Contents

Compactness of Neural Networks

By Keilchi Miyajima and Hiroshi Yamazaki 13

| Splitting Fields for the Rational Polynomials $\mathrm{X}^{\mathbf{2}}-\mathbf{2}, \mathrm{X}^{\mathbf{2}+\mathrm{X}+1,}$ | |
| :---: | :--- | :--- |
| $\mathrm{X}^{\mathbf{3}}-\mathbf{1}$, and $\mathrm{X}^{\mathbf{3}}-\mathbf{2}$ | |
| By CHRISTOPH SCHWARZWELLER AND SARA BURGOA $\ldots \ldots \ldots$ | $\mathbf{2 3}$ |

Intuitionistic Propositional Calculus in the Extended Framework with Modal Operator. Part II

Takao Inoué
Department of Medical Molecular Informatics
Meiji Pharmaceutical University Tokyo, Japan
Graduate School of Science and Engineering Hosei University, Tokyo, Japan
Department of Applied Informatics
Faculty of Science and Engineering
Hosei University, Tokyo, Japan

Riku Hanaoka
Keyaki-Sou 403
Midori-cho 5-17-27
Koganei-city
184-0003, Tokyo
Japan

Summary. This paper is a continuation of Inoué [5]. As already mentioned in the paper, a number of intuitionistic provable formulas are given with a Hilbert-style proof. For that, we make use of a family of intuitionistic deduction theorems, which are also presented in this paper by means of Mizar system [2], 1]. Our axiom system of intuitionistic propositional logic IPC is based on the propositional subsystem of $\mathrm{H}_{1}-\mathbf{I Q C}$ in Troelstra and van Dalen [6, p. 68]. We also owe Heyting (4) and van Dalen [7. Our treatment of a set-theoretic intuitionistic deduction theorem is due to Agata Darmochwał's Mizar article "Calculus of Quantifiers. Deduction Theorem" 3].

MSC: 03B20 03F03 68V20
Keywords: intuitionistic logic; deduction theorem; consequence operator
MML identifier: INTPRO_2, version: 8.1.12 5.71.1431

1. The Notion of Proof in Intuitionistic Setting

From now on i, j, n, k, l denote natural numbers, T, S, X, Y, Z denote subsets of MC-w.f.f., p, q, r, t, F, H, G denote elements of MC-w.f.f., and s, U, V denote MC-formulas.

Let p, q be elements of MC-w.f.f.. The functor $p \Leftrightarrow q$ yielding an element of MC-w.f.f. is defined by the term
(Def. 1) $\quad(p \Rightarrow q) \wedge(q \Rightarrow p)$.
The functor Proof-Step-Kinds-IPC yielding a set is defined by the term (Def. 2) $\quad\{k: k \leqslant 10\}$.

Now we state the proposition:
(1) (i) $0 \in$ Proof-Step-Kinds-IPC and \ldots and
(ii) $10 \in$ Proof-Step-Kinds-IPC.

One can verify that Proof-Step-Kinds-IPC is non empty and Proof-Step-Kinds-IPC is finite.

From now on f, g denote finite sequences of elements of MC-w.f.f. \times Proof-Step-Kinds-IPC. Now we state the proposition:
(2) Let us consider a natural number n. If $1 \leqslant n \leqslant \operatorname{len} f$, then $(f(n))_{\mathbf{2}}=0$ or \ldots or $(f(n))_{\mathbf{2}}=10$.
Let P_{1} be a finite sequence of elements of MC-w.f.f. \times Proof-Step-Kinds-IPC and n be a natural number. Let us consider X. We say that P_{1} is a correct n-th step w.r.t. IPC (X) if and only if
(Def. 3) (i) $\left(P_{1}(n)\right)_{1} \in X$, if $\left(P_{1}(n)\right)_{\mathbf{2}}=0$,
(ii) there exists p and there exists q such that $\left(P_{1}(n)\right)_{\mathbf{1}}=p \Rightarrow(q \Rightarrow p)$, if $\left(P_{1}(n)\right)_{\mathbf{2}}=1$,
(iii) there exists p and there exists q and there exists r such that $\left(P_{1}(n)\right)_{1}=$ $p \Rightarrow(q \Rightarrow r) \Rightarrow(p \Rightarrow q \Rightarrow(p \Rightarrow r))$, if $\left(P_{1}(n)\right)_{2}=2$,
(iv) there exists p and there exists q such that $\left(P_{1}(n)\right)_{\mathbf{1}}=p \wedge q \Rightarrow p$, if $\left(P_{1}(n)\right)_{2}=3$,
(v) there exists p and there exists q such that $\left(P_{1}(n)\right)_{1}=p \wedge q \Rightarrow q$, if $\left(P_{1}(n)\right)_{\mathbf{2}}=4$,
(vi) there exists p and there exists q such that $\left(P_{1}(n)\right)_{\mathbf{1}}=p \Rightarrow(q \Rightarrow p \wedge q)$, if $\left(P_{1}(n)\right)_{\mathbf{2}}=5$,
(vii) there exists p and there exists q such that $\left(P_{1}(n)\right)_{\mathbf{1}}=p \Rightarrow p \vee q$, if $\left(P_{1}(n)\right)_{\mathbf{2}}=6$,
(viii) there exists p and there exists q such that $\left(P_{1}(n)\right)_{\mathbf{1}}=q \Rightarrow p \vee q$, if $\left(P_{1}(n)\right)_{\mathbf{2}}=7$,
(ix) there exists p and there exists q and there exists r such that $\left(P_{1}(n)\right)_{1}=$ $p \Rightarrow r \Rightarrow(q \Rightarrow r \Rightarrow(p \vee q \Rightarrow r))$, if $\left(P_{1}(n)\right)_{2}=8$,
(x) there exists p such that $\left(P_{1}(n)\right)_{\mathbf{1}}=\mathrm{FALSUM} \Rightarrow p$, if $\left(P_{1}(n)\right)_{\mathbf{2}}=9$,
(xi) there exists i and there exists j and there exists p and there exists q such that $1 \leqslant i<n$ and $1 \leqslant j<i$ and $p=\left(P_{1}(j)\right)_{\mathbf{1}}$ and $q=\left(P_{1}(n)\right)_{\mathbf{1}}$ and $\left(P_{1}(i)\right)_{\mathbf{1}}=p \Rightarrow q$, if $\left(P_{1}(n)\right)_{\mathbf{2}}=10$.

Let us consider f. We say that f is a proof w.r.t. IPC (X) if and only if (Def. 4) $\quad f \neq \emptyset$ and for every n such that $1 \leqslant n \leqslant \operatorname{len} f$ holds f is a correct n-th step w.r.t. IPC (X).
Now we state the propositions:
(3) If f is a proof w.r.t. $\operatorname{IPC}(X)$, then $\operatorname{rng} f \neq \emptyset$.
(4) If f is a proof w.r.t. $\operatorname{IPC}(X)$, then $1 \leqslant \operatorname{len} f$.
(5) If f is a proof w.r.t. $\operatorname{IPC}(X)$, then $(f(1))_{2}=0$ or \ldots or $(f(1))_{2}=10$. The theorem is a consequence of (4) and (2).
(6) If $1 \leqslant n \leqslant \operatorname{len} f$, then f is a correct n-th step w.r.t. IPC (X) iff $f^{\wedge} g$ is a correct n-th step w.r.t. $\operatorname{IPC}(X)$.
Proof: If f is a correct n-th step w.r.t. IPC (X), then $f \frown g$ is a correct n-th step w.r.t. $\operatorname{IPC}(X) .(f(n))_{2}=0$ or \ldots or $(f(n))_{2}=10$. \square
(7) If $1 \leqslant n \leqslant \operatorname{len} g$ and g is a correct n-th step w.r.t. IPC (X), then $f^{\wedge} g$ is a correct $n+\operatorname{len} f$-th step w.r.t. $\operatorname{IPC}(X)$. The theorem is a consequence of (2).
(8) If f is a proof w.r.t. $\operatorname{IPC}(X)$ and g is a proof w.r.t. $\operatorname{IPC}(X)$, then $f^{\wedge} g$ is a proof w.r.t. IPC (X). The theorem is a consequence of (6) and (7).
(9) If f is a proof w.r.t. $\operatorname{IPC}(X)$ and $X \subseteq Y$, then f is a proof w.r.t. IPC (Y). The theorem is a consequence of (2).
(10) If f is a proof w.r.t. $\operatorname{IPC}(X)$ and $1 \leqslant l \leqslant \operatorname{len} f$, then $(f(l))_{\mathbf{1}} \in$ $\operatorname{CnIPC}(X)$.
Proof: For every n such that $1 \leqslant n \leqslant \operatorname{len} f$ holds $(f(n))_{\mathbf{1}} \in \operatorname{CnIPC}(X)$.

Let us consider f. Assume $f \neq \emptyset$. The functor Effect-IPC (f) yielding an element of MC-w.f.f. is defined by the term
(Def. 5) $\quad(f(\operatorname{len} f))_{1}$.
Now we state the proposition:
(11) If f is a proof w.r.t. $\operatorname{IPC}(X)$, then $\operatorname{Effect-IPC}(f) \in \operatorname{CnIPC}(X)$. The theorem is a consequence of (4) and (10).

2. A Consequence as a Set of All Intuitionistic Provable Formulas

Now we state the proposition:
(12) $X \subseteq\{F$: there exists f such that f is a proof w.r.t. IPC (X) and Effect-IPC $(f)=F\}$. The theorem is a consequence of (1).
Let us consider X. Now we state the propositions:
(13) Suppose $Y=\{p$: there exists f such that f is a proof w.r.t. IPC (X) and Effect-IPC $(f)=p\}$. Then Y is IPC theory.
(14) $\{p$: there exists f such that f is a proof w.r.t. IPC (X) and Effect-IPC $(f)=p\}=\operatorname{CnIPC}(X)$. The theorem is a consequence of (12) and (13).
(15) $\quad p \in \operatorname{CnIPC}(X)$ if and only if there exists f such that f is a proof w.r.t. $\operatorname{IPC}(X)$ and Effect-IPC $(f)=p$. The theorem is a consequence of (14).
(16) If $p \in \operatorname{CnIPC}(X)$, then there exists Y such that $Y \subseteq X$ and Y is finite and $p \in \operatorname{CnIPC}(Y)$.
Proof: Consider f such that f is a proof w.r.t. $\operatorname{IPC}(X)$ and $\operatorname{Effect-IPC}(f)$ $=p$. Consider A being a set such that A is finite and $A \subseteq$ MC-w.f.f. and $\operatorname{rng} f \subseteq A \times$ Proof-Step-Kinds-IPC. If $1 \leqslant n \leqslant \operatorname{len} f$, then f is a correct n-th step w.r.t. IPC (Y).

3. The Intuitionistic Provable Relation

Let us consider X and s. We say that $X \vdash_{I P C}(s)$ if and only if (Def. 6) $s \in \operatorname{CnIPC}(X)$.

We say that $\vdash_{I P C} s$ if and only if
(Def. 7) $\emptyset_{\text {MC-w.f.f. }} \vdash_{I P C} s$.
Now we state the propositions:
(17) $X \vdash_{I P C}(p \Rightarrow(q \Rightarrow p))$.
(18) $\quad X \vdash_{I P C}(p \Rightarrow(q \Rightarrow r) \Rightarrow(p \Rightarrow q \Rightarrow(p \Rightarrow r)))$.
(19) $X \vdash_{I P C}(p \wedge q \Rightarrow p)$.
(20) $\quad X \vdash_{I P C}(p \wedge q \Rightarrow q)$.
(21) $X \vdash_{I P C}(p \Rightarrow(q \Rightarrow p \wedge q))$.
(22) $\quad X \vdash_{I P C}(p \Rightarrow p \vee q)$.
(23) $X \vdash_{I P C}(q \Rightarrow p \vee q)$.
(24) $\quad X \vdash_{I P C}(p \Rightarrow r \Rightarrow(q \Rightarrow r \Rightarrow(p \vee q \Rightarrow r)))$.
(25) $\quad X \vdash_{I P C}($ FALSUM $\Rightarrow p)$.
(26) If $X \vdash_{I P C} p$ and $X \vdash_{I P C}(p \Rightarrow q)$, then $X \vdash_{I P C}(q)$.
(27) $\vdash_{I P C} p \Rightarrow(q \Rightarrow p)$.
(28) $\vdash_{I P C} p \Rightarrow(q \Rightarrow r) \Rightarrow(p \Rightarrow q \Rightarrow(p \Rightarrow r))$.
(29) $\vdash_{I P C} p \wedge q \Rightarrow p$.
(30) $\vdash_{I P C} p \wedge q \Rightarrow q$.
(31) $\vdash_{I P C} p \Rightarrow(q \Rightarrow p \wedge q)$.
(32) $\vdash_{I P C} p \Rightarrow p \vee q$.
(33) $\vdash_{I P C} q \Rightarrow p \vee q$.
(34) $\vdash_{I P C} p \Rightarrow r \Rightarrow(q \Rightarrow r \Rightarrow(p \vee q \Rightarrow r))$.
(35) $\vdash_{I P C}$ FALSUM $\Rightarrow p$.
(36) If $\vdash_{I P C} p$ and $\vdash_{I P C} p \Rightarrow q$, then $\vdash_{I P C} q$.

Let us consider s. We say that s is IPC-valid if and only if
(Def. 8) $\emptyset_{\mathrm{MC} \text {-w.f.f. }} \vdash_{I P C}(s)$.
One can verify that s is IPC-valid if and only if the condition (Def. 9) is satisfied.
(Def. 9) $s \in$ IPC-Taut.
Now we state the propositions:
(37) If p is IPC-valid, then $X \vdash_{I P C}(p)$.
(38) $p \Rightarrow(q \Rightarrow p)$ is IPC-valid.
(39) $\quad p \Rightarrow(q \Rightarrow r) \Rightarrow(p \Rightarrow q \Rightarrow(p \Rightarrow r))$ is IPC-valid.
(40) $p \wedge q \Rightarrow p$ is IPC-valid.
(41) $p \wedge q \Rightarrow q$ is IPC-valid.
(42) $p \Rightarrow(q \Rightarrow p \wedge q)$ is IPC-valid.
(43) $p \Rightarrow p \vee q$ is IPC-valid.
(44) $q \Rightarrow p \vee q$ is IPC-valid.
(45) $\quad p \Rightarrow r \Rightarrow(q \Rightarrow r \Rightarrow(p \vee q \Rightarrow r))$ is IPC-valid.
(46) FALSUM $\Rightarrow p$ is IPC-valid.
(47) If p is IPC-valid and $p \Rightarrow q$ is IPC-valid, then q is IPC-valid.

In the sequel X, T denote subsets of MC-w.f.f., F, G, H, p, q, r, t denote elements of MC-w.f.f., s, h denote MC-formulas, f denotes a finite sequence of elements of MC-w.f.f. \times Proof-Step-Kinds-IPC, and i, j denote elements of \mathbb{N}.

4. The First Deduction Theorem for IPC

Now we state the propositions:
(48) $\quad X \vdash_{I P C}(p \Rightarrow p)$. The theorem is a consequence of (26).
(49) $X \vdash_{I P C}($ IVERUM).
(50) If $X \vdash_{I P C}(p)$, then $X \vdash_{I P C}(q \Rightarrow p)$.
(51) If p is IPC-valid, then $X \vdash_{I P C}(p)$.
(52) If $X \cup\{F\} \vdash_{I P C}(G)$, then $X \vdash_{I P C}(F \Rightarrow G)$.

Proof: Consider f such that f is a proof w.r.t. IPC $(X \cup\{F\})$ and $\operatorname{Effect-\operatorname {IPC}(f)}=G$. Define \mathcal{P} [natural number] \equiv if $1 \leqslant \$_{1} \leqslant \operatorname{len} f$, then for every H such that $H=\left(f\left(\$_{1}\right)\right)_{\mathbf{1}}$ holds $X \vdash_{I P C}(F \Rightarrow H)$. For every
natural number n such that for every natural number k such that $k<n$ holds $\mathcal{P}[k]$ holds $\mathcal{P}[n]$. For every natural number $n, \mathcal{P}[n] .1 \leqslant \operatorname{len} f$. \square

5. A Family of Deduction Theorems for IPC

From now on $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}, F_{7}, F_{8}, F_{9}, F_{10}, G$ denote MC-formulas and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x$ denote elements of MC-w.f.f..

Let x_{1}, x_{2}, x_{3} be elements of MC-w.f.f.. Let us observe that the functor $\left\{x_{1}, x_{2}, x_{3}\right\}$ yields a subset of MC-w.f.f.. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be elements of MC-w.f.f.. One can check that the functor $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ yields a subset of MC-w.f.f.. Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be elements of MC-w.f.f.. One can verify that the functor $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ yields a subset of MC-w.f.f.. Let x_{1}, $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ be elements of MC-w.f.f.. One can verify that the functor $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ yields a subset of MC-w.f.f.. Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ be elements of MC-w.f.f..

One can check that the functor $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}$ yields a subset of MC-w.f.f.. Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$ be elements of MC-w.f.f.. Let us note that the functor $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right\}$ yields a subset of MC-w.f.f.. Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}$ be elements of MC-w.f.f.. One can verify that the functor $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$ yields a subset of MC-w.f.f.. Let x_{1}, $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}$ be elements of MC-w.f.f.. Observe that the functor $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}\right\}$ yields a subset of MC-w.f.f.. Now we state the propositions:
(53) If $\{F\} \vdash_{I P C}(G)$, then $\vdash_{I P C} F \Rightarrow G$. The theorem is a consequence of (52).
(54) If $\left\{F_{1}, F_{2}\right\} \vdash_{I P C}(G)$, then $\left\{F_{2}\right\} \vdash_{I P C}\left(F_{1} \Rightarrow G\right)$. The theorem is a consequence of (52).
(55) If $\left\{F_{1}, F_{2}, F_{3}\right\} \vdash_{I P C}(G)$, then $\left\{F_{2}, F_{3}\right\} \vdash_{I P C}\left(F_{1} \Rightarrow G\right)$. The theorem is a consequence of (52).
(56) If $\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\} \vdash_{I P C}(G)$, then $\left\{F_{2}, F_{3}, F_{4}\right\} \vdash_{I P C}\left(F_{1} \Rightarrow G\right)$. The theorem is a consequence of (52).
(57) If $\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\} \vdash_{I P C}(G)$, then $\left\{F_{2}, F_{3}, F_{4}, F_{5}\right\} \vdash_{I P C}\left(F_{1} \Rightarrow G\right)$. The theorem is a consequence of (52).
(58) If $\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}\right\} \vdash_{I P C}(G)$, then $\left\{F_{2}, F_{3}, F_{4}, F_{5}, F_{6}\right\} \vdash_{I P C}\left(F_{1} \Rightarrow\right.$ $G)$. The theorem is a consequence of (52).
(59) Suppose $\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}, F_{7}\right\} \vdash_{I P C}(G)$. Then $\left\{F_{2}, F_{3}, F_{4}, F_{5}, F_{6}, F_{7}\right.$ $\} \vdash_{I P C}\left(F_{1} \Rightarrow G\right)$. The theorem is a consequence of (52).
(60) Suppose $\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}, F_{7}, F_{8}\right\} \vdash{ }_{I P C}(G)$. Then $\left\{F_{2}, F_{3}, F_{4}, F_{5}, F_{6}\right.$, $\left.F_{7}, F_{8}\right\} \vdash_{I P C}\left(F_{1} \Rightarrow G\right)$. The theorem is a consequence of (52).
(61) Suppose $\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}, F_{7}, F_{8}, F_{9}\right\} \vdash_{I P C}(G)$. Then $\left\{F_{2}, F_{3}, F_{4}, F_{5}\right.$, $\left.F_{6}, F_{7}, F_{8}, F_{9}\right\} \vdash_{I P C}\left(F_{1} \Rightarrow G\right)$. The theorem is a consequence of (52).
From now on $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}$ denote objects.
Now we state the propositions:
(62) $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}\right\}=\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}\right\} \cup$ $\left\{x_{1}\right\}$.
(63) Suppose $\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}, F_{7}, F_{8}, F_{9}, F_{10}\right\} \vdash_{I P C}(G)$. Then $\left\{F_{2}, F_{3}, F_{4}\right.$, $\left.F_{5}, F_{6}, F_{7}, F_{8}, F_{9}, F_{10}\right\} \vdash_{I P C}\left(F_{1} \Rightarrow G\right)$. The theorem is a consequence of (62) and (52).

6. Intuitionistic Provable Formulas and Theorems

Now we state the propositions:
(64) $\{p\} \vdash_{I P C}(p)$.
(65) If $X \vdash_{I P C}(p)$ and $X \subseteq Y$, then $Y \vdash_{I P C}(p)$. The theorem is a consequence of (15) and (9).
(66) If $p \in X$, then $X \vdash_{I P C}(p)$. The theorem is a consequence of (64) and (65).
(67) If $p \in X$, then $p \in \operatorname{CnIPC}(X)$. The theorem is a consequence of (66).
(68) If $p \in$ IPC-Taut, then $\vdash_{I P C} p$.
(69) If $\vdash_{I P C} p$, then $p \in$ IPC-Taut.
(70) $p \in$ IPC-Taut if and only if $\vdash_{I P C} p$.
(71) $\vdash_{I P C} p \Rightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM $)$. The theorem is a consequence of (66), (26), (54), and (53).
(72) $\{p \wedge q\} \vdash_{I P C}(p)$. The theorem is a consequence of (19), (64), and (26).
(73) $\{p \wedge q\} \vdash_{I P C}(q)$. The theorem is a consequence of (20), (64), and (26).
(74) $\vdash_{I P C}(p \Rightarrow q) \wedge(p \Rightarrow(q \Rightarrow$ FALSUM $)) \Rightarrow(p \Rightarrow$ FALSUM $)$. The theorem is a consequence of $(66),(19),(26),(20),(54)$, and (53).
(75) $\vdash_{I P C} p \Rightarrow$ FALSUM $\Rightarrow(p \Rightarrow q)$. The theorem is a consequence of (68).
(76) $\vdash_{I P C}(p \Rightarrow r) \wedge(q \Rightarrow r) \Rightarrow(p \vee q \Rightarrow r)$. The theorem is a consequence of (72), (73), (24), (26), and (53).
(77) $\vdash_{I P C} p \wedge(p \Rightarrow q) \Rightarrow q$. The theorem is a consequence of (72), (73), (26), and (53).
(78) $\vdash_{I P C} p \Rightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM \Rightarrow FALSUM \Rightarrow FALSUM $)$. The theorem is a consequence of (69), (71), and (68).
(79) $\vdash_{I P C}(p \Rightarrow$ FALSUM $) \vee q \Rightarrow(p \Rightarrow q)$. The theorem is a consequence of (69), (75), (76), and (68).
(80) $\vdash_{I P C} p \Rightarrow q \Rightarrow(q \Rightarrow$ FALSUM $\Rightarrow(p \Rightarrow$ FALSUM $))$.
(81) $\vdash_{I P C}(p \Rightarrow$ FALSUM $) \vee(q \Rightarrow$ FALSUM $) \Rightarrow(p \wedge q \Rightarrow$ FALSUM $)$. The theorem is a consequence of $(69),(76),(80)$, and (68).
(82) Let us consider MC-formulas p, q. If $\vdash_{I P C} p$ and $\vdash_{I P C} q$, then $\vdash_{I P C} p \wedge q$. The theorem is a consequence of (31) and (36).
(83) If $\vdash_{I P C} p \Rightarrow q$ and $\vdash_{I P C} q \Rightarrow p$, then $\vdash_{I P C} p \Leftrightarrow q$.
(84) $\vdash_{I P C} p \Rightarrow p$. The theorem is a consequence of (27), (28), and (26).
(85) $\vdash_{I P C} p \Leftrightarrow p$. The theorem is a consequence of (84) and (82).
(86) $\vdash_{I P C} p \wedge q \Rightarrow$ FALSUM $\Rightarrow(p \Rightarrow(q \Rightarrow$ FALSUM $))$. The theorem is a consequence of $(66),(21),(26),(55),(54)$, and (53).
(87) $\vdash_{I P C} p \Rightarrow(q \Rightarrow$ FALSUM $) \Rightarrow(p \wedge q \Rightarrow$ FALSUM $)$. The theorem is a consequence of $(66),(19),(26),(20),(54)$, and (53).
(88) $\vdash_{I P C}(p \wedge q \Rightarrow$ FALSUM $) \Leftrightarrow(p \Rightarrow(q \Rightarrow$ FALSUM $))$. The theorem is a consequence of (86), (87), and (83).
(89) $\vdash_{I P C} p \wedge q \Rightarrow$ FALSUM $\Rightarrow(q \Rightarrow(p \Rightarrow$ FALSUM $))$. The theorem is a consequence of $(66),(21),(26),(55),(54)$, and (53).
(90) $\vdash_{I P C} q \Rightarrow(p \Rightarrow$ FALSUM $) \Rightarrow(p \wedge q \Rightarrow$ FALSUM $)$. The theorem is a consequence of $(66),(19),(26),(20),(54)$, and (53).
(91) $\vdash_{I P C}(q \Rightarrow(p \Rightarrow$ FALSUM $)) \Leftrightarrow(p \wedge q \Rightarrow$ FALSUM $)$. The theorem is a consequence of (89), (90), and (83).
(92) $\vdash_{I P C} p \Rightarrow(q \Rightarrow(p \wedge q \Rightarrow$ FALSUM \Rightarrow FALSUM $))$. The theorem is a consequence of $(66),(21),(65),(26),(55),(54)$, and (53).
(93) $\vdash_{I P C} q \Rightarrow(p \Rightarrow(p \wedge q \Rightarrow$ FALSUM \Rightarrow FALSUM $))$. The theorem is a consequence of $(66),(21),(65),(26),(55),(54)$, and (53).
(94) $\vdash_{I P C} p \Rightarrow(p \wedge q \Rightarrow$ FALSUM $\Rightarrow(q \Rightarrow$ FALSUM $))$. The theorem is a consequence of $(66),(21),(65),(26),(55),(54)$, and (53).
(95) $\vdash_{I P C} q \Rightarrow(p \wedge q \Rightarrow$ FALSUM $\Rightarrow(p \Rightarrow$ FALSUM $))$. The theorem is a consequence of (66), (21), (65), (26), (55), (54), and (53).
(96) $\vdash_{I P C} p \vee q \Rightarrow$ FALSUM $\Rightarrow(p \Rightarrow$ FALSUM $) \wedge(q \Rightarrow$ FALSUM $)$. The theorem is a consequence of (68).
(97) $\vdash_{I P C}(p \Rightarrow$ FALSUM $) \wedge(q \Rightarrow$ FALSUM $) \Rightarrow(p \vee q \Rightarrow$ FALSUM $)$.
(98) $\vdash_{I P C}(p \vee q \Rightarrow$ FALSUM $) \Leftrightarrow(p \Rightarrow$ FALSUM $) \wedge(q \Rightarrow$ FALSUM $)$. The theorem is a consequence of (96), (97), and (83).
(99) $\vdash_{I P C} p \wedge(p \Rightarrow$ FALSUM $) \Rightarrow$ FALSUM.
(100) $\vdash_{I P C}$ FALSUM $\Leftrightarrow p \wedge(p \Rightarrow$ FALSUM $)$. The theorem is a consequence of (35), (99), and (83).
(101) $\vdash_{I P C} p \Rightarrow$ FALSUM $\Rightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM \Rightarrow FALSUM $)$.
(102) $\quad \vdash_{I P C} p \Rightarrow \mathrm{FALSUM} \Rightarrow \mathrm{FALSUM} \Rightarrow \mathrm{FALSUM} \Rightarrow(p \Rightarrow$ FALSUM $)$. The theorem is a consequence of (69), (71), and (68).
(103) $\vdash_{I P C}(p \Rightarrow$ FALSUM $) \Leftrightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM \Rightarrow FALSUM $)$. The theorem is a consequence of (101), (102), and (83).
(104) $\vdash_{I P C} p \Rightarrow$ FALSUM $\Rightarrow q \Rightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM \Rightarrow FALSUM \Rightarrow $q)$. The theorem is a consequence of $(66),(102),(65),(26),(54)$, and (53).
(105) $\vdash_{I P C} p \Rightarrow q \Rightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM $\Rightarrow(q \Rightarrow$ FALSUM \Rightarrow FALSUM)). The theorem is a consequence of (69), (80), and (68).
(106) $\vdash_{I P C} p \wedge(q \Rightarrow$ FALSUM $) \Rightarrow(p \Rightarrow q \Rightarrow$ FALSUM $)$. The theorem is a consequence of $(66),(19),(26),(20),(54)$, and (53).
(107) $\quad \vdash_{I P C} p \Rightarrow q \Rightarrow$ FALSUM \Rightarrow FALSUM $\Rightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM \Rightarrow $(q \Rightarrow$ FALSUM \Rightarrow FALSUM $)$). The theorem is a consequence of $(66),(21)$, (26), (106), (80), (36), (65), (56), (55), (54), and (53).
(108) $\quad \vdash_{I P C} p \Rightarrow$ FALSUM \Rightarrow FALSUM $\Rightarrow(q \Rightarrow$ FALSUM \Rightarrow FALSUM $) \Rightarrow$ $(p \Rightarrow q \Rightarrow$ FALSUM \Rightarrow FALSUM $)$. The theorem is a consequence of (66), (79), (80), (36), (65), (26), (96), (19), (20), (54), and (53).
(109) $\vdash_{I P C}(p \Rightarrow q \Rightarrow$ FALSUM \Rightarrow FALSUM $) \Leftrightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM \Rightarrow $(q \Rightarrow$ FALSUM \Rightarrow FALSUM $)$). The theorem is a consequence of (107), (108), and (83).
(110) $\vdash_{I P C} p \wedge q \Rightarrow$ FALSUM \Rightarrow FALSUM $\Rightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM $) \wedge$ $(q \Rightarrow$ FALSUM \Rightarrow FALSUM $)$. The theorem is a consequence of $(29),(30)$, (80), (36), and (68).
(111) $\vdash_{I P C}(p \Rightarrow$ FALSUM \Rightarrow FALSUM $) \wedge(q \Rightarrow$ FALSUM \Rightarrow FALSUM $) \Rightarrow$ ($p \wedge q \Rightarrow$ FALSUM \Rightarrow FALSUM). The theorem is a consequence of (66), (21), (26), (56), (19), (55), (20), (54), and (53).
(112) $\quad \vdash_{I P C}(p \wedge q \Rightarrow$ FALSUM \Rightarrow FALSUM $) \Leftrightarrow(p \Rightarrow$ FALSUM \Rightarrow FALSUM $) \wedge$ $(q \Rightarrow$ FALSUM \Rightarrow FALSUM $)$. The theorem is a consequence of (110), (111), and (83).
(113) $\vdash_{I P C} p \Rightarrow q \Rightarrow$ FALSUM \Rightarrow FALSUM $\Rightarrow(p \Rightarrow(q \Rightarrow$ FALSUM \Rightarrow FALSUM)). The theorem is a consequence of $(66),(107),(65),(26),(71)$, (54), and (53).
(114) If $\vdash_{I P C} r$ and $\{r\} \vdash_{I P C}(q)$, then $\vdash_{I P C} q$. The theorem is a consequence of (53) and (36).
(115) If $X \vdash_{I P C}(r)$ and $X \cup\{r\} \vdash_{I P C}(q)$, then $X \vdash_{I P C}(q)$. The theorem is a consequence of (52) and (26).
(116) If $X \vdash_{I P C}(r)$ and $Y \cup\{r\} \vdash_{I P C}(q)$, then $X \cup Y \vdash_{I P C}(q)$. The theorem is a consequence of (52), (65), and (26).
(117) If $\vdash_{I P C} p$ and $\{r\} \vdash_{I P C}(q)$, then $\{p \Rightarrow r\} \vdash_{I P C}(q)$. The theorem is a consequence of (65), (64), (26), and (115).
(118) If $X \vdash_{I P C}(p)$ and $X \cup\{r\} \vdash_{I P C}(q)$, then $X \cup\{p \Rightarrow r\} \vdash_{I P C}(q)$. The theorem is a consequence of (65), (66), (26), and (115).
(119) $\{q\} \vdash_{I P C}(q \vee r)$. The theorem is a consequence of (64), (22), and (26).
(120) $\{r\} \vdash \vdash_{I P C}(q \vee r)$. The theorem is a consequence of (64), (23), and (26).
(121) If $\{p\} \vdash_{I P C}(r)$ and $\{q\} \vdash_{I P C}(r)$, then $\{p \vee q\} \vdash_{I P C}(r)$. The theorem is a consequence of (34), (53), (36), (65), (26), and (64).
(122) If $X \cup\{p\} \vdash_{I P C}(r)$ and $X \cup\{q\} \vdash{ }_{I P C}(r)$, then $X \cup\{p \vee q\} \vdash \vdash_{I P C}(r)$. The theorem is a consequence of (52), (24), (26), (64), and (65).
(123) If $X \cup\{p\} \vdash_{I P C}(r)$ and $Y \cup\{q\} \vdash_{I P C}(r)$, then $(X \cup Y) \cup\{p \vee q\} \vdash_{I P C}(r)$. The theorem is a consequence of (52), (65), (24), (26), and (64).
(124) $\vdash_{I P C} p \Rightarrow q \vee(p \Rightarrow r) \Rightarrow(p \Rightarrow q \vee r)$. The theorem is a consequence of (120), (65), (64), (118), (119), (122), (52), and (53).
(125) $\vdash_{I P C} p \Rightarrow(p \Rightarrow$ FALSUM $\Rightarrow q)$. The theorem is a consequence of (66), (26), (25), (54), and (53).
(126) $\vdash_{I P C} p \Rightarrow q \Rightarrow(q \wedge r \Rightarrow$ FALSUM $\Rightarrow(p \wedge r \Rightarrow$ FALSUM $))$. The theorem is a consequence of $(66),(20),(26),(19),(21),(55),(54)$, and (53).
(127) $\vdash_{I P C} p \Rightarrow q \Rightarrow(q \vee r \Rightarrow$ FALSUM $\Rightarrow(p \vee r \Rightarrow$ FALSUM $))$. The theorem is a consequence of $(66),(68),(65),(26),(55),(54)$, and (53).
Let p be an element of MC-w.f.f.. Note that the functor $\operatorname{neg}(p)$ yields an element of MC-w.f.f. and is defined by the term
(Def. 10) $\quad p \Rightarrow$ FALSUM.
The functor neg $^{2}(p)$ yielding an element of MC-w.f.f. is defined by the term (Def. 11) $\quad p \Rightarrow$ FALSUM \Rightarrow FALSUM.

The functor neg $^{3}(p)$ yielding an element of MC-w.f.f. is defined by the term (Def. 12) $\quad p \Rightarrow$ FALSUM \Rightarrow FALSUM \Rightarrow FALSUM.

The functor neg $^{4}(p)$ yielding an element of MC-w.f.f. is defined by the term (Def. 13) $\quad p \Rightarrow$ FALSUM \Rightarrow FALSUM \Rightarrow FALSUM \Rightarrow FALSUM.

The functor neg $^{5}(p)$ yielding an element of MC-w.f.f. is defined by the term
(Def. 14) $\quad p \Rightarrow$ FALSUM \Rightarrow FALSUM \Rightarrow FALSUM \Rightarrow FALSUM \Rightarrow FALSUM.
Now we state the propositions:

$$
\begin{array}{ll}
(128) & \vdash_{I P C} p \Rightarrow \operatorname{neg}(\operatorname{neg}(p)) \\
(129) & \vdash_{I P C} p \Rightarrow \operatorname{neg}^{2}(p) \\
(130) & \vdash_{I P C}(p \Rightarrow q) \wedge(p \Rightarrow \operatorname{neg}(q)) \Rightarrow \operatorname{neg}(p) \\
(131) & \vdash_{I P C} \operatorname{neg}(p) \Rightarrow(p \Rightarrow q)
\end{array}
$$

```
(132) \(\vdash_{I P C} p \Rightarrow \operatorname{neg}(\operatorname{neg}(\operatorname{neg}(\operatorname{neg}(p))))\).
(133) \(\vdash_{I P C} \operatorname{neg}(p) \vee q \Rightarrow(p \Rightarrow q)\).
(134) \(\vdash_{I P C} p \Rightarrow q \Rightarrow(\operatorname{neg}(q) \Rightarrow \operatorname{neg}(p))\).
(135) \(\vdash_{I P C} \operatorname{neg}(p) \vee \operatorname{neg}(q) \Rightarrow \operatorname{neg}(p \wedge q)\).
(136) \(\vdash_{I P C} \operatorname{neg}(p \wedge q) \Rightarrow(p \Rightarrow \operatorname{neg}(q))\).
(137) \(\vdash_{I P C} p \Rightarrow \operatorname{neg}(q) \Rightarrow \operatorname{neg}(p \wedge q)\).
(138) \(\vdash_{I P C} \operatorname{neg}(p \wedge q) \Leftrightarrow(p \Rightarrow \operatorname{neg}(q))\).
(139) \(\vdash_{I P C} \operatorname{neg}(p \wedge q) \Rightarrow(q \Rightarrow \operatorname{neg}(p))\).
(140) \(\vdash_{I P C} q \Rightarrow \operatorname{neg}(p) \Rightarrow \operatorname{neg}(p \wedge q)\).
(141) \(\vdash_{I P C}(q \Rightarrow \operatorname{neg}(p)) \Leftrightarrow \operatorname{neg}(p \wedge q)\).
(142) \(\vdash_{I P C} p \Rightarrow(q \Rightarrow \operatorname{neg}(\operatorname{neg}(p \wedge q)))\).
(143) \(\vdash_{I P C} q \Rightarrow(p \Rightarrow \operatorname{neg}(\operatorname{neg}(p \wedge q)))\).
(144) \(\vdash_{I P C} p \Rightarrow(\operatorname{neg}(p \wedge q) \Rightarrow \operatorname{neg}(q))\).
(145) \(\quad \vdash_{I P C} q \Rightarrow(\operatorname{neg}(p \wedge q) \Rightarrow \operatorname{neg}(p))\).
(146) \(\vdash_{I P C} \operatorname{neg}(p \vee q) \Rightarrow \operatorname{neg}(p) \wedge \operatorname{neg}(q)\).
(147) \(\vdash_{I P C} \operatorname{neg}(p) \wedge \operatorname{neg}(q) \Rightarrow \operatorname{neg}(p \vee q)\).
(148) \(\vdash_{I P C} \operatorname{neg}(p \vee q) \Leftrightarrow \operatorname{neg}(p) \wedge \operatorname{neg}(q)\).
(149) \(\vdash_{I P C} p \wedge \operatorname{neg}(p) \Rightarrow\) FALSUM.
(150) \(\vdash_{I P C}\) FALSUM \(\Leftrightarrow p \wedge \operatorname{neg}(p)\).
(151) \(\vdash_{I P C} \operatorname{neg}(p) \Rightarrow \operatorname{neg}(\operatorname{neg}(\operatorname{neg}(p)))\).
(152) \(\vdash_{I P C} \operatorname{neg}(\operatorname{neg}(\operatorname{neg}(p))) \Rightarrow \operatorname{neg}(p)\).
(153) \(\vdash_{I P C} \operatorname{neg}(p) \Leftrightarrow \operatorname{neg}(\operatorname{neg}(\operatorname{neg}(p)))\).
(154) \(\vdash_{I P C} \operatorname{neg}(p) \Rightarrow q \Rightarrow(\operatorname{neg}(\operatorname{neg}(\operatorname{neg}(p))) \Rightarrow q)\).
(155) \(\vdash_{I P C} p \Rightarrow q \Rightarrow(\operatorname{neg}(\operatorname{neg}(p)) \Rightarrow \operatorname{neg}(\operatorname{neg}(q)))\).
(156) \(\vdash_{I P C} p \wedge \operatorname{neg}(q) \Rightarrow \operatorname{neg}(p \Rightarrow q)\).
(157) \(\vdash_{I P C} \operatorname{neg}(\operatorname{neg}(p \Rightarrow q)) \Rightarrow(\operatorname{neg}(\operatorname{neg}(p)) \Rightarrow \operatorname{neg}(\operatorname{neg}(q)))\).
(158) \(\vdash_{I P C} \operatorname{neg}(\operatorname{neg}(p)) \Rightarrow \operatorname{neg}(\operatorname{neg}(q)) \Rightarrow \operatorname{neg}(\operatorname{neg}(p \Rightarrow q))\).
(159) \(\vdash_{I P C} \operatorname{neg}(\operatorname{neg}(p \Rightarrow q)) \Leftrightarrow(\operatorname{neg}(\operatorname{neg}(p)) \Rightarrow \operatorname{neg}(\operatorname{neg}(q)))\).
(160) \(\vdash_{I P C} \operatorname{neg}(\operatorname{neg}(p \wedge q)) \Rightarrow \operatorname{neg}(\operatorname{neg}(p)) \wedge \operatorname{neg}(\operatorname{neg}(q))\).
(161) \(\vdash_{I P C} \operatorname{neg}(\operatorname{neg}(p)) \wedge \operatorname{neg}(\operatorname{neg}(q)) \Rightarrow \operatorname{neg}(\operatorname{neg}(p \wedge q))\).
(162) \(\vdash_{I P C} \operatorname{neg}(\operatorname{neg}(p \wedge q)) \Leftrightarrow \operatorname{neg}(\operatorname{neg}(p)) \wedge \operatorname{neg}(\operatorname{neg}(q))\).
(163) \(\vdash_{I P C} \operatorname{neg}(\operatorname{neg}(p \Rightarrow q)) \Rightarrow(p \Rightarrow \operatorname{neg}(\operatorname{neg}(q)))\).
(164) \(\vdash_{I P C} p \Rightarrow(\operatorname{neg}(p) \Rightarrow q)\).
(165) \(\vdash_{I P C} p \Rightarrow q \Rightarrow(\operatorname{neg}(q \wedge r) \Rightarrow \operatorname{neg}(p \wedge r))\).
(166) \(\vdash_{I P C} p \Rightarrow q \Rightarrow(\operatorname{neg}(q \vee r) \Rightarrow \operatorname{neg}(p \vee r))\).
```


References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ s $10817-017-9440-6$
[3] Agata Darmochwał. Calculus of quantifiers. Deduction theorem Formalized Mathematics, 2(2):309-312, 1991.
[4] Arend Heyting. Intuitionism. An Introduction. Elsevier, Amsterdam, 3rd revised ed., 1971.
[5] Takao Inoué. Intuitionistic propositional calculus in the extended framework with modal operator. Part 1. Formalized Mathematics, 11(3):259-266, 2003.
[6] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics. An Introduction. Volume I, volume 121 of Studies in Logic and the Foundations of Mathematics. Amsterdam etc.: North-Holland, 1988. ISBN 0-444-70506-6.
[7] Dirk van Dalen. Logic and Structure. London: Springer, 2013. ISBN 978-1-4471-4557-8; 978-1-4471-4558-5. doi 10.1007/978-1-4471-4558-5.

Accepted April 30, 2022

Compactness of Neural Networks ${ }^{1}$

Keiichi Miyajima
Ibaraki University
Faculty of Engineering
Hitachi, Ibaraki, Japan

Hiroshi Yamazaki
Nagano Prefectural Institute of Technology
Nagano, Japan

Summary. In this article, Feed-forward Neural Network is formalized in the Mizar system [1], [2]. First, the multilayer perceptron [6], [7], [8] is formalized using functional sequences. Next, we show that a set of functions generated by these neural networks satisfies equicontinuousness and equiboundedness property [10, [5. At last, we formalized the compactness of the function set of these neural networks by using the Ascoli-Arzela's theorem according to [4] and [3].

MSC: 46B50 68T05 68V20
Keywords: neural network; compactness; Ascoli-Arzela's theorem; equicontinuousness of continuous functions; equiboundedness of continuous functions

MML identifier: NEURONS1, version: 8.1.12 5.71.1431

1. Preliminaries

From now on R_{1}, R_{2} denote real linear spaces.
Now we state the propositions:
(1) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Then the carrier of $R_{1}=$ the carrier of R_{2}.
(2) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Then $0_{R_{1}}=$ $0_{R_{2}}$.
(3) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider elements p, q of R_{1}, and elements f, g of R_{2}. If $p=f$ and $q=g$, then $p+q=f+g$.

[^0](4) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider a real number r, an element q of R_{1}, and an element g of R_{2}. If $q=g$, then $r \cdot q=r \cdot g$.
(5) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider an element q of R_{1}, and an element g of R_{2}. If $q=g$, then $-q=-g$.
(6) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider elements p, q of R_{1}, and elements f, g of R_{2}. If $p=f$ and $q=g$, then $p-q=f-g$.
(7) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider a set X, and a natural number n. Then X is a linear combination of R_{2} if and only if X is a linear combination of R_{1}.
(8) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider a linear combination L_{5} of R_{1}, and a linear combination L_{3} of R_{2}. Suppose $L_{3}=L_{5}$. Then the support of $L_{3}=$ the support of L_{5}.
Let us consider a set F. Now we state the propositions:
(9) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Then F is a subset of R_{1} if and only if F is a subset of R_{2}.
(10) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Then F is a finite sequence of elements of R_{1} if and only if F is a finite sequence of elements of R_{2}.
(11) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Then F is a function from R_{1} into \mathbb{R} if and only if F is a function from R_{2} into \mathbb{R}.
(12) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider a finite sequence F_{1} of elements of R_{1}, a function f_{1} from R_{1} into \mathbb{R}, a finite sequence F_{3} of elements of R_{2}, and a function f_{2} from R_{2} into \mathbb{R}. If $f_{1}=f_{2}$ and $F_{1}=F_{3}$, then $f_{1} \cdot F_{1}=f_{2} \cdot F_{3}$.
(13) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider a finite sequence F_{2} of elements of R_{1}, and a finite sequence F_{1} of elements of R_{2}. If $F_{2}=F_{1}$, then $\sum F_{2}=\sum F_{1}$.
Proof: Set $T=R_{1}$. Set $V=R_{2}$. Consider f being a sequence of the carrier of T such that $\sum F=f(\operatorname{len} F)$ and $f(0)=0_{T}$ and for every natural number j and for every element v of T such that $j<\operatorname{len} F$ and $v=F(j+1)$ holds $f(j+1)=f(j)+v$. Consider f_{2} being a sequence of the carrier of V such that $\sum F_{3}=f_{2}\left(\operatorname{len} F_{3}\right)$ and $f_{2}(0)=0_{V}$ and for every natural number j and for every element v of V such that $j<\operatorname{len} F_{3}$ and $v=F_{3}(j+1)$ holds $f_{2}(j+1)=f_{2}(j)+v$. Define \mathcal{S} [natural number] \equiv if $\$_{1} \leqslant \operatorname{len} F$, then $f\left(\$_{1}\right)=f_{2}\left(\$_{1}\right)$. For every natural number i such that $\mathcal{S}[i]$ holds $\mathcal{S}[i+1]$. For every natural number $n, \mathcal{S}[n]$.
(14) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider a linear combination L_{3} of R_{2}, and a linear combination L_{4} of R_{1}. If $L_{3}=L_{4}$, then $\sum L_{3}=\sum L_{4}$. The theorem is a consequence of (12) and (13).
(15) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider a subset A_{1} of R_{2}, and a subset A_{2} of R_{1}. Suppose $A_{1}=A_{2}$. Let us consider an object X. Then X is a linear combination of A_{1} if and only if X is a linear combination of A_{2}. The theorem is a consequence of (7).
Let us consider a subset A_{1} of R_{2} and a subset A_{2} of R_{1}. Now we state the propositions:
(16) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Then if $A_{1}=A_{2}$, then $\Omega_{\operatorname{Lin}\left(A_{1}\right)}=\Omega_{\operatorname{Lin}\left(A_{2}\right)}$. The theorem is a consequence of (7) and (14).
(17) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Then if $A_{1}=A_{2}$, then A_{1} is linearly independent iff A_{2} is linearly independent. The theorem is a consequence of (7) and (14).
(18) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider an object X. Then X is a subspace of R_{2} if and only if X is a subspace of R_{1}.
(19) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider a linear combination L of R_{2}, and a linear combination S of R_{1}. If $L=S$, then $\sum L=\sum S$. The theorem is a consequence of (12) and (13).
(20) Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2}. Let us consider a set X. Then X is a basis of R_{1} if and only if X is a basis of R_{2}. The theorem is a consequence of (17) and (16).
(21) Let us consider real linear spaces R_{1}, R_{2}. Suppose the RLS structure of $R_{1}=$ the RLS structure of R_{2} and R_{1} is finite dimensional. Then
(i) R_{2} is finite dimensional, and
(ii) $\operatorname{dim}\left(R_{2}\right)=\operatorname{dim}\left(R_{1}\right)$.

The theorem is a consequence of (20).
Let us consider a real normed space R_{3}. Now we state the propositions:
(22) The normed structure of R_{3} is a strict real normed space.
(23) There exists a normed linear topological space T such that the normed structure of $R_{3}=$ the normed structure of T.
Proof: Reconsider $R_{3}=$ the normed structure of $R N S 0$ as a strict real normed space. Set $L_{2}=$ LinearTopSpaceNorm R_{3}. Reconsider $N=$ the norm of R_{3} as a function from the carrier of L_{2} into \mathbb{R}. Set $W=$

〈the carrier of L_{2}, the zero of L_{2}, the addition of L_{2}, the external multiplication of L_{2}, the topology of $\left.L_{2}, N\right\rangle$. W is topological space-like, right complementable, Abelian, add-associative, right zeroed, vector distributive, scalar distributive, scalar associative, scalar unital, add-continuous, and mult-continuous.
(24) Suppose R_{3} is finite dimensional. Then there exists a normed linear topological space T such that
(i) the normed structure of $R_{3}=$ the normed structure of T, and
(ii) T is finite dimensional.

The theorem is a consequence of (23) and (21).
(25) Let us consider a normed linear topological space T, and a real normed space R_{3}. Suppose T is finite dimensional and $R_{3}=$ the normed structure of T. Then
(i) R_{3} is finite dimensional, and
(ii) $\operatorname{dim}\left(R_{3}\right)=\operatorname{dim}(T)$.

The theorem is a consequence of (21).

2. The Ascoli-Arzela Theorem on Finite Dimensional Normed Linear Spaces

Let us consider a non empty metric space M, a non empty, compact topological space S, a normed linear topological space T, a subset G of (the carrier of $T)^{(\text {the carrier of } M)}$, and a non empty subset H of MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and T).

Now we state the propositions:
(26) Suppose $S=M_{\text {top }}$ and T is complete and finite dimensional and $\operatorname{dim}(T) \neq$ 0 . Then suppose $G=H$. Then MetricSpaceNorm(the \mathbb{R}-norm space of continuous functions of S and $T) \upharpoonright H$ is totally bounded if and only if G is equibounded and equicontinuous.
Proof: For every point x of S and for every non empty subset H_{1} of MetricSpaceNorm T such that $H_{1}=\{f(x)$, where f is a function from S into $T: f \in H\}$ holds MetricSpaceNorm $T \upharpoonright \overline{H_{1}}$ is compact by [9, (1)], (25).
(27) Suppose $S=M_{\text {top }}$ and T is complete and finite dimensional and $\operatorname{dim}(T) \neq$ 0 . Then if $G=H$, then \bar{H} is sequentially compact iff G is equibounded and equicontinuous. The theorem is a consequence of (26).
(28) Let us consider a non empty metric space M, a non empty, compact topological space S, and a normed linear topological space T. Suppose $S=M_{\text {top }}$ and T is complete and finite dimensional and $\operatorname{dim}(T) \neq 0$. Let us consider a subset G of (the carrier of $T)^{\alpha}$, and a non empty subset F of the \mathbb{R}-norm space of continuous functions of S and T. Suppose $G=F$. Then \bar{F} is compact if and only if G is equibounded and equicontinuous, where α is the carrier of M. The theorem is a consequence of (27).
(29) Let us consider a non empty real normed space R_{3}, a normed linear topological space T, a non empty subset X of R_{3}, a non empty, compact, strict topological space S, and a non empty subset G of the \mathbb{R}-norm space of continuous functions of S and T.

Suppose S is a subspace of TopSpaceNorm R_{3} and the carrier of $S=X$ and X is compact and T is complete and finite dimensional and $\operatorname{dim}(T) \neq$ 0 and there exist real numbers K, D such that $0<K$ and $0<D$ and for every function F from X into T such that $F \in G$ holds for every points x, y of R_{3} such that $x, y \in X$ holds $\left\|F_{/ x}-F_{/ y}\right\| \leqslant D \cdot\|x-y\|$ and for every point x of R_{3} such that $x \in X$ holds $\left\|F_{/ x}\right\| \leqslant K$. Then \bar{G} is compact.
Proof: Reconsider $Y=X$ as a non empty subset of MetricSpaceNorm R_{3}. Reconsider $M=$ MetricSpaceNorm $R_{3} \upharpoonright Y$ as a non empty metric space. For every object $z, z \in$ the topology of S iff $z \in$ the open set family of M. For every object z such that $z \in$ the continuous functions of S and T holds $z \in(\text { the carrier of } T)^{\alpha}$, where α is the carrier of M. Reconsider $H=G$ as a subset of (the carrier of $T)^{(\text {the carrier of } M)} . \bar{G}$ is compact iff H is equibounded and equicontinuous.

Consider K, D being real numbers such that $0<K$ and $0<D$ and for every function F from X into T such that $F \in G$ holds for every points x, y of R_{3} such that $x, y \in X$ holds $\left\|F_{/ x}-F_{/ y}\right\| \leqslant D \cdot\|x-y\|$ and for every point x of R_{3} such that $x \in X$ holds $\left\|F_{/ x}\right\| \leqslant K$. For every function f from the carrier of M into the carrier of T such that $f \in H$ for every element x of $M,\|f(x)\| \leqslant K$. For every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every function f from the carrier of M into the carrier of T such that $f \in H$ for every points x_{1}, x_{2} of M such that $\rho\left(x_{1}, x_{2}\right)<d$ holds $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<e$.

3. High-Order and Multilayer Perceptron

Let n be a natural number, k be a finite sequence of elements of \mathbb{N}, and N be a finite sequence. We say that N is a multilayer perceptron with k and n if and only if
(Def. 1) len $N=n$ and len $N+1=$ len k and for every natural number i such that $1 \leqslant i<\operatorname{len} k$ holds $N(i)$ is a function from $\left\langle\mathcal{E}^{k(i)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(i+1)},\|\cdot\|\right\rangle$.
We say that N is a multilayer perceptron-like if and only if
(Def. 2) there exists a finite sequence k of elements of \mathbb{N} such that len $N+1=\operatorname{len} k$ and for every natural number i such that $1 \leqslant i<\operatorname{len} k$ holds $N(i)$ is a function from $\left\langle\mathcal{E}^{k(i)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(i+1)},\|\cdot\|\right\rangle$.
Observe that there exists a finite sequence which is a multilayer perceptronlike. A multilayer perceptron is multilayer perceptron-like finite sequence. Now we state the proposition:
(30) Let us consider a multilayer perceptron N. Then there exists a finite sequence k of elements of \mathbb{N} such that
(i) len $N+1=\operatorname{len} k$, and
(ii) for every natural number i such that $1 \leqslant i<\operatorname{len} k$ holds $N(i)$ is a function from $\left\langle\mathcal{E}^{k(i)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(i+1)},\|\cdot\|\right\rangle$.

Let n be a natural number, k be a finite sequence of elements of \mathbb{N}, and N be a finite sequence. Assume N is a multilayer perceptron with k and n. Assume len $N \neq 0$. The functor $\operatorname{OutputFunc}(N, k, n)$ yielding a function from $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle$ is defined by
(Def. 3) there exists a finite sequence p such that len $p=\operatorname{len} N$ and $p(1)=N(1)$ and for every natural number i such that $1 \leqslant i<\operatorname{len} N$ there exists a function N_{2} from $\left\langle\mathcal{E}^{k(i+1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(i+2)},\|\cdot\|\right\rangle$ and there exists a function p_{2} from $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(i+1)},\|\cdot\|\right\rangle$ such that $N_{2}=N(i+1)$ and $p_{2}=p(i)$ and $p(i+1)=N_{2} \cdot p_{2}$ and $i t=p(\operatorname{len} N)$.
Now we state the proposition:
(31) Let us consider a natural number n, a finite sequence k of elements of \mathbb{N}, and a non empty finite sequence N. Suppose $n \neq 0$ and N is a multilayer perceptron with k and $n+1$. Then there exists a finite sequence k_{1} of elements of \mathbb{N} and there exists a non empty finite sequence N_{1} and there exists a function N_{2} from $\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(n+2)},\|\cdot\|\right\rangle$ such that $N_{1}=N\left\lceil n\right.$ and $k_{1}=k \upharpoonright(n+1)$ and $N_{2}=N(n+1)$ and N_{1} is a multilayer perceptron with k_{1} and n and $\operatorname{OutputFunc}(N, k, n+1)=$ $N_{2} \cdot\left(\operatorname{OutputFunc}\left(N_{1}, k_{1}, n\right)\right)$.

Proof: Reconsider $N_{1}=N\lceil n$ as a non empty finite sequence. Reconsider $k_{1}=k \upharpoonright(n+1)$ as a finite sequence of elements of \mathbb{N}. For every natural number i such that $1 \leqslant i<$ len k_{1} holds $N_{1}(i)$ is a function from $\left\langle\mathcal{E}^{k_{1}(i)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k_{1}(i+1)},\|\cdot\|\right\rangle$. Consider p being a finite sequence such that len $p=$ len N and $p(1)=N(1)$ and for every natural number i such that $1 \leqslant$ $i<\operatorname{len} N$ there exists a function N_{2} from $\left\langle\mathcal{E}^{k(i+1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(i+2)}, \| \cdot\right.$ $\|\rangle$ and there exists a function p_{2} from $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(i+1)},\|\cdot\|\right\rangle$ such that $N_{2}=N(i+1)$ and $p_{2}=p(i)$ and $p(i+1)=N_{2} \cdot p_{2}$ and OutputFunc $(N, k, n+1)=p($ len $N)$. Consider N_{2} being a function from $\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(n+2)},\|\cdot\|\right\rangle, p_{2}$ being a function from $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle$ such that $N_{2}=N(n+1)$ and $p_{2}=p(n)$ and $p(n+1)=N_{2} \cdot p_{2}$.

Let n be a natural number and k be a finite sequence of elements of \mathbb{N}. The functor Neurons (n, k) yielding a subset of
(the carrier of $\left.\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle\right)^{\left(\text {the carrier of }\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle\right)}$ is defined by the term
(Def. 4) $\quad\left\{F\right.$, where F is a function from $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle$: there exists a finite sequence N such that N is a multilayer perceptron with k and n and $F=\operatorname{OutputFunc}(N, k, n)\}$.
Now we state the propositions:
(32) Let us consider a natural number n, a finite sequence k of elements of \mathbb{N}, a non empty, compact, strict topological space S, a non empty subspace M of MetricSpaceNorm $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$, a non empty subset X of $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$, and a normed linear topological space T. Suppose $S=M_{\text {top }}$ and the carrier of $M=X$ and X is compact and T is complete and finite dimensional and $\operatorname{dim}(T) \neq 0$ and $\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle=$ the normed structure of T.

Let us consider a subset G of (the carrier of $T)^{\alpha}$, and a non empty subset F of the \mathbb{R}-norm space of continuous functions of S and T. Suppose $G=F$ and $G \subseteq\left\{f \upharpoonright X\right.$, where f is a function from $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ into $\left.\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle: f \in \operatorname{Neurons}(n, k)\right\}$. Then \bar{F} is compact if and only if G is equibounded and equicontinuous, where α is the carrier of M.
(33) Let us consider a natural number n, a finite sequence k of elements of \mathbb{N}, a non empty, compact, strict topological space S, a non empty subset X of $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$, and a normed linear topological space T. Suppose S is a subspace of TopSpaceNorm $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ and the carrier of $S=X$ and X is compact and T is complete and finite dimensional and $\operatorname{dim}(T) \neq 0$ and $\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle=$ the normed structure of T. Let us consider a non empty subset G of the \mathbb{R}-norm space of continuous functions of S and T.

Suppose $G \subseteq\left\{f \upharpoonright X\right.$, where f is a function from $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ into $\left.\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle: f \in \operatorname{Neurons}(n, k)\right\}$ and there exist real numbers K, D
such that $0<K$ and $0<D$ and for every function F from X into T such that $F \in G$ holds for every points x, y of $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ such that $x, y \in X$ holds $\left\|F_{/ x}-F_{/ y}\right\| \leqslant D \cdot\|x-y\|$ and for every point x of $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ such that $x \in X$ holds $\left\|F_{/ x}\right\| \leqslant K$. Then \bar{G} is compact.
Let X, Y be real normed spaces, F be a function from X into Y, and D, K be real numbers. We say that F is a layer function of D and K if and only if
(Def. 5) for every points x, y of $X,\|F(x)-F(y)\| \leqslant D \cdot\|x-y\|$ and for every point x of $X,\|F(x)\| \leqslant K$.
Let n be a natural number, k be a finite sequence of elements of \mathbb{N}, and N be a finite sequence. We say that N is a layer sequence of D, K, k and n if and only if
(Def. 6) \quad len $N=n$ and N is a multilayer perceptron with k and n and for every natural number i such that $1 \leqslant i<\operatorname{len} k$ there exists a function N_{3} from $\left\langle\mathcal{E}^{k(i)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(i+1)},\|\cdot\|\right\rangle$ such that $N(i)=N_{3}$ and N_{3} is a layer function of D and K.

Now we state the propositions:
(34) Let us consider real numbers D, K. Suppose $0 \leqslant D$ and $0 \leqslant K$. Let us consider a natural number n, a finite sequence k of elements of \mathbb{N}, and a non empty finite sequence N. Suppose N is a layer sequence of D, K, k and n. Then OutputFunc (N, k, n) is a layer function of D^{n} and K.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence k of elements of \mathbb{N} for every non empty finite sequence N such that len $N=\$_{1}$ and N is a layer sequence of D, K, k and $\$_{1}$ holds $\operatorname{OutputFunc}\left(N, k, \$_{1}\right)$ is a layer function of $D^{\$_{1}}$ and K. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$.
(35) Let us consider a natural number n, a finite sequence k of elements of \mathbb{N}, a non empty, compact, strict topological space S, a non empty subset X of $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$, and a normed linear topological space T. Suppose S is a subspace of TopSpaceNorm $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ and the carrier of $S=X$ and X is compact and T is complete and finite dimensional and $\operatorname{dim}(T) \neq 0$ and $\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle=$ the normed structure of T.

Let us consider a non empty subset G of the \mathbb{R}-norm space of continuous functions of S and T, and real numbers D, K. Suppose $0<D$ and $0<K$ and $G \subseteq\left\{F \upharpoonright X\right.$, where F is a function from $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{k(n+1)},\|\cdot\|\right\rangle$: there exists a non empty finite sequence N such that N is a layer sequence of D, K, k and n and $F=\operatorname{OutputFunc}(N, k, n)\}$. Then \bar{G} is compact.
Proof: Set $K_{1}=K+1$. Set $D_{1}=D^{n}+1$. For every function F from X into T such that $F \in G$ holds for every points x, y of $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ such
that $x, y \in X$ holds $\left\|F_{/ x}-F_{/ y}\right\| \leqslant D_{1} \cdot\|x-y\|$ and for every point x of $\left\langle\mathcal{E}^{k(1)},\|\cdot\|\right\rangle$ such that $x \in X$ holds $\left\|F_{/ x}\right\| \leqslant K_{1}$.

Acknowledgement: We would like to thank Prof. Yasunari Shidama for useful cooperation.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ s $10817-017-9440-6$
[3] Serge Lang. Real and Functional Analysis (Texts in Mathematics). Springer-Verlag, 1993.
[4] Kazuo Matsuzaka. Sets and Topology (Introduction to Mathematics). IwanamiShoten, 2000.
[5] Michael Read and Barry Simon. Functional Analysis (Methods of Modern Mathematical Physics). Academic Press, 1980.
[6] Frank Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 1958.
[7] David Everett Rumelhart, Geoffrey Everes Hinton, and Ronald J. Williams. Learning Representations by Backpropagating Errors. Nature, 1986.
[8] Jürgen Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural Networks, 2015.
[9] Hiroshi Yamazaki, Keiichi Miyajima, and Yasunari Shidama. Ascoli-Arzelà theorem. Formalized Mathematics, 29(2):87-94, 2021. doi 10.2478/forma-2021-0009
[10] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Splitting Fields for the Rational Polynomials $\mathrm{X}^{2}-2, \mathrm{X}^{2}+\mathrm{X}+1, \mathrm{X}^{3}-1$, and $\mathrm{X}^{3}-2$

Christoph Schwarzweller
Institute of Informatics
University of Gdańsk
Poland

Sara Burgoa
Weston, Florida
United States of America

Summary. In [11 the existence (and uniqueness) of splitting fields has been formalized. In this article we apply this result by providing splitting fields for the polynomials $X^{2}-2, X^{3}-1, X^{2}+X+1$ and $X^{3}-2$ over \mathcal{Q} using the Mizar [2], 11 formalism. We also compute the degrees and bases for these splitting fields, which requires some additional registrations to adopt types properly.

The main result, however, is that the polynomial $X^{3}-2$ does not split over $\mathcal{Q}(\sqrt[3]{2})$. Because $X^{3}-2$ obviously has a root over $\mathcal{Q}(\sqrt[3]{2})$, this shows that the field extension $\mathcal{Q}(\sqrt[3]{2})$ is not normal over \mathcal{Q} [3, [4], [5] and [7].

MSC: 12 F 056
Keywords: splitting fields; rational polynomials
MML identifier: FIELD_10, version: 8.1.12 5.71.1431

1. Preliminaries

Let L be a non empty double loop structure and a, b, c be elements of L. Note that the functor $\{a, b, c\}$ yields a subset of L. Let i be an integer. Let us observe that i^{3} is integer.

Let i be an even integer. Let us observe that i^{3} is even.
Let i be an odd integer. Let us observe that i^{3} is odd.
Now we state the propositions:
(1) Let us consider complex numbers r, s. Then $(r \cdot s)^{3}=r^{3} \cdot s^{3}$.
(2) Let us consider a rational number r. Then $r^{3} \geqslant 0$ if and only if $r \geqslant 0$.
(3) There exists no rational number r such that $r^{3}=2$. The theorem is a consequence of (2) and (1).
Note that $\operatorname{root}_{3}(2)$ is non rational. Now we state the proposition:
(4) Let us consider finite sets X_{1}, X_{2}. Suppose $X_{1} \subseteq X_{2}$ and $\overline{\overline{X_{1}}}=\overline{\overline{X_{2}}}$. Then $X_{1}=X_{2}$.
Let F be a field. Observe that there exists an element of the carrier of $\operatorname{PolyRing}(F)$ which is linear and there exists an element of the carrier of PolyRing (F) which is non linear and non constant.

Let us consider a field F and an element p of the carrier of $\operatorname{PolyRing}(F)$. Now we state the propositions:
(5) If $\operatorname{deg}(p)=2$, then p is reducible iff p has roots.
(6) If $\operatorname{deg}(p)=3$, then p is reducible iff p has roots.

2. More on Field Extensions

One can check that \mathbb{C}_{F} is $\left(\mathbb{F}_{\mathbb{Q}}\right)$-extending and there exists an element of \mathbb{R}_{F} which is $\left(\mathbb{F}_{\mathbb{Q}}\right)$-membered and there exists an element of \mathbb{R}_{F} which is non $\left(\mathbb{F}_{\mathbb{Q}}\right)$-membered and there exists an element of \mathbb{C}_{F} which is $\left(\mathbb{R}_{F}\right)$-membered and there exists an element of \mathbb{C}_{F} which is non $\left(\mathbb{R}_{F}\right)$-membered and there exists an element of \mathbb{C}_{F} which is $\left(\mathbb{F}_{\mathbb{Q}}\right)$-membered and there exists an element of \mathbb{C}_{F} which is non $\left(\mathbb{F}_{\mathbb{Q}}\right)$-membered.

Now we state the propositions:
(7) Let us consider a field F, an extension E of F, an E-extending extension K of F, an element p of the carrier of $\operatorname{PolyRing}(F)$, and an element q of the carrier of $\operatorname{PolyRing}(E)$. If $p=q$, then $\operatorname{Roots}(K, p)=\operatorname{Roots}(K, q)$.
(8) Let us consider a field F, an extension E of F, an F-extending extension K of E, an element a of E, and an element b of K. Suppose $b=a$. Then $\operatorname{RAdj}(F,\{a\})=\operatorname{RAdj}(F,\{b\})$.
(9) Let us consider a field F, an extension E of F, an F-extending extension K of E, an F-algebraic element a of E, and an F-algebraic element b of K. Suppose $b=a$. Then $\operatorname{FAdj}(F,\{a\})=\operatorname{FAdj}(F,\{b\})$.
(10) Let us consider a field F, an extension E of F, an E-extending extension K of F, an F-algebraic element a of E, and an F-algebraic element b of K. If $a=b$, then $\operatorname{MinPoly}(a, F)=\operatorname{MinPoly}(b, F)$.
(11) Let us consider a field F, an F-finite extension E of F, and an element a of E. Then $\operatorname{deg}(\operatorname{MinPoly}(a, F)) \mid \operatorname{deg}(E, F)$.

Let F be a field, E be an extension of F, and T_{1}, T_{2} be subsets of E. One can check that $\operatorname{FAdj}\left(F, T_{1} \cup T_{2}\right)$ is $\left(\operatorname{FAdj}\left(F, T_{1}\right)\right)$-extending and $\left(\operatorname{FAdj}\left(F, T_{2}\right)\right)$ extending.

Let a, b be elements of E. Observe that $\operatorname{FAdj}(F,\{a, b\})$ is $(\operatorname{FAdj}(F,\{a\}))$ extending and $(\operatorname{FAdj}(F,\{b\}))$-extending. Let a, b, c be elements of E. Let us observe that $\operatorname{FAdj}(F,\{a, b, c\})$ is $(\operatorname{FAdj}(F,\{a, b\}))$-extending, $(\operatorname{FAdj}(F,\{a, c\}))$ extending, and $(\operatorname{FAdj}(F,\{b, c\}))$-extending.

3. The Rational Polynomials $X^{2}-2, X^{3}-1, X^{2}+X+1$ and $X^{3}-2$

The functors: $\mathrm{X}^{2}-2, \mathrm{X}^{3}-1, \mathrm{X}^{3}-2$, and $\mathrm{X}^{2}+\mathrm{X}+1$ yielding elements of the carrier of PolyRing $\left(\mathbb{F}_{\mathbb{Q}}\right)$ are defined by terms
(Def. 1) $\left\langle-\left(1_{\mathbb{F}_{\mathbb{Q}}}+1_{\mathbb{F}_{\mathbb{Q}}}\right), 0_{\mathbb{F}_{\mathbb{Q}}}, 1_{\mathbb{F}_{\mathbb{Q}}}\right\rangle$,
$\left(\right.$ Def. 2) $\quad\left(0 . \mathbb{F}_{\mathbb{Q}}+\cdot(0,-1)\right)+\cdot(3,1)$,
$\left(\right.$ Def. 3) $\quad\left(0 . \mathbb{F}_{\mathbb{Q}}+\cdot(0,-2)\right)+\cdot(3,1)$,
(Def. 4) $\left\langle 1_{\mathbb{F}_{\mathbb{Q}}}, 1_{\mathbb{F}_{\mathbb{Q}}}, 1_{\mathbb{F}_{\mathbb{Q}}}\right\rangle$,
respectively. The functors: $\sqrt{2}$ and $\sqrt[3]{2}$ yielding non zero elements of \mathbb{R}_{F} are defined by terms
(Def. 5) $\sqrt{2}$,
(Def. 6) $\operatorname{root}_{3}(2)$,
respectively. The functors: $\sqrt{2}, \sqrt[3]{2}$, and $\sqrt{-3}$ yielding non zero elements of \mathbb{C}_{F} are defined by terms
(Def. 7) $\sqrt{2}$,
(Def. 8) $\operatorname{root}_{3}(2)$,
(Def. 9) (i) • $\sqrt{3}$,
respectively. The functor ζ yielding a non zero element of \mathbb{C}_{F} is defined by the term
(Def. 10) $\frac{-1+(i) \cdot \sqrt{3}}{2}$.
Observe that $\mathrm{X}^{2}-2$ is monic, purely quadratic, and irreducible and $\mathrm{X}^{3}-2$ is monic, non constant, and irreducible and $\mathrm{X}^{3}-1$ is monic, non constant, and reducible and $\mathrm{X}^{2}+\mathrm{X}+1$ is monic, quadratic, and irreducible and $\sqrt{2}$ is non $\left(\mathbb{F}_{\mathbb{Q}}\right)$-membered and $\left(\mathbb{F}_{\mathbb{Q}}\right)$-algebraic and $\sqrt{2}$ is non $\left(\mathbb{F}_{\mathbb{Q}}\right)$-membered and $\left(\mathbb{F}_{\mathbb{Q}}\right)$ algebraic and $\sqrt[3]{2}$ is non $\left(\mathbb{F}_{\mathbb{Q}}\right)$-membered and $\left(\mathbb{F}_{\mathbb{Q}}\right)$-algebraic and $\sqrt[3]{2}$ is non $\left(\mathbb{F}_{\mathbb{Q}}\right)$ membered and $\left(\mathbb{F}_{\mathbb{Q}}\right)$-algebraic and ζ is non $\left(\mathbb{R}_{F}\right)$-membered and $\left(\mathbb{F}_{\mathbb{Q}}\right)$-algebraic.
$(\zeta)^{2}$ is non $\left(\mathbb{R}_{F}\right)$-membered and $\left(\mathbb{F}_{\mathbb{Q}}\right)$-algebraic and $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)$ is $\left(\mathbb{F}_{\mathbb{Q}}\right)$ finite and $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right)$ is $\left(\mathbb{F}_{\mathbb{Q}}\right)$-finite and \mathbb{R}_{F} is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right)\right)$-extending and \mathbb{R}_{F} is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)\right)$-extending and \mathbb{C}_{F} is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right)\right)$-extending and \mathbb{C}_{F} is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)\right)$-extending and \mathbb{C}_{F} is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right)\right)$-extending.

Now we state the propositions:
(12) $\zeta=-\frac{1}{2}+(i) \cdot \frac{\sqrt{3}}{2}$.
(13) $(\zeta)^{2}=-\frac{1}{2}-\frac{(i) \cdot \sqrt{3}}{2}$.
(14) (i) $\zeta^{2} \neq 1$, and
(ii) $\zeta^{3}=1$, and
(iii) $\zeta^{2}=-\zeta-1$.
(15) (i) ζ is a complex root of 3,1 , and
(ii) $(\zeta)^{2}$ is a complex root of 3,1 .
(16) $\sqrt[3]{2}^{3}=2$.
(17) $\mathrm{X}^{3}-1=\left(\mathrm{X}-1_{\mathbb{F}_{\mathbb{Q}}}\right) \cdot\left(\mathrm{X}^{2}+\mathrm{X}+1\right)$.
(18) (i) $\operatorname{deg}\left(\mathrm{X}^{2}-2\right)=2$, and
(ii) $\operatorname{deg}\left(\mathrm{X}^{3}-2\right)=3$, and
(iii) $\operatorname{deg}\left(\mathrm{X}^{3}-1\right)=3$, and
(iv) $\operatorname{deg}\left(\mathrm{X}^{2}+\mathrm{X}+1\right)=2$.

Let us consider an element x of $\mathbb{F}_{\mathbb{Q}}$. Now we state the propositions:
(19) $\operatorname{eval}\left(\mathrm{X}^{2}-2, x\right)=x^{2}-2$.
(20) $\quad \operatorname{eval}\left(\mathrm{X}^{3}-1, x\right)=x^{3}-1$.
(21) $\quad \operatorname{eval}\left(\mathrm{X}^{2}+\mathrm{X}+1, x\right)=x^{2}+x+1$.
(22) $\quad \operatorname{eval}\left(\mathrm{X}^{3}-2, x\right)=x^{3}-2$.
(23) Let us consider an element r of \mathbb{R}_{F}. Then $\operatorname{ExtEval}\left(\mathrm{X}^{2}-2, r\right)=r^{2}-2$.

Let us consider an element z of \mathbb{C}_{F}. Now we state the propositions:
(24) $\operatorname{ExtEval}\left(\mathrm{X}^{3}-1, z\right)=z^{3}-1$.
(25) $\operatorname{ExtEval}\left(\mathrm{X}^{2}+\mathrm{X}+1, z\right)=z^{2}+z+1$.
(26) $\operatorname{ExtEval}\left(\mathrm{X}^{3}-2, z\right)=z^{3}-2$.
(27) Let us consider an element z of the carrier of \mathbb{C}_{F}.

Then $\operatorname{ExtEval}\left(\mathrm{X}^{3}-1, z\right)=0_{\mathbb{C}_{\mathrm{F}}}$ if and only if z is a complex root of 3,1 .
(28) $\operatorname{Discriminant}\left(X^{2}+X+1\right)=-3$.
(29) $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\zeta\}\right)=\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{-3}\}\right)$.

Proof: $\{\zeta\}$ is a subset of $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{-3}\}\right)$ by [10, (35)], [9, (12)], [6, (2)]. $\{\sqrt{-3}\}$ is a subset of $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\zeta\}\right)$.

4. A Splitting Field of $X^{2}-2$

Now we state the propositions:
(30) $\operatorname{MinPoly}\left(\sqrt{2}, \mathbb{F}_{\mathbb{Q}}\right)=\mathrm{X}^{2}-2$.
(31) $\operatorname{deg}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right), \mathbb{F}_{\mathbb{Q}}\right)=2$.
(32) $\{1, \sqrt{2}\}$ is a basis of $\operatorname{VecSp}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right), \mathbb{F}_{\mathbb{Q}}\right)$. The theorem is a consequence of (30).
(33) $\operatorname{Roots}\left(\mathrm{X}^{2}-2\right)=\emptyset$.
(34) $\mathrm{X}^{2}-2$ does not split in $\mathbb{F}_{\mathbb{Q}}$.
(35) $\operatorname{Roots}\left(\mathbb{R}_{\mathrm{F}}, \mathrm{X}^{2}-2\right)=\{\sqrt{2},-\sqrt{2}\}$.

Proof: $\overline{\overline{\operatorname{Roots}\left(\mathbb{R}_{\mathrm{F}}, \mathrm{X}^{2}-2\right)}}=2$ by [12, (22)], [13, (13)].
(36) $\quad \mathrm{X}^{2}-2=(\mathrm{X}-\sqrt{2}) \cdot(\mathrm{X}+\sqrt{2})$.
(37) $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right)$ is a splitting field of $X^{2}-2$.

Proof: Set $F=\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right) . \mathrm{X}^{2}-2=1_{\mathbb{R}_{\mathrm{F}}} \cdot(\operatorname{rpoly}(1, \sqrt{2}) * \operatorname{rpoly}(1$, $-\sqrt{2})$). $\{\sqrt{2},-\sqrt{2}\} \subseteq$ the carrier of $F . \mathrm{X}^{2}-2$ splits in F.
(38) $\sqrt[3]{2}$ is not an element of $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right)$. The theorem is a consequence of (10), (30), and (11).
(39) \mathbb{R}_{F} is not a splitting field of $\mathrm{X}^{2}-2$. The theorem is a consequence of (37) and (38).
(40) \mathbb{C}_{F} is not a splitting field of $\mathrm{X}^{2}-2$. The theorem is a consequence of (37) and (38).

5. A Splitting Field of $X^{3}-1$ and $X^{2}+X+1$

Now we state the propositions:
(41) $\operatorname{Roots}\left(\mathrm{X}^{3}-1\right)=\{1\}$.
(42) $\operatorname{Roots}\left(\mathrm{X}^{2}+\mathrm{X}+1\right)=\emptyset$.
(43) $\operatorname{MinPoly}\left(\zeta, \mathbb{F}_{\mathbb{Q}}\right)=\mathrm{X}^{2}+\mathrm{X}+1$.
(44) $\operatorname{Roots}\left(\mathbb{C}_{\mathrm{F}}, \mathrm{X}^{3}-1\right)=\left\{1, \zeta,(\zeta)^{\mathbf{2}}\right\}$.
(45) $\operatorname{Roots}\left(\mathbb{C}_{\mathrm{F}}, \mathrm{X}^{2}+\mathrm{X}+1\right)=\left\{\zeta,(\zeta)^{2}\right\}$.
(46) $X^{3}-1$ does not split in $\mathbb{F}_{\mathbb{Q}}$.
(47) $\mathrm{X}^{3}-1$ does not split in \mathbb{R}_{F}.
(48) $X^{2}+X+1$ does not split in $\mathbb{F}_{\mathbb{Q}}$.
(49) $\mathrm{X}^{2}+\mathrm{X}+1$ does not split in \mathbb{R}_{F}.
(50) $\mathrm{X}^{2}+\mathrm{X}+1=(\mathrm{X}-\zeta) \cdot\left(\mathrm{X}-(\zeta)^{2}\right)$.
(51) $\quad \mathrm{X}^{3}-1=\left(\mathrm{X}-1_{\mathbb{C}_{\mathrm{F}}}\right) \cdot(\mathrm{X}-\zeta) \cdot\left(\mathrm{X}-(\zeta)^{2}\right)$. The theorem is a consequence of (50).
(52) $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\zeta\}\right)$ is a splitting field of $\mathrm{X}^{2}+\mathrm{X}+1$.

Proof: Set $F=\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\zeta\}\right)$. Roots $\left(\mathbb{C}_{\mathrm{F}}, \mathrm{X}^{2}+\mathrm{X}+1\right) \subseteq$ the carrier of F.
(53) $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\zeta\}\right)$ is a splitting field of $X^{3}-1$.

Proof: Set $F=\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\zeta\}\right) . \operatorname{Roots}\left(\mathbb{C}_{F}, \mathrm{X}^{3}-1\right) \subseteq$ the carrier of F.
(54) $\quad \operatorname{deg}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\zeta\}\right), \mathbb{F}_{\mathbb{Q}}\right)=2$.
(55) $\{1, \zeta\}$ is a basis of $\operatorname{VecSp}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\zeta\}\right), \mathbb{F}_{\mathbb{Q}}\right)$. The theorem is a consequence of (43).
(56) $\sqrt{2}$ is not an element of $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\zeta\}\right)$. The theorem is a consequence of (55).
(57) \mathbb{C}_{F} is not a splitting field of $\mathrm{X}^{2}+\mathrm{X}+1$. The theorem is a consequence of (52) and (56).
(58) $\quad \mathbb{C}_{\mathrm{F}}$ is not a splitting field of $\mathrm{X}^{3}-1$. The theorem is a consequence of (53) and (56).

6. A Splitting Field of $X^{3}-2$

Now we state the propositions:
(59) $\quad \operatorname{MinPoly}\left(\sqrt[3]{2}, \mathbb{F}_{\mathbb{Q}}\right)=X^{3}-2$.
(60) $\quad \operatorname{deg}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right), \mathbb{F}_{\mathbb{Q}}\right)=3$.
(61) $\left\{1, \sqrt[3]{2}, \sqrt[3]{2}^{2}\right\}$ is a basis of $\operatorname{VecSp}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right), \mathbb{F}_{\mathbb{Q}}\right)$. The theorem is a consequence of (59).
(62) $\operatorname{Roots}\left(\mathrm{X}^{3}-2\right)=\emptyset$. The theorem is a consequence of (6).
(63) $\mathrm{X}^{3}-2$ does not split in $\mathbb{F}_{\mathbb{Q}}$. The theorem is a consequence of (6).
(64) $\operatorname{Roots}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right), \mathrm{X}^{3}-2\right)=\{\sqrt[3]{2}\}$.
(65) $\quad X^{3}-2$ does not split in $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)$.
(66) $\operatorname{Roots}\left(\mathbb{R}_{\mathrm{F}}, \mathrm{X}^{3}-2\right)=\{\sqrt[3]{2}\}$.
(67) $X^{3}-2$ does not split in \mathbb{R}_{F}.
(68) $\operatorname{Roots}\left(\mathbb{C}_{\mathrm{F}}, \mathrm{X}^{3}-2\right)=\left\{\sqrt[3]{2}, \sqrt[3]{2} \cdot \zeta, \sqrt[3]{2} \cdot(\zeta)^{2}\right\}$.
(69) $\quad \mathrm{X}^{3}-2=(\mathrm{X}-\sqrt[3]{2}) \cdot(\mathrm{X}-\sqrt[3]{2} \cdot \zeta) \cdot\left(\mathrm{X}-\sqrt[3]{2} \cdot(\zeta)^{2}\right)$.

Proof: Set $F=\mathbb{C}_{\mathrm{F}}$. Set $a=\sqrt[3]{2} \cdot \zeta$. Set $b=\sqrt[3]{2} \cdot(\zeta)^{2}$. Set $c=\sqrt[3]{2}$. Reconsider $p_{1}=\mathrm{X}-c$ as a polynomial over $F . p_{1} *\left\langle a \cdot b,-b+-a, 1_{F}\right\rangle=$ $\mathrm{X}^{3}-2$ by [8, (10)].
(70) $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right)$ is a splitting field of $X^{3}-2$.

Proof: Set $F=\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right) . \operatorname{Roots}\left(\mathbb{C}_{\mathrm{F}}, \mathrm{X}^{3}-2\right) \subseteq$ the carrier of F.

Let us observe that \mathbb{C}_{F} is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)\right)$-extending and $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right)$ is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)\right)$-extending and ζ is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)\right)$-algebraic.

Now we state the propositions:
(71) $\operatorname{MinPoly}\left(\zeta, \operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)\right)=\mathrm{X}^{2}+\mathrm{X}+1$. The theorem is a consequence of (9), (5), and (7).
(72) $\operatorname{deg}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right), \operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)\right)=2$. The theorem is a consequence of (71).
(73) $\{1, \zeta\}$ is a basis of $\operatorname{VecSp}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right), \operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)\right)$. The theorem is a consequence of (71).
(74) $\operatorname{deg}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right), \mathbb{F}_{\mathbb{Q}}\right)=6$. The theorem is a consequence of (59), (9), and (72).
(75) $\quad\left\{1, \sqrt[3]{2}, \sqrt[3]{2}^{2}, \zeta, \sqrt[3]{2}_{2} \zeta, \sqrt[3]{2}^{2} \cdot \zeta\right\}$ is a basis of $\operatorname{VecSp}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right), \mathbb{F}_{\mathbb{Q}}\right)$. Proof: Set $F=\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right)$. Set $K=\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right) . K=$ $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\}\right)$. Set $M=\left\{1, \sqrt[3]{2}, \sqrt[3]{2}^{2}, \zeta, \sqrt[3]{2}^{2} \zeta, \sqrt[3]{2}^{2} \cdot \zeta\right\}$. Reconsider $B_{1}=\left\{1, \sqrt[3]{2}, \sqrt[3]{2}^{2}\right\}$ as a basis of $\operatorname{VecSp}\left(K, \mathbb{F}_{\mathbb{Q}}\right)$. Reconsider $B_{2}=\{1, \zeta\}$ as a basis of $\operatorname{VecSp}(F, K) . \operatorname{Base}\left(B_{1}, B_{2}\right)=M$.
One can verify that \mathbb{C}_{F} is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right)\right)$-extending and \mathbb{C}_{F} is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}}\right.\right.$, $\{\sqrt{2}, \zeta\})$)-extending and $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}, \zeta\}\right)$ is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right)\right)$-extending and $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta, \sqrt{2}\}\right)$ is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}, \zeta\}\right)\right)$-extending and ζ is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}}\right.\right.$,
$\{\sqrt{2}\})$-algebraic and $\sqrt[3]{2}$ is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}, \zeta\}\right)\right)$-algebraic and $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}\right.$, $\zeta, \sqrt{2}\})$ is $\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}, \zeta\}\right)\right)$-finite.
Now we state the propositions:
(76) $\operatorname{MinPoly}\left(\zeta, \operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right)\right)=X^{2}+X+1$. The theorem is a consequence of (9), (5), and (7).
(77) $\operatorname{deg}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}, \zeta\}\right), \operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}\}\right)\right)=2$. The theorem is a consequence of (76).
(78) $\operatorname{deg}\left(\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt{2}, \zeta\}\right), \mathbb{F}_{\mathbb{Q}}\right)=4$. The theorem is a consequence of (30), (10), and (77).
(79) $\sqrt{2}$ is not an element of $\operatorname{FAdj}\left(\mathbb{F}_{\mathbb{Q}},\{\sqrt[3]{2}, \zeta\}\right)$. The theorem is a consequence of (78) and (74).
(80) \mathbb{C}_{F} is not a splitting field of $\mathrm{X}^{3}-2$. The theorem is a consequence of (70) and (79).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
[4] Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
[5] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.
[6] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265-269, 2001.
[7] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
[8] Christoph Schwarzweller. Field extensions and Kronecker's construction. Formalized Mathematics, 27(3):229-235, 2019. doi 10.2478/forma-2019-0022
[9] Christoph Schwarzweller. Renamings and a condition-free formalization of Kronecker's construction. Formalized Mathematics, 28(2):129-135, 2020. doi 10.2478/forma-20200012.
[10] Christoph Schwarzweller. Ring and field adjunctions, algebraic elements and minimal polynomials. Formalized Mathematics, 28(3):251-261, 2020. doi:10.2478/forma-2020-0022
[11] Christoph Schwarzweller. Splitting fields. Formalized Mathematics, 29(3):129-139, 2021. doi 10.2478/forma-2021-0013
[12] Christoph Schwarzweller. On roots of polynomials and algebraically closed fields. Formalized Mathematics, 25(3):185-195, 2017. doi 10.1515/forma-2017-0018.
[13] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Algebraic extensions. Formalized Mathematics, 29(1):39-48, 2021. doi 10.2478/forma-2021-0004.

Accepted April 30, 2022

Absolutely Integrable Functions

Noboru Endou(
National Institute of Technology, Gifu College
2236-2 Kamimakuwa, Motosu, Gifu, Japan

Abstract

Summary. The goal of this article is to clarify the relationship between Riemann's improper integrals and Lebesgue integrals. In previous articles [6, [7, we treated Riemann's improper integrals [1, 11 and (4) on arbitrary intervals. Therefore, in this article, we will continue to clarify the relationship between improper integrals and Lebesgue integrals [8], using the Mizar [3, [2] formalism.

MSC: 26A42 68V20
Keywords: absolutely integrable; improper integral
MML identifier: MESFUN15, version: 8.1.12 5.71.1431

1. Preliminaries

Let s be a without $-\infty$ sequence of extended reals. One can check that $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is without $-\infty$.

Let s be a without $+\infty$ sequence of extended reals. One can verify that $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is without $+\infty$.

Now we state the propositions:
(1) Let us consider a without $-\infty$ sequence f_{1} of extended reals, and a without $+\infty$ sequence f_{2} of extended reals. Then
(i) $\left(\sum_{\alpha=0}^{\kappa}\left(f_{1}-f_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}-\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}$, and
(ii) $\left(\sum_{\alpha=0}^{\kappa}\left(f_{2}-f_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}-\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}$.

Proof: Set $P_{1}=\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}$. Set $P_{2}=\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}$. Set $P_{12}=$ $\left(\sum_{\alpha=0}^{\kappa}\left(f_{1}-f_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$. Set $P_{21}=\left(\sum_{\alpha=0}^{\kappa}\left(f_{2}-f_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$. Define \mathcal{C} [natural number $] \equiv P_{12}\left(\$_{1}\right)=P_{1}\left(\$_{1}\right)-P_{2}\left(\$_{1}\right)$. For every natural number k such that $\mathcal{C}[k]$ holds $\mathcal{C}[k+1]$. For every natural number $k, \mathcal{C}[k]$. For every element k of $\mathbb{N}, P_{12}(k)=\left(P_{1}-P_{2}\right)(k)$. Define $\mathcal{C}[$ natural number $] \equiv P_{21}\left(\$_{1}\right)=$ $P_{2}\left(\$_{1}\right)-P_{1}\left(\$_{1}\right)$. For every natural number k such that $\mathcal{C}[k]$ holds $\mathcal{C}[k+1]$.

For every natural number $k, \mathcal{C}[k]$. For every element k of $\mathbb{N}, P_{21}(k)=$ $\left(P_{2}-P_{1}\right)(k)$ by [5, (7)].
(2) Let us consider sets X, A, and a partial function f from X to \mathbb{R}. If f is non-positive, then $f \upharpoonright A$ is non-positive.
(3) Let us consider a set X, and a partial function f from X to \mathbb{R}. If f is non-positive, then $-f$ is non-negative.
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a real number x. Now we state the propositions:
(4) If f is left convergent in a and non-decreasing, then if $x \in \operatorname{dom} f$ and $x<a$, then $f(x) \leqslant \lim _{a^{-}} f$.
(5) If f is left convergent in a and non-increasing, then if $x \in \operatorname{dom} f$ and $x<a$, then $f(x) \geqslant \lim _{a^{-}} f$.
(6) If f is right convergent in a and non-decreasing, then if $x \in \operatorname{dom} f$ and $a<x$, then $f(x) \geqslant \lim _{a^{+}} f$.
(7) If f is right convergent in a and non-increasing, then if $x \in \operatorname{dom} f$ and $a<x$, then $f(x) \leqslant \lim _{a^{+}} f$.
(8) If f is convergent in $-\infty$ and non-increasing, then if $x \in \operatorname{dom} f$, then $f(x) \leqslant \lim _{-\infty} f$.
(9) If f is convergent in $+\infty$ and non-decreasing, then if $x \in \operatorname{dom} f$, then $f(x) \leqslant \lim _{+\infty} f$.
Let us consider real numbers a, b and a partial function f from \mathbb{R} to \mathbb{R}. Now we state the propositions:
(10) Suppose $a \leqslant b$ and $[a, b] \subseteq \operatorname{dom} f$ and $f\lceil[a, b]$ is bounded and nonnegative. Then $\int_{a}^{b} f(x) d x \geqslant 0$.
(11) Suppose $a \leqslant b$ and $[a, b] \subseteq \operatorname{dom} f$ and $f\lceil[a, b]$ is bounded and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is non-positive. Then $\int_{a}^{b} f(x) d x \leqslant 0$. The theorem is a consequence of (3) and (10).
Let us consider real numbers a, b, c, d and a partial function f from \mathbb{R} to \mathbb{R}. Now we state the propositions:
(12) Suppose $c \leqslant d$ and $[c, d] \subseteq[a, b] \subseteq \operatorname{dom} f$ and $f \upharpoonright[a, b]$ is bounded and f is integrable on $[a, b]$ and $f\left\lceil[a, b]\right.$ is non-negative. Then $\int_{c}^{d} f(x) d x \leqslant$
$\int_{a}^{b} f(x) d x$. The theorem is a consequence of (10).
(13) Suppose $c \leqslant d$ and $[c, d] \subseteq[a, b] \subseteq \operatorname{dom} f$ and $f \upharpoonright[a, b]$ is bounded and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is non-positive. Then $\int_{c}^{d} f(x) d x \geqslant$ $\int_{a}^{b} f(x) d x$. The theorem is a consequence of (2) and (11).

2. Fundamental Properties of Measure and Integral

Now we state the propositions:
(14) Let us consider a non empty set X, a partial function f from X to \mathbb{R}, and a set E. Then $\overline{\mathbb{R}}(f) \upharpoonright E=\overline{\mathbb{R}}(f \upharpoonright E)$.
(15) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, an element A of S, and a sequence E of subsets of S. Suppose f is A-measurable and $A=\operatorname{dom} f$ and E is disjoint valued and $A=\bigcup E$ and $\left(\int^{+} \max _{+}(f) \mathrm{d} M<+\infty\right.$ or $\left.\int^{+} \max _{-}(f) \mathrm{d} M<+\infty\right)$. Then there exists a sequence I of extended reals such that
(i) for every natural number $n, I(n)=\int f \upharpoonright E(n) \mathrm{d} M$, and
(ii) I is summable, and
(iii) $\int f \mathrm{~d} M=\sum I$.

Proof: Consider I_{1} being a non-negative sequence of extended reals such that for every natural number $n, I_{1}(n)=\int \max _{+}(f) \upharpoonright E(n) \mathrm{d} M$ and I_{1} is summable and $\int \max _{+}(f) \mathrm{d} M=\sum I_{1}$. Consider I_{2} being a non-negative sequence of extended reals such that for every natural number $n, I_{2}(n)=$ $\int \max _{-}(f) \upharpoonright E(n) \mathrm{d} M$ and I_{2} is summable and $\int \max _{-}(f) \mathrm{d} M=\sum I_{2}$. For every natural number $n, E(n)$ is an element of S and $E(n) \subseteq \operatorname{dom} f$. For every natural number $n, I_{1}(n)=\int^{+} \max _{+}(f) \upharpoonright E(n) \mathrm{d} M$. For every natural number $n, I_{2}(n)=\int^{+} \max _{-}(f) \upharpoonright E(n) \mathrm{d} M$.
(16) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and elements A, B of S. Suppose $A \cup B \subseteq \operatorname{dom} f$ and f is $(A \cup B)$-measurable and A misses B and $\left(\int^{+} \max _{+}(f \upharpoonright(A \cup B)) \mathrm{d} M<+\infty\right.$ or $\left.\int^{+} \max _{-}(f \upharpoonright(A \cup B)) \mathrm{d} M<+\infty\right)$. Then $\int f \upharpoonright(A \cup B) \mathrm{d} M=\int f \upharpoonright A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M$.
(17) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, an element A of S, and
a sequence E of subsets of S. Suppose f is A-measurable and $A=\operatorname{dom} f$ and E is non descending and $\lim E \subseteq A$ and $M(A \backslash(\lim E))=0$ and $\left(\int^{+} \max _{+}(f) \mathrm{d} M<+\infty\right.$ or $\left.\int^{+} \max _{-}(f) \mathrm{d} M<+\infty\right)$. Then there exists a sequence I of extended reals such that
(i) for every natural number $n, I(n)=$ $\int f \upharpoonright($ the partial unions of $E)(n) \mathrm{d} M$, and
(ii) I is convergent, and
(iii) $\int f \mathrm{~d} M=\lim I$.

Proof: Reconsider $L_{2}=\lim E$ as an element of S. Reconsider $F=$ the partial diff-unions of E as a sequence of subsets of S. Set $g=f \upharpoonright L_{2}$. Consider J being a sequence of extended reals such that for every natural number $n, J(n)=\int g \upharpoonright F(n) \mathrm{d} M$ and J is summable and $\int g \mathrm{~d} M=\sum J$. Reconsider $I=\left(\sum_{\alpha=0}^{\kappa} J(\alpha)\right)_{\kappa \in \mathbb{N}}$ as a sequence of extended reals.

For every natural number $n, g \upharpoonright($ the partial unions of $F)(n)=$ $f \upharpoonright($ the partial unions of $E)(n)$. For every natural number n, (the partial unions of $E)(n) \subseteq \bigcup E$. Define \mathcal{P} [natural number] $\equiv I(\$ 1)=\int g \upharpoonright$ (the partial unions of $F)\left(\$_{1}\right) \mathrm{d} M$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$. For every natural number n, $I(n)=\int f \upharpoonright($ the partial unions of $E)(n) \mathrm{d} M$.
(18) Let us consider non empty sets X, Y, a set A, a sequence F of X, and a sequence G of Y. Suppose for every element n of $\mathbb{N}, G(n)=A \cap F(n)$. Then $\bigcup \operatorname{rng} G=A \cap \bigcup \operatorname{rng} F$.
(19) Let us consider a non empty set X, a σ-field S of subsets of X, a sequence E of S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose for every natural number n, f is $(E(n))$-measurable. Then f is $(\bigcup E)$-measurable.
Proof: For every real number $r, \bigcup E \cap \operatorname{LE}-\operatorname{dom}(f, r) \in S$.
(20) Let us consider real numbers a, b, and a natural number n. If $a<b$, then $a \leqslant b-\frac{b-a}{n+1}<b$ and $a<a+\frac{b-a}{n+1} \leqslant b$.
Let us consider real numbers a, b. Now we state the propositions:
(21) Suppose $a<b$. Then there exists a sequence E of subsets of L-Field such that
(i) for every natural number $n, E(n)=\left[a, b-\frac{b-a}{n+1}\right]$ and $E(n) \subseteq[a, b[$ and $E(n)$ is a non empty, closed interval subset of \mathbb{R}, and
(ii) E is non descending and convergent, and
(iii) $\cup E=[a, b[$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=\left[a, b-\frac{b-a}{\$_{1}+1}\right]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of $\mathbb{N}, E(n)=\mathcal{F}(n)$. For
every natural number $n, E(n)=\left[a, b-\frac{b-a}{n+1}\right]$. For every natural number $n, E(n)=\left[a, b-\frac{b-a}{n+1}\right]$ and $E(n) \subseteq[a, b[$ and $E(n)$ is a non empty, closed interval subset of \mathbb{R}.
(22) Suppose $a<b$. Then there exists a sequence E of subsets of L-Field such that
(i) for every natural number $n, E(n)=\left[a+\frac{b-a}{n+1}, b\right]$ and $\left.\left.E(n) \subseteq\right] a, b\right]$ and $E(n)$ is a non empty, closed interval subset of \mathbb{R}, and
(ii) E is non descending and convergent, and
(iii) $\cup E=] a, b]$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=\left[a+\frac{b-a}{\$_{1}+1}, b\right]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of $\mathbb{N}, E(n)=\mathcal{F}(n)$. For every natural number $n, E(n)=\left[a+\frac{b-a}{n+1}, b\right]$ and $\left.\left.E(n) \subseteq\right] a, b\right]$ and $E(n)$ is a non empty, closed interval subset of \mathbb{R}.
Let us consider a real number a. Now we state the propositions:
(23) There exists a sequence E of subsets of L-Field such that
(i) for every natural number $n, E(n)=[a, a+n]$, and
(ii) E is non descending and convergent, and
(iii) $\bigcup E=[a,+\infty[$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=\left[a, a+\$_{1}\right]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of $\mathbb{N}, E(n)=\mathcal{F}(n)$. For every natural number $n, E(n)=[a, a+n]$.
(24) There exists a sequence E of subsets of L-Field such that
(i) for every natural number $n, E(n)=[a-n, a]$, and
(ii) E is non descending and convergent, and
(iii) $\cup E=]-\infty, a]$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=\left[a-\$_{1}, a\right]$. Consider E being a function from \mathbb{N} into $2^{\mathbb{R}}$ such that for every element n of $\mathbb{N}, E(n)=\mathcal{F}(n)$. For every natural number $n, E(n)=[a-n, a]$.
(25) Let us consider a set X, a σ-field S of subsets of X, a σ-measure M on S, and a set A with measure zero w.r.t. M. Then $A \in \operatorname{COM}(S, M)$.
(26) Let us consider a real number r. Then $\{r\} \in$ L-Field. The theorem is a consequence of (25).
(27) Let us consider a non empty set X, a σ-field S of subsets of X, an element E of S, and a partial function f from X to $\overline{\mathbb{R}}$. If $E=\emptyset$, then f is E measurable.
(28) Let us consider a non empty set X, a σ-field S of subsets of X, an element E of S, and a partial function f from X to \mathbb{R}. If $E=\emptyset$, then f is E measurable. The theorem is a consequence of (27).
(29) Let us consider a real number r, an element E of L-Field, and a partial function f from \mathbb{R} to $\overline{\mathbb{R}}$. If $E=\{r\}$, then f is E-measurable.
Proof: For every real number $a, E \cap \operatorname{LE}-\operatorname{dom}(f, a) \in$ L-Field.
(30) Let us consider a real number r, an element E of L-Field, and a partial function f from \mathbb{R} to \mathbb{R}. If $E=\{r\}$, then f is E-measurable. The theorem is a consequence of (29).
Let us consider real numbers a, b, a partial function f from \mathbb{R} to \mathbb{R}, and an element E of L-Field. Now we state the propositions:
(31) Suppose $[a, b[\subseteq \operatorname{dom} f$ and f is right improper integrable on a and b. Then if $E \subseteq[a, b[$, then f is E-measurable. The theorem is a consequence of (21), (19), and (28).
(32) Suppose $] a, b] \subseteq \operatorname{dom} f$ and f is left improper integrable on a and b. Then if $E \subseteq] a, b]$, then f is E-measurable. The theorem is a consequence of (22), (20), (19), and (28).
(33) Suppose $] a, b[\subseteq \operatorname{dom} f$ and f is improper integrable on a and b. Then if $E \subseteq] a, b[$, then f is E-measurable. The theorem is a consequence of (32) and (31).
Let us consider a real number a, a partial function f from \mathbb{R} to \mathbb{R}, and an element E of L-Field. Now we state the propositions:
(34) Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and f is improper integrable on $[a,+\infty[$. Then if $E \subseteq[a,+\infty[$, then f is E-measurable.
Proof: Set $A=[a,+\infty[$. Consider K being a sequence of subsets of L-Field such that for every natural number $n, K(n)=[a, a+n]$ and K is non descending and convergent and $\bigcup K=\left[a,+\infty\left[\right.\right.$. Reconsider $K_{1}=K$ as a sequence of L-Field. For every natural number $n, \overline{\mathbb{R}}(f)$ is $\left(K_{1}(n)\right)$ measurable by [8, (49)]. $\overline{\mathbb{R}}(f)$ is A-measurable.
(35) Suppose $]-\infty, a] \subseteq \operatorname{dom} f$ and f is improper integrable on $]-\infty, a]$. Then if $E \subseteq]-\infty, a]$, then f is E-measurable.
Proof: Consider K being a sequence of subsets of L-Field such that for every natural number $n, K(n)=[a-n, a]$ and K is non descending and convergent and $\bigcup K=]-\infty, a]$. For every element n of $\mathbb{N}, K(n)$ is a non empty, closed interval subset of \mathbb{R}. Reconsider $K_{1}=K$ as a sequence of L-Field. For every natural number $n, \overline{\mathbb{R}}(f)$ is $\left(K_{1}(n)\right)$-measurable by [8, (49)]. $\overline{\mathbb{R}}(f)$ is $\left(\bigcup K_{1}\right)$-measurable.
(36) Let us consider a partial function f from \mathbb{R} to \mathbb{R}. Suppose $\operatorname{dom} f=\mathbb{R}$ and f is improper integrable on \mathbb{R}. Let us consider an element E of L-Field.

Then f is E-measurable. The theorem is a consequence of (34) and (35).

3. Relation between Improper Integral and Lebesgue Integral

Now we state the propositions:
(37) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to \mathbb{R}, and an element A of S. Suppose $A=\operatorname{dom} f$ and f is A-measurable. Then $\int-f \mathrm{~d} M=-\int f \mathrm{~d} M$.
(38) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to \mathbb{R}, and elements A, B, E of S. Suppose $E=\operatorname{dom} f$ and f is E-measurable and non-positive and $A \subseteq B$. Then $\int f\left\lceil A \mathrm{~d} M \geqslant \int f \upharpoonright B \mathrm{~d} M\right.$.
Proof: For every set x such that $x \in \operatorname{dom}(\overline{\mathbb{R}}(f))$ holds $(\overline{\mathbb{R}}(f))(x) \leqslant 0$. $\int \overline{\mathbb{R}}(f \upharpoonright A) \mathrm{d} M \geqslant \int \overline{\mathbb{R}}(f) \upharpoonright B \mathrm{~d} M . \int \overline{\mathbb{R}}(f \upharpoonright A) \mathrm{d} M \geqslant \int \overline{\mathbb{R}}(f \upharpoonright B) \mathrm{d} M$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(39) Suppose $[a, b[\subseteq \operatorname{dom} f$ and $A=[a, b[$ and f is right improper integrable on a and b and $f \upharpoonright A$ is non-negative. Then
(i) right-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is right extended Riemann integrable on a, b, then $f\lceil A$ is integrable on L-Meas, and
(iii) if f is not right extended Riemann integrable on a, b, then $\int f\lceil A \mathrm{~d} \mathrm{~L}$ Meas $=+\infty$.
The theorem is a consequence of (12), (21), (31), (14), (17), (20), and (4).
(40) Suppose $[a, b[\subseteq \operatorname{dom} f$ and $A=[a, b[$ and f is right improper integrable on a and b and $f \upharpoonright A$ is non-positive. Then
(i) right-improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas, and
(ii) if f is right extended Riemann integrable on a, b, then $f\lceil A$ is integrable on L-Meas, and
(iii) if f is not right extended Riemann integrable on a, b, then $\int f\lceil A \mathrm{~d}$ Meas $=-\infty$.
The theorem is a consequence of (3), (39), and (31).
(41) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $A=] a, b]$ and f is left improper integrable on a and b and $f \upharpoonright A$ is non-negative. Then
(i) left-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is left extended Riemann integrable on a, b, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if f is not left extended Riemann integrable on a, b, then $\int f \upharpoonright A \mathrm{~d}$ LMeas $=+\infty$.
The theorem is a consequence of (12), (22), (32), (14), (17), (20), and (7).
(42) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $A=] a, b]$ and f is left improper integrable on a and b and $f \upharpoonright A$ is non-positive. Then
(i) left-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is left extended Riemann integrable on a, b, then $f\lceil A$ is integrable on L-Meas, and
(iii) if f is not left extended Riemann integrable on a, b, then $\int f \upharpoonright A \mathrm{~d} \mathrm{~L}$ Meas $=-\infty$.
The theorem is a consequence of (3), (41), and (32).
(43) Suppose $] a, b[\subseteq \operatorname{dom} f$ and $A=] a, b[$ and f is improper integrable on a and b and $f\lceil A$ is non-negative. Then
(i) improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas, and
(ii) if there exists a real number c such that $a<c<b$ and f is left extended Riemann integrable on a, c and right extended Riemann integrable on c, b, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if for every real number c such that $a<c<b$ holds f is not left extended Riemann integrable on a, c or f is not right extended Riemann integrable on c, b, then $\int f \upharpoonright A \mathrm{~d}$ L-Meas $=+\infty$.
The theorem is a consequence of (31), (32), (41), (39), (26), and (33).
(44) Suppose $] a, b[\subseteq \operatorname{dom} f$ and $A=] a, b[$ and f is improper integrable on a and b and $f \upharpoonright A$ is non-positive. Then
(i) improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas, and
(ii) if there exists a real number c such that $a<c<b$ and f is left extended Riemann integrable on a, c and right extended Riemann integrable on c, b, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if for every real number c such that $a<c<b$ holds f is not left extended Riemann integrable on a, c or f is not right extended Riemann integrable on c, b, then $\int f\lceil A \mathrm{~d}$-Meas $=-\infty$.
The theorem is a consequence of $(3),(43),(33)$, and (37).
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number b, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(45) Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $A=]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and f is non-negative. Then
(i) $\int_{-\infty}^{b} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is extended Riemann integrable on $-\infty, b$, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if f is not extended Riemann integrable on $-\infty, b$, then $\int f \upharpoonright A \mathrm{~d}$ L-Meas $=+\infty$.

The theorem is a consequence of (12), (24), (35), (14), (17), and (8).
(46) Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $A=]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and f is non-positive. Then
(i) $\int_{-\infty}^{b} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is extended Riemann integrable on $-\infty, b$, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if f is not extended Riemann integrable on $-\infty, b$, then $\int f \upharpoonright A \mathrm{~d}$ L-Meas $=-\infty$.

Proof: Reconsider $A_{1}=A$ as an element of L-Field. For every object x such that $x \in \operatorname{dom}(-f)$ holds $0 \leqslant(-f)(x) . \int_{-\infty}^{b}(-f)(x) d x=\int(-f) \upharpoonright A \mathrm{~d} \mathrm{~L}-$
Meas. $f \upharpoonright A$ is A_{1}-measurable. $\int-f \upharpoonright A \mathrm{~d}$ L-Meas $=-\int f \upharpoonright A \mathrm{~d}$ L-Meas.
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(47) Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and $A=[a,+\infty[$ and f is improper integrable on $[a,+\infty[$ and f is non-negative. Then
(i) $\int_{a}^{+\infty} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas, and
(ii) if f is extended Riemann integrable on $a,+\infty$, then $f \upharpoonright A$ is integrable on L-Meas, and
(iii) if f is not extended Riemann integrable on $a,+\infty$, then $\int f \upharpoonright A \mathrm{~d}$ Meas $=+\infty$.

The theorem is a consequence of (12), (23), (34), (14), (17), and (9).
(48) Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and $A=[a,+\infty[$ and f is improper integrable on $[a,+\infty[$ and f is non-positive. Then
(i) $\int_{a}^{+\infty} f(x) d x=\int f \upharpoonright A d$ L-Meas, and
(ii) if f is extended Riemann integrable on $a,+\infty$, then $f\lceil A$ is integrable on L-Meas, and
(iii) if f is not extended Riemann integrable on $a,+\infty$, then $\int f \upharpoonright A \mathrm{~d}$ L-Meas $=-\infty$.
Proof: Reconsider $A_{1}=A$ as an element of L-Field. For every object x such that $x \in \operatorname{dom}(-f)$ holds $0 \leqslant(-f)(x) . \int_{a}^{+\infty}(-f)(x) d x=\int(-f) \upharpoonright A \mathrm{~d} \mathrm{~L}-$ Meas. $f \upharpoonright A$ is A_{1}-measurable. $\int-f \upharpoonright A \mathrm{~d}$ L-Meas $=-\int f \upharpoonright A \mathrm{~d}$ L-Meas.
(49) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and elements A, B of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is E-measurable and f is non-negative. Then $\int^{+} f \upharpoonright(A \cup B) \mathrm{d} M \leqslant$ $\int^{+} f \upharpoonright A \mathrm{~d} M+\int^{+} f \upharpoonright B \mathrm{~d} M$.
(50) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and sets A, B. Suppose $A \subseteq \operatorname{dom} f$ and $B \subseteq \operatorname{dom} f$ and $f \upharpoonright A$ is integrable on M and $f \upharpoonright B$ is integrable on M. Then $f \upharpoonright(A \cup B)$ is integrable on M. The theorem is a consequence of (49).
(51) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to \mathbb{R}, and sets A, B. Suppose $A \subseteq \operatorname{dom} f$ and $B \subseteq \operatorname{dom} f$ and $f \upharpoonright A$ is integrable on M and $f \upharpoonright B$ is integrable on M. Then $f \upharpoonright(A \cup B)$ is integrable on M. The theorem is a consequence of (14) and (50).
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(52) Suppose $\operatorname{dom} f=\mathbb{R}$ and f is improper integrable on \mathbb{R} and f is nonnegative. Then
(i) $\int_{-\infty}^{+\infty} f(x) d x=\int f \mathrm{~d}$ L-Meas, and
(ii) if f is ∞-extended Riemann integrable, then f is integrable on L-Meas, and
(iii) if f is not ∞-extended Riemann integrable, then $\int f \mathrm{~d}$ L-Meas $=+\infty$.

The theorem is a consequence of (45), (36), (26), (47), and (51).
(53) Suppose $\operatorname{dom} f=\mathbb{R}$ and f is improper integrable on \mathbb{R} and f is nonpositive. Then
(i) $\int_{-\infty}^{+\infty} f(x) d x=\int f \mathrm{~d}$ L-Meas, and
(ii) if f is ∞-extended Riemann integrable, then f is integrable on L-Meas, and
(iii) if f is not ∞-extended Riemann integrable, then $\int f \mathrm{~d} \mathrm{~L}$-Meas $=-\infty$. Proof: For every object x such that $x \in \operatorname{dom}(-f)$ holds $0 \leqslant(-f)(x)$. Reconsider $E=\mathbb{R}$ as an element of L-Field. f is E-measurable. $-\int_{-\infty}^{+\infty} f(x) d x=$ $\int-f$ d L-Meas. $-\int_{-\infty}^{+\infty} f(x) d x=-\int f \mathrm{~d}$ L-Meas.

4. Absolutely Integrable Function

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(54) Suppose $[a, b[=\operatorname{dom} f$. Then there exists a sequence F of partial functions from \mathbb{R} into \mathbb{R} such that
(i) for every natural number n, $\operatorname{dom}(F(n))=\operatorname{dom} f$ and for every real number x such that $x \in\left[a, b-\frac{1}{n+1}\right]$ holds $F(n)(x)=f(x)$ and for every real number x such that $x \notin\left[a, b-\frac{1}{n+1}\right]$ holds $F(n)(x)=0$, and
(ii) $\lim \overline{\mathbb{R}}(F)=f$.

Proof: For every element n of $\mathbb{N},\left[a, b-\frac{1}{n+1}\right] \subseteq \operatorname{dom} f$. Define \mathcal{P} [element of \mathbb{N}, object $] \equiv \$_{2}=\chi_{\left[a, b-\frac{1}{S_{1}+1}\right] \text {,dom } f}$. For every element n of \mathbb{N}, there exists an element $\left\langle\right.$ of $\mathbb{R} \rightarrow \mathbb{R}$ such that $P\left[n,\langle]\right.$. Consider C_{2} being a sequence of $\mathbb{R} \rightarrow \mathbb{R}$ such that for every element n of $\mathbb{N}, P\left[n, C_{2}(n)\right]$. Define \mathcal{Q} [element of \mathbb{N}, object $] \equiv \$_{2}=f \cdot C_{2}\left(\$_{1}\right)$. For every element n of \mathbb{N}, there exists an element F of $\mathbb{R} \rightarrow \mathbb{R}$ such that $Q[n, F]$. Consider F being a sequence of $\mathbb{R} \rightarrow \mathbb{R}$ such that for every element n of $\mathbb{N}, Q[n, F(n)]$. For every natural number n, $\operatorname{dom}(F(n))=\operatorname{dom} f$ and for every real number x such that $x \in\left[a, b-\frac{1}{n+1}\right]$ holds $F(n)(x)=f(x)$ and for every real number x such that $x \notin\left[a, b-\frac{1}{n+1}\right]$ holds $F(n)(x)=0$. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(\lim \overline{\mathbb{R}}(F))$ holds $(\lim \overline{\mathbb{R}}(F))(x)=(\overline{\mathbb{R}}(f))(x)$ by [9, (16)].
(55) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right improper integrable on a and b and $|f|$ is right extended Riemann integrable on a, b. Then
(i) f is right extended Riemann integrable on a, b, and
(ii) $\operatorname{right}-i m p r o p e r-i n t e g r a l(f, a, b) \leqslant \operatorname{right-improper-integral}(|f|, a, b)<$ $+\infty$.

Proof: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=$ $[a, b[$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=$ $\int_{a}^{x} f(x) d x$ and I is left convergent in b or left divergent to $+\infty$ in b or left divergent to $-\infty$ in b. Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that dom $A_{I}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=\int_{a}^{x}|f|(x) d x$ and A_{I} is left convergent in b. For every real numbers r_{1}, r_{2} such that $r_{1}, r_{2} \in \operatorname{dom} A_{I}$ and $r_{1}<r_{2}$ holds $A_{I}\left(r_{1}\right) \leqslant A_{I}\left(r_{2}\right)$. Consider r being a real number such that $0<r<b-a$. For every real number g such that $g \in \operatorname{dom} I \cap] b-r, b\left[\right.$ holds $I(g) \leqslant A_{I}(g)$ by [10, (8)].
(56) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and f is left improper integrable on a and b and $|f|$ is left extended Riemann integrable on a, b. Then
(i) f is left extended Riemann integrable on a, b, and
(ii) left-improper-integral $(f, a, b) \leqslant$ left-improper-integral $(|f|, a, b)<+\infty$.

Proof: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=$]a,b] and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=$ $\int_{x}^{b} f(x) d x$ and I is right convergent in a or right divergent to $+\infty$ in a or right divergent to $-\infty$ in a. Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that dom $\left.\left.A_{I}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=\int_{x}^{b}|f|(x) d x$ and A_{I} is right convergent in a. For every real numbers r_{1}, r_{2} such that $r_{1}, r_{2} \in \operatorname{dom} A_{I}$ and $r_{1}<r_{2}$ holds $A_{I}\left(r_{1}\right) \geqslant A_{I}\left(r_{2}\right)$. Consider r being a real number such that $0<r<b-a$. For every real number g such that $g \in \operatorname{dom} I \cap] a, a+r\left[\right.$ holds $I(g) \leqslant A_{I}(g)$.
(57) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a non empty, closed interval subset A of \mathbb{R}. Suppose $A \subseteq \operatorname{dom} f$. Then
(i) $\max _{+}(f \upharpoonright A)=\max _{+}(f \upharpoonright A)$, and
(ii) $\max _{-}(f \upharpoonright A)=\max _{-}(f \upharpoonright A)$.
(58) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number b. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and f is improper integrable on $]-\infty, b]$ and $|f|$ is extended Riemann integrable on $-\infty, b$. Then
(i) f is extended Riemann integrable on $-\infty, b$, and
(ii) $\int_{-\infty}^{b} f(x) d x \leqslant \int_{-\infty}^{b}|f|(x) d x<+\infty$.

Proof: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=$ $]-\infty, b]$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=$ $\int_{x}^{b} f(x) d x$ and I is convergent in $-\infty$ or divergent in $-\infty$ to $+\infty$ or divergent in $-\infty$ to $-\infty$. Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} A_{I}=\right]-\infty, b\right]$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=\int_{x}^{b}|f|(x) d x$ and A_{I} is convergent in $-\infty$. For every real numbers r_{1}, r_{2} such that $r_{1}, r_{2} \in \operatorname{dom} A_{I}$ and $r_{1}<r_{2}$ holds $A_{I}\left(r_{1}\right) \geqslant A_{I}\left(r_{2}\right)$. For every real number g such that $\left.g \in \operatorname{dom} I \cap\right]-\infty, 1[$ holds $I(g) \leqslant A_{I}(g)$.
(59) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number a. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and f is improper integrable on $[a,+\infty[$ and $|f|$ is extended Riemann integrable on $a,+\infty$. Then
(i) f is extended Riemann integrable on $a,+\infty$, and
(ii) $\int_{a}^{+\infty} f(x) d x \leqslant \int_{a}^{+\infty}|f|(x) d x<+\infty$.

Proof: Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=$ $[a,+\infty[$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=$ $\int_{a}^{x} f(x) d x$ and I is convergent in $+\infty$ or divergent in $+\infty$ to $+\infty$ or divergent in $+\infty$ to $-\infty$. Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=[a,+\infty[$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=\int_{a}^{x}|f|(x) d x$ and A_{I} is convergent in $+\infty$. For every real numbers r_{1}, r_{2} such that $r_{1}, r_{2} \in \operatorname{dom} A_{I}$ and $r_{1}<r_{2}$ holds $A_{I}\left(r_{1}\right) \leqslant A_{I}\left(r_{2}\right)$. For every real number g such that $\left.g \in \operatorname{dom} I \cap\right] 1,+\infty[$ holds $I(g) \leqslant A_{I}(g)$.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(60) Suppose $a \leqslant b$ and $[a, b] \subseteq \operatorname{dom} f$ and f is integrable on $[a, b]$ and $f \upharpoonright[a, b]$ is bounded. Then
(i) $\max _{+}(f)$ is integrable on $[a, b]$, and
(ii) $\max _{-}(f)$ is integrable on $[a, b]$, and
(iii) $2 \cdot\left(\int_{a}^{b} \max _{+}(f)(x) d x\right)=\int_{a}^{b} f(x) d x+\int_{a}^{b}|f|(x) d x$, and
(iv) $2 \cdot\left(\int_{a}^{b} \max _{-}(f)(x) d x\right)=-\int_{a}^{b} f(x) d x+\int_{a}^{b}|f|(x) d x$, and
(v) $\int_{a}^{b} f(x) d x=\int_{a}^{b} \max _{+}(f)(x) d x-\int_{a}^{b} \max _{-}(f)(x) d x$.
(61) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and f is left extended Riemann integrable on a, b and $|f|$ is left extended Riemann integrable on a, b. Then $\max _{+}(f)$ is left extended Riemann integrable on a, b.
Proof: Set $G=\left(R^{<}\right) \int_{a}^{b} f(x) d x$. Set $A_{G}=\left(R^{<}\right) \int_{a}^{b}|f|(x) d x$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I=] a, b]$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=\int_{x}^{b} f(x) d x$ and I is right convergent in a and $G=\lim _{a^{+}} I$.

Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=$]a,b] and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=$ $\int_{x}^{b}|f|(x) d x$ and A_{I} is right convergent in a and $A_{G}=\lim _{a^{+}} A_{I}$. For every real number d such that $a<d \leqslant b$ holds $\max _{+}(f)$ is integrable on $[d, b]$ and $\max _{+}(f) \upharpoonright[d, b]$ is bounded. There exists a partial function I_{3} from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} I_{3}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{x}^{b} \max _{+}(f)(x) d x$ and I_{3} is right convergent in a.
(62) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right extended Riemann integrable on a, b and $|f|$ is right extended Riemann integrable on a, b. Then $\max _{+}(f)$ is right extended Riemann integrable on a, b.

Proof: Set $G=\left(R^{>}\right) \int_{a}^{b} f(x) d x$. Set $A_{G}=\left(R^{>}\right) \int_{a}^{b}|f|(x) d x$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=\int_{a}^{x} f(x) d x$ and I is left convergent in b and $G=\lim _{b^{-}} I$.

Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=$ $\left[a, b\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=$ $\int_{a}^{x}|f|(x) d x$ and A_{I} is left convergent in b and $A_{G}=\lim _{b^{-}} A_{I}$. For every real number d such that $a \leqslant d<b$ holds $\max _{+}(f)$ is integrable on $[a, d]$ and $\max _{+}(f) \upharpoonright[a, d]$ is bounded. There exists a partial function I_{3} from \mathbb{R} to \mathbb{R} such that dom $I_{3}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{a}^{x} \max _{+}(f)(x) d x$ and I_{3} is left convergent in $b . \square$
(63) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number b. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and f is extended Riemann integrable on $-\infty$, b and $|f|$ is extended Riemann integrable on $-\infty, b$. Then $\max _{+}(f)$ is extended Riemann integrable on $-\infty, b$.
Proof: Set $G=\left(R^{<}\right) \int_{-\infty}^{b} f(x) d x$. Set $A_{G}=\left(R^{<}\right) \int_{-\infty}^{b}|f|(x) d x$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I=]-\infty, b]$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=\int_{x}^{b} f(x) d x$ and I is convergent in $-\infty$ and $G=\lim _{-\infty} I$.

Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=$ $]-\infty, b]$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=$ $\int_{x}^{b}|f|(x) d x$ and A_{I} is convergent in $-\infty$ and $A_{G}=\lim _{-\infty} A_{I}$. For every real number d such that $d \leqslant b$ holds $\max _{+}(f)$ is integrable on $[d, b]$ and $\max _{+}(f) \upharpoonright[d, b]$ is bounded. There exists a partial function I_{3} from \mathbb{R} to \mathbb{R} such that dom $\left.\left.I_{3}=\right]-\infty, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{x}^{b} \max _{+}(f)(x) d x$ and I_{3} is convergent in $-\infty$.
(64) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number
a. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and f is extended Riemann integrable on a, $+\infty$ and $|f|$ is extended Riemann integrable on $a,+\infty$. Then $\max _{+}(f)$ is extended Riemann integrable on $a,+\infty$.
Proof: Set $G=\left(R^{>}\right) \int_{a}^{+\infty} f(x) d x$. Set $A_{G}=\left(R^{>}\right) \int_{a}^{+\infty}|f|(x) d x$. Consider I being a partial function from \mathbb{R} to \mathbb{R} such that dom $I=[a,+\infty[$ and for every real number x such that $x \in \operatorname{dom} I$ holds $I(x)=\int_{a}^{x} f(x) d x$ and I is convergent in $+\infty$ and $G=\lim _{+\infty} I$.

Consider A_{I} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} A_{I}=$ $\left[a,+\infty\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} A_{I}$ holds $A_{I}(x)=$ $\int_{a}^{x}|f|(x) d x$ and A_{I} is convergent in $+\infty$ and $A_{G}=\lim _{+\infty} A_{I}$. For every real number d such that $a \leqslant d$ holds $\max _{+}(f)$ is integrable on $[a, d]$ and $\max _{+}(f) \upharpoonright[a, d]$ is bounded. There exists a partial function I_{3} from \mathbb{R} to \mathbb{R} such that dom $I_{3}=[a,+\infty[$ and for every real number x such that $x \in \operatorname{dom} I_{3}$ holds $I_{3}(x)=\int_{a}^{x} \max _{+}(f)(x) d x$ and I_{3} is convergent in $+\infty$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(65) Suppose $a<b$ and $] a, b] \subseteq \operatorname{dom} f$ and f is left extended Riemann integrable on a, b and $|f|$ is left extended Riemann integrable on a, b. Then $\max _{-}(f)$ is left extended Riemann integrable on a, b. The theorem is a consequence of (61).
(66) Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right extended Riemann integrable on a, b and $|f|$ is right extended Riemann integrable on a, b. Then max_ (f) is right extended Riemann integrable on a, b. The theorem is a consequence of (62).
(67) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number b. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and f is extended Riemann integrable on $-\infty$, b and $|f|$ is extended Riemann integrable on $-\infty, b$. Then $\max _{-}(f)$ is extended Riemann integrable on $-\infty, b$. The theorem is a consequence of (63).
(68) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number a. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and f is extended Riemann integrable on a, $+\infty$ and $|f|$ is extended Riemann integrable on $a,+\infty$. Then max_ (f) is extended Riemann integrable on $a,+\infty$. The theorem is a consequence of

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(69) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $\max _{+}(f)$ is left extended Riemann integrable on a, b and max_ (f) is left extended Riemann integrable on a, b. Then
(i) f is left extended Riemann integrable on a, b, and
(ii) left-improper-integral $(f, a, b)=$ left-improper-integral($\left.\max _{+}(f), a, b\right)-$ left-improper-integral(max_ $(f), a, b)$.
Proof: Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} I_{1}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} \max _{+}(f)(x) d x$ and I_{1} is right convergent in a. Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that dom $\left.\left.I_{2}=\right] a, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{2}$ holds $I_{2}(x)=\int_{x}^{b} \max (f)(x) d x$ and I_{2} is right convergent in a. For every real number d such that $a<d \leqslant b$ holds f is integrable on $[d, b]$ and $f \upharpoonright[d, b]$ is bounded. For every real number x such that $x \in \operatorname{dom}\left(I_{1}-I_{2}\right)$ holds $\left(I_{1}-I_{2}\right)(x)=\int_{x}^{b} f(x) d x$. \square
(70) Suppose $\left[a, b\left[\subseteq \operatorname{dom} f\right.\right.$ and $\max _{+}(f)$ is right extended Riemann integrable on a, b and max_ (f) is right extended Riemann integrable on a, b. Then
(i) f is right extended Riemann integrable on a, b, and
(ii) $\operatorname{right-improper-integral}(f, a, b)=\operatorname{right-improper-integral}\left(\max _{+}(f)\right.$, $a, b)$ - right-improper-integral(max_ $(f), a, b)$.
Proof: Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I_{1}=\left[a, b\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} \max _{+}(f)(x) d x$ and I_{1} is left convergent in b. Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that dom $I_{2}=[a, b[$ and for every real number x such that $x \in \operatorname{dom} I_{2}$ holds $I_{2}(x)=\int_{a}^{x} \max (f)(x) d x$ and I_{2} is left convergent in b. For every real number d such that $a \leqslant d<b$ holds f is integrable on $[a, d]$ and $f \upharpoonright[a, d]$ is bounded. For every real number x
such that $x \in \operatorname{dom}\left(I_{1}-I_{2}\right)$ holds $\left(I_{1}-I_{2}\right)(x)=\int_{a}^{x} f(x) d x$.
(71) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number b. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $\max _{+}(f)$ is extended Riemann integrable on $-\infty, b$ and $\max _{-}(f)$ is extended Riemann integrable on $-\infty, b$. Then
(i) f is extended Riemann integrable on $-\infty, b$, and
(ii) $\int_{-\infty}^{b} f(x) d x=\int_{-\infty}^{b} \max _{+}(f)(x) d x-\int_{-\infty}^{b} \max _{-}(f)(x) d x$.

Proof: Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} I_{1}=\right]-\infty, b\right]$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{x}^{b} \max _{+}(f)(x) d x$ and I_{1} is convergent in $-\infty$. Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that $\left.\left.\operatorname{dom} I_{2}=\right]-\infty, b\right]$ and for every real number x such that $x \in$ dom I_{2} holds $I_{2}(x)=\int_{x}^{b} \max _{-}(f)(x) d x$ and I_{2} is convergent in $-\infty$. For every real number d such that $d \leqslant b$ holds f is integrable on $[d, b]$ and $f \upharpoonright[d, b]$ is bounded. For every real number x such that $x \in \operatorname{dom}\left(I_{1}-I_{2}\right)$ holds $\left(I_{1}-I_{2}\right)(x)=\int_{x}^{b} f(x) d x$.
(72) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number a. Suppose $\left[a,+\infty\left[\subseteq \operatorname{dom} f\right.\right.$ and $\max _{+}(f)$ is extended Riemann integrable on $a,+\infty$ and $\max _{-}(f)$ is extended Riemann integrable on $a,+\infty$. Then
(i) f is extended Riemann integrable on $a,+\infty$, and
(ii) $\int_{a}^{+\infty} f(x) d x=\int_{a}^{+\infty} \max _{+}(f)(x) d x-\int_{a}^{+\infty} \max _{-}(f)(x) d x$.

Proof: Consider I_{1} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I_{1}=\left[a,+\infty\left[\right.\right.$ and for every real number x such that $x \in \operatorname{dom} I_{1}$ holds $I_{1}(x)=\int_{a}^{x} \max _{+}(f)(x) d x$ and I_{1} is convergent in $+\infty$. Consider I_{2} being a partial function from \mathbb{R} to \mathbb{R} such that $\operatorname{dom} I_{2}=[a,+\infty[$ and for every real number x such that $x \in$ dom I_{2} holds $I_{2}(x)=\int_{a}^{x} \max _{-}(f)(x) d x$ and I_{2} is convergent in $+\infty$. For every real number d such that $a \leqslant d$ holds
f is integrable on $[a, d]$ and $f \upharpoonright[a, d]$ is bounded. For every real number x such that $x \in \operatorname{dom}\left(I_{1}-I_{2}\right)$ holds $\left(I_{1}-I_{2}\right)(x)=\int_{a}^{x} f(x) d x$

5. Improper Integral of Absolutely Integrable Functions

Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(73) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $A=] a, b]$ and f is left improper integrable on a and b and $|f|$ is left extended Riemann integrable on a, b and $f \upharpoonright A$ is non-negative. Then
(i) $f\lceil A$ is integrable on L-Meas, and
(ii) left-improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (56) and (41).
(74) Suppose $[a, b[\subseteq \operatorname{dom} f$ and $A=[a, b[$ and f is right improper integrable on a and b and $|f|$ is right extended Riemann integrable on a, b and $f \upharpoonright A$ is non-negative. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) right-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d} \mathrm{~L}$-Meas.

The theorem is a consequence of (55) and (39).
(75) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number b, and a non empty subset A of \mathbb{R}. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $A=]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and $|f|$ is extended Riemann integrable on $-\infty, b$ and f is non-negative. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) $\int_{-\infty}^{b} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (58) and (45).
(76) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a non empty subset A of \mathbb{R}. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and $A=[a,+\infty[$ and f is improper integrable on $[a,+\infty[$ and $|f|$ is extended Riemann integrable on $a,+\infty$ and f is non-negative. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) $\int_{a}^{+\infty} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (59) and (47).
(77) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and real numbers a, b. Suppose $a<b$ and $[a, b[\subseteq \operatorname{dom} f$ and f is right improper integrable on a and b and $|f|$ is right extended Riemann integrable on a, b. Then $\max _{+}(f)$ is right extended Riemann integrable on a, b. The theorem is a consequence of (55) and (62).
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, real numbers a, b, and a non empty subset A of \mathbb{R}. Now we state the propositions:
(78) Suppose $[a, b[\subseteq \operatorname{dom} f$ and $A=[a, b[$ and f is right improper integrable on a and b and $|f|$ is right extended Riemann integrable on a, b. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) right-improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d} \mathrm{~L}-\mathrm{Meas}$.

The theorem is a consequence of (55), (62), (74), (66), and (70).
(79) Suppose $] a, b] \subseteq \operatorname{dom} f$ and $A=] a, b]$ and f is left improper integrable on a and b and $|f|$ is left extended Riemann integrable on a, b. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) left-improper-integral $(f, a, b)=\int f\lceil A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (56), (61), (73), (65), and (69).
(80) Suppose $] a, b[\subseteq \operatorname{dom} f$ and $A=] a, b[$ and f is improper integrable on a and b and there exists a real number c such that $a<c<b$ and $|f|$ is left extended Riemann integrable on a, c and right extended Riemann integrable on c, b. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) improper-integral $(f, a, b)=\int f \upharpoonright A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (79), (78), (51), and (26).
(81) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number b, and a non empty subset A of \mathbb{R}. Suppose $]-\infty, b] \subseteq \operatorname{dom} f$ and $A=]-\infty, b]$ and f is improper integrable on $]-\infty, b]$ and $|f|$ is extended Riemann integrable on $-\infty, b$. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) $\int_{-\infty}^{b} f(x) d x=\int f \upharpoonright A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (58), (63), (75), (67), and (71).
(82) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a real number a, and a non empty subset A of \mathbb{R}. Suppose $[a,+\infty[\subseteq \operatorname{dom} f$ and $A=[a,+\infty[$
and f is improper integrable on $[a,+\infty[$ and $|f|$ is extended Riemann integrable on $a,+\infty$. Then
(i) $f \upharpoonright A$ is integrable on L-Meas, and
(ii) $\int_{a}^{+\infty} f(x) d x=\int f\lceil A \mathrm{~d}$ L-Meas.

The theorem is a consequence of (59), (64), (76), (68), and (72).
(83) Let us consider a partial function f from \mathbb{R} to \mathbb{R}. Suppose $\operatorname{dom} f=\mathbb{R}$ and f is improper integrable on \mathbb{R} and $|f|$ is ∞-extended Riemann integrable. Then
(i) f is integrable on L-Meas, and
(ii) $\int_{-\infty}^{+\infty} f(x) d x=\int f \mathrm{~d}$ L-Meas.

The theorem is a consequence of $(81),(82),(51)$, and (36).

References

[1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. dol 10.1007/s10817-017-9440-6
[4] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
[5] Noboru Endou. Extended real-valued double sequence and its convergence. Formalized Mathematics, 23(3):253-277, 2015. doi 10.1515/forma-2015-0021
[6] Noboru Endou. Improper integral. Part I. Formalized Mathematics, 29(4):201-220, 2021. doi 10.2478/forma-2021-0019.
[7] Noboru Endou. Improper integral. Part II. Formalized Mathematics, 29(4):279-294, 2021. doi 10.2478/forma-2021-0024.
[8] Noboru Endou. Relationship between the Riemann and Lebesgue integrals. Formalized Mathematics, 29(4):185-199, 2021. doi 10.2478/forma-2021-0018
[9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[10] Noboru Endou, Yasunari Shidama, and Masahiko Yamazaki. Integrability and the integral of partial functions from \mathbb{R} into \mathbb{R}. Formalized Mathematics, 14(4):207-212, 2006. doi $10.2478 /$ v10037-006-0023-y
[11] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2nd edition, 1999.

Accepted April 30, 2022

Non-Trivial Universes and Sequences of UniversesT

Roland Coghetto
cafr-MSA2P asbl
Rue de la Brasserie 5
7100 La Louvière, Belgium

Abstract

Summary. Universe is a concept which is present from the beginning of the creation of the Mizar Mathematical Library (MML) in several forms (Universe, Universe_closure, UNIVERSE) [25, then later as the_universe_of, 33], and recently with the definition GrothendieckUniverse [26, 11, 11]. These definitions are useful in many articles [28, 33, 8, 35, [19, 32, (31, 15, 6, but also (34, 12, 20, 22, 21, [27, 2, 3, 23, 16, 7, 4, 5].

In this paper, using the Mizar system [9] [10, we trivially show that Grothendieck's definition of Universe as defined in 26], coincides with the original definition of Universe defined by Artin, Grothendieck, and Verdier (Chapitre 0 Univers et Appendice "Univers" (par N. Bourbaki) de l'Exposé I. "PREFAISCE$A U X "$) 11, and how the different definitions of MML concerning universes are related. We also show that the definition of Universe introduced by Mac Lane ([18) is compatible with the MML's definition.

Although a universe may be empty, we consider the properties of non-empty universes, completing the properties proved in [25].

We introduce the notion of "trivial" and "non-trivial" Universes, depending on whether or not they contain the set ω (NAT), following the notion of Robert M. Solovay ${ }^{2}$ The following result links the universes \mathbf{U}_{0} (FinSETS) and \mathbf{U}_{1} (SETS): $$
\text { GrothendieckUniverse } \omega=\text { GrothendieckUniverse } \mathbf{U}_{0}=\mathbf{U}_{1}
$$

Before turning to the last section, we establish some trivial propositions allowing the construction of sets outside the considered universe.

[^1]The last section is devoted to the construction, in Tarski-Grothendieck, of a tower of universes indexed by the ordinal numbers (See 8. Examples, Grothendieck universe, ncatlab.org (24]).

Grothendieck's universe is referenced in current works: "Assuming the existence of a sufficient supply of (Grothendieck) univers", Jacob Lurie in "Higher Topos Theory" [17, "Annexe B - Some results on Grothendieck universes", Olivia Caramello and Riccardo Zanfa in "Relative topos theory via stacks" [13], "Remark 1.1.5 (quoting Michael Shulman (30)", Emily Riehl in "Category theory in Context" [29, and more specifically "Strict Universes for Grothendieck Topoi" 14 .

MSC: 03E70 68V20
Keywords: Tarski-Grothendieck set theory; Grothendieck universe; universe hierarchy

MML identifier: CLASSES4, version: 8.1.12 5.71.1431

1. Preliminaries

Now we state the propositions:
(1) Let us consider a set X. Then $\pi_{1}(X), \pi_{2}(X) \in 2 \cup \bigcup X$.
(2) $\quad \mathbb{R}^{*}=$ the set of all X where X is a finite sequence of elements of \mathbb{R}.

One can verify that there exists a Grothendieck which is empty and there exists a Grothendieck which is non empty.

Let X be a set. One can verify that every Grothendieck of X is non empty.

2. Original Definitions of Grothendieck's Universe

Let \mathcal{G} be a set. We say that \mathcal{G} satisfies axiom GU_{1} if and only if
(Def. 1) for every sets x, y such that $x \in \mathcal{G}$ and $y \in x$ holds $y \in \mathcal{G}$.
We say that \mathcal{G} satisfies axiom GU_{2} if and only if
(Def. 2) for every sets x, y such that $x, y \in \mathcal{G}$ holds $\{x, y\} \in \mathcal{G}$.
We say that \mathcal{G} satisfies axiom GU_{3} if and only if
(Def. 3) for every set x such that $x \in \mathcal{G}$ holds $2^{x} \in \mathcal{G}$.
Let \mathcal{G} be a non empty set. We say that \mathcal{G} satisfies axiom GU_{4} if and only if
(Def. 4) for every element I of \mathcal{G} and for every \mathcal{G}-valued many sorted set x indexed by $I, \bigcup \operatorname{rng} x \in \mathcal{G}$.

3. Equivalences of Definitions

Now we state the propositions:
(3) Let us consider a set X. Then X satisfies axiom GU_{1} if and only if X is transitive.
(4) Let us consider a non empty set X. Then X satisfies axiom GU_{4} if and only if X is Family-Union-closed.
(5) Let us consider a Family-Union-closed set X, and a function f. Suppose $\operatorname{dom} f \in X$ and $\operatorname{rng} f \subseteq X$. Then $\bigcup \operatorname{rng} f \in X$.
One can check that every Grothendieck satisfies axiom GU_{1}, axiom GU_{2}, and axiom GU_{3} and every non empty Grothendieck satisfies axiom GU_{4}.

Now we state the proposition:
(6) Let us consider a non empty set \mathcal{G}. Suppose \mathcal{G} satisfies axiom GU_{1}, axiom GU_{2}, axiom GU_{3}, and axiom GU_{4}. Then \mathcal{G} is a non empty Grothendieck.
Let us consider a set X. Now we state the propositions:
(7) X is a universal class if and only if X is a non empty Grothendieck.
(8) $\mathbf{T}\left(\{X\}^{* \in}\right)$ is a Grothendieck of X.
(9) The universe of $\{X\}$ is a Grothendieck of X. The theorem is a consequence of (8).
(10) Universe_closure $(\{X\})=$ GrothendieckUniverse (X).

4. Equivalences of Mac Lane Definition

Now we state the propositions:
(11) Let us consider a Grothendieck U. Suppose $\omega \in U$. Then
(i) for every sets x, u such that $x \in u \in U$ holds $x \in U$, and
(ii) for every sets u, v such that $u, v \in U$ holds $\{u, v\},\langle u, v\rangle, u \times v \in U$, and
(iii) for every set x such that $x \in U$ holds $2^{x}, \bigcup x \in U$, and
(iv) $\omega \in U$, and
(v) for every sets a, b and for every function f from a into b such that $\operatorname{dom} f=a$ and f is onto and $a \in U$ and $b \subseteq U$ holds $b \in U$.
(12) Let us consider a set U. Suppose for every sets x, u such that $x \in u \in U$ holds $x \in U$ and for every set x such that $x \in U$ holds $2^{x}, ~ \bigcup x \in U$ and $\omega \in U$ and for every sets a, b and for every function f from a into b such that $\operatorname{dom} f=a$ and f is onto and $a \in U$ and $b \subseteq U$ holds $b \in U$. Then U is a Grothendieck. The theorem is a consequence of (4) and (3).

5. Properties of Universe, Following [25]

From now on X denotes a set and \mathcal{U} denotes a universal class. Now we state the proposition:
(13) Suppose X satisfies axiom GU_{1} and axiom GU_{3}. Then
(i) for every set y and for every subset x of y such that $y \in X$ holds $x \in X$, and
(ii) for every sets x, y such that $x \subseteq y$ and $y \in X$ holds $x \in X$, and
(iii) if X is not empty, then $\emptyset \in X$.

Let \mathcal{U} be a universal class. The functor $\emptyset_{\mathcal{U}}$ yielding an element of \mathcal{U} is defined by the term
(Def. 5) \emptyset.
Now we state the propositions:
(14) \mathcal{U} is a Grothendieck of \emptyset. The theorem is a consequence of (13).
(15) Let us consider elements u, v of \mathcal{U}. Then $v^{u} \subseteq$ the set of all f where f is a function from u into v.
Let \mathcal{U} be a universal class and u be an element of \mathcal{U}. Note that the functor succ u yields an element of \mathcal{U}. Now we state the propositions:
(16) Let us consider a natural number n. Then $n \in \mathcal{U}$.

Proof: Define \mathcal{P} [natural number] $\equiv \$_{1} \in \mathcal{U} . \mathcal{P}[0]$. For every natural number $n, \mathcal{P}[n]$.
(17) $\omega \subseteq \mathcal{U}$.
(18) (i) $\mathbb{N} \in \mathcal{U}$, or
(ii) $\mathbb{N} \approx \mathcal{U}$.

The theorem is a consequence of (16).
Let us note that every universal class is infinite. Now we state the proposition:
(19) \mathbf{U}_{0} is denumerable.

Observe that there exists a universal class which is denumerable.
Now we state the proposition:
(20) \mathcal{U} is not denumerable if and only if $\omega \in \mathcal{U}$.

Observe that there exists a universal class which is non denumerable.
Let \mathcal{U} be a universal class. We say that \mathcal{U} is trivial if and only if
(Def. 6) $\omega \notin \mathcal{U}$.
Now we state the proposition:
(21) (i) \mathbf{U}_{0} is trivial, and
(ii) \mathbf{U}_{1} is not trivial.

The theorem is a consequence of (16), (13), (19), and (20).
One can check that there exists a universal class which is trivial and there exists a universal class which is non trivial and every non trivial universal class is non denumerable. Now we state the proposition:
(22) Let us consider an element x of \mathcal{U}, and objects y, z. Suppose $x=\langle y, z\rangle$. Then
(i) y is an element of \mathcal{U}, and
(ii) z is an element of \mathcal{U}.

Let \mathcal{U} be a universal class. Let us note that there exists an element of \mathcal{U} which is pair. Now we state the proposition:
(23) Let us consider elements u, v of \mathcal{U}. Then the set of all f where f is a function from u into v is an element of \mathcal{U}. The theorem is a consequence of (13).
Let \mathcal{U} be a universal class, I be an element of \mathcal{U}, and x be a \mathcal{U}-valued many sorted set indexed by I. Let us observe that the functor Πx yields an element of \mathcal{U}. Let x, y be elements of \mathcal{U}. The functor $x \uplus y$ yielding an element of \mathcal{U} is defined by the term
(Def. 7) $\quad\left[x \longmapsto \emptyset_{\mathcal{U}}, y \longmapsto\left\{\emptyset_{\mathcal{U}}\right\}\right]$.
Now we state the propositions:
(24) Let us consider elements x, y of \mathcal{U}. Then $x \uplus y$ is a subset of $\{x, y\} \times$ $\{\emptyset,\{\emptyset\}\}$.
(25) Let us consider an element u of \mathcal{U}. Then $u \uplus u=\{\langle u,\{\emptyset\}\rangle\}$.

Let \mathcal{U} be a universal class, I be an element of \mathcal{U}, and x be a \mathcal{U}-valued many sorted set indexed by I. Note that the functor $\operatorname{dom} x$ yields an element of \mathcal{U}. Note that the functor $\bigcup x$ yields an element of \mathcal{U}. Let us note that the functor disjoint x yields a \mathcal{U}-valued many sorted set indexed by I. The functor $\biguplus x$ yielding an element of \mathcal{U} is defined by the term
(Def. 8) \bigcup disjoint x.
Let us consider an element I of \mathcal{U} and a \mathcal{U}-valued many sorted set x indexed by I. Now we state the propositions:
(26) $\cup \operatorname{coprod}(x)$ is an element of \mathcal{U}.
(27) $\biguplus x$ is a subset of $\bigcup \operatorname{rng} x \times I$.
(28) If X satisfies axiom GU_{2}, then for every set x such that $x \in X$ holds $\{x\} \in X$.
Let us consider an element u of \mathcal{U}. Now we state the propositions:
(29) $\overline{\bar{u}} \in \mathcal{U}$.
(30) (i) $u \not \approx \mathcal{U}$, and
(ii) $\overline{\bar{u}} \in \overline{\overline{\mathcal{U}}}$.
(31) Let us consider elements u, v of \mathcal{U}. Then $\{\langle u, \emptyset\rangle,\langle v,\{\emptyset\}\rangle\}=\{u\} \times$ $\{\emptyset\} \cup\{v\} \times\{\{\emptyset\}\}$.
(32) Let us consider elements I, a, b, u, v of \mathcal{U}, and a \mathcal{U}-valued many sorted set x indexed by I. Suppose $I=\{a, b\}$ and $x(a)=u$ and $x(b)=v$. Then $\biguplus x=u \times\{a\} \cup v \times\{b\}$.
Let us consider elements I, u, v of \mathcal{U} and a \mathcal{U}-valued many sorted set x indexed by I. Now we state the propositions:
(33) Suppose $I=\{\emptyset,\{\emptyset\}\}$ and $x(\emptyset)=u$ and $x(\{\emptyset\})=v$. Then $\biguplus x=u \times$ $\{\emptyset\} \cup v \times\{\{\emptyset\}\}$. The theorem is a consequence of (32).
(34) Suppose $I=\{\emptyset,\{\emptyset\}\}$ and $x(\emptyset)=\{u\}$ and $x(\{\emptyset\})=\{v\}$ and $u \neq v$. Then $\biguplus x=u \uplus v$. The theorem is a consequence of (33) and (31).
(35) Let us consider an element x of \mathcal{U}, and objects y, z. Suppose $x=\langle y, z\rangle$. Then
(i) y is an element of \mathcal{U}, and
(ii) z is an element of \mathcal{U}.

Let \mathcal{U} be a universal class. Observe that there exists an element of \mathcal{U} which is pair.

Let u be a pair element of \mathcal{U}. The functors: $(u)_{1}$ and $(u)_{\mathbf{2}}$ yield elements of \mathcal{U}. Now we state the proposition:
(36) Let us consider an element X of \mathcal{U}. Then
(i) $\pi_{1}(X)$ is an element of \mathcal{U}, and
(ii) $\pi_{2}(X)$ is an element of \mathcal{U}.

The theorem is a consequence of (1).
Let us consider a binary relation R. Now we state the propositions:
(37) If $R \in \mathcal{U}$, then $\operatorname{dom} R, \operatorname{rng} R \in \mathcal{U}$. The theorem is a consequence of (36).
(38) If $\operatorname{dom} R$ is an element of \mathcal{U} and $\operatorname{rng} R$ is an element of \mathcal{U}, then R is an element of \mathcal{U}. The theorem is a consequence of (13).
(39) Let us consider a set X, a non empty set Y, and a function f from X into Y. If $f \in \mathcal{U}$, then $X \in \mathcal{U}$. The theorem is a consequence of (37).
(40) Let us consider non empty sets A, B. Suppose $A \times B$ is an element of \mathcal{U}. Then
(i) A is an element of \mathcal{U}, and
(ii) B is an element of \mathcal{U}.

The theorem is a consequence of (36).
(41) Let us consider a set X. Suppose id_{X} is an element of \mathcal{U}. Then X is an element of \mathcal{U}. The theorem is a consequence of (37).
(42) Let us consider elements x, y, z of \mathcal{U}. Then $\langle x, y\rangle \longmapsto z$ is an element of \mathcal{U}.

6. Properties of Universe Containing ω

Now we state the propositions:
(43) $\omega \subset \mathbf{U}_{0}$. The theorem is a consequence of (16).
(44) Let us consider a set X. Then $\mathbf{T}(\emptyset) \subseteq \mathbf{T}(X)$.
(45) Let us consider a Grothendieck \mathcal{G} of X. Then $\mathbf{U}_{0} \subseteq \mathcal{G}$. The theorem is a consequence of (44).
(46) (i) GrothendieckUniverse $(\emptyset)=\mathbf{U}_{0}$, and
(ii) GrothendieckUniverse $(\emptyset)=\mathbf{U}_{\emptyset}$.
(47) Let us consider a set X, and a Grothendieck \mathcal{G} of X. Then Grothendieck Universe $(\emptyset) \subseteq$ GrothendieckUniverse $(X) \subseteq \mathcal{G}$.
(48) Let us consider an element n of \mathbf{U}_{0}. Then GrothendieckUniverse $(n)=$ \mathbf{U}_{0}. The theorem is a consequence of (45).
(49) the empty Grothendieck $\subset \omega \subset$ GrothendieckUniverse $(\emptyset) \subset$ Grothendieck Universe (ω). The theorem is a consequence of (16), (46), (43), (19), and (20).
(50) Let us consider a non empty Grothendieck \mathcal{G}. Suppose $\mathcal{G} \neq$ Grothendieck Universe (ω). Then
(i) GrothendieckUniverse $(\omega) \in \mathcal{G}$, or
(ii) $\mathcal{G} \in \operatorname{GrothendieckUniverse}(\omega)$.
(51) $\mathbf{T}(\omega)=$ GrothendieckUniverse (ω).
(52) Let us consider sets N_{1}, N_{2}. Suppose $N_{1}=\mathbb{N} \times \mathbb{N} \cup \mathbb{N}$ and $N_{2}=N_{1} \cup 2^{N_{1}}$. Then $\mathbb{R} \subseteq N_{2} \cup \mathbb{N} \times N_{2}$.
Let us consider a non trivial universal class \mathcal{U}. Now we state the propositions:
(53) \mathbb{R} is an element of \mathcal{U}. The theorem is a consequence of (52) and (13).
(54) $\overline{\mathbb{R}}$ is an element of \mathcal{U}. The theorem is a consequence of (53) and (13).
(55) $\mathbb{C} \in \mathcal{U}$. The theorem is a consequence of (16), (53), and (13).
(56) $\mathbb{H} \in \mathcal{U}$. The theorem is a consequence of (16), (53), (55), and (13).
(57) Let us consider a natural number n. Then $\operatorname{Seg} n \in \mathcal{U}$. The theorem is a consequence of (16) and (13).
(58) Let us consider a set D. If $D \in \mathcal{U}$, then for every natural number n, $D^{n} \in \mathcal{U}$. The theorem is a consequence of (57).
(59) Let us consider a non trivial universal class \mathcal{U}, and a natural number n. Then $\mathcal{R}^{n} \in \mathcal{U}$. The theorem is a consequence of (53) and (58).
Let us consider a set X and a natural number n. Now we state the propositions:
(60) If $X \in \mathcal{U}$, then $X^{n} \in \mathcal{U}$. The theorem is a consequence of (57).
(61) $X^{n} \subseteq X^{*}$.
(62) Let us consider a non empty set X, and an object x. If $x \in X^{*}$, then there exists a natural number n such that $x \in X^{n}$.
(63) Let us consider a non empty set X. Then there exists a function f such that
(i) $\operatorname{dom} f=\mathbb{N}$, and
(ii) for every natural number $n, f(n)=X^{n}$, and
(iii) $\cup \operatorname{rng} f=X^{*}$.

Proof: Define \mathcal{P} [object, object] \equiv there exists a natural number n such that $\$_{1}=n$ and $\$_{2}=X^{n}$. For every object x such that $x \in \mathbb{N}$ there exists an object y such that $\mathcal{P}[x, y]$. Consider f being a function such that $\operatorname{dom} f=\mathbb{N}$ and for every object x such that $x \in \mathbb{N}$ holds $\mathcal{P}[x, f(x)]$. For every natural number $n, f(n)=X^{n}$. $\bigcup \operatorname{rng} f=X^{*}$.
(64) Let us consider a non trivial universal class \mathcal{U}, and a non empty set X. If $X \in \mathcal{U}$, then $X^{*} \in \mathcal{U}$. The theorem is a consequence of (63) and (58).
Let us consider a non trivial universal class \mathcal{U}. Now we state the propositions:
(65) $\mathbb{R}^{*} \in \mathcal{U}$. The theorem is a consequence of (53) and (64).
(66) $\overline{\mathbb{R}}^{*} \in \mathcal{U}$. The theorem is a consequence of (54) and (64).
(67) $\mathbb{C}^{*} \in \mathcal{U}$.
(68) $(\mathbb{H})^{*} \in \mathcal{U}$.
(69) Let us consider a universal class \mathcal{U}, and a set X. If $X \in \mathcal{U}$, then for every finite sequence s of elements of $X, s \in \mathcal{U}$. The theorem is a consequence of (57) and (13).
(70) Let us consider an empty set X, and a finite sequence f of elements of X^{*}. Then $f=\operatorname{len} f \mapsto 0$.
(71) Let us consider a non trivial universal class \mathcal{U}, and a non empty set D. If $D \in \mathcal{U}$, then for every matrix M over $D, M \in \mathcal{U}$.
(72) $\mathbf{U}_{0}, \mathbb{N}, \mathbb{R}, \overline{\mathbb{R}} \in \mathbf{U}_{1}$. The theorem is a consequence of (16), (13), (53), and (54).
(73) Let us consider a set X, and a universal class \mathcal{U}. If $\mathcal{U} \in \mathbf{T}(X)$, then $\mathbf{T}(\mathcal{U}) \subseteq \mathbf{T}(X)$.
(74) $\quad \mathbf{U}_{0} \in \mathbf{T}(\omega)$. The theorem is a consequence of (19) and (20).
(75) $\quad \mathbf{U}_{1}=\mathbf{T}(\omega)$. The theorem is a consequence of (72), (73), and (74).
(76) GrothendieckUniverse $(\omega)=\mathbf{U}_{1}$.
(77) GrothendieckUniverse $(\omega)=$ GrothendieckUniverse $\left(\mathbf{U}_{0}\right)=\mathbf{U}_{1}$. Proof: GrothendieckUniverse $(\omega)=$ GrothendieckUniverse $\left(\mathbf{U}_{0}\right)$.
Let us consider a non empty set X, a Grothendieck \mathcal{G}^{\prime} of X, and a universal class \mathcal{G}. Now we state the propositions:
(78) If X misses \mathcal{G}, then $\mathcal{G}^{\prime} \neq \mathcal{G}$.
(79) If X misses \mathcal{G}, then $\mathcal{G}^{\prime} \in \mathcal{G}$ or $\mathcal{G} \in \mathcal{G}^{\prime}$.
(80) Let us consider universal classes $\mathcal{U}, \mathcal{U}^{\prime}$, and an element a of \mathcal{U}. If $a \notin \mathcal{U}^{\prime}$, then $\mathcal{U}^{\prime} \in \mathcal{U}$. The theorem is a consequence of (78).
(81) Let us consider a Grothendieck \mathcal{G}. Then $\bigcup \mathcal{G}=\mathcal{G}$.

One can verify that every Grothendieck is limit ordinal.
Now we state the proposition:
(82) Let us consider a universal class \mathcal{U}, and a non empty element V of \mathcal{U}. Then Funcs V is a subset of \mathcal{U}. The theorem is a consequence of (81).

7. How to Get Out of a Universe?

Now we state the propositions:
(83) There exists a set a such that $a \notin \mathcal{U}$.
(84) There exists a subset A of \mathcal{U} such that $A \notin \mathcal{U}$.
(85) the set of all u where u is an element of \mathcal{U} is not an element of \mathcal{U}.
(86) Let us consider an element X of \mathcal{U}. Then $\mathcal{U} \backslash X$ is not an element of \mathcal{U}. Proof: $\mathcal{U} \backslash X \notin \mathcal{U}$.
(87) $2^{\mathcal{U}} \notin \mathcal{U}$.

8. A Sequence of Universes

Now we state the proposition:
(88) Let us consider a set X. Then there exists a function f such that
(i) $\operatorname{dom} f=\mathbb{N}$, and
(ii) $f(0)=X$, and
(iii) for every natural number $n, f(n+1)=$ GrothendieckUniverse $(f(n))$.

Proof: Define \mathcal{G} (set, set) $=$ GrothendieckUniverse $\left(\$_{2}\right)$. There exists a function f such that $\operatorname{dom} f=\mathbb{N}$ and $f(0)=X$ and for every natural number $n, f(n+1)=\mathcal{G}(n, f(n))$.
The Construction of X, GrothendieckUniverse (X), GrothendieckUniverse (GrothendieckUniverse (X)),
Let X be a set. The functor sequence-universe (X) yielding a function is defined by
(Def. 9) $\quad \operatorname{dom} i t=\mathbb{N}$ and $i t(0)=X$ and for every natural number $n, i t(n+1)=$ GrothendieckUniverse($i t(n)$).
Now we state the propositions:
(89) Let us consider a set X. Then sequence-universe (X) is a transfinite sequence.
(90) Let us consider a set X, and a transfinite sequence S. If dom $S=\mathbb{N}$, then last $S=S(\mathbb{N})$.
(91) Let us consider a transfinite sequence S. Suppose $\operatorname{dom} S=\mathbb{N}$. Then
(i) $S(\mathbb{N})=\emptyset$, and
(ii) last $S=\emptyset$.

The theorem is a consequence of (90).
(92) Let us consider a set X, and a transfinite sequence S. Suppose $S=$ sequence-universe (X). Then
(i) last $S=\emptyset$, and
(ii) $S(\mathbb{N})=\emptyset$.

The theorem is a consequence of (91).
The Construction of $X \cup$ GrothendieckUniverse $(X) \cup$ GrothendieckUniverse (GrothendieckUniverse $(X)) \cup \ldots$.
Let X be a set. The functor union-sequence-universe (X) yielding a non empty set is defined by the term
(Def. 10) \bigcup rng sequence-universe (X).
Now we state the proposition:
(93) Let us consider a set X. Then rng sequence-universe $(X) \subseteq$ union-sequenceuniverse (X).
The Formal Counterpart of $\emptyset\left(=\mathcal{U}_{0}\right) \in \mathcal{U}_{1} \in \mathcal{U}_{2} \in \ldots$: Sequence of universes indexed by the ordinal numbers (see 8. Examples, Grothendieck Universe [24]).

The functor sequence-universe yielding a sequence of union-sequence-universe($($) is defined by the term
(Def. 11) sequence-universe (\emptyset).

Now we state the propositions:
(94) $\emptyset, \mathbf{U}_{0}, \mathbf{U}_{1} \in$ rng sequence-universe. The theorem is a consequence of (45) and (77).
(95) $\bigcup_{n<\omega} \mathcal{U}_{n}$ is not a Universe:
\bigcup rng sequence-universe is not a Grothendieck. The theorem is a consequence of (72) and (94).
(96) (i) $\mathbf{T}\left(\mathbf{U}_{0}\right)=$ GrothendieckUniverse $\left(\mathbf{U}_{0}\right)$, and
(ii) $\mathbf{T}\left(\mathbf{U}_{1}\right)=$ GrothendieckUniverse $\left(\mathbf{U}_{1}\right)$.
(97) Let us consider a set X, and a natural number n. Then
(i) (sequence-universe $(X))(n+1)$ is transitive, and
(ii) $\mathbf{T}(($ sequence-universe $(X))(n+1))=$

GrothendieckUniverse((sequence-universe $(X))(n+1))$.
Let us consider a natural number n. Now we state the propositions:
(98) $\mathbf{T}\left(\left(\right.\right.$ sequence-universe $\left.\left.\left(\mathbf{U}_{0}\right)\right)(n)\right)=$

GrothendieckUniverse $\left(\left(\right.\right.$ sequence-universe $\left.\left.\left(\mathbf{U}_{0}\right)\right)(n)\right)$. The theorem is a consequence of (77).
(99) $\quad \mathbf{U}_{n} \in \mathbf{U}_{n+1}$.
(100) (sequence-universe $\left.\left(\mathbf{U}_{0}\right)\right)(n)=\mathbf{U}_{n}$.

Proof: Define \mathcal{P} [natural number] \equiv (sequence-universe $\left.\left(\mathbf{U}_{0}\right)\right)\left(\$_{1}\right)=\mathbf{U}_{\$_{1}}$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
(101) GrothendieckUniverse((sequence-universe($\emptyset())(n))=$ (sequence-universe(GrothendieckUniverse($(0))$)(n).
Proof: Define \mathcal{P} [natural number] \equiv GrothendieckUniverse ((sequenceuniverse $\left.(\emptyset))\left(\$_{1}\right)\right)=($ sequence-universe $($ GrothendieckUniverse $(\emptyset)))\left(\$_{1}\right)$. $\mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
(102) (sequence-universe) $(n+1)=\mathbf{U}_{n}$. The theorem is a consequence of (46), (100), and (101).

Let us note that there exists an element of \bigcup rng sequence-universe which is non empty.

Now we state the propositions:
(103) $\mathbf{U}_{0}, \mathbf{U}_{1} \in$ GrothendieckUniverse(sequence-universe). The theorem is a consequence of (45) and (77).
(104) Let us consider a natural number n. Then (sequence-universe) $(n+1) \in$ GrothendieckUniverse(sequence-universe). The theorem is a consequence of (45) and (102).

The Construction of \mathcal{U}_{ω} : Tower of universes indexed by the ordinal numbers (see 8. Examples, Grothendieck Universe [24]).

The functor \mathcal{U}_{ω} yielding a non trivial universal class is defined by the term (Def. 12) GrothendieckUniverse(sequence-universe).

Now we state the proposition:
(105) Let us consider a natural number n. Then (sequence-universe) $(n) \subseteq$ (sequence-universe) $(n+1)$.
Proof: Define \mathcal{P} [natural number] \equiv (sequence-universe) $(\$) \subseteq$ (sequenceuniverse $)\left(\$_{1}+1\right)$. $\mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $n, \mathcal{P}[n]$.
Let X be an element of \bigcup rng sequence-universe. The functor rank-universe (X) yielding a natural number is defined by
(Def. 13) $\quad X \in$ (sequence-universe)(it) and for every natural number n such that $n<i t$ holds $X \notin$ (sequence-universe)(n).
Now we state the propositions:
(106) Let us consider an element X of \bigcup rng sequence-universe, and a natural number n. Suppose rank-universe $(X) \leqslant n$.
Then $X \in$ (sequence-universe) (n).
Proof: Define \mathcal{P} [natural number] $\equiv X \in$ (sequence-universe) $\left(\$_{1}\right)$. For every natural number j such that rank-universe $(X) \leqslant j$ and $\mathcal{P}[j]$ holds $\mathcal{P}[j+1]$. For every natural number i such that rank-universe $(X) \leqslant i$ holds $\mathcal{P}[i]$.
(107) Let us consider a natural number i. Then there exists a set x such that $x \in$ (sequence-universe) $(i+1) \backslash$ (sequence-universe) (i). The theorem is a consequence of (105) and (102).
(108) Let us consider a natural number n. Then $\mathbf{U}_{n+1} \backslash\left(\mathbf{U}_{n}\right) \notin \mathbf{U}_{n+1}$. The theorem is a consequence of (99) and (86).
The functor ComplUniverse yielding a function from \mathbb{N} into \bigcup rng sequenceuniverse is defined by
(Def. 14) for every natural number n, $i t(n)=\mathbf{U}_{n+1} \backslash\left(\mathbf{U}_{n}\right)$.
Let us consider a natural number n. Now we state the propositions:
(109) (ComplUniverse) (n) is not empty. The theorem is a consequence of (99).
(110) $\quad($ ComplUniverse $)(n) \subseteq \mathbf{U}_{n+1}$.
(111) There exists a function f from \mathbb{N} into $\bigcup \bigcup$ rng sequence-universe such that for every natural number $i, f(i) \in($ ComplUniverse $)(i)$.
Proof: Set $g=$ the choice of ComplUniverse. rng $g \subseteq \bigcup \bigcup$ rng sequenceuniverse. For every natural number $i, g(i) \in($ ComplUniverse $)(i)$.
(112) Let us consider a function f from \mathbb{N} into \bigcup rng sequence-universe. Then $f \in \mathcal{U}_{\omega}$. The theorem is a consequence of (13) and (104).
(113) Let us consider a function f from \mathbb{N} into $\bigcup \bigcup$ rng sequence-universe. Then $f \in \mathcal{U}_{\omega}$. The theorem is a consequence of (13) and (104).

References

[1] M. Artin, A. Grothendieck, and J.L. Verdier. Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos (exposés i à iv). Séminaire de Géométrie Algébrique du Bois Marie, Vol. 1964.
[2] Grzegorz Bancerek. Increasing and continuous ordinal sequences Formalized Mathematics, 1(4):711-714, 1990.
[3] Grzegorz Bancerek. Veblen hierarchy. Formalized Mathematics, 19(2):83-92, 2011. doi $10.2478 /$ v10037-011-0014-5
[4] Grzegorz Bancerek. Consequences of the reflection theorem. Formalized Mathematics, 1 (5):989-993, 1990.
[5] Grzegorz Bancerek. The reflection theorem Formalized Mathematics, 1(5):973-977, 1990.
[6] Grzegorz Bancerek and Noboru Endou. Compactness of lim-inf topology Formalized Mathematics, 9(4):739-743, 2001.
[7] Grzegorz Bancerek and Andrzej Kondracki. Mostowski's fundamental operations - Part II. Formalized Mathematics, 2(3):425-427, 1991.
[8] Grzegorz Bancerek, Noboru Endou, and Yuji Sakai. On the characterizations of compactness Formalized Mathematics, 9(4):733-738, 2001.
[9] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[10] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ siU817-017-9440-6
[11] Chad E. Brown and Karol Pąk. A tale of two set theories. In Cezary Kaliszyk, Edwin Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics - 12th International Conference, CICM 2019, CIIRC, Prague, Czech Republic, July 8-12, 2019, Proceedinqs, volume 11617 of Lecture Notes in Computer Science, pages 44-60. Springer, 2019. doi 10.1007/978-3-030-23250-4_4
[12] Czesław Byliński. Category Ens, Formalized Mathematics, 2(4):527-533, 1991.
[13] Olivia Caramello and Riccardo Zanfa. Relative topos theory via stacks. arXiv preprint arXiv:2107.04417, 2021.
[14] Daniel Gratzer, Michael Shulman, and Jonathan Sterling. Strict universes for Grothendieck topoi. arXiv preprint arXiv:2202.12012, 2022.
[15] Ewa Grądzka. On the order-consistent topology of complete and uncomplete lattices. Formalized Mathematics, 9(2):377-382, 2001.
[16] Andrzej Kondracki. Mostowski's fundamental operations - Part I Formalized Mathematics, 2(3):371-375, 1991.
[17] Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009.
[18] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, Heidelberg, Berlin, 1971.
[19] Beata Madras. Irreducible and prime elements. Formalized Mathematics, 6(2):233-239, 1997.
[20] Michał Muzalewski. Categories of groups Formalized Mathematics, 2(4):563-571, 1991.
[21] Michał Muzalewski. Category of left modules. Formalized Mathematics, 2(5):649-652,
1991.
[22] Michał Muzalewski. Rings and modules - part II Formalized Mathematics, 2(4):579-585, 1991.
[23] Michał Muzalewski. Category of rings Formalized Mathematics, 2(5):643-648, 1991.
[24] nLab Authors. Grothendieck universe, 2022.
[25] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3): 595-600, 1990.
[26] Karol Pak. Grothendieck universes. Formalized Mathematics, 28(2):211-215, 2020. doi 10.2478/forma-2020-0018
[27] Krzysztof Retel. The class of series-parallel graphs. Part II Formalized Mathematics, 11 (3):289-291, 2003.
[28] Marco Riccardi. Free magmas. Formalized Mathematics, 18(1):17-26, 2010. doi $10.2478 /$ v10037-010-0003-0
[29] Emily Riehl. Category Theory in Context. Courier Dover Publications, 2017.
[30] Michael A. Shulman. Set theory for category theory. arXiv preprint arXiv:0810.1279, 2008.
[31] Bartłomiej Skorulski. Lim-inf convergence. Formalized Mathematics, 9(2):237-240, 2001.
[32] Andrzej Trybulec. Scott topology| Formalized Mathematics, 6(2):311-319, 1997.
[33] Andrzej Trybulec. Moore-Smith convergence Formalized Mathematics, 6(2):213-225, 1997.
[34] Josef Urban. Mahlo and inaccessible cardinals Formalized Mathematics, 9(3):485-489, 2001.
[35] Mariusz Żynel. The equational characterization of continuous lattices. Formalized Mathematics, 6(2):199-205, 1997.

Isomorphism between Spaces of Multilinear Maps and Nested Compositions over Real Normed Vector Spaces

Kazuhisa Nakashc
Yamaguchi University
Yamaguchi, Japan

Yuichi Futa
Tokyo University of Technology
Tokyo, Japan

Abstract

Summary. This paper formalizes in Mizar [1], [2], that the isometric isomorphisms between spaces formed by an $(n+1)$-dimensional multilinear map and an n-fold composition of linear maps on real normed spaces. This result is used to describe the space of nth-order derivatives of the Frechet derivative as a multilinear space. In Section 1, we discuss the spaces of 1-dimensional multilinear maps and 0 -fold compositions as a preparation, and in Section 2, we extend the discussion to the spaces of ($n+1$)-dimensional multilinear map and an n-fold compositions. We referred to [4, [11, [8, 9 in this formalization.

MSC: 15A69 47A07 68V20
Keywords: Banach space; composition function; multilinear function
MML identifier: LOPBAN14, version: 8.1.12 5.71.1431

1. Preliminaries

Let X be a real linear space. The functor $\operatorname{IsoCPRLSP}(X)$ yielding a linear operator from X into $\Pi\langle X\rangle$ is defined by
(Def. 1) for every point x of X, it $(x)=\langle x\rangle$.
Now we state the proposition:
(1) Let us consider a real linear space X.

Then $0_{\prod\langle X\rangle}=(\operatorname{IsoCPRLSP}(X))\left(0_{X}\right)$.

Let X be a real linear space. Observe that $\operatorname{IsoCPRLSP}(X)$ is one-to-one and onto and there exists a linear operator from X into $\Pi\langle X\rangle$ which is one-to-one and onto.

Let f be a bijective linear operator from X into $\Pi\langle X\rangle$. Let us note that the functor f^{-1} yields a linear operator from $\Pi\langle X\rangle$ into X. Let f be a one-to-one, onto linear operator from X into $\Pi\langle X\rangle$. Let us note that f^{-1} is bijective as a linear operator from $\Pi\langle X\rangle$ into X and there exists a linear operator from $\Pi\langle X\rangle$ into X which is one-to-one and onto.

Now we state the propositions:
(2) Let us consider a real linear space X, and a point x of X.

Then $\left((\operatorname{IsoCPRLSP}(X))^{-1}\right)(\langle x\rangle)=x$.
Proof: Set $I=\operatorname{IsoCPRLSP}(X)$. Set $J=I^{-1}$. For every point x of X, $J(\langle x\rangle)=x$.
(3) Let us consider a real linear space X.

Then $\left((\operatorname{IsoCPRLSP}(X))^{-1}\right)\left(0 \Pi_{\langle X\rangle}^{\langle X}\right)=0_{X}$. The theorem is a consequence of (1).
(4) Let us consider a real linear space G. Then
(i) for every set x, x is a point of $\Pi\langle G\rangle$ iff there exists a point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$, and
(ii) for every points x, y of $\Pi\langle G\rangle$ and for every points x_{1}, y_{1} of G such that $x=\left\langle x_{1}\right\rangle$ and $y=\left\langle y_{1}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right\rangle$, and
(iii) ${ }^{0} \prod_{\langle G\rangle}=\left\langle 0_{G}\right\rangle$, and
(iv) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $-x=\left\langle-x_{1}\right\rangle$, and
(v) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G and for every real number a such that $x=\left\langle x_{1}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}\right\rangle$.
Proof: Consider I being a function from G into $\Pi\langle G\rangle$ such that I is one-to-one and onto and for every point x of $G, I(x)=\langle x\rangle$ and for every points v, w of $G, I(v+w)=I(v)+I(w)$ and for every point v of G and for every element r of $\mathbb{R}, I(r \cdot v)=r \cdot I(v)$ and ${ }_{\prod_{\langle G\rangle}}=I\left(0_{G}\right)$. For every set x, x is a point of $\Pi\langle G\rangle$ iff there exists a point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$.

For every points x, y of $\Pi\langle G\rangle$ and for every points x_{1}, y_{1} of G such that $x=\left\langle x_{1}\right\rangle$ and $y=\left\langle y_{1}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $-x=\left\langle-x_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G and for every real number a such that $x=\left\langle x_{1}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}\right\rangle$.
(5) Let us consider real linear spaces X, Y, and a function f from X into Y. Then f is a linear operator from X into Y if and only if
$f \cdot\left((\operatorname{IsoCPRLSP}(X))^{-1}\right)$ is a linear operator from $\Pi\langle X\rangle$ into Y.
(6) Let us consider real linear spaces X, Y, and a function f from $\Pi\langle X\rangle$ into Y. Then f is a linear operator from $\Pi\langle X\rangle$ into Y if and only if $f \cdot(\operatorname{IsoCPRLSP}(X))$ is a linear operator from X into Y. The theorem is a consequence of (5).
(7) Let us consider a real linear space X, a point s of $\Pi\langle X\rangle$, and an element i of $\operatorname{dom}\langle X\rangle$. Then $\operatorname{reproj}(i, s)=\operatorname{IsoCPRLSP}(X)$.
Proof: For every element x of $X,(\operatorname{reproj}(i, s))(x)=(\operatorname{IsoCPRLSP}(X))(x)$.
(8) Let us consider real linear spaces X, Y, and an object f. Then f is a linear operator from $\Pi\langle X\rangle$ into Y if and only if f is a multilinear operator from $\langle X\rangle$ into Y. The theorem is a consequence of (6) and (7).
Let us consider real linear spaces X, Y. Now we state the propositions:
(9) $\operatorname{MultOpers}(\langle X\rangle, Y)=$ LinearOperators $(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (8).
(10) VectorSpaceOfMultOpers $\mathbb{R}_{\mathbb{R}}(\langle X\rangle, Y)=$

VectorSpaceOfLinearOpers ${ }_{\mathbb{R}}(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (9).
(11) Let us consider a real normed space G. Then
(i) for every set x, x is a point of $\Pi\langle G\rangle$ iff there exists a point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$, and
(ii) for every points x, y of $\Pi\langle G\rangle$ and for every points x_{1}, y_{1} of G such that $x=\left\langle x_{1}\right\rangle$ and $y=\left\langle y_{1}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right\rangle$, and
(iii) ${ }^{0} \prod_{\langle G\rangle}=\left\langle 0_{G}\right\rangle$, and
(iv) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $-x=\left\langle-x_{1}\right\rangle$, and
(v) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G and for every real number a such that $x=\left\langle x_{1}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}\right\rangle$, and
(vi) for every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $\|x\|=\left\|x_{1}\right\|$.
Proof: Consider I being a function from G into $\Pi\langle G\rangle$ such that I is one-to-one and onto and for every point x of $G, I(x)=\langle x\rangle$ and for every points v, w of $G, I(v+w)=I(v)+I(w)$ and for every point v of G and for every element r of $\mathbb{R}, I(r \cdot v)=r \cdot I(v)$ and $0_{\prod\langle G\rangle}=I\left(0_{G}\right)$ and for every point v of $G,\|I(v)\|=\|v\|$. For every set x, x is a point of $\Pi\langle G\rangle$ iff there exists a point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$.

For every points x, y of $\Pi\langle G\rangle$ and for every points x_{1}, y_{1} of G such that $x=\left\langle x_{1}\right\rangle$ and $y=\left\langle y_{1}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $-x=\left\langle-x_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G and for every real number a such that $x=\left\langle x_{1}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}\right\rangle$. For every point x of $\Pi\langle G\rangle$ and for every point x_{1} of G such that $x=\left\langle x_{1}\right\rangle$ holds $\|x\|=\left\|x_{1}\right\| . \square$
Let X be a real normed space. The functor $\operatorname{IsoCPNrSP}(X)$ yielding a linear operator from X into $\Pi\langle X\rangle$ is defined by
(Def. 2) for every point x of X, it $(x)=\langle x\rangle$.
Now we state the proposition:
(12) Let us consider a real normed space X.

Then ${ }^{0} \prod_{\langle X\rangle}=(\operatorname{IsoCPNrSP}(X))\left(0_{X}\right)$.
Let X be a real normed space. Let us note that $\operatorname{IsoCPNrSP}(X)$ is one-toone, onto, and isometric and there exists a linear operator from X into $\Pi\langle X\rangle$ which is one-to-one, onto, and isometric.

Let I be a one-to-one, onto, isometric linear operator from X into $\Pi\langle X\rangle$. Let us observe that the functor I^{-1} yields a linear operator from $\Pi\langle X\rangle$ into X. One can check that I^{-1} is one-to-one, onto, and isometric as a linear operator from $\Pi\langle X\rangle$ into X and there exists a linear operator from $\Pi\langle X\rangle$ into X which is one-to-one, onto, and isometric. Let us consider real normed spaces X, Y and a function f from X into Y. Now we state the propositions:
(13) f is a linear operator from X into Y if and only if $f \cdot\left((\operatorname{IsoCPNrSP}(X))^{-1}\right)$ is a linear operator from $\Pi\langle X\rangle$ into Y.
(14) f is a Lipschitzian linear operator from X into Y if and only if f. $\left((\operatorname{IsoCPNrSP}(X))^{-1}\right)$ is a Lipschitzian linear operator from $\Pi\langle X\rangle$ into Y.
Let us consider real normed spaces X, Y and a function f from $\Pi\langle X\rangle$ into Y. Now we state the propositions:
(15) f is a linear operator from $\Pi\langle X\rangle$ into Y if and only if $f \cdot(\operatorname{IsoCPNrSP}(X))$ is a linear operator from X into Y. The theorem is a consequence of (13).
(16) f is a Lipschitzian linear operator from $\Pi\langle X\rangle$ into Y if and only if $f \cdot(\operatorname{IsoCPNrSP}(X))$ is a Lipschitzian linear operator from X into Y. The theorem is a consequence of (14).
(17) Let us consider a real normed space X, a point s of $\Pi\langle X\rangle$, and an element i of $\operatorname{dom}\langle X\rangle$. Then $\operatorname{reproj}(i, s)=\operatorname{IsoCPNrSP}(X)$.
Proof: For every element x of $X,(\operatorname{reproj}(i, s))(x)=(\operatorname{IsoCPNrSP}(X))(x)$.
(18) Let us consider a real normed space X, and a point x of $\Pi\langle X\rangle$. Then $\operatorname{NrProduct} x=\|x\|$. The theorem is a consequence of (11).

Let us consider real normed spaces X, Y and an object f. Now we state the propositions:
(19) f is a linear operator from $\Pi\langle X\rangle$ into Y if and only if f is a multilinear operator from $\langle X\rangle$ into Y. The theorem is a consequence of (15) and (17).
(20) f is a Lipschitzian linear operator from $\Pi\langle X\rangle$ into Y if and only if f is a Lipschitzian multilinear operator from $\langle X\rangle$ into Y. The theorem is a consequence of (16), (18), (17), and (11).
Let us consider real normed spaces X, Y. Now we state the propositions:
(21) MultOpers $(\langle X\rangle, Y)=$ LinearOperators $(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (19).
(22) BoundedMultOpers $(\langle X\rangle, Y)=\operatorname{BdLinOps}(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (20).
(23) BoundedMultOpersNorm $(\langle X\rangle, Y)=\mathrm{BdLinOpsNorm}(\Pi\langle X\rangle, Y)$.

Proof: Set $n_{1}=$ BoundedMultOpersNorm $(\langle X\rangle, Y)$. Set $n_{2}=$ BdLinOpsNorm $(\Pi\langle X\rangle, Y)$. BoundedMultOpers $(\langle X\rangle, Y)=$ $\operatorname{BdLinOps}(\Pi\langle X\rangle, Y)$. For every object f such that $f \in$ BoundedMultOpers $(\langle X\rangle, Y)$ holds $n_{1}(f)=n_{2}(f)$.
(24) VectorSpaceOfMultOpers $\mathbb{R}_{\mathbb{R}}(\langle X\rangle, Y)=$

VectorSpaceOfLinearOpers $\mathbb{R}_{\mathbb{R}}(\Pi\langle X\rangle, Y)$. The theorem is a consequence of (21).
(25) NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}(\langle X\rangle, Y)=$ the real norm space of bounded linear operators from $\Pi\langle X\rangle$ into Y. The theorem is a consequence of (24) and (23).
(26) Let us consider a real normed space X. If X is complete, then $\Pi\langle X\rangle$ is complete.

2. Spaces of Multilinear Maps and Nested Compositions over Real Normed Vector Spaces

Now we state the propositions:
(27) Let us consider real norm space sequences X, Y, a real normed space Z, and a Lipschitzian bilinear operator f from $\Pi X \times \Pi Y$ into Z. Then $f \cdot\left((\operatorname{IsoCPNrSP}(\Pi X, \Pi Y))^{-1}\right)$ is a Lipschitzian multilinear operator from $\langle\Pi X, \Pi Y\rangle$ into Z.
(28) Let us consider real norm space sequences X, Y, a real normed space Z, and a point f of NormSpaceOfBoundedBilinOpers $\mathbb{R}_{\mathbb{R}}(\Pi X, \Pi Y, Z)$. Then $f \cdot\left((\operatorname{IsoCPNrSP}(\Pi X, \Pi Y))^{-1}\right)$ is a point of NormSpaceOfBoundedMultOpers $\left.\mathbb{R}^{(}\langle\Pi X, \Pi Y\rangle, Z\right)$.
(29) Let us consider real linear space sequences X, Y. Then $\overline{X \sim Y}=\bar{X} \frown \bar{Y}$. Proof: Reconsider $C_{1}=\bar{X}, C_{2}=\bar{Y}$ as a finite sequence. For every natural number i such that $i \in \operatorname{dom} \overline{X^{\wedge} Y}$ holds $\overline{X \frown Y}(i)=\left(C_{1}{ }^{\wedge} C_{2}\right)(i)$.
(30) Let us consider a real linear space X. Then
(i) len $\overline{\langle X\rangle}=\operatorname{len}\langle X\rangle$, and
(ii) len $\overline{\langle X\rangle}=1$, and
(iii) $\overline{\langle X\rangle}=\langle$ the carrier of $X\rangle$.
(31) Let us consider a real norm space sequence X, an element x of ΠX, a real normed space Y, an element z of $\Pi\left(X^{\wedge}\langle Y\rangle\right)$, an element i of dom X, an element j of $\operatorname{dom}\left(X^{\frown}\langle Y\rangle\right)$, an element x_{i} of $X(i)$, and a point y of Y. Suppose $i=j$ and $z=x^{\curvearrowleft}\langle y\rangle$. Then $(\operatorname{reproj}(j, z))\left(x_{i}\right)=(\operatorname{reproj}(i, x))\left(x_{i}\right)^{\wedge}$ $\langle y\rangle$.
Proof: Reconsider $x_{j}=x_{i}$ as an element of $\left(X^{\wedge}\langle Y\rangle\right)(j)$. For every object k such that $k \in \operatorname{dom}\left((\operatorname{reproj}(i, x))\left(x_{i}\right)^{\wedge}\langle y\rangle\right)$ holds $\left((\operatorname{reproj}(i, x))\left(x_{i}\right)^{\wedge}\right.$ $\langle y\rangle)(k)=(\operatorname{reproj}(j, z))\left(x_{j}\right)(k)$.
(32) Let us consider a real norm space sequence X, an element x of ΠX, a real normed space Y, an element z of $\Pi\left(X^{\wedge}\langle Y\rangle\right)$, an element j of $\operatorname{dom}\left(X^{\wedge}\langle Y\rangle\right)$, an element y of Y, and a point y_{0} of Y. Suppose $z=x^{\curvearrowleft}\left\langle y_{0}\right\rangle$ and $j=\operatorname{len} x+1$. Then $(\operatorname{reproj}(j, z))(y)=x^{\frown}\langle y\rangle$.
Proof: Reconsider $y_{1}=y$ as an element of $\left(X^{\wedge}\langle Y\rangle\right)(j)$. For every object k such that $k \in \operatorname{dom}\left((\operatorname{reproj}(j, z))\left(y_{1}\right)\right)$ holds $(\operatorname{reproj}(j, z))\left(y_{1}\right)(k)=\left(x^{\frown}\right.$ $\langle y\rangle)(k)$.
(33) Let us consider a real norm space sequence X, an element x of ΠX, a real normed space Y, and a point y of Y. Then $x^{\wedge}\langle y\rangle$ is a point of $\Pi\left(X^{\frown}\langle Y\rangle\right)$.
Proof: Set $C_{1}=\bar{X}$. Set $C_{2}=$ the carrier of Y. The carrier of $\Pi\left(X^{\wedge}\right.$ $\langle Y\rangle)=\Pi(\bar{X} \frown \overline{\langle Y\rangle})$. For every object i such that $i \in \operatorname{dom}\left(C_{1} \frown\left\langle C_{2}\right\rangle\right)$ holds $\left(x^{\frown}\langle y\rangle\right)(i) \in\left(C_{1} \frown\left\langle C_{2}\right\rangle\right)(i)$.
(34) Let us consider a real norm space sequence X, an element x of ΠX, a real normed space Y, an element z of $\Pi\left(X^{\wedge}\langle Y\rangle\right)$, and a point y of Y. Suppose $z=x^{\frown}\langle y\rangle$. Then NrProduct $z=\|y\| \cdot(\operatorname{NrProduct} x)$.
Proof: Consider n_{4} being a finite sequence of elements of \mathbb{R} such that $\operatorname{dom} n_{4}=\operatorname{dom}\left(X^{\frown}\langle Y\rangle\right)$ and for every element i of $\operatorname{dom}\left(X^{\frown}\langle Y\rangle\right), n_{4}(i)=$ $\|z(i)\|$ and NrProduct $z=\prod n_{4}$. Set $n_{3}=n_{4} \upharpoonright$ len x. Set $C_{1}=\bar{X}$. Consider x_{1} being a function such that $x=x_{1}$ and $\operatorname{dom} x_{1}=\operatorname{dom} C_{1}$ and for every object i such that $i \in \operatorname{dom} C_{1}$ holds $x_{1}(i) \in C_{1}(i)$. For every element i of dom $X, n_{3}(i)=\|x(i)\| .0 \leqslant \prod n_{3}$ by [7, (42)]. For every object i such that $i \in \operatorname{dom}\left(n_{3} \frown\langle\|y\|\rangle\right)$ holds $\left(n_{3} \frown\langle\|y\|\rangle\right)(i)=n_{4}(i)$.
(35) Let us consider real normed spaces X, Z, and a real norm space sequence Y. Then there exists a Lipschitzian linear operator I from the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers $_{\mathbb{R}}(Y, Z)$ into NormSpaceOfBoundedMultOpers $\left.\mathbb{R}^{(} Y^{\wedge}\langle X\rangle, Z\right)$ such that
(i) I is one-to-one, onto, and isometric, and
(ii) for every point u of the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}(Y, Z),\|u\|=\|I(u)\|$ and for every point y of ΠY and for every point x of $X, I(u)\left(y^{\wedge}\right.$ $\langle x\rangle)=u(x)(y)$.
Proof: Set $C_{1}=$ the carrier of X. Set $C_{2}=\bar{Y}$. Set $C_{3}=$ the carrier of Z. Consider J being a function from $\left(C_{3} \Pi^{C_{2}}\right)^{C_{1}}$ into $C_{3} \prod^{\left(C_{2} \sim\left\langle C_{1}\right\rangle\right)}$ such that J is bijective and for every function f from C_{1} into $C_{3} \Pi C_{2}$ and for every finite sequence y and for every object x such that $y \in \prod C_{2}$ and $x \in C_{1}$ holds $J(f)\left(y^{\frown}\langle x\rangle\right)=f(x)(y)$. Set $L_{1}=$ the carrier of the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}$ (Y, Z). Set $B_{1}=$ the carrier of NormSpaceOfBoundedMultOpers $\mathbb{R}^{(}\left(Y^{\frown}\right.$ $\langle X\rangle, Z)$. Set $L_{2}=$ the carrier of NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}(Y, Z)$. The carrier of $\Pi\langle X\rangle=\Pi\langle$ the carrier of $X\rangle$. The carrier of $\Pi\left(Y^{\wedge}\langle X\rangle\right)=$ $\Pi(\bar{Y} \frown \overline{\langle X\rangle}) . L_{2}{ }^{C_{1}} \subseteq\left(C_{3} \Pi C_{2}\right)^{C_{1}}$. Reconsider $I=J \upharpoonright L_{1}$ as a function from L_{1} into $C_{3} \prod\left(C_{2} \sim\left\langle C_{1}\right\rangle\right)$.

For every element f of L_{1}, for every point x of X, there exists a Lipschitzian multilinear operator g from Y into Z such that $g=f(x)$ and for every point y of $\Pi Y, I(f)\left(y^{\wedge}\langle x\rangle\right)=g(y)$ and $I(f)$ is a Lipschitzian multilinear operator from $Y^{\frown}\langle X\rangle$ into Z and $I(f) \in B_{1}$ and there exists a point I_{f} of NormSpaceOfBoundedMultOpers $\mathbb{R}^{(}\left(Y^{\wedge}\langle X\rangle, Z\right)$ such that $I_{f}=I(f)$ and $\|f\|=\left\|I_{f}\right\|$. For every elements f_{1}, f_{2} of L_{1}, $I\left(f_{1}+f_{2}\right)=I\left(f_{1}\right)+I\left(f_{2}\right)$. For every element f_{1} of L_{1} and for every real number $a, I\left(a \cdot f_{1}\right)=a \cdot I\left(f_{1}\right)$ by [6, (2)], (11), [5, (49)]. For every point u of the real norm space of bounded linear operators from X into NormSpaceOfBoundedMultOpers $\mathbb{R}_{\mathbb{R}}(Y, Z),\|u\|=\|I(u)\|$ and for every point y of ΠY and for every point x of $X, I(u)\left(y^{\wedge}\langle x\rangle\right)=u(x)(y)$. For every object I_{f} such that $I_{f} \in B_{1}$ there exists an object f such that $f \in L_{1}$ and $I_{f}=I(f)$.
Let Y be a real normed space and X be a real norm space sequence. The functor NestingLB (X, Y) yielding a real normed space is defined by
(Def. 3) there exists a function f such that $\operatorname{dom} f=\mathbb{N}$ and it $=f(\operatorname{len} X)$ and $f(0)=Y$ and for every natural number i such that $i<\operatorname{len} X$ there exists a real normed space f_{i} and there exists an element j of $\operatorname{dom} X$ such that
$f_{i}=f(i)$ and $i+1=j$ and $f(i+1)=$ the real norm space of bounded linear operators from $X(j)$ into f_{i}.
Let us consider real normed spaces X, Y, Z and a Lipschitzian linear operator I from Y into Z. Now we state the propositions:
(36) Suppose I is one-to-one, onto, and isometric. Then there exists a Lipschitzian linear operator L from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from X into Z such that
(i) L is one-to-one, onto, and isometric, and
(ii) for every point f of the real norm space of bounded linear operators from X into $Y, L(f)=I \cdot f$.
Proof: Consider J being a linear operator from Z into Y such that $J=$ I^{-1} and J is one-to-one and onto and J is isometric. Set $F=$ the carrier of the real norm space of bounded linear operators from X into Y. Set $G=$ the carrier of the real norm space of bounded linear operators from X into Z. Define \mathcal{P} [function, function] $\equiv \$_{2}=I \cdot \$_{1}$. For every element f of F, there exists an element g of G such that $\mathcal{P}[f, g]$. Consider L being a function from F into G such that for every element f of $F, \mathcal{P}[f, L(f)]$.

For every objects f_{1}, f_{2} such that $f_{1}, f_{2} \in F$ and $L\left(f_{1}\right)=L\left(f_{2}\right)$ holds $f_{1}=f_{2}$. For every object g such that $g \in G$ there exists an object f such that $f \in F$ and $g=L(f)$ by [10, (2)]. For every points f_{1}, f_{2} of the real norm space of bounded linear operators from X into $Y, L\left(f_{1}+f_{2}\right)=$ $L\left(f_{1}\right)+L\left(f_{2}\right)$. For every point f of the real norm space of bounded linear operators from X into Y and for every real number $a, L(a \cdot f)=a \cdot L(f)$. For every element f of the real norm space of bounded linear operators from X into $Y,\|L(f)\|=\|f\|$ by [3, (7)].
(37) Suppose I is one-to-one, onto, and isometric. Then there exists a Lipschitzian linear operator L from the real norm space of bounded linear operators from Y into X into the real norm space of bounded linear operators from Z into X such that
(i) L is one-to-one, onto, and isometric, and
(ii) for every point f of the real norm space of bounded linear operators from Y into $X, L(f)=f \cdot\left(I^{-1}\right)$.
Proof: Consider J being a linear operator from Z into Y such that $J=$ I^{-1} and J is one-to-one and onto and J is isometric. Set $F=$ the carrier of the real norm space of bounded linear operators from Y into X. Set $G=$ the carrier of the real norm space of bounded linear operators from Z into X. Define \mathcal{P} [function, function] $\equiv \$_{2}=\$_{1} \cdot J$. For every element f
of F, there exists an element g of G such that $\mathcal{P}[f, g]$. Consider L being a function from F into G such that for every element f of $F, \mathcal{P}[f, L(f)]$.

For every objects f_{1}, f_{2} such that $f_{1}, f_{2} \in F$ and $L\left(f_{1}\right)=L\left(f_{2}\right)$ holds $f_{1}=f_{2}$. For every object g such that $g \in G$ there exists an object f such that $f \in F$ and $g=L(f)$. For every points f_{1}, f_{2} of the real norm space of bounded linear operators from Y into $X, L\left(f_{1}+f_{2}\right)=L\left(f_{1}\right)+L\left(f_{2}\right)$. For every point f of the real norm space of bounded linear operators from Y into X and for every real number $a, L(a \cdot f)=a \cdot L(f)$. For every element f of the real norm space of bounded linear operators from Y into $X,\|L(f)\|=\|f\|$.
(38) Let us consider real normed spaces X, Y. Then there exists a Lipschitzian linear operator I from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from $\Pi\langle X\rangle$ into Y such that
(i) I is one-to-one, onto, and isometric, and
(ii) for every point u of the real norm space of bounded linear operators from X into Y and for every point x of $X, I(u)(\langle x\rangle)=u(x)$, and
(iii) for every point u of the real norm space of bounded linear operators from X into $Y,\|u\|=\|I(u)\|$.
Proof: Set $J=\operatorname{IsoCPNrSP}(X)$. Consider I being a Lipschitzian linear operator from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from $\Pi\langle X\rangle$ into Y such that I is one-to-one, onto, and isometric and for every point x of the real norm space of bounded linear operators from X into Y, $I(x)=x \cdot\left(J^{-1}\right)$. For every point u of the real norm space of bounded linear operators from X into Y and for every point x of $X, I(u)(\langle x\rangle)=u(x)$.
(39) Let us consider real normed spaces X, Y, Z, W, a Lipschitzian linear operator I from X into Z, and a Lipschitzian linear operator J from Y into W. Suppose I is one-to-one, onto, and isometric and J is one-to-one, onto, and isometric.

Then there exists a Lipschitzian linear operator K from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from Z into W such that
(i) K is one-to-one, onto, and isometric, and
(ii) for every point x of the real norm space of bounded linear operators from X into $Y, K(x)=J \cdot\left(x \cdot\left(I^{-1}\right)\right)$.

Proof: Consider H being a Lipschitzian linear operator from the real norm space of bounded linear operators from X into Y into the real norm
space of bounded linear operators from Z into Y such that H is one-toone, onto, and isometric and for every point x of the real norm space of bounded linear operators from X into $Y, H(x)=x \cdot\left(I^{-1}\right)$. Consider L being a Lipschitzian linear operator from the real norm space of bounded linear operators from Z into Y into the real norm space of bounded linear operators from Z into W such that L is one-to-one, onto, and isometric and for every point x of the real norm space of bounded linear operators from Z into $Y, L(x)=J \cdot x$.

Reconsider $K=L \cdot H$ as a Lipschitzian linear operator from the real norm space of bounded linear operators from X into Y into the real norm space of bounded linear operators from Z into W. For every point x of the real norm space of bounded linear operators from X into $Y,\|K(x)\|=$ $\|x\|$.
(40) Let us consider a natural number n, real norm space sequences A, B, and real normed spaces X, Y. Suppose len $A=n+1$ and $A \upharpoonright n=B$ and $X=A(n+1)$. Then NestingLB $(A, Y)=$ the real norm space of bounded linear operators from X into NestingLB (B, Y).
Proof: Consider f being a function such that $\operatorname{dom} f=\mathbb{N}$ and NestingLB $(A, Y)=f(\operatorname{len} A)$ and $f(0)=Y$ and for every natural number j such that $j<\operatorname{len} A$ there exists a real normed space V and there exists an element k of $\operatorname{dom} A$ such that $V=f(j)$ and $j+1=k$ and $f(j+1)=$ the real norm space of bounded linear operators from $A(k)$ into V.

Consider V being a real normed space, k being an element of $\operatorname{dom} A$ such that $V=f(\operatorname{len} B)$ and len $B+1=k$ and $f(\operatorname{len} B+1)=$ the real norm space of bounded linear operators from $A(k)$ into V. For every natural number j such that $j<$ len B there exists a real normed space V and there exists an element k of $\operatorname{dom} B$ such that $V=f(j)$ and $j+1=k$ and $f(j+1)=$ the real norm space of bounded linear operators from $B(k)$ into V.
Let Y be a real normed space and X be a real norm space sequence. Let us observe that NestingLB (X, Y) is constituted functions.

The functor NestMult (X, Y) yielding a Lipschitzian linear operator from NestingLB (X, Y) into NormSpaceOfBoundedMultOpers ${ }_{\mathbb{R}}(X, Y)$ is defined by
(Def. 4) $i t$ is one-to-one, onto, and isometric and for every element u of NestingLB $(X, Y),\|i t(u)\|=\|u\|$ and for every point u of $\operatorname{NestingLB}(X, Y)$ and for every point x of ΠX, there exists a finite sequence g such that len $g=$ len X and $g(1)=u$ and for every element i of \mathbb{N} such that $1 \leqslant i<\operatorname{len} X$ there exists a real norm space sequence X_{2}.

There exists a point h of $\operatorname{NestingLB}\left(X_{2}, Y\right)$ such that $X_{2}=X \upharpoonright\left(\operatorname{len} X-^{\prime}\right.$ $i+1)$ and $h=g(i)$ and $g(i+1)=h\left(x\left(\operatorname{len} X-^{\prime} i+1\right)\right)$ and there exists a real
norm space sequence X_{1} and there exists a point h of $\left.\operatorname{NestingLB(~} X_{1}, Y\right)$ such that $X_{1}=\langle X(1)\rangle$ and $h=g(\operatorname{len} X)$ and $(i t(u))(x)=h(x(1))$.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ s10817-017-9440-6
[3] Yuichi Futa, Noboru Endou, and Yasunari Shidama. Isometric differentiable functions on real normed space. Formalized Mathematics, 21(4):249-260, 2013. doi 10.2478/forma-2013-0027.
[4] Miyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.
[5] Kazuhisa Nakasho. Multilinear operator and its basic properties. Formalized Mathematics, 27(1):35-45, 2019. doi 10.2478/forma-2019-0004
[6] Karol Pąk. Continuity of barycentric coordinates in Euclidean topological spaces. Formalized Mathematics, 19(3):139-144, 2011. doi 10.2478/v10037-011-0022-5
[7] Marco Riccardi. Pocklington's theorem and Bertrand's postulate. Formalized Mathematics, 14(2):47-52, 2006. doi 10.2478/v10037-006-0007-y
[8] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
[9] Laurent Schwartz. Calcul différentiel, tome 2. Analyse. Hermann, 1997.
[10] Yasunari Shidama. The Banach algebra of bounded linear operators Formalized Mathematics, 12(2):103-108, 2004.
[11] Kôsaku Yosida. Functional Analysis. Springer, 1980.
Accepted April 30, 2022

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI Grant Number JP17K00182.

[^1]: ${ }^{1}$ This work has been supported by the Centre autonome de formation et de recherche en mathématiques et sciences avec assistants de preuve, ASBL (non-profit organization). Enterprise number: 0777.779.751. Belgium.
 ${ }^{2}$ https://cs.nyu.edu/pipermail/fom/2008-March/012783.html

