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Summary. In this paper, we discuss the properties that hold in finite di-
mensional vector spaces and related spaces. In the Mizar language [1], [2], varia-
bles are strictly typed, and their type conversion requires a complicated process.
Our purpose is to formalize that some properties of finite dimensional vector spa-
ces are preserved in type transformations, and to contain the complexity of type
transformations into this paper. Specifically, we show that properties such as al-
gebraic structure, subsets, finite sequences and their sums, linear combination,
linear independence, and affine independence are preserved in type conversions
among TOP-REAL(n), REAL-NS(n), and n-VectSp over F Real. We referred to [4],
[9], and [8] in the formalization.
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1. Common Properties Between Norm and Topology in Finite
Dimensional Linear Spaces

From now on X denotes a set, n, m, k denote natural numbers, K denotes
a field, f denotes an n-element, real-valued finite sequence, and M denotes
a matrix over RF of dimension n×m.

Now we state the propositions:
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(1) The RLS structure of EnT = the RLS structure of 〈En, ‖ · ‖〉.
Proof: For every elements x, y ofRn, +En(x, y) = +RSegn(x, y). For every
element x of R and for every element y of Rn, ·En(x, y) = ·RRSegn(x, y) by
[3, (3)]. �

(2) En = MetricSpaceNorm〈En, ‖ · ‖〉.
Proof: Set X = 〈En, ‖ · ‖〉. For every elements x, y of Rn, (the distance
of En)(x, y) = (the distance by norm of X)(x, y). �

(3) The topological structure of EnT = TopSpaceNorm〈En, ‖·‖〉. The theorem
is a consequence of (2).

(4) The carrier of EnT = the carrier of 〈En, ‖·‖〉. The theorem is a consequence
of (1).

(5) The carrier of the n-dimension vector space over RF = the carrier of
〈En, ‖ · ‖〉. The theorem is a consequence of (4).

(6) 0EnT = 0〈En,‖·‖〉. The theorem is a consequence of (1).

(7) Let us consider elements p, q of EnT, and elements f , g of 〈En, ‖ · ‖〉. If
p = f and q = g, then p+ q = f + g. The theorem is a consequence of (1).

(8) Let us consider a real number r, an element q of EnT, and an element g
of 〈En, ‖ · ‖〉. If q = g, then r · q = r · g. The theorem is a consequence of
(1).

(9) Let us consider an element q of EnT, and an element g of 〈En, ‖ · ‖〉. If
q = g, then −q = −g. The theorem is a consequence of (8).

(10) Let us consider elements p, q of EnT, and elements f , g of 〈En, ‖ · ‖〉. If
p = f and q = g, then p− q = f − g. The theorem is a consequence of (9)
and (7).

Let us consider a set X and a natural number n.

(11) X is a linear combination of 〈En, ‖ · ‖〉 if and only if X is a linear com-
bination of EnT. The theorem is a consequence of (4).

(12) X is a linear combination of 〈En, ‖ · ‖〉 if and only if X is a linear com-
bination of the n-dimension vector space over RF. The theorem is a con-
sequence of (11).

(13) Let us consider a linear combination L5 of EnT, and a linear combination
L2 of 〈En, ‖ · ‖〉. Suppose L2 = L5. Then the support of L2 = the support
of L5.

(14) Let us consider a linear combination L5 of the n-dimension vector space
over RF, and a linear combination L2 of 〈En, ‖·‖〉. Suppose L2 = L5. Then
the support of L2 = the support of L5. The theorem is a consequence of
(11).

Let us consider a set F . Now we state the propositions:
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(15) F is a subset of EnT if and only if F is a subset of 〈En, ‖ · ‖〉.
(16) F is a subset of 〈En, ‖ · ‖〉 if and only if F is a subset of the n-dimension

vector space over RF.
(17) F is a finite sequence of elements of EnT if and only if F is a finite sequence

of elements of 〈En, ‖ · ‖〉.
(18) F is a function from EnT into R if and only if F is a function from 〈En, ‖·‖〉

into R. The theorem is a consequence of (4).

(19) Let us consider a finite sequence F2 of elements of EnT, a function f1 from
EnT into R, a finite sequence F4 of elements of 〈En, ‖ · ‖〉, and a function f3
from 〈En, ‖ · ‖〉 into R. If f1 = f3 and F2 = F4, then f1 · F2 = f3 · F4. The
theorem is a consequence of (4) and (8).

(20) Let us consider a finite sequence F of elements of 〈En, ‖·‖〉, a function f1
from 〈En, ‖ · ‖〉 into R, a finite sequence F4 of elements of the n-dimension
vector space over RF, and a function f3 from the n-dimension vector space
over RF into RF. If f1 = f3 and F = F4, then f1 ·F = f3 ·F4. The theorem
is a consequence of (18), (4), and (19).

(21) Let us consider a finite sequence F3 of elements of EnT, and a finite sequ-
ence F2 of elements of 〈En, ‖ · ‖〉. If F3 = F2, then

∑
F3 =

∑
F2.

Proof: Set T = EnT. Set V = 〈En, ‖ · ‖〉. Consider f being a sequence of
the carrier of T such that

∑
F = f(lenF ) and f(0) = 0T and for every

natural number j and for every element v of T such that j < lenF and
v = F (j + 1) holds f(j + 1) = f(j) + v.

Consider f3 being a sequence of the carrier of V such that
∑
F4 =

f3(lenF4) and f3(0) = 0V and for every natural number j and for every
element v of V such that j < lenF4 and v = F4(j + 1) holds f3(j + 1) =
f3(j) + v. Define S[natural number] ≡ if $1 ¬ lenF , then f($1) = f3($1).
For every natural number i such that S[i] holds S[i + 1]. S[0]. For every
natural number n, S[n]. �

(22) Let us consider a finite sequence F of elements of 〈En, ‖ · ‖〉, and a finite
sequence F4 of elements of the n-dimension vector space over RF. If F4 =
F , then

∑
F =

∑
F4. The theorem is a consequence of (4) and (21).

(23) Let us consider a linear combination L2 of 〈En, ‖ · ‖〉, and a linear com-
bination L4 of EnT. If L2 = L4, then

∑
L2 =

∑
L4. The theorem is a con-

sequence of (4), (19), and (21).

(24) Let us consider a linear combination L5 of the n-dimension vector space
over RF, and a linear combination L2 of 〈En, ‖ · ‖〉. If L2 = L5, then∑
L2 =

∑
L5. The theorem is a consequence of (11) and (23).

(25) Let us consider a subset A3 of 〈En, ‖ · ‖〉, and a subset A4 of EnT. Suppose
A3 = A4. Let us consider an object X. Then X is a linear combination
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of A3 if and only if X is a linear combination of A4. The theorem is
a consequence of (11).

(26) Let us consider a subset A3 of 〈En, ‖ · ‖〉, and a subset A4 of EnT. If
A3 = A4, then ΩLin(A3) = ΩLin(A4). The theorem is a consequence of (11)
and (23).

(27) Let us consider a subset A2 of the n-dimension vector space over RF,
and a subset A3 of 〈En, ‖ · ‖〉. If A2 = A3, then ΩLin(A3) = ΩLin(A2). The
theorem is a consequence of (4) and (26).

(28) Let us consider a subset A3 of 〈En, ‖ · ‖〉, and a subset A4 of EnT. Suppose
A3 = A4. Then A3 is linearly independent if and only if A4 is linearly
independent. The theorem is a consequence of (11), (6), and (23).

(29) Let us consider a subset A2 of the n-dimension vector space over RF, and
a subset A3 of 〈En, ‖·‖〉. Suppose A2 = A3. Then A2 is linearly independent
if and only if A3 is linearly independent. The theorem is a consequence of
(4) and (28).

(30) Let us consider an object X. Then X is a subspace of 〈En, ‖ · ‖〉 if and
only if X is a subspace of EnT. The theorem is a consequence of (1), (4),
and (6).

(31) Let us consider a set X, a subspace U of 〈En, ‖ · ‖〉, and a subspace W
of the n-dimension vector space over RF. Suppose ΩU = ΩW . Then X is
a linear combination of U if and only if X is a linear combination of W .
The theorem is a consequence of (30).

(32) Let us consider a one-to-one finite sequence F of elements of 〈En, ‖ · ‖〉.
Suppose rngF is linearly independent. Then there exists a square matrix
M over RF of dimension n such that

(i) M is invertible, and

(ii) M� lenF = F .

The theorem is a consequence of (4) and (28).

(33) Let us consider a square matrix M over RF of dimension n, and a square
matrix N over R of dimension n. Suppose N = (RF → R)M . Then M is
invertible if and only if N is invertible.

(34) Let us consider a square matrix M over R of dimension n. Then M is
invertible if and only if (R→ RF)M is invertible.

(35) Let us consider a one-to-one finite sequence F of elements of 〈En, ‖ · ‖〉.
Suppose rngF is linearly independent. Then there exists a square matrix
M over R of dimension n such that

(i) M is invertible, and
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(ii) M� lenF = F .

The theorem is a consequence of (32) and (33).

(36) Let us consider a one-to-one finite sequence F of elements of 〈En, ‖ · ‖〉.
Suppose rngF is linearly independent. Let us consider an ordered basis
B of the n-dimension vector space over RF. Suppose B = MX2FinS In×nRF .
Let us consider a square matrix M over RF of dimension n. Suppose M is
invertible and M� lenF = F . Then (Mx2Tran(M))◦(ΩLin(rng(B� lenF ))) =
ΩLin(rngF ). The theorem is a consequence of (4), (28), and (26).

(37) Let us consider linearly independent subsets A, B of 〈En, ‖ · ‖〉. Suppose
A = B . Then there exists a square matrix M over RF of dimension n

such that

(i) M is invertible, and

(ii) (Mx2Tran(M))◦(ΩLin(A)) = ΩLin(B).

The theorem is a consequence of (4), (28), and (26).

(38) Let us consider natural numbers n, m, a matrix M over RF of dimen-
sion n×m, and a linearly independent subset A of 〈En, ‖ · ‖〉. Suppose
rk(M) = n. Then (Mx2Tran(M))◦A is linearly independent. The theorem
is a consequence of (4) and (28).

(39) Let us consider an element p of EnT, an element f of 〈En, ‖·‖〉, a subset H
of EnT, and a subset I of 〈En, ‖·‖〉. If p = f and H = I, then p+H = f+I.
The theorem is a consequence of (4) and (7).

(40) Let us consider a subset A3 of 〈En, ‖ · ‖〉, and a subset A4 of EnT. If
A3 = A4, then A3 is affine iff A4 is affine. The theorem is a consequence
of (4), (8), and (7).

(41) Let us consider a set X. Then X is an affinely independent subset of
〈En, ‖ · ‖〉 if and only if X is an affinely independent subset of EnT. The
theorem is a consequence of (4), (6), (9), (39), and (28).

(42) Let us consider natural numbers n, m, a matrix M over RF of dimen-
sion n×m, and an affinely independent subset A of 〈En, ‖ · ‖〉. Suppose
rk(M) = n. Then (Mx2Tran(M))◦A is affinely independent. The theorem
is a consequence of (41).

(43) Let us consider a subset A3 of 〈En, ‖ · ‖〉, and a subset A4 of EnT. If
A3 = A4, then AffinA3 = AffinA4. The theorem is a consequence of (4)
and (40).

(44) Let us consider a linear combination L of 〈En, ‖·‖〉, and a linear combina-
tion S of EnT. If L = S, then sumL = sumS. The theorem is a consequence
of (4).
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(45) Let us consider a subset A3 of 〈En, ‖ · ‖〉, a subset A4 of EnT, an element
v of 〈En, ‖ · ‖〉, and an element w of EnT. Suppose A3 = A4 and v = w and
v ∈ AffinA3 and A3 is affinely independent. Then v → A3 = w → A4.
The theorem is a consequence of (41), (25), (23), (44), and (43).

(46) Let us consider natural numbers n, m, a matrix M over RF of dimension
n×m, and an affinely independent subset A of 〈En, ‖·‖〉. Suppose rk(M) =
n. Let us consider an element v of 〈En, ‖ · ‖〉. Suppose v ∈ AffinA. Then

(i) (Mx2Tran(M))(v) ∈ Affin((Mx2Tran(M))◦A), and

(ii) for every n-element, real-valued finite sequence f , (v → A)(f) =
((Mx2Tran(M))(v)→ (Mx2Tran(M))◦A)((Mx2Tran(M))(f)).

The theorem is a consequence of (41), (4), (43), and (45).

(47) Let us consider natural numbers n, m, a matrix M over RF of dimen-
sion n×m, and a linearly independent subset A of 〈Em, ‖ · ‖〉. Suppose
rk(M) = n. Then (Mx2Tran(M))−1(A) is linearly independent. The the-
orem is a consequence of (4) and (28).

(48) Let us consider natural numbers n, m, a matrix M over RF of dimen-
sion n×m, and an affinely independent subset A of 〈Em, ‖ · ‖〉. Suppose
rk(M) = n. Then (Mx2Tran(M))−1(A) is affinely independent. The the-
orem is a consequence of (41).

(49) Let us consider a real linear space V . Then every strict subspace of V is
a strict subspace of ΩV .

(50) Let us consider a set X. Then X is a basis of the n-dimension vector
space over RF if and only if X is a basis of EnT.

Let us consider a non empty natural number n.

(51) +RSegn = πn(the addition of RF).
Proof: Set O1 = +RSegn . Set O2 = πn(the addition of RF). For every
elements x, y of Rn, O1(x, y) = O2(x, y). �

(52) ·RRSegn = ·nRF .
Proof: Set O1 = ·RRSegn . Set O2 = ·nRF . For every element x of R and for
every element y of Rn, O1(x, y) = O2(x, y). �

(53) (i) EnT is finite dimensional, and

(ii) dim(EnT) = n.
The theorem is a consequence of (50).

(54) Let us consider a non empty natural number n. Then

(i) the carrier of EnT = the carrier of the n-dimension vector space over
RF, and

(ii) 0EnT = 0α, and
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(iii) the addition of EnT = the addition of the n-dimension vector space
over RF, and

(iv) the external multiplication of EnT = the left multiplication
of the n-dimension vector space over RF,

where α is the n-dimension vector space over RF. The theorem is a con-
sequence of (51) and (52).

(55) Let us consider a non empty natural number n, elements x2, y2 of the n-
dimension vector space over RF, and elements x1, y1 of EnT. If x2 = x1 and
y2 = y1, then x2 + y2 = x1 + y1.

(56) Let us consider a non empty natural number n, an element a1 of RF,
a real number a2, an element x2 of the n-dimension vector space over RF,
and an element x1 of EnT. If a1 = a2 and x2 = x1, then a1 · x2 = a2 · x1.

(57) Let us consider a non empty natural number n, an element x2 of the n-
dimension vector space over RF, and an element x1 of EnT. If x2 = x1, then
−x2 = −x1. The theorem is a consequence of (54).

(58) Let us consider a non empty natural number n, elements x2, y2 of the n-
dimension vector space over RF, and elements x1, y1 of EnT. If x2 = x1 and
y2 = y1, then x2− y2 = x1− y1. The theorem is a consequence of (57) and
(54).

(59) Let us consider a non empty natural number n, a subset A4 of EnT, and
a subset A3 of the n-dimension vector space over RF. Suppose A4 = A3.
Then

(i) the carrier of Lin(A4) = the carrier of Lin(A3), and

(ii) 0Lin(A4) = 0Lin(A3), and

(iii) the addition of Lin(A4) = the addition of Lin(A3), and

(iv) the external multiplication of Lin(A4) = the left multiplication of
Lin(A3).

The theorem is a consequence of (54).

(60) Let us consider a subset A4 of EnT, and a subset A3 of 〈En, ‖ · ‖〉. If
A4 = A3, then Lin(A4) = Lin(A3). The theorem is a consequence of (26)
and (1).

(61) Let us consider a set X. Then X is a basis of EnT if and only if X is
a basis of 〈En, ‖ · ‖〉. The theorem is a consequence of (4), (28), (49), and
(26).

(62) (i) 〈En, ‖ · ‖〉 is finite dimensional, and

(ii) dim(〈En, ‖ · ‖〉) = n.
The theorem is a consequence of (53), (4), and (61).



124 kazuhisa nakasho, hiroyuki okazaki, and yasunari shidama

2. Finite Dimensional Vector Spaces over Real Field

Note that there exists a real normed space which is finite dimensional.
Now we state the propositions:

(63) Let us consider a field K, a finite dimensional vector space V over K,
and an ordered basis b of V . Then there exists a linear transformation T

from V to the dim(V )-dimension vector space over K such that

(i) T is bijective, and

(ii) for every element x of V , T (x) = x→ b.

Proof: Set W = the dim(V )-dimension vector space over K. Define
P[object, object] ≡ there exists an element x of V such that $1 = x and
$2 = x→ b.

For every element x of the carrier of V , there exists an element y
of the carrier of W such that P[x, y]. Consider f being a function from
the carrier of V into the carrier of W such that for every element x of
the carrier of V , P[x, f(x)]. For every element x of V , f(x) = x→ b. For
every elements x, y of V , f(x+ y) = f(x) + f(y). For every scalar a of K
and for every vector x of V , f(a ·x) = a · f(x). For every objects x, y such
that x, y ∈ dom f and f(x) = f(y) holds x = y.

For every object y such that y ∈ the carrier of W there exists an object
x such that x ∈ the carrier of V and y = f(x) by [6, (102)], [7, (21)], [5,
(36)]. �

(64) Let us consider a field K, and a finite dimensional vector space V over
K. Then there exists a linear transformation T from V to the dim(V )-
dimension vector space over K such that T is bijective. The theorem is
a consequence of (63).

(65) Let us consider a field K, and finite dimensional vector spaces V , W over
K. Then dim(V ) = dim(W ) if and only if there exists a linear transforma-
tion T from V to W such that T is bijective. The theorem is a consequence
of (64).

(66) Let us consider a real linear space X. Then

(i) the carrier of X = the carrier of RLSp2RVSp(X), and

(ii) the zero of X = the zero of RLSp2RVSp(X), and

(iii) the addition of X = the addition of RLSp2RVSp(X), and

(iv) the external multiplication of X =
the left multiplication of RLSp2RVSp(X).

(67) Let us consider a strict real linear space X.
Then RVSp2RLSp RLSp2RVSp(X) = X.
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(68) Let us consider a strict vector space X over RF.
Then RLSp2RVSp(RVSp2RLSpX) = X.

Let us consider a real linear space V and a set F .

(69) F is a subset of V if and only if F is a subset of RLSp2RVSp(V ).

(70) F is a finite sequence of elements of V if and only if F is a finite sequence
of elements of RLSp2RVSp(V ).

(71) F is a function from V into R if and only if F is a function from
RLSp2RVSp(V ) into R.

(72) Let us consider a real linear space T , and a set X. Then X is a linear
combination of RLSp2RVSp(T ) if and only if X is a linear combination of
T .

(73) Let us consider a real linear space T , a linear combination L5
of RLSp2RVSp(T ), and a linear combination L2 of T . Suppose L2 = L5.
Then the support of L2 = the support of L5.
Proof: The support of L2 ⊆ the support of L5. Consider u being an ele-
ment of RLSp2RVSp(T ) such that x = u and L5(u) 6= 0RF . �

(74) Let us consider a real linear space V , a finite sequence F2 of elements
of V , a function f1 from V into R, a finite sequence F4 of elements of
RLSp2RVSp(V ), and a function f3 from RLSp2RVSp(V ) into RF. If f1 =
f3 and F2 = F4, then f1 · F2 = f3 · F4.

(75) Let us consider a real linear space T , a finite sequence F3 of elements
of T , and a finite sequence F2 of elements of RLSp2RVSp(T ). If F3 = F2,
then

∑
F3 =

∑
F2.

(76) Let us consider a real linear space T , a linear combination L5 of
RLSp2RVSp(T ), and a linear combination L2 of T . If L2 = L5, then∑
L2 =

∑
L5. The theorem is a consequence of (73) and (74).

Let us consider a real linear space T , a subset A2 of RLSp2RVSp(T ), and
a subset A3 of T . Now we state the propositions:

(77) If A2 = A3, then ΩLin(A3) = ΩLin(A2). The theorem is a consequence of
(72), (73), and (76).

(78) If A2 = A3, then A2 is linearly independent iff A3 is linearly independent.
The theorem is a consequence of (72), (73), and (76).

(79) Let us consider a real linear space T , a set X, a subspace U of
RLSp2RVSp(T ), and a subspace W of T . Suppose ΩU = ΩW . Then X is
a linear combination of U if and only if X is a linear combination of W .

(80) Let us consider a real linear space W , and a set X. Then X is a basis
of RLSp2RVSp(W ) if and only if X is a basis of W . The theorem is
a consequence of (78) and (77).
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Let us consider a real linear space W . Now we state the propositions:

(81) If W is finite dimensional, then RLSp2RVSp(W ) is finite dimensional
and dim(RLSp2RVSp(W )) = dim(W ). The theorem is a consequence of
(80).

(82) W is finite dimensional if and only if RLSp2RVSp(W ) is finite dimen-
sional. The theorem is a consequence of (80).

(83) Let us consider a non empty natural number n. Then RLSp2RVSp(RSegnR )
= the n-dimension vector space over RF. The theorem is a consequence of
(51) and (52).

(84) Let us consider real linear spaces V , W , and a set X. Then X is a linear
operator from V into W if and only if X is a linear transformation from
RLSp2RVSp(V ) to RLSp2RVSp(W ).

(85) Let us consider real linear spaces X, Y, and a linear operator L from X

into Y. Suppose L is bijective. Then there exists a linear operator K from
Y into X such that

(i) K = L−1, and

(ii) K is one-to-one and onto.

Proof: Reconsider K = L−1 as a function from the carrier of Y into
the carrier of X. K is additive. For every vector x of Y and for every real
number r, K(r · x) = r ·K(x). �

(86) Let us consider real linear spaces X, Y, Z, a linear operator L from X

into Y, and a linear operator K from Y into Z. Then K · L is a linear
operator from X into Z.
Proof: Reconsider T = K · L as a function from X into Z. For every
elements x, y of X, T (x+ y) = T (x) + T (y). For every real number a and
for every vector x of X, T (a · x) = a · T (x). �

(87) Let us consider real linear spaces V , W , a subset A of V , and a linear
operator T from V into W . Suppose T is bijective. Then A is a basis of V
if and only if T ◦A is a basis of W . The theorem is a consequence of (84)
and (80).

(88) Let us consider a finite dimensional real linear space V , and a real linear
space W . Suppose there exists a linear operator T from V into W such
that T is bijective. Then

(i) W is finite dimensional, and

(ii) dim(W ) = dim(V ).

The theorem is a consequence of (87).

(89) Let us consider a finite dimensional real linear space V . Suppose dim(V )
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6= 0. Then there exists a linear operator T from V into RSeg dim(V )R such
that T is bijective. The theorem is a consequence of (81), (64), (83), and
(84).

(90) Let us consider finite dimensional real linear spaces V , W . Suppose
dim(V ) 6= 0. Then dim(V ) = dim(W ) if and only if there exists a li-
near operator T from V into W such that T is bijective. The theorem is
a consequence of (89), (85), (86), and (88).
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Summary. In this article we further develop field theory in Mizar [1],
[2]: we prove existence and uniqueness of splitting fields. We define the splitting
field of a polynomial p ∈ F [X] as the smallest field extension of F , in which
p splits into linear factors. From this follows, that for a splitting field E of p
we have E = F (A) where A is the set of p’s roots. Splitting fields are unique,
however, only up to isomorphisms; to be more precise up to F -isomorphims i.e.
isomorphisms i with i|F = IdF . We prove that two splitting fields of p ∈ F [X] are
F -isomorphic using the well-known technique [4], [3] of extending isomorphisms
from F1 −→ F2 to F1(a) −→ F2(b) for a and b being algebraic over F1 and F2,
respectively.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider a ring R, a polynomial p over R, and an element q of
the carrier of PolyRing(R). If p = q, then −p = −q.

(2) Let us consider a ring R, a polynomial p over R, and an element a of R.
Then a · p = (a�R) ∗ p.

(3) Let us consider a ring R, and an element a of R. Then LC(a�R) = a.

(4) Let us consider a ring R, a subring S of R, a finite sequence F of elements
of R, and a finite sequence G of elements of S. If F = G, then

∏
F =

∏
G.
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Let F be a field. Let us observe that there exists
a field which is F -homomorphic, F -monomorphic, and F -isomorphic.
Let R be a ring. Observe that every R-isomorphic ring is R-homomorphic

and R-monomorphic.
Let S be an R-homomorphic ring.
Observe that PolyRing(S) is (PolyRing(R))-homomorphic.
Let F1 be a field and F2 be an F1-isomorphic, F1-homomorphic field. Observe

that PolyRing(F2) is (PolyRing(F1))-isomorphic.

2. More on Polynomials

Now we state the propositions:

(5) Let us consider a non degenerated ring R, a ring extension S of R,
a polynomial p over R, and a polynomial q over S. If p = q, then LC p =
LC q.

(6) Let us consider a field F , an element p of the carrier of PolyRing(F ),
an extension E of F , and an element q of the carrier of PolyRing(E).
Suppose p = q. Let us consider an E-extending extension U of F , and
an element a of U . Then ExtEval(q, a) = ExtEval(p, a).

(7) Let us consider a ring R, a ring extension S of R, an element p of
the carrier of PolyRing(R), and an element q of the carrier of PolyRing(S).
Suppose p = q. Let us consider a ring extension T1 of S, and a ring
extension T2 of R. If T1 = T2, then Roots(T2, p) = Roots(T1, q).

(8) Let us consider an integral domain R, a non empty finite sequence F of
elements of PolyRing(R), and a polynomial p over R. Suppose p =

∏
F

and for every natural number i such that i ∈ domF there exists an element
a of R such that F (i) = rpoly(1, a). Then deg p = lenF .
Proof: Define P[natural number] ≡ for every non empty finite sequence
F of elements of PolyRing(R) for every polynomial p over R such that
lenF = $1 and p =

∏
F and for every natural number i such that i ∈

domF there exists an element a of R such that F (i) = rpoly(1, a) holds
deg p = lenF . For every natural number k, P[k]. �

(9) Let us consider a field F , a polynomial p over F , and a non zero element
a of F . Then a · p splits in F if and only if p splits in F .

(10) Let us consider a field F , a non constant, monic polynomial p over F ,
and a non zero polynomial q over F . Suppose p ∗ q is a product of linear
polynomials of F . Then p is a product of linear polynomials of F .
Proof: Define P[natural number] ≡ for every non constant, monic po-
lynomial p over F for every non zero polynomial q over F such that
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deg(p ∗ q) = $1 and p ∗ q is a product of linear polynomials of F holds p
is a product of linear polynomials of F . For every natural number i such
that 1 ¬ i holds P[i]. �

(11) Let us consider a field F , a non constant polynomial p over F , and a non
zero polynomial q over F . If p ∗ q splits in F , then p splits in F . The
theorem is a consequence of (10) and (9).

(12) Let us consider a field F , and polynomials p, q over F . If p splits in F

and q splits in F , then p ∗ q splits in F .

(13) Let us consider a ring R, an R-homomorphic ring S, a homomorphism h

from R to S, and an element a of R. Then (PolyHom(h))(a�R) = h(a)�S.

(14) Let us consider a field F1, an F1-isomorphic, F1-homomorphic field F2,
an isomorphism h between F1 and F2, and elements p, q of the carrier of
PolyRing(F1). Then p | q if and only if (PolyHom(h))(p) | (PolyHom(h))(q).

(15) Let us consider a field F , an extension E of F , an F-algebraic element a
of E, and an irreducible element p of the carrier of PolyRing(F ). Suppose
ExtEval(p, a) = 0E . Then MinPoly(a, F ) = NormPoly p.

(16) Let us consider a field F1, an F1-monomorphic, F1-homomorphic field
F2, a monomorphism h of F1 and F2, and an element p of the carrier of
PolyRing(F1). Then NormPoly(PolyHom(h))(p) =
(PolyHom(h))(NormPoly p).

Let F1 be a field, F2 be an F1-isomorphic, F1-homomorphic field, h be an iso-
morphism between F1 and F2, and p be a constant element of the carrier of
PolyRing(F1). One can check that (PolyHom(h))(p) is constant as an element
of the carrier of PolyRing(F2).

Let p be a non constant element of the carrier of PolyRing(F1). Note that
(PolyHom(h))(p) is non constant as an element of the carrier of PolyRing(F2).

Let p be an irreducible element of the carrier of PolyRing(F1). Let us note
that (PolyHom(h))(p) is irreducible as an element of the carrier of PolyRing(F2).

Now we state the propositions:

(17) Let us consider a field F1, a non constant element p of the carrier of
PolyRing(F1), an F1-isomorphic field F2, and an isomorphism h between
F1 and F2. Then p splits in F1 if and only if (PolyHom(h))(p) splits in F2.

(18) Let us consider a field F , an element p of the carrier of PolyRing(F ),
an extension E of F , and an E-extending extension U of F .
Then Roots(E, p) ⊆ Roots(U, p).

(19) Let us consider a field F , a non constant element p of the carrier of
PolyRing(F ), an extension E of F , and an extension U of E. If p splits in
E, then p splits in U . The theorem is a consequence of (2).
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3. More on Products of Linear Polynomials

Now we state the propositions:

(20) Let us consider a field F , and a non empty finite sequence G of elements
of the carrier of PolyRing(F ). Suppose for every natural number i such
that i ∈ domG there exists an element a of F such that G(i) = rpoly(1, a).
Then G is a factorization of

∏
G.

(21) Let us consider a field F , and non empty finite sequences G1, G2 of
elements of PolyRing(F ). Suppose for every natural number i such that
i ∈ domG1 there exists an element a of F such that G1(i) = rpoly(1, a)
and for every natural number i such that i ∈ domG2 there exists an ele-
ment a of F such that G2(i) = rpoly(1, a) and

∏
G1 =

∏
G2. Let us

consider an element a of F . Then there exists a natural number i such
that i ∈ domG1 and G1(i) = rpoly(1, a) if and only if there exists a natu-
ral number i such that i ∈ domG2 and G2(i) = rpoly(1, a). The theorem
is a consequence of (20).

(22) Let us consider a field F , an extension E of F , and a non empty fi-
nite sequence G1 of elements of PolyRing(F ). Suppose for every natural
number i such that i ∈ domG1 there exists an element a of F such that
G1(i) = rpoly(1, a).

Let us consider a non empty finite sequence G2 of elements of PolyRing
(E). Suppose for every natural number i such that i ∈ domG2 there exists
an element a of E such that G2(i) = rpoly(1, a). Suppose

∏
G1 =

∏
G2.

Let us consider an element a of E. Then there exists a natural number
i such that i ∈ domG1 and G1(i) = rpoly(1, a) if and only if there exists
a natural number i such that i ∈ domG2 and G2(i) = rpoly(1, a). The
theorem is a consequence of (4) and (21).

(23) Let us consider a field F , a product of linear polynomials p of F , and
an element a of F . Then LC a · p = a.

(24) Let us consider a field F , and an extension E of F . Then every product
of linear polynomials of F is a product of linear polynomials of E.

(25) Let us consider a field F , an extension E of F , a non zero element a of
F , a non zero element b of E, a product of linear polynomials p of F , and
a product of linear polynomials q of E. If a · p = b · q, then a = b and
p = q. The theorem is a consequence of (5) and (2).

(26) Let us consider a field F , an extension E of F , and a non empty finite
sequence G of elements of the carrier of PolyRing(E). Suppose for every
natural number i such that i ∈ domG there exists an element a of F such
that G(i) = rpoly(1, a). Then

∏
G is a product of linear polynomials of F .
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Proof: Define P[natural number] ≡ for every non empty finite sequence
G of elements of PolyRing(E) such that lenG = $1 and for every natural
number i such that i ∈ domG there exists an element a of F such that
G(i) = rpoly(1, a) holds

∏
G is a product of linear polynomials of F . For

every natural number k, P[k]. Consider n being a natural number such
that lenG = n. �

4. Existence of Splitting Fields

Let us consider a field F , a non constant element p of the carrier of PolyRing
(F ), an extension U of F , and a U -extending extension E of F . Now we

state the propositions:

(27) If p splits in E, then p splits in U iff Roots(E, p) ⊆ the carrier of U .

(28) If p splits in E, then p splits in U iff Roots(E, p) ⊆ Roots(U, p). The
theorem is a consequence of (27).

(29) If p splits in E, then p splits in U iff Roots(E, p) = Roots(U, p). The
theorem is a consequence of (28) and (18).

(30) Let us consider a field F , a non constant element p of the carrier of
PolyRing(F ), and an extension E of F . If p splits in E, then p splits in
FAdj(F,Roots(E, p)). The theorem is a consequence of (27).

Let F be a field and p be a non constant element of the carrier of PolyRing(F ).
A splitting field of p is an extension of F defined by

(Def. 1) p splits in it and for every extension E of F such that p splits in E and
E is a subfield of it holds E ≈ it .

Let us consider a field F and a non constant element p of the carrier of
PolyRing(F ). Now we state the propositions:

(31) There exists an extension E of F such that E is a splitting field of p.

(32) There exists an extension E of F such that FAdj(F,Roots(E, p)) is
a splitting field of p. The theorem is a consequence of (30), (18), and
(28).

(33) Let us consider a field F , a non constant element p of the carrier of
PolyRing(F ), and an extension E of F . Suppose p splits in E. Then
FAdj(F,Roots(E, p)) is a splitting field of p. The theorem is a consequence
of (30), (18), and (28).

(34) Let us consider a field F , a non constant element p of the carrier of
PolyRing(F ), and a splitting field E of p. Then E ≈ FAdj(F,Roots(E, p)).
The theorem is a consequence of (33).
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Let F be a field and p be a non constant element of the carrier of PolyRing(F ).
Let us observe that there exists a splitting field of p which is strict and every
splitting field of p is F -finite.

5. Fixing and Extending Automorphisms

Let R be a ring. Let us observe that there exists a function from R into R
which is isomorphism.

A homomorphism of R is an additive, multiplicative, unity-preserving func-
tion from R into R.

A monomorphism of R is a monomorphic function from R into R.
An automorphism of R is an isomorphism function from R into R. Let R,

S2 be rings, S1 be a ring extension of R, and h be a function from S1 into S2.
We say that h is R-fixing if and only if

(Def. 2) for every element a of R, h(a) = a.

Now we state the propositions:

(35) Let us consider rings R, S2, a ring extension S1 of R, and a function h

from S1 into S2. Then h is R-fixing if and only if h�R = idR.

(36) Let us consider a field F , an extension E1 of F , an E1-homomorphic
extension E2 of F , and a homomorphism h from E1 to E2. Then h is
F -fixing if and only if h is a linear transformation from VecSp(E1, F ) to
VecSp(E2, F ).

(37) Let us consider a field F , an extension E of F , an E-extending extension
E1 of F , an E-extending extension E2 of F , and a function h from E1 into
E2. If h is E-fixing, then h is F -fixing.

Let R be a ring, S1, S2 be ring extensions of R, and h be a function from
S1 into S2. We say that h is R-homomorphism if and only if

(Def. 3) h is R-fixing, additive, multiplicative, and unity-preserving.

We say that h is R-monomorphism if and only if

(Def. 4) h is R-fixing and monomorphic.

We say that h is R-isomorphism if and only if

(Def. 5) h is R-fixing and isomorphism.

Let S be a ring extension of R. Observe that there exists an automorphism
of S which is R-fixing.

Now we state the propositions:

(38) Let us consider a ring R, a ring extension S of R, an element p of the car-
rier of PolyRing(R), an R-fixing monomorphism h of S, and an element a
of S. Then a ∈ Roots(S, p) if and only if h(a) ∈ Roots(S, p).
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(39) Let us consider an integral domain R, a domain ring extension S of R,
a non zero element p of the carrier of PolyRing(R), and an R-fixing mo-
nomorphism h of S. Then h� Roots(S, p) is a permutation of Roots(S, p).
The theorem is a consequence of (38).

Let R1, R2, S2 be rings, S1 be a ring extension of R1, h1 be a function from
R1 into R2, and h2 be a function from S1 into S2. We say that h2 is h1-extending
if and only if

(Def. 6) for every element a of R1, h2(a) = h1(a).

Now we state the proposition:

(40) Let us consider rings R1, R2, S2, a ring extension S1 of R1, a function
h1 from R1 into R2, and a function h2 from S1 into S2. Then h2 is h1-
extending if and only if h2�R1 = h1.

Let R be a ring and S be a ring extension of R. Let us note that every auto-
morphism of S which is R-fixing is also (idR)-extending and every automorphism
of S which is (idR)-extending is also R-fixing.

Now we state the proposition:

(41) Let us consider fields F1, F2, an extension E1 of F1, an extension E2
of F2, an E1-extending extension K1 of F1, an E2-extending extension
K2 of F2, a function h1 from F1 into F2, a function h2 from E1 into E2,
and a function h3 from K1 into K2. Suppose h2 is h1-extending and h3 is
h2-extending. Then h3 is h1-extending.

Let F be a field and E1, E2 be extensions of F . We say that E1 and E2 are
isomorphic over F if and only if

(Def. 7) there exists a function i from E1 into E2 such that i is F -isomorphism.

Now we state the propositions:

(42) Let us consider a field F , and an extension E of F . Then E and E are
isomorphic over F .

(43) Let us consider a field F , and extensions E1, E2 of F . If E1 and E2 are
isomorphic over F , then E2 and E1 are isomorphic over F .
Proof: Consider f being a function from E1 into E2 such that f is F -
isomorphism. Reconsider g = f−1 as a function from E2 into E1. g is
additive. g is multiplicative. �

(44) Let us consider a field F , and extensions E1, E2, E3 of F . Suppose E1
and E2 are isomorphic over F and E2 and E3 are isomorphic over F . Then
E1 and E3 are isomorphic over F .
Proof: Consider f being a function from E1 into E2 such that f is F -
isomorphism. Consider g being a function from E2 into E3 such that g is
F -isomorphism. dom(g · f) = the carrier of E1. Reconsider h = g · f as
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a function from E1 into E3. h is F -fixing. �

(45) Let us consider a field F , an F -finite extension E1 of F , and an extension
E2 of F . Suppose E1 and E2 are isomorphic over F . Then

(i) E2 is F -finite, and

(ii) deg(E1, F ) = deg(E2, F ).

The theorem is a consequence of (36).

6. Some More Preliminaries

Let R be a ring, S1, S2 be ring extensions of R, and h be a relation between
the carrier of S1 and the carrier of S2. We say that h is R-isomorphism if and
only if

(Def. 8) there exists a function g from S1 into S2 such that g = h and g is
R-isomorphism.

Now we state the propositions:

(46) Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Then

(i) 0FAdj(F,{a}) = ExtEval(0.F, a), and

(ii) 1FAdj(F,{a}) = ExtEval(1.F, a).

(47) Let us consider a field F , an extension E of F , an F-algebraic element a
of E, elements x, y of FAdj(F, {a}), and polynomials p, q over F . Suppose
x = ExtEval(p, a) and y = ExtEval(q, a). Then

(i) x+ y = ExtEval(p+ q, a), and

(ii) x · y = ExtEval(p ∗ q, a).

(48) Let us consider a field F , an extension E of F , an F-algebraic element a
of E, and an element x of F . Then x = ExtEval(x�F, a).

Let us consider a field F , an extension E of F , and an element a of E. Now
we state the propositions:

(49) HomExtEval(a, F ) is a function from PolyRing(F ) into RAdj(F, {a}).
(50) HomExtEval(a, F ) is a function from PolyRing(F ) into FAdj(F, {a}).

The theorem is a consequence of (49).

(51) Let us consider a field F1, an F1-isomorphic, F1-homomorphic field F2,
an isomorphism h between F1 and F2, an extension E1 of F1, an exten-
sion E2 of F2, an F1-algebraic element a of E1, an F2-algebraic element b
of E2, and an irreducible element p of the carrier of PolyRing(F1). Sup-
pose ExtEval(p, a) = 0E1 and ExtEval((PolyHom(h))(p), b) = 0E2 . Then
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(PolyHom(h))(MinPoly(a, F1)) = MinPoly(b, F2). The theorem is a con-
sequence of (15) and (16).

(52) Let us consider a field F1, an F1-isomorphic, F1-homomorphic field F2,
an isomorphism h between F1 and F2, an extension E1 of F1, an extension
E2 of F2, an F1-algebraic element a of E1, and an F2-algebraic element
b of E2. Suppose ExtEval((PolyHom(h))(MinPoly(a, F1)), b) = 0E2 . Then
(PolyHom(h))(MinPoly(a, F1)) = MinPoly(b, F2). The theorem is a con-
sequence of (15) and (16).

(53) Let us consider a field F1, a non constant element p1 of the carrier
of PolyRing(F1), an extension F2 of F1, a non constant element p2 of
the carrier of PolyRing(F2), and a splitting field E of p1. Suppose p2 = p1
and E is F2-extending. Then E is a splitting field of p2.

7. Uniqueness of Splitting Fields

Let F be a field, E be an extension of F , and a, b be F-algebraic elements
of E. The functor Φ(a, b) yielding a relation between the carrier of FAdj(F, {a})
and the carrier of FAdj(F, {b}) is defined by the term

(Def. 9) the set of all 〈〈ExtEval(p, a), ExtEval(p, b)〉〉 where p is a polynomial over
F .

Note that Φ(a, b) is quasi-total. Now we state the proposition:

(54) Let us consider a field F , an extension E of F , and F-algebraic elements
a, b of E. Then Φ(a, b) is F -isomorphism if and only if MinPoly(a, F ) =
MinPoly(b, F ). The theorem is a consequence of (46), (47), and (48).

Let F1 be a field, F2 be an F1-isomorphic, F1-homomorphic field, h be an iso-
morphism between F1 and F2, E1 be an extension of F1, E2 be an extension
of F2, a be an element of E1, b be an element of E2, and p be an irreducible
element of the carrier of PolyRing(F1).

Assume ExtEval(p, a) = 0E1 and ExtEval((PolyHom(h))(p), b) = 0E2 .
The functor Ψ(a, b, h, p) yielding a function from FAdj(F1, {a}) into FAdj(F2, {b})
is defined by

(Def. 10) for every element r of the carrier of PolyRing(F1), it(ExtEval(r, a)) =
ExtEval((PolyHom(h))(r), b).

Now we state the propositions:

(55) Let us consider a field F1, an F1-isomorphic, F1-homomorphic field F2,
an isomorphism h between F1 and F2, an extension E1 of F1, an extension
E2 of F2, an element a of E1, an element b of E2, and an irreducible
element p of the carrier of PolyRing(F1). Suppose ExtEval(p, a) = 0E1
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and ExtEval((PolyHom(h))(p), b) = 0E2 . Then Ψ(a, b, h, p) is h-extending
and isomorphism.
Proof: Set f = Ψ(a, b, h, p). Set F3 = FAdj(F1, {a}). Set F5 =
FAdj(F2, {b}). f(1F3) = 1F5 by [6, (36)], [5, (14)], [7, (14)], (13). f is onto
by [6, (56), (45)]. �

(56) Let us consider a field F , an extension E of F , an irreducible element p
of the carrier of PolyRing(F ), and elements a, b of E. Suppose a is a root
of p in E and b is a root of p in E. Then FAdj(F, {a}) and FAdj(F, {b})
are isomorphic. The theorem is a consequence of (55).

(57) Let us consider a field F1, an F1-homomorphic, F1-isomorphic field F2,
an isomorphism h between F1 and F2, a non constant element p of the car-
rier of PolyRing(F1), a splitting field E1 of p, and a splitting field E2 of
(PolyHom(h))(p). Then there exists a function f from E1 into E2 such
that f is h-extending and isomorphism.
Proof: Define P[natural number] ≡ for every field F1 for every F1-
homomorphic, F1-isomorphic field F2 for every isomorphism h between F1
and F2 for every non constant element p of the carrier of PolyRing(F1) for
every splitting field E1 of p for every splitting field E2 of (PolyHom(h))(p)

such that (Roots(E1, p)) \ (the carrier of F1) = $1 there exists a function
f from E1 into E2 such that f is h-extending and isomorphism.

For every natural number k, P[k]. Consider n being a natural number

such that (Roots(E1, p)) \ α = n, where α is the carrier of F1. �

(58) Let us consider a field F , a non constant element p of the carrier of
PolyRing(F ), and splitting fields E1, E2 of p. Then E1 and E2 are isomor-
phic over F .
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1. Preliminaries

Let a be a non empty finite sequence of elements of R and i be an element
of dom a. Let us observe that the functor a(i) yields an element of R. Let h be
a non empty finite sequence of elements of N∗ and i be an element of domh. Let
us observe that the functor h(i) yields a finite sequence of elements of N. Now
we state the propositions:

(1) Let us consider a natural number n. If n is odd, then 1 ¬ n and n +
1 div 2 = n+1

2 .

(2) Let us consider a setD, and a finite sequence p. Suppose for every natural
number i such that i ∈ dom p holds p(i) ∈ D. Then p is a finite sequence
of elements of D.

(3) Let us consider objects x, y. Then {〈〈x, y〉〉}−1({y}) = {x}.
Proof: For every object v, v ∈ {x} iff v ∈ dom{〈〈x, y〉〉} and {〈〈x, y〉〉}(v) ∈
{y}. �

(4) Let us consider natural numbers a, b, and a set s. If Seg a∪ {s} = Seg b,
then a = b or a+ 1 = b. Proof: b− a ¬ 1. �

Let D be a non empty set, f be a D-valued finite sequence, and I be a set.
The functor Seq(f, I) yielding a D-valued finite sequence is defined by the term

(Def. 1) Seq(f�I).

Let a be a non empty finite sequence of elements of R, f be a function, and
s be a set. The functor SumBin(a, f, s) yielding a real number is defined by the
term

(Def. 2)
∑

Seq(a, f−1(s)).

Let us observe that there exists a non empty finite sequence of elements of
R which is positive. Let a be a finite sequence of elements of R. We say that a
is at most one if and only if

(Def. 3) for every natural number i such that 1 ¬ i ¬ len a holds a(i) ¬ 1.

Note that there exists a non empty, positive finite sequence of elements of R
which is at most one. Let us consider a finite sequence f of elements of N and
natural numbers j, b. Now we state the propositions:

(5) If b = j, then (f a 〈b〉)−1({j}) = f−1({j}) ∪ {len f + 1}.
Proof: For every object z, z ∈ (f a 〈b〉)−1({j}) iff z ∈ f−1({j})∪{len f +
1}. �

(6) If b 6= j, then (f a 〈b〉)−1({j}) = f−1({j}).
Proof: For every object z, z ∈ (f a 〈b〉)−1({j}) iff z ∈ f−1({j}). �

(7) Let us consider a non empty finite sequence a of elements of R, a set p,
and a natural number i. Suppose p ∪ {i} ⊆ dom a and for every natural
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numberm such thatm ∈ p holdsm < i. Then Seq(a�(p∪{i})) = Seq(a�p)a

〈a(i)〉.
Let us consider a non empty finite sequence a of elements of R, a finite

sequence f of elements of N, and natural numbers j, b. Now we state the pro-
positions:

(8) Suppose len f + 1 ¬ len a. Then if b = j, then SumBin(a, f a 〈b〉, {j}) =
SumBin(a, f, {j}) + a(len f + 1).
Proof: (fa〈b〉)−1({j}) = f−1({j})∪{len f+1}. For every natural number
m such that m ∈ f−1({j}) holds m < len f + 1. �

(9) Suppose len f + 1 ¬ len a. Then if b 6= j, then SumBin(a, f a 〈b〉, {j}) =
SumBin(a, f, {j}).

(10) Let us consider a non empty finite sequence a of elements of R, and
a finite sequence f of elements of N. Suppose dom f = dom a. Then
SumBin(a, f, rng f) =

∑
a.

(11) Let us consider a non empty finite sequence a of elements of R, a finite
sequence f of elements of N, and sets s, t. Suppose dom f ⊆ dom a and s

misses t. Then SumBin(a, f, s ∪ t) = SumBin(a, f, s) + SumBin(a, f, t).
Proof: Reconsider F = a as a partial function from N to R. For every set
W such that W ⊆ dom a holds

∑W
κ=0 F (κ) =

∑
Seq(a,W ) by [3, (51)]. �

(12) Let us consider a non empty, positive finite sequence a of elements of R,
a finite sequence f of elements of N, and a set s. If dom f ⊆ dom a, then
0 ¬ SumBin(a, f, s).
Proof: Reconsider s1 = Seq(a, f−1(s)) as a real-valued finite sequence.
For every natural number i such that i ∈ dom s1 holds 0 ¬ s1(i). �

(13) Let us consider a non empty finite sequence a of elements of R, a fi-
nite sequence f of elements of N, and a set s. If s misses rng f , then
SumBin(a, f, s) = 0.

2. Optimal Packing

Now we state the propositions:

(14) Let us consider a non empty, at most one finite sequence a of elements
of R. Then there exists a natural number k and there exists a non empty
finite sequence f of elements of N such that dom f = dom a and for every
natural number j such that j ∈ rng f holds SumBin(a, f, {j}) ¬ 1 and
k = rng f .
Proof: Set k1 = len a. Set f1 = idseq(k1). For every natural number j
such that j ∈ rng f1 holds SumBin(a, f1, {j}) ¬ 1. There exists a non
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empty finite sequence f of elements of N such that dom f = dom a and for
every natural number j such that j ∈ rng f holds SumBin(a, f, {j}) ¬ 1
and k1 = rng f . �

(15) Let us consider a non empty finite sequence a of elements of R, and
a finite sequence f of elements of N. Suppose dom f = dom a and for
every natural number j such that j ∈ rng f holds SumBin(a, f, {j}) ¬ 1.
Then there exists a finite sequence f2 of elements of N such that

(i) dom f2 = dom a, and

(ii) for every natural number j such that j ∈ rng f2 holds

SumBin(a, f2, {j}) ¬ 1, and

(iii) there exists a natural number k such that rng f2 = Seg k, and

(iv) rng f = rng f2 .

Proof: Reconsider g3 = Sgm0 rng f as a finite 0-sequence of N. Reconsider
g2 = XFS2FS(g3) as a one-to-one function. Reconsider g = g2

−1 as a one-
to-one function. Reconsider f3 = g · f as a finite sequence. Consider k0
being a natural number such that dom g2 = Seg k0. For every natural
number j such that j ∈ rng f3 holds SumBin(a, f3, {j}) ¬ 1. �

Let a be a non empty, at most one finite sequence of elements of R. The
functor Opt(a) yielding an element of N is defined by

(Def. 4) there exists a non empty finite sequence g of elements of N such that
dom g = dom a and for every natural number j such that j ∈ rng g holds
SumBin(a, g, {j}) ¬ 1 and it = rng g and for every non empty finite
sequence f of elements of N such that dom f = dom a and for every natural
number j such that j ∈ rng f holds SumBin(a, f, {j}) ¬ 1 holds it ¬
rng f .

Now we state the propositions:

(16) Let us consider a non empty finite sequence a of elements of R, a finite
sequence f of elements of N, a natural number k, and a real-valued finite
sequence R1. Suppose dom f = dom a and rng f = Seg k and lenR1 = k

and for every natural number j such that j ∈ domR1 holds R1(j) =
SumBin(a, f, {j}). Then

∑
R1 = SumBin(a, f, rng f).

Proof: Define P[natural number] ≡ for every real-valued finite sequ-
ence r1 such that r1 = R1� Seg $1 holds

∑
r1 = SumBin(a, f,Seg $1).

For every real-valued finite sequence r1 such that r1 = R1� Seg 1 holds∑
r1 = SumBin(a, f,Seg 1). For every element i of N such that 1 ¬ i < k

and P[i] holds P[i+ 1]. For every element i of N such that 1 ¬ i ¬ k holds
P[i]. �
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(17) Let us consider a non empty finite sequence a of elements of R, and
a finite sequence f of elements of N. Suppose dom f = dom a and for
every natural number j such that j ∈ rng f holds SumBin(a, f, {j}) ¬ 1.
Then d

∑
ae ¬ rng f .

Proof: Consider f2 being a finite sequence of elements of N such that
dom f2 = dom a and for every natural number j such that j ∈ rng f2 holds
SumBin(a, f2, {j}) ¬ 1 and there exists a natural number k such that
rng f2 = Seg k and rng f = rng f2 . Consider i being a natural number such
that rng f2 = Seg i. Define N (natural number) = SumBin(a, f2, {$1}).

There exists a finite sequence p such that len p = i and for every
natural number j such that j ∈ dom p holds p(j) = N (j). Consider R1
being a finite sequence such that lenR1 = i and for every natural number j
such that j ∈ domR1 holds R1(j) = SumBin(a, f2, {j}). For every natural
number j such that j ∈ domR1 holds R1(j) ∈ R. R1 is a finite sequence
of elements of R.

Reconsider R2 = i 7→ 1 as a real-valued, i-element finite sequence.
For every natural number j such that j ∈ Seg i holds R1(j) ¬ R2(j).∑
R1 = SumBin(a, f2, rng f2).

∑
a ¬ rng f . �

(18) Let us consider a non empty, at most one finite sequence a of elements
of R. Then d

∑
ae ¬ Opt(a). The theorem is a consequence of (17).

3. Online Algorithms

Let a be a non empty finite sequence of elements of R and A be a function
from R × N∗ into N. The functor OnlinePackingHistory(a,A) yielding a non
empty finite sequence of elements of N∗ is defined by

(Def. 5) len it = len a and it(1) = 〈1〉 and for every natural number i such that
1 ¬ i < len a there exists an element d1 of R and there exists a finite
sequence d2 of elements of N such that d1 = a(i + 1) and d2 = it(i) and
it(i+ 1) = d2

a 〈A(d1, d2)〉.
Now we state the propositions:

(19) Let us consider a non empty finite sequence a of elements of R, and
a function A from R×N∗ into N. Then (OnlinePackingHistory(a,A))(1) =
{〈〈1, 1〉〉}.

(20) Let us consider a non empty finite sequence a of elements of R, a function
A from R × N∗ into N, and a non empty finite sequence h of elements of
N∗. Suppose h = OnlinePackingHistory(a,A).
Then SumBin(a, h(1), {h(1)(1)}) = a(1). The theorem is a consequence of
(3).
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Let us consider a non empty finite sequence a of elements of R, a function
A from R × N∗ into N, a non empty finite sequence h of elements of N∗, and
a natural number i. Now we state the propositions:

(21) If h = OnlinePackingHistory(a,A), then if 1 ¬ i ¬ len a, then h(i) is
a finite sequence of elements of N.

(22) If h = OnlinePackingHistory(a,A), then if 1 ¬ i ¬ len a, then lenh(i) =
i.
Proof: Define P[natural number] ≡ lenh($1) = $1. For every element i
of N such that 1 ¬ i < len a and P[i] holds P[i + 1]. For every element i
of N such that 1 ¬ i ¬ len a holds P[i]. For every natural number i such
that 1 ¬ i ¬ len a holds P[i]. �

(23) If h = OnlinePackingHistory(a,A), then if 1 ¬ i < len a, then h(i+ 1) =
h(i)a 〈A(a(i+1), h(i))〉 and h(i+1)(i+1) = A(a(i+1), h(i)). The theorem
is a consequence of (22).

(24) If h = OnlinePackingHistory(a,A), then if 1 ¬ i < len a, then rng h(i+
1) = rng h(i) ∪ {h(i+ 1)(i+ 1)}. The theorem is a consequence of (23).

(25) Let us consider a non empty, positive finite sequence a of elements of R,
a function A from R × N∗ into N, and a non empty finite sequence h of
elements of N∗. Suppose h = OnlinePackingHistory(a,A). Let us consider
natural numbers i, l. Suppose 1 ¬ i < len a. Then SumBin(a, h(i), {l}) ¬
SumBin(a, h(i+ 1), {l}). The theorem is a consequence of (21), (22), (23),
(8), and (6).

Let a be a non empty finite sequence of elements of R and A be a function
from R×N∗ into N. The functor OnlinePacking(a,A) yielding a non empty finite
sequence of elements of N is defined by the term

(Def. 6) (OnlinePackingHistory(a,A))(len OnlinePackingHistory(a,A)).

Now we state the proposition:

(26) Let us consider a non empty finite sequence a of elements of R, a function
A from R×N∗ into N, a non empty finite sequence h of elements of N∗, and
a non empty finite sequence f of elements of N. Then dom(OnlinePacking(a,
A)) = dom a. The theorem is a consequence of (22).

4. Feasibility of Algorithm NextFit

Let a be a non empty finite sequence of elements of R. The functor NextFit(a)
yielding a function from R× N∗ into N is defined by

(Def. 7) for every real number s and for every finite sequence f of elements of
N, if s + SumBin(a, f, {f(len f)}) ¬ 1, then it(s, f) = f(len f) and if
s+ SumBin(a, f, {f(len f)}) > 1, then it(s, f) = f(len f) + 1.
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Now we state the propositions:

(27) Let us consider a non empty finite sequence a of elements of R, and a non
empty finite sequence h of elements of N∗.
Suppose h = OnlinePackingHistory(a,NextFit(a)). Let us consider a na-
tural number i. Suppose 1 ¬ i ¬ len a. Then there exists a natural number
k such that

(i) rng h(i) = Seg k, and

(ii) h(i)(i) = k.

Proof: Define R[natural number] ≡ there exists a natural number k such
that rng h($1) = Seg k and h($1)($1) = k. For every element i of N such
that 1 ¬ i < len a and R[i] holds R[i + 1]. For every element i of N
such that 1 ¬ i ¬ len a holds R[i]. For every natural number i such that
1 ¬ i ¬ len a holds R[i]. �

(28) Let us consider a non empty, positive, at most one finite sequence a of
elements of R, and a non empty finite sequence h of elements of N∗. Sup-
pose h = OnlinePackingHistory(a,NextFit(a)). Let us consider a natural
number i. Suppose 1 ¬ i ¬ len a. Then SumBin(a, h(i), {h(i)(i)}) ¬ 1.
Proof: Define T [natural number] ≡ SumBin(a, h($1), {h($1)($1)}) ¬ 1.
SumBin(a, h(1), {h(1)(1)}) ¬ 1. For every element i of N such that 1 ¬ i <
len a and T [i] holds T [i+1]. For every element i of N such that 1 ¬ i ¬ len a
holds T [i]. For every natural number i such that 1 ¬ i ¬ len a holds T [i].
�

(29) Let us consider a non empty, positive, at most one finite sequence
a of elements of R, and a non empty finite sequence h of elements of
N∗. Suppose h = OnlinePackingHistory(a,NextFit(a)). Let us consider
natural numbers i, j. Suppose 1 ¬ i ¬ len a and j ∈ rng h(i). Then
SumBin(a, h(i), {j}) ¬ 1.
Proof: Define P[natural number] ≡ for every natural number j such that
j ∈ rng h($1) holds SumBin(a, h($1), {j}) ¬ 1. For every natural number j
such that j ∈ rng h(1) holds SumBin(a, h(1), {j}) ¬ 1. For every element
i0 of N such that 1 ¬ i0 < len a and P[i0] holds P[i0 + 1].

For every element i of N such that 1 ¬ i ¬ len a holds P[i]. For
every natural numbers i, j such that 1 ¬ i ¬ len a and j ∈ rng h(i) holds
SumBin(a, h(i), {j}) ¬ 1. �

(30) Let us consider a non empty, positive, at most one finite sequence a of
elements of R, and a non empty finite sequence f of elements of N. Suppose
f = OnlinePacking(a,NextFit(a)). Let us consider a natural number j. If
j ∈ rng f , then SumBin(a, f, {j}) ¬ 1. The theorem is a consequence of
(29).
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5. Approximation Guarantee of Algorithm NextFit

Let us consider a non empty, positive, at most one finite sequence a of
elements of R, a non empty finite sequence h of elements of N∗, and natural
numbers i, k. Now we state the propositions:

(31) If h = OnlinePackingHistory(a,NextFit(a)), then if 1 ¬ i ¬ len a and
rng h(i) = Seg k, then h(i)(i) = k. The theorem is a consequence of (27).

(32) Suppose h = OnlinePackingHistory(a,NextFit(a)). Then suppose 1 ¬
i < len a and rng h(i) = Seg k and rng h(i + 1) = Seg(k + 1). Then
SumBin(a, h(i+ 1), {k}) + SumBin(a, h(i+ 1), {k+ 1}) > 1. The theorem
is a consequence of (21), (22), (23), (31), (24), (6), (8), and (12).

(33) Let us consider a non empty, positive, at most one finite sequence a
of elements of R, and a non empty finite sequence h of elements of N∗.
Suppose h = OnlinePackingHistory(a,NextFit(a)). Let us consider natu-
ral numbers i, l, k. Suppose 1 ¬ i ¬ len a and rng h(i) = Seg k and 2 ¬ k

and 1 ¬ l < k. Then SumBin(a, h(i), {l}) + SumBin(a, h(i), {l + 1}) > 1.
Proof: Define N [natural number] ≡ for every natural number l for every
natural number k such that rng h($1) = Seg k and 2 ¬ k and 1 ¬ l < k

holds SumBin(a, h($1), {l}) + SumBin(a, h($1), {l+ 1}) > 1. For every na-
tural number l and for every natural number k such that rng h(1) = Seg k
and 2 ¬ k and 1 ¬ l < k holds SumBin(a, h(1), {l})+SumBin(a, h(1), {l+
1}) > 1.

For every element i0 of N such that 1 ¬ i0 < len a and N [i0] holds
N [i0+ 1]. For every element i of N such that 1 ¬ i ¬ len a holds N [i]. For
every natural numbers i, l, k such that 1 ¬ i ¬ len a and rng h(i) = Seg k
and 2 ¬ k and 1 ¬ l < k holds SumBin(a, h(i), {l}) + SumBin(a, h(i), {l+
1}) > 1. �

(34) Let us consider a non empty, positive, at most one finite sequence a of
elements of R, and a non empty finite sequence h of elements of N∗. Sup-
pose h = OnlinePackingHistory(a,NextFit(a)). Let us consider natural
numbers i, j, k. Suppose 1 ¬ i ¬ len a and rng h(i) = Seg k and 2 ¬ k and
1 ¬ j ¬ k div 2. Then SumBin(a, h(i), {2·j−1})+SumBin(a, h(i), {2·j}) >
1. The theorem is a consequence of (33).

(35) Let us consider a non empty, positive, at most one finite sequence a of
elements of R, a non empty finite sequence h of elements of N∗, and a finite
sequence f of elements of N. Suppose f = OnlinePacking(a,NextFit(a)).
Then there exists a natural number k such that rng f = Seg k. The theorem
is a consequence of (27).

(36) Let us consider a non empty, positive, at most one finite sequence a of
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elements of R, a non empty finite sequence f of elements of N, and a natural
number k. Suppose f = OnlinePacking(a,NextFit(a)) and rng f = Seg k.
Let us consider a natural number j. Suppose 1 ¬ j ¬ k div 2. Then
SumBin(a, f, {2 · j−1}) + SumBin(a, f, {2 · j}) > 1. The theorem is a con-
sequence of (34).

Let us consider a non empty, positive, at most one finite sequence a of
elements of R, a non empty finite sequence f of elements of N, and a natural
number k. Now we state the propositions:

(37) If f = OnlinePacking(a,NextFit(a)) and k = rng f , then k div 2 <
∑
a.

The theorem is a consequence of (35), (26), (2), (36), (12), (16), and (10).

(38) Suppose f = OnlinePacking(a,NextFit(a)) and k = rng f . Then k ¬
2 · d
∑
ae − 1.

Proof: k div 2 < d
∑
ae. k−1

2 ¬ k div 2 by [8, (4), (5)]. �

(39) If f = OnlinePacking(a,NextFit(a)) and k = rng f , then k ¬ 2 ·
(Opt(a))− 1. The theorem is a consequence of (38) and (18).

6. Tightness of Approximation Guarantee of Algorithm NextFit

Now we state the propositions:

(40) Let us consider a natural number n, a real number ε, a non empty,
positive, at most one finite sequence a of elements of R, and a non empty
finite sequence f of elements of N. Suppose n is odd and len a = n and
ε = 1

n+1 and for every natural number i such that i ∈ Seg n holds if i
is odd, then a(i) = 2 · ε and if i is even, then a(i) = 1 − ε and f =
OnlinePacking(a,NextFit(a)). Then n = rng f .
Proof: 1 ¬ n. Set h = OnlinePackingHistory(a,NextFit(a)). Define
N [natural number] ≡ if $1 is odd, then SumBin(a, h($1), {h($1)($1)}) =
2 · ε and if $1 is even, then SumBin(a, h($1), {h($1)($1)}) = 1 − ε and
h($1)($1) = $1 and rng h($1) = Seg $1. N [1]. For every element i of N
such that 1 ¬ i < len a and N [i] holds N [i+ 1]. For every element i of N
such that 1 ¬ i ¬ len a holds N [i]. �

(41) Let us consider a natural number n, a real number ε, and a non empty,
positive, at most one finite sequence a of elements of R. Suppose n is
odd and len a = n and ε = 1

n+1 and for every natural number i such that
i ∈ Seg n holds if i is odd, then a(i) = 2·ε and if i is even, then a(i) = 1−ε.
Then

∑
a = n+1

2 + 1
n+1 −

1
2 .

Proof: 1 ¬ n. n + 1 div 2 = n+1
2 . Define N [natural number] ≡ if $1 is

odd, then
∑

(a�$1) = 2 · ε · ($1 + 1 div 2) + (1− ε) · (($1 + 1 div 2)− 1) and
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if $1 is even, then
∑

(a�$1) = 2 · ε · ($1 div 2) + (1− ε) · ($1 div 2). For every
element i of N such that 1 ¬ i < len a and N [i] holds N [i+ 1]. For every
element i of N such that 1 ¬ i ¬ len a holds N [i]. �

(42) Let us consider a natural number n, a real number ε, a non empty,
positive, at most one finite sequence a of elements of R, and a non empty
finite sequence f of elements of N. Suppose n is odd and len a = n and
ε = 1

n+1 and for every natural number i such that i ∈ Seg n holds if i is
odd, then a(i) = 2 ·ε and if i is even, then a(i) = 1−ε and dom f = dom a

and for every natural number i such that i ∈ Seg n holds if i is odd, then
f(i) = 1 and if i is even, then f(i) = (i div 2)+1. Let us consider a natural
number j. If j ∈ rng f , then SumBin(a, f, {j}) ¬ 1.
Proof: 1 ¬ n. n+ 1 div 2 = n+1

2 . Set n1 = n+ 1 div 2. 1 + 1 ¬ n+ 1. For
every object y, y ∈ Seg n1 iff there exists an object x such that x ∈ dom f

and y = f(x). �

(43) Let us consider a natural number n, a real number ε, and a non empty,
positive, at most one finite sequence a of elements of R. Suppose n is
odd and len a = n and ε = 1

n+1 and for every natural number i such that
i ∈ Seg n holds if i is odd, then a(i) = 2·ε and if i is even, then a(i) = 1−ε.
Then n = 2 · (Opt(a))− 1.
Proof: 1 ¬ n. n+1 div 2 = n+1

2 . There exists a non empty finite sequence
g of elements of N such that dom g = dom a and for every natural number
j such that j ∈ rng g holds SumBin(a, g, {j}) ¬ 1 and n+ 1 div 2 = rng g
and for every non empty finite sequence f of elements of N such that
dom f = dom a and for every natural number j such that j ∈ rng f holds
SumBin(a, f, {j}) ¬ 1 holds n+ 1 div 2 ¬ rng f . �

(44) Let us consider a natural number n. Suppose n is odd. Then there exists
a non empty, positive, at most one finite sequence a of elements of R such
that

(i) len a = n, and

(ii) for every non empty finite sequence f of elements of N such that
f = OnlinePacking(a,NextFit(a)) holds

n = rng f and n = 2 · (Opt(a))− 1.

Proof: 1 ¬ n. Set ε = 1
n+1 . Define P[natural number, object] ≡ if $1 is

odd, then $2 = 2 · ε and if $1 is even, then $2 = 1 − ε. For every natural
number i such that i ∈ Seg n there exists an object x such that P[i, x].
Consider a0 being a finite sequence such that dom a0 = Seg n and for every
natural number i such that i ∈ Seg n holds P[i, a0(i)]. For every natural
number i such that i ∈ dom a0 holds a0(i) ∈ R. a0 is positive by (1), [7,
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(22)]. For every natural number i such that 1 ¬ i ¬ len a0 holds a0(i) ¬ 1.
�
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