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Summary. In this article we prove, using Mizar [2], [1], the Pappus’s
hexagon theorem in the real projective plane: “Given one set of collinear points
A, B, C, and another set of collinear points a, b, c, then the intersection points
X, Y, Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear”2.

More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10]
(where TOP-REAL3 is a metric space defined in [5]) satisfies the Pappus’s axiom
defined in [11] by Wojciech Leończuk and Krzysztof Prażmowski. Eugeniusz Ku-
sak and Wojciech Leończuk formalized the Hessenberg theorem early in the MML
[9]. With this result, the real projective plane is Desarguesian.

For proving the Pappus’s theorem, two different proofs are given. First, we
use the techniques developed in the section “Projective Proofs of Pappus’s The-
orem” in the chapter “Pappos’s Theorem: Nine proofs and three variations” [12].
Secondly, Pascal’s theorem [4] is used.

In both cases, to prove some lemmas, we use Prover93, the successor of the
Otter prover and ott2miz by Josef Urban4 [13], [8], [7].

In Coq, the Pappus’s theorem is proved as the application of Grassmann-
Cayley algebra [6] and more recently in Tarski’s geometry [3].
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1. Preliminaries

From now on a, b, c, d, e, f , g, h, i denote real numbers and M denotes
a square matrix over R of dimension 3.

Now we state the propositions:

(1) Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Then DetM = a · e · i − c · e ·
g − a · f · h+ b · f · g − b · d · i+ c · d · h.

(2) Let us consider elements P1, P4, P5 of the projective space over E3T,
and elements p1, p2, p3, p4, p5 of E3T. Suppose p1 is not zero and P1 =
the direction of p1 and p4 is not zero and P4 = the direction of p4 and p5
is not zero and P5 = the direction of p5 and P1, P4 and P5 are collinear.
Then 〈|p1, p2, p4|〉 · 〈|p1, p3, p5|〉 = 〈|p1, p2, p5|〉 · 〈|p1, p3, p4|〉.

(3) Let us consider non zero real numbers r416, r415, r413, r418, r419, r412,
r712, r746, r716, r742, r715, r743, r713, r745, r749, r718, r719, r748. Suppose
(−r412)·(−r713) = (−r413)·(−r712) and (−r415)·(−r719) = (−r419)·(−r715)
and (−r418) · (−r716) = (−r416) · (−r718) and (−r745) · r416 = (−r746) · r415
and (−r748) · r413 = (−r743) · r418 and (−r742) · r419 = (−r749) · r412 and
r712 ·r746 = r716 ·r742 and r715 ·r743 = r713 ·r745. Then r718 ·r749 = r719 ·r748.

2. Some Technical Lemmas Proved by Prover9 and Translated with
Help of ott2miz

From now on P2 denotes a projective space defined in terms of collinearity
and c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 denote elements of P2.

Now we state the propositions:

(4) Suppose c2 6= c1 and c3 6= c1 and c3 6= c2 and c4 6= c2 and c4 6= c3 and
c5 6= c1 and c6 6= c1 and c6 6= c5 and c7 6= c5 and c7 6= c6 and c1, c4 and
c7 are not collinear and c1, c4 and c2 are collinear and c1, c4 and c3 are
collinear and c1, c7 and c5 are collinear and c1, c7 and c6 are collinear and
c4, c5 and c8 are collinear and c7, c2 and c8 are collinear and c4, c6 and c9
are collinear and c3, c7 and c9 are collinear and c2, c6 and c10 are collinear
and c3, c5 and c10 are collinear. Then

(i) c4, c7 and c2 are not collinear, and

(ii) c4, c10 and c3 are not collinear, and

(iii) c4, c7 and c3 are not collinear, and

(iv) c4, c10 and c2 are not collinear, and

(v) c4, c7 and c5 are not collinear, and
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(vi) c4, c10 and c8 are not collinear, and

(vii) c4, c7 and c8 are not collinear, and

(viii) c4, c10 and c5 are not collinear, and

(ix) c4, c7 and c9 are not collinear, and

(x) c4, c10 and c6 are not collinear, and

(xi) c4, c7 and c6 are not collinear, and

(xii) c4, c10 and c9 are not collinear, and

(xiii) c7, c10 and c5 are not collinear, and

(xiv) c7, c4 and c6 are not collinear, and

(xv) c7, c10 and c9 are not collinear, and

(xvi) c7, c4 and c3 are not collinear, and

(xvii) c7, c10 and c3 are not collinear, and

(xviii) c7, c4 and c9 are not collinear, and

(xix) c7, c10 and c2 are not collinear, and

(xx) c7, c4 and c8 are not collinear, and

(xxi) c10, c4 and c2 are not collinear, and

(xxii) c10, c7 and c6 are not collinear, and

(xxiii) c10, c4 and c6 are not collinear, and

(xxiv) c10, c7 and c2 are not collinear, and

(xxv) c10, c4 and c5 are not collinear, and

(xxvi) c10, c7 and c3 are not collinear, and

(xxvii) c10, c4 and c3 are not collinear, and

(xxviii) c10, c7 and c5 are not collinear.

(5) Suppose c2 6= c1 and c3 6= c2 and c5 6= c1 and c7 6= c5 and c7 6= c6 and
c1, c4 and c7 are not collinear and c1, c4 and c2 are collinear and c1, c4
and c3 are collinear and c1, c7 and c5 are collinear and c1, c7 and c6 are
collinear and c4, c5 and c8 are collinear and c7, c2 and c8 are collinear and
c2, c6 and c10 are collinear and c3, c5 and c10 are collinear.
Then c10, c7 and c8 are not collinear.

(6) Suppose c1, c4 and c7 are not collinear and c1, c4 and c2 are collinear
and c1, c4 and c3 are collinear and c1, c7 and c5 are collinear and c1, c7
and c6 are collinear and c4, c5 and c8 are collinear and c7, c2 and c8 are
collinear and c4, c6 and c9 are collinear and c3, c7 and c9 are collinear and
c2, c6 and c10 are collinear and c3, c5 and c10 are collinear. Then
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(i) c4, c2 and c3 are collinear, and

(ii) c4, c5 and c8 are collinear, and

(iii) c4, c9 and c6 are collinear, and

(iv) c7, c5 and c6 are collinear, and

(v) c7, c9 and c3 are collinear, and

(vi) c7, c2 and c8 are collinear, and

(vii) c10, c2 and c6 are collinear, and

(viii) c10, c5 and c3 are collinear.

(7) Suppose c3 6= c1 and c3 6= c2 and c6 6= c1 and c6 6= c5 and c1, c2 and
c5 are not collinear and c1, c2 and c3 are collinear and c1, c5 and c6 are
collinear. Then

(i) c2, c3 and c5 are not collinear, and

(ii) c2, c3 and c6 are not collinear, and

(iii) c2, c5 and c6 are not collinear, and

(iv) c3, c5 and c6 are not collinear.

(8) Suppose c3 6= c1 and c4 6= c1 and c4 6= c3 and c3 6= c2 and c4 6= c2 and
c6 6= c1 and c7 6= c1 and c7 6= c6 and c6 6= c5 and c7 6= c5 and c1, c2 and
c5 are not collinear and c1, c2 and c3 are collinear and c1, c2 and c4 are
collinear and c1, c5 and c6 are collinear and c1, c5 and c7 are collinear.
Then

(i) c1, c3 and c6 are not collinear, and

(ii) c1, c3 and c4 are collinear, and

(iii) c1, c6 and c7 are collinear, and

(iv) c3 6= c1, and

(v) c2 6= c1, and

(vi) c3 6= c2, and

(vii) c4 6= c3, and

(viii) c4 6= c2, and

(ix) c6 6= c1, and

(x) c5 6= c1, and

(xi) c6 6= c5, and

(xii) c7 6= c6, and

(xiii) c7 6= c5, and
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(xiv) c1, c4 and c7 are not collinear, and

(xv) c1, c4 and c3 are collinear, and

(xvi) c1, c4 and c2 are collinear, and

(xvii) c1, c7 and c6 are collinear, and

(xviii) c1, c7 and c5 are collinear.

(9) Suppose c4 6= c2 and c4 6= c3 and c8 6= c2 and c2, c3 and c6 are not
collinear. Then

(i) c2, c3 and c4 are not collinear, or

(ii) c2, c6 and c8 are not collinear, or

(iii) c3, c4 and c8 are not collinear.

(10) Suppose c4 6= c1 and c6 6= c5 and c1, c2 and c5 are not collinear. Then

(i) c1, c2 and c4 are not collinear, or

(ii) c1, c5 and c6 are not collinear, or

(iii) c4, c6 and c8 are not collinear, or

(iv) c8 6= c5.

(11) Suppose c4 6= c2 and c6 6= c1 and c1, c2 and c5 are not collinear and c1,
c2 and c4 are collinear and c1, c5 and c6 are collinear and c4, c6 and c8 are
collinear. Then c8 6= c2.

(12) If c1, c2 and c5 are not collinear and c1, c2 and c3 are collinear and c1,
c2 and c4 are collinear, then c2, c3 and c4 are collinear.

(13) If c1, c2 and c5 are not collinear and c1, c5 and c6 are collinear and c1,
c5 and c7 are collinear, then c5, c6 and c7 are collinear.

(14) If c3 6= c1 and c1, c2 and c5 are not collinear and c1, c2 and c3 are collinear
and c1, c5 and c7 are collinear, then c7 6= c3.

(15) Suppose c4 6= c1 and c4 6= c3 and c1, c2 and c5 are not collinear and c1,
c2 and c3 are collinear and c1, c2 and c4 are collinear and c4, c5 and c9 are
collinear. Then c9 6= c3.

(16) Suppose c4 6= c1 and c4 6= c2 and c6 6= c1 and c7 6= c6 and c7 6= c5 and c1,
c2 and c5 are not collinear and c1, c2 and c4 are collinear and c1, c5 and c6
are collinear and c1, c5 and c7 are collinear and c2, c7 and c9 are collinear
and c4, c5 and c9 are collinear. Then c9, c2 and c5 are not collinear.
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3. The Real Projective Plane and Pappus’s Theorem

From now on o, p1, p2, p3, q1, q2, q3, r1, r2, r3 denote elements of the pro-
jective space over E3T. Now we state the propositions:

(17) Pappus theorem as “Pappos’s Theorem: Nine proofs and
three variations” [12] version:
Suppose o 6= p2 and o 6= p3 and p2 6= p3 and p1 6= p2 and p1 6= p3 and
o 6= q2 and o 6= q3 and q2 6= q3 and q1 6= q2 and q1 6= q3 and o, p1 and
q1 are not collinear and o, p1 and p2 are collinear and o, p1 and p3 are
collinear and o, q1 and q2 are collinear and o, q1 and q3 are collinear
and p1, q2 and r3 are collinear and q1, p2 and r3 are collinear and p1,
q3 and r2 are collinear and p3, q1 and r2 are collinear and p2, q3 and
r1 are collinear and p3, q2 and r1 are collinear.
Then r1, r2 and r3 are collinear.

(18) The projective space over E3T is a Pappian, Desarguesian projective
plane defined in terms of collinearity.

4. Proof: Special Case of Pascal’s Theorem

In the sequel v0, v1, v2, v3, v4, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, v100,
v101, v102, v103 denote elements of the projective space over E3T.
Now we state the propositions:

(19) Suppose c1 6= c2 and c1 6= c3 and c2 6= c3 and c2 6= c4 and c3 6= c4
and c1 6= c5 and c1 6= c6 and c5 6= c6 and c5 6= c7 and c6 6= c7 and
c1, c4 and c7 are not collinear and c1, c4 and c2 are collinear and c1,
c4 and c3 are collinear and c1, c7 and c5 are collinear and c1, c7 and
c6 are collinear and c4, c5 and c8 are collinear and c7, c2 and c8 are
collinear and c4, c6 and c9 are collinear and c3, c7 and c9 are collinear
and c2, c6 and c10 are collinear and c3, c5 and c10 are collinear.

Then it is not true that c4, c2 and c7 are collinear or c4, c3 and c7
are collinear or c2, c3 and c7 are collinear or c4, c2 and c5 are collinear
or c4, c2 and c6 are collinear or c4, c3 and c5 are collinear or c4, c3
and c6 are collinear or c2, c7 and c5 are collinear or c2, c7 and c6 are
collinear or c3, c7 and c5 are collinear or c3, c7 and c6 are collinear or
c2, c3 and c5 are collinear or c2, c3 and c6 are collinear or c7, c5 and
c4 are collinear or c7, c6.

And c4 are collinear or c5, c6 and c4 are collinear or c5, c6 and c2
are collinear or c4, c5 and c8 are not collinear or c4, c6 and c9 are not
collinear or c2, c7 and c8 are not collinear or c2, c6 and c10 are not
collinear or c3, c7 and c9 are not collinear or c3, c5 and c10 are not
collinear.
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(20) conic(0, 0, 0, 0, 0, 0) = the carrier of the projective space over E3T.

(21) Suppose o 6= p2 and o 6= p3 and p2 6= p3 and p1 6= p2 and p1 6= p3
and o 6= q2 and o 6= q3 and q2 6= q3 and q1 6= q2 and q1 6= q3 and o, p1
and q1 are not collinear and o, p1 and p2 are collinear and o, p1 and
p3 are collinear and o, q1 and q2 are collinear and o, q1 and q3 are
collinear and p1, q2 and r3 are collinear and q1, p2 and r3 are collinear
and p1, q3 and r2 are collinear and p3, q1 and r2 are collinear and p2,
q3 and r1 are collinear and p3, q2 and r1 are collinear.
Then p1, p2, p3, q1, q2, q3, r1, r2, r3 form the Pascal configuration.

(22) Pappus theorem as a special case of Pascal’s theorem:
Suppose o 6= p2 and o 6= p3 and p2 6= p3 and p1 6= p2 and p1 6= p3 and
o 6= q2 and o 6= q3 and q2 6= q3 and q1 6= q2 and q1 6= q3 and o, p1 and
q1 are not collinear and o, p1 and p2 are collinear and o, p1 and p3
are collinear.

And o, q1 and q2 are collinear and o, q1 and q3 are collinear and
p1, q2 and r3 are collinear and q1, p2 and r3 are collinear and p1, q3
and r2 are collinear and p3, q1 and r2 are collinear and p2, q3 and r1
are collinear and p3, q2 and r1 are collinear.
Then r1, r2 and r3 are collinear.
Proof: p1, p2 and p3 are collinear. Consider u1, u2, u3 being elements
of E3T such that p1 = the direction of u1 and p2 = the direction of
u2 and p3 = the direction of u3 and u1 is not zero and u2 is not zero
and u3 is not zero and u1, u2 and u3 are lineary dependent. Set x1 =
(u2)2 ·((u3)3)−(u2)3 ·((u3)2). Set x2 = (u2)3 ·((u3)1)−(u2)1 ·((u3)3).
Set x3 = (u2)1 · ((u3)2)− (u2)2 · ((u3)1). q1, q2 and q3 are collinear.

Consider v1, v2, v3 being elements of E3T such that q1 = the direction
of v1 and q2 = the direction of v2 and q3 = the direction of v3 and v1
is not zero and v2 is not zero and v3 is not zero and v1, v2 and v3 are
lineary dependent. Set y1 = (v2)2 · ((v3)3)− (v2)3 · ((v3)2). Set y2 =
(v2)3 · ((v3)1)− (v2)1 · ((v3)3). Set y3 = (v2)1 · ((v3)2)− (v2)2 · ((v3)1).
Set x4 = x1·y1. Set x5 = x2·y2. Set x6 = x3·y3. Set x7 = x1·y2+x2·y1.
Set x8 = x1 ·y3+x3 ·y1. Set x1 = x2 ·y3+x3 ·y2. For every point u of
E3T, qfconic(x4, x5, x6, x7, x8, x1, u) = |(u, u2 × u3)| · |(u, v2 × v3)|. �
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Summary. The main aim of this article is to introduce formally two gene-
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0. Introduction

Lattice theory is widely represented in the Mizar Mathematical Library,
with Żukowski’s first article [18], following Birkhoff [3] and Grätzer [11], [12]. In
parallel, the theory of partially ordered sets was developed [4] treated generally
as relational structures, even if informally the notions are quite similar [9], [7].
The review of the mechanization of lattice theory in Mizar, with the example
of the solution of the Robbins problem, is contained in [6].

Our work can be seen as a step towards a Mizar support for [15] or [16],
where original proof objects by Otter/Prover9 were used. Some preliminary
works in this direction were already done in [8] by present authors. We use
the interface ott2miz [17] which allows for the automated translation of proofs;
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these automatically generated proofs are usually quite lengthy, even after native
enhancements done by internal Mizar software for library revisions.

Weakly associative lattices were studied in [5]. In the present development,
we deal with the parts of Chap. 6 “Lattice-like algebras” of [15], pp. 111–135,
devoted to this class of lattices. In this sense, we continue the work started by
Kulesza and Grabowski in [13], devoted to the formalization of quasi-lattices.

The class of weakly associative lattices (or WA-lattices, WAL) can be cha-
racterized from the standard set of axioms for lattices (with idempotence for
the join and meet operations included), where the ordinary associative laws are
replaced by the so-called part-preservation laws. The characteristic axiom is ho-
wever W3 (or, dual W3’ – compare Def. 1 and Def. 2). Section 2 contains also
equivalent formulation of these axioms, using ordering relation on lattices. The
earlier seems to be a bit more feasible taking into account the role of equality
in the Mizar system [10] and the design of Prover9.

In Section 3 we show how described binary lattice operations can be as-
sociated with the corresponding ordering relation. Obviously, the associativity
can only be shown under some conditions for elements (see theorems (15) and
(16)). If we assume distributivity, the relation is transitive, as in usual lattices.
Section 4 contains the proof that adding the distributivity condition to the set
of usual WAL axioms, the associativity can be proven.

Then we deal with another generalization of lattices, i.e. near lattices (ab-
sorption law is weakened). Def. 6 and Def. 7 provide standard examples of these
structures which are not necessarily lattices (see Def. 10 for the definition of the
structure). The lattice operations are given by

t 0 1 2
0 0 1 0
1 1 1 2
2 0 2 2

u 0 1 2
0 0 0 2
1 0 1 1
2 2 1 2

Associativity laws do not hold here, so this is not a lattice.
The rest of the article is devoted to alternative axiomatizations of WAL.

WAL-3 – equivalent set of axioms describing WAL is expressed in the form of
five separate attributes to make Mizar registrations mechanism working (see
Def. 11–Def. 15). It is shown that these adjectives imply the standard attributes
for lattices.

In Section 8 WAL-4 is defined (the short sigle axiom system for WAL). We
conclude with the proof if WAL-4 holds, then lattice operations are idempotent.

Some of the proofs were produced by means of Prover9, so they are de-
finitely lengthy. The enhancement of the lemmas, including their shortening,
reorganization and clustering, can be interesting and useful future work.
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1. Preliminaries

From now on L denotes a non empty lattice structure and v100, v102, v2, v1,
v0, v3, v101 denote elements of L.

Let us consider v0, v1, and v2. Now we state the propositions:

(1) Suppose for every v0, v0uv0 = v0 and for every v1 and v0, v0uv1 = v1uv0
and for every v0, v0 t v0 = v0 and for every v1 and v0, v0 t v1 = v1 t v0
and for every v2, v1, and v0, ((v0 t v1)u (v2 t v1))u v1 = v1 and for every
v2, v1, and v0, ((v0 u v1) t (v2 u v1)) t v1 = v1 and for every v1, v2, and
v0, v0 u (v1 t (v0 t v2)) = v0. Then (v0 u v1) u v2 = v0 u (v1 u v2).

(2) Suppose for every v0, v0uv0 = v0 and for every v1 and v0, v0uv1 = v1uv0
and for every v0, v0 t v0 = v0 and for every v1 and v0, v0 t v1 = v1 t v0
and for every v2, v1, and v0, ((v0 t v1)u (v2 t v1))u v1 = v1 and for every
v2, v1, and v0, ((v0 u v1) t (v2 u v1)) t v1 = v1 and for every v1, v2, and
v0, v0 u (v1 t (v0 t v2)) = v0. Then (v0 t v1) t v2 = v0 t (v1 t v2).

Let us consider v1 and v2. Now we state the propositions:

(3) Suppose for every v0, v0t v0 = v0 and for every v1, v2, and v0, v0u (v1t
(v0 t v2)) = v0. Then v1 u (v1 t v2) = v1.

(4) Suppose for every v1 and v0, v0uv1 = v1uv0 and for every v0, v0tv0 = v0
and for every v1 and v0, v0 t v1 = v1 t v0 and for every v2, v1, and v0,
((v0 u v1) t (v2 u v1)) t v1 = v1. Then v1 t (v1 u v2) = v1.

2. Definition of Attributes

Let L be a non empty lattice structure. We say that L is satisfying W3 if
and only if

(Def. 1) for every elements v2, v1, v0 of L, ((v0 t v1) u (v2 t v1)) u v1 = v1.

We say that L is satisfying W3’ if and only if

(Def. 2) for every elements v2, v1, v0 of L, ((v0 u v1) t (v2 u v1)) t v1 = v1.

Let L be a meet-absorbing, join-absorbing, meet-commutative, non empty
lattice structure. Let us note that L is satisfying W3 if and only if the condition
(Def. 3) is satisfied.

(Def. 3) for every elements v2, v1, v0 of L, v1 v (v0 t v1) u (v2 t v1).
Let us consider L. Observe that L is satisfying W3’ if and only if the condi-

tion (Def. 4) is satisfied.

(Def. 4) for every v2, v1, and v0, (v0 u v1) t (v2 u v1) v v1.
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Let us note that every non empty lattice structure which is meet-commutative,
join-idempotent, join-commutative, and satisfying W3’ is also quasi-meet-absorbi-
ng and every non empty lattice structure which is meet-commutative, meet-
idempotent, join-commutative, and satisfying W3 is also join-absorbing and
every non empty lattice structure which is trivial is also satisfying W3’ and the-
re exists a non empty lattice structure which is satisfying W3, satisfying W3’,
join-idempotent, meet-idempotent, join-commutative, and meet-commutative.

A weakly associative lattice is a join-idempotent, meet-idempotent, join-
commutative, meet-commutative, satisfying W3, satisfying W3’, non empty
lattice structure.

A WA-lattice is a weakly associative lattice. Note that every join-associative,
meet-absorbing lattice is satisfying W3’.

Let L be a non empty lattice structure. We say that L is satisfying WA if
and only if

(Def. 5) for every elements x, y, z of L, x u (y t (x t z)) = x.

3. On the Ordering Relation Generated by Weakly Associated
Lattices

Let us note that every non empty lattice structure which is quasi-meet-
absorbing, meet-commutative, and join-commutative is also meet-absorbing and
every WA-lattice is meet-absorbing.

From now on L denotes a WA-lattice and x, y, z, u denote elements of L.
Now we state the propositions:

(5) x t y = y if and only if x v y.
(6) x u y = x if and only if x v y.
(7) x v x.
(8) If x v y and y v x, then x = y.

(9) x v x t y.
(10) x u y v x.
(11) If x v z and y v z, then x t y v z.
(12) There exists z such that

(i) x v z, and

(ii) y v z, and

(iii) for every u such that x v u and y v u holds z v u.
The theorem is a consequence of (11) and (9).

(13) If z v x and z v y, then z v x u y.
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(14) There exists z such that

(i) z v x, and

(ii) z v y, and

(iii) for every u such that u v x and u v y holds u v z.
The theorem is a consequence of (13) and (10).

(15) If x v z and y v z, then (x t y) t z = x t (y t z).
(16) If z v x and z v y, then (x u y) u z = x u (y u z).
(17) If L is distributive and x v y v z, then x v z.

4. Distributivity Implies Associativity

From now on L denotes a non empty lattice structure and v0, v1, v2 denote
elements of L.

Now we state the proposition:

(18) Suppose for every v0, v0uv0 = v0 and for every v1 and v0, v0uv1 = v1uv0
and for every v0, v0 t v0 = v0 and for every v1 and v0, v0 t v1 = v1 t v0
and for every v2, v1, and v0, ((v0 t v1) u (v2 t v1)) u v1 = v1 and for
every v2, v1, and v0, ((v0 u v1) t (v2 u v1)) t v1 = v1 and for every v1
and v0, v0 u (v0 t v1) = v0 and for every v0, v2, and v1, v0 t (v1 u v2) =
(v0 t v1) u (v0 t v2). (v0 t v1) t v2 = v0 t (v1 t v2).

Observe that every WA-lattice which is distributive’ is also join-associative.

5. Near Lattices

Let x, y be elements of {0, 1, 2}. The functors: xuNL y and xtNL y yielding
elements of {0, 1, 2} are defined by terms

(Def. 6)

{
2, if x = 0 and y = 2 or x = 2 and y = 0,
min(x, y), otherwise,

(Def. 7)

{
0, if x = 0 and y = 2 or x = 2 and y = 0,
max(x, y), otherwise,

respectively. The functors: tNL and uNL yielding binary operations on {0, 1, 2}
are defined by conditions

(Def. 8) for every elements x, y of {0, 1, 2}, tNL(x, y) = x tNL y,
(Def. 9) for every elements x, y of {0, 1, 2}, uNL(x, y) = x uNL y,

respectively.
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6. Examples of Near Lattices

The functor ExNearLattice yielding a non empty lattice structure is defined
by the term

(Def. 10) 〈{0, 1, 2},tNL,uNL〉.
One can check that ExNearLattice is non join-associative and non meet-

associative and every non empty lattice structure which is trivial is also meet-
idempotent, join-commutative, quasi-meet-absorbing, and join-absorbing.

A near lattice is a join-idempotent, meet-idempotent, join-commutative,
meet-commutative, quasi-meet-absorbing, join-absorbing, non empty lattice
structure.

One can check that ExNearLattice is join-commutative, meet-commutative,
join-idempotent, meet-idempotent, join-absorbing, and meet-absorbing and eve-
ry join-commutative, meet-commutative, non empty lattice structure which is
meet-absorbing is also quasi-meet-absorbing and every join-commutative, meet-
commutative, non empty lattice structure which is quasi-meet-absorbing is also
meet-absorbing.

Now we state the proposition:

(19) (i) ExNearLattice is a near lattice, and

(ii) ExNearLattice is not a lattice.

7. Alternative Axioms for WAL

From now on L denotes a non empty lattice structure and v101, v100, v2, v1,
v0, v102, v103, v3 denote elements of L.

Now we state the proposition:

(20) Suppose for every v1 and v0, (v0 u v1) t (v0 u (v0 t v1)) = v0 and for
every v0 and v1, (v0 u v0) t (v1 u (v0 t v0)) = v0 and for every v1 and v0,
(v0uv1)t(v1u(v0tv1)) = v1 and for every v2, v1, and v0, ((v0tv1)u(v2t
v0))u v0 = v0 and for every v2, v1, and v0, ((v0 u v1)t (v2 u v0))t v0 = v0.
v0 t v0 = v0.

Let us consider v0 and v1. Now we state the propositions:

(21) Suppose for every v1 and v0, (v0 u v1) t (v0 u (v0 t v1)) = v0 and for
every v0 and v1, (v0 u v0) t (v1 u (v0 t v0)) = v0 and for every v1 and v0,
(v0uv1)t(v1u(v0tv1)) = v1 and for every v2, v1, and v0, ((v0tv1)u(v2t
v0))u v0 = v0 and for every v2, v1, and v0, ((v0 u v1)t (v2 u v0))t v0 = v0.
Then v0 u v1 = v1 u v0. The theorem is a consequence of (24).
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(22) Suppose for every v1 and v0, (v0 u v1) t (v0 u (v0 t v1)) = v0 and for
every v0 and v1, (v0 u v0) t (v1 u (v0 t v0)) = v0 and for every v1 and v0,
(v0uv1)t(v1u(v0tv1)) = v1 and for every v2, v1, and v0, ((v0tv1)u(v2t
v0))u v0 = v0 and for every v2, v1, and v0, ((v0 u v1)t (v2 u v0))t v0 = v0.
Then v0 t v1 = v1 t v0. The theorem is a consequence of (24) and (21).

Let L be a non empty lattice structure. We say that L is satisfying WAL-31
if and only if

(Def. 11) for every elements v1, v0 of L, (v0 u v1) t (v0 u (v0 t v1)) = v0.

We say that L is satisfying WAL-32 if and only if

(Def. 12) for every elements v0, v1 of L, (v0 u v0) t (v1 u (v0 t v0)) = v0.

We say that L is satisfying WAL-33 if and only if

(Def. 13) for every elements v1, v0 of L, (v0 u v1) t (v1 u (v0 t v1)) = v1.

We say that L is satisfying WAL-34 if and only if

(Def. 14) for every elements v2, v1, v0 of L, ((v0 t v1) u (v2 t v0)) u v0 = v0.

We say that L is satisfying WAL-35 if and only if

(Def. 15) for every elements v2, v1, v0 of L, ((v0 u v1) t (v2 u v0)) t v0 = v0.

Let us note that every non empty lattice structure which is trivial is also
satisfying WAL-31, satisfying WAL-32, satisfying WAL-33, satisfying WAL-34,
and satisfying WAL-35 and every non empty lattice structure which is satisfying
WAL-31, satisfying WAL-32, satisfying WAL-33, satisfying WAL-34, and satis-
fying WAL-35 is also join-idempotent, meet-idempotent, join-commutative, and
meet-commutative.

8. Short Single Axiom for WAL

Let L be a non empty lattice structure. We say that L is satisfying WAL-4
if and only if

(Def. 16) for every elements v2, v0, v5, v4, v3, v1 of L, (((v0uv1)t(v1u(v0tv1)))u
v2)t (((v0 u (((v1 u v3)t (v4 u v1))t v1))t (((v1 u (((v1 t v3)u (v4 t v1))u
v1)) t (v5 u (v1 t (((v1 t v3) u (v4 t v1)) u v1)))) u (v0 t (((v1 u v3) t (v4 u
v1)) t v1)))) u (((v0 u v1) t (v1 u (v0 t v1))) t v2)) = v1.

From now on L denotes a non empty lattice structure and v108, v107, v106,
v101, v10, v9, v8, v7, v6, v105, v102, v100, v104, v103, v5, v4, v3, v2, v1, v0 denote
elements of L.

Let us consider v0. Now we state the propositions:

(23) Suppose for every v2, v0, v5, v4, v3, and v1, (((v0uv1)t (v1u (v0tv1)))u
v2)t (((v0 u (((v1 u v3)t (v4 u v1))t v1))t (((v1 u (((v1 t v3)u (v4 t v1))u
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v1)) t (v5 u (v1 t (((v1 t v3) u (v4 t v1)) u v1)))) u (v0 t (((v1 u v3) t (v4 u
v1))t v1))))u (((v0 u v1)t (v1 u (v0 t v1)))t v2)) = v1. Then v0 u v0 = v0.

(24) Suppose for every v2, v0, v5, v4, v3, and v1, (((v0uv1)t (v1u (v0tv1)))u
v2)t (((v0 u (((v1 u v3)t (v4 u v1))t v1))t (((v1 u (((v1 t v3)u (v4 t v1))u
v1)) t (v5 u (v1 t (((v1 t v3) u (v4 t v1)) u v1)))) u (v0 t (((v1 u v3) t (v4 u
v1))t v1))))u (((v0 u v1)t (v1 u (v0 t v1)))t v2)) = v1. Then v0 t v0 = v0.
The theorem is a consequence of (23).

One can check that every non empty lattice structure which is trivial is
also satisfying WAL-4 and every non empty lattice structure which is satisfying
WAL-4 is also join-idempotent and meet-idempotent.
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Summary. In this article we formalize the Ascoli-Arzelà theorem [5], [6],
[8] in Mizar [1], [2]. First, we gave definitions of equicontinuousness and equibo-
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1. Equicontinuousness and Equiboundedness of Continuous
Functions

From now on S, T denote real normed spaces and F denotes a subset of
(the carrier of T )(the carrier of S).

Let X be a non empty metric space and Y be a subset of X. The functor Y
yielding a subset of X is defined by

(Def. 1) there exists a subset Z of Xtop such that Z = Y and it = Z.

Now we state the proposition:

(1) Let us consider a real normed space X, a subset Y of X, and a subset
Z of MetricSpaceNormX. If Y = Z, then Y = Z.
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Let X be a non empty metric space and H be a non empty subset of X.
Observe that H is non empty.

Now we state the propositions:

(2) Let us consider a topological space S, and a finite sequence F of elements
of 2α. Suppose for every natural number i such that i ∈ Seg lenF holds
F/i is compact. Then

⋃
rngF is compact, where α is the carrier of S.

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of 2(the carrier of S) such that lenF = $1 and for every natural number
i such that i ∈ Seg lenF holds F/i is compact holds

⋃
rngF is compact.

P[0]. For every natural number i such that P[i] holds P[i+ 1]. For every
natural number n, P[n]. �

(3) Let us consider a non empty topological space S, a normed linear topo-
logical space T , a function f from S into T , and a point x of S. Then f

is continuous at x if and only if for every real number e such that 0 < e

there exists a subset H of S such that H is open and x ∈ H and for every
point y of S such that y ∈ H holds ‖f(x)− f(y)‖ < e.
Proof: For every subset G of T such that G is open and f(x) ∈ G there
exists a subset H of S such that H is open and x ∈ H and f◦H ⊆ G. �

(4) Let us consider a non empty metric space S, a non empty, compact
topological space V , a normed linear topological space T , and a function
f from V into T . Suppose V = Stop. Then f is continuous if and only if
for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every points x1, x2 of S such that ρ(x1, x2) < d holds
‖f/x1 − f/x2‖ < e.
Proof: For every point x of V , f is continuous at x. �

Let S be a non empty metric space, T be a real normed space, and F be
a subset of (the carrier of T )(the carrier of S). We say that F is equibounded if and
only if

(Def. 2) there exists a real number K such that for every function f from the car-
rier of S into the carrier of T such that f ∈ F for every element x of S,
‖f(x)‖ ¬ K.

Let x0 be a point of S. We say that F is equicontinuous at x0 if and only if

(Def. 3) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
of T such that f ∈ F for every point x of S such that ρ(x, x0) < d holds
‖f(x)− f(x0)‖ < e.

We say that F is equicontinuous if and only if

(Def. 4) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier



Ascoli-Arzelà theorem 89

of T such that f ∈ F for every points x1, x2 of S such that ρ(x1, x2) < d

holds ‖f(x1)− f(x2)‖ < e.

Now we state the proposition:

(5) Let us consider a non empty metric space S, a real normed space T ,
and a subset F of (the carrier of T )α. Suppose Stop is compact. Then F is
equicontinuous if and only if for every point x of S, F is equicontinuous
at x, where α is the carrier of S.
Proof: Define P[element of S, real number] ≡ 0 < $2 and for every func-
tion f from the carrier of S into the carrier of T such that f ∈ F for every
point x of S such that ρ(x, $1) < $2 holds ‖f(x) − f($1)‖ < e

2 . For every
element x0 of the carrier of S, there exists an element d of R such that
P[x0, d].

Consider D being a function from the carrier of S into R such that for
every element x0 of the carrier of S, P[x0, D(x0)]. Set C1 = the set of all
Ball(x0,

D(x0)
2 ) where x0 is an element of S. C1 ⊆ 2α, where α is the car-

rier of Stop. For every subset P of Stop such that P ∈ C1 holds P is
open. The carrier of Stop ⊆

⋃
C1. Consider G being a family of subsets

of Stop such that G ⊆ C1 and G is cover of ΩStop and finite. Define
Q[object, object] ≡ there exists a point x0 of S such that $2 = x0 and
$1 = Ball(x0,

D(x0)
2 ). For every object Z such that Z ∈ G there exists

an object x0 such that x0 ∈ the carrier of S and Q[Z, x0].
Consider H being a function from G into the carrier of S such that for

every object Z such that Z ∈ G holds Q[Z,H(Z)]. For every object Z such
that Z ∈ G holds Z = Ball(H/Z ,

D(H(Z))
2 ). Reconsider D0 = D◦(rngH)

as a finite subset of R. G 6= ∅. Consider x3 being an object such that
x3 ∈ G. Consider x3 being an object such that x3 ∈ rngH. Set d0 = inf D0.
Consider x3 being an object such that x3 ∈ domD and x3 ∈ rngH and
d0 = D(x3). For every function f from S into T such that f ∈ F for every
points x1, x2 of S such that ρ(x1, x2) < d holds ‖f(x1)− f(x2)‖ < e. �

2. Ascoli-Arzelà Theorem

From now on S, Z denote real normed spaces, T denotes a real Banach
space, and F denotes a subset of (the carrier of T )(the carrier of S).

Now we state the proposition:

(6) Let us consider a real normed space Z. Then Z is complete if and only
if MetricSpaceNormZ is complete.
Proof: For every sequence s of Z such that s is Cauchy sequence by norm
holds s is convergent by [10, (8)], [4, (5)]. �
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Let us consider a real normed space Z and a non empty subset H of
MetricSpaceNormZ. Now we state the propositions:

(7) If Z is complete, then MetricSpaceNormZ�H is complete.
Proof: Reconsider F = H as a non empty subset of Z. F = H. Set
N = MetricSpaceNormZ�H. For every sequence S2 of N such that S2 is
Cauchy holds S2 is convergent. �

(8) MetricSpaceNormZ�H is totally bounded if and only if
MetricSpaceNormZ�H is totally bounded.
Proof: Reconsider F = H as a non empty subset of Z. Consider D being
a subset of (MetricSpaceNormZ)top such that D = H and H = D. F = H.
MetricSpaceNormZ�H is totally bounded. �

(9) Let us consider a real normed space Z, a non empty subset F of Z, and
a non empty subset H of MetricSpaceNormZ. Suppose Z is complete and
H = F and MetricSpaceNormZ�H is totally bounded. Then

(i) H is sequentially compact, and

(ii) MetricSpaceNormZ�H is compact, and

(iii) F is compact.

The theorem is a consequence of (1), (7), and (8).

(10) Let us consider a real normed space Z, a non empty subset F of Z, a non
empty subsetH of MetricSpaceNormZ, and a subset T of TopSpaceNormZ.
Suppose Z is complete and H = F and H = T . Then

(i) MetricSpaceNormZ�H is totally bounded iff H is sequentially com-
pact, and

(ii) MetricSpaceNormZ�H is totally bounded iff MetricSpaceNormZ�H
is compact, and

(iii) MetricSpaceNormZ�H is totally bounded iff F is compact, and

(iv) MetricSpaceNormZ�H is totally bounded iff T is compact.

The theorem is a consequence of (1), (7), and (8).

(11) Let us consider a non empty, compact topological space S, and a normed
linear topological space T . Suppose T is complete. Let us consider a non
empty subset H of MetricSpaceNorm(the R-norm space of continuous
functions of S and T ).

Then H is sequentially compact if and only if MetricSpaceNorm(the R-
norm space of continuous functions of S and T )�H is totally bounded. The
theorem is a consequence of (7) and (8).

(12) Let us consider a non empty, compact topological space S, and a normed
linear topological space T . Suppose T is complete. Let us consider a non
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empty subset F of the R-norm space of continuous functions of S and
T , and a non empty subset H of MetricSpaceNorm(the R-norm space of
continuous functions of S and T ). Suppose H = F . Then F is compact if
and only if MetricSpaceNorm(the R-norm space of continuous functions
of S and T )�H is totally bounded. The theorem is a consequence of (1)
and (11).

Let us consider a non empty metric space M , a non empty, compact topolo-
gical space S, a normed linear topological space T , a subset G of (the carrier of
T )(the carrier of M), and a non empty subset H of MetricSpaceNorm(the R-norm
space of continuous functions of S and T ). Now we state the propositions:

(13) Suppose S = Mtop and T is complete. Then suppose G = H and
MetricSpaceNorm(the R-norm space of continuous functions of S and
T )�H is totally bounded. Then G is equibounded and equicontinuous.
Proof: Set Z = the R-norm space of continuous functions of S and T .
Set M1 = MetricSpaceNormZ�H. Consider L being a family of subsets
of M1 such that L is finite and the carrier of M1 =

⋃
L and for every

subset C of M1 such that C ∈ L there exists an element w of M1 such
that C = Ball(w, 1).

Define Q[object, object] ≡ there exists a point w of M1 such that
$2 = w and $1 = Ball(w, 1). For every object D such that D ∈ L there
exists an object w such that w ∈ the carrier of M1 and Q[D,w]. Consider
U being a function from L into the carrier of M1 such that for every
object D such that D ∈ L holds Q[D,U(D)]. For every object D such
that D ∈ L holds D = Ball(U/D, 1). Set N1 = the norm of Z. Reconsider
N2 = N1

◦(rngU) as a finite subset of R. Consider x3 being an object
such that x3 ∈ L. Consider x3 being an object such that x3 ∈ rngU . Set
d0 = supN2. Set K = d0 + 1.

For every function f from the carrier of M into the carrier of T such
that f ∈ G for every element x of M , ‖f(x)‖ ¬ K. For every real number e
such that 0 < e there exists a real number d such that 0 < d and for every
function f from the carrier of M into the carrier of T such that f ∈ G for
every points x1, x2 of M such that ρ(x1, x2) < d holds ‖f(x1)−f(x2)‖ < e.
�

(14) Suppose S = Mtop and T is complete. Then suppose G = H and
MetricSpaceNorm(the R-norm space of continuous functions of S and
T )�H is totally bounded. Then

(i) for every point x of S and for every non empty subsetH2 of MetricSpa−
ceNormT such that H2 = {f(x), where f is a function from S into
T : f ∈ H} holds MetricSpaceNormT �H2 is totally bounded, and



92 hiroshi yamazaki, keiichi miyajima, and yasunari shidama

(ii) G is equicontinuous.

Proof: For every point x of S and for every non empty subset H2 of
MetricSpaceNormT such that H2 = {f(x), where f is a function from S

into T : f ∈ H} holds MetricSpaceNormT �H2 is totally bounded. �

(15) Let us consider a normed linear topological space T , and a real normed
space R. Suppose R = the normed structure of T and the topology of
T = the topology of TopSpaceNormR. Then

(i) the distance by norm of R = the distance by norm of T , and

(ii) MetricSpaceNormR = MetricSpaceNormT , and

(iii) TopSpaceNormT = TopSpaceNormR.

Proof: For every points x, y of R, (the distance by norm of T )(x, y) =
‖x− y‖ by [11, (19)]. �

Let us consider a non empty metric space M , a non empty, compact topolo-
gical space S, a normed linear topological space T , a subset G of (the carrier of
T )(the carrier of M), and a non empty subset H of MetricSpaceNorm(the R-norm
space of continuous functions of S and T ). Now we state the propositions:

(16) Suppose S = Mtop and T is complete andG = H. Then MetricSpaceNo−
rm(the R-norm space of continuous functions of S and T )�H is total-
ly bounded if and only if G is equicontinuous and for every point x

of S and for every non empty subset H2 of MetricSpaceNormT such
that H2 = {f(x), where f is a function from S into T : f ∈ H} holds
MetricSpaceNormT �H2 is compact.
Proof: Set Z = the R-norm space of continuous functions of S and
T . Set M1 = MetricSpaceNormZ�H. For every real number e such that
e > 0 there exists a family L of subsets of M1 such that L is finite and
the carrier of M1 =

⋃
L and for every subset C of M1 such that C ∈ L

there exists an element w of M1 such that C = Ball(w, e). �

(17) Suppose S = Mtop and T is complete and G = H. Then H is sequ-
entially compact if and only if G is equicontinuous and for every point
x of S and for every non empty subset H2 of MetricSpaceNormT such
that H2 = {f(x), where f is a function from S into T : f ∈ H} holds
MetricSpaceNormT �H2 is compact. The theorem is a consequence of (11)
and (16).

Let us consider a non empty metric space M , a non empty, compact to-
pological space S, a normed linear topological space T , a non empty subset F
of the R-norm space of continuous functions of S and T , and a subset G of
(the carrier of T )(the carrier of M). Now we state the propositions:
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(18) Suppose S = Mtop and T is complete and G = F . Then F is compact if
and only if G is equicontinuous and for every point x of S and for every
non empty subset F1 of MetricSpaceNormT such that F1 = {f(x), where
f is a function from S into T : f ∈ F} holds MetricSpaceNormT �F1 is
compact. The theorem is a consequence of (12) and (16).

(19) Suppose S = Mtop and T is complete and G = F . Then F is compact if
and only if for every point x of M , G is equicontinuous at x and for every
point x of S and for every non empty subset F1 of MetricSpaceNormT

such that F1 = {f(x), where f is a function from S into T : f ∈ F} holds
MetricSpaceNormT �F1 is compact. The theorem is a consequence of (18)
and (5).

(20) Let us consider a normed linear topological space T . Then T is compact
if and only if TopSpaceNormT is compact. The theorem is a consequence
of (15).

(21) Let us consider a normed linear topological space T , and a set X. Then
X is a compact subset of T if and only if X is a compact subset of
TopSpaceNormT . The theorem is a consequence of (15).

(22) Let us consider a normed linear topological space T . If T is compact,
then T is complete. The theorem is a consequence of (20) and (6).

Let us observe that every normed linear topological space which is compact
is also complete.

Now we state the proposition:

(23) Let us consider a non empty metric space M , a non empty, compact
topological space S, a normed linear topological space T , a compact subset
U of T , a non empty subset F of the R-norm space of continuous functions
of S and T , and a subset G of (the carrier of T )α. Suppose S = Mtop and
T is complete and G = F and for every function f such that f ∈ F holds
rng f ⊆ U . Then

(i) if F is compact, then G is equibounded and equicontinuous, and

(ii) if G is equicontinuous, then F is compact,

where α is the carrier of M .
Proof: ReconsiderH = F as a non empty subset of MetricSpaceNorm(the
R-norm space of continuous functions of S and T ). Set Z = the R-norm
space of continuous functions of S and T . MetricSpaceNormZ�H is to-
tally bounded iff F is compact. For every point x of S and for every non
empty subset F1 of MetricSpaceNormT such that F1 = {f(x), where
f is a function from S into T : f ∈ F} holds MetricSpaceNormT �F1 is
compact. �



94 hiroshi yamazaki, keiichi miyajima, and yasunari shidama

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[3] Bruce K. Driver. Analysis Tools with Applications. Springer, Berlin, 2003.
[4] Noboru Endou, Yasunari Shidama, and Katsumasa Okamura. Baire’s category theorem

and some spaces generated from real normed space. Formalized Mathematics, 14(4):
213–219, 2006. doi:10.2478/v10037-006-0024-x.

[5] Serge Lang. Real and Functional Analysis (Texts in Mathematics). Springer-Verlag, 1993.
[6] Kazuo Matsuzaka. Sets and Topology (Introduction to Mathematics). IwanamiShoten,

2000.
[7] Tohru Ozawa. Ascoli-Arzelà theorem. 2012.
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Summary.We formalize in the Mizar System [3], [4], definitions and basic
propositions about primary ideals of a commutative ring along with Chapter 4 of
[1] and Chapter III of [8]. Additionally other necessary basic ideal operations such
as compatibilities taking radical and intersection of finite number of ideals are
formalized as well in order to prove theorems relating primary ideals. These basic
operations are mainly quoted from Chapter 1 of [1] and compiled as preliminaries
in the first half of the article.
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From now on R denotes a commutative ring, A denotes a non degenerated,
commutative ring, I, J , p denote ideals of A, q denotes a prime ideal of A, and
M , M1, M2 denote ideals of A/p.

Let us consider A and p. We introduce the notation πA→A/p as a synonym
of the canonical homomorphism of p into quotient field.

Now we state the proposition:

(1) Let us consider ideals a, b of A, and a prime ideal q of A. If a ∩ b ⊆ q,
then a ⊆ q or b ⊆ q.

Let us consider A. Let a be a non empty finite sequence of elements of
IdealsA and i be an element of dom a. Let us observe that the functor a(i) yields
a non empty subset of A. One can check that a(i) is closed under addition, left
and right ideal as a subset of A and

⋂
rng a is closed under addition, left and

right ideal as a subset of A.
Now we state the proposition:

(2) [1, p.8, Prop. 1.11 ii)]:
Let us consider a non empty finite sequence a of elements of IdealsA, and
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a prime ideal q of A. Suppose
⋂

rng a ⊆ q. Then there exists an object i
such that

(i) i ∈ dom a, and

(ii) a(i) ⊆ q.

Proof: Define P[natural number] ≡ for every non empty finite sequence
a of elements of IdealsA for every prime ideal q of A such that len a = $1
holds if

⋂
rng a ⊆ q, then there exists an object i such that i ∈ dom a

and a(i) ⊆ q. For every non zero natural number n such that P[n] holds
P[n+ 1]. For every non zero natural number i, P[i]. �

Let us consider A. Let I be an ideal of A. The functor %I yielding a function
from 2(the carrier of A) into 2(the carrier of A) is defined by

(Def. 1) for every subset x of A, it(x) = x% I.

Now we state the propositions:

(3) Let us consider a proper ideal I of A, and a non empty finite sequence
F of elements of IdealsA. Then

(i) rng(%I) · F 6= ∅, and

(ii) rngF 6= ∅, and

(iii)
⋂

rng(%I) · F ⊆ the carrier of A.

(4) [1, p.8, Ex.1.12. iv)]:
Let us consider a proper ideal I of A, and a non empty finite sequence F
of elements of IdealsA. Then (%I)(

⋂
rngF ) =

⋂
rng(%I) · F .

Proof: rng(%I) · F 6= ∅. For every object x such that x ∈ (%I)(
⋂

rngF )
holds x ∈

⋂
rng(%I) · F .

⋂
rng(%I) · F ⊆ (%I)(

⋂
rngF ). �

(5) I ∗ ΩA = I.

(6) Let us consider finite sequences f , g of elements of 2α. Suppose len f 
len g > 0 and I len f = f(len f) and f(1) = I and for every natural number
i such that i, i + 1 ∈ dom f holds f(i + 1) = I ∗ f/i and I len g = g(len g)
and g(1) = I and for every natural number i such that i, i + 1 ∈ dom g

holds g(i+ 1) = I ∗ g/i. Then f� dom g = g, where α is the carrier of A.
Proof: Set f1 = f� dom g. For every natural number i such that i, i+1 ∈
dom f1 holds f1(i+ 1) = I ∗ f1/i. f1 = g. �

(7) Let us consider a natural number n. If n > 0, then In+1 = I ∗ In. The
theorem is a consequence of (6).

(8) [1, p.9, Ex.1.13 ii)]:
√
I =
√√

I.

Proof: For every object o such that o ∈
√√

I holds o ∈
√
I. �
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(9) [1, p.9, Ex.1.13 iii)]:√
I ∩ J =

√
I ∩
√
J .

Proof: For every object o such that o ∈
√
I ∩ J holds o ∈

√
I ∩
√
J .√

I ∩
√
J ⊆
√
I ∩ J . �

(10) [1, p.9, Ex.1.13 iv)]:√
I = ΩA if and only if I = ΩA.
Proof: If

√
I = ΩA, then I = ΩA by [7, (2)], [2, (19)]. �

(11) [1, p.9, Ex.1.13 v)]:
√
I + J =

√√
I +
√
J .

Proof: For every object o such that o ∈
√
I + J holds o ∈

√√
I +
√
J .√√

I +
√
J ⊆
√
I + J . �

(12) [1, p.9, Ex.1.13 vi)]:
Let us consider a prime ideal q of A, and a non zero natural number n.
Then

√
qn = q.

Proof: Define P[natural number] ≡
√

q$1 = q. For every non zero natural
number n such that P[n] holds P[n+1]. For every non zero natural number
i, P[i]. �

(13) [1, p.9, Prop1.16]:
If
√
I and

√
J are co-prime, then I and J are co-prime. The theorem is

a consequence of (11) and (10).

(14) Let us consider elements x, y of the carrier of A/p. Suppose x, y ∈
(πA→A/p)◦I. Then x+ y ∈ (πA→A/p)◦I.

(15) Let us consider elements a, x of the carrier ofA/p. Suppose x ∈ (πA→A/p)◦I.
Then a · x ∈ (πA→A/p)◦I.

(16) (πA→A/p)◦I is an ideal of A/p. The theorem is a consequence of (14) and
(15).

(17) Let us consider elements x, y of the carrier of A. Suppose x, y ∈
(πA→A/p)−1(M1). Then x+ y ∈ (πA→A/p)−1(M1).

(18) Let us consider elements r, x of the carrier of A.
Suppose x ∈ (πA→A/p)−1(M1). Then r · x ∈ (πA→A/p)−1(M1).

(19) (πA→A/p)−1(M1) is an ideal of A. The theorem is a consequence of (17)
and (18).

(20) p ⊆ (πA→A/p)−1(M1).
Proof: For every object x such that x ∈ p holds x ∈ (πA→A/p)−1(M1) by
[5, (13)]. �

(21) (πA→A/p)◦((πA→A/p)−1(M1)) = M1.
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(22) If p ⊆ I, then (πA→A/p)−1((πA→A/p)◦I) = I.
Proof: (πA→A/p)−1((πA→A/p)◦I) ⊆ I. �

(23) If I ⊆ J , then (πA→A/p)◦I ⊆ (πA→A/p)◦J .

(24) If M1 ⊆M2, then (πA→A/p)−1(M1) ⊆ (πA→A/p)−1(M2).

(25) (πA→A/p)−1(ΩA/p
) = ΩA.

(26) If M is proper, then (πA→A/p)−1(M) is proper. The theorem is a conse-
quence of (21).

(27) If p ⊆ I and I is maximal, then (πA→A/p)◦I is maximal. The theorem is
a consequence of (16), (25), (22), (26), (19), and (24).

Let us consider A and p. The functor Ψp yielding a function from IdealsA/p
into Ideals(A, p) is defined by

(Def. 2) for every element x of IdealsA/p, it(x) = (πA→A/p)−1(x).

Let J be a proper ideal of A. Observe that A/J is non degenerated and
commutative.

[1, p.2, Prop. 1.1]:
Let us consider A. Let p be an ideal of A. Let us note that Ψp is one-to-one

and ⊆-monotone.
[1, p.50, Chapter 4]:
Let A be a well unital, non empty double loop structure and S be a subset

of A. We say that S is quasi-primary if and only if

(Def. 3) for every elements x, y of A such that x · y ∈ S holds x ∈ S or y ∈
√
S.

We say that S is primary if and only if

(Def. 4) S is proper and quasi-primary.

Let K be a well unital, non empty double loop structure. Let us note that
every subset of K which is primary is also proper and quasi-primary and every
subset of K which is proper and quasi-primary is also primary.

Now we state the proposition:

(28) Let us consider an ideal q of A. If q is prime, then q is primary.
Proof: For every elements x, y of A such that x · y ∈ q holds x ∈ q or
y ∈ √q. �

Let us consider A. One can verify that every ideal of A which is prime is
also primary.

Let A be a non degenerated, commutative ring. Let us observe that there
exists a proper ideal of A which is primary.

Now we state the propositions:

(29) I is primary if and only if I 6= ΩA and for every elements x, y of A such
that x · y ∈ I and x /∈ I holds y ∈

√
I.
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(30) I 6= ΩA and for every elements x, y of A such that x · y ∈ I and x /∈ I
holds y ∈

√
I if and only if A/I is not degenerated and for every element

z of A/I such that z is zero-divisible holds z is nilpotent.
Proof: If I 6= ΩA and for every elements x, y of A such that x · y ∈ I and
x /∈ I holds y ∈

√
I, then A/I is not degenerated and for every element

z of A/I such that z is zero-divisible holds z is nilpotent. If A/I is not

degenerated and for every element z of A/I such that z is zero-divisible
holds z is nilpotent, then I 6= ΩA and for every elements x1, y1 of A such
that x1 · y1 ∈ I and x1 /∈ I holds y1 ∈

√
I by [6, (2)]. �

(31) I is primary if and only if A/I is not degenerated and for every element

x of A/I such that x is zero-divisible holds x is nilpotent. The theorem is
a consequence of (29) and (30).

[1, p.50, Prop. 4.1]:
Let us consider A. Let Q be a primary ideal of A. Note that

√
Q is prime.

Let I be a primary ideal of A. One can verify that every element of A/I
which is zero-divisible is also nilpotent.

Let P , Q be ideals of A. We say that Q is P -primary if and only if

(Def. 5)
√
Q = P .

The functor PrimaryIdeals(A) yielding a family of subsets of the carrier of
A is defined by the term

(Def. 6) the set of all I where I is a primary ideal of A.

Note that PrimaryIdeals(A) is non empty.
Let us consider q. The functor PrimaryIdeals(A, q) yielding a non empty

subset of PrimaryIdeals(A) is defined by the term

(Def. 7) {I, where I is a primary ideal of A : I is q-primary}.

Let us consider a proper ideal p of A. Now we state the propositions:

(32) (πA→A/p)◦
√

p = nilrad(A/p).

Proof: For every object x such that x ∈ nilrad(A/p) holds x ∈ (πA→A/p)◦
√

p.

(πA→A/p)◦
√

p ⊆ nilrad(A/p). �

(33) If
√

p is maximal, then A/p is local.

Proof: Set m =
√

p. (πA→A/p)◦m = nilrad(A/p). For every objects m1,

m2 such that m1, m2 ∈ m-Spectrum(A/p) holds m1 = m2. �

(34) [1, p.51, Prop. 4.2]:
Let us consider a proper ideal p of A. If

√
p is maximal, then p is primary.

Proof: Set m =
√

p. (πA→A/p)◦m is maximal. A/p is local. For every

element x of A/p such that x is zero-divisible holds x is nilpotent. �
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(35) [1, p.51, Prop. 4.2] case of M is maximal Ideal:
Let us consider a maximal ideal M of A, and a non zero natural number n.
Then Mn ∈ PrimaryIdeals(A,M). The theorem is a consequence of (12)
and (34).

(36) Let us consider ideals q1, q2 of A. Suppose q1, q2 ∈ PrimaryIdeals(A, q).
Then q1 ∩ q2 ∈ PrimaryIdeals(A, q). The theorem is a consequence of (9)
and (29).

(37) [1, p.51, Lemma 4.3]:
Let us consider a prime ideal q of A, and a non empty finite sequence F
of elements of PrimaryIdeals(A, q). Then

⋂
rngF ∈ PrimaryIdeals(A, q).

Proof:
⋂

rngF ∈ PrimaryIdeals(A, q). �

(38) Let us consider a proper ideal I of A, and an element x of
√
I. Then

there exists a natural number m such that

(i) m ∈ {n, where n is an element of N : xn /∈ I}, and

(ii) xm+1 ∈ I.

Proof: Consider x1 being an element of A such that x1 = x and there
exists an element n of N such that x1n ∈ I. Consider n1 being an element
of N such that x1n1 ∈ I. n1 /∈ {n, where n is an element of N : xn /∈ I}.
0 ∈ {n, where n is an element of N : xn /∈ I}. {n, where n is an element
of N : xn /∈ I} = N. �

(39) Let us consider proper ideals I, J of A. Suppose I ⊆ J ⊆
√
I and for

every elements x, y of A such that x · y ∈ I and x /∈ I holds y ∈ J . Then

(i) I is primary, and

(ii)
√
I = J , and

(iii) J is prime.

Proof:
√
I ⊆ J . �

(40) Let us consider a proper ideal Q of A. Suppose for every elements x, y
of A such that x · y ∈ Q and y /∈

√
Q holds x ∈ Q. Then

(i) Q is primary, and

(ii)
√
Q is prime.

The theorem is a consequence of (39).

(41) [1, p.51, Lemma 4.4 i)]:
Let us consider an ideal p of A, and an element x of A. Suppose x ∈ p.
Then p % {x}–ideal = ΩA.
Proof: Set I = {x}–ideal. If x ∈ p, then p % I = ΩA. �
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(42) [1, p.51, Lemma 4.4 ii)]:
Let us consider an ideal p of A, and an element x of A. Suppose p ∈
PrimaryIdeals(A, q). If x /∈ p, then p % {x}–ideal ∈ PrimaryIdeals(A, q).
Proof: Set I = {x}–ideal. Consider q1 being a primary ideal of A such
that q1 = p and q1 is q-primary. If x /∈ p, then p%I ∈ PrimaryIdeals(A, q).
�

(43) [1, p.51, Lemma 4.4 iii)]:
Let us consider an ideal p of A, and an element x of A. Suppose p ∈
PrimaryIdeals(A, q). If x /∈ q, then p % {x}–ideal = p.
Proof: Set I = {x}–ideal. Consider Q being a primary ideal of A such
that Q = p and Q is q-primary. If x /∈ q, then p % I = p. �
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Summary. IF-THEN rules in fuzzy inference is composed of multiple fuz-
zy sets (membership functions). IF-THEN rules can therefore be considered as
a pair of membership functions [7]. The evaluation function of fuzzy control is
composite function with fuzzy approximate reasoning and is functional on the
set of membership functions. We obtained continuity of the evaluation function
and compactness of the set of membership functions [12]. Therefore, we pro-
ved the existence of pair of membership functions, which maximizes (minimizes)
evaluation function and is considered IF-THEN rules, in the set of membership
functions by using extreme value theorem. The set of membership functions (fuz-
zy sets) is defined in this article to verifier our proofs before by Mizar [9], [10], [4].
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and Gaussian function used in practice are formalized using existing functions.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider real numbers a, b, c, d. Then |max(c,min(d, a))−max(c,
min(d, b))| ¬ |a− b|.

(2) Let us consider a real number x. Then | sinx| ¬ |x|.
(3) Let us consider real numbers x, y. Then | sinx − sin y| ¬ |x − y|. The

theorem is a consequence of (2).

(4) Let us consider a real number x. If expx = 1, then x = 0.

(5) Let us consider real numbers a, b, p, q. Suppose a > 0 and p > 0 and
−b
a < q

p . Then

(i) −ba < q−b
a+p <

q
p , and

(ii) a·q+b·p
a+p > 0.

(6) Let us consider real numbers a, b, p, q, s. Suppose a > 0 and p > 0 and
s−b
a = s−q

−p . Then

(i) s−b
a = q−b

a+p , and

(ii) s−q
−p = q−b

a+p .

(7) Let us consider real numbers a, b, p, q, s. Suppose a > 0 and p > 0 and
s−b
a < s−q

−p . Then s−b
a < q−b

a+p <
s−q
−p .

2. The Set of Membership Functions

Let X be a non empty set. The functor Membership-Funcs(X) yielding a set
is defined by

(Def. 1) for every object f , f ∈ it iff f is a membership function of X.

Now we state the propositions:

(8) Let us consider a non empty set X, and an object x. Suppose x ∈
Membership-Funcs(X). Then there exists a membership function f of X
such that

(i) x = f , and

(ii) dom f = X.

(9) Membership-Funcs(R) = {f , where f is a function from R into R : f is
a fuzzy set of R}. The theorem is a consequence of (8).

(10) Let us consider non empty sets A, X.
Then {χA,X} ⊆ Membership-Funcs(X).
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(11) {χ[a,b],R, where a, b are real numbers : a ¬ b} ⊆ Membership-Funcs(R).

(12) {χA,R, where A is a subset of R : A ⊆ R} ⊆ Membership-Funcs(R).

(13) {f , where f is a fuzzy set of R : there exists a subset A of R such that
f = χA,R} ⊆ Membership-Funcs(R).

(14) Let us consider functions f , g from R into R, and a real number a.
Suppose g is continuous and for every real number x, f(x) = min(a, g(x)).
Then f is continuous.
Proof: For every real number x0 such that x0 ∈ dom f holds f is conti-
nuous in x0. �

Let us consider functions F , f , g from R into R. Now we state the proposi-
tions:

(15) If f is continuous and g is continuous and for every real number x,
F (x) = min(f(x), g(x)), then F is continuous.
Proof: For every real number x0 such that x0 ∈ domF holds F is conti-
nuous in x0. �

(16) If f is continuous and g is continuous and for every real number x,
F (x) = max(f(x), g(x)), then F is continuous.
Proof: For every real number x0 such that x0 ∈ domF holds F is conti-
nuous in x0. �

(17) Let us consider functions f , g from R into R, and a real number a.
Suppose g is continuous and for every real number x, f(x) = max(a, g(x)).
Then f is continuous. The theorem is a consequence of (16).

(18) Let us consider functions f , g from R into R, and real numbers a, b.
Suppose g is continuous and for every real number x, f(x) = max(a,min(b,
g(x))). Then f is continuous.
Proof: Define H(element of R) = (min(b, g($1)))(∈ R). Consider h being
a function from R into R such that for every element x of R, h(x) = H(x).
For every real number x, h(x) = min(b, g(x)). h is continuous. For every
real number x, f(x) = max(a, h(x)). �

(19) Let us consider functions f , g from R into R. Suppose g is continu-
ous and for every real number x, f(x) = max(0,min(1, g(x))). Then f is
continuous.

Let us consider a function f from R into R and real numbers a, b. Now we
state the propositions:

(20) If for every real number t1, f(t1) = 1
2 · (sin(a · t1 + b)) + 1

2 , then f is
continuous.
Proof: For every real number x0 such that x0 ∈ dom f holds f is conti-
nuous in x0. �
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(21) If for every real number x, f(x) = 1
2 · (sin(a · x + b)) + 1

2 , then f is
continuous.

(22) Let us consider real numbers r, s, and a function f from R into R.
Suppose for every real number x, f(x) = max(r,min(s, x)). Then f is
Lipschitzian. The theorem is a consequence of (1).

(23) Let us consider a function g from R into R. Then {f , where f is a function
from R into R : for every real number x, f(x) = min(1,max(0, g(x)))} ⊆
Membership-Funcs(R).
Proof: Consider f being a function from R into R such that f0 = f and
for every real number x, f(x) = min(1,max(0, g(x))). rng f ⊆ [0, 1]. �

(24) {f , where f, g are functions from R into R : for every real number x, f(x)
= max(0,min(1, g(x)))} ⊆ Membership-Funcs(R).

Let us consider functions f , g from R into R. Now we state the propositions:

(25) If for every real number x, f(x) = max(0,min(1, g(x))), then f is a fuzzy
set of R.

(26) If for every real number x, f(x) = min(1,max(0, g(x))), then f is a fuzzy
set of R. The theorem is a consequence of (23).

(27) {f , where f is a function from R into R : there exist real numbers a, b
such that for every real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2} ⊆

Membership-Funcs(R).
Proof: Consider f being a function from R into R such that x = f

and there exist real numbers a, b such that for every real number t1,
f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2 . rng f ⊆ [0, 1]. �

(28) {f , where f is a function from R into R, a, b are real numbers : for every
real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2} ⊆ Membership-Funcs(R).

Proof: Consider f being a function from R into R, a, b being real numbers
such that x = f and for every real number t1, f(t1) = 1

2 ·(sin(a·t1+b))+ 12 .
rng f ⊆ [0, 1]. �

(29) Let us consider real numbers a, b, and a function f from R into R.
Suppose for every real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2 . Then f

is a fuzzy set of R. The theorem is a consequence of (28).

(30) {f , where f is a function from R into R : there exist real numbers a, b
such that for every real number t1, f(t1) = 1

2 · (cos(a · t1 + b)) + 1
2} ⊆

Membership-Funcs(R).
Proof: Consider f being a function from R into R such that x = f

and there exist real numbers a, b such that for every real number t1,
f(t1) = 1

2 · (cos(a · t1 + b)) + 1
2 . rng f ⊆ [0, 1]. �

(31) Let us consider real numbers a, b, and a function f from R into R.
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Suppose for every real number t1, f(t1) = 1
2 · (cos(a · t1 + b)) + 12 . Then f

is a fuzzy set of R. The theorem is a consequence of (30).

(32) Let us consider real numbers a, b, and a fuzzy set f of R. Suppose a 6= 0
and for every real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2 . Then f is

normalized.
Proof: There exists an element x of R such that f(x) = 1. �

(33) Let us consider a fuzzy set f of R. Suppose f ∈ {f , where f is a function
from R into R : there exist real numbers a, b such that a 6= 0 and for every
real number t1, f(t1) = 1

2 · (sin(a · t1 + b)) + 1
2}. Then f is normalized.

Proof: Consider f2 being a function from R into R such that f = f2 and
there exist real numbers a, b such that a 6= 0 and for every real number
t1, f2(t1) = 1

2 · (sin(a · t1 + b)) + 12 . Consider a, b being real numbers such
that a 6= 0 and for every real number t1, f2(t1) = 1

2 · (sin(a · t1 + b)) + 1
2 .

There exists an element x of R such that f(x) = 1. �

(34) Let us consider a fuzzy set f of R, and real numbers a, b. Suppose a 6= 0
and for every real number t1, f(t1) = 1

2 · (cos(a · t1 + b)) + 1
2 . Then f is

normalized.
Proof: There exists an element x of R such that f(x) = 1. �

(35) Let us consider a fuzzy set f of R. Suppose f ∈ {f , where f is a function
from R into R : there exist real numbers a, b such that a 6= 0 and for every
real number t1, f(t1) = 1

2 · (cos(a · t1+ b)) + 12}. Then f is normalized. The
theorem is a consequence of (34).

(36) Let us consider a function F from R into R, real numbers a, b, c, d,
and an integer i. Suppose a 6= 0 and i 6= 0 and for every real number x,
F (x) = max(0,min(1, c · (sin(a · x+ b)) + d)). Then F is (2·πa · i)-periodic.
Proof: For every real number x such that x ∈ domF holds x + 2·π

a · i,
x− 2·πa · i ∈ domF and F (x) = F (x+ 2·π

a · i). �

(37) Let us consider a function F from R into R, and real numbers a, b, c,
d. Suppose for every real number x, F (x) = max(0,min(1, c · (sin(a · x +
b)) + d)). Then F is periodic.
Proof: There exists a real number t such that F is t-periodic by (36), [6,
(1)]. �

(38) {f , where f is a function from R into R : there exist real numbers a, b
such that for every real number t1, f(t1) = max(0, sin(a · t1 + b))} ⊆

Membership-Funcs(R).
Proof: Consider f being a function from R into R such that x = f

and there exist real numbers a, b such that for every real number t1,
f(t1) = max(0, sin(a · t1 + b)). rng f ⊆ [0, 1] by [5, (4)]. �

(39) Let us consider real numbers a, b, and a function f from R into R.
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Suppose for every real number x, f(x) = max(0, sin(a · x+ b)). Then f is
a fuzzy set of R. The theorem is a consequence of (38).

(40) {f , where f is a function from R into R : there exist real numbers a, b
such that for every real number x, f(x) = max(0, cos(a·x+b))} ⊆ Mem−

bership-Funcs(R).
Proof: Consider f being a function from R into R such that x = f

and there exist real numbers a, b such that for every real number t1,
f(t1) = max(0, cos(a · t1 + b)). rng f ⊆ [0, 1]. �

(41) Let us consider real numbers a, b, and a function f from R into R.
Suppose for every real number x, f(x) = max(0, cos(a · x+ b)). Then f is
a fuzzy set of R. The theorem is a consequence of (40).

(42) {f , where f is a function from R into R, a, b, c, d are real numbers : for
every real number x, f(x) = max(0,min(1, c · (sin(a · x + b)) + d))} ⊆
{f , where f, g are functions from R into R : for every real number x, f(x) =
max(0,min(1, g(x)))}.

(43) {f , where f is a function from R into R, a, b, c, d are real numbers : for
every real number x, f(x) = max(0,min(1, c · (sin(a · x + b)) + d))} ⊆
Membership-Funcs(R).
Proof: Consider f being a function from R into R, a, b, c, d being
real numbers such that f = g and for every real number x, f(x) =
max(0,min(1, c · (sin(a · x+ b)) + d)). f is a fuzzy set of R. �

(44) Let us consider a function f from R into R, and real numbers a, b, c, d.
Suppose for every real number x, f(x) = max(0,min(1, c · (sin(a ·x+ b)) +
d)). Then f is a fuzzy set of R. The theorem is a consequence of (43).

(45) {f , where f is a function from R into R, a, b, c, d are real numbers : for
every real number x, f(x) = max(0,min(1, c · (arctan(a · x + b)) + d))} ⊆
{f , where f, g are functions from R into R : for every real number x, f(x) =
max(0,min(1, g(x)))}.

(46) {f , where f is a function from R into R, a, b, c, d are real numbers : for
every real number x, f(x) = max(0,min(1, c · (arctan(a · x + b)) + d))} ⊆
Membership-Funcs(R).

(47) Let us consider a function f from R into R, and real numbers a, b, c, d.
Suppose for every real number x, f(x) = max(0,min(1, c · (arctan(a · x+
b)) +d)). Then f is a fuzzy set of R. The theorem is a consequence of (68)
and (24).

(48) Let us consider a function f from R into R, and real numbers a, b, c, d,
r, s. Suppose for every real number x, f(x) = max(r,min(s, c · (sin(a · x+
b)) + d)). Then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
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numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

(49) Let us consider a function f from R into R, and real numbers a, b, c, d.
Suppose for every real number x, f(x) = max(0,min(1, c · (sin(a ·x+ b)) +
d)). Then f is Lipschitzian.

Let us consider real numbers a, b and a function f from R into R. Now we
state the propositions:

(50) If b 6= 0 and for every real number x, f(x) = exp(− (x−a)
2

2·b2 ), then f is
a fuzzy set of R.
Proof: rng f ⊆ [0, 1]. �

(51) If b 6= 0 and for every real number x, f(x) = exp(− (x−a)
2

2·b2 ), then f is
a fuzzy set of R.

Proof: For every real number x, f(x) = exp(− (x−a)
2

2·b2 ). �

(52) Let us consider real numbers a, b. Suppose b 6= 0. Then {f , where f is
a function from R into R : for every real number x, f(x) = exp(− (x−a)

2

2·b2 )}
⊆ Membership-Funcs(R). The theorem is a consequence of (51).

Let us consider real numbers a, b and a fuzzy set f of R. Now we state the
propositions:

(53) If for every real number x, f(x) = exp(− (x−a)
2

2·b2 ), then f is normalized.
Proof: There exists an element x of R such that f(x) = 1. �

(54) If b 6= 0 and for every real number x, f(x) = exp(− (x−a)
2

2·b2 ), then f is
strictly normalized.
Proof: There exists an element x of R such that f(x) = 1 and for every
element y of R such that f(y) = 1 holds y = x by [11, (20)], (4). �

(55) Let us consider real numbers a, b, and a function f from R into R.
Suppose b 6= 0 and for every real number x, f(x) = exp(− (x−a)

2

2·b2 ). Then f
is continuous.
Proof: Set h = AffineMap(1,−a). f = (the function exp) · (( −12·b2 · h) · h).
�

(56) Let us consider real numbers a, b, c, r, s, and a function f from R into
R. Suppose b 6= 0 and for every real number x, f(x) =

max(r,min(s, exp(− (x−a)
2

2·b2 ) + c)). Then f is continuous.

Proof: DefineH(element of R) = (exp(− ($1−a)
2

2·b2 ))(∈ R). Consider h being
a function from R into R such that for every element x of R, h(x) = H(x).
For every real number x0 such that x0 ∈ dom f holds f is continuous in
x0. �
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Let us consider real numbers a, b, c and a function f from R into R. Now
we state the propositions:

(57) Suppose b 6= 0 and for every real number x, f(x) =

max(0,min(1, exp(− (x−a)
2

2·b2 ) + c)). Then f is continuous.

(58) Suppose b 6= 0 and for every real number x, f(x) =

max(0,min(1, exp(− (x−a)
2

2·b2 )+ c)). Then f is a fuzzy set of R. The theorem
is a consequence of (25).

(59) {f , where f is a function from R into R, a, b, c are real numbers : b 6=
0 and for every real number x, f(x) = max(0,min(1, exp(− (x−a)

2

2·b2 ) + c))}
⊆ Membership-Funcs(R). The theorem is a consequence of (58).

(60) Let us consider a function f from R into R, and real numbers a, b, r, s.
Suppose for every real number x, f(x) =
max(r,min(s, (AffineMap(a, b))(x))). Then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

Let us consider a function f from R into R and real numbers a, b. Now we
state the propositions:

(61) If for every real number x, f(x) = max(0,min(1, (AffineMap(a, b))(x))),
then f is Lipschitzian.

(62) If for every real number x, f(x) = max(0,min(1, (AffineMap(a, b))(x))),
then f is a fuzzy set of R.

(63) {f , where f is a function from R into R, a, b are real numbers : for every
real number x, f(x) = max(0,min(1, (AffineMap(a, b))(x)))} ⊆
Membership-Funcs(R). The theorem is a consequence of (25).

(64) Let us consider real numbers a, b, and a function f from R into R.
Suppose for every real number x, f(x) = max(0, 1 − |x−ab |). Then f is
a fuzzy set of R.
Proof: rng f ⊆ [0, 1]. �

(65) Let us consider real numbers a, b. Suppose b > 0. Let us consider a real
number x. Then (TriangularFS((a− b), a, (a+ b)))(x) = max(0, 1−|x−ab |).
Proof: Set f1 = (AffineMap(0, 0))�R \ ]a− b, a+ b[.
Set f2 = (AffineMap( 1

a−(a−b) ,−
a−b

a−(a−b)))�[a− b, a].

Set f3 = (AffineMap(− 1
a+b−a ,

a+b
a+b−a))�[a, a + b]. Set F = (f1+·f2)+·f3.

F (x) = max(0, 1− |x−ab |). �

Let us consider real numbers a, b and a fuzzy set f of R. Now we state the
propositions:
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(66) If b > 0 and for every real number x, f(x) = max(0, 1 − |x−ab |), then f

is triangular. The theorem is a consequence of (65).

(67) If b > 0 and for every real number x, f(x) = max(0, 1 − |x−ab |), then f

is strictly normalized.
Proof: There exists an element x of R such that f(x) = 1 and for every
element y of R such that f(y) = 1 holds y = x. �

(68) Let us consider a function f from R into R, and real numbers a, b, c.
Suppose for every real number x, f(x) = max(0,min(1, c · (1 − |x−ab |))).
Then f is a fuzzy set of R. The theorem is a consequence of (25).

(69) Let us consider a function f from R into R, and real numbers a, b.
Suppose b > 0 and for every real number x, f(x) = max(0, 1 − |x−ab |).
Then f is continuous.
Proof: f = TriangularFS((a− b), a, (a+ b)). �

(70) Let us consider a function f from R into R, and real numbers a, b, c,
r, s. Suppose b 6= 0 and for every real number x, f(x) = max(r,min(s, c ·
(1− |x−ab |))). Then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

(71) Let us consider a function f from R into R, and real numbers a, b, c.
Suppose b 6= 0 and for every real number x, f(x) = max(0,min(1, c · (1−
|x−ab |))). Then f is Lipschitzian.

(72) {f , where f is a function from R into R, a, b are real numbers : b >

0 and for every real number x, f(x) = max(0, 1−|x−ab |)} ⊆ Membership-
Funcs(R).
Proof: {f , where f is a function from R into R, a, b are real numbers :
b > 0 and for every real number x, f(x) = max(0, 1− |x−ab |)} ⊆
{TriangularFS(a, b, c), where a, b, c are real numbers : a < b < c}. �

(73) {f , where f is a function from R into R, a, b, c, d are real numbers : b 6=
0 and for every real number x, f(x) = max(0,min(1, c · (1 − |x−ab |)))} ⊆
Membership-Funcs(R). The theorem is a consequence of (68).

(74) Let us consider real numbers a, b, p, q, s.
Then (AffineMap(a, b))�]−∞, s[+·(AffineMap(p, q))�[s,+∞[ is a function
from R into R.

(75) Let us consider real numbers a, b, p, q, and a function f from R into R.
Suppose for every real number x, f(x) =
max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba−p [+·(AffineMap(p, q))�[ q−ba−p ,

+∞[)(x))). Then f is a fuzzy set of R. The theorem is a consequence of
(74) and (25).
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(76) Let us consider real numbers a, b, c. Suppose a < b < c. Then

(i) (TriangularFS(a, b, c))(a) = 0, and

(ii) (TriangularFS(a, b, c))(b) = 1, and

(iii) (TriangularFS(a, b, c))(c) = 0.

(77) Let us consider real numbers a, b, c, d. Suppose a < b < c < d. Then

(i) (TrapezoidalFS(a, b, c, d))(a) = 0, and

(ii) (TrapezoidalFS(a, b, c, d))(b) = 1, and

(iii) (TrapezoidalFS(a, b, c, d))(c) = 1, and

(iv) (TrapezoidalFS(a, b, c, d))(d) = 0.

Let us consider real numbers a, b, p, q and a real number x. Now we state
the propositions:

(78) Suppose a > 0 and p > 0 and −ba < q
p and 1−ba = 1−q

−p . Then (TriangularFS

(−ba ,
1−b
a , qp))(x) = max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(Affine−

Map(−p, q))�[ q−ba+p ,+∞[)(x))).

Proof: For every real number x, (TriangularFS(−ba ,
1−b
a , qp))(x) =

max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,

+∞[)(x))). �

(79) Suppose a > 0 and p > 0 and 1−ba < 1−q−p .

Then (TrapezoidalFS(−ba ,
1−b
a , 1−q−p ,

q
p))(x) =

max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,

+∞[)(x))).
Proof: Set f4 = (AffineMap(a, b))�]−∞, q−ba+p [.

Set f5 = (AffineMap(−p, q))�[ q−ba+p ,+∞[.

For every real number x, (TrapezoidalFS(−ba ,
1−b
a , 1−q−p ,

q
p))(x) =

max(0,min(1, (f4+·f5)(x))). �

(80) Let us consider real numbers a, b, p, q, and a function f from R into R.
Suppose a > 0 and p > 0 and f = (AffineMap(a, b))�]−∞, q−ba+p [+·(Affine−
Map(−p, q))�[ q−ba+p ,+∞[. Then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

(81) Let us consider real numbers a, b, p, q. Suppose a > 0 and p > 0. Then
there exists a real number r such that

(i) 0 < r, and
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(ii) for every real numbers x1, x2 such that x1, x2 ∈
dom((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,+∞[)

holds |((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,+∞[)

(x1)−((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,+∞[)

(x2)| ¬ r · |x1 − x2|.

The theorem is a consequence of (74) and (80).

(82) Let us consider real numbers a, b, p, q, r, s, and a function f from R
into R. Suppose a > 0 and p > 0 and for every real number x, f(x) =
max(r,min(s, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,

+∞[)(x))). Then f is Lipschitzian. The theorem is a consequence of (74),
(81), and (1).

(83) Let us consider real numbers a, b, c. Suppose a < b < c. Let us consider
a real number x. Then (TriangularFS(a, b, c))(x) =
max(0,min(1, ((AffineMap( 1b−a ,−

a
b−a))�]−∞,

b[+·(AffineMap(− 1
c−b ,

c
c−b))�[b,+∞[)(x))). The theorem is a consequence

of (78).

(84) Let us consider real numbers a, b, c, d. Suppose a < b < c < d.
Let us consider a real number x. Then (TrapezoidalFS(a, b, c, d))(x) =
max(0,min(1, ((AffineMap( 1b−a ,−

a
b−a))�]−∞, b·d−a·c

d−c+b−a [+·(AffineMap

(− 1
d−c ,

d
d−c))�[

b·d−a·c
d−c+b−a ,+∞[)(x))). The theorem is a consequence of (79).

(85) Let us consider real numbers a, b, p, q, and a function f from R in-
to R. Suppose a > 0 and p > 0 and for every real number x, f(x) =
max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap(−p, q))�[ q−ba+p ,

+∞[)(x))). Then f is Lipschitzian.

(86) Let us consider real numbers a, b, c. If a < b < c, then TriangularFS(a, b, c)
is Lipschitzian. The theorem is a consequence of (83) and (82).

(87) Let us consider real numbers a, b, c, d. If a < b < c < d, then Trapezoidal−
FS(a, b, c, d) is Lipschitzian. The theorem is a consequence of (84) and (82).

Let us consider real numbers a, b, p, q and a fuzzy set f of R. Now we state
the propositions:

(88) Suppose a > 0 and p > 0 and −ba < q
p and 1−ba = 1−q

−p and for every real

number x, f(x) = max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(Affine−
Map(−p, q))�[ q−ba+p ,+∞[)(x))). Then f is triangular and strictly normali-
zed. The theorem is a consequence of (78).

(89) Suppose a > 0 and p > 0 and 1−b
a < 1−q

−p and for every real num-

ber x, f(x) = max(0,min(1, ((AffineMap(a, b))�]−∞, q−ba+p [+·(AffineMap
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(−p, q))�[ q−ba+p ,+∞[)(x))). Then f is trapezoidal and normalized. The the-
orem is a consequence of (79).

(90) {f , where f is a fuzzy set of R : f is triangular} ⊆ Membership-Funcs(R).

(91) {TriangularFS(a, b, c), where a, b, c are real numbers : a < b < c} ⊆
Membership-Funcs(R).

(92) {f , where f is a fuzzy set of R : f is trapezoidal} ⊆ Membership-Funcs(R).

(93) {TrapezoidalFS(a, b, c, d), where a, b, c, d are real numbers : a < b < c <

d} ⊆ Membership-Funcs(R).
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