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Summary. This paper is a continuation of Inoué [5]. As already mentio-
ned in the paper, a number of intuitionistic provable formulas are given with a
Hilbert-style proof. For that, we make use of a family of intuitionistic deduction
theorems, which are also presented in this paper by means of Mizar system [2],
[1]. Our axiom system of intuitionistic propositional logic IPC is based on the
propositional subsystem of H1-IQC in Troelstra and van Dalen [6, p. 68]. We
also owe Heyting [4] and van Dalen [7]. Our treatment of a set-theoretic intuitio-
nistic deduction theorem is due to Agata Darmochwał’s Mizar article “Calculus
of Quantifiers. Deduction Theorem” [3].
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1. The Notion of Proof in Intuitionistic Setting

From now on i, j, n, k, l denote natural numbers, T , S, X, Y, Z denote
subsets of MC-w.f.f., p, q, r, t, F , H, G denote elements of MC-w.f.f., and s,
U , V denote MC-formulas.

Let p, q be elements of MC-w.f.f.. The functor p⇔ q yielding an element of
MC-w.f.f. is defined by the term
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(Def. 1) (p⇒ q) ∧ (q ⇒ p).

The functor Proof-Step-Kinds-IPC yielding a set is defined by the term

(Def. 2) {k : k ¬ 10}.

Now we state the proposition:

(1) (i) 0 ∈ Proof-Step-Kinds-IPC and ... and

(ii) 10 ∈ Proof-Step-Kinds-IPC.

One can verify that Proof-Step-Kinds-IPC is non empty and Proof-Step-
Kinds-IPC is finite.

From now on f , g denote finite sequences of elements of MC-w.f.f.×Proof-
Step-Kinds-IPC. Now we state the proposition:

(2) Let us consider a natural number n. If 1 ¬ n ¬ len f , then (f(n))2 = 0
or ... or (f(n))2 = 10.

Let P1 be a finite sequence of elements of MC-w.f.f.×Proof-Step-Kinds-IPC
and n be a natural number. Let us consider X. We say that P1 is a correct n-th
step w.r.t. IPC (X) if and only if

(Def. 3) (i) (P1(n))1 ∈ X, if (P1(n))2 = 0,

(ii) there exists p and there exists q such that (P1(n))1 = p ⇒ (q ⇒ p),
if (P1(n))2 = 1,

(iii) there exists p and there exists q and there exists r such that (P1(n))1 =
p⇒ (q ⇒ r)⇒ (p⇒ q ⇒ (p⇒ r)), if (P1(n))2 = 2,

(iv) there exists p and there exists q such that (P1(n))1 = p ∧ q ⇒ p, if
(P1(n))2 = 3,

(v) there exists p and there exists q such that (P1(n))1 = p ∧ q ⇒ q, if
(P1(n))2 = 4,

(vi) there exists p and there exists q such that (P1(n))1 = p⇒ (q ⇒ p∧q),
if (P1(n))2 = 5,

(vii) there exists p and there exists q such that (P1(n))1 = p ⇒ p ∨ q, if
(P1(n))2 = 6,

(viii) there exists p and there exists q such that (P1(n))1 = q ⇒ p ∨ q, if
(P1(n))2 = 7,

(ix) there exists p and there exists q and there exists r such that (P1(n))1 =
p⇒ r ⇒ (q ⇒ r ⇒ (p ∨ q ⇒ r)), if (P1(n))2 = 8,

(x) there exists p such that (P1(n))1 = FALSUM⇒ p, if (P1(n))2 = 9,

(xi) there exists i and there exists j and there exists p and there exists q
such that 1 ¬ i < n and 1 ¬ j < i and p = (P1(j))1 and q = (P1(n))1
and (P1(i))1 = p⇒ q, if (P1(n))2 = 10.
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Let us consider f . We say that f is a proof w.r.t. IPC (X) if and only if

(Def. 4) f 6= ∅ and for every n such that 1 ¬ n ¬ len f holds f is a correct n-th
step w.r.t. IPC (X).

Now we state the propositions:

(3) If f is a proof w.r.t. IPC (X), then rng f 6= ∅.
(4) If f is a proof w.r.t. IPC (X), then 1 ¬ len f .

(5) If f is a proof w.r.t. IPC (X), then (f(1))2 = 0 or ... or (f(1))2 = 10.
The theorem is a consequence of (4) and (2).

(6) If 1 ¬ n ¬ len f , then f is a correct n-th step w.r.t. IPC (X) iff f a g is
a correct n-th step w.r.t. IPC (X).
Proof: If f is a correct n-th step w.r.t. IPC (X), then f a g is a correct
n-th step w.r.t. IPC (X). (f(n))2 = 0 or ... or (f(n))2 = 10. �

(7) If 1 ¬ n ¬ len g and g is a correct n-th step w.r.t. IPC (X), then f a g is
a correct n+ len f -th step w.r.t. IPC (X). The theorem is a consequence
of (2).

(8) If f is a proof w.r.t. IPC (X) and g is a proof w.r.t. IPC (X), then f a g

is a proof w.r.t. IPC (X). The theorem is a consequence of (6) and (7).

(9) If f is a proof w.r.t. IPC (X) and X ⊆ Y, then f is a proof w.r.t. IPC
(Y ). The theorem is a consequence of (2).

(10) If f is a proof w.r.t. IPC (X) and 1 ¬ l ¬ len f , then (f(l))1 ∈
CnIPC(X).
Proof: For every n such that 1 ¬ n ¬ len f holds (f(n))1 ∈ CnIPC(X).
�

Let us consider f . Assume f 6= ∅. The functor Effect-IPC(f) yielding an ele-
ment of MC-w.f.f. is defined by the term

(Def. 5) (f(len f))1.

Now we state the proposition:

(11) If f is a proof w.r.t. IPC (X), then Effect-IPC(f) ∈ CnIPC(X). The
theorem is a consequence of (4) and (10).

2. A Consequence as a Set of All Intuitionistic Provable
Formulas

Now we state the proposition:

(12) X ⊆ {F : there exists f such that f is a proof w.r.t. IPC (X) and
Effect-IPC(f) = F}. The theorem is a consequence of (1).

Let us consider X. Now we state the propositions:
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(13) Suppose Y = {p : there exists f such that f is a proof w.r.t. IPC
(X) and Effect-IPC(f) = p}. Then Y is IPC theory.

(14) {p : there exists f such that f is a proof w.r.t. IPC (X) and Effect-IPC
(f) = p} = CnIPC(X). The theorem is a consequence of (12) and (13).

(15) p ∈ CnIPC(X) if and only if there exists f such that f is a proof w.r.t.
IPC (X) and Effect-IPC(f) = p. The theorem is a consequence of (14).

(16) If p ∈ CnIPC(X), then there exists Y such that Y ⊆ X and Y is finite
and p ∈ CnIPC(Y ).
Proof: Consider f such that f is a proof w.r.t. IPC (X) and Effect-IPC(f)
= p. Consider A being a set such that A is finite and A ⊆ MC-w.f.f. and
rng f ⊆ A × Proof-Step-Kinds-IPC. If 1 ¬ n ¬ len f , then f is a correct
n-th step w.r.t. IPC (Y ). �

3. The Intuitionistic Provable Relation

Let us consider X and s. We say that X `IPC(s) if and only if

(Def. 6) s ∈ CnIPC(X).

We say that `IPC s if and only if

(Def. 7) ∅MC-w.f.f. `IPC s.
Now we state the propositions:

(17) X `IPC(p⇒ (q ⇒ p)).

(18) X `IPC(p⇒ (q ⇒ r)⇒ (p⇒ q ⇒ (p⇒ r))).

(19) X `IPC(p ∧ q ⇒ p).

(20) X `IPC(p ∧ q ⇒ q).

(21) X `IPC(p⇒ (q ⇒ p ∧ q)).
(22) X `IPC(p⇒ p ∨ q).
(23) X `IPC(q ⇒ p ∨ q).
(24) X `IPC(p⇒ r ⇒ (q ⇒ r ⇒ (p ∨ q ⇒ r))).

(25) X `IPC(FALSUM⇒ p).

(26) If X `IPC p and X `IPC(p⇒ q), then X `IPC(q).

(27) `IPC p⇒ (q ⇒ p).

(28) `IPC p⇒ (q ⇒ r)⇒ (p⇒ q ⇒ (p⇒ r)).

(29) `IPC p ∧ q ⇒ p.

(30) `IPC p ∧ q ⇒ q.

(31) `IPC p⇒ (q ⇒ p ∧ q).
(32) `IPC p⇒ p ∨ q.
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(33) `IPC q ⇒ p ∨ q.
(34) `IPC p⇒ r ⇒ (q ⇒ r ⇒ (p ∨ q ⇒ r)).

(35) `IPC FALSUM⇒ p.

(36) If `IPC p and `IPC p⇒ q, then `IPC q.
Let us consider s. We say that s is IPC-valid if and only if

(Def. 8) ∅MC-w.f.f. `IPC(s).

One can verify that s is IPC-valid if and only if the condition (Def. 9) is
satisfied.

(Def. 9) s ∈ IPC-Taut.

Now we state the propositions:

(37) If p is IPC-valid, then X `IPC(p).

(38) p⇒ (q ⇒ p) is IPC-valid.

(39) p⇒ (q ⇒ r)⇒ (p⇒ q ⇒ (p⇒ r)) is IPC-valid.

(40) p ∧ q ⇒ p is IPC-valid.

(41) p ∧ q ⇒ q is IPC-valid.

(42) p⇒ (q ⇒ p ∧ q) is IPC-valid.

(43) p⇒ p ∨ q is IPC-valid.

(44) q ⇒ p ∨ q is IPC-valid.

(45) p⇒ r ⇒ (q ⇒ r ⇒ (p ∨ q ⇒ r)) is IPC-valid.

(46) FALSUM⇒ p is IPC-valid.

(47) If p is IPC-valid and p⇒ q is IPC-valid, then q is IPC-valid.

In the sequel X, T denote subsets of MC-w.f.f., F , G, H, p, q, r, t denote
elements of MC-w.f.f., s, h denote MC-formulas, f denotes a finite sequence of
elements of MC-w.f.f.×Proof-Step-Kinds-IPC, and i, j denote elements of N.

4. The First Deduction Theorem for IPC

Now we state the propositions:

(48) X `IPC(p⇒ p). The theorem is a consequence of (26).

(49) X `IPC(IVERUM).

(50) If X `IPC(p), then X `IPC(q ⇒ p).

(51) If p is IPC-valid, then X `IPC(p).

(52) If X ∪ {F} `IPC(G), then X `IPC(F ⇒ G).
Proof: Consider f such that f is a proof w.r.t. IPC (X ∪ {F}) and
Effect-IPC(f) = G. Define P[natural number] ≡ if 1 ¬ $1 ¬ len f , then
for every H such that H = (f($1))1 holds X `IPC(F ⇒ H). For every
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natural number n such that for every natural number k such that k < n

holds P[k] holds P[n]. For every natural number n, P[n]. 1 ¬ len f . �

5. A Family of Deduction Theorems for IPC

From now on F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, G denote MC-formulas
and x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x denote elements of MC-w.f.f..

Let x1, x2, x3 be elements of MC-w.f.f.. Let us observe that the func-
tor {x1, x2, x3} yields a subset of MC-w.f.f.. Let x1, x2, x3, x4 be elements
of MC-w.f.f.. One can check that the functor {x1, x2, x3, x4} yields a subset
of MC-w.f.f.. Let x1, x2, x3, x4, x5 be elements of MC-w.f.f.. One can ve-
rify that the functor {x1, x2, x3, x4, x5} yields a subset of MC-w.f.f.. Let x1,
x2, x3, x4, x5, x6 be elements of MC-w.f.f.. One can verify that the functor
{x1, x2, x3, x4, x5, x6} yields a subset of MC-w.f.f.. Let x1, x2, x3, x4, x5, x6, x7
be elements of MC-w.f.f..

One can check that the functor {x1, x2, x3, x4, x5, x6, x7} yields a subset of
MC-w.f.f.. Let x1, x2, x3, x4, x5, x6, x7, x8 be elements of MC-w.f.f.. Let us note
that the functor {x1, x2, x3, x4, x5, x6, x7, x8} yields a subset of MC-w.f.f.. Let
x1, x2, x3, x4, x5, x6, x7, x8, x9 be elements of MC-w.f.f.. One can verify that
the functor {x1, x2, x3, x4, x5, x6, x7, x8, x9} yields a subset of MC-w.f.f.. Let x1,
x2, x3, x4, x5, x6, x7, x8, x9, x10 be elements of MC-w.f.f.. Observe that the
functor {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} yields a subset of MC-w.f.f.. Now
we state the propositions:

(53) If {F} `IPC(G), then `IPC F ⇒ G. The theorem is a consequence of
(52).

(54) If {F1, F2} `IPC(G), then {F2} `IPC(F1 ⇒ G). The theorem is a conse-
quence of (52).

(55) If {F1, F2, F3} `IPC(G), then {F2, F3} `IPC(F1 ⇒ G). The theorem is
a consequence of (52).

(56) If {F1, F2, F3, F4} `IPC(G), then {F2, F3, F4} `IPC(F1 ⇒ G). The the-
orem is a consequence of (52).

(57) If {F1, F2, F3, F4, F5} `IPC(G), then {F2, F3, F4, F5} `IPC(F1 ⇒ G). The
theorem is a consequence of (52).

(58) If {F1, F2, F3, F4, F5, F6} `IPC(G), then {F2, F3, F4, F5, F6} `IPC(F1 ⇒
G). The theorem is a consequence of (52).

(59) Suppose {F1, F2, F3, F4, F5, F6, F7} `IPC(G). Then {F2, F3, F4, F5, F6, F7
} `IPC(F1 ⇒ G). The theorem is a consequence of (52).

(60) Suppose {F1, F2, F3, F4, F5, F6, F7, F8} `IPC(G). Then {F2, F3, F4, F5, F6,
F7, F8} `IPC(F1 ⇒ G). The theorem is a consequence of (52).
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(61) Suppose {F1, F2, F3, F4, F5, F6, F7, F8, F9} `IPC(G). Then {F2, F3, F4, F5,
F6, F7, F8, F9} `IPC(F1 ⇒ G). The theorem is a consequence of (52).

From now on x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 denote objects.
Now we state the propositions:

(62) {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} = {x2, x3, x4, x5, x6, x7, x8, x9, x10}∪
{x1}.

(63) Suppose {F1, F2, F3, F4, F5, F6, F7, F8, F9, F10} `IPC(G). Then {F2, F3, F4,
F5, F6, F7, F8, F9, F10} `IPC(F1 ⇒ G). The theorem is a consequence of
(62) and (52).

6. Intuitionistic Provable Formulas and Theorems

Now we state the propositions:

(64) {p} `IPC(p).

(65) If X `IPC(p) and X ⊆ Y, then Y `IPC(p). The theorem is a consequence
of (15) and (9).

(66) If p ∈ X, then X `IPC(p). The theorem is a consequence of (64) and
(65).

(67) If p ∈ X, then p ∈ CnIPC(X). The theorem is a consequence of (66).

(68) If p ∈ IPC-Taut, then `IPC p.
(69) If `IPC p, then p ∈ IPC-Taut.

(70) p ∈ IPC-Taut if and only if `IPC p.
(71) `IPC p ⇒ (p ⇒ FALSUM ⇒ FALSUM). The theorem is a consequence

of (66), (26), (54), and (53).

(72) {p ∧ q} `IPC(p). The theorem is a consequence of (19), (64), and (26).

(73) {p ∧ q} `IPC(q). The theorem is a consequence of (20), (64), and (26).

(74) `IPC(p⇒ q) ∧ (p⇒ (q ⇒ FALSUM))⇒ (p⇒ FALSUM). The theorem
is a consequence of (66), (19), (26), (20), (54), and (53).

(75) `IPC p⇒ FALSUM⇒ (p⇒ q). The theorem is a consequence of (68).

(76) `IPC(p⇒ r) ∧ (q ⇒ r)⇒ (p ∨ q ⇒ r). The theorem is a consequence of
(72), (73), (24), (26), and (53).

(77) `IPC p ∧ (p⇒ q)⇒ q. The theorem is a consequence of (72), (73), (26),
and (53).

(78) `IPC p ⇒ (p ⇒ FALSUM ⇒ FALSUM ⇒ FALSUM ⇒ FALSUM). The
theorem is a consequence of (69), (71), and (68).

(79) `IPC(p ⇒ FALSUM) ∨ q ⇒ (p ⇒ q). The theorem is a consequence of
(69), (75), (76), and (68).
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(80) `IPC p⇒ q ⇒ (q ⇒ FALSUM⇒ (p⇒ FALSUM)).

(81) `IPC(p ⇒ FALSUM) ∨ (q ⇒ FALSUM) ⇒ (p ∧ q ⇒ FALSUM). The
theorem is a consequence of (69), (76), (80), and (68).

(82) Let us consider MC-formulas p, q. If `IPC p and `IPC q, then `IPC p∧q.
The theorem is a consequence of (31) and (36).

(83) If `IPC p⇒ q and `IPC q ⇒ p, then `IPC p⇔ q.

(84) `IPC p⇒ p. The theorem is a consequence of (27), (28), and (26).

(85) `IPC p⇔ p. The theorem is a consequence of (84) and (82).

(86) `IPC p ∧ q ⇒ FALSUM ⇒ (p ⇒ (q ⇒ FALSUM)). The theorem is
a consequence of (66), (21), (26), (55), (54), and (53).

(87) `IPC p ⇒ (q ⇒ FALSUM) ⇒ (p ∧ q ⇒ FALSUM). The theorem is
a consequence of (66), (19), (26), (20), (54), and (53).

(88) `IPC(p ∧ q ⇒ FALSUM)⇔(p ⇒ (q ⇒ FALSUM)). The theorem is
a consequence of (86), (87), and (83).

(89) `IPC p ∧ q ⇒ FALSUM ⇒ (q ⇒ (p ⇒ FALSUM)). The theorem is
a consequence of (66), (21), (26), (55), (54), and (53).

(90) `IPC q ⇒ (p ⇒ FALSUM) ⇒ (p ∧ q ⇒ FALSUM). The theorem is
a consequence of (66), (19), (26), (20), (54), and (53).

(91) `IPC(q ⇒ (p ⇒ FALSUM))⇔(p ∧ q ⇒ FALSUM). The theorem is
a consequence of (89), (90), and (83).

(92) `IPC p ⇒ (q ⇒ (p ∧ q ⇒ FALSUM ⇒ FALSUM)). The theorem is
a consequence of (66), (21), (65), (26), (55), (54), and (53).

(93) `IPC q ⇒ (p ⇒ (p ∧ q ⇒ FALSUM ⇒ FALSUM)). The theorem is
a consequence of (66), (21), (65), (26), (55), (54), and (53).

(94) `IPC p ⇒ (p ∧ q ⇒ FALSUM ⇒ (q ⇒ FALSUM)). The theorem is
a consequence of (66), (21), (65), (26), (55), (54), and (53).

(95) `IPC q ⇒ (p ∧ q ⇒ FALSUM ⇒ (p ⇒ FALSUM)). The theorem is
a consequence of (66), (21), (65), (26), (55), (54), and (53).

(96) `IPC p ∨ q ⇒ FALSUM ⇒ (p ⇒ FALSUM) ∧ (q ⇒ FALSUM). The
theorem is a consequence of (68).

(97) `IPC(p⇒ FALSUM) ∧ (q ⇒ FALSUM)⇒ (p ∨ q ⇒ FALSUM).

(98) `IPC(p ∨ q ⇒ FALSUM)⇔(p ⇒ FALSUM) ∧ (q ⇒ FALSUM). The
theorem is a consequence of (96), (97), and (83).

(99) `IPC p ∧ (p⇒ FALSUM)⇒ FALSUM.

(100) `IPC FALSUM⇔ p ∧ (p⇒ FALSUM). The theorem is a consequence of
(35), (99), and (83).

(101) `IPC p⇒ FALSUM⇒ (p⇒ FALSUM⇒ FALSUM⇒ FALSUM).
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(102) `IPC p ⇒ FALSUM ⇒ FALSUM ⇒ FALSUM ⇒ (p ⇒ FALSUM). The
theorem is a consequence of (69), (71), and (68).

(103) `IPC(p⇒ FALSUM)⇔(p⇒ FALSUM⇒ FALSUM⇒ FALSUM). The
theorem is a consequence of (101), (102), and (83).

(104) `IPC p⇒ FALSUM⇒ q ⇒ (p⇒ FALSUM⇒ FALSUM⇒ FALSUM⇒
q). The theorem is a consequence of (66), (102), (65), (26), (54), and (53).

(105) `IPC p ⇒ q ⇒ (p ⇒ FALSUM ⇒ FALSUM ⇒ (q ⇒ FALSUM ⇒
FALSUM)). The theorem is a consequence of (69), (80), and (68).

(106) `IPC p ∧ (q ⇒ FALSUM) ⇒ (p ⇒ q ⇒ FALSUM). The theorem is
a consequence of (66), (19), (26), (20), (54), and (53).

(107) `IPC p⇒ q ⇒ FALSUM⇒ FALSUM⇒ (p⇒ FALSUM⇒ FALSUM⇒
(q ⇒ FALSUM⇒ FALSUM)). The theorem is a consequence of (66), (21),
(26), (106), (80), (36), (65), (56), (55), (54), and (53).

(108) `IPC p ⇒ FALSUM ⇒ FALSUM ⇒ (q ⇒ FALSUM ⇒ FALSUM) ⇒
(p⇒ q ⇒ FALSUM⇒ FALSUM). The theorem is a consequence of (66),
(79), (80), (36), (65), (26), (96), (19), (20), (54), and (53).

(109) `IPC(p⇒ q ⇒ FALSUM⇒ FALSUM)⇔(p⇒ FALSUM⇒ FALSUM⇒
(q ⇒ FALSUM ⇒ FALSUM)). The theorem is a consequence of (107),
(108), and (83).

(110) `IPC p ∧ q ⇒ FALSUM ⇒ FALSUM ⇒ (p ⇒ FALSUM ⇒ FALSUM) ∧
(q ⇒ FALSUM⇒ FALSUM). The theorem is a consequence of (29), (30),
(80), (36), and (68).

(111) `IPC(p ⇒ FALSUM ⇒ FALSUM) ∧ (q ⇒ FALSUM ⇒ FALSUM) ⇒
(p ∧ q ⇒ FALSUM ⇒ FALSUM). The theorem is a consequence of (66),
(21), (26), (56), (19), (55), (20), (54), and (53).

(112) `IPC(p ∧ q ⇒ FALSUM⇒ FALSUM)⇔(p⇒ FALSUM⇒ FALSUM) ∧
(q ⇒ FALSUM ⇒ FALSUM). The theorem is a consequence of (110),
(111), and (83).

(113) `IPC p ⇒ q ⇒ FALSUM ⇒ FALSUM ⇒ (p ⇒ (q ⇒ FALSUM ⇒
FALSUM)). The theorem is a consequence of (66), (107), (65), (26), (71),
(54), and (53).

(114) If `IPC r and {r} `IPC(q), then `IPC q. The theorem is a consequence
of (53) and (36).

(115) If X `IPC(r) and X ∪ {r} `IPC(q), then X `IPC(q). The theorem is
a consequence of (52) and (26).

(116) If X `IPC(r) and Y ∪ {r} `IPC(q), then X ∪ Y `IPC(q). The theorem is
a consequence of (52), (65), and (26).
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(117) If `IPC p and {r} `IPC(q), then {p⇒ r} `IPC(q). The theorem is a con-
sequence of (65), (64), (26), and (115).

(118) If X `IPC(p) and X ∪ {r} `IPC(q), then X ∪ {p ⇒ r} `IPC(q). The
theorem is a consequence of (65), (66), (26), and (115).

(119) {q} `IPC(q ∨ r). The theorem is a consequence of (64), (22), and (26).

(120) {r} `IPC(q ∨ r). The theorem is a consequence of (64), (23), and (26).

(121) If {p} `IPC(r) and {q} `IPC(r), then {p ∨ q} `IPC(r). The theorem is
a consequence of (34), (53), (36), (65), (26), and (64).

(122) If X ∪ {p} `IPC(r) and X ∪ {q} `IPC(r), then X ∪ {p∨ q} `IPC(r). The
theorem is a consequence of (52), (24), (26), (64), and (65).

(123) If X ∪{p} `IPC(r) and Y ∪{q} `IPC(r), then (X ∪Y )∪{p∨ q} `IPC(r).
The theorem is a consequence of (52), (65), (24), (26), and (64).

(124) `IPC p ⇒ q ∨ (p ⇒ r) ⇒ (p ⇒ q ∨ r). The theorem is a consequence of
(120), (65), (64), (118), (119), (122), (52), and (53).

(125) `IPC p ⇒ (p ⇒ FALSUM ⇒ q). The theorem is a consequence of (66),
(26), (25), (54), and (53).

(126) `IPC p⇒ q ⇒ (q ∧ r ⇒ FALSUM⇒ (p∧ r ⇒ FALSUM)). The theorem
is a consequence of (66), (20), (26), (19), (21), (55), (54), and (53).

(127) `IPC p⇒ q ⇒ (q ∨ r ⇒ FALSUM⇒ (p∨ r ⇒ FALSUM)). The theorem
is a consequence of (66), (68), (65), (26), (55), (54), and (53).

Let p be an element of MC-w.f.f.. Note that the functor neg(p) yields an ele-
ment of MC-w.f.f. and is defined by the term

(Def. 10) p⇒ FALSUM.

The functor neg2(p) yielding an element of MC-w.f.f. is defined by the term

(Def. 11) p⇒ FALSUM⇒ FALSUM.

The functor neg3(p) yielding an element of MC-w.f.f. is defined by the term

(Def. 12) p⇒ FALSUM⇒ FALSUM⇒ FALSUM.

The functor neg4(p) yielding an element of MC-w.f.f. is defined by the term

(Def. 13) p⇒ FALSUM⇒ FALSUM⇒ FALSUM⇒ FALSUM.

The functor neg5(p) yielding an element of MC-w.f.f. is defined by the term

(Def. 14) p⇒ FALSUM⇒ FALSUM⇒ FALSUM⇒ FALSUM⇒ FALSUM.

Now we state the propositions:

(128) `IPC p⇒ neg(neg(p)).

(129) `IPC p⇒ neg2(p).

(130) `IPC(p⇒ q) ∧ (p⇒ neg(q))⇒ neg(p).

(131) `IPC neg(p)⇒ (p⇒ q).
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(132) `IPC p⇒ neg(neg(neg(neg(p)))).

(133) `IPC neg(p) ∨ q ⇒ (p⇒ q).

(134) `IPC p⇒ q ⇒ (neg(q)⇒ neg(p)).

(135) `IPC neg(p) ∨ neg(q)⇒ neg(p ∧ q).
(136) `IPC neg(p ∧ q)⇒ (p⇒ neg(q)).

(137) `IPC p⇒ neg(q)⇒ neg(p ∧ q).
(138) `IPC neg(p ∧ q)⇔(p⇒ neg(q)).

(139) `IPC neg(p ∧ q)⇒ (q ⇒ neg(p)).

(140) `IPC q ⇒ neg(p)⇒ neg(p ∧ q).
(141) `IPC(q ⇒ neg(p))⇔neg(p ∧ q).
(142) `IPC p⇒ (q ⇒ neg(neg(p ∧ q))).
(143) `IPC q ⇒ (p⇒ neg(neg(p ∧ q))).
(144) `IPC p⇒ (neg(p ∧ q)⇒ neg(q)).

(145) `IPC q ⇒ (neg(p ∧ q)⇒ neg(p)).

(146) `IPC neg(p ∨ q)⇒ neg(p) ∧ neg(q).

(147) `IPC neg(p) ∧ neg(q)⇒ neg(p ∨ q).
(148) `IPC neg(p ∨ q)⇔neg(p) ∧ neg(q).

(149) `IPC p ∧ neg(p)⇒ FALSUM.

(150) `IPC FALSUM⇔ p ∧ neg(p).

(151) `IPC neg(p)⇒ neg(neg(neg(p))).

(152) `IPC neg(neg(neg(p)))⇒ neg(p).

(153) `IPC neg(p)⇔neg(neg(neg(p))).

(154) `IPC neg(p)⇒ q ⇒ (neg(neg(neg(p)))⇒ q).

(155) `IPC p⇒ q ⇒ (neg(neg(p))⇒ neg(neg(q))).

(156) `IPC p ∧ neg(q)⇒ neg(p⇒ q).

(157) `IPC neg(neg(p⇒ q))⇒ (neg(neg(p))⇒ neg(neg(q))).

(158) `IPC neg(neg(p))⇒ neg(neg(q))⇒ neg(neg(p⇒ q)).

(159) `IPC neg(neg(p⇒ q))⇔(neg(neg(p))⇒ neg(neg(q))).

(160) `IPC neg(neg(p ∧ q))⇒ neg(neg(p)) ∧ neg(neg(q)).

(161) `IPC neg(neg(p)) ∧ neg(neg(q))⇒ neg(neg(p ∧ q)).
(162) `IPC neg(neg(p ∧ q))⇔ neg(neg(p)) ∧ neg(neg(q)).

(163) `IPC neg(neg(p⇒ q))⇒ (p⇒ neg(neg(q))).

(164) `IPC p⇒ (neg(p)⇒ q).

(165) `IPC p⇒ q ⇒ (neg(q ∧ r)⇒ neg(p ∧ r)).
(166) `IPC p⇒ q ⇒ (neg(q ∨ r)⇒ neg(p ∨ r)).
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Summary. In this article, Feed-forward Neural Network is formalized in
the Mizar system [1], [2]. First, the multilayer perceptron [6], [7], [8] is formalized
using functional sequences. Next, we show that a set of functions generated by
these neural networks satisfies equicontinuousness and equiboundedness property
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1. Preliminaries

From now on R1, R2 denote real linear spaces.
Now we state the propositions:

(1) Suppose the RLS structure of R1 = the RLS structure of R2. Then
the carrier of R1 = the carrier of R2.

(2) Suppose the RLS structure of R1 = the RLS structure ofR2. Then 0R1 =
0R2 .

(3) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider elements p, q of R1, and elements f , g of R2. If p = f and q = g,
then p+ q = f + g.
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(4) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a real number r, an element q of R1, and an element g of R2. If
q = g, then r · q = r · g.

(5) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider an element q of R1, and an element g of R2. If q = g, then
−q = −g.

(6) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider elements p, q of R1, and elements f , g of R2. If p = f and q = g,
then p− q = f − g.

(7) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a set X, and a natural number n. Then X is a linear combination
of R2 if and only if X is a linear combination of R1.

(8) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a linear combination L5 of R1, and a linear combination L3 of
R2. Suppose L3 = L5. Then the support of L3 = the support of L5.

Let us consider a set F . Now we state the propositions:

(9) Suppose the RLS structure of R1 = the RLS structure of R2. Then F is
a subset of R1 if and only if F is a subset of R2.

(10) Suppose the RLS structure of R1 = the RLS structure of R2. Then F is
a finite sequence of elements of R1 if and only if F is a finite sequence of
elements of R2.

(11) Suppose the RLS structure of R1 = the RLS structure of R2. Then F is
a function from R1 into R if and only if F is a function from R2 into R.

(12) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a finite sequence F1 of elements of R1, a function f1 from R1 into
R, a finite sequence F3 of elements of R2, and a function f2 from R2 into
R. If f1 = f2 and F1 = F3, then f1 · F1 = f2 · F3.

(13) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a finite sequence F2 of elements of R1, and a finite sequence F1
of elements of R2. If F2 = F1, then

∑
F2 =

∑
F1.

Proof: Set T = R1. Set V = R2. Consider f being a sequence of the car-
rier of T such that

∑
F = f(lenF ) and f(0) = 0T and for every natural

number j and for every element v of T such that j < lenF and v = F (j+1)
holds f(j+ 1) = f(j) +v. Consider f2 being a sequence of the carrier of V
such that

∑
F3 = f2(lenF3) and f2(0) = 0V and for every natural number

j and for every element v of V such that j < lenF3 and v = F3(j + 1)
holds f2(j+1) = f2(j)+v. Define S[natural number] ≡ if $1 ¬ lenF , then
f($1) = f2($1). For every natural number i such that S[i] holds S[i + 1].
For every natural number n, S[n]. �
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(14) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a linear combination L3 of R2, and a linear combination L4 of
R1. If L3 = L4, then

∑
L3 =

∑
L4. The theorem is a consequence of (12)

and (13).

(15) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a subset A1 of R2, and a subset A2 of R1. Suppose A1 = A2. Let
us consider an object X. Then X is a linear combination of A1 if and only
if X is a linear combination of A2. The theorem is a consequence of (7).

Let us consider a subset A1 of R2 and a subset A2 of R1. Now we state the
propositions:

(16) Suppose the RLS structure of R1 = the RLS structure of R2. Then if
A1 = A2, then ΩLin(A1) = ΩLin(A2). The theorem is a consequence of (7)
and (14).

(17) Suppose the RLS structure of R1 = the RLS structure of R2. Then if
A1 = A2, then A1 is linearly independent iff A2 is linearly independent.
The theorem is a consequence of (7) and (14).

(18) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider an object X. Then X is a subspace of R2 if and only if X is
a subspace of R1.

(19) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a linear combination L of R2, and a linear combination S of R1.
If L = S, then

∑
L =

∑
S. The theorem is a consequence of (12) and

(13).

(20) Suppose the RLS structure of R1 = the RLS structure of R2. Let us
consider a set X. Then X is a basis of R1 if and only if X is a basis of R2.
The theorem is a consequence of (17) and (16).

(21) Let us consider real linear spaces R1, R2. Suppose the RLS structure of
R1 = the RLS structure of R2 and R1 is finite dimensional. Then

(i) R2 is finite dimensional, and

(ii) dim(R2) = dim(R1).

The theorem is a consequence of (20).

Let us consider a real normed space R3. Now we state the propositions:

(22) The normed structure of R3 is a strict real normed space.

(23) There exists a normed linear topological space T such that the normed
structure of R3 = the normed structure of T .
Proof: Reconsider R3 = the normed structure of RNS0 as a strict re-
al normed space. Set L2 = LinearTopSpaceNormR3. Reconsider N =
the norm of R3 as a function from the carrier of L2 into R. Set W =
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〈〈the carrier of L2, the zero of L2, the addition of L2, the external multiplic-
ation of L2, the topology of L2, N〉〉. W is topological space-like, right com-
plementable, Abelian, add-associative, right zeroed, vector distributive,
scalar distributive, scalar associative, scalar unital, add-continuous, and
mult-continuous. �

(24) Suppose R3 is finite dimensional. Then there exists a normed linear
topological space T such that

(i) the normed structure of R3 = the normed structure of T , and

(ii) T is finite dimensional.

The theorem is a consequence of (23) and (21).

(25) Let us consider a normed linear topological space T , and a real normed
space R3. Suppose T is finite dimensional and R3 = the normed structure
of T . Then

(i) R3 is finite dimensional, and

(ii) dim(R3) = dim(T ).

The theorem is a consequence of (21).

2. The Ascoli-Arzela Theorem on Finite Dimensional Normed
Linear Spaces

Let us consider a non empty metric space M , a non empty, compact topolo-
gical space S, a normed linear topological space T , a subset G of (the carrier of
T )(the carrier of M), and a non empty subset H of MetricSpaceNorm(the R-norm
space of continuous functions of S and T ).

Now we state the propositions:

(26) Suppose S = Mtop and T is complete and finite dimensional and dim(T ) 6=
0. Then suppose G = H. Then MetricSpaceNorm(the R-norm space of
continuous functions of S and T )�H is totally bounded if and only if G is
equibounded and equicontinuous.
Proof: For every point x of S and for every non empty subset H1 of
MetricSpaceNormT such that H1 = {f(x), where f is a function from S

into T : f ∈ H} holds MetricSpaceNormT �H1 is compact by [9, (1)], (25).
�

(27) Suppose S = Mtop and T is complete and finite dimensional and dim(T ) 6=
0. Then if G = H, then H is sequentially compact iff G is equibounded
and equicontinuous. The theorem is a consequence of (26).
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(28) Let us consider a non empty metric space M , a non empty, compact
topological space S, and a normed linear topological space T . Suppose
S = Mtop and T is complete and finite dimensional and dim(T ) 6= 0. Let
us consider a subset G of (the carrier of T )α, and a non empty subset F
of the R-norm space of continuous functions of S and T . Suppose G = F .
Then F is compact if and only if G is equibounded and equicontinuous,
where α is the carrier of M . The theorem is a consequence of (27).

(29) Let us consider a non empty real normed space R3, a normed linear
topological space T , a non empty subset X of R3, a non empty, compact,
strict topological space S, and a non empty subset G of the R-norm space
of continuous functions of S and T .

Suppose S is a subspace of TopSpaceNormR3 and the carrier of S = X

and X is compact and T is complete and finite dimensional and dim(T ) 6=
0 and there exist real numbers K, D such that 0 < K and 0 < D and for
every function F from X into T such that F ∈ G holds for every points x,
y of R3 such that x, y ∈ X holds ‖F/x − F/y‖ ¬ D · ‖x− y‖ and for every
point x of R3 such that x ∈ X holds ‖F/x‖ ¬ K. Then G is compact.
Proof: Reconsider Y = X as a non empty subset of MetricSpaceNormR3.
Reconsider M = MetricSpaceNormR3�Y as a non empty metric space.
For every object z, z ∈ the topology of S iff z ∈ the open set family of
M . For every object z such that z ∈ the continuous functions of S and
T holds z ∈ (the carrier of T )α, where α is the carrier of M . Reconsider
H = G as a subset of (the carrier of T )(the carrier of M). G is compact iff H

is equibounded and equicontinuous.
Consider K, D being real numbers such that 0 < K and 0 < D and for

every function F from X into T such that F ∈ G holds for every points
x, y of R3 such that x, y ∈ X holds ‖F/x − F/y‖ ¬ D · ‖x − y‖ and for
every point x of R3 such that x ∈ X holds ‖F/x‖ ¬ K. For every function
f from the carrier of M into the carrier of T such that f ∈ H for every
element x of M , ‖f(x)‖ ¬ K. For every real number e such that 0 < e

there exists a real number d such that 0 < d and for every function f from
the carrier of M into the carrier of T such that f ∈ H for every points x1,
x2 of M such that ρ(x1, x2) < d holds ‖f(x1)− f(x2)‖ < e. �
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3. High-Order and Multilayer Perceptron

Let n be a natural number, k be a finite sequence of elements of N, and N

be a finite sequence. We say that N is a multilayer perceptron with k and n if
and only if

(Def. 1) lenN = n and lenN+1 = len k and for every natural number i such that
1 ¬ i < len k holds N(i) is a function from 〈Ek(i), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉.

We say that N is a multilayer perceptron-like if and only if

(Def. 2) there exists a finite sequence k of elements of N such that lenN+1 = len k
and for every natural number i such that 1 ¬ i < len k holds N(i) is
a function from 〈Ek(i), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉.

Observe that there exists a finite sequence which is a multilayer perceptron-
like. A multilayer perceptron is multilayer perceptron-like finite sequence. Now
we state the proposition:

(30) Let us consider a multilayer perceptron N . Then there exists a finite
sequence k of elements of N such that

(i) lenN + 1 = len k, and

(ii) for every natural number i such that 1 ¬ i < len k holds N(i) is
a function from 〈Ek(i), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉.

Let n be a natural number, k be a finite sequence of elements of N, and
N be a finite sequence. Assume N is a multilayer perceptron with k and n.
Assume lenN 6= 0. The functor OutputFunc(N, k, n) yielding a function from
〈Ek(1), ‖ · ‖〉 into 〈Ek(n+1), ‖ · ‖〉 is defined by

(Def. 3) there exists a finite sequence p such that len p = lenN and p(1) = N(1)
and for every natural number i such that 1 ¬ i < lenN there exists
a function N2 from 〈Ek(i+1), ‖ · ‖〉 into 〈Ek(i+2), ‖ · ‖〉 and there exists
a function p2 from 〈Ek(1), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉 such that N2 = N(i+ 1)
and p2 = p(i) and p(i+ 1) = N2 · p2 and it = p(lenN).

Now we state the proposition:

(31) Let us consider a natural number n, a finite sequence k of elements
of N, and a non empty finite sequence N . Suppose n 6= 0 and N is a
multilayer perceptron with k and n+1. Then there exists a finite sequence
k1 of elements of N and there exists a non empty finite sequence N1 and
there exists a function N2 from 〈Ek(n+1), ‖ · ‖〉 into 〈Ek(n+2), ‖ · ‖〉 such
that N1 = N�n and k1 = k�(n + 1) and N2 = N(n + 1) and N1 is
a multilayer perceptron with k1 and n and OutputFunc(N, k, n + 1) =
N2 · (OutputFunc(N1, k1, n)).
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Proof: Reconsider N1 = N�n as a non empty finite sequence. Reconsider
k1 = k�(n + 1) as a finite sequence of elements of N. For every natural
number i such that 1 ¬ i < len k1 holdsN1(i) is a function from 〈Ek1(i), ‖·‖〉
into 〈Ek1(i+1), ‖ · ‖〉. Consider p being a finite sequence such that len p =
lenN and p(1) = N(1) and for every natural number i such that 1 ¬
i < lenN there exists a function N2 from 〈Ek(i+1), ‖ · ‖〉 into 〈Ek(i+2), ‖ ·
‖〉 and there exists a function p2 from 〈Ek(1), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉
such that N2 = N(i + 1) and p2 = p(i) and p(i + 1) = N2 · p2 and
OutputFunc(N, k, n + 1) = p(lenN). Consider N2 being a function from
〈Ek(n+1), ‖·‖〉 into 〈Ek(n+2), ‖·‖〉, p2 being a function from 〈Ek(1), ‖·‖〉 into
〈Ek(n+1), ‖·‖〉 such that N2 = N(n+1) and p2 = p(n) and p(n+1) = N2·p2.
�

Let n be a natural number and k be a finite sequence of elements of N. The
functor Neurons(n, k) yielding a subset of

(the carrier of 〈Ek(n+1), ‖ · ‖〉)(the carrier of 〈Ek(1),‖·‖〉) is defined by the term

(Def. 4) {F , where F is a function from 〈Ek(1), ‖ · ‖〉 into 〈Ek(n+1), ‖ · ‖〉 : there
exists a finite sequence N such that N is a multilayer perceptron with k

and n and F = OutputFunc(N, k, n)}.

Now we state the propositions:

(32) Let us consider a natural number n, a finite sequence k of elements of N,
a non empty, compact, strict topological space S, a non empty subspaceM
of MetricSpaceNorm〈Ek(1), ‖·‖〉, a non empty subset X of 〈Ek(1), ‖·‖〉, and
a normed linear topological space T . Suppose S = Mtop and the carrier
of M = X and X is compact and T is complete and finite dimensional
and dim(T ) 6= 0 and 〈Ek(n+1), ‖ · ‖〉 = the normed structure of T .

Let us consider a subset G of (the carrier of T )α, and a non empty
subset F of the R-norm space of continuous functions of S and T . Sup-
pose G = F and G ⊆ {f�X, where f is a function from 〈Ek(1), ‖ · ‖〉 into
〈Ek(n+1), ‖ · ‖〉 : f ∈ Neurons(n, k)}. Then F is compact if and only if G is
equibounded and equicontinuous, where α is the carrier of M .

(33) Let us consider a natural number n, a finite sequence k of elements of
N, a non empty, compact, strict topological space S, a non empty subset
X of 〈Ek(1), ‖ · ‖〉, and a normed linear topological space T . Suppose S is
a subspace of TopSpaceNorm〈Ek(1), ‖ · ‖〉 and the carrier of S = X and X
is compact and T is complete and finite dimensional and dim(T ) 6= 0 and
〈Ek(n+1), ‖ · ‖〉 = the normed structure of T . Let us consider a non empty
subset G of the R-norm space of continuous functions of S and T .

Suppose G ⊆ {f�X, where f is a function from 〈Ek(1), ‖ · ‖〉 into
〈Ek(n+1), ‖ · ‖〉 : f ∈ Neurons(n, k)} and there exist real numbers K, D



20 keiichi miyajima and hiroshi yamazaki

such that 0 < K and 0 < D and for every function F from X into T such
that F ∈ G holds for every points x, y of 〈Ek(1), ‖ · ‖〉 such that x, y ∈ X
holds ‖F/x−F/y‖ ¬ D · ‖x− y‖ and for every point x of 〈Ek(1), ‖ · ‖〉 such
that x ∈ X holds ‖F/x‖ ¬ K. Then G is compact.

Let X, Y be real normed spaces, F be a function from X into Y, and D, K
be real numbers. We say that F is a layer function of D and K if and only if

(Def. 5) for every points x, y of X, ‖F (x) − F (y)‖ ¬ D · ‖x − y‖ and for every
point x of X, ‖F (x)‖ ¬ K.

Let n be a natural number, k be a finite sequence of elements of N, and N

be a finite sequence. We say that N is a layer sequence of D, K, k and n if and
only if

(Def. 6) lenN = n and N is a multilayer perceptron with k and n and for every
natural number i such that 1 ¬ i < len k there exists a function N3 from
〈Ek(i), ‖ · ‖〉 into 〈Ek(i+1), ‖ · ‖〉 such that N(i) = N3 and N3 is a layer
function of D and K.

Now we state the propositions:

(34) Let us consider real numbers D, K. Suppose 0 ¬ D and 0 ¬ K. Let
us consider a natural number n, a finite sequence k of elements of N, and
a non empty finite sequence N . Suppose N is a layer sequence of D, K, k
and n. Then OutputFunc(N, k, n) is a layer function of Dn and K.
Proof: Define P[natural number] ≡ for every finite sequence k of elements
of N for every non empty finite sequence N such that lenN = $1 and N is
a layer sequence of D, K, k and $1 holds OutputFunc(N, k, $1) is a layer
function of D$1 and K. For every natural number n such that P[n] holds
P[n+ 1]. For every natural number n, P[n]. �

(35) Let us consider a natural number n, a finite sequence k of elements of
N, a non empty, compact, strict topological space S, a non empty subset
X of 〈Ek(1), ‖ · ‖〉, and a normed linear topological space T . Suppose S is
a subspace of TopSpaceNorm〈Ek(1), ‖ · ‖〉 and the carrier of S = X and X
is compact and T is complete and finite dimensional and dim(T ) 6= 0 and
〈Ek(n+1), ‖ · ‖〉 = the normed structure of T .

Let us consider a non empty subset G of the R-norm space of con-
tinuous functions of S and T , and real numbers D, K. Suppose 0 < D

and 0 < K and G ⊆ {F �X, where F is a function from 〈Ek(1), ‖ · ‖〉 into
〈Ek(n+1), ‖ · ‖〉 : there exists a non empty finite sequence N such that
N is a layer sequence of D, K, k and n and F = OutputFunc(N, k, n)}.
Then G is compact.
Proof: Set K1 = K + 1. Set D1 = Dn + 1. For every function F from X

into T such that F ∈ G holds for every points x, y of 〈Ek(1), ‖ · ‖〉 such
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that x, y ∈ X holds ‖F/x − F/y‖ ¬ D1 · ‖x − y‖ and for every point x of
〈Ek(1), ‖ · ‖〉 such that x ∈ X holds ‖F/x‖ ¬ K1. �
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1. Preliminaries

Let L be a non empty double loop structure and a, b, c be elements of L.
Note that the functor {a, b, c} yields a subset of L. Let i be an integer. Let us
observe that i3 is integer.

Let i be an even integer. Let us observe that i3 is even.
Let i be an odd integer. Let us observe that i3 is odd.
Now we state the propositions:

(1) Let us consider complex numbers r, s. Then (r · s)3 = r3 · s3.
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(2) Let us consider a rational number r. Then r3 ­ 0 if and only if r ­ 0.

(3) There exists no rational number r such that r3 = 2. The theorem is
a consequence of (2) and (1).

Note that root3(2) is non rational. Now we state the proposition:

(4) Let us consider finite sets X1, X2. Suppose X1 ⊆ X2 and X1 = X2 .
Then X1 = X2.

Let F be a field. Observe that there exists an element of the carrier of
PolyRing(F ) which is linear and there exists an element of the carrier of PolyRing
(F ) which is non linear and non constant.

Let us consider a field F and an element p of the carrier of PolyRing(F ).
Now we state the propositions:

(5) If deg(p) = 2, then p is reducible iff p has roots.

(6) If deg(p) = 3, then p is reducible iff p has roots.

2. More on Field Extensions

One can check that CF is (FQ)-extending and there exists an element of
RF which is (FQ)-membered and there exists an element of RF which is non
(FQ)-membered and there exists an element of CF which is (RF)-membered and
there exists an element of CF which is non (RF)-membered and there exists
an element of CF which is (FQ)-membered and there exists an element of CF
which is non (FQ)-membered.

Now we state the propositions:

(7) Let us consider a field F , an extension E of F , an E-extending extension
K of F , an element p of the carrier of PolyRing(F ), and an element q of
the carrier of PolyRing(E). If p = q, then Roots(K, p) = Roots(K, q).

(8) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an element a of E, and an element b of K. Suppose b = a. Then
RAdj(F, {a}) = RAdj(F, {b}).

(9) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F-algebraic element a of E, and an F-algebraic element b of
K. Suppose b = a. Then FAdj(F, {a}) = FAdj(F, {b}).

(10) Let us consider a field F , an extension E of F , an E-extending extension
K of F , an F-algebraic element a of E, and an F-algebraic element b of
K. If a = b, then MinPoly(a, F ) = MinPoly(b, F ).

(11) Let us consider a field F , an F -finite extension E of F , and an element
a of E. Then deg(MinPoly(a, F )) | deg(E,F ).
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Let F be a field, E be an extension of F , and T1, T2 be subsets of E. One
can check that FAdj(F, T1 ∪ T2) is (FAdj(F, T1))-extending and (FAdj(F, T2))-
extending.

Let a, b be elements of E. Observe that FAdj(F, {a, b}) is (FAdj(F, {a}))-
extending and (FAdj(F, {b}))-extending. Let a, b, c be elements of E. Let us
observe that FAdj(F, {a, b, c}) is (FAdj(F, {a, b}))-extending, (FAdj(F, {a, c}))-
extending, and (FAdj(F, {b, c}))-extending.

3. The Rational Polynomials X2 − 2, X3 − 1, X2 +X + 1 and X3 − 2

The functors: X2−2, X3−1, X3−2, and X2 + X + 1 yielding elements of
the carrier of PolyRing(FQ) are defined by terms

(Def. 1) 〈−(1FQ + 1FQ), 0FQ , 1FQ〉,
(Def. 2) (0.FQ +· (0,−1)) +· (3, 1),

(Def. 3) (0.FQ +· (0,−2)) +· (3, 1),

(Def. 4) 〈1FQ , 1FQ , 1FQ〉,
respectively. The functors:

√
2 and 3

√
2 yielding non zero elements of RF are

defined by terms

(Def. 5)
√

2,

(Def. 6) root3(2),

respectively. The functors:
√

2, 3
√

2, and
√
−3 yielding non zero elements of CF

are defined by terms

(Def. 7)
√

2,

(Def. 8) root3(2),

(Def. 9) (i) ·
√

3,

respectively. The functor ζ yielding a non zero element of CF is defined by the
term

(Def. 10) −1+(i)·
√
3

2 .

Observe that X2−2 is monic, purely quadratic, and irreducible and X3−2
is monic, non constant, and irreducible and X3−1 is monic, non constant, and
reducible and X2 + X + 1 is monic, quadratic, and irreducible and

√
2 is non

(FQ)-membered and (FQ)-algebraic and
√

2 is non (FQ)-membered and (FQ)-
algebraic and 3

√
2 is non (FQ)-membered and (FQ)-algebraic and 3

√
2 is non (FQ)-

membered and (FQ)-algebraic and ζ is non (RF)-membered and (FQ)-algebraic.
(ζ)2 is non (RF)-membered and (FQ)-algebraic and FAdj(FQ, { 3

√
2}) is (FQ)-

finite and FAdj(FQ, { 3
√

2, ζ}) is (FQ)-finite and RF is (FAdj(FQ, {
√

2}))-extending
and RF is (FAdj(FQ, { 3

√
2}))-extending and CF is (FAdj(FQ, {

√
2}))-extending

and CF is (FAdj(FQ, { 3
√

2}))-extending and CF is (FAdj(FQ, { 3
√

2, ζ}))-extending.
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Now we state the propositions:

(12) ζ = −12 + (i) ·
√
3
2 .

(13) (ζ)2 = −12 −
(i)·
√
3

2 .

(14) (i) ζ2 6= 1, and

(ii) ζ3 = 1, and

(iii) ζ2 = −ζ − 1.

(15) (i) ζ is a complex root of 3, 1, and

(ii) (ζ)2 is a complex root of 3, 1.

(16) 3
√

2
3

= 2.

(17) X3−1 = (X− 1FQ) · (X2 + X + 1).

(18) (i) deg(X2−2) = 2, and

(ii) deg(X3−2) = 3, and

(iii) deg(X3−1) = 3, and

(iv) deg(X2 + X + 1) = 2.

Let us consider an element x of FQ. Now we state the propositions:

(19) eval(X2−2, x) = x2 − 2.

(20) eval(X3−1, x) = x3 − 1.

(21) eval(X2 + X + 1, x) = x2 + x+ 1.

(22) eval(X3−2, x) = x3 − 2.

(23) Let us consider an element r of RF. Then ExtEval(X2−2, r) = r2 − 2.

Let us consider an element z of CF. Now we state the propositions:

(24) ExtEval(X3−1, z) = z3 − 1.

(25) ExtEval(X2 + X + 1, z) = z2 + z + 1.

(26) ExtEval(X3−2, z) = z3 − 2.

(27) Let us consider an element z of the carrier of CF.
Then ExtEval(X3−1, z) = 0CF if and only if z is a complex root of 3, 1.

(28) Discriminant(X2 + X + 1) = −3.

(29) FAdj(FQ, {ζ}) = FAdj(FQ, {
√
−3}).

Proof: {ζ} is a subset of FAdj(FQ, {
√
−3}) by [10, (35)], [9, (12)], [6, (2)].

{
√
−3} is a subset of FAdj(FQ, {ζ}). �
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4. A Splitting Field of X2 − 2

Now we state the propositions:

(30) MinPoly(
√

2,FQ) = X2−2.

(31) deg(FAdj(FQ, {
√

2}),FQ) = 2.

(32) {1,
√

2} is a basis of VecSp(FAdj(FQ, {
√

2}),FQ). The theorem is a con-
sequence of (30).

(33) Roots(X2−2) = ∅.
(34) X2−2 does not split in FQ.

(35) Roots(RF,X2−2) = {
√

2,−
√

2}.
Proof: Roots(RF,X2−2) = 2 by [12, (22)], [13, (13)]. �

(36) X2−2 = (X−
√

2) · (X+
√

2).

(37) FAdj(FQ, {
√

2}) is a splitting field of X2−2.
Proof: Set F = FAdj(FQ, {

√
2}). X2−2 = 1RF · (rpoly(1,

√
2) ∗ rpoly(1,

−
√

2)). {
√

2,−
√

2} ⊆ the carrier of F . X2−2 splits in F . �

(38) 3
√

2 is not an element of FAdj(FQ, {
√

2}). The theorem is a consequence
of (10), (30), and (11).

(39) RF is not a splitting field of X2−2. The theorem is a consequence of (37)
and (38).

(40) CF is not a splitting field of X2−2. The theorem is a consequence of (37)
and (38).

5. A Splitting Field of X3 − 1 and X2 +X + 1

Now we state the propositions:

(41) Roots(X3−1) = {1}.
(42) Roots(X2 + X + 1) = ∅.
(43) MinPoly(ζ,FQ) = X2 + X + 1.

(44) Roots(CF,X3−1) = {1, ζ, (ζ)2}.
(45) Roots(CF,X2 + X + 1) = {ζ, (ζ)2}.
(46) X3−1 does not split in FQ.

(47) X3−1 does not split in RF.
(48) X2 + X + 1 does not split in FQ.

(49) X2 + X + 1 does not split in RF.
(50) X2 + X + 1 = (X− ζ) · (X−(ζ)2).
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(51) X3−1 = (X− 1CF) · (X− ζ) · (X−(ζ)2). The theorem is a consequence of
(50).

(52) FAdj(FQ, {ζ}) is a splitting field of X2 + X + 1.
Proof: Set F = FAdj(FQ, {ζ}). Roots(CF,X2 + X + 1) ⊆ the carrier of
F . �

(53) FAdj(FQ, {ζ}) is a splitting field of X3−1.
Proof: Set F = FAdj(FQ, {ζ}). Roots(CF,X3−1) ⊆ the carrier of F . �

(54) deg(FAdj(FQ, {ζ}),FQ) = 2.

(55) {1, ζ} is a basis of VecSp(FAdj(FQ, {ζ}),FQ). The theorem is a consequ-
ence of (43).

(56)
√

2 is not an element of FAdj(FQ, {ζ}). The theorem is a consequence of
(55).

(57) CF is not a splitting field of X2 + X + 1. The theorem is a consequence
of (52) and (56).

(58) CF is not a splitting field of X3−1. The theorem is a consequence of (53)
and (56).

6. A Splitting Field of X3 − 2

Now we state the propositions:

(59) MinPoly( 3
√

2,FQ) = X3−2.

(60) deg(FAdj(FQ, { 3
√

2}),FQ) = 3.

(61) {1, 3
√

2, 3
√

2
2} is a basis of VecSp(FAdj(FQ, { 3

√
2}),FQ). The theorem is

a consequence of (59).

(62) Roots(X3−2) = ∅. The theorem is a consequence of (6).

(63) X3−2 does not split in FQ. The theorem is a consequence of (6).

(64) Roots(FAdj(FQ, { 3
√

2}),X3−2) = { 3
√

2}.
(65) X3−2 does not split in FAdj(FQ, { 3

√
2}).

(66) Roots(RF,X3−2) = { 3
√

2}.
(67) X3−2 does not split in RF.
(68) Roots(CF,X3−2) = { 3

√
2, 3
√

2 · ζ, 3
√

2 · (ζ)2}.
(69) X3−2 = (X− 3

√
2) · (X− 3

√
2 · ζ) · (X− 3

√
2 · (ζ)2).

Proof: Set F = CF. Set a = 3
√

2 · ζ. Set b = 3
√

2 · (ζ)2. Set c = 3
√

2.
Reconsider p1 = X− c as a polynomial over F . p1 ∗ 〈a · b,−b + −a, 1F 〉 =
X3−2 by [8, (10)]. �

(70) FAdj(FQ, { 3
√

2, ζ}) is a splitting field of X3−2.
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Proof: Set F = FAdj(FQ, { 3
√

2, ζ}). Roots(CF,X3−2) ⊆ the carrier of F .
�

Let us observe that CF is (FAdj(FQ, { 3
√

2}))-extending and FAdj(FQ, { 3
√

2, ζ})
is (FAdj(FQ, { 3

√
2}))-extending and ζ is (FAdj(FQ, { 3

√
2}))-algebraic.

Now we state the propositions:

(71) MinPoly(ζ,FAdj(FQ, { 3
√

2})) = X2 + X + 1. The theorem is a consequ-
ence of (9), (5), and (7).

(72) deg(FAdj(FQ, { 3
√

2, ζ}),FAdj(FQ, { 3
√

2})) = 2. The theorem is a conse-
quence of (71).

(73) {1, ζ} is a basis of VecSp(FAdj(FQ, { 3
√

2, ζ}),FAdj(FQ, { 3
√

2})). The the-
orem is a consequence of (71).

(74) deg(FAdj(FQ, { 3
√

2, ζ}),FQ) = 6. The theorem is a consequence of (59),
(9), and (72).

(75) {1, 3
√

2, 3
√

2
2
, ζ, 3
√

2·ζ, 3
√

2
2 ·ζ} is a basis of VecSp(FAdj(FQ, { 3

√
2, ζ}),FQ).

Proof: Set F = FAdj(FQ, { 3
√

2, ζ}). Set K = FAdj(FQ, { 3
√

2}). K =

FAdj(FQ, { 3
√

2}). Set M = {1, 3
√

2, 3
√

2
2
, ζ, 3
√

2 · ζ, 3
√

2
2 · ζ}. Reconsider

B1 = {1, 3
√

2, 3
√

2
2} as a basis of VecSp(K,FQ). Reconsider B2 = {1, ζ}

as a basis of VecSp(F,K). Base(B1, B2) = M . �

One can verify that CF is (FAdj(FQ, {
√

2}))-extending and CF is (FAdj(FQ,

{
√

2, ζ}))-extending and FAdj(FQ, {
√

2, ζ}) is (FAdj(FQ, {
√

2}))-extending and
FAdj(FQ, { 3

√
2, ζ,
√

2}) is (FAdj(FQ, {
√

2, ζ}))-extending and ζ is (FAdj(FQ,

{
√

2}))-algebraic and 3
√

2 is (FAdj(FQ, {
√

2, ζ}))-algebraic and FAdj(FQ, { 3
√

2,
ζ,
√

2}) is (FAdj(FQ, {
√

2, ζ}))-finite.
Now we state the propositions:

(76) MinPoly(ζ,FAdj(FQ, {
√

2})) = X2 + X + 1. The theorem is a consequ-
ence of (9), (5), and (7).

(77) deg(FAdj(FQ, {
√

2, ζ}),FAdj(FQ, {
√

2})) = 2. The theorem is a consequ-
ence of (76).

(78) deg(FAdj(FQ, {
√

2, ζ}),FQ) = 4. The theorem is a consequence of (30),
(10), and (77).

(79)
√

2 is not an element of FAdj(FQ, { 3
√

2, ζ}). The theorem is a consequence
of (78) and (74).

(80) CF is not a splitting field of X3−2. The theorem is a consequence of (70)
and (79).
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Summary. The goal of this article is to clarify the relationship between
Riemann’s improper integrals and Lebesgue integrals. In previous articles [6], [7],
we treated Riemann’s improper integrals [1], [11] and [4] on arbitrary intervals.
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1. Preliminaries

Let s be a without −∞ sequence of extended reals. One can check that
(
∑κ
α=0 s(α))κ∈N is without −∞.
Let s be a without +∞ sequence of extended reals. One can verify that

(
∑κ
α=0 s(α))κ∈N is without +∞.
Now we state the propositions:

(1) Let us consider a without −∞ sequence f1 of extended reals, and a wi-
thout +∞ sequence f2 of extended reals. Then

(i) (
∑κ
α=0(f1 − f2)(α))κ∈N = (

∑κ
α=0 f1(α))κ∈N − (

∑κ
α=0 f2(α))κ∈N, and

(ii) (
∑κ
α=0(f2 − f1)(α))κ∈N = (

∑κ
α=0 f2(α))κ∈N − (

∑κ
α=0 f1(α))κ∈N.

Proof: Set P1 = (
∑κ
α=0 f1(α))κ∈N. Set P2 = (

∑κ
α=0 f2(α))κ∈N. Set P12 =

(
∑κ
α=0(f1−f2)(α))κ∈N. Set P21 = (

∑κ
α=0(f2−f1)(α))κ∈N. Define C[natural

number] ≡ P12($1) = P1($1) − P2($1). For every natural number k such
that C[k] holds C[k+1]. For every natural number k, C[k]. For every element
k of N, P12(k) = (P1 − P2)(k). Define C[natural number] ≡ P21($1) =
P2($1)−P1($1). For every natural number k such that C[k] holds C[k+ 1].
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For every natural number k, C[k]. For every element k of N, P21(k) =
(P2 − P1)(k) by [5, (7)]. �

(2) Let us consider sets X, A, and a partial function f from X to R. If f is
non-positive, then f�A is non-positive.

(3) Let us consider a set X, and a partial function f from X to R. If f is
non-positive, then −f is non-negative.

Let us consider a partial function f from R to R, a real number a, and a real
number x. Now we state the propositions:

(4) If f is left convergent in a and non-decreasing, then if x ∈ dom f and
x < a, then f(x) ¬ lima− f .

(5) If f is left convergent in a and non-increasing, then if x ∈ dom f and
x < a, then f(x) ­ lima− f .

(6) If f is right convergent in a and non-decreasing, then if x ∈ dom f and
a < x, then f(x) ­ lima+ f .

(7) If f is right convergent in a and non-increasing, then if x ∈ dom f and
a < x, then f(x) ¬ lima+ f .

(8) If f is convergent in −∞ and non-increasing, then if x ∈ dom f , then
f(x) ¬ lim−∞ f .

(9) If f is convergent in +∞ and non-decreasing, then if x ∈ dom f , then
f(x) ¬ lim+∞ f .

Let us consider real numbers a, b and a partial function f from R to R. Now
we state the propositions:

(10) Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is bounded and non-

negative. Then
b∫
a

f(x)dx ­ 0.

(11) Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is bounded and f is

integrable on [a, b] and f�[a, b] is non-positive. Then
b∫
a

f(x)dx ¬ 0. The

theorem is a consequence of (3) and (10).

Let us consider real numbers a, b, c, d and a partial function f from R to
R. Now we state the propositions:

(12) Suppose c ¬ d and [c, d] ⊆ [a, b] ⊆ dom f and f�[a, b] is bounded and

f is integrable on [a, b] and f�[a, b] is non-negative. Then
d∫
c

f(x)dx ¬
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b∫
a

f(x)dx. The theorem is a consequence of (10).

(13) Suppose c ¬ d and [c, d] ⊆ [a, b] ⊆ dom f and f�[a, b] is bounded and

f is integrable on [a, b] and f�[a, b] is non-positive. Then
d∫
c

f(x)dx ­

b∫
a

f(x)dx. The theorem is a consequence of (2) and (11).

2. Fundamental Properties of Measure and Integral

Now we state the propositions:

(14) Let us consider a non empty set X, a partial function f from X to R,
and a set E. Then R(f)�E = R(f�E).

(15) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, an element A of S, and
a sequence E of subsets of S. Suppose f is A-measurable and A = dom f

and E is disjoint valued and A =
⋃
E and (

∫+max+(f) dM < +∞ or∫+max−(f) dM < +∞). Then there exists a sequence I of extended reals
such that

(i) for every natural number n, I(n) =
∫
f�E(n) dM , and

(ii) I is summable, and

(iii)
∫
f dM =

∑
I.

Proof: Consider I1 being a non-negative sequence of extended reals such
that for every natural number n, I1(n) =

∫
max+(f)�E(n) dM and I1 is

summable and
∫

max+(f) dM =
∑
I1. Consider I2 being a non-negative

sequence of extended reals such that for every natural number n, I2(n) =∫
max−(f)�E(n) dM and I2 is summable and

∫
max−(f) dM =

∑
I2. For

every natural number n, E(n) is an element of S and E(n) ⊆ dom f . For
every natural number n, I1(n) =

∫+max+(f)�E(n) dM . For every natural
number n, I2(n) =

∫+max−(f)�E(n) dM . �

(16) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, B of
S. Suppose A ∪B ⊆ dom f and f is (A ∪B)-measurable and A misses B
and (

∫+max+(f�(A∪B)) dM < +∞ or
∫+max−(f�(A∪B)) dM < +∞).

Then
∫
f�(A ∪B) dM =

∫
f�AdM +

∫
f�B dM .

(17) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, an element A of S, and
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a sequence E of subsets of S. Suppose f is A-measurable and A = dom f

and E is non descending and limE ⊆ A and M(A \ (limE)) = 0 and
(
∫+max+(f) dM < +∞ or

∫+max−(f) dM < +∞). Then there exists
a sequence I of extended reals such that

(i) for every natural number n, I(n) =∫
f�(the partial unions of E)(n) dM , and

(ii) I is convergent, and

(iii)
∫
f dM = lim I.

Proof: Reconsider L2 = limE as an element of S. Reconsider F =
the partial diff-unions of E as a sequence of subsets of S. Set g = f�L2.
Consider J being a sequence of extended reals such that for every natural
number n, J(n) =

∫
g�F (n) dM and J is summable and

∫
g dM =

∑
J .

Reconsider I = (
∑κ
α=0 J(α))κ∈N as a sequence of extended reals.

For every natural number n, g�(the partial unions of F )(n) =
f�(the partial unions of E)(n). For every natural number n, (the partial
unions of E)(n) ⊆

⋃
E. Define P[natural number] ≡ I($1) =

∫
g�(the part-

ial unions of F )($1) dM . For every natural number n such that P[n] holds
P[n+ 1]. For every natural number n, P[n]. For every natural number n,
I(n) =

∫
f�(the partial unions of E)(n) dM . �

(18) Let us consider non empty sets X, Y, a set A, a sequence F of X, and
a sequence G of Y. Suppose for every element n of N, G(n) = A ∩ F (n).
Then

⋃
rngG = A ∩

⋃
rngF .

(19) Let us consider a non empty set X, a σ-field S of subsets of X, a sequence
E of S, and a partial function f from X to R. Suppose for every natural
number n, f is (E(n))-measurable. Then f is (

⋃
E)-measurable.

Proof: For every real number r,
⋃
E ∩ LE-dom(f, r) ∈ S. �

(20) Let us consider real numbers a, b, and a natural number n. If a < b, then
a ¬ b− b−a

n+1 < b and a < a+ b−a
n+1 ¬ b.

Let us consider real numbers a, b. Now we state the propositions:

(21) Suppose a < b. Then there exists a sequence E of subsets of L-Field such
that

(i) for every natural number n, E(n) = [a, b − b−a
n+1 ] and E(n) ⊆ [a, b[

and E(n) is a non empty, closed interval subset of R, and

(ii) E is non descending and convergent, and

(iii)
⋃
E = [a, b[.

Proof: Define F(element of N) = [a, b− b−a
$1+1

]. Consider E being a function
from N into 2R such that for every element n of N, E(n) = F(n). For
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every natural number n, E(n) = [a, b − b−a
n+1 ]. For every natural number

n, E(n) = [a, b− b−a
n+1 ] and E(n) ⊆ [a, b[ and E(n) is a non empty, closed

interval subset of R. �

(22) Suppose a < b. Then there exists a sequence E of subsets of L-Field such
that

(i) for every natural number n, E(n) = [a + b−a
n+1 , b] and E(n) ⊆ ]a, b]

and E(n) is a non empty, closed interval subset of R, and

(ii) E is non descending and convergent, and

(iii)
⋃
E = ]a, b].

Proof: Define F(element of N) = [a+ b−a
$1+1

, b]. Consider E being a function
from N into 2R such that for every element n of N, E(n) = F(n). For every
natural number n, E(n) = [a+ b−a

n+1 , b] and E(n) ⊆ ]a, b] and E(n) is a non
empty, closed interval subset of R. �

Let us consider a real number a. Now we state the propositions:

(23) There exists a sequence E of subsets of L-Field such that

(i) for every natural number n, E(n) = [a, a+ n], and

(ii) E is non descending and convergent, and

(iii)
⋃
E = [a,+∞[.

Proof: Define F(element of N) = [a, a+$1]. Consider E being a function
from N into 2R such that for every element n of N, E(n) = F(n). For every
natural number n, E(n) = [a, a+ n]. �

(24) There exists a sequence E of subsets of L-Field such that

(i) for every natural number n, E(n) = [a− n, a], and

(ii) E is non descending and convergent, and

(iii)
⋃
E = ]−∞, a].

Proof: Define F(element of N) = [a−$1, a]. Consider E being a function
from N into 2R such that for every element n of N, E(n) = F(n). For every
natural number n, E(n) = [a− n, a]. �

(25) Let us consider a set X, a σ-field S of subsets of X, a σ-measure M on
S, and a set A with measure zero w.r.t. M . Then A ∈ COM(S,M).

(26) Let us consider a real number r. Then {r} ∈ L-Field. The theorem is
a consequence of (25).

(27) Let us consider a non empty set X, a σ-field S of subsets of X, an element
E of S, and a partial function f from X to R. If E = ∅, then f is E-
measurable.
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(28) Let us consider a non empty set X, a σ-field S of subsets of X, an element
E of S, and a partial function f from X to R. If E = ∅, then f is E-
measurable. The theorem is a consequence of (27).

(29) Let us consider a real number r, an element E of L-Field, and a partial
function f from R to R. If E = {r}, then f is E-measurable.
Proof: For every real number a, E ∩ LE-dom(f, a) ∈ L-Field. �

(30) Let us consider a real number r, an element E of L-Field, and a partial
function f from R to R. If E = {r}, then f is E-measurable. The theorem
is a consequence of (29).

Let us consider real numbers a, b, a partial function f from R to R, and
an element E of L-Field. Now we state the propositions:

(31) Suppose [a, b[ ⊆ dom f and f is right improper integrable on a and b.
Then if E ⊆ [a, b[, then f is E-measurable. The theorem is a consequence
of (21), (19), and (28).

(32) Suppose ]a, b] ⊆ dom f and f is left improper integrable on a and b.
Then if E ⊆ ]a, b], then f is E-measurable. The theorem is a consequence
of (22), (20), (19), and (28).

(33) Suppose ]a, b[ ⊆ dom f and f is improper integrable on a and b. Then if
E ⊆ ]a, b[, then f is E-measurable. The theorem is a consequence of (32)
and (31).

Let us consider a real number a, a partial function f from R to R, and
an element E of L-Field. Now we state the propositions:

(34) Suppose [a,+∞[ ⊆ dom f and f is improper integrable on [a, +∞[. Then
if E ⊆ [a,+∞[, then f is E-measurable.
Proof: Set A = [a,+∞[. Consider K being a sequence of subsets of
L-Field such that for every natural number n, K(n) = [a, a+ n] and K is
non descending and convergent and

⋃
K = [a,+∞[. Reconsider K1 = K

as a sequence of L-Field. For every natural number n, R(f) is (K1(n))-
measurable by [8, (49)]. R(f) is A-measurable. �

(35) Suppose ]−∞, a] ⊆ dom f and f is improper integrable on ]−∞, a]. Then
if E ⊆ ]−∞, a], then f is E-measurable.
Proof: Consider K being a sequence of subsets of L-Field such that for
every natural number n, K(n) = [a − n, a] and K is non descending and
convergent and

⋃
K = ]−∞, a]. For every element n of N, K(n) is a non

empty, closed interval subset of R. Reconsider K1 = K as a sequence of
L-Field. For every natural number n, R(f) is (K1(n))-measurable by [8,
(49)]. R(f) is (

⋃
K1)-measurable. �

(36) Let us consider a partial function f from R to R. Suppose dom f = R and
f is improper integrable on R. Let us consider an element E of L-Field.
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Then f is E-measurable. The theorem is a consequence of (34) and (35).

3. Relation between Improper Integral and Lebesgue Integral

Now we state the propositions:

(37) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and an element A of
S. Suppose A = dom f and f is A-measurable. Then

∫
−f dM = −

∫
f dM .

(38) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, B,
E of S. Suppose E = dom f and f is E-measurable and non-positive and
A ⊆ B. Then

∫
f�AdM ­

∫
f�B dM .

Proof: For every set x such that x ∈ dom(R(f)) holds (R(f))(x) ¬ 0.∫
R(f�A) dM ­

∫
R(f)�B dM .

∫
R(f�A) dM ­

∫
R(f�B) dM . �

Let us consider a partial function f from R to R, real numbers a, b, and
a non empty subset A of R. Now we state the propositions:

(39) Suppose [a, b[ ⊆ dom f and A = [a, b[ and f is right improper integrable
on a and b and f�A is non-negative. Then

(i) right-improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if f is right extended Riemann integrable on a, b, then f�A is inte-
grable on L-Meas, and

(iii) if f is not right extended Riemann integrable on a, b, then
∫
f�Ad L-

Meas = +∞.

The theorem is a consequence of (12), (21), (31), (14), (17), (20), and (4).

(40) Suppose [a, b[ ⊆ dom f and A = [a, b[ and f is right improper integrable
on a and b and f�A is non-positive. Then

(i) right-improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if f is right extended Riemann integrable on a, b, then f�A is inte-
grable on L-Meas, and

(iii) if f is not right extended Riemann integrable on a, b, then
∫
f�Ad L-

Meas = −∞.

The theorem is a consequence of (3), (39), and (31).

(41) Suppose ]a, b] ⊆ dom f and A = ]a, b] and f is left improper integrable
on a and b and f�A is non-negative. Then

(i) left-improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if f is left extended Riemann integrable on a, b, then f�A is integrable
on L-Meas, and
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(iii) if f is not left extended Riemann integrable on a, b, then
∫
f�Ad L-

Meas = +∞.

The theorem is a consequence of (12), (22), (32), (14), (17), (20), and (7).

(42) Suppose ]a, b] ⊆ dom f and A = ]a, b] and f is left improper integrable
on a and b and f�A is non-positive. Then

(i) left-improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if f is left extended Riemann integrable on a, b, then f�A is integrable
on L-Meas, and

(iii) if f is not left extended Riemann integrable on a, b, then
∫
f�Ad L-

Meas = −∞.

The theorem is a consequence of (3), (41), and (32).

(43) Suppose ]a, b[ ⊆ dom f and A = ]a, b[ and f is improper integrable on a

and b and f�A is non-negative. Then

(i) improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if there exists a real number c such that a < c < b and f is left
extended Riemann integrable on a, c and right extended Riemann
integrable on c, b, then f�A is integrable on L-Meas, and

(iii) if for every real number c such that a < c < b holds f is not left exten-
ded Riemann integrable on a, c or f is not right extended Riemann
integrable on c, b, then

∫
f�Ad L-Meas = +∞.

The theorem is a consequence of (31), (32), (41), (39), (26), and (33).

(44) Suppose ]a, b[ ⊆ dom f and A = ]a, b[ and f is improper integrable on a

and b and f�A is non-positive. Then

(i) improper-integral(f, a, b) =
∫
f�Ad L-Meas, and

(ii) if there exists a real number c such that a < c < b and f is left
extended Riemann integrable on a, c and right extended Riemann
integrable on c, b, then f�A is integrable on L-Meas, and

(iii) if for every real number c such that a < c < b holds f is not left exten-
ded Riemann integrable on a, c or f is not right extended Riemann
integrable on c, b, then

∫
f�Ad L-Meas = −∞.

The theorem is a consequence of (3), (43), (33), and (37).

Let us consider a partial function f from R to R, a real number b, and a non
empty subset A of R. Now we state the propositions:

(45) Suppose ]−∞, b] ⊆ dom f and A = ]−∞, b] and f is improper integrable
on ]−∞, b] and f is non-negative. Then



Absolutely integrable functions 39

(i)
b∫

−∞

f(x)dx =
∫
f�Ad L-Meas, and

(ii) if f is extended Riemann integrable on −∞, b, then f�A is integrable
on L-Meas, and

(iii) if f is not extended Riemann integrable on−∞, b, then
∫
f�Ad L-Meas

= +∞.

The theorem is a consequence of (12), (24), (35), (14), (17), and (8).

(46) Suppose ]−∞, b] ⊆ dom f and A = ]−∞, b] and f is improper integrable
on ]−∞, b] and f is non-positive. Then

(i)
b∫

−∞

f(x)dx =
∫
f�Ad L-Meas, and

(ii) if f is extended Riemann integrable on −∞, b, then f�A is integrable
on L-Meas, and

(iii) if f is not extended Riemann integrable on−∞, b, then
∫
f�Ad L-Meas

= −∞.

Proof: Reconsider A1 = A as an element of L-Field. For every object x

such that x ∈ dom(−f) holds 0 ¬ (−f)(x).
b∫

−∞

(−f)(x)dx =
∫

(−f)�Ad L-

Meas. f�A is A1-measurable.
∫
−f�Ad L-Meas = −

∫
f�Ad L-Meas. �

Let us consider a partial function f from R to R, a real number a, and a non
empty subset A of R. Now we state the propositions:

(47) Suppose [a,+∞[ ⊆ dom f and A = [a,+∞[ and f is improper integrable
on [a, +∞[ and f is non-negative. Then

(i)
+∞∫
a

f(x)dx =
∫
f�Ad L-Meas, and

(ii) if f is extended Riemann integrable on a, +∞, then f�A is integrable
on L-Meas, and

(iii) if f is not extended Riemann integrable on a, +∞, then
∫
f�Ad L-

Meas = +∞.

The theorem is a consequence of (12), (23), (34), (14), (17), and (9).

(48) Suppose [a,+∞[ ⊆ dom f and A = [a,+∞[ and f is improper integrable
on [a, +∞[ and f is non-positive. Then
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(i)
+∞∫
a

f(x)dx =
∫
f�Ad L-Meas, and

(ii) if f is extended Riemann integrable on a, +∞, then f�A is integrable
on L-Meas, and

(iii) if f is not extended Riemann integrable on a, +∞, then
∫
f�Ad L-Meas

= −∞.

Proof: Reconsider A1 = A as an element of L-Field. For every object x

such that x ∈ dom(−f) holds 0 ¬ (−f)(x).
+∞∫
a

(−f)(x)dx =
∫

(−f)�Ad L-

Meas. f�A is A1-measurable.
∫
−f�Ad L-Meas = −

∫
f�Ad L-Meas. �

(49) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A,
B of S. Suppose there exists an element E of S such that E = dom f

and f is E-measurable and f is non-negative. Then
∫+ f�(A ∪ B) dM ¬∫+ f�AdM +

∫+ f�B dM .

(50) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and sets A, B. Suppose
A ⊆ dom f and B ⊆ dom f and f�A is integrable on M and f�B is
integrable on M . Then f�(A ∪ B) is integrable on M . The theorem is
a consequence of (49).

(51) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and sets A, B. Suppose
A ⊆ dom f and B ⊆ dom f and f�A is integrable on M and f�B is
integrable on M . Then f�(A ∪ B) is integrable on M . The theorem is
a consequence of (14) and (50).

Let us consider a partial function f from R to R, a real number a, and a non
empty subset A of R. Now we state the propositions:

(52) Suppose dom f = R and f is improper integrable on R and f is non-
negative. Then

(i)
+∞∫
−∞

f(x)dx =
∫
f d L-Meas, and

(ii) if f is∞-extended Riemann integrable, then f is integrable on L-Meas,
and

(iii) if f is not∞-extended Riemann integrable, then
∫
f d L-Meas = +∞.

The theorem is a consequence of (45), (36), (26), (47), and (51).
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(53) Suppose dom f = R and f is improper integrable on R and f is non-
positive. Then

(i)
+∞∫
−∞

f(x)dx =
∫
f d L-Meas, and

(ii) if f is∞-extended Riemann integrable, then f is integrable on L-Meas,
and

(iii) if f is not∞-extended Riemann integrable, then
∫
f d L-Meas = −∞.

Proof: For every object x such that x ∈ dom(−f) holds 0 ¬ (−f)(x). Re-

consider E = R as an element of L-Field. f is E-measurable. −
+∞∫
−∞

f(x)dx =

∫
−f d L-Meas. −

+∞∫
−∞

f(x)dx = −
∫
f d L-Meas. �

4. Absolutely Integrable Function

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(54) Suppose [a, b[ = dom f . Then there exists a sequence F of partial func-
tions from R into R such that

(i) for every natural number n, dom(F (n)) = dom f and for every real
number x such that x ∈ [a, b − 1

n+1 ] holds F (n)(x) = f(x) and for
every real number x such that x /∈ [a, b − 1

n+1 ] holds F (n)(x) = 0,
and

(ii) lim R(F ) = f .

Proof: For every element n of N, [a, b− 1
n+1 ] ⊆ dom f . Define P[element

of N, object] ≡ $2 = χ
[a,b− 1

$1+1
],dom f . For every element n of N, there exists

an element 〈 of R→̇R such that P [n, 〈]. Consider C2 being a sequence of
R→̇R such that for every element n of N, P [n,C2(n)]. Define Q[element
of N, object] ≡ $2 = f · C2($1). For every element n of N, there exists
an element F of R→̇R such that Q[n, F ]. Consider F being a sequence of
R→̇R such that for every element n of N, Q[n, F (n)]. For every natural
number n, dom(F (n)) = dom f and for every real number x such that
x ∈ [a, b − 1

n+1 ] holds F (n)(x) = f(x) and for every real number x such
that x /∈ [a, b − 1

n+1 ] holds F (n)(x) = 0. For every element x of R such
that x ∈ dom(lim R(F )) holds (lim R(F ))(x) = (R(f))(x) by [9, (16)]. �
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(55) Suppose a < b and [a, b[ ⊆ dom f and f is right improper integrable on
a and b and |f | is right extended Riemann integrable on a, b. Then

(i) f is right extended Riemann integrable on a, b, and

(ii) right-improper-integral(f, a, b) ¬ right-improper-integral(|f |, a, b) <
+∞.

Proof: Consider I being a partial function from R to R such that dom I =
[a, b[ and for every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx and I is left convergent in b or left divergent to +∞ in b or

left divergent to −∞ in b. Consider AI being a partial function from R
to R such that domAI = [a, b[ and for every real number x such that

x ∈ domAI holds AI(x) =
x∫
a

|f |(x)dx and AI is left convergent in b. For

every real numbers r1, r2 such that r1, r2 ∈ domAI and r1 < r2 holds
AI(r1) ¬ AI(r2). Consider r being a real number such that 0 < r < b− a.
For every real number g such that g ∈ dom I ∩ ]b−r, b[ holds I(g) ¬ AI(g)
by [10, (8)]. �

(56) Suppose a < b and ]a, b] ⊆ dom f and f is left improper integrable on a

and b and |f | is left extended Riemann integrable on a, b. Then

(i) f is left extended Riemann integrable on a, b, and

(ii) left-improper-integral(f, a, b) ¬ left-improper-integral(|f |, a, b) < +∞.

Proof: Consider I being a partial function from R to R such that dom I =
]a, b] and for every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx and I is right convergent in a or right divergent to +∞ in a

or right divergent to −∞ in a. Consider AI being a partial function from
R to R such that domAI = ]a, b] and for every real number x such that

x ∈ domAI holds AI(x) =
b∫
x

|f |(x)dx and AI is right convergent in a. For

every real numbers r1, r2 such that r1, r2 ∈ domAI and r1 < r2 holds
AI(r1) ­ AI(r2). Consider r being a real number such that 0 < r < b− a.
For every real number g such that g ∈ dom I∩]a, a+r[ holds I(g) ¬ AI(g).
�

(57) Let us consider a partial function f from R to R, and a non empty, closed
interval subset A of R. Suppose A ⊆ dom f . Then

(i) max+(f � A) = max+(f�A), and
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(ii) max−(f � A) = max−(f�A).

(58) Let us consider a partial function f from R to R, and a real number b.
Suppose ]−∞, b] ⊆ dom f and f is improper integrable on ]−∞, b] and |f |
is extended Riemann integrable on −∞, b. Then

(i) f is extended Riemann integrable on −∞, b, and

(ii)
b∫

−∞

f(x)dx ¬
b∫

−∞

|f |(x)dx < +∞.

Proof: Consider I being a partial function from R to R such that dom I =
]−∞, b] and for every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx and I is convergent in −∞ or divergent in −∞ to +∞ or di-

vergent in −∞ to −∞. Consider AI being a partial function from R to
R such that domAI = ]−∞, b] and for every real number x such that

x ∈ domAI holds AI(x) =
b∫
x

|f |(x)dx and AI is convergent in −∞. For

every real numbers r1, r2 such that r1, r2 ∈ domAI and r1 < r2 holds
AI(r1) ­ AI(r2). For every real number g such that g ∈ dom I ∩ ]−∞, 1[
holds I(g) ¬ AI(g). �

(59) Let us consider a partial function f from R to R, and a real number a.
Suppose [a,+∞[ ⊆ dom f and f is improper integrable on [a, +∞[ and
|f | is extended Riemann integrable on a, +∞. Then

(i) f is extended Riemann integrable on a, +∞, and

(ii)
+∞∫
a

f(x)dx ¬
+∞∫
a

|f |(x)dx < +∞.

Proof: Consider I being a partial function from R to R such that dom I =
[a,+∞[ and for every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx and I is convergent in +∞ or divergent in +∞ to +∞ or di-

vergent in +∞ to −∞. Consider AI being a partial function from R to
R such that domAI = [a,+∞[ and for every real number x such that

x ∈ domAI holds AI(x) =
x∫
a

|f |(x)dx and AI is convergent in +∞. For

every real numbers r1, r2 such that r1, r2 ∈ domAI and r1 < r2 holds
AI(r1) ¬ AI(r2). For every real number g such that g ∈ dom I ∩ ]1,+∞[
holds I(g) ¬ AI(g). �
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Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(60) Suppose a ¬ b and [a, b] ⊆ dom f and f is integrable on [a, b] and f�[a, b]
is bounded. Then

(i) max+(f) is integrable on [a, b], and

(ii) max−(f) is integrable on [a, b], and

(iii) 2 · (
b∫
a

max
+

(f)(x)dx) =
b∫
a

f(x)dx+
b∫
a

|f |(x)dx, and

(iv) 2 · (
b∫
a

max
−

(f)(x)dx) = −
b∫
a

f(x)dx+
b∫
a

|f |(x)dx, and

(v)
b∫
a

f(x)dx =
b∫
a

max
+

(f)(x)dx−
b∫
a

max
−

(f)(x)dx.

(61) Suppose a < b and ]a, b] ⊆ dom f and f is left extended Riemann inte-
grable on a, b and |f | is left extended Riemann integrable on a, b. Then
max+(f) is left extended Riemann integrable on a, b.

Proof: Set G = (R<)
b∫
a

f(x)dx. Set AG = (R<)
b∫
a

|f |(x)dx. Consider I

being a partial function from R to R such that dom I = ]a, b] and for every

real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx and I is right

convergent in a and G = lima+ I.
Consider AI being a partial function from R to R such that domAI =

]a, b] and for every real number x such that x ∈ domAI holds AI(x) =
b∫
x

|f |(x)dx and AI is right convergent in a and AG = lima+ AI . For every

real number d such that a < d ¬ b holds max+(f) is integrable on [d, b]
and max+(f)�[d, b] is bounded. There exists a partial function I3 from
R to R such that dom I3 = ]a, b] and for every real number x such that

x ∈ dom I3 holds I3(x) =
b∫
x

max
+

(f)(x)dx and I3 is right convergent in a.

�

(62) Suppose a < b and [a, b[ ⊆ dom f and f is right extended Riemann
integrable on a, b and |f | is right extended Riemann integrable on a, b.
Then max+(f) is right extended Riemann integrable on a, b.
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Proof: Set G = (R>)
b∫
a

f(x)dx. Set AG = (R>)
b∫
a

|f |(x)dx. Consider I

being a partial function from R to R such that dom I = [a, b[ and for every

real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx and I is left

convergent in b and G = limb− I.

Consider AI being a partial function from R to R such that domAI =
[a, b[ and for every real number x such that x ∈ domAI holds AI(x) =
x∫
a

|f |(x)dx and AI is left convergent in b and AG = limb− AI . For every

real number d such that a ¬ d < b holds max+(f) is integrable on [a, d]
and max+(f)�[a, d] is bounded. There exists a partial function I3 from
R to R such that dom I3 = [a, b[ and for every real number x such that

x ∈ dom I3 holds I3(x) =
x∫
a

max
+

(f)(x)dx and I3 is left convergent in b. �

(63) Let us consider a partial function f from R to R, and a real number b.
Suppose ]−∞, b] ⊆ dom f and f is extended Riemann integrable on −∞,
b and |f | is extended Riemann integrable on −∞, b. Then max+(f) is
extended Riemann integrable on −∞, b.

Proof: Set G = (R<)
b∫

−∞

f(x)dx. Set AG = (R<)
b∫

−∞

|f |(x)dx. Consider I

being a partial function from R to R such that dom I = ]−∞, b] and for

every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx and I is

convergent in −∞ and G = lim−∞ I.

Consider AI being a partial function from R to R such that domAI =
]−∞, b] and for every real number x such that x ∈ domAI holds AI(x) =
b∫
x

|f |(x)dx and AI is convergent in −∞ and AG = lim−∞AI . For every

real number d such that d ¬ b holds max+(f) is integrable on [d, b] and
max+(f)�[d, b] is bounded. There exists a partial function I3 from R to
R such that dom I3 = ]−∞, b] and for every real number x such that

x ∈ dom I3 holds I3(x) =
b∫
x

max
+

(f)(x)dx and I3 is convergent in −∞. �

(64) Let us consider a partial function f from R to R, and a real number
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a. Suppose [a,+∞[ ⊆ dom f and f is extended Riemann integrable on a,
+∞ and |f | is extended Riemann integrable on a, +∞. Then max+(f) is
extended Riemann integrable on a, +∞.

Proof: Set G = (R>)
+∞∫
a

f(x)dx. Set AG = (R>)
+∞∫
a

|f |(x)dx. Consider I

being a partial function from R to R such that dom I = [a,+∞[ and for

every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx and I is

convergent in +∞ and G = lim+∞ I.
Consider AI being a partial function from R to R such that domAI =

[a,+∞[ and for every real number x such that x ∈ domAI holds AI(x) =
x∫
a

|f |(x)dx and AI is convergent in +∞ and AG = lim+∞AI . For every

real number d such that a ¬ d holds max+(f) is integrable on [a, d] and
max+(f)�[a, d] is bounded. There exists a partial function I3 from R to
R such that dom I3 = [a,+∞[ and for every real number x such that

x ∈ dom I3 holds I3(x) =
x∫
a

max
+

(f)(x)dx and I3 is convergent in +∞. �

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(65) Suppose a < b and ]a, b] ⊆ dom f and f is left extended Riemann inte-
grable on a, b and |f | is left extended Riemann integrable on a, b. Then
max−(f) is left extended Riemann integrable on a, b. The theorem is
a consequence of (61).

(66) Suppose a < b and [a, b[ ⊆ dom f and f is right extended Riemann
integrable on a, b and |f | is right extended Riemann integrable on a, b.
Then max−(f) is right extended Riemann integrable on a, b. The theorem
is a consequence of (62).

(67) Let us consider a partial function f from R to R, and a real number b.
Suppose ]−∞, b] ⊆ dom f and f is extended Riemann integrable on −∞,
b and |f | is extended Riemann integrable on −∞, b. Then max−(f) is
extended Riemann integrable on −∞, b. The theorem is a consequence of
(63).

(68) Let us consider a partial function f from R to R, and a real number
a. Suppose [a,+∞[ ⊆ dom f and f is extended Riemann integrable on a,
+∞ and |f | is extended Riemann integrable on a, +∞. Then max−(f) is
extended Riemann integrable on a, +∞. The theorem is a consequence of
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(64).

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(69) Suppose ]a, b] ⊆ dom f and max+(f) is left extended Riemann integrable
on a, b and max−(f) is left extended Riemann integrable on a, b. Then

(i) f is left extended Riemann integrable on a, b, and

(ii) left-improper-integral(f, a, b) = left-improper-integral(max+(f), a, b)−
left-improper-integral(max−(f), a, b).

Proof: Consider I1 being a partial function from R to R such that
dom I1 = ]a, b] and for every real number x such that x ∈ dom I1 holds

I1(x) =
b∫
x

max
+

(f)(x)dx and I1 is right convergent in a. Consider I2 being

a partial function from R to R such that dom I2 = ]a, b] and for every real

number x such that x ∈ dom I2 holds I2(x) =
b∫
x

max
−

(f)(x)dx and I2 is

right convergent in a. For every real number d such that a < d ¬ b holds
f is integrable on [d, b] and f�[d, b] is bounded. For every real number x

such that x ∈ dom(I1 − I2) holds (I1 − I2)(x) =
b∫
x

f(x)dx. �

(70) Suppose [a, b[ ⊆ dom f and max+(f) is right extended Riemann inte-
grable on a, b and max−(f) is right extended Riemann integrable on a, b.
Then

(i) f is right extended Riemann integrable on a, b, and

(ii) right-improper-integral(f, a, b) = right-improper-integral(max+(f),

a, b)− right-improper-integral(max−(f), a, b).

Proof: Consider I1 being a partial function from R to R such that
dom I1 = [a, b[ and for every real number x such that x ∈ dom I1 holds

I1(x) =
x∫
a

max
+

(f)(x)dx and I1 is left convergent in b. Consider I2 being

a partial function from R to R such that dom I2 = [a, b[ and for every real

number x such that x ∈ dom I2 holds I2(x) =
x∫
a

max
−

(f)(x)dx and I2 is

left convergent in b. For every real number d such that a ¬ d < b holds
f is integrable on [a, d] and f�[a, d] is bounded. For every real number x
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such that x ∈ dom(I1 − I2) holds (I1 − I2)(x) =
x∫
a

f(x)dx. �

(71) Let us consider a partial function f from R to R, and a real number b.
Suppose ]−∞, b] ⊆ dom f and max+(f) is extended Riemann integrable
on −∞, b and max−(f) is extended Riemann integrable on −∞, b. Then

(i) f is extended Riemann integrable on −∞, b, and

(ii)
b∫

−∞

f(x)dx =
b∫

−∞

max
+

(f)(x)dx−
b∫

−∞

max
−

(f)(x)dx.

Proof: Consider I1 being a partial function from R to R such that
dom I1 = ]−∞, b] and for every real number x such that x ∈ dom I1

holds I1(x) =
b∫
x

max
+

(f)(x)dx and I1 is convergent in −∞. Consider I2

being a partial function from R to R such that dom I2 = ]−∞, b] and for

every real number x such that x ∈ dom I2 holds I2(x) =
b∫
x

max
−

(f)(x)dx

and I2 is convergent in −∞. For every real number d such that d ¬ b holds
f is integrable on [d, b] and f�[d, b] is bounded. For every real number x

such that x ∈ dom(I1 − I2) holds (I1 − I2)(x) =
b∫
x

f(x)dx. �

(72) Let us consider a partial function f from R to R, and a real number a.
Suppose [a,+∞[ ⊆ dom f and max+(f) is extended Riemann integrable
on a, +∞ and max−(f) is extended Riemann integrable on a, +∞. Then

(i) f is extended Riemann integrable on a, +∞, and

(ii)
+∞∫
a

f(x)dx =
+∞∫
a

max
+

(f)(x)dx−
+∞∫
a

max
−

(f)(x)dx.

Proof: Consider I1 being a partial function from R to R such that
dom I1 = [a,+∞[ and for every real number x such that x ∈ dom I1

holds I1(x) =
x∫
a

max
+

(f)(x)dx and I1 is convergent in +∞. Consider I2

being a partial function from R to R such that dom I2 = [a,+∞[ and for

every real number x such that x ∈ dom I2 holds I2(x) =
x∫
a

max
−

(f)(x)dx

and I2 is convergent in +∞. For every real number d such that a ¬ d holds
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f is integrable on [a, d] and f�[a, d] is bounded. For every real number x

such that x ∈ dom(I1 − I2) holds (I1 − I2)(x) =
x∫
a

f(x)dx. �

5. Improper Integral of Absolutely Integrable Functions

Let us consider a partial function f from R to R, real numbers a, b, and
a non empty subset A of R. Now we state the propositions:

(73) Suppose ]a, b] ⊆ dom f and A = ]a, b] and f is left improper integrable
on a and b and |f | is left extended Riemann integrable on a, b and f�A is
non-negative. Then

(i) f�A is integrable on L-Meas, and

(ii) left-improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (56) and (41).

(74) Suppose [a, b[ ⊆ dom f and A = [a, b[ and f is right improper integrable
on a and b and |f | is right extended Riemann integrable on a, b and f�A
is non-negative. Then

(i) f�A is integrable on L-Meas, and

(ii) right-improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (55) and (39).

(75) Let us consider a partial function f from R to R, a real number b, and
a non empty subset A of R. Suppose ]−∞, b] ⊆ dom f and A = ]−∞, b]
and f is improper integrable on ]−∞, b] and |f | is extended Riemann
integrable on −∞, b and f is non-negative. Then

(i) f�A is integrable on L-Meas, and

(ii)
b∫

−∞

f(x)dx =
∫
f�Ad L-Meas.

The theorem is a consequence of (58) and (45).

(76) Let us consider a partial function f from R to R, a real number a, and
a non empty subset A of R. Suppose [a,+∞[ ⊆ dom f and A = [a,+∞[
and f is improper integrable on [a, +∞[ and |f | is extended Riemann
integrable on a, +∞ and f is non-negative. Then

(i) f�A is integrable on L-Meas, and

(ii)
+∞∫
a

f(x)dx =
∫
f�Ad L-Meas.
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The theorem is a consequence of (59) and (47).

(77) Let us consider a partial function f from R to R, and real numbers a,
b. Suppose a < b and [a, b[ ⊆ dom f and f is right improper integrable
on a and b and |f | is right extended Riemann integrable on a, b. Then
max+(f) is right extended Riemann integrable on a, b. The theorem is
a consequence of (55) and (62).

Let us consider a partial function f from R to R, real numbers a, b, and
a non empty subset A of R. Now we state the propositions:

(78) Suppose [a, b[ ⊆ dom f and A = [a, b[ and f is right improper integrable
on a and b and |f | is right extended Riemann integrable on a, b. Then

(i) f�A is integrable on L-Meas, and

(ii) right-improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (55), (62), (74), (66), and (70).

(79) Suppose ]a, b] ⊆ dom f and A = ]a, b] and f is left improper integrable
on a and b and |f | is left extended Riemann integrable on a, b. Then

(i) f�A is integrable on L-Meas, and

(ii) left-improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (56), (61), (73), (65), and (69).

(80) Suppose ]a, b[ ⊆ dom f and A = ]a, b[ and f is improper integrable on
a and b and there exists a real number c such that a < c < b and |f |
is left extended Riemann integrable on a, c and right extended Riemann
integrable on c, b. Then

(i) f�A is integrable on L-Meas, and

(ii) improper-integral(f, a, b) =
∫
f�Ad L-Meas.

The theorem is a consequence of (79), (78), (51), and (26).

(81) Let us consider a partial function f from R to R, a real number b, and
a non empty subset A of R. Suppose ]−∞, b] ⊆ dom f and A = ]−∞, b]
and f is improper integrable on ]−∞, b] and |f | is extended Riemann
integrable on −∞, b. Then

(i) f�A is integrable on L-Meas, and

(ii)
b∫

−∞

f(x)dx =
∫
f�Ad L-Meas.

The theorem is a consequence of (58), (63), (75), (67), and (71).

(82) Let us consider a partial function f from R to R, a real number a, and
a non empty subset A of R. Suppose [a,+∞[ ⊆ dom f and A = [a,+∞[
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and f is improper integrable on [a, +∞[ and |f | is extended Riemann
integrable on a, +∞. Then

(i) f�A is integrable on L-Meas, and

(ii)
+∞∫
a

f(x)dx =
∫
f�Ad L-Meas.

The theorem is a consequence of (59), (64), (76), (68), and (72).

(83) Let us consider a partial function f from R to R. Suppose dom f = R and
f is improper integrable on R and |f | is ∞-extended Riemann integrable.
Then

(i) f is integrable on L-Meas, and

(ii)
+∞∫
−∞

f(x)dx =
∫
f d L-Meas.

The theorem is a consequence of (81), (82), (51), and (36).
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Summary. Universe is a concept which is present from the beginning of the
creation of the Mizar Mathematical Library (MML) in several forms (Universe,
Universe_closure, UNIVERSE) [25], then later as the_universe_of, [33], and
recently with the definition GrothendieckUniverse [26], [11], [11]. These defi-
nitions are useful in many articles [28, 33, 8, 35], [19, 32, 31, 15, 6], but also
[34, 12, 20, 22, 21], [27, 2, 3, 23, 16, 7, 4, 5].

In this paper, using the Mizar system [9] [10], we trivially show that Gro-
thendieck’s definition of Universe as defined in [26], coincides with the original
definition of Universe defined by Artin, Grothendieck, and Verdier (Chapitre 0
Univers et Appendice “Univers” (par N. Bourbaki) de l’Exposé I. “PREFAISCE-
AUX”) [1], and how the different definitions of MML concerning universes are
related. We also show that the definition of Universe introduced by Mac Lane
([18]) is compatible with the MML’s definition.

Although a universe may be empty, we consider the properties of non-empty
universes, completing the properties proved in [25].

We introduce the notion of “trivial” and “non-trivial” Universes, depending
on whether or not they contain the set ω (NAT), following the notion of Robert M.
Solovay2. The following result links the universes U0 (FinSETS) and U1 (SETS):

GrothendieckUniverse ω = GrothendieckUniverse U0 = U1

Before turning to the last section, we establish some trivial propositions
allowing the construction of sets outside the considered universe.
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The last section is devoted to the construction, in Tarski-Grothendieck, of a
tower of universes indexed by the ordinal numbers (See 8. Examples, Grothen-
dieck universe, ncatlab.org [24]).

Grothendieck’s universe is referenced in current works: “Assuming the exi-
stence of a sufficient supply of (Grothendieck) univers”, Jacob Lurie in “Higher
Topos Theory” [17], “Annexe B – Some results on Grothendieck universes”, Oli-
via Caramello and Riccardo Zanfa in “Relative topos theory via stacks” [13],
“Remark 1.1.5 (quoting Michael Shulman [30])”, Emily Riehl in “Category the-
ory in Context” [29], and more specifically “Strict Universes for Grothendieck
Topoi” [14].

MSC: 03E70 68V20

Keywords: Tarski-Grothendieck set theory; Grothendieck universe; universe
hierarchy

MML identifier: CLASSES4, version: 8.1.12 5.71.1431

1. Preliminaries

Now we state the propositions:

(1) Let us consider a set X. Then π1(X), π2(X) ∈ 2
⋃⋃

X .

(2) R∗ = the set of all X where X is a finite sequence of elements of R.

One can verify that there exists a Grothendieck which is empty and there
exists a Grothendieck which is non empty.

Let X be a set. One can verify that every Grothendieck of X is non empty.

2. Original Definitions of Grothendieck’s Universe

Let G be a set. We say that G satisfies axiom GU1 if and only if

(Def. 1) for every sets x, y such that x ∈ G and y ∈ x holds y ∈ G.

We say that G satisfies axiom GU2 if and only if

(Def. 2) for every sets x, y such that x, y ∈ G holds {x, y} ∈ G.

We say that G satisfies axiom GU3 if and only if

(Def. 3) for every set x such that x ∈ G holds 2x ∈ G.

Let G be a non empty set. We say that G satisfies axiom GU4 if and only if

(Def. 4) for every element I of G and for every G-valued many sorted set x indexed
by I,

⋃
rng x ∈ G.

http://zbmath.org/classification/?q=cc:03E70
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/classes4.miz
http://ftp.mizar.org/
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3. Equivalences of Definitions

Now we state the propositions:

(3) Let us consider a set X. Then X satisfies axiom GU1 if and only if X is
transitive.

(4) Let us consider a non empty set X. Then X satisfies axiom GU4 if and
only if X is Family-Union-closed.

(5) Let us consider a Family-Union-closed set X, and a function f . Suppose
dom f ∈ X and rng f ⊆ X. Then

⋃
rng f ∈ X.

One can check that every Grothendieck satisfies axiom GU1, axiom GU2,
and axiom GU3 and every non empty Grothendieck satisfies axiom GU4.

Now we state the proposition:

(6) Let us consider a non empty set G. Suppose G satisfies axiom GU1, axiom
GU2, axiom GU3, and axiom GU4. Then G is a non empty Grothendieck.

Let us consider a set X. Now we state the propositions:

(7) X is a universal class if and only if X is a non empty Grothendieck.

(8) T({X}∗∈) is a Grothendieck of X.

(9) The universe of {X} is a Grothendieck of X. The theorem is a consequ-
ence of (8).

(10) Universe closure({X}) = GrothendieckUniverse(X).

4. Equivalences of Mac Lane Definition

Now we state the propositions:

(11) Let us consider a Grothendieck U . Suppose ω ∈ U . Then

(i) for every sets x, u such that x ∈ u ∈ U holds x ∈ U , and

(ii) for every sets u, v such that u, v ∈ U holds {u, v}, 〈〈u, v〉〉, u× v ∈ U ,
and

(iii) for every set x such that x ∈ U holds 2x,
⋃
x ∈ U , and

(iv) ω ∈ U , and

(v) for every sets a, b and for every function f from a into b such that
dom f = a and f is onto and a ∈ U and b ⊆ U holds b ∈ U .

(12) Let us consider a set U . Suppose for every sets x, u such that x ∈ u ∈ U
holds x ∈ U and for every set x such that x ∈ U holds 2x,

⋃
x ∈ U and

ω ∈ U and for every sets a, b and for every function f from a into b such
that dom f = a and f is onto and a ∈ U and b ⊆ U holds b ∈ U . Then U

is a Grothendieck. The theorem is a consequence of (4) and (3).
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5. Properties of Universe, Following [25]

From now on X denotes a set and U denotes a universal class.
Now we state the proposition:

(13) Suppose X satisfies axiom GU1 and axiom GU3. Then

(i) for every set y and for every subset x of y such that y ∈ X holds
x ∈ X, and

(ii) for every sets x, y such that x ⊆ y and y ∈ X holds x ∈ X, and

(iii) if X is not empty, then ∅ ∈ X.

Let U be a universal class. The functor ∅U yielding an element of U is defined
by the term

(Def. 5) ∅.
Now we state the propositions:

(14) U is a Grothendieck of ∅. The theorem is a consequence of (13).

(15) Let us consider elements u, v of U . Then vu ⊆ the set of all f where
f is a function from u into v.

Let U be a universal class and u be an element of U . Note that the functor
succu yields an element of U . Now we state the propositions:

(16) Let us consider a natural number n. Then n ∈ U .
Proof: Define P[natural number] ≡ $1 ∈ U . P[0]. For every natural
number n, P[n]. �

(17) ω ⊆ U .

(18) (i) N ∈ U , or

(ii) N ≈ U .
The theorem is a consequence of (16).

Let us note that every universal class is infinite. Now we state the proposi-
tion:

(19) U0 is denumerable.

Observe that there exists a universal class which is denumerable.
Now we state the proposition:

(20) U is not denumerable if and only if ω ∈ U .

Observe that there exists a universal class which is non denumerable.
Let U be a universal class. We say that U is trivial if and only if

(Def. 6) ω /∈ U .

Now we state the proposition:

(21) (i) U0 is trivial, and
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(ii) U1 is not trivial.
The theorem is a consequence of (16), (13), (19), and (20).

One can check that there exists a universal class which is trivial and there
exists a universal class which is non trivial and every non trivial universal class
is non denumerable. Now we state the proposition:

(22) Let us consider an element x of U , and objects y, z. Suppose x = 〈〈y, z〉〉.
Then

(i) y is an element of U , and

(ii) z is an element of U .

Let U be a universal class. Let us note that there exists an element of U
which is pair. Now we state the proposition:

(23) Let us consider elements u, v of U . Then the set of all f where f is
a function from u into v is an element of U . The theorem is a consequence
of (13).

Let U be a universal class, I be an element of U , and x be a U-valued many
sorted set indexed by I. Let us observe that the functor

∏
x yields an element

of U . Let x, y be elements of U . The functor x ] y yielding an element of U is
defined by the term

(Def. 7) [x 7−→ ∅U , y 7−→ {∅U}].
Now we state the propositions:

(24) Let us consider elements x, y of U . Then x ] y is a subset of {x, y} ×
{∅, {∅}}.

(25) Let us consider an element u of U . Then u ] u = {〈〈u, {∅}〉〉}.
Let U be a universal class, I be an element of U , and x be a U-valued

many sorted set indexed by I. Note that the functor domx yields an element
of U . Note that the functor

⋃
x yields an element of U . Let us note that the

functor disjointx yields a U-valued many sorted set indexed by I. The functor⊎
x yielding an element of U is defined by the term

(Def. 8)
⋃

disjointx.

Let us consider an element I of U and a U-valued many sorted set x indexed
by I. Now we state the propositions:

(26)
⋃

coprod(x) is an element of U .

(27)
⊎
x is a subset of

⋃
rng x× I.

(28) If X satisfies axiom GU2, then for every set x such that x ∈ X holds
{x} ∈ X.

Let us consider an element u of U . Now we state the propositions:

(29) u ∈ U .
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(30) (i) u 6≈ U , and

(ii) u ∈ U .

(31) Let us consider elements u, v of U . Then {〈〈u, ∅〉〉, 〈〈v, {∅}〉〉} = {u} ×
{∅} ∪ {v} × {{∅}}.

(32) Let us consider elements I, a, b, u, v of U , and a U-valued many sorted
set x indexed by I. Suppose I = {a, b} and x(a) = u and x(b) = v. Then⊎
x = u× {a} ∪ v × {b}.

Let us consider elements I, u, v of U and a U-valued many sorted set x
indexed by I. Now we state the propositions:

(33) Suppose I = {∅, {∅}} and x(∅) = u and x({∅}) = v. Then
⊎
x = u ×

{∅} ∪ v × {{∅}}. The theorem is a consequence of (32).

(34) Suppose I = {∅, {∅}} and x(∅) = {u} and x({∅}) = {v} and u 6= v. Then⊎
x = u ] v. The theorem is a consequence of (33) and (31).

(35) Let us consider an element x of U , and objects y, z. Suppose x = 〈〈y, z〉〉.
Then

(i) y is an element of U , and

(ii) z is an element of U .

Let U be a universal class. Observe that there exists an element of U which
is pair.

Let u be a pair element of U . The functors: (u)1 and (u)2 yield elements of
U . Now we state the proposition:

(36) Let us consider an element X of U . Then

(i) π1(X) is an element of U , and

(ii) π2(X) is an element of U .

The theorem is a consequence of (1).

Let us consider a binary relation R. Now we state the propositions:

(37) If R ∈ U , then domR, rngR ∈ U . The theorem is a consequence of (36).

(38) If domR is an element of U and rngR is an element of U , then R is
an element of U . The theorem is a consequence of (13).

(39) Let us consider a set X, a non empty set Y, and a function f from X

into Y. If f ∈ U , then X ∈ U . The theorem is a consequence of (37).

(40) Let us consider non empty sets A, B. Suppose A × B is an element of
U . Then

(i) A is an element of U , and

(ii) B is an element of U .

The theorem is a consequence of (36).
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(41) Let us consider a set X. Suppose idX is an element of U . Then X is
an element of U . The theorem is a consequence of (37).

(42) Let us consider elements x, y, z of U . Then 〈x, y〉 7−→ z is an element of
U .

6. Properties of Universe Containing ω

Now we state the propositions:

(43) ω ⊂ U0. The theorem is a consequence of (16).

(44) Let us consider a set X. Then T(∅) ⊆ T(X).

(45) Let us consider a Grothendieck G of X. Then U0 ⊆ G. The theorem is
a consequence of (44).

(46) (i) GrothendieckUniverse(∅) = U0, and

(ii) GrothendieckUniverse(∅) = U∅.

(47) Let us consider a set X, and a Grothendieck G of X. Then Grothendieck
Universe(∅) ⊆ GrothendieckUniverse(X) ⊆ G.

(48) Let us consider an element n of U0. Then GrothendieckUniverse(n) =
U0. The theorem is a consequence of (45).

(49) the empty Grothendieck ⊂ ω ⊂ GrothendieckUniverse(∅) ⊂ Grothendieck
Universe(ω). The theorem is a consequence of (16), (46), (43), (19), and
(20).

(50) Let us consider a non empty Grothendieck G. Suppose G 6= Grothendieck
Universe(ω). Then

(i) GrothendieckUniverse(ω) ∈ G, or

(ii) G ∈ GrothendieckUniverse(ω).

(51) T(ω) = GrothendieckUniverse(ω).

(52) Let us consider sets N1, N2. Suppose N1 = N×N∪N and N2 = N1∪2N1 .
Then R ⊆ N2 ∪ N×N2.

Let us consider a non trivial universal class U . Now we state the propositions:

(53) R is an element of U . The theorem is a consequence of (52) and (13).

(54) R is an element of U . The theorem is a consequence of (53) and (13).

(55) C ∈ U . The theorem is a consequence of (16), (53), and (13).

(56) H ∈ U . The theorem is a consequence of (16), (53), (55), and (13).

(57) Let us consider a natural number n. Then Seg n ∈ U . The theorem is
a consequence of (16) and (13).
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(58) Let us consider a set D. If D ∈ U , then for every natural number n,
Dn ∈ U . The theorem is a consequence of (57).

(59) Let us consider a non trivial universal class U , and a natural number n.
Then Rn ∈ U . The theorem is a consequence of (53) and (58).

Let us consider a set X and a natural number n. Now we state the proposi-
tions:

(60) If X ∈ U , then Xn ∈ U . The theorem is a consequence of (57).

(61) Xn ⊆ X∗.
(62) Let us consider a non empty set X, and an object x. If x ∈ X∗, then

there exists a natural number n such that x ∈ Xn.

(63) Let us consider a non empty set X. Then there exists a function f such
that

(i) dom f = N, and

(ii) for every natural number n, f(n) = Xn, and

(iii)
⋃

rng f = X∗.

Proof: Define P[object, object] ≡ there exists a natural number n such
that $1 = n and $2 = Xn. For every object x such that x ∈ N there
exists an object y such that P[x, y]. Consider f being a function such that
dom f = N and for every object x such that x ∈ N holds P[x, f(x)]. For
every natural number n, f(n) = Xn.

⋃
rng f = X∗. �

(64) Let us consider a non trivial universal class U , and a non empty set X.
If X ∈ U , then X∗ ∈ U . The theorem is a consequence of (63) and (58).

Let us consider a non trivial universal class U . Now we state the propositions:

(65) R∗ ∈ U . The theorem is a consequence of (53) and (64).

(66) R∗ ∈ U . The theorem is a consequence of (54) and (64).

(67) C∗ ∈ U .

(68) (H)∗ ∈ U .

(69) Let us consider a universal class U , and a set X. If X ∈ U , then for every
finite sequence s of elements of X, s ∈ U . The theorem is a consequence
of (57) and (13).

(70) Let us consider an empty set X, and a finite sequence f of elements of
X∗. Then f = len f 7→ 0.

(71) Let us consider a non trivial universal class U , and a non empty set D.
If D ∈ U , then for every matrix M over D, M ∈ U .

(72) U0, N, R, R ∈ U1. The theorem is a consequence of (16), (13), (53), and
(54).
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(73) Let us consider a set X, and a universal class U . If U ∈ T(X), then
T(U) ⊆ T(X).

(74) U0 ∈ T(ω). The theorem is a consequence of (19) and (20).

(75) U1 = T(ω). The theorem is a consequence of (72), (73), and (74).

(76) GrothendieckUniverse(ω) = U1.

(77) GrothendieckUniverse(ω) = GrothendieckUniverse(U0) = U1.
Proof: GrothendieckUniverse(ω) = GrothendieckUniverse(U0). �

Let us consider a non empty set X, a Grothendieck G′ of X, and a universal
class G. Now we state the propositions:

(78) If X misses G, then G′ 6= G.

(79) If X misses G, then G′ ∈ G or G ∈ G′.
(80) Let us consider universal classes U , U ′, and an element a of U . If a /∈ U ′,

then U ′ ∈ U . The theorem is a consequence of (78).

(81) Let us consider a Grothendieck G. Then
⋃
G = G.

One can verify that every Grothendieck is limit ordinal.
Now we state the proposition:

(82) Let us consider a universal class U , and a non empty element V of U .
Then FuncsV is a subset of U . The theorem is a consequence of (81).

7. How to Get Out of a Universe?

Now we state the propositions:

(83) There exists a set a such that a /∈ U .

(84) There exists a subset A of U such that A /∈ U .

(85) the set of all u where u is an element of U is not an element of U .

(86) Let us consider an element X of U . Then U \X is not an element of U .
Proof: U \X /∈ U . �

(87) 2U /∈ U .

8. A Sequence of Universes

Now we state the proposition:

(88) Let us consider a set X. Then there exists a function f such that

(i) dom f = N, and

(ii) f(0) = X, and

(iii) for every natural number n, f(n+ 1) = GrothendieckUniverse(f(n)).
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Proof: Define G(set, set) = GrothendieckUniverse($2). There exists a func-
tion f such that dom f = N and f(0) = X and for every natural number
n, f(n+ 1) = G(n, f(n)). �

The Construction ofX,GrothendieckUniverse(X),GrothendieckUniverse
(GrothendieckUniverse(X)), . . . .
Let X be a set. The functor sequence-universe(X) yielding a function is

defined by

(Def. 9) dom it = N and it(0) = X and for every natural number n, it(n+ 1) =
GrothendieckUniverse(it(n)).

Now we state the propositions:

(89) Let us consider a set X. Then sequence-universe(X) is a transfinite se-
quence.

(90) Let us consider a set X, and a transfinite sequence S. If domS = N,
then lastS = S(N).

(91) Let us consider a transfinite sequence S. Suppose domS = N. Then

(i) S(N) = ∅, and

(ii) lastS = ∅.
The theorem is a consequence of (90).

(92) Let us consider a set X, and a transfinite sequence S. Suppose S =
sequence-universe(X). Then

(i) lastS = ∅, and

(ii) S(N) = ∅.
The theorem is a consequence of (91).

The Construction ofX∪GrothendieckUniverse(X)∪GrothendieckUnive-
rse(GrothendieckUniverse(X)) ∪ . . . .
Let X be a set. The functor union-sequence-universe(X) yielding a non emp-

ty set is defined by the term

(Def. 10)
⋃

rng sequence-universe(X).

Now we state the proposition:

(93) Let us consider a setX. Then rng sequence-universe(X) ⊆ union-sequence-
universe(X).

The Formal Counterpart of ∅(= U0) ∈ U1 ∈ U2 ∈ . . . : Sequence of uni-
verses indexed by the ordinal numbers (see 8. Examples, Grothendieck Universe
[24]).

The functor sequence-universe yielding a sequence of union-sequence-universe(∅)
is defined by the term

(Def. 11) sequence-universe(∅).
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Now we state the propositions:

(94) ∅, U0, U1 ∈ rng sequence-universe. The theorem is a consequence of (45)
and (77).

(95)
⋃
n<ω Un is not a Universe:⋃

rng sequence-universe is not a Grothendieck. The theorem is a consequ-
ence of (72) and (94).

(96) (i) T(U0) = GrothendieckUniverse(U0), and

(ii) T(U1) = GrothendieckUniverse(U1).

(97) Let us consider a set X, and a natural number n. Then

(i) (sequence-universe(X))(n+ 1) is transitive, and

(ii) T((sequence-universe(X))(n+ 1)) =

GrothendieckUniverse((sequence-universe(X))(n+ 1)).

Let us consider a natural number n. Now we state the propositions:

(98) T((sequence-universe(U0))(n)) =
GrothendieckUniverse((sequence-universe(U0))(n)). The theorem is a con-
sequence of (77).

(99) Un ∈ Un+1.
(100) (sequence-universe(U0))(n) = Un.

Proof: Define P[natural number] ≡ (sequence-universe(U0))($1) = U$1 .
For every natural number k such that P[k] holds P[k+1]. For every natural
number k, P[k]. �

(101) GrothendieckUniverse((sequence-universe(∅))(n)) =
(sequence-universe(GrothendieckUniverse(∅)))(n).
Proof: Define P[natural number] ≡ GrothendieckUniverse((sequence-
universe(∅))($1)) = (sequence-universe(GrothendieckUniverse(∅)))($1).
P[0]. For every natural number k such that P[k] holds P[k+ 1]. For every
natural number k, P[k]. �

(102) (sequence-universe)(n+ 1) = Un. The theorem is a consequence of (46),
(100), and (101).

Let us note that there exists an element of
⋃

rng sequence-universe which is
non empty.

Now we state the propositions:

(103) U0, U1 ∈ GrothendieckUniverse(sequence-universe). The theorem is
a consequence of (45) and (77).

(104) Let us consider a natural number n. Then (sequence-universe)(n+ 1) ∈
GrothendieckUniverse(sequence-universe). The theorem is a consequence
of (45) and (102).
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The Construction of Uω: Tower of universes indexed by the ordinal
numbers (see 8. Examples, Grothendieck Universe [24]).

The functor Uω yielding a non trivial universal class is defined by the term

(Def. 12) GrothendieckUniverse(sequence-universe).

Now we state the proposition:

(105) Let us consider a natural number n. Then (sequence-universe)(n) ⊆
(sequence-universe)(n+ 1).
Proof: Define P[natural number] ≡ (sequence-universe)($1) ⊆ (sequence-
universe)($1 + 1). P[0]. For every natural number k such that P[k] holds
P[k + 1]. For every natural number n, P[n]. �

LetX be an element of
⋃

rng sequence-universe. The functor rank-universe(X)
yielding a natural number is defined by

(Def. 13) X ∈ (sequence-universe)(it) and for every natural number n such that
n < it holds X /∈ (sequence-universe)(n).

Now we state the propositions:

(106) Let us consider an element X of
⋃

rng sequence-universe, and a natural
number n. Suppose rank-universe(X) ¬ n.
Then X ∈ (sequence-universe)(n).
Proof: Define P[natural number] ≡ X ∈ (sequence-universe)($1). For
every natural number j such that rank-universe(X) ¬ j and P[j] holds
P[j+1]. For every natural number i such that rank-universe(X) ¬ i holds
P[i]. �

(107) Let us consider a natural number i. Then there exists a set x such that
x ∈ (sequence-universe)(i + 1) \ (sequence-universe)(i). The theorem is
a consequence of (105) and (102).

(108) Let us consider a natural number n. Then Un+1 \ (Un) /∈ Un+1. The
theorem is a consequence of (99) and (86).

The functor ComplUniverse yielding a function from N into
⋃

rng sequence-
universe is defined by

(Def. 14) for every natural number n, it(n) = Un+1 \ (Un).

Let us consider a natural number n. Now we state the propositions:

(109) (ComplUniverse)(n) is not empty. The theorem is a consequence of (99).

(110) (ComplUniverse)(n) ⊆ Un+1.
(111) There exists a function f from N into

⋃⋃
rng sequence-universe such

that for every natural number i, f(i) ∈ (ComplUniverse)(i).
Proof: Set g = the choice of ComplUniverse. rng g ⊆

⋃⋃
rng sequence-

universe. For every natural number i, g(i) ∈ (ComplUniverse)(i). �
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(112) Let us consider a function f from N into
⋃

rng sequence-universe. Then
f ∈ Uω. The theorem is a consequence of (13) and (104).

(113) Let us consider a function f from N into
⋃⋃

rng sequence-universe. Then
f ∈ Uω. The theorem is a consequence of (13) and (104).
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1. Preliminaries

Let X be a real linear space. The functor IsoCPRLSP(X) yielding a linear
operator from X into

∏
〈X〉 is defined by

(Def. 1) for every point x of X, it(x) = 〈x〉.
Now we state the proposition:

(1) Let us consider a real linear space X.
Then 0∏〈X〉 = (IsoCPRLSP(X))(0X).
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Let X be a real linear space. Observe that IsoCPRLSP(X) is one-to-one and
onto and there exists a linear operator from X into

∏
〈X〉 which is one-to-one

and onto.
Let f be a bijective linear operator from X into

∏
〈X〉. Let us note that the

functor f−1 yields a linear operator from
∏
〈X〉 into X. Let f be a one-to-one,

onto linear operator from X into
∏
〈X〉. Let us note that f−1 is bijective as

a linear operator from
∏
〈X〉 into X and there exists a linear operator from∏

〈X〉 into X which is one-to-one and onto.
Now we state the propositions:

(2) Let us consider a real linear space X, and a point x of X.
Then ((IsoCPRLSP(X))−1)(〈x〉) = x.
Proof: Set I = IsoCPRLSP(X). Set J = I−1. For every point x of X,
J(〈x〉) = x. �

(3) Let us consider a real linear space X.
Then ((IsoCPRLSP(X))−1)(0∏〈X〉) = 0X . The theorem is a consequence
of (1).

(4) Let us consider a real linear space G. Then

(i) for every set x, x is a point of
∏
〈G〉 iff there exists a point x1 of G

such that x = 〈x1〉, and

(ii) for every points x, y of
∏
〈G〉 and for every points x1, y1 of G such

that x = 〈x1〉 and y = 〈y1〉 holds x+ y = 〈x1 + y1〉, and

(iii) 0∏〈G〉 = 〈0G〉, and

(iv) for every point x of
∏
〈G〉 and for every point x1 of G such that

x = 〈x1〉 holds −x = 〈−x1〉, and

(v) for every point x of
∏
〈G〉 and for every point x1 of G and for every

real number a such that x = 〈x1〉 holds a · x = 〈a · x1〉.
Proof: Consider I being a function from G into

∏
〈G〉 such that I is

one-to-one and onto and for every point x of G, I(x) = 〈x〉 and for every
points v, w of G, I(v+w) = I(v)+I(w) and for every point v of G and for
every element r of R, I(r · v) = r · I(v) and 0∏〈G〉 = I(0G). For every set
x, x is a point of

∏
〈G〉 iff there exists a point x1 of G such that x = 〈x1〉.

For every points x, y of
∏
〈G〉 and for every points x1, y1 of G such

that x = 〈x1〉 and y = 〈y1〉 holds x + y = 〈x1 + y1〉. For every point x of∏
〈G〉 and for every point x1 of G such that x = 〈x1〉 holds −x = 〈−x1〉.

For every point x of
∏
〈G〉 and for every point x1 of G and for every real

number a such that x = 〈x1〉 holds a · x = 〈a · x1〉. �

(5) Let us consider real linear spaces X, Y, and a function f from X into Y.
Then f is a linear operator from X into Y if and only if
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f · ((IsoCPRLSP(X))−1) is a linear operator from
∏
〈X〉 into Y.

(6) Let us consider real linear spaces X, Y, and a function f from
∏
〈X〉

into Y. Then f is a linear operator from
∏
〈X〉 into Y if and only if

f · (IsoCPRLSP(X)) is a linear operator from X into Y. The theorem
is a consequence of (5).

(7) Let us consider a real linear space X, a point s of
∏
〈X〉, and an element

i of dom〈X〉. Then reproj(i, s) = IsoCPRLSP(X).
Proof: For every element x ofX, (reproj(i, s))(x) = (IsoCPRLSP(X))(x).
�

(8) Let us consider real linear spacesX, Y, and an object f . Then f is a linear
operator from

∏
〈X〉 into Y if and only if f is a multilinear operator from

〈X〉 into Y. The theorem is a consequence of (6) and (7).

Let us consider real linear spaces X, Y. Now we state the propositions:

(9) MultOpers(〈X〉, Y ) = LinearOperators(
∏
〈X〉, Y ). The theorem is a con-

sequence of (8).

(10) VectorSpaceOfMultOpersR(〈X〉, Y ) =
VectorSpaceOfLinearOpersR(

∏
〈X〉, Y ). The theorem is a consequence of

(9).

(11) Let us consider a real normed space G. Then

(i) for every set x, x is a point of
∏
〈G〉 iff there exists a point x1 of G

such that x = 〈x1〉, and

(ii) for every points x, y of
∏
〈G〉 and for every points x1, y1 of G such

that x = 〈x1〉 and y = 〈y1〉 holds x+ y = 〈x1 + y1〉, and

(iii) 0∏〈G〉 = 〈0G〉, and

(iv) for every point x of
∏
〈G〉 and for every point x1 of G such that

x = 〈x1〉 holds −x = 〈−x1〉, and

(v) for every point x of
∏
〈G〉 and for every point x1 of G and for every

real number a such that x = 〈x1〉 holds a · x = 〈a · x1〉, and

(vi) for every point x of
∏
〈G〉 and for every point x1 of G such that

x = 〈x1〉 holds ‖x‖ = ‖x1‖.

Proof: Consider I being a function from G into
∏
〈G〉 such that I is

one-to-one and onto and for every point x of G, I(x) = 〈x〉 and for every
points v, w of G, I(v + w) = I(v) + I(w) and for every point v of G and
for every element r of R, I(r · v) = r · I(v) and 0∏〈G〉 = I(0G) and for
every point v of G, ‖I(v)‖ = ‖v‖. For every set x, x is a point of

∏
〈G〉 iff

there exists a point x1 of G such that x = 〈x1〉.
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For every points x, y of
∏
〈G〉 and for every points x1, y1 of G such

that x = 〈x1〉 and y = 〈y1〉 holds x + y = 〈x1 + y1〉. For every point x of∏
〈G〉 and for every point x1 of G such that x = 〈x1〉 holds −x = 〈−x1〉.

For every point x of
∏
〈G〉 and for every point x1 of G and for every real

number a such that x = 〈x1〉 holds a · x = 〈a · x1〉. For every point x of∏
〈G〉 and for every point x1 of G such that x = 〈x1〉 holds ‖x‖ = ‖x1‖. �

Let X be a real normed space. The functor IsoCPNrSP(X) yielding a linear
operator from X into

∏
〈X〉 is defined by

(Def. 2) for every point x of X, it(x) = 〈x〉.
Now we state the proposition:

(12) Let us consider a real normed space X.
Then 0∏〈X〉 = (IsoCPNrSP(X))(0X).

Let X be a real normed space. Let us note that IsoCPNrSP(X) is one-to-
one, onto, and isometric and there exists a linear operator from X into

∏
〈X〉

which is one-to-one, onto, and isometric.
Let I be a one-to-one, onto, isometric linear operator from X into

∏
〈X〉.

Let us observe that the functor I−1 yields a linear operator from
∏
〈X〉 into X.

One can check that I−1 is one-to-one, onto, and isometric as a linear operator
from

∏
〈X〉 into X and there exists a linear operator from

∏
〈X〉 into X which

is one-to-one, onto, and isometric. Let us consider real normed spaces X, Y and
a function f from X into Y. Now we state the propositions:

(13) f is a linear operator from X into Y if and only if f ·((IsoCPNrSP(X))−1)
is a linear operator from

∏
〈X〉 into Y.

(14) f is a Lipschitzian linear operator from X into Y if and only if f ·
((IsoCPNrSP(X))−1) is a Lipschitzian linear operator from

∏
〈X〉 into Y.

Let us consider real normed spaces X, Y and a function f from
∏
〈X〉 into

Y. Now we state the propositions:

(15) f is a linear operator from
∏
〈X〉 into Y if and only if f ·(IsoCPNrSP(X))

is a linear operator from X into Y. The theorem is a consequence of (13).

(16) f is a Lipschitzian linear operator from
∏
〈X〉 into Y if and only if

f · (IsoCPNrSP(X)) is a Lipschitzian linear operator from X into Y. The
theorem is a consequence of (14).

(17) Let us consider a real normed spaceX, a point s of
∏
〈X〉, and an element

i of dom〈X〉. Then reproj(i, s) = IsoCPNrSP(X).
Proof: For every element x of X, (reproj(i, s))(x) = (IsoCPNrSP(X))(x).
�

(18) Let us consider a real normed space X, and a point x of
∏
〈X〉. Then

NrProductx = ‖x‖. The theorem is a consequence of (11).
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Let us consider real normed spaces X, Y and an object f . Now we state the
propositions:

(19) f is a linear operator from
∏
〈X〉 into Y if and only if f is a multilinear

operator from 〈X〉 into Y. The theorem is a consequence of (15) and (17).

(20) f is a Lipschitzian linear operator from
∏
〈X〉 into Y if and only if f

is a Lipschitzian multilinear operator from 〈X〉 into Y. The theorem is
a consequence of (16), (18), (17), and (11).

Let us consider real normed spaces X, Y. Now we state the propositions:

(21) MultOpers(〈X〉, Y ) = LinearOperators(
∏
〈X〉, Y ). The theorem is a con-

sequence of (19).

(22) BoundedMultOpers(〈X〉, Y ) = BdLinOps(
∏
〈X〉, Y ). The theorem is a con-

sequence of (20).

(23) BoundedMultOpersNorm(〈X〉, Y ) = BdLinOpsNorm(
∏
〈X〉, Y ).

Proof: Set n1 = BoundedMultOpersNorm(〈X〉, Y ). Set n2 =
BdLinOpsNorm(

∏
〈X〉, Y ). BoundedMultOpers(〈X〉, Y ) =

BdLinOps(
∏
〈X〉, Y ). For every object f such that

f ∈ BoundedMultOpers(〈X〉, Y ) holds n1(f) = n2(f). �

(24) VectorSpaceOfMultOpersR(〈X〉, Y ) =
VectorSpaceOfLinearOpersR(

∏
〈X〉, Y ). The theorem is a consequence of

(21).

(25) NormSpaceOfBoundedMultOpersR(〈X〉, Y ) = the real norm space of
bounded linear operators from

∏
〈X〉 into Y. The theorem is a consequence

of (24) and (23).

(26) Let us consider a real normed space X. If X is complete, then
∏
〈X〉 is

complete.

2. Spaces of Multilinear Maps and Nested Compositions over Real
Normed Vector Spaces

Now we state the propositions:

(27) Let us consider real norm space sequences X, Y, a real normed space
Z, and a Lipschitzian bilinear operator f from

∏
X ×

∏
Y into Z. Then

f ·((IsoCPNrSP(
∏
X,
∏
Y ))−1) is a Lipschitzian multilinear operator from

〈
∏
X,
∏
Y 〉 into Z.

(28) Let us consider real norm space sequences X, Y, a real normed space Z,
and a point f of NormSpaceOfBoundedBilinOpersR(

∏
X,
∏
Y,Z). Then

f · ((IsoCPNrSP(
∏
X,
∏
Y ))−1) is a point of NormSpaceOfBoundedMult-

OpersR(〈
∏
X,
∏
Y 〉, Z).
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(29) Let us consider real linear space sequences X, Y. Then X a Y = X a Y .
Proof: Reconsider C1 = X, C2 = Y as a finite sequence. For every
natural number i such that i ∈ domX a Y holds X a Y (i) = (C1 aC2)(i).
�

(30) Let us consider a real linear space X. Then

(i) len 〈X〉 = len〈X〉, and

(ii) len 〈X〉 = 1, and

(iii) 〈X〉 = 〈the carrier of X〉.
(31) Let us consider a real norm space sequence X, an element x of

∏
X,

a real normed space Y, an element z of
∏

(Xa 〈Y 〉), an element i of domX,
an element j of dom(X a 〈Y 〉), an element xi of X(i), and a point y of Y.
Suppose i = j and z = xa〈y〉. Then (reproj(j, z))(xi) = (reproj(i, x))(xi)a

〈y〉.
Proof: Reconsider xj = xi as an element of (Xa〈Y 〉)(j). For every object
k such that k ∈ dom((reproj(i, x))(xi) a 〈y〉) holds ((reproj(i, x))(xi) a

〈y〉)(k) = (reproj(j, z))(xj)(k). �

(32) Let us consider a real norm space sequence X, an element x of
∏
X,

a real normed space Y, an element z of
∏

(X a 〈Y 〉), an element j of
dom(Xa 〈Y 〉), an element y of Y, and a point y0 of Y. Suppose z = xa 〈y0〉
and j = lenx+ 1. Then (reproj(j, z))(y) = x a 〈y〉.
Proof: Reconsider y1 = y as an element of (X a 〈Y 〉)(j). For every object
k such that k ∈ dom((reproj(j, z))(y1)) holds (reproj(j, z))(y1)(k) = (x a

〈y〉)(k). �

(33) Let us consider a real norm space sequence X, an element x of
∏
X,

a real normed space Y, and a point y of Y. Then x a 〈y〉 is a point of∏
(X a 〈Y 〉).

Proof: Set C1 = X. Set C2 = the carrier of Y. The carrier of
∏

(X a

〈Y 〉) =
∏

(X a 〈Y 〉). For every object i such that i ∈ dom(C1a 〈C2〉) holds
(x a 〈y〉)(i) ∈ (C1 a 〈C2〉)(i). �

(34) Let us consider a real norm space sequence X, an element x of
∏
X,

a real normed space Y, an element z of
∏

(X a 〈Y 〉), and a point y of Y.
Suppose z = x a 〈y〉. Then NrProduct z = ‖y‖ · (NrProductx).
Proof: Consider n4 being a finite sequence of elements of R such that
domn4 = dom(X a 〈Y 〉) and for every element i of dom(X a 〈Y 〉), n4(i) =
‖z(i)‖ and NrProduct z =

∏
n4. Set n3 = n4� lenx. Set C1 = X. Consider

x1 being a function such that x = x1 and domx1 = domC1 and for every
object i such that i ∈ domC1 holds x1(i) ∈ C1(i). For every element i of
domX, n3(i) = ‖x(i)‖. 0 ¬

∏
n3 by [7, (42)]. For every object i such that

i ∈ dom(n3 a 〈‖y‖〉) holds (n3 a 〈‖y‖〉)(i) = n4(i). �
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(35) Let us consider real normed spaces X, Z, and a real norm space sequen-
ce Y. Then there exists a Lipschitzian linear operator I from the real norm
space of bounded linear operators fromX into NormSpaceOfBoundedMult-
OpersR(Y, Z) into NormSpaceOfBoundedMultOpersR(Y a 〈X〉, Z) such
that

(i) I is one-to-one, onto, and isometric, and

(ii) for every point u of the real norm space of bounded linear operators
from X into NormSpaceOfBoundedMultOpersR(Y,Z), ‖u‖ = ‖I(u)‖
and for every point y of

∏
Y and for every point x of X, I(u)(y a

〈x〉) = u(x)(y).

Proof: Set C1 = the carrier of X. Set C2 = Y . Set C3 = the carrier of Z.
Consider J being a function from (C3

∏
C2)C1 into C3

∏
(C2a〈C1〉) such that

J is bijective and for every function f from C1 into C3
∏
C2 and for every fi-

nite sequence y and for every object x such that y ∈
∏
C2 and x ∈ C1 holds

J(f)(y a 〈x〉) = f(x)(y). Set L1 = the carrier of the real norm space of
bounded linear operators from X into NormSpaceOfBoundedMultOpersR
(Y, Z). Set B1 = the carrier of NormSpaceOfBoundedMultOpersR(Y a

〈X〉, Z). Set L2 = the carrier of NormSpaceOfBoundedMultOpersR(Y,Z).
The carrier of

∏
〈X〉 =

∏
〈the carrier of X〉. The carrier of

∏
(Y a 〈X〉) =∏

(Y a 〈X〉). L2C1 ⊆ (C3
∏
C2)C1 . Reconsider I = J�L1 as a function from

L1 into C3
∏
(C2a〈C1〉).

For every element f of L1, for every point x of X, there exists a Lip-
schitzian multilinear operator g from Y into Z such that g = f(x) and
for every point y of

∏
Y, I(f)(y a 〈x〉) = g(y) and I(f) is a Lipschit-

zian multilinear operator from Y a 〈X〉 into Z and I(f) ∈ B1 and the-
re exists a point If of NormSpaceOfBoundedMultOpersR(Y a 〈X〉, Z)
such that If = I(f) and ‖f‖ = ‖If‖. For every elements f1, f2 of L1,
I(f1 + f2) = I(f1) + I(f2). For every element f1 of L1 and for every re-
al number a, I(a · f1) = a · I(f1) by [6, (2)], (11), [5, (49)]. For every
point u of the real norm space of bounded linear operators from X into
NormSpaceOfBoundedMultOpersR(Y, Z), ‖u‖ = ‖I(u)‖ and for every po-
int y of

∏
Y and for every point x of X, I(u)(ya 〈x〉) = u(x)(y). For every

object If such that If ∈ B1 there exists an object f such that f ∈ L1 and
If = I(f). �

Let Y be a real normed space and X be a real norm space sequence. The
functor NestingLB(X,Y ) yielding a real normed space is defined by

(Def. 3) there exists a function f such that dom f = N and it = f(lenX) and
f(0) = Y and for every natural number i such that i < lenX there exists
a real normed space fi and there exists an element j of domX such that
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fi = f(i) and i + 1 = j and f(i + 1) = the real norm space of bounded
linear operators from X(j) into fi.

Let us consider real normed spacesX, Y, Z and a Lipschitzian linear operator
I from Y into Z. Now we state the propositions:

(36) Suppose I is one-to-one, onto, and isometric. Then there exists a Lip-
schitzian linear operator L from the real norm space of bounded linear
operators from X into Y into the real norm space of bounded linear ope-
rators from X into Z such that

(i) L is one-to-one, onto, and isometric, and

(ii) for every point f of the real norm space of bounded linear operators
from X into Y, L(f) = I · f .

Proof: Consider J being a linear operator from Z into Y such that J =
I−1 and J is one-to-one and onto and J is isometric. Set F = the carrier
of the real norm space of bounded linear operators from X into Y. Set
G = the carrier of the real norm space of bounded linear operators from
X into Z. Define P[function, function] ≡ $2 = I · $1. For every element f
of F , there exists an element g of G such that P[f, g]. Consider L being
a function from F into G such that for every element f of F , P[f, L(f)].

For every objects f1, f2 such that f1, f2 ∈ F and L(f1) = L(f2) holds
f1 = f2. For every object g such that g ∈ G there exists an object f such
that f ∈ F and g = L(f) by [10, (2)]. For every points f1, f2 of the real
norm space of bounded linear operators from X into Y, L(f1 + f2) =
L(f1) +L(f2). For every point f of the real norm space of bounded linear
operators from X into Y and for every real number a, L(a · f) = a ·L(f).
For every element f of the real norm space of bounded linear operators
from X into Y, ‖L(f)‖ = ‖f‖ by [3, (7)]. �

(37) Suppose I is one-to-one, onto, and isometric. Then there exists a Lip-
schitzian linear operator L from the real norm space of bounded linear
operators from Y into X into the real norm space of bounded linear ope-
rators from Z into X such that

(i) L is one-to-one, onto, and isometric, and

(ii) for every point f of the real norm space of bounded linear operators
from Y into X, L(f) = f · (I−1).

Proof: Consider J being a linear operator from Z into Y such that J =
I−1 and J is one-to-one and onto and J is isometric. Set F = the carrier
of the real norm space of bounded linear operators from Y into X. Set
G = the carrier of the real norm space of bounded linear operators from
Z into X. Define P[function, function] ≡ $2 = $1 · J . For every element f
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of F , there exists an element g of G such that P[f, g]. Consider L being
a function from F into G such that for every element f of F , P[f, L(f)].

For every objects f1, f2 such that f1, f2 ∈ F and L(f1) = L(f2) holds
f1 = f2. For every object g such that g ∈ G there exists an object f such
that f ∈ F and g = L(f). For every points f1, f2 of the real norm space
of bounded linear operators from Y into X, L(f1 + f2) = L(f1) + L(f2).
For every point f of the real norm space of bounded linear operators from
Y into X and for every real number a, L(a · f) = a · L(f). For every
element f of the real norm space of bounded linear operators from Y into
X, ‖L(f)‖ = ‖f‖. �

(38) Let us consider real normed spaces X, Y. Then there exists a Lipschitzian
linear operator I from the real norm space of bounded linear operators
from X into Y into the real norm space of bounded linear operators from∏
〈X〉 into Y such that

(i) I is one-to-one, onto, and isometric, and

(ii) for every point u of the real norm space of bounded linear operators
from X into Y and for every point x of X, I(u)(〈x〉) = u(x), and

(iii) for every point u of the real norm space of bounded linear operators
from X into Y, ‖u‖ = ‖I(u)‖.

Proof: Set J = IsoCPNrSP(X). Consider I being a Lipschitzian linear
operator from the real norm space of bounded linear operators from X

into Y into the real norm space of bounded linear operators from
∏
〈X〉

into Y such that I is one-to-one, onto, and isometric and for every point
x of the real norm space of bounded linear operators from X into Y,

I(x) = x·(J−1). For every point u of the real norm space of bounded linear
operators from X into Y and for every point x of X, I(u)(〈x〉) = u(x). �

(39) Let us consider real normed spaces X, Y, Z, W , a Lipschitzian linear
operator I from X into Z, and a Lipschitzian linear operator J from Y

into W . Suppose I is one-to-one, onto, and isometric and J is one-to-one,
onto, and isometric.

Then there exists a Lipschitzian linear operator K from the real norm
space of bounded linear operators from X into Y into the real norm space
of bounded linear operators from Z into W such that

(i) K is one-to-one, onto, and isometric, and

(ii) for every point x of the real norm space of bounded linear operators
from X into Y, K(x) = J · (x · (I−1)).

Proof: Consider H being a Lipschitzian linear operator from the real
norm space of bounded linear operators from X into Y into the real norm
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space of bounded linear operators from Z into Y such that H is one-to-
one, onto, and isometric and for every point x of the real norm space of
bounded linear operators from X into Y, H(x) = x · (I−1). Consider L
being a Lipschitzian linear operator from the real norm space of bounded
linear operators from Z into Y into the real norm space of bounded linear
operators from Z into W such that L is one-to-one, onto, and isometric
and for every point x of the real norm space of bounded linear operators
from Z into Y, L(x) = J · x.

Reconsider K = L ·H as a Lipschitzian linear operator from the real
norm space of bounded linear operators from X into Y into the real norm
space of bounded linear operators from Z into W . For every point x of
the real norm space of bounded linear operators from X into Y, ‖K(x)‖ =
‖x‖. �

(40) Let us consider a natural number n, real norm space sequences A, B,
and real normed spaces X, Y. Suppose lenA = n + 1 and A�n = B and
X = A(n+ 1). Then NestingLB(A, Y ) = the real norm space of bounded
linear operators from X into NestingLB(B, Y ).
Proof: Consider f being a function such that dom f = N and NestingLB
(A, Y ) = f(lenA) and f(0) = Y and for every natural number j such that
j < lenA there exists a real normed space V and there exists an element
k of domA such that V = f(j) and j + 1 = k and f(j + 1) = the real
norm space of bounded linear operators from A(k) into V .

Consider V being a real normed space, k being an element of domA

such that V = f(lenB) and lenB+1 = k and f(lenB+1) = the real norm
space of bounded linear operators from A(k) into V . For every natural
number j such that j < lenB there exists a real normed space V and
there exists an element k of domB such that V = f(j) and j + 1 = k and
f(j + 1) = the real norm space of bounded linear operators from B(k)
into V . �

Let Y be a real normed space and X be a real norm space sequence. Let us
observe that NestingLB(X,Y ) is constituted functions.

The functor NestMult(X,Y ) yielding a Lipschitzian linear operator from
NestingLB(X,Y ) into NormSpaceOfBoundedMultOpersR(X,Y ) is defined by

(Def. 4) it is one-to-one, onto, and isometric and for every element u of NestingLB
(X,Y ), ‖it(u)‖ = ‖u‖ and for every point u of NestingLB(X,Y ) and for
every point x of

∏
X, there exists a finite sequence g such that len g =

lenX and g(1) = u and for every element i of N such that 1 ¬ i < lenX
there exists a real norm space sequence X2.

There exists a point h of NestingLB(X2, Y ) such thatX2 = X�(lenX−′
i+1) and h = g(i) and g(i+1) = h(x(lenX−′ i+1)) and there exists a real
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norm space sequence X1 and there exists a point h of NestingLB(X1, Y )
such that X1 = 〈X(1)〉 and h = g(lenX) and (it(u))(x) = h(x(1)).
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