there exists a non empty lattice structure which is satisfying W3, satisfying W3', join-idempotent, meet-idempotent, join-commutative, and meet-commutative.

A weakly associative lattice is a join-idempotent, meet-idempotent, joincommutative, meet-commutative, satisfying W3, satisfying W3', non empty lattice structure.

A WA-lattice is a weakly associative lattice. Note that every join-associative, meet-absorbing lattice is satisfying W3'.

Let L be a non empty lattice structure. We say that L is satisfying WA if and only if
(Def. 5) for every elements x, y, z of $L, x \sqcap(y \sqcup(x \sqcup z))=x$.

3. On the Ordering Relation Generated by Weakly Associated Lattices

Let us note that every non empty lattice structure which is quasi-meetabsorbing, meet-commutative, and join-commutative is also meet-absorbing and every WA-lattice is meet-absorbing.

From now on L denotes a WA-lattice and x, y, z, u denote elements of L. Now we state the propositions:
(5) $x \sqcup y=y$ if and only if $x \sqsubseteq y$.
(6) $x \sqcap y=x$ if and only if $x \sqsubseteq y$.
(7) $x \sqsubseteq x$.
(8) If $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$.
(9) $x \sqsubseteq x \sqcup y$.
(10) $x \sqcap y \sqsubseteq x$.
(11) If $x \sqsubseteq z$ and $y \sqsubseteq z$, then $x \sqcup y \sqsubseteq z$.
(12) There exists z such that
(i) $x \sqsubseteq z$, and
(ii) $y \sqsubseteq z$, and
(iii) for every u such that $x \sqsubseteq u$ and $y \sqsubseteq u$ holds $z \sqsubseteq u$.

The theorem is a consequence of (11) and (9).
(13) If $z \sqsubseteq x$ and $z \sqsubseteq y$, then $z \sqsubseteq x \sqcap y$.
(14) There exists z such that
(i) $z \sqsubseteq x$, and
(ii) $z \sqsubseteq y$, and
(iii) for every u such that $u \sqsubseteq x$ and $u \sqsubseteq y$ holds $u \sqsubseteq z$.

The theorem is a consequence of (13) and (10).
(15) If $x \sqsubseteq z$ and $y \sqsubseteq z$, then $(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)$.
(16) If $z \sqsubseteq x$ and $z \sqsubseteq y$, then $(x \sqcap y) \sqcap z=x \sqcap(y \sqcap z)$.
(17) If L is distributive and $x \sqsubseteq y \sqsubseteq z$, then $x \sqsubseteq z$.

4. Distributivity Implies Associativity

From now on L denotes a non empty lattice structure and v_{0}, v_{1}, v_{2} denote elements of L.

Now we state the proposition:
(18) Suppose for every $v_{0}, v_{0} \sqcap v_{0}=v_{0}$ and for every v_{1} and $v_{0}, v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$ and for every $v_{0}, v_{0} \sqcup v_{0}=v_{0}$ and for every v_{1} and $v_{0}, v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup v_{1}\right)\right) \sqcap v_{1}=v_{1}$ and for every v_{2}, v_{1}, and v_{0}, $\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{1}\right)\right) \sqcup v_{1}=v_{1}$ and for every v_{1} and $v_{0}, v_{0} \sqcap\left(v_{0} \sqcup v_{1}\right)=v_{0}$ and for every v_{0}, v_{2}, and $v_{1}, v_{0} \sqcup\left(v_{1} \sqcap v_{2}\right)=$ $\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{0} \sqcup v_{2}\right) .\left(v_{0} \sqcup v_{1}\right) \sqcup v_{2}=v_{0} \sqcup\left(v_{1} \sqcup v_{2}\right)$.
Observe that every WA-lattice which is distributive' is also join-associative.

5. Near Lattices

Let x, y be elements of $\{0,1,2\}$. The functors: $x \sqcap_{\mathrm{N} L} y$ and $x \sqcup_{\mathrm{N} L} y$ yielding elements of $\{0,1,2\}$ are defined by terms
(Def. 6) $\begin{cases}2, & \text { if } x=0 \text { and } y=2 \text { or } x=2 \text { and } y=0, \\ \min (x, y), & \text { otherwise },\end{cases}$
(Def. 7) $\begin{cases}0, & \text { if } x=0 \text { and } y=2 \text { or } x=2 \text { and } y=0, \\ \max (x, y), & \text { otherwise },\end{cases}$ respectively. The functors: $\sqcup_{\mathrm{N} L}$ and $\Pi_{\mathrm{N} L}$ yielding binary operations on $\{0,1,2\}$ are defined by conditions
(Def. 8) for every elements x, y of $\{0,1,2\}, \sqcup_{\mathrm{N} L}(x, y)=x \sqcup_{\mathrm{N} L} y$,
(Def. 9) for every elements x, y of $\{0,1,2\}, \sqcap_{\mathrm{N} L}(x, y)=x \sqcap_{\mathrm{N} L} y$, respectively.

6. Examples of Near Lattices

The functor ExNearLattice yielding a non empty lattice structure is defined by the term
(Def. 10) $\left\langle\{0,1,2\}, \sqcup_{\mathrm{N} L}, \sqcap_{\mathrm{N} L}\right\rangle$.
One can check that ExNearLattice is non join-associative and non meetassociative and every non empty lattice structure which is trivial is also meetidempotent, join-commutative, quasi-meet-absorbing, and join-absorbing.

A near lattice is a join-idempotent, meet-idempotent, join-commutative, meet-commutative, quasi-meet-absorbing, join-absorbing, non empty lattice structure.

One can check that ExNearLattice is join-commutative, meet-commutative, join-idempotent, meet-idempotent, join-absorbing, and meet-absorbing and every join-commutative, meet-commutative, non empty lattice structure which is meet-absorbing is also quasi-meet-absorbing and every join-commutative, meetcommutative, non empty lattice structure which is quasi-meet-absorbing is also meet-absorbing.

Now we state the proposition:
(19) (i) ExNearLattice is a near lattice, and
(ii) ExNearLattice is not a lattice.

7. Alternative Axioms for WAL

From now on L denotes a non empty lattice structure and $v_{101}, v_{100}, v_{2}, v_{1}$, $v_{0}, v_{102}, v_{103}, v_{3}$ denote elements of L.

Now we state the proposition:
(20) Suppose for every v_{1} and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{0} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=v_{0}$ and for every v_{0} and $v_{1},\left(v_{0} \sqcap v_{0}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{0}\right)\right)=v_{0}$ and for every v_{1} and v_{0}, $\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=v_{1}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup\right.\right.$ $\left.\left.v_{0}\right)\right) \sqcap v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{0}\right)\right) \sqcup v_{0}=v_{0}$. $v_{0} \sqcup v_{0}=v_{0}$.
Let us consider v_{0} and v_{1}. Now we state the propositions:
(21) Suppose for every v_{1} and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{0} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=v_{0}$ and for every v_{0} and $v_{1},\left(v_{0} \sqcap v_{0}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{0}\right)\right)=v_{0}$ and for every v_{1} and v_{0}, $\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=v_{1}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup\right.\right.$ $\left.\left.v_{0}\right)\right) \sqcap v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{0}\right)\right) \sqcup v_{0}=v_{0}$. Then $v_{0} \sqcap v_{1}=v_{1} \sqcap v_{0}$. The theorem is a consequence of (24).
(22) Suppose for every v_{1} and $v_{0},\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{0} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=v_{0}$ and for every v_{0} and $v_{1},\left(v_{0} \sqcap v_{0}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{0}\right)\right)=v_{0}$ and for every v_{1} and v_{0}, $\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=v_{1}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup\right.\right.$ $\left.\left.v_{0}\right)\right) \sqcap v_{0}=v_{0}$ and for every v_{2}, v_{1}, and $v_{0},\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{0}\right)\right) \sqcup v_{0}=v_{0}$. Then $v_{0} \sqcup v_{1}=v_{1} \sqcup v_{0}$. The theorem is a consequence of (24) and (21).
Let L be a non empty lattice structure. We say that L is satisfying WAL- 3_{1} if and only if
(Def. 11) for every elements v_{1}, v_{0} of $L,\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{0} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=v_{0}$.
We say that L is satisfying WAL- 3_{2} if and only if
(Def. 12) for every elements v_{0}, v_{1} of $L,\left(v_{0} \sqcap v_{0}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{0}\right)\right)=v_{0}$.
We say that L is satisfying WAL- 3_{3} if and only if
(Def. 13) for every elements v_{1}, v_{0} of $L,\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)=v_{1}$.
We say that L is satisfying WAL- 3_{4} if and only if
(Def. 14) for every elements v_{2}, v_{1}, v_{0} of $L,\left(\left(v_{0} \sqcup v_{1}\right) \sqcap\left(v_{2} \sqcup v_{0}\right)\right) \sqcap v_{0}=v_{0}$.
We say that L is satisfying WAL- 3_{5} if and only if
(Def. 15) for every elements v_{2}, v_{1}, v_{0} of $L,\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{2} \sqcap v_{0}\right)\right) \sqcup v_{0}=v_{0}$.
Let us note that every non empty lattice structure which is trivial is also satisfying WAL- 3_{1}, satisfying WAL- 3_{2}, satisfying WAL- 3_{3}, satisfying WAL- 3_{4}, and satisfying WAL- 3_{5} and every non empty lattice structure which is satisfying WAL- 3_{1}, satisfying WAL- 3_{2}, satisfying WAL- 3_{3}, satisfying WAL- 3_{4}, and satisfying WAL- 3_{5} is also join-idempotent, meet-idempotent, join-commutative, and meet-commutative.

8. Short Single Axiom for WAL

Let L be a non empty lattice structure. We say that L is satisfying WAL-4 if and only if
(Def. 16) for every elements $v_{2}, v_{0}, v_{5}, v_{4}, v_{3}, v_{1}$ of $L,\left(\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)\right) \sqcap\right.$ $\left.v_{2}\right) \sqcup\left(\left(\left(v_{0} \sqcap\left(\left(\left(v_{1} \sqcap v_{3}\right) \sqcup\left(v_{4} \sqcap v_{1}\right)\right) \sqcup v_{1}\right)\right) \sqcup\left(\left(\left(v_{1} \sqcap\left(\left(\left(v_{1} \sqcup v_{3}\right) \sqcap\left(v_{4} \sqcup v_{1}\right)\right) \sqcap\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.v_{1}\right)\right) \sqcup\left(v_{5} \sqcap\left(v_{1} \sqcup\left(\left(\left(v_{1} \sqcup v_{3}\right) \sqcap\left(v_{4} \sqcup v_{1}\right)\right) \sqcap v_{1}\right)\right)\right)\right) \sqcap\left(v_{0} \sqcup\left(\left(\left(v_{1} \sqcap v_{3}\right) \sqcup\left(v_{4} \sqcap\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.v_{1}\right)\right) \sqcup v_{1}\right)\right)\right) \sqcap\left(\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)\right) \sqcup v_{2}\right)\right)=v_{1}$.
From now on L denotes a non empty lattice structure and $v_{108}, v_{107}, v_{106}$, $v_{101}, v_{10}, v_{9}, v_{8}, v_{7}, v_{6}, v_{105}, v_{102}, v_{100}, v_{104}, v_{103}, v_{5}, v_{4}, v_{3}, v_{2}, v_{1}, v_{0}$ denote elements of L.

Let us consider v_{0}. Now we state the propositions:
(23) Suppose for every $v_{2}, v_{0}, v_{5}, v_{4}, v_{3}$, and $v_{1},\left(\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)\right) \sqcap\right.$ $\left.v_{2}\right) \sqcup\left(\left(\left(v_{0} \sqcap\left(\left(\left(v_{1} \sqcap v_{3}\right) \sqcup\left(v_{4} \sqcap v_{1}\right)\right) \sqcup v_{1}\right)\right) \sqcup\left(\left(\left(v_{1} \sqcap\left(\left(\left(v_{1} \sqcup v_{3}\right) \sqcap\left(v_{4} \sqcup v_{1}\right)\right) \sqcap\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.v_{1}\right)\right) \sqcup\left(v_{5} \sqcap\left(v_{1} \sqcup\left(\left(\left(v_{1} \sqcup v_{3}\right) \sqcap\left(v_{4} \sqcup v_{1}\right)\right) \sqcap v_{1}\right)\right)\right)\right) \sqcap\left(v_{0} \sqcup\left(\left(\left(v_{1} \sqcap v_{3}\right) \sqcup\left(v_{4} \sqcap\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.v_{1}\right)\right) \sqcup v_{1}\right)\right)\right)\right) \sqcap\left(\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)\right) \sqcup v_{2}\right)\right)=v_{1}$. Then $v_{0} \sqcap v_{0}=v_{0}$.
(24) Suppose for every $v_{2}, v_{0}, v_{5}, v_{4}, v_{3}$, and $v_{1},\left(\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)\right) \sqcap\right.$ $\left.v_{2}\right) \sqcup\left(\left(\left(v_{0} \sqcap\left(\left(\left(v_{1} \sqcap v_{3}\right) \sqcup\left(v_{4} \sqcap v_{1}\right)\right) \sqcup v_{1}\right)\right) \sqcup\left(\left(\left(v_{1} \sqcap\left(\left(\left(v_{1} \sqcup v_{3}\right) \sqcap\left(v_{4} \sqcup v_{1}\right)\right) \sqcap\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.v_{1}\right)\right) \sqcup\left(v_{5} \sqcap\left(v_{1} \sqcup\left(\left(\left(v_{1} \sqcup v_{3}\right) \sqcap\left(v_{4} \sqcup v_{1}\right)\right) \sqcap v_{1}\right)\right)\right)\right) \sqcap\left(v_{0} \sqcup\left(\left(\left(v_{1} \sqcap v_{3}\right) \sqcup\left(v_{4} \sqcap\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.v_{1}\right)\right) \sqcup v_{1}\right)\right)\right)\right) \sqcap\left(\left(\left(v_{0} \sqcap v_{1}\right) \sqcup\left(v_{1} \sqcap\left(v_{0} \sqcup v_{1}\right)\right)\right) \sqcup v_{2}\right)\right)=v_{1}$. Then $v_{0} \sqcup v_{0}=v_{0}$. The theorem is a consequence of (23).

One can check that every non empty lattice structure which is trivial is also satisfying WAL-4 and every non empty lattice structure which is satisfying WAL-4 is also join-idempotent and meet-idempotent.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pack, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi $10.1007 / 978-3-319-20615-8-17$.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. dol 10.1007/S10817-017-9440-6
[3] Garrett Birkhoff. Lattice Theory. Providence, Rhode Island, New York, 1967.
[4] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.
[5] Ervin Fried and George Grätzer. Some examples of weakly associative lattices. Colloquium Mathematicum, 27:215-221, 1973. doi $10.4064 / \mathrm{cm}-27-2-215-221$.
[6] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211-221, 2015. doi 10.1007/s10817-015-9333-5.
[7] Adam Grabowski and Markus Moschner. Managing heterogeneous theories within a mathematical knowledge repository. In Andrea Asperti, Grzegorz Bancerek, and Andrzej Trybulec, editors, Mathematical Knowledge Management Proceedings, volume 3119 of Lecture Notes in Computer Science, pages 116-129. Springer, 2004. doi 10.1007/978-3-540-27818-4_9. 3rd International Conference on Mathematical Knowledge Management, Bialowieza, Poland, Sep. 19-21, 2004.
[8] Adam Grabowski and Damian Sawicki. On two alternative axiomatizations of lattices by McKenzie and Sholander. Formalized Mathematics, 26(2):193-198, 2018. doi 10.2478/forma-2018-0017.
[9] Adam Grabowski and Christoph Schwarzweller. Translating mathematical vernacular into knowledge repositories. In Michael Kohlhase, editor, Mathematical Knowledge Management, volume 3863 of Lecture Notes in Computer Science, pages 49-64. Springer, 2006. doi https://doi.org/10.1007/11618027_4 4th International Conference on Mathematical Knowledge Management, Bremen, Germany, MKM 2005, July 15-17, 2005, Revised Selected Papers.
[10] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. Equality in computer proof-assistants. In Ganzha, Maria and Maciaszek, Leszek and Paprzycki, Marcin, editor, Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, volume 5 of ACSIS-Annals of Computer Science and Information Systems, pages 45-54. IEEE, 2015. doi 10.15439/2015F229.
[11] George Grätzer. General Lattice Theory. Academic Press, New York, 1978.
[12] George Grätzer. Lattice Theory: Foundation. Birkhäuser, 2011.
[13] Dominik Kulesza and Adam Grabowski. Formalization of quasilattices. Formalized Mathematics, 28(2):217-225, 2020. doi 10.2478/forma-2020-0019
[14] William McCune. Prover9 and Mace4 2005-2010.
[15] William McCune and Ranganathan Padmanabhan. Automated Deduction in Equational Logic and Cubic Curves. Springer-Verlag, Berlin, 1996.
[16] Ranganathan Padmanabhan and Sergiu Rudeanu. Axioms for Lattices and Boolean Algebras. World Scientific Publishers, 2008.
[17] Piotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.
[18] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Accepted June 30, 2021

Ascoli-Arzelà Theorem

Hiroshi Yamazaki
Nagano Prefectural Institute of Technology
Nagano, Japan

Keiichi Miyajima
Ibaraki University Faculty of Engineering
Hitachi, Ibaraki, Japan

Yasunari Shidama
Karuizawa Hotch 244-1
Nagano, Japan

Summary. In this article we formalize the Ascoli-Arzelà theorem [5], [6], [8] in Mizar [1], [2]. First, we gave definitions of equicontinuousness and equiboundedness of a set of continuous functions [12, [7], [3], [9]. Next, we formalized the Ascoli-Arzelà theorem using those definitions, and proved this theorem.

MSC: 46B50 68V20
Keywords: Ascoli-Arzela's theorem; equicontinuousness of continuous functions; equiboundedness of continuous functions

MML identifier: ASCOLI version: 8.1.11 5.66.1402

1. Equicontinuousness and Equiboundedness of Continuous Functions

From now on S, T denote real normed spaces and F denotes a subset of (the carrier of $T)^{(\text {the carrier of } S)}$.

Let X be a non empty metric space and Y be a subset of X. The functor \bar{Y} yielding a subset of X is defined by
(Def. 1) there exists a subset Z of $X_{\text {top }}$ such that $Z=Y$ and $i t=\bar{Z}$.
Now we state the proposition:
(1) Let us consider a real normed space X, a subset Y of X, and a subset Z of MetricSpaceNorm X. If $Y=Z$, then $\bar{Y}=\bar{Z}$.

[^1](C) 2021 University of Białystok

Let X be a non empty metric space and H be a non empty subset of X. Observe that \bar{H} is non empty.

Now we state the propositions:
(2) Let us consider a topological space S, and a finite sequence F of elements of 2^{α}. Suppose for every natural number i such that $i \in \operatorname{Seg}$ len F holds $F_{/ i}$ is compact. Then $\bigcup \operatorname{rng} F$ is compact, where α is the carrier of S.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence F of elements of $2^{(\text {the carrier of } S \text {) }}$ such that len $F=\$_{1}$ and for every natural number i such that $i \in \operatorname{Seg}$ len F holds $F_{/ i}$ is compact holds $\bigcup \operatorname{rng} F$ is compact. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number $n, \mathcal{P}[n]$.
(3) Let us consider a non empty topological space S, a normed linear topological space T, a function f from S into T, and a point x of S. Then f is continuous at x if and only if for every real number e such that $0<e$ there exists a subset H of S such that H is open and $x \in H$ and for every point y of S such that $y \in H$ holds $\|f(x)-f(y)\|<e$.
Proof: For every subset G of T such that G is open and $f(x) \in G$ there exists a subset H of S such that H is open and $x \in H$ and $f^{\circ} H \subseteq G$.
(4) Let us consider a non empty metric space S, a non empty, compact topological space V, a normed linear topological space T, and a function f from V into T. Suppose $V=S_{\text {top }}$. Then f is continuous if and only if for every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every points x_{1}, x_{2} of S such that $\rho\left(x_{1}, x_{2}\right)<d$ holds $\left\|f_{/ x_{1}}-f_{/ x_{2}}\right\|<e$.
Proof: For every point x of V, f is continuous at x. \square
Let S be a non empty metric space, T be a real normed space, and F be a subset of (the carrier of $T)^{(\text {the carrier of } S)}$. We say that F is equibounded if and only if
(Def. 2) there exists a real number K such that for every function f from the carrier of S into the carrier of T such that $f \in F$ for every element x of S, $\|f(x)\| \leqslant K$.
Let x_{0} be a point of S. We say that F is equicontinuous at x_{0} if and only if
(Def. 3) for every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every function f from the carrier of S into the carrier of T such that $f \in F$ for every point x of S such that $\rho\left(x, x_{0}\right)<d$ holds $\left\|f(x)-f\left(x_{0}\right)\right\|<e$.
We say that F is equicontinuous if and only if
(Def. 4) for every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every function f from the carrier of S into the carrier
of T such that $f \in F$ for every points x_{1}, x_{2} of S such that $\rho\left(x_{1}, x_{2}\right)<d$ holds $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<e$.
Now we state the proposition:
(5) Let us consider a non empty metric space S, a real normed space T, and a subset F of (the carrier of $T)^{\alpha}$. Suppose $S_{\text {top }}$ is compact. Then F is equicontinuous if and only if for every point x of S, F is equicontinuous at x, where α is the carrier of S.
Proof: Define \mathcal{P} [element of S, real number] $\equiv 0<\$_{2}$ and for every function f from the carrier of S into the carrier of T such that $f \in F$ for every point x of S such that $\rho\left(x, \$_{1}\right)<\$_{2}$ holds $\left\|f(x)-f\left(\$_{1}\right)\right\|<\frac{e}{2}$. For every element x_{0} of the carrier of S, there exists an element d of \mathbb{R} such that $\mathcal{P}\left[x_{0}, d\right]$.

Consider D being a function from the carrier of S into \mathbb{R} such that for every element x_{0} of the carrier of $S, \mathcal{P}\left[x_{0}, D\left(x_{0}\right)\right]$. Set $C_{1}=$ the set of all $\operatorname{Ball}\left(x_{0}, \frac{D\left(x_{0}\right)}{2}\right)$ where x_{0} is an element of $S . C_{1} \subseteq 2^{\alpha}$, where α is the carrier of $S_{\text {top }}$. For every subset P of $S_{\text {top }}$ such that $P \in C_{1}$ holds P is open. The carrier of $S_{\text {top }} \subseteq \cup C_{1}$. Consider G being a family of subsets of $S_{\text {top }}$ such that $G \subseteq C_{1}$ and G is cover of $\Omega_{S_{\text {top }}}$ and finite. Define $\mathcal{Q}[$ object, object $] \equiv$ there exists a point x_{0} of S such that $\$_{2}=x_{0}$ and $\$_{1}=\operatorname{Ball}\left(x_{0}, \frac{D\left(x_{0}\right)}{2}\right)$. For every object Z such that $Z \in G$ there exists an object x_{0} such that $x_{0} \in$ the carrier of S and $\mathcal{Q}\left[Z, x_{0}\right]$.

Consider H being a function from G into the carrier of S such that for every object Z such that $Z \in G$ holds $\mathcal{Q}[Z, H(Z)]$. For every object Z such that $Z \in G$ holds $Z=\operatorname{Ball}\left(H_{/ Z}, \frac{D(H(Z))}{2}\right)$. Reconsider $D_{0}=D^{\circ}(\operatorname{rng} H)$ as a finite subset of $\mathbb{R} . G \neq \emptyset$. Consider x_{3} being an object such that $x_{3} \in G$. Consider x_{3} being an object such that $x_{3} \in \operatorname{rng} H$. Set $d_{0}=\inf D_{0}$. Consider x_{3} being an object such that $x_{3} \in \operatorname{dom} D$ and $x_{3} \in \operatorname{rng} H$ and $d_{0}=D\left(x_{3}\right)$. For every function f from S into T such that $f \in F$ for every points x_{1}, x_{2} of S such that $\rho\left(x_{1}, x_{2}\right)<d$ holds $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<e$.

2. Ascoli-Arzelà Theorem

From now on S, Z denote real normed spaces, T denotes a real Banach space, and F denotes a subset of (the carrier of $T)^{(\text {the carrier of } S)}$.

Now we state the proposition:
(6) Let us consider a real normed space Z. Then Z is complete if and only if MetricSpaceNorm Z is complete.
Proof: For every sequence s of Z such that s is Cauchy sequence by norm holds s is convergent by [10, (8)], 4, (5)].

Let us consider a real normed space Z and a non empty subset H of MetricSpaceNorm Z. Now we state the propositions:
(7) If Z is complete, then MetricSpaceNorm $Z \upharpoonright \bar{H}$ is complete.

Proof: Reconsider $F=H$ as a non empty subset of $Z . \bar{F}=\bar{H}$. Set $N=$ MetricSpaceNorm $Z \upharpoonright \bar{H}$. For every sequence S_{2} of N such that S_{2} is Cauchy holds S_{2} is convergent.
(8) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded if and only if MetricSpaceNorm $Z \upharpoonright \bar{H}$ is totally bounded.
Proof: Reconsider $F=H$ as a non empty subset of Z. Consider D being a subset of (MetricSpaceNorm $Z)_{\text {top }}$ such that $D=H$ and $\bar{H}=\bar{D} . \bar{F}=\bar{H}$. MetricSpaceNorm $Z \upharpoonright H$ is totally bounded.
(9) Let us consider a real normed space Z, a non empty subset F of Z, and a non empty subset H of MetricSpaceNorm Z. Suppose Z is complete and $H=F$ and MetricSpaceNorm $Z \upharpoonright H$ is totally bounded. Then
(i) \bar{H} is sequentially compact, and
(ii) MetricSpaceNorm $Z \upharpoonright \bar{H}$ is compact, and
(iii) \bar{F} is compact.

The theorem is a consequence of (1), (7), and (8).
(10) Let us consider a real normed space Z, a non empty subset F of Z, a non empty subset H of MetricSpaceNorm Z, and a subset T of TopSpaceNorm Z. Suppose Z is complete and $H=F$ and $H=T$. Then
(i) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff \bar{H} is sequentially compact, and
(ii) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff MetricSpaceNorm $Z \upharpoonright \bar{H}$ is compact, and
(iii) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff \bar{F} is compact, and
(iv) MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff \bar{T} is compact.

The theorem is a consequence of (1), (7), and (8).
(11) Let us consider a non empty, compact topological space S, and a normed linear topological space T. Suppose T is complete. Let us consider a non empty subset H of MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and T).

Then \bar{H} is sequentially compact if and only if MetricSpaceNorm(the \mathbb{R} norm space of continuous functions of S and $T) \upharpoonright H$ is totally bounded. The theorem is a consequence of (7) and (8).
(12) Let us consider a non empty, compact topological space S, and a normed linear topological space T. Suppose T is complete. Let us consider a non
empty subset F of the \mathbb{R}-norm space of continuous functions of S and T, and a non empty subset H of MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and T). Suppose $H=F$. Then \bar{F} is compact if and only if MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and $T) \upharpoonright H$ is totally bounded. The theorem is a consequence of (1) and (11).
Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a subset G of (the carrier of $T)^{(\text {the carrier of } M)}$, and a non empty subset H of MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and T). Now we state the propositions:
(13) Suppose $S=M_{\text {top }}$ and T is complete. Then suppose $G=H$ and MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and $T) \upharpoonright H$ is totally bounded. Then G is equibounded and equicontinuous.
Proof: Set $Z=$ the \mathbb{R}-norm space of continuous functions of S and T. Set $M_{1}=$ MetricSpaceNorm $Z \upharpoonright H$. Consider L being a family of subsets of M_{1} such that L is finite and the carrier of $M_{1}=\bigcup L$ and for every subset C of M_{1} such that $C \in L$ there exists an element w of M_{1} such that $C=\operatorname{Ball}(w, 1)$.

Define $\mathcal{Q}[$ object, object $] \equiv$ there exists a point w of M_{1} such that $\$_{2}=w$ and $\$_{1}=\operatorname{Ball}(w, 1)$. For every object D such that $D \in L$ there exists an object w such that $w \in$ the carrier of M_{1} and $\mathcal{Q}[D, w]$. Consider U being a function from L into the carrier of M_{1} such that for every object D such that $D \in L$ holds $\mathcal{Q}[D, U(D)]$. For every object D such that $D \in L$ holds $D=\operatorname{Ball}\left(U_{/ D}, 1\right)$. Set $N_{1}=$ the norm of Z. Reconsider $N_{2}=N_{1}{ }^{\circ}(\operatorname{rng} U)$ as a finite subset of \mathbb{R}. Consider x_{3} being an object such that $x_{3} \in L$. Consider x_{3} being an object such that $x_{3} \in \operatorname{rng} U$. Set $d_{0}=\sup N_{2}$. Set $K=d_{0}+1$.

For every function f from the carrier of M into the carrier of T such that $f \in G$ for every element x of $M,\|f(x)\| \leqslant K$. For every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every function f from the carrier of M into the carrier of T such that $f \in G$ for every points x_{1}, x_{2} of M such that $\rho\left(x_{1}, x_{2}\right)<d$ holds $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<e$.
(14) Suppose $S=M_{\text {top }}$ and T is complete. Then suppose $G=H$ and MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and $T) \upharpoonright H$ is totally bounded. Then
(i) for every point x of S and for every non empty subset H_{2} of MetricSpaceNorm T such that $H_{2}=\{f(x)$, where f is a function from S into $T: f \in H\}$ holds MetricSpaceNorm $T \upharpoonright H_{2}$ is totally bounded, and
(ii) G is equicontinuous.

Proof: For every point x of S and for every non empty subset H_{2} of MetricSpaceNorm T such that $H_{2}=\{f(x)$, where f is a function from S into $T: f \in H\}$ holds MetricSpaceNorm $T \upharpoonright H_{2}$ is totally bounded.
(15) Let us consider a normed linear topological space T, and a real normed space R. Suppose $R=$ the normed structure of T and the topology of $T=$ the topology of TopSpaceNorm R. Then
(i) the distance by norm of $R=$ the distance by norm of T, and
(ii) MetricSpaceNorm $R=$ MetricSpaceNorm T, and
(iii) TopSpaceNorm $T=$ TopSpaceNorm R.

Proof: For every points x, y of R, (the distance by norm of $T)(x, y)=$ $\|x-y\|$ by [11, (19)].
Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a subset G of (the carrier of $T)^{(\text {the carrier of } M)}$, and a non empty subset H of MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and T). Now we state the propositions:
(16) Suppose $S=M_{\mathrm{top}}$ and T is complete and $G=H$. Then MetricSpaceNo$\operatorname{rm}($ the \mathbb{R}-norm space of continuous functions of S and $T) \upharpoonright H$ is totally bounded if and only if G is equicontinuous and for every point x of S and for every non empty subset H_{2} of MetricSpaceNorm T such that $H_{2}=\{f(x)$, where f is a function from S into $T: f \in H\}$ holds MetricSpaceNorm $T \upharpoonright \overline{H_{2}}$ is compact.
Proof: Set $Z=$ the \mathbb{R}-norm space of continuous functions of S and T. Set $M_{1}=$ MetricSpaceNorm $Z \upharpoonright H$. For every real number e such that $e>0$ there exists a family L of subsets of M_{1} such that L is finite and the carrier of $M_{1}=\bigcup L$ and for every subset C of M_{1} such that $C \in L$ there exists an element w of M_{1} such that $C=\operatorname{Ball}(w, e)$.
(17) Suppose $S=M_{\text {top }}$ and T is complete and $G=H$. Then \bar{H} is sequentially compact if and only if G is equicontinuous and for every point x of S and for every non empty subset H_{2} of MetricSpaceNorm T such that $H_{2}=\{f(x)$, where f is a function from S into $T: f \in H\}$ holds MetricSpaceNorm $T \upharpoonright \overline{H_{2}}$ is compact. The theorem is a consequence of (11) and (16).
Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a non empty subset F of the \mathbb{R}-norm space of continuous functions of S and T, and a subset G of (the carrier of $T)^{(\text {the carrier of } M)}$. Now we state the propositions:
(18) Suppose $S=M_{\text {top }}$ and T is complete and $G=F$. Then \bar{F} is compact if and only if G is equicontinuous and for every point x of S and for every non empty subset F_{1} of MetricSpaceNorm T such that $F_{1}=\{f(x)$, where f is a function from S into $T: f \in F\}$ holds MetricSpaceNorm $T \backslash \overline{F_{1}}$ is compact. The theorem is a consequence of (12) and (16).
(19) Suppose $S=M_{\text {top }}$ and T is complete and $G=F$. Then \bar{F} is compact if and only if for every point x of M, G is equicontinuous at x and for every point x of S and for every non empty subset F_{1} of MetricSpaceNorm T such that $F_{1}=\{f(x)$, where f is a function from S into $T: f \in F\}$ holds MetricSpaceNorm $T \upharpoonright \overline{F_{1}}$ is compact. The theorem is a consequence of (18) and (5).
(20) Let us consider a normed linear topological space T. Then T is compact if and only if TopSpaceNorm T is compact. The theorem is a consequence of (15).
(21) Let us consider a normed linear topological space T, and a set X. Then X is a compact subset of T if and only if X is a compact subset of TopSpaceNorm T. The theorem is a consequence of (15).
(22) Let us consider a normed linear topological space T. If T is compact, then T is complete. The theorem is a consequence of (20) and (6).
Let us observe that every normed linear topological space which is compact is also complete.

Now we state the proposition:
(23) Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a compact subset U of T, a non empty subset F of the \mathbb{R}-norm space of continuous functions of S and T, and a subset G of (the carrier of $T)^{\alpha}$. Suppose $S=M_{\text {top }}$ and T is complete and $G=F$ and for every function f such that $f \in F$ holds rng $f \subseteq U$. Then
(i) if \bar{F} is compact, then G is equibounded and equicontinuous, and
(ii) if G is equicontinuous, then \bar{F} is compact,
where α is the carrier of M.
Proof: Reconsider $H=F$ as a non empty subset of MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and T). Set $Z=$ the \mathbb{R}-norm space of continuous functions of S and T. MetricSpaceNorm $Z \upharpoonright H$ is totally bounded iff \bar{F} is compact. For every point x of S and for every non empty subset F_{1} of MetricSpaceNorm T such that $F_{1}=\{f(x)$, where f is a function from S into $T: f \in F\}$ holds MetricSpaceNorm $T \upharpoonright \overline{F_{1}}$ is compact.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi $10.1007 / 978-3-319-20615-8-17$.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Bruce K. Driver. Analysis Tools with Applications. Springer, Berlin, 2003.
[4] Noboru Endou, Yasunari Shidama, and Katsumasa Okamura. Baire's category theorem and some spaces generated from real normed space. Formalized Mathematics, 14(4): 213-219, 2006. doi 10.2478/v10037-006-0024-x.
[5] Serge Lang. Real and Functional Analysis (Texts in Mathematics). Springer-Verlag, 1993.
[6] Kazuo Matsuzaka. Sets and Topology (Introduction to Mathematics). IwanamiShoten, 2000.
[7] Tohru Ozawa. Ascoli-Arzelà theorem 2012.
[8] Michael Read and Barry Simon. Functional Analysis (Methods of Modern Mathematical Physics). Academic Press, 1980.
[9] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
[10] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences Formalized Mathematics, 11(4):377-380, 2003.
[11] Hiroshi Yamazaki, Keiichi Miyajima, and Yasunari Shidama. Functional space consisted by continuous functions on topological space. Formalized Mathematics, 29(1):49-62, 2021. doi:10.2478/forma-2021-0005
[12] Kôsaku Yosida. Functional Analysis. Springer, 1980.

On Primary Ideals. Part I

Yasushige Watase
Suginami-ku Matsunoki
3-21-6 Tokyo, Japan

Abstract

Summary. We formalize in the Mizar System [3, 4], definitions and basic propositions about primary ideals of a commutative ring along with Chapter 4 of 11 and Chapter III of [8. Additionally other necessary basic ideal operations such as compatibilities taking radical and intersection of finite number of ideals are formalized as well in order to prove theorems relating primary ideals. These basic operations are mainly quoted from Chapter 1 of 1 and compiled as preliminaries in the first half of the article.

MSC: 13A70 16D70 68V20
Keywords: primary ideal; radical ideal; prime ideal
MML identifier: IDEAL_2, version: 8.1 .11 5.66.1402
From now on R denotes a commutative ring, A denotes a non degenerated, commutative ring, I, J, \mathfrak{p} denote ideals of A, \mathfrak{q} denotes a prime ideal of A, and M, M_{1}, M_{2} denote ideals of A / \mathfrak{p}.

Let us consider A and \mathfrak{p}. We introduce the notation $\pi_{A \rightarrow A / \mathfrak{p}}$ as a synonym of the canonical homomorphism of \mathfrak{p} into quotient field.

Now we state the proposition:
(1) Let us consider ideals a, b of A, and a prime ideal \mathfrak{q} of A. If $a \cap b \subseteq \mathfrak{q}$, then $a \subseteq \mathfrak{q}$ or $b \subseteq \mathfrak{q}$.
Let us consider A. Let a be a non empty finite sequence of elements of Ideals A and i be an element of $\operatorname{dom} a$. Let us observe that the functor $a(i)$ yields a non empty subset of A. One can check that $a(i)$ is closed under addition, left and right ideal as a subset of A and $\bigcap \operatorname{rng} a$ is closed under addition, left and right ideal as a subset of A.

Now we state the proposition:
(2) [1, p.8, Prop. 1.11 II)]:

Let us consider a non empty finite sequence a of elements of Ideals A, and
(C) 2021 University of Białystok
a prime ideal \mathfrak{q} of A. Suppose $\bigcap \operatorname{rng} a \subseteq \mathfrak{q}$. Then there exists an object i such that
(i) $i \in \operatorname{dom} a$, and
(ii) $a(i) \subseteq \mathfrak{q}$.

Proof: Define \mathcal{P} [natural number] \equiv for every non empty finite sequence a of elements of Ideals A for every prime ideal \mathfrak{q} of A such that len $a=\$_{1}$ holds if $\bigcap \operatorname{rng} a \subseteq \mathfrak{q}$, then there exists an object i such that $i \in \operatorname{dom} a$ and $a(i) \subseteq \mathfrak{q}$. For every non zero natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every non zero natural number $i, \mathcal{P}[i]$.
Let us consider A. Let I be an ideal of A. The functor $\% I$ yielding a function from $2^{\text {(the carrier of } A)}$ into $2^{(\text {the carrier of } A)}$ is defined by
(Def. 1) for every subset x of $A, i t(x)=x \% I$.
Now we state the propositions:
(3) Let us consider a proper ideal I of A, and a non empty finite sequence F of elements of Ideals A. Then
(i) $\operatorname{rng}(\% I) \cdot F \neq \emptyset$, and
(ii) $\operatorname{rng} F \neq \emptyset$, and
(iii) $\cap \operatorname{rng}(\% I) \cdot F \subseteq$ the carrier of A.
(4) [1, P.8, Ex.1.12. IV)]:

Let us consider a proper ideal I of A, and a non empty finite sequence F of elements of Ideals A. Then $(\% I)(\bigcap \operatorname{rng} F)=\bigcap \operatorname{rng}(\% I) \cdot F$.
Proof: $\operatorname{rng}(\% I) \cdot F \neq \emptyset$. For every object x such that $x \in(\% I)(\bigcap \operatorname{rng} F)$ holds $x \in \bigcap \operatorname{rng}(\% I) \cdot F . \bigcap \operatorname{rng}(\% I) \cdot F \subseteq(\% I)(\bigcap \operatorname{rng} F)$.
(5) $I * \Omega_{A}=I$.
(6) Let us consider finite sequences f, g of elements of 2^{α}. Suppose len $f \geqslant$ len $g>0$ and $I^{\operatorname{len} f}=f(\operatorname{len} f)$ and $f(1)=I$ and for every natural number i such that $i, i+1 \in \operatorname{dom} f$ holds $f(i+1)=I * f_{/ i}$ and $I^{\text {len } g}=g(\operatorname{len} g)$ and $g(1)=I$ and for every natural number i such that $i, i+1 \in \operatorname{dom} g$ holds $g(i+1)=I * g_{/ i}$. Then $f \upharpoonright \operatorname{dom} g=g$, where α is the carrier of A. Proof: Set $f_{1}=f \upharpoonright \operatorname{dom} g$. For every natural number i such that $i, i+1 \in$ $\operatorname{dom} f_{1}$ holds $f_{1}(i+1)=I * f_{1 / i} . f_{1}=g$.
(7) Let us consider a natural number n. If $n>0$, then $I^{n+1}=I * I^{n}$. The theorem is a consequence of (6).
(8) [1, P.9, Ex.1.13 II)]:
$\sqrt{I}=\sqrt{\sqrt{I}}$.
Proof: For every object o such that $o \in \sqrt{\sqrt{I}}$ holds $o \in \sqrt{I}$.
(9) [1, P.9, Ex.1.13 III)]:
$\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.
Proof: For every object o such that $o \in \sqrt{I \cap J}$ holds $o \in \sqrt{I} \cap \sqrt{J}$. $\sqrt{I} \cap \sqrt{J} \subseteq \sqrt{I \cap J}$.
(10) [1, P.9, Ex.1.13 IV)]:
$\sqrt{I}=\Omega_{A}$ if and only if $I=\Omega_{A}$.
Proof: If $\sqrt{I}=\Omega_{A}$, then $I=\Omega_{A}$ by [7, (2)], [2, (19)].
(11) [1, P.9, Ex.1.13 v)]:
$\sqrt{I+J}=\sqrt{\sqrt{I}+\sqrt{J}}$.
Proof: For every object o such that $o \in \sqrt{I+J}$ holds $o \in \sqrt{\sqrt{I}+\sqrt{J}}$.
$\sqrt{\sqrt{I}+\sqrt{J}} \subseteq \sqrt{I+J}$
(12) [1, P.9, Ex.1.13 VI)]:

Let us consider a prime ideal \mathfrak{q} of A, and a non zero natural number n. Then $\sqrt{\mathfrak{q}^{n}}=\mathfrak{q}$.
Proof: Define \mathcal{P} [natural number] $\equiv \sqrt{\mathfrak{q}^{\$_{1}}}=\mathfrak{q}$. For every non zero natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every non zero natural number i, $\mathcal{P}[i]$.
(13) [1, P.9, Prop1.16]:

If \sqrt{I} and \sqrt{J} are co-prime, then I and J are co-prime. The theorem is a consequence of (11) and (10).
(14) Let us consider elements x, y of the carrier of A / \mathfrak{p}. Suppose $x, y \in$ $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} I$. Then $x+y \in\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} I$.
(15) Let us consider elements a, x of the carrier of A / \mathfrak{p}. Suppose $x \in\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} I$. Then $a \cdot x \in\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} I$.
(16) $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} I$ is an ideal of A / \mathfrak{p}. The theorem is a consequence of (14) and (15).
(17) Let us consider elements x, y of the carrier of A. Suppose $x, y \in$ $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{1}\right)$. Then $x+y \in\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{1}\right)$.
(18) Let us consider elements r, x of the carrier of A.

Suppose $x \in\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{1}\right)$. Then $r \cdot x \in\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{1}\right)$.
(19) $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{1}\right)$ is an ideal of A. The theorem is a consequence of (17) and (18).
(20) $\mathfrak{p} \subseteq\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{1}\right)$.

Proof: For every object x such that $x \in \mathfrak{p}$ holds $x \in\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{1}\right)$ by [5, (13)].
(21) $\quad\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ}\left(\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{1}\right)\right)=M_{1}$.
(22) If $\mathfrak{p} \subseteq I$, then $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} I\right)=I$.

Proof: $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} I\right) \subseteq I$.
(23) If $I \subseteq J$, then $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} I \subseteq\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} J$.
(24) If $M_{1} \subseteq M_{2}$, then $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{1}\right) \subseteq\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(M_{2}\right)$.
(25) $\quad\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}\left(\Omega_{A_{/ \mathfrak{p}}}\right)=\Omega_{A}$.
(26) If M is proper, then $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}(M)$ is proper. The theorem is a consequence of (21).
(27) If $\mathfrak{p} \subseteq I$ and I is maximal, then $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} I$ is maximal. The theorem is a consequence of (16), (25), (22), (26), (19), and (24).
Let us consider A and \mathfrak{p}. The functor $\Psi_{\mathfrak{p}}$ yielding a function from Ideals A / \mathfrak{p} into Ideals (A, \mathfrak{p}) is defined by
(Def. 2) for every element x of Ideals $A / \mathfrak{p}, i t(x)=\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{-1}(x)$.
Let J be a proper ideal of A. Observe that A / J is non degenerated and commutative.
[1, p.2, Prop. 1.1]:
Let us consider A. Let \mathfrak{p} be an ideal of A. Let us note that $\Psi_{\mathfrak{p}}$ is one-to-one and \subseteq-monotone.
[1, p.50, Chapter 4]:
Let A be a well unital, non empty double loop structure and S be a subset of A. We say that S is quasi-primary if and only if
(Def. 3) for every elements x, y of A such that $x \cdot y \in S$ holds $x \in S$ or $y \in \sqrt{S}$.
We say that S is primary if and only if
(Def. 4) S is proper and quasi-primary.
Let K be a well unital, non empty double loop structure. Let us note that every subset of K which is primary is also proper and quasi-primary and every subset of K which is proper and quasi-primary is also primary.

Now we state the proposition:
(28) Let us consider an ideal \mathfrak{q} of A. If \mathfrak{q} is prime, then \mathfrak{q} is primary.

Proof: For every elements x, y of A such that $x \cdot y \in \mathfrak{q}$ holds $x \in \mathfrak{q}$ or $y \in \sqrt{\mathfrak{q}}$.
Let us consider A. One can verify that every ideal of A which is prime is also primary.

Let A be a non degenerated, commutative ring. Let us observe that there exists a proper ideal of A which is primary.

Now we state the propositions:
(29) I is primary if and only if $I \neq \Omega_{A}$ and for every elements x, y of A such that $x \cdot y \in I$ and $x \notin I$ holds $y \in \sqrt{I}$.
$I \neq \Omega_{A}$ and for every elements x, y of A such that $x \cdot y \in I$ and $x \notin I$ holds $y \in \sqrt{I}$ if and only if A / I is not degenerated and for every element z of A / I such that z is zero-divisible holds z is nilpotent.
Proof: If $I \neq \Omega_{A}$ and for every elements x, y of A such that $x \cdot y \in I$ and $x \notin I$ holds $y \in \sqrt{I}$, then A / I is not degenerated and for every element z of A / I such that z is zero-divisible holds z is nilpotent. If A / I is not degenerated and for every element z of A / I such that z is zero-divisible holds z is nilpotent, then $I \neq \Omega_{A}$ and for every elements x_{1}, y_{1} of A such that $x_{1} \cdot y_{1} \in I$ and $x_{1} \notin I$ holds $y_{1} \in \sqrt{I}$ by [6, (2)].
(31) I is primary if and only if A / I is not degenerated and for every element x of A / I such that x is zero-divisible holds x is nilpotent. The theorem is a consequence of (29) and (30).
[1, p.50, Prop. 4.1]:
Let us consider A. Let Q be a primary ideal of A. Note that \sqrt{Q} is prime.
Let I be a primary ideal of A. One can verify that every element of A / I which is zero-divisible is also nilpotent.

Let P, Q be ideals of A. We say that Q is P-primary if and only if
(Def. 5) $\sqrt{Q}=P$.
The functor PrimaryIdeals (A) yielding a family of subsets of the carrier of A is defined by the term
(Def. 6) the set of all I where I is a primary ideal of A.
Note that PrimaryIdeals (A) is non empty.
Let us consider \mathfrak{q}. The functor PrimaryIdeals (A, \mathfrak{q}) yielding a non empty subset of PrimaryIdeals (A) is defined by the term
(Def. 7) $\quad\{I$, where I is a primary ideal of $A: I$ is \mathfrak{q}-primary $\}$.
Let us consider a proper ideal \mathfrak{p} of A. Now we state the propositions:
(32) $\quad\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} \sqrt{\mathfrak{p}}=\operatorname{nilrad}(A / \mathfrak{p})$.

Proof: For every object x such that $x \in \operatorname{nilrad}(A / \mathfrak{p})$ holds $x \in\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} \sqrt{\mathfrak{p}}$. $\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} \sqrt{\mathfrak{p}} \subseteq \operatorname{nilrad}\left({ }^{A} / \mathfrak{p}\right)$.
(33) If $\sqrt{\mathfrak{p}}$ is maximal, then A / \mathfrak{p} is local.

Proof: Set $m=\sqrt{\mathfrak{p}} \cdot\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} m=\operatorname{nilrad}(A / \mathfrak{p})$. For every objects m_{1}, m_{2} such that $m_{1}, m_{2} \in \mathrm{~m}-\operatorname{Spectrum}(A / \mathfrak{p})$ holds $m_{1}=m_{2}$.
(34) [1, p.51, Prop. 4.2]:

Let us consider a proper ideal \mathfrak{p} of A. If $\sqrt{\mathfrak{p}}$ is maximal, then \mathfrak{p} is primary. Proof: Set $m=\sqrt{\mathfrak{p}} .\left(\pi_{A \rightarrow A / \mathfrak{p}}\right)^{\circ} m$ is maximal. A / \mathfrak{p} is local. For every element x of A / \mathfrak{p} such that x is zero-divisible holds x is nilpotent.
(35) [1, p.51, Prop. 4.2] Case of M is maximal Ideal:

Let us consider a maximal ideal M of A, and a non zero natural number n. Then $M^{n} \in \operatorname{PrimaryIdeals}(A, M)$. The theorem is a consequence of (12) and (34).
(36) Let us consider ideals q_{1}, q_{2} of A. Suppose $q_{1}, q_{2} \in \operatorname{PrimaryIdeals}(A, \mathfrak{q})$. Then $q_{1} \cap q_{2} \in \operatorname{PrimaryIdeals}(A, \mathfrak{q})$. The theorem is a consequence of (9) and (29).
(37) [1, P.51, Lemma 4.3]:

Let us consider a prime ideal \mathfrak{q} of A, and a non empty finite sequence F of elements of PrimaryIdeals (A, \mathfrak{q}). Then $\bigcap \operatorname{rng} F \in \operatorname{PrimaryIdeals}(A, \mathfrak{q})$. Proof: $\bigcap \operatorname{rng} F \in \operatorname{PrimaryIdeals}(A, \mathfrak{q})$.
(38) Let us consider a proper ideal I of A, and an element x of \sqrt{I}. Then there exists a natural number m such that
(i) $m \in\left\{n\right.$, where n is an element of $\left.\mathbb{N}: x^{n} \notin I\right\}$, and
(ii) $x^{m+1} \in I$.

Proof: Consider x_{1} being an element of A such that $x_{1}=x$ and there exists an element n of \mathbb{N} such that $x_{1}{ }^{n} \in I$. Consider n_{1} being an element of \mathbb{N} such that $x_{1}{ }^{n_{1}} \in I . n_{1} \notin\left\{n\right.$, where n is an element of $\left.\mathbb{N}: x^{n} \notin I\right\}$. $0 \in\left\{n\right.$, where n is an element of $\left.\mathbb{N}: x^{n} \notin I\right\} .\{n$, where n is an element of $\left.\mathbb{N}: x^{n} \notin I\right\}=\mathbb{N}$.
(39) Let us consider proper ideals I, J of A. Suppose $I \subseteq J \subseteq \sqrt{I}$ and for every elements x, y of A such that $x \cdot y \in I$ and $x \notin I$ holds $y \in J$. Then
(i) I is primary, and
(ii) $\sqrt{I}=J$, and
(iii) J is prime.

Proof: $\sqrt{I} \subseteq J$.
(40) Let us consider a proper ideal Q of A. Suppose for every elements x, y of A such that $x \cdot y \in Q$ and $y \notin \sqrt{Q}$ holds $x \in Q$. Then
(i) Q is primary, and
(ii) \sqrt{Q} is prime.

The theorem is a consequence of (39).
(41) [1, p.51, Lemma 4.4 I)]:

Let us consider an ideal \mathfrak{p} of A, and an element x of A. Suppose $x \in \mathfrak{p}$. Then $\mathfrak{p} \%\{x\}$-ideal $=\Omega_{A}$.
Proof: Set $I=\{x\}$-ideal. If $x \in \mathfrak{p}$, then $\mathfrak{p} \% I=\Omega_{A}$. \square
(42) [1, P.51, LEMMA 4.4 it)]:

Let us consider an ideal \mathfrak{p} of A, and an element x of A. Suppose $\mathfrak{p} \in$ PrimaryIdeals (A, \mathfrak{q}). If $x \notin \mathfrak{p}$, then $\mathfrak{p} \%\{x\}$-ideal $\in \operatorname{PrimaryIdeals}(A, \mathfrak{q})$. Proof: Set $I=\{x\}$-ideal. Consider q_{1} being a primary ideal of A such that $q_{1}=\mathfrak{p}$ and q_{1} is \mathfrak{q}-primary. If $x \notin \mathfrak{p}$, then $\mathfrak{p} \% I \in \operatorname{PrimaryIdeals}(A, \mathfrak{q})$.
(43) [1, P.51, Lemma 4.4 iII$)]$:

Let us consider an ideal \mathfrak{p} of A, and an element x of A. Suppose $\mathfrak{p} \in$ PrimaryIdeals (A, \mathfrak{q}). If $x \notin \mathfrak{q}$, then $\mathfrak{p} \%\{x\}$-ideal $=\mathfrak{p}$.
Proof: Set $I=\{x\}$-ideal. Consider Q being a primary ideal of A such that $Q=\mathfrak{p}$ and Q is \mathfrak{q}-primary. If $x \notin \mathfrak{q}$, then $\mathfrak{p} \% I=\mathfrak{p}$.

References

[1] Michael Francis Atiyah and Ian Grant Macdonald. Introduction to Commutative Algebra, volume 2. Addison-Wesley Reading, 1969.
[2] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals Formalized Mathematics, 9(3):565-582, 2001.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[5] Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. Formalized Mathematics, 22(4):291-301, 2014. doi 10.2478/forma-20140029.
[6] Christoph Schwarzweller. On roots of polynomials over $F[X] /\langle p\rangle$. Formalized Mathematics, 27(2):93-100, 2019. doi 10.2478/forma-2019-0010
[7] Yasushige Watase. Zariski topology. Formalized Mathematics, 26(4):277-283, 2018. doi 10.2478/forma-2018-0024.
[8] Oscar Zariski and Pierre Samuel. Commutative Algebra I. Springer, 2nd edition, 1975.

Some Properties of Membership Functions Composed of Triangle Functions and Piecewise Linear Functions ${ }^{1}$

Takashi Mitsuishi
University of Marketing and Distribution Sciences
Kobe, Japan

Abstract

Summary. IF-THEN rules in fuzzy inference is composed of multiple fuzzy sets (membership functions). IF-THEN rules can therefore be considered as a pair of membership functions [7]. The evaluation function of fuzzy control is composite function with fuzzy approximate reasoning and is functional on the set of membership functions. We obtained continuity of the evaluation function and compactness of the set of membership functions [12. Therefore, we proved the existence of pair of membership functions, which maximizes (minimizes) evaluation function and is considered IF-THEN rules, in the set of membership functions by using extreme value theorem. The set of membership functions (fuzzy sets) is defined in this article to verifier our proofs before by Mizar [9, [10, [4]. Membership functions composed of triangle function, piecewise linear function and Gaussian function used in practice are formalized using existing functions.

On the other hand, not only curve membership functions mentioned above but also membership functions composed of straight lines (piecewise linear function) like triangular and trapezoidal functions are formalized. Moreover, different from the definition in [3] formalizations of triangular and trapezoidal function composed of two straight lines, minimum function and maximum functions are proposed. We prove, using the Mizar [2], (1) formalism, some properties of membership functions such as continuity and periodicity [13, 8].

MSC: 03E72 68V20
Keywords: membership function; piecewise linear function
MML identifier: FUZZY_5, version: 8.1.11 5.66.1402

[^2]
1. Preliminaries

Now we state the propositions:
(1) Let us consider real numbers a, b, c, d. Then $\mid \max (c, \min (d, a))-\max (c$, $\min (d, b))|\leqslant|a-b|$.
(2) Let us consider a real number x. Then $|\sin x| \leqslant|x|$.
(3) Let us consider real numbers x, y. Then $|\sin x-\sin y| \leqslant|x-y|$. The theorem is a consequence of (2).
(4) Let us consider a real number x. If $\exp x=1$, then $x=0$.
(5) Let us consider real numbers a, b, p, q. Suppose $a>0$ and $p>0$ and $\frac{-b}{a}<\frac{q}{p}$. Then
(i) $\frac{-b}{a}<\frac{q-b}{a+p}<\frac{q}{p}$, and
(ii) $\frac{a \cdot q+b \cdot p}{a+p}>0$.
(6) Let us consider real numbers a, b, p, q, s. Suppose $a>0$ and $p>0$ and $\frac{s-b}{a}=\frac{s-q}{-p}$. Then
(i) $\frac{s-b}{a}=\frac{q-b}{a+p}$, and
(ii) $\frac{s-q}{-p}=\frac{q-b}{a+p}$.
(7) Let us consider real numbers a, b, p, q, s. Suppose $a>0$ and $p>0$ and $\frac{s-b}{a}<\frac{s-q}{-p}$. Then $\frac{s-b}{a}<\frac{q-b}{a+p}<\frac{s-q}{-p}$.

2. The Set of Membership Functions

Let X be a non empty set. The functor Membership-Funcs (X) yielding a set is defined by
(Def. 1) for every object $f, f \in i t$ iff f is a membership function of X.
Now we state the propositions:
(8) Let us consider a non empty set X, and an object x. Suppose $x \in$ Membership-Funcs (X). Then there exists a membership function f of X such that
(i) $x=f$, and
(ii) $\operatorname{dom} f=X$.
(9) $\operatorname{Membership-Funcs}(\mathbb{R})=\{f$, where f is a function from \mathbb{R} into $\mathbb{R}: f$ is a fuzzy set of $\mathbb{R}\}$. The theorem is a consequence of (8).
(10) Let us consider non empty sets A, X.

Then $\left\{\chi_{A, X}\right\} \subseteq$ Membership-Funcs (X).
(11) $\left\{\chi_{[a, b], \mathbb{R}}\right.$, where a, b are real numbers : $\left.a \leqslant b\right\} \subseteq$ Membership-Funcs (\mathbb{R}).
(12) $\left\{\chi_{A, \mathbb{R}}\right.$, where A is a subset of $\left.\mathbb{R}: A \subseteq \mathbb{R}\right\} \subseteq$ Membership-Funcs($\left.\mathbb{R}\right)$.
(13) $\{f$, where f is a fuzzy set of \mathbb{R} : there exists a subset A of \mathbb{R} such that $\left.f=\chi_{A, \mathbb{R}}\right\} \subseteq \operatorname{Membership-Funcs}(\mathbb{R})$.
(14) Let us consider functions f, g from \mathbb{R} into \mathbb{R}, and a real number a. Suppose g is continuous and for every real number $x, f(x)=\min (a, g(x))$. Then f is continuous.
Proof: For every real number x_{0} such that $x_{0} \in \operatorname{dom} f$ holds f is continuous in x_{0}.
Let us consider functions F, f, g from \mathbb{R} into \mathbb{R}. Now we state the propositions:
(15) If f is continuous and g is continuous and for every real number x, $F(x)=\min (f(x), g(x))$, then F is continuous.
Proof: For every real number x_{0} such that $x_{0} \in \operatorname{dom} F$ holds F is continuous in x_{0}.
(16) If f is continuous and g is continuous and for every real number x, $F(x)=\max (f(x), g(x))$, then F is continuous.
Proof: For every real number x_{0} such that $x_{0} \in \operatorname{dom} F$ holds F is continuous in x_{0}.
(17) Let us consider functions f, g from \mathbb{R} into \mathbb{R}, and a real number a. Suppose g is continuous and for every real number $x, f(x)=\max (a, g(x))$. Then f is continuous. The theorem is a consequence of (16).
(18) Let us consider functions f, g from \mathbb{R} into \mathbb{R}, and real numbers a, b. Suppose g is continuous and for every real number $x, f(x)=\max (a, \min (b$, $g(x))$). Then f is continuous.
Proof: Define $\mathcal{H}($ element of $\mathbb{R})=\left(\min \left(b, g\left(\$_{1}\right)\right)\right)(\in \mathbb{R})$. Consider h being a function from \mathbb{R} into \mathbb{R} such that for every element x of $\mathbb{R}, h(x)=\mathcal{H}(x)$. For every real number $x, h(x)=\min (b, g(x)) . h$ is continuous. For every real number $x, f(x)=\max (a, h(x))$.
(19) Let us consider functions f, g from \mathbb{R} into \mathbb{R}. Suppose g is continuous and for every real number $x, f(x)=\max (0, \min (1, g(x)))$. Then f is continuous.

Let us consider a function f from \mathbb{R} into \mathbb{R} and real numbers a, b. Now we state the propositions:
(20) If for every real number $t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}$, then f is continuous.
Proof: For every real number x_{0} such that $x_{0} \in \operatorname{dom} f$ holds f is continuous in x_{0}.
(21) If for every real number $x, f(x)=\frac{1}{2} \cdot(\sin (a \cdot x+b))+\frac{1}{2}$, then f is continuous.
(22) Let us consider real numbers r, s, and a function f from \mathbb{R} into \mathbb{R}. Suppose for every real number $x, f(x)=\max (r, \min (s, x))$. Then f is Lipschitzian. The theorem is a consequence of (1).
(23) Let us consider a function g from \mathbb{R} into \mathbb{R}. Then $\{f$, where f is a function from \mathbb{R} into \mathbb{R} : for every real number $x, f(x)=\min (1, \max (0, g(x)))\} \subseteq$ Membership-Funcs(\mathbb{R}).
Proof: Consider f being a function from \mathbb{R} into \mathbb{R} such that $f_{0}=f$ and for every real number $x, f(x)=\min (1, \max (0, g(x))) . \operatorname{rng} f \subseteq[0,1]$.
(24) $\{f$, where f, g are functions from \mathbb{R} into \mathbb{R} : for every real number $x, f(x)$ $=\max (0, \min (1, g(x)))\} \subseteq$ Membership-Funcs (\mathbb{R}).
Let us consider functions f, g from \mathbb{R} into \mathbb{R}. Now we state the propositions:
(25) If for every real number $x, f(x)=\max (0, \min (1, g(x)))$, then f is a fuzzy set of \mathbb{R}.
(26) If for every real number $x, f(x)=\min (1, \max (0, g(x)))$, then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (23).
(27) $\{f$, where f is a function from \mathbb{R} into \mathbb{R} : there exist real numbers a, b such that for every real number $\left.t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}\right\} \subseteq$ Membership-Funcs(\mathbb{R}).
Proof: Consider f being a function from \mathbb{R} into \mathbb{R} such that $x=f$ and there exist real numbers a, b such that for every real number t_{1}, $f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2} . \operatorname{rng} f \subseteq[0,1]$.
(28) $\quad\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b are real numbers: for every real number $\left.t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}\right\} \subseteq$ Membership-Funcs (\mathbb{R}). Proof: Consider f being a function from \mathbb{R} into \mathbb{R}, a, b being real numbers such that $x=f$ and for every real number $t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}$. $\operatorname{rng} f \subseteq[0,1]$.
(29) Let us consider real numbers a, b, and a function f from \mathbb{R} into \mathbb{R}. Suppose for every real number $t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}$. Then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (28).
(30) $\{f$, where f is a function from \mathbb{R} into \mathbb{R} : there exist real numbers a, b such that for every real number $\left.t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\cos \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}\right\} \subseteq$ Membership-Funcs(\mathbb{R}).
Proof: Consider f being a function from \mathbb{R} into \mathbb{R} such that $x=f$ and there exist real numbers a, b such that for every real number t_{1}, $f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\cos \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2} . \operatorname{rng} f \subseteq[0,1]$.
(31) Let us consider real numbers a, b, and a function f from \mathbb{R} into \mathbb{R}.

Suppose for every real number $t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\cos \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}$. Then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (30).
(32) Let us consider real numbers a, b, and a fuzzy set f of \mathbb{R}. Suppose $a \neq 0$ and for every real number $t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}$. Then f is normalized.
Proof: There exists an element x of \mathbb{R} such that $f(x)=1$.
(33) Let us consider a fuzzy set f of \mathbb{R}. Suppose $f \in\{f$, where f is a function from \mathbb{R} into \mathbb{R} : there exist real numbers a, b such that $a \neq 0$ and for every real number $\left.t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}\right\}$. Then f is normalized.
Proof: Consider f_{2} being a function from \mathbb{R} into \mathbb{R} such that $f=f_{2}$ and there exist real numbers a, b such that $a \neq 0$ and for every real number $t_{1}, f_{2}\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}$. Consider a, b being real numbers such that $a \neq 0$ and for every real number $t_{1}, f_{2}\left(t_{1}\right)=\frac{1}{2} \cdot\left(\sin \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}$. There exists an element x of \mathbb{R} such that $f(x)=1$.
(34) Let us consider a fuzzy set f of \mathbb{R}, and real numbers a, b. Suppose $a \neq 0$ and for every real number $t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\cos \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}$. Then f is normalized.
Proof: There exists an element x of \mathbb{R} such that $f(x)=1$.
(35) Let us consider a fuzzy set f of \mathbb{R}. Suppose $f \in\{f$, where f is a function from \mathbb{R} into \mathbb{R} : there exist real numbers a, b such that $a \neq 0$ and for every real number $\left.t_{1}, f\left(t_{1}\right)=\frac{1}{2} \cdot\left(\cos \left(a \cdot t_{1}+b\right)\right)+\frac{1}{2}\right\}$. Then f is normalized. The theorem is a consequence of (34).
(36) Let us consider a function F from \mathbb{R} into \mathbb{R}, real numbers a, b, c, d, and an integer i. Suppose $a \neq 0$ and $i \neq 0$ and for every real number x, $F(x)=\max (0, \min (1, c \cdot(\sin (a \cdot x+b))+d))$. Then F is $\left(\frac{2 \cdot \pi}{a} \cdot i\right)$-periodic. Proof: For every real number x such that $x \in \operatorname{dom} F$ holds $x+\frac{2 \cdot \pi}{a} \cdot i$, $x-\frac{2 \cdot \pi}{a} \cdot i \in \operatorname{dom} F$ and $F(x)=F\left(x+\frac{2 \cdot \pi}{a} \cdot i\right)$.
(37) Let us consider a function F from \mathbb{R} into \mathbb{R}, and real numbers a, b, c, d. Suppose for every real number $x, F(x)=\max (0, \min (1, c \cdot(\sin (a \cdot x+$ $b))+d)$). Then F is periodic.
Proof: There exists a real number t such that F is t-periodic by (36), [6, (1)].
(38) $\{f$, where f is a function from \mathbb{R} into \mathbb{R} : there exist real numbers a, b such that for every real number $\left.t_{1}, f\left(t_{1}\right)=\max \left(0, \sin \left(a \cdot t_{1}+b\right)\right)\right\} \subseteq$ Membership-Funcs(\mathbb{R}).
Proof: Consider f being a function from \mathbb{R} into \mathbb{R} such that $x=f$ and there exist real numbers a, b such that for every real number t_{1}, $f\left(t_{1}\right)=\max \left(0, \sin \left(a \cdot t_{1}+b\right)\right) . \operatorname{rng} f \subseteq[0,1]$ by [5, (4)].
(39) Let us consider real numbers a, b, and a function f from \mathbb{R} into \mathbb{R}.

Suppose for every real number $x, f(x)=\max (0, \sin (a \cdot x+b))$. Then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (38).
(40) $\{f$, where f is a function from \mathbb{R} into \mathbb{R} : there exist real numbers a, b such that for every real number $x, f(x)=\max (0, \cos (a \cdot x+b))\} \subseteq$ Mem-bership-Funcs (\mathbb{R}).
Proof: Consider f being a function from \mathbb{R} into \mathbb{R} such that $x=f$ and there exist real numbers a, b such that for every real number t_{1}, $f\left(t_{1}\right)=\max \left(0, \cos \left(a \cdot t_{1}+b\right)\right) . \operatorname{rng} f \subseteq[0,1]$.
(41) Let us consider real numbers a, b, and a function f from \mathbb{R} into \mathbb{R}. Suppose for every real number $x, f(x)=\max (0, \cos (a \cdot x+b))$. Then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (40).
(42) $\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b, c, d are real numbers : for every real number $x, f(x)=\max (0, \min (1, c \cdot(\sin (a \cdot x+b))+d))\} \subseteq$ $\{f$, where f, g are functions from \mathbb{R} into \mathbb{R} : for every real number $x, f(x)=$ $\max (0, \min (1, g(x)))\}$.
(43) $\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b, c, d are real numbers: for every real number $x, f(x)=\max (0, \min (1, c \cdot(\sin (a \cdot x+b))+d))\} \subseteq$ Membership-Funcs (\mathbb{R}).
Proof: Consider f being a function from \mathbb{R} into \mathbb{R}, a, b, c, d being real numbers such that $f=g$ and for every real number $x, f(x)=$ $\max (0, \min (1, c \cdot(\sin (a \cdot x+b))+d)) . f$ is a fuzzy set of \mathbb{R}.
(44) Let us consider a function f from \mathbb{R} into \mathbb{R}, and real numbers a, b, c, d. Suppose for every real number $x, f(x)=\max (0, \min (1, c \cdot(\sin (a \cdot x+b))+$ $d)$). Then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (43).
(45) $\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b, c, d are real numbers : for every real number $x, f(x)=\max (0, \min (1, c \cdot(\arctan (a \cdot x+b))+d))\} \subseteq$ $\{f$, where f, g are functions from \mathbb{R} into \mathbb{R} : for every real number $x, f(x)=$ $\max (0, \min (1, g(x)))\}$.
(46) $\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b, c, d are real numbers : for every real number $x, f(x)=\max (0, \min (1, c \cdot(\arctan (a \cdot x+b))+d))\} \subseteq$ Membership-Funcs(\mathbb{R}).
(47) Let us consider a function f from \mathbb{R} into \mathbb{R}, and real numbers a, b, c, d. Suppose for every real number $x, f(x)=\max (0, \min (1, c \cdot(\arctan (a \cdot x+$ $b))+d)$). Then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (68) and (24).
(48) Let us consider a function f from \mathbb{R} into \mathbb{R}, and real numbers a, b, c, d, r, s. Suppose for every real number $x, f(x)=\max (r, \min (s, c \cdot(\sin (a \cdot x+$ $b))+d)$). Then f is Lipschitzian.
Proof: There exists a real number r such that $0<r$ and for every real
numbers x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} f$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqslant r \cdot\left|x_{1}-x_{2}\right|$.
(49) Let us consider a function f from \mathbb{R} into \mathbb{R}, and real numbers a, b, c, d. Suppose for every real number $x, f(x)=\max (0, \min (1, c \cdot(\sin (a \cdot x+b))+$ $d)$). Then f is Lipschitzian.

Let us consider real numbers a, b and a function f from \mathbb{R} into \mathbb{R}. Now we state the propositions:
(50) If $b \neq 0$ and for every real number $x, f(x)=\exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)$, then f is a fuzzy set of \mathbb{R}.
Proof: rng $f \subseteq[0,1]$.
(51) If $b \neq 0$ and for every real number $x, f(x)=\exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)$, then f is a fuzzy set of \mathbb{R}.
Proof: For every real number $x, f(x)=\exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)$.
(52) Let us consider real numbers a, b. Suppose $b \neq 0$. Then $\{f$, where f is a function from \mathbb{R} into \mathbb{R} : for every real number $\left.x, f(x)=\exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)\right\}$ $\subseteq \operatorname{Membership-Funcs}(\mathbb{R})$. The theorem is a consequence of (51).

Let us consider real numbers a, b and a fuzzy set f of \mathbb{R}. Now we state the propositions:
(53) If for every real number $x, f(x)=\exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)$, then f is normalized. Proof: There exists an element x of \mathbb{R} such that $f(x)=1$.
(54) If $b \neq 0$ and for every real number $x, f(x)=\exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)$, then f is strictly normalized.
Proof: There exists an element x of \mathbb{R} such that $f(x)=1$ and for every element y of \mathbb{R} such that $f(y)=1$ holds $y=x$ by [11, (20)], (4).
(55) Let us consider real numbers a, b, and a function f from \mathbb{R} into \mathbb{R}. Suppose $b \neq 0$ and for every real number $x, f(x)=\exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)$. Then f is continuous.
Proof: Set $h=\operatorname{AffineMap}(1,-a) . f=($ the function $\exp) \cdot\left(\left(\frac{-1}{2 \cdot b^{2}} \cdot h\right) \cdot h\right)$.
(56) Let us consider real numbers a, b, c, r, s, and a function f from \mathbb{R} into \mathbb{R}. Suppose $b \neq 0$ and for every real number $x, f(x)=$ $\max \left(r, \min \left(s, \exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)+c\right)\right)$. Then f is continuous.
Proof: Define $\mathcal{H}($ element of $\mathbb{R})=\left(\exp \left(-\frac{\left(\$_{1}-a\right)^{2}}{2 \cdot b^{2}}\right)\right)(\in \mathbb{R})$. Consider h being a function from \mathbb{R} into \mathbb{R} such that for every element x of $\mathbb{R}, h(x)=\mathcal{H}(x)$. For every real number x_{0} such that $x_{0} \in \operatorname{dom} f$ holds f is continuous in x_{0}.

Let us consider real numbers a, b, c and a function f from \mathbb{R} into \mathbb{R}. Now we state the propositions:
(57) Suppose $b \neq 0$ and for every real number $x, f(x)=$ $\max \left(0, \min \left(1, \exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)+c\right)\right)$. Then f is continuous.
(58) Suppose $b \neq 0$ and for every real number $x, f(x)=$ $\max \left(0, \min \left(1, \exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)+c\right)\right)$. Then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (25).
(59) $\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b, c are real numbers : $b \neq$ 0 and for every real number $\left.x, f(x)=\max \left(0, \min \left(1, \exp \left(-\frac{(x-a)^{2}}{2 \cdot b^{2}}\right)+c\right)\right)\right\}$ $\subseteq \operatorname{Membership-Funcs}(\mathbb{R})$. The theorem is a consequence of (58).
(60) Let us consider a function f from \mathbb{R} into \mathbb{R}, and real numbers a, b, r, s. Suppose for every real number $x, f(x)=$ $\max (r, \min (s,(\operatorname{AffineMap}(a, b))(x)))$. Then f is Lipschitzian.
Proof: There exists a real number r such that $0<r$ and for every real numbers x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} f$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqslant r \cdot\left|x_{1}-x_{2}\right|$.

Let us consider a function f from \mathbb{R} into \mathbb{R} and real numbers a, b. Now we state the propositions:
(61) If for every real number $x, f(x)=\max (0, \min (1,(\operatorname{AffineMap}(a, b))(x)))$, then f is Lipschitzian.
(62) If for every real number $x, f(x)=\max (0, \min (1,(\operatorname{AffineMap}(a, b))(x)))$, then f is a fuzzy set of \mathbb{R}.
(63) $\quad\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b are real numbers : for every real number $x, f(x)=\max (0, \min (1,(\operatorname{AffineMap}(a, b))(x)))\} \subseteq$ $\operatorname{Membership-Funcs}(\mathbb{R})$. The theorem is a consequence of (25).
(64) Let us consider real numbers a, b, and a function f from \mathbb{R} into \mathbb{R}. Suppose for every real number $x, f(x)=\max \left(0,1-\left|\frac{x-a}{b}\right|\right)$. Then f is a fuzzy set of \mathbb{R}.
Proof: $\operatorname{rng} f \subseteq[0,1]$.
(65) Let us consider real numbers a, b. Suppose $b>0$. Let us consider a real number x. Then $(\operatorname{TriangularFS}((a-b), a,(a+b)))(x)=\max \left(0,1-\left|\frac{x-a}{b}\right|\right)$. Proof: Set $\left.f_{1}=(\operatorname{AffineMap}(0,0)) \upharpoonright \mathbb{R} \backslash\right] a-b, a+b[$.
Set $f_{2}=\left(\operatorname{AffineMap}\left(\frac{1}{a-(a-b)},-\frac{a-b}{a-(a-b)}\right)\right) \upharpoonright[a-b, a]$.
Set $f_{3}=\left(\operatorname{AffineMap}\left(-\frac{1}{a+b-a}, \frac{a+b}{a+b-a}\right)\right) \upharpoonright[a, a+b]$. Set $F=\left(f_{1}+\cdot f_{2}\right)+\cdot f_{3}$. $F(x)=\max \left(0,1-\left|\frac{x-a}{b}\right|\right)$.
Let us consider real numbers a, b and a fuzzy set f of \mathbb{R}. Now we state the propositions:
(66) If $b>0$ and for every real number $x, f(x)=\max \left(0,1-\left|\frac{x-a}{b}\right|\right)$, then f is triangular. The theorem is a consequence of (65).
(67) If $b>0$ and for every real number $x, f(x)=\max \left(0,1-\left|\frac{x-a}{b}\right|\right)$, then f is strictly normalized.
Proof: There exists an element x of \mathbb{R} such that $f(x)=1$ and for every element y of \mathbb{R} such that $f(y)=1$ holds $y=x$.
(68) Let us consider a function f from \mathbb{R} into \mathbb{R}, and real numbers a, b, c. Suppose for every real number $x, f(x)=\max \left(0, \min \left(1, c \cdot\left(1-\left|\frac{x-a}{b}\right|\right)\right)\right)$. Then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (25).
(69) Let us consider a function f from \mathbb{R} into \mathbb{R}, and real numbers a, b. Suppose $b>0$ and for every real number $x, f(x)=\max \left(0,1-\left|\frac{x-a}{b}\right|\right)$. Then f is continuous.
Proof: $f=\operatorname{TriangularFS}((a-b), a,(a+b))$.
(70) Let us consider a function f from \mathbb{R} into \mathbb{R}, and real numbers a, b, c, r, s. Suppose $b \neq 0$ and for every real number $x, f(x)=\max (r, \min (s, c$. $\left.\left.\left(1-\left|\frac{x-a}{b}\right|\right)\right)\right)$. Then f is Lipschitzian.
Proof: There exists a real number r such that $0<r$ and for every real numbers x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} f$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqslant r \cdot\left|x_{1}-x_{2}\right|$.
(71) Let us consider a function f from \mathbb{R} into \mathbb{R}, and real numbers a, b, c. Suppose $b \neq 0$ and for every real number $x, f(x)=\max (0, \min (1, c \cdot(1-$ $\left.\left.\left.\left|\frac{x-a}{b}\right|\right)\right)\right)$. Then f is Lipschitzian.
(72) $\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b are real numbers : $b>$ 0 and for every real number $\left.x, f(x)=\max \left(0,1-\left|\frac{x-a}{b}\right|\right)\right\} \subseteq$ MembershipFuncs (\mathbb{R}).
Proof: $\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b are real numbers : $b>0$ and for every real number $\left.x, f(x)=\max \left(0,1-\left|\frac{x-a}{b}\right|\right)\right\} \subseteq$ $\{$ TriangularFS (a, b, c), where a, b, c are real numbers : $a<b<c\}$.
(73) $\{f$, where f is a function from \mathbb{R} into \mathbb{R}, a, b, c, d are real numbers : $b \neq$ 0 and for every real number $\left.x, f(x)=\max \left(0, \min \left(1, c \cdot\left(1-\left|\frac{x-a}{b}\right|\right)\right)\right)\right\} \subseteq$ $\operatorname{Membership-Funcs}(\mathbb{R})$. The theorem is a consequence of (68).
(74) Let us consider real numbers a, b, p, q, s.

Then $(\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, s[+\cdot(\operatorname{AffineMap}(p, q)) \upharpoonright[s,+\infty[$ is a function from \mathbb{R} into \mathbb{R}.
(75) Let us consider real numbers a, b, p, q, and a function f from \mathbb{R} into \mathbb{R}. Suppose for every real number $x, f(x)=$ $\max \left(0, \min \left(1,((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a-p}\left[+\cdot(\operatorname{AffineMap}(p, q)) \upharpoonright\left[\frac{q-b}{a-p}\right.\right.\right.\right.$, $+\infty[)(x))$). Then f is a fuzzy set of \mathbb{R}. The theorem is a consequence of (74) and (25).
(76) Let us consider real numbers a, b, c. Suppose $a<b<c$. Then
(i) (TriangularFS $(a, b, c))(a)=0$, and
(ii) (TriangularFS $(a, b, c))(b)=1$, and
(iii) (TriangularFS $(a, b, c))(c)=0$.
(77) Let us consider real numbers a, b, c, d. Suppose $a<b<c<d$. Then
(i) (TrapezoidalFS $(a, b, c, d))(a)=0$, and
(ii) (TrapezoidalFS $(a, b, c, d))(b)=1$, and
(iii) (TrapezoidalFS $(a, b, c, d))(c)=1$, and
(iv) (TrapezoidalFS $(a, b, c, d))(d)=0$.

Let us consider real numbers a, b, p, q and a real number x. Now we state the propositions:
(78) Suppose $a>0$ and $p>0$ and $\frac{-b}{a}<\frac{q}{p}$ and $\frac{1-b}{a}=\frac{1-q}{-p}$. Then (TriangularFS $\left.\left(\frac{-b}{a}, \frac{1-b}{a}, \frac{q}{p}\right)\right)(x)=\max \left(0, \min \left(1,((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}[+\cdot(\right.\right.$ Affine -$\left.\operatorname{Map}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p},+\infty[)(x)\right)\right)$.
Proof: For every real number x, (TriangularFS $\left.\left(\frac{-b}{a}, \frac{1-b}{a}, \frac{q}{p}\right)\right)(x)=$ $\max \left(0, \min \left(1,((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}\left[+\cdot(\operatorname{AffineMap}(-p, q))\left\lceil\left[\frac{q-b}{a+p}\right.\right.\right.\right.\right.$, $+\infty[)(x))$).
(79) Suppose $a>0$ and $p>0$ and $\frac{1-b}{a}<\frac{1-q}{-p}$.

Then (TrapezoidalFS $\left.\left(\frac{-b}{a}, \frac{1-b}{a}, \frac{1-q}{-p}, \frac{q}{p}\right)\right)(x)=$ $\max \left(0, \min \left(1,((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}\left[+\cdot(\operatorname{AffineMap}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p}\right.\right.\right.\right.$, $+\infty[)(x))$).
Proof: Set $\left.f_{4}=(\operatorname{AffineMap}(a, b)) \upharpoonright\right]-\infty, \frac{q-b}{a+p}[$.
Set $f_{5}=(\operatorname{AffineMap}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p},+\infty[\right.$.
For every real number x, (TrapezoidalFS $\left.\left(\frac{-b}{a}, \frac{1-b}{a}, \frac{1-q}{-p}, \frac{q}{p}\right)\right)(x)=$ $\max \left(0, \min \left(1,\left(f_{4}+\cdot f_{5}\right)(x)\right)\right)$.
(80) Let us consider real numbers a, b, p, q, and a function f from \mathbb{R} into \mathbb{R}. Suppose $a>0$ and $p>0$ and $f=(\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}[+\cdot($ Affine -$\operatorname{Map}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p},+\infty[\right.$. Then f is Lipschitzian.
Proof: There exists a real number r such that $0<r$ and for every real numbers x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} f$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqslant r \cdot\left|x_{1}-x_{2}\right|$.
(81) Let us consider real numbers a, b, p, q. Suppose $a>0$ and $p>0$. Then there exists a real number r such that
(i) $0<r$, and
(ii) for every real numbers x_{1}, x_{2} such that $x_{1}, x_{2} \in$ $\operatorname{dom}((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}\left[+\cdot(\operatorname{AffineMap}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p},+\infty[)\right.\right.$ holds $\mid((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}\left[+\cdot(\operatorname{AffineMap}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p},+\infty[)\right.\right.$ $\left(x_{1}\right)-((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}\left[+\cdot(\operatorname{AffineMap}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p},+\infty[)\right.\right.$ $\left(x_{2}\right)|\leqslant r \cdot| x_{1}-x_{2} \mid$.

The theorem is a consequence of (74) and (80).
(82) Let us consider real numbers a, b, p, q, r, s, and a function f from \mathbb{R} into \mathbb{R}. Suppose $a>0$ and $p>0$ and for every real number $x, f(x)=$ $\max \left(r, \min \left(s,((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}\left[+\cdot(\operatorname{AffineMap}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p}\right.\right.\right.\right.$, $+\infty[)(x)))$. Then f is Lipschitzian. The theorem is a consequence of (74), (81), and (1).
(83) Let us consider real numbers a, b, c. Suppose $a<b<c$. Let us consider a real number x. Then $(\operatorname{TriangularFS}(a, b, c))(x)=$ $\max \left(0, \min \left(1,\left(\left(\operatorname{AffineMap}\left(\frac{1}{b-a},-\frac{a}{b-a}\right)\right) \upharpoonright\right]-\infty\right.\right.$,
$b\left[+\cdot\left(\right.\right.$ AffineMap $\left.\left.\left(-\frac{1}{c-b}, \frac{c}{c-b}\right)\right) \upharpoonright[b,+\infty[)(x))\right)$. The theorem is a consequence of (78).
(84) Let us consider real numbers a, b, c, d. Suppose $a<b<c<d$. Let us consider a real number x. Then (TrapezoidalFS $(a, b, c, d))(x)=$ $\max \left(0, \min \left(1,\left(\left(\operatorname{AffineMap}\left(\frac{1}{b-a},-\frac{a}{b-a}\right)\right) \upharpoonright\right]-\infty, \frac{b \cdot d-a \cdot c}{d-c+b-a}[+\cdot(\right.\right.$ AffineMap $\left.\left.\left(-\frac{1}{d-c}, \frac{d}{d-c}\right)\right) \upharpoonright\left[\frac{b \cdot d-a \cdot c}{d-c+b-a},+\infty[)(x)\right)\right)$. The theorem is a consequence of (79).
(85) Let us consider real numbers a, b, p, q, and a function f from \mathbb{R} into \mathbb{R}. Suppose $a>0$ and $p>0$ and for every real number $x, f(x)=$ $\max \left(0, \min \left(1,((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}\left[+\cdot(\operatorname{AffineMap}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p}\right.\right.\right.\right.$, $+\infty[)(x)))$. Then f is Lipschitzian.
(86) Let us consider real numbers a, b, c. If $a<b<c$, then $\operatorname{TriangularFS}(a, b, c)$ is Lipschitzian. The theorem is a consequence of (83) and (82).
(87) Let us consider real numbers a, b, c, d. If $a<b<c<d$, then Trapezoidal$\mathrm{FS}(a, b, c, d)$ is Lipschitzian. The theorem is a consequence of (84) and (82).
Let us consider real numbers a, b, p, q and a fuzzy set f of \mathbb{R}. Now we state the propositions:
(88) Suppose $a>0$ and $p>0$ and $\frac{-b}{a}<\frac{q}{p}$ and $\frac{1-b}{a}=\frac{1-q}{-p}$ and for every real number $x, f(x)=\max \left(0, \min \left(1,((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}[+\cdot(\right.\right.$ Affine -$\left.\operatorname{Map}(-p, q)) \upharpoonright\left[\frac{q-b}{a+p},+\infty[)(x)\right)\right)$. Then f is triangular and strictly normalized. The theorem is a consequence of (78).
(89) Suppose $a>0$ and $p>0$ and $\frac{1-b}{a}<\frac{1-q}{-p}$ and for every real number $x, f(x)=\max \left(0, \min \left(1,((\operatorname{AffineMap}(a, b)) \upharpoonright]-\infty, \frac{q-b}{a+p}[+\cdot\right.\right.$ (AffineMap
$\left.(-p, q)) \upharpoonright\left[\frac{q-b}{a+p},+\infty[)(x)\right)\right)$. Then f is trapezoidal and normalized. The theorem is a consequence of (79).
(90) $\quad\{f$, where f is a fuzzy set of $\mathbb{R}: f$ is triangular $\} \subseteq \operatorname{Membership-Funcs}(\mathbb{R})$.
(91) $\{$ TriangularFS (a, b, c), where a, b, c are real numbers : $a<b<c\} \subseteq$ Membership-Funcs(\mathbb{R}).
(92) $\quad\{f$, where f is a fuzzy set of $\mathbb{R}: f$ is trapezoidal $\} \subseteq \operatorname{Membership-Funcs}(\mathbb{R})$.
(93) $\quad\{\operatorname{TrapezoidalFS}(a, b, c, d)$, where a, b, c, d are real numbers : $a<b<c<$ $d\} \subseteq \operatorname{Membership-Funcs}(\mathbb{R})$.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pakk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. dol $10.1007 /$ s $10817-017-9440-6$
[3] Adam Grabowski. The formal construction of fuzzy numbers. Formalized Mathematics, 22(4):321-327, 2014. doi 10.2478/forma-2014-0032
[4] Adam Grabowski and Takashi Mitsuishi. Initial comparison of formal approaches to fuzzy and rough sets. In Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing - 14 th International Conference, ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Proceedings, Part I, volume 9119 of Lecture Notes in Computer Science, pages 160-171. Springer, 2015. doi 10.1007/978-3-319-19324-3_15
[5] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005.
[6] Bo Li, Yanhong Men, Dailu Li, and Xiquan Liang. Basic properties of periodic functions. Formalized Mathematics, 17(4):245-248, 2009. doi $10.2478 / \mathrm{v} 10037-009-0031-9$
[7] E. H. Mamdani. Application of fuzzy algorithms for control of simple dynamic plant IEE Proceedings, 121:1585-1588, 1974.
[8] Takashi Mitsuishi. Uncertain defuzzified value of periodic membership function. In 2018 International Electrical Engineering Congress (iEECON), pages 1-4, 2018. doi 10.1109/IEECON.2018.8712319
[9] Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation Formalized Mathematics, 9(2):351-356, 2001.
[10] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Basic properties of fuzzy set operation and membership function. Formalized Mathematics, 9(2):357-362, 2001.
[11] Takashi Mitsuishi, Noboru Endou, and Keiji Ohkubo. Trigonometric functions on complex space. Formalized Mathematics, 11(1):29-32, 2003.
[12] Takashi Mitsuishi, Takanori Terashima, Nami Shimada, Toshimichi Homma, Kiyoshi Sawada, and Yasunari Shidama. Continuity of defuzzification on L^{2} space for optimization of fuzzy control. In Active Media Technology, pages 73-81. Springer-Berlin-Heidelberg, 2012. ISBN 978-3-642-35236-2.
[13] Takashi Mitsuishi, Nami Shimada, Toshimichi Homma, Mayumi Ueda, Masayuki Kochizawa, and Yasunari Shidama. Continuity of approximate reasoning using fuzzy number under Łukasiewicz t-norm. In 2015 IEEE 7th International Conference on Cybernetics
and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pages 71-74, 2015. doi 10.1109/ICCIS.2015.7274550.

Accepted June 30, 2021

[^0]: ${ }^{1}$ This work has been supported by the "Centre autonome de formation et de recherche en mathématiques et sciences avec assistants de preuve" ASBL (non-profit organization). Enterprise number: 0777.779.751. Belgium.
 ${ }^{2}$ https://en.wikipedia.org/wiki/Pappus's_hexagon_theorem
 3 https://www.cs.unm.edu/~mccune/prover9/
 ${ }^{4}$ See its homepage https://github.com/JUrban/ott2miz

[^1]: ${ }^{1}$ This work was supported by JSPS KAKENHI Grant Numbers JP17K00182.

[^2]: ${ }^{1}$ This work has been partially supported in 2019-2020 by the domestic research grant of University of Marketing and Distribution Sciences in Kobe (Japan).

