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1. Matrix and Linear Transformation on Euclidean Spaces

Let n be a natural number. One can check that 〈En, ‖·‖〉 is finite dimensional.
Now we state the propositions:

(1) Let us consider a non zero natural number n, and a real normed space
X. Then every linear operator from 〈En, ‖ · ‖〉 into X is Lipschitzian.

(2) Let us consider a non zero natural number m, and finite sequences s,
t of elements of Rm. Suppose 1 ¬ len s and s = t� len s. Let us consider
a natural number i. If 1 ¬ i ¬ len s, then (accum t)(i) = (accum s)(i).
Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ len s, then (accum t)($1) =
(accum s)($1). For every natural number n such that P[n] holds P[n+ 1].
For every natural number n, P[n]. �
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(3) Let us consider a non zero natural number m, finite sequences s, s1 of
elements of Rm, and an element s0 of Rm. If s1 = s a 〈s0〉, then

∑
s1 =∑

s+ s0. The theorem is a consequence of (2).

(4) Let us consider a non zero natural number m, a finite sequence s of
elements of Rm, and a natural number j. Suppose 1 ¬ j ¬ m. Then there
exists a finite sequence t of elements of R such that

(i) len t = len s, and

(ii) for every natural number i such that 1 ¬ i ¬ len s there exists an ele-
ment s2 of Rm such that s2 = s(i) and t(i) = s2(j), and

(iii) (
∑
s)(j) =

∑
t.

Proof: Define P[natural number] ≡ for every finite sequence s of elements
ofRm for every natural number j such that len s = $1 and 1 ¬ j ¬ m there
exists a finite sequence t of elements of R such that len t = len s and for
every natural number i such that 1 ¬ i ¬ len s there exists an element s2

of Rm such that s2 = s(i) and t(i) = s2(j) and (
∑
s)(j) =

∑
t. P[0]. For

every natural number n such that P[n] holds P[n+ 1]. For every natural
number n, P[n]. �

(5) Let us consider a non zero natural number m, and an element x of Rm.
Then there exists a finite sequence s of elements of Rm such that

(i) dom s = Segm, and

(ii) for every natural number i such that 1 ¬ i ¬ m there exists an ele-
ment e of Rm such that e = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(1) and s(i) =

(proj(i,m))(x) · e, and

(iii)
∑
s = x.

Proof: Define P[natural number, object] ≡ there exists an element e of
Rm such that e = (reproj($1, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(1) and $2 = (proj($1,m))(x) · e.

For every natural number i such that i ∈ Segm there exists an element
y of Rm such that P[i, y]. Consider s being a finite sequence of elements
of Rm such that dom s = Segm and for every natural number i such that
i ∈ Segm holds P[i, s(i)]. For every natural number i such that 1 ¬ i ¬ m
there exists an element e of Rm such that e = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(1) and

s(i) = (proj(i,m))(x) · e. For every natural number i such that 1 ¬ i ¬
len
∑
s holds (

∑
s)(i) = x(i). �

(6) Let us consider non zero elements m, n of N, and a matrix M over RF

of dimension m×n. Then Mx2Tran(M) is a Lipschitzian linear operator
from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉.
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Proof: Reconsider f = Mx2Tran(M) as a function from 〈Em, ‖ · ‖〉 into
〈En, ‖·‖〉. For every elements x, y of 〈Em, ‖·‖〉, f(x+y) = f(x)+f(y). For
every vector x of 〈Em, ‖ · ‖〉 and for every real number a, f(a ·x) = a ·f(x)
by [8, (4),(8)]. �

Let us consider a non zero element m of N and a linear operator f from
〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉. Now we state the propositions:

(7) Suppose f is bijective. Then there exists a Lipschitzian linear operator
g from 〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉 such that

(i) g = f−1, and

(ii) g is one-to-one and onto.

(8) Suppose f is bijective. Then there exists a point g of the real norm space
of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉 such that

(i) g = f , and

(ii) g is invertible.

The theorem is a consequence of (7).

Let us consider non zero elements m, n of N and a square matrix M over
RF of dimension m. Now we state the propositions:

(9) Mx2Tran(M) is bijective if and only if DetM 6= 0RF .

(10) Mx2Tran(M) is bijective if and only if M is invertible.

(11) Let us consider a non zero element m of N, and a point f of the real
norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉.
Suppose f is one-to-one and rng f = the carrier of 〈Em, ‖ · ‖〉. Then f is
invertible. The theorem is a consequence of (8).

Let us consider a non zero element m of N, a point f of the real norm space
of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈Em, ‖ · ‖〉, and a square matrix
M over RF of dimension m. Now we state the propositions:

(12) If f = Mx2Tran(M), then f is invertible iff M is invertible. The theorem
is a consequence of (10) and (11).

(13) If f = Mx2Tran(M), then f is invertible iff DetM 6= 0RF . The theorem
is a consequence of (12).

Let us consider non zero elements m, n of N. Now we state the propositions:

(14) There exists a function f from Rm ×Rn into Rm+n such that

(i) for every element x of Rm and for every element y of Rn, f(x, y) =
x a y, and

(ii) f is one-to-one and onto.
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Proof: Define S[object, object, object] ≡ there exists an element x of Rm
and there exists an element y of Rn such that x = $1 and y = $2 and
$3 = x a y. For every objects x, y such that x ∈ Rm and y ∈ Rn there
exists an object z such that z ∈ Rm+n and S[x, y, z]. Consider f being
a function from Rm×Rn into Rm+n such that for every objects x, y such
that x ∈ Rm and y ∈ Rn holds S[x, y, f(x, y)]. For every element x of Rm
and for every element y of Rn, f(x, y) = x a y. �

(15) There exists a function f from 〈Em, ‖ · ‖〉 × 〈En, ‖ · ‖〉 into 〈Em+n, ‖ · ‖〉
such that

(i) f is one-to-one and onto, and

(ii) for every element x of Rm and for every element y of Rn, f(x, y) =
x a y, and

(iii) for every points u, v of 〈Em, ‖ · ‖〉×〈En, ‖ · ‖〉, f(u+v) = f(u) +f(v),
and

(iv) for every point u of 〈Em, ‖ · ‖〉 × 〈En, ‖ · ‖〉 and for every real number
r, f(r · u) = r · f(u), and

(v) f(0〈Em,‖·‖〉×〈En,‖·‖〉) = 0〈Em+n,‖·‖〉, and

(vi) for every point u of 〈Em, ‖ · ‖〉 × 〈En, ‖ · ‖〉, ‖f(u)‖ = ‖u‖.
Proof: Consider f being a function from Rm ×Rn into Rm+n such that
for every element x of Rm and for every element y of Rn, f(x, y) = x a y

and f is one-to-one and onto. For every points u, v of 〈Em, ‖·‖〉×〈En, ‖·‖〉,
f(u+ v) = f(u) + f(v). For every point u of 〈Em, ‖ · ‖〉× 〈En, ‖ · ‖〉 and for
every real number r, f(r · u) = r · f(u). For every point u of 〈Em, ‖ · ‖〉 ×
〈En, ‖ · ‖〉, ‖f(u)‖ = ‖u‖ by [9, (18)]. �

2. Total Derivative and Partial Derivative

Now we state the propositions:

(16) Let us consider real normed spaces X, Y, a point x of X, and a Lipschit-
zian linear operator f from X into Y. Then

(i) f is differentiable in x, and

(ii) f = f ′(x).

Proof: Set C = ΩX . Reconsider g = (the carrier of X) 7−→ 0Y as
a partial function from X to Y. Reconsider f0 = f as an element of
BdLinOps(X,Y ). For every (0X)-convergent sequence h ofX such that h is
non-zero holds ‖h‖−1 ·(g∗h) is convergent and lim(‖h‖−1 ·(g∗h)) = 0Y . For
every point x0 of X such that x0 ∈ C holds f/x0−f/x = f0(x0−x)+g/x0−x.
�
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(17) Let us consider a non zero natural number n, a natural number i, and
a point x of 〈En, ‖ · ‖〉. Suppose 1 ¬ i ¬ n. Then

(i) Proj(i, n) is differentiable in x, and

(ii) (Proj(i, n))′(x) = Proj(i, n).

The theorem is a consequence of (16).

Let us consider non zero natural numbers m, n, a partial function f from
Rm to Rn, and an element x of Rm. Now we state the propositions:

(18) f is differentiable in x if and only if for every natural number i such
that 1 ¬ i ¬ n there exists a partial function f1 from Rm to R1 such that
f1 = (Proj(i, n)) · f and f1 is differentiable in x.

(19) f is differentiable in x if and only if for every natural number i such
that 1 ¬ i ¬ n there exists a partial function f1 from Rm to R such that
f1 = (proj(i, n)) · f and f1 is differentiable in x.
Proof: For every natural number i, 〈(proj(i, n)) · f〉 = (Proj(i, n)) · f by
[3, (11)]. For every natural number i such that 1 ¬ i ¬ n there exists
a partial function F1 from Rm to R1 such that F1 = (Proj(i, n)) · f and
F1 is differentiable in x. �

(20) Let us consider non zero natural numbers m, n, a partial function f from
Rm to Rn, and an element x of Rm. Suppose f is differentiable in x. Let
us consider a natural number i, and a partial function f1 from Rm to R.
Suppose 1 ¬ i ¬ n and f1 = (proj(i, n)) · f . Then

(i) f1 is differentiable in x, and

(ii) f1
′(x) = (proj(i, n)) · (f ′(x)).

The theorem is a consequence of (19).

(21) Let us consider non zero natural numbers m, n, a partial function f from
Rm toRn, and an element x ofRm. Suppose f is differentiable in x. Let us
consider natural numbers i, j. Suppose 1 ¬ i ¬ m and 1 ¬ j ¬ n. Then f
is partially differentiable in x w.r.t. i and j. The theorem is a consequence
of (19).

(22) Let us consider non zero natural numbers m, n, a partial function f

from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and an element x of 〈Em, ‖ · ‖〉. Suppose
f is differentiable in x. Let us consider natural numbers i, j. Suppose
1 ¬ i ¬ m and 1 ¬ j ¬ n. Then f is partially differentiable in x w.r.t. i
and j.

(23) Let us consider a non zero natural number m, a partial function f from
Rm to R, and an element x of Rm. Suppose f is differentiable in x. Let us
consider elements u, v ofRm. Then (f ′(x))(u+v) = (f ′(x))(u)+(f ′(x))(v).
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(24) Let us consider a non zero natural number m, a partial function f from
Rm to R, and an element x of Rm. Suppose f is differentiable in x. Let us
consider an element u of Rm, and a real number a. Then (f ′(x))(a · u) =
a · (f ′(x))(u).

(25) Let us consider a non zero natural number m, a partial function f from
Rm to R, and an element x of Rm. Suppose f is differentiable in x. Let
us consider a finite sequence s of elements of Rm, and a finite sequence t
of elements of R. Suppose dom s = dom t and for every natural number i
such that i ∈ dom s holds t(i) = (f ′(x))(s(i)). Then (f ′(x))(

∑
s) =

∑
t.

Proof: Define P[natural number] ≡ for every finite sequence s of elements
of Rm for every finite sequence t of elements of R such that len s = $1 and
dom s = dom t and for every natural number i such that i ∈ dom s holds
t(i) = (f ′(x))(s(i)) holds (f ′(x))(

∑
s) =

∑
t. P[0]. For every natural

number n such that P[n] holds P[n + 1]. For every natural number n,
P[n]. �

(26) Let us consider a non zero natural number m, a partial function f from
Rm to R, and an element x of Rm. Suppose f is differentiable in x. Let
us consider an element d1 of Rm. Then there exists a finite sequence d2 of
elements of R such that

(i) dom d2 = Segm, and

(ii) for every natural number i such that 1 ¬ i ¬ m holds d2(i) =
(proj(i,m))(d1) · (partdiff(f, x, i)), and

(iii) (f ′(x))(d1) =
∑
d2.

Proof: Consider s being a finite sequence of elements of Rm such that
dom s = Segm and for every natural number i such that 1 ¬ i ¬ m

there exists an element e of Rm such that e = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸
m

〉))(1)

and s(i) = (proj(i,m))(d1) · e and
∑
s = d1. Define F(natural number) =

(f ′(x))(s($1))(∈ R). Consider d2 being a finite sequence of elements of R
such that len d2 = m and for every natural number i such that i ∈ dom d2

holds d2(i) = F(i). For every natural number i such that i ∈ dom d2 holds
d2(i) = (f ′(x))(s(i)). For every natural number i such that 1 ¬ i ¬ m

holds d2(i) = (proj(i,m))(d1) · (partdiff(f, x, i)). �

(27) Let us consider non zero elements m, n of N, a subset X of 〈Em, ‖ · ‖〉,
and a partial function f from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose X is open
and X ⊆ dom f . Then f is differentiable on X and f ′�X is continuous on
X if and only if for every natural numbers i, j such that 1 ¬ i ¬ m and
1 ¬ j ¬ n holds (Proj(j, n)) · f is partially differentiable on X w.r.t. i and
(Proj(j, n)) · f�iX is continuous on X.



On implicit and inverse function theorems on Euclidean ... 165

Proof: For every natural number i such that 1 ¬ i ¬ m holds f is
partially differentiable on X w.r.t. i and f�iX is continuous on X. �

3. Jacobian Matrix

Let m, n be non zero natural numbers, f be a partial function from Rm to
Rn, and x be an element of Rm. The functor Jacobian(f, x) yielding a matrix
over RF of dimension m×n is defined by

(Def. 1) for every natural numbers i, j such that i ∈ Segm and j ∈ Seg n holds
it i,j = partdiff(f, x, i, j).

Now we state the proposition:

(28) Let us consider non zero natural numbers m, n, a partial function f from
Rm to Rn, and an element x of Rm. Suppose f is differentiable in x. Then
f ′(x) = Mx2Tran(Jacobian(f, x)).
Proof: For every element d1 of Rm, (f ′(x))(d1) =
(Mx2Tran(Jacobian(f, x)))(d1). �

Let m, n be non zero natural numbers, f be a partial function from 〈Em, ‖·‖〉
to 〈En, ‖ · ‖〉, and x be a point of 〈Em, ‖ · ‖〉. The functor Jacobian(f, x) yielding
a matrix over RF of dimension m×n is defined by

(Def. 2) there exists a partial function g from Rm to Rn and there exists an ele-
ment y of Rm such that g = f and y = x and it = Jacobian(g, y).

Now we state the proposition:

(29) Let us consider non zero elements m, n of N, a point x of 〈Em, ‖ · ‖〉,
and a partial function f from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose f is dif-
ferentiable in x. Then f ′(x) = Mx2Tran(Jacobian(f, x)). The theorem is
a consequence of (28).

Let us consider a non zero element m of N, a partial function f from 〈Em, ‖·‖〉
to 〈Em, ‖ · ‖〉, and a point x of 〈Em, ‖ · ‖〉. Now we state the propositions:

(30) If f is differentiable in x, then f ′(x) is invertible iff Jacobian(f, x) is
invertible. The theorem is a consequence of (29) and (12).

(31) If f is differentiable in x, then f ′(x) is invertible iff Det Jacobian(f, x) 6=
0RF . The theorem is a consequence of (30).
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4. Implicit and Inverse Function Theorems on Euclidean Spaces

Now we state the propositions:

(32) Let us consider non zero elements l, m, n of N, a subset Z of 〈E l, ‖ · ‖〉×
〈Em, ‖ · ‖〉, a partial function f from 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉,
a point a of 〈E l, ‖ · ‖〉, a point b of 〈Em, ‖ · ‖〉, a point c of 〈En, ‖ · ‖〉, and
a point z of 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉. Suppose Z is open and dom f = Z

and f is differentiable on Z and f ′�Z is continuous on Z and 〈〈a, b〉〉 ∈ Z
and f(a, b) = c and z = 〈〈a, b〉〉 and partdiff(f, z) w.r.t. 2 is invertible. Then
there exist real numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1)× Ball(b, r2) ⊆ Z, and

(iv) for every point x of 〈E l, ‖ · ‖〉 such that x ∈ Ball(a, r1) there exists
a point y of 〈Em, ‖ · ‖〉 such that y ∈ Ball(b, r2) and f(x, y) = c, and

(v) for every point x of 〈E l, ‖·‖〉 such that x ∈ Ball(a, r1) for every points
y1, y2 of 〈Em, ‖ · ‖〉 such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and
f(x, y2) = c holds y1 = y2, and

(vi) there exists a partial function g from 〈E l, ‖ · ‖〉 to 〈Em, ‖ · ‖〉 such
that dom g = Ball(a, r1) and rng g ⊆ Ball(b, r2) and g is continu-
ous on Ball(a, r1) and g(a) = b and for every point x of 〈E l, ‖ · ‖〉
such that x ∈ Ball(a, r1) holds f(x, g(x)) = c and g is differen-
tiable on Ball(a, r1) and g′�Ball(a,r1)

is continuous on Ball(a, r1) and

for every point x of 〈E l, ‖ · ‖〉 and for every point z of 〈E l, ‖ · ‖〉 ×
〈Em, ‖ · ‖〉 such that x ∈ Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds g′(x) =
−(Inv partdiff(f, z) w.r.t. 2) · (partdiff(f, z) w.r.t. 1) and for every po-
int x of 〈E l, ‖ · ‖〉 and for every point z of 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉 such
that x ∈ Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds partdiff(f, z) w.r.t. 2 is
invertible, and

(vii) for every partial functions g1, g2 from 〈E l, ‖ · ‖〉 to 〈Em, ‖ · ‖〉 such
that dom g1 = Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and for every point
x of 〈E l, ‖ · ‖〉 such that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and
dom g2 = Ball(a, r1) and rng g2 ⊆ Ball(b, r2) and for every point x of
〈E l, ‖·‖〉 such that x ∈ Ball(a, r1) holds f(x, g2(x)) = c holds g1 = g2.

(33) Let us consider non zero elements l, m of N, a subset Z of 〈E l, ‖ · ‖〉 ×
〈Em, ‖ · ‖〉, a partial function f from 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉 to 〈Em, ‖ · ‖〉,
a point a of 〈E l, ‖ · ‖〉, points b, c of 〈Em, ‖ · ‖〉, and a point z of 〈E l, ‖ · ‖〉×
〈Em, ‖ · ‖〉. Suppose Z is open and dom f = Z and f is differentiable on
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Z and f ′�Z is continuous on Z and 〈〈a, b〉〉 ∈ Z and f(a, b) = c and z = 〈〈a,
b〉〉 and Det Jacobian(f · (reproj2(z)), (z)2) 6= 0RF . Then there exist real
numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1)× Ball(b, r2) ⊆ Z, and

(iv) for every point x of 〈E l, ‖ · ‖〉 such that x ∈ Ball(a, r1) there exists
a point y of 〈Em, ‖ · ‖〉 such that y ∈ Ball(b, r2) and f(x, y) = c, and

(v) for every point x of 〈E l, ‖·‖〉 such that x ∈ Ball(a, r1) for every points
y1, y2 of 〈Em, ‖ · ‖〉 such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and
f(x, y2) = c holds y1 = y2, and

(vi) there exists a partial function g from 〈E l, ‖ · ‖〉 to 〈Em, ‖ · ‖〉 such
that dom g = Ball(a, r1) and rng g ⊆ Ball(b, r2) and g is continu-
ous on Ball(a, r1) and g(a) = b and for every point x of 〈E l, ‖ · ‖〉
such that x ∈ Ball(a, r1) holds f(x, g(x)) = c and g is differen-
tiable on Ball(a, r1) and g′�Ball(a,r1)

is continuous on Ball(a, r1) and

for every point x of 〈E l, ‖ · ‖〉 and for every point z of 〈E l, ‖ · ‖〉 ×
〈Em, ‖ · ‖〉 such that x ∈ Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds g′(x) =
−(Inv partdiff(f, z) w.r.t. 2) · (partdiff(f, z) w.r.t. 1) and for every po-
int x of 〈E l, ‖ · ‖〉 and for every point z of 〈E l, ‖ · ‖〉 × 〈Em, ‖ · ‖〉 such
that x ∈ Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds partdiff(f, z) w.r.t. 2 is
invertible, and

(vii) for every partial functions g1, g2 from 〈E l, ‖ · ‖〉 to 〈Em, ‖ · ‖〉 such
that dom g1 = Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and for every point
x of 〈E l, ‖ · ‖〉 such that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and
dom g2 = Ball(a, r1) and rng g2 ⊆ Ball(b, r2) and for every point x of
〈E l, ‖·‖〉 such that x ∈ Ball(a, r1) holds f(x, g2(x)) = c holds g1 = g2.

The theorem is a consequence of (31).

(34) Let us consider a non zero element m of N, a subset Z of 〈Em, ‖ · ‖〉,
a partial function f from 〈Em, ‖ · ‖〉 to 〈Em, ‖ · ‖〉, a point a of 〈Em, ‖ · ‖〉,
and a point b of 〈Em, ‖ · ‖〉. Suppose Z is open and dom f = Z and f is
differentiable on Z and f ′�Z is continuous on Z and a ∈ Z and f(a) = b

and Det Jacobian(f, a) 6= 0RF .
Then there exists a subset A of 〈Em, ‖·‖〉 and there exists a subset B of

〈Em, ‖ ·‖〉 and there exists a partial function g from 〈Em, ‖ ·‖〉 to 〈Em, ‖ ·‖〉
such that A is open and B is open and A ⊆ dom f and a ∈ A and b ∈ B
and f◦A = B and dom g = B and rng g = A and dom(f�A) = A and
rng(f�A) = B and f�A is one-to-one and g is one-to-one and g = (f�A)−1
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and f�A = g−1 and g(b) = a and g is continuous on B and differentiable
on B and g′�B is continuous on B and for every point y of 〈Em, ‖ · ‖〉 such
that y ∈ B holds f ′(g/y) is invertible and for every point y of 〈Em, ‖ · ‖〉
such that y ∈ B holds g′(y) = Inv f ′(g/y). The theorem is a consequence
of (31).
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Summary. The main purpose of the article is to construct a sophisticated
polynomial proposed by Matiyasevich and Robinson [5] that is often used to
reduce the number of unknowns in diophantine representations, using the Mizar
[1], [2] formalism. The polynomial

Jk(a1, . . . , ak, x) =
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2
i has integer coefficients and Jk(a1, . . . , ak, x) = 0 for some

a1, . . . , ak, x ∈ Z if and only if a1, . . . , ak are all squares. However although it is
nontrivial to observe that this expression is a polynomial, i.e., eliminating similar
elements in the product of all combinations of signs we obtain an expression where
every square root will occur with an even power. This work has been partially
presented in [7].
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1. Preliminaries

From now on i, j, n, k, m denote natural numbers, a, b, x, y, z denote
objects, F , G denote finite sequence-yielding finite sequences, f , g, p, q denote
finite sequences, X, Y denote sets, and D denotes a non empty set.

Let X be a finite set. The functor ΩX yielding an element of FinX is defined
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Now we state the propositions:

(1) Let us consider non empty sets X1, X2, Y, a binary operation F on Y,

an element B1 of FinX1, and an element B2 of FinX2. Suppose B1 = B2

and (B1 6= ∅ or F is unital) and F is associative and commutative. Let us
consider a function f1 from X1 into Y, and a function f2 from X2 into Y.
Suppose f1�B1 = f2�B2. Then F -

∑
B1 f1 = F -

∑
B2 f2.

Proof: Consider G1 being a function from FinX1 into Y such that
F -
∑
B1 f1 = G1(B1) and for every element e of Y such that e is a unity

w.r.t. F holds G1(∅) = e and for every element x of X1, G1({x}) = f1(x)
and for every element B′ of FinX1 such that B′ ⊆ B1 and B′ 6= ∅ for
every element x of X1 such that x ∈ B1 \ B′ holds G1(B′ ∪ {x}) =
F (G1(B′), f1(x)).

ConsiderG2 being a function from FinX2 into Y such that F -
∑
B2 f2 =

G2(B2) and for every element e of Y such that e is a unity w.r.t. F holds
G2(∅) = e and for every element x of X2, G2({x}) = f2(x) and for every
element B′ of FinX2 such that B′ ⊆ B2 and B′ 6= ∅ for every element x of
X2 such that x ∈ B2 \ B′ holds G2(B′ ∪ {x}) = F (G2(B′), f2(x)). Define
P[set] ≡ if $1 ⊆ B1, then G1($1) = G2($1) or $1 = ∅. For every element
B′ of FinX1 and for every element b of X1 such that P[B′] and b /∈ B′
holds P[B′ ∪ {b}]. For every element B of FinX1, P[B]. �

(2) Let us consider a non empty set D, elements d1, d2 of D, and a binary
operation B on D. Suppose B is unital, associative, and commutative and
has inverse operation. Then

(i) B((the inverse operation w.r.t. B)(d1), d2) =(the inverse operation
w.r.t. B)(B(d1, (the inverse operation w.r.t. B)(d2))), and

(ii) B(d1, (the inverse operation w.r.t. B)(d2)) =(the inverse operation
w.r.t. B)(B((the inverse operation w.r.t. B)(d1), d2)).

(3) Let us consider a non empty set D, and binary operations A, M on D.
Suppose A is commutative, associative, and unital and M is commutative
and distributive w.r.t. A and for every element d of D, M(1A, d) = 1A.
Let us consider non empty, finite sets X, Y, a function f from X into D,
a function g from Y into D, an element a of FinX, and an element b of
FinY. Then A-

∑
a×bMf,g = M(A-

∑
a f,A-

∑
b g).

Proof: Set m = Mf,g. Define P[set] ≡ for every element a of FinX for
every element b of FinY such that a = $1 holds A-

∑
a×bm = M(A-

∑
a f,

A-
∑
b g). P[∅X ]. For every element E of FinX and for every element e of

X such that P[E] and e /∈ E holds P[E ∪ {e}]. For every element E of
FinX, P[E]. �
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(4) Let us consider a non empty set D, binary operations M , A on D, and
an element d of D. Suppose M is unital and A is associative and unital
and has inverse operation and M is distributive w.r.t. A. Then

(i) if n is even, then M � n 7→ (the inverse operation w.r.t. A)(d) =
M � n 7→ d, and

(ii) if n is odd, then M � n 7→ (the inverse operation w.r.t. A)(d) =
(the inverse operation w.r.t. A)(M � n 7→ d).

Proof: Set I = the inverse operation w.r.t. A. Define P[natural number]
≡ if $1 is even, then M � $1 7→ I(d) = M � $1 7→ d and if $1 is not even,
then M � $1 7→ I(d) = I(M � $1 7→ d). If P[i], then P[i+ 1]. P[i]. �

(5) Let us consider a finite sequence s. Suppose s−1({y}) 6= ∅. Then there
exists a permutation p of Seg len s such that

(i) (s · p)(len s) = y, and

(ii) p = p−1.

Let D be a non empty set. Let us note that there exists a finite sequence
of elements of D∗ which is non empty and non-empty. Let X, Y be non empty
sets. Let us note that X d Y is non empty. Let X, Y be finite sets. One can
check that X d Y is finite. Now we state the propositions:

(6) Let us consider sets X, Y. Then 2X d 2Y = 2X∪Y .

(7) Let us consider sets X, Y1, Y2. Then X d (Y1∪Y2) = (X dY1)∪ (X dY2).

(8) If X misses
⋃
Y, then Y d {X} = Y .

Proof: Define F(set) = $1 ∪ X. Consider f being a function such that
dom f = Y and for every set A such that A ∈ Y holds f(A) = F(A).
rng f ⊆ Y d {X}. Y d {X} ⊆ rng f . f is one-to-one. �

(9) Suppose m 6= 0. Then 2 · 2(Segm)\{1} = 2(Seg(1+m))\{1} .

Proof: Set S = (Segm) \ {1}. Set F = 2S . F d {∅} = F . {m+ 1} misses⋃
F . F d {{m+ 1}} = F . F d 2{m+1} = (F d {∅}) ∪ (F d {{m + 1}}).

F d {∅} misses F d {{m+ 1}}. �

2. Selected Operations on Set Families

Let X be a set and a, b be objects. The functor ext(X, a, b) yielding a set is
defined by the term

(Def. 2) {A∪{b}, where A is an element ofX : a ∈ A}∪{A, where A is an element
of X : a /∈ A and A ∈ X}.

The functor swap(X, a, b) yielding a set is defined by the term
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(Def. 3) {A \ {a} ∪ {b}, where A is an element of X : a ∈ A} ∪ {A ∪ {a}, where
A is an element of X : a /∈ A and A ∈ X}.

Now we state the propositions:

(10) If y /∈
⋃
Y, then Y = ext(Y, x, y).

Proof: Set P = {X, where X is an element of Y : x ∈ X}. Set P5 =
{X ∪ {y}, where X is an element of Y : x ∈ X}. Set N = {X, where
X is an element of Y : x /∈ X and X ∈ Y }. Define F(set) = $1 ∪ {y}.
Consider f being a function such that dom f = P and for every set A
such that A ∈ P holds f(A) = F(A). rng f ⊆ P5. P5 ⊆ rng f . f is one-to-
one. P ⊆ Y. N ⊆ Y. Y ⊆ N ∪ P . N misses P5. N misses P . �

(11) If y /∈
⋃
Y, then Y = swap(Y, x, y).

Proof: Set P = {X, where X is an element of Y : x ∈ X}. Set P5 =
{X \{x}∪{y}, where X is an element of Y : x ∈ X}. Set N = {X, where
X is an element of Y : x /∈ X and X ∈ Y }. Set N2 = {X ∪ {x}, where
X is an element of Y : x /∈ X and X ∈ Y }. Define F(set) = $1\{x}∪{y}.

Consider f being a function such that dom f = P and for every set
A such that A ∈ P holds f(A) = F(A). rng f ⊆ P5. P5 ⊆ rng f . f is
one-to-one. Define G(set) = $1 ∪ {x}. Consider g being a function such
that dom g = N and for every set A such that A ∈ N holds g(A) = G(A).
rng g ⊆ N2. N2 ⊆ rng g. g is one-to-one. P ⊆ Y. N ⊆ Y. Y ⊆ N ∪ P . N2

misses P5. N misses P . �

(12) swap(∅, x, y) = ∅.
(13) swap(X ∪ Y, x, y) = swap(X,x, y) ∪ swap(Y, x, y).

(14) If Y ∈ swap(X,x, y) and x 6= y and y /∈
⋃
X, then x ∈ Y iff y /∈ Y.

(15) ext(∅, x, y) = ∅.
(16) ext(X ∪ Y, x, y) = ext(X,x, y) ∪ ext(Y, x, y).

(17) If Y ∈ ext(X,x, y) and y /∈
⋃
X, then x ∈ Y iff y ∈ Y.

Let X be a finite set and a, b be objects. Observe that swap(X, a, b) is finite
and ext(X, a, b) is finite.

Let f be a function. The functor Swap(f, a, b) yielding a function is defined
by

(Def. 4) dom it = dom f and for every x such that x ∈ dom f holds if a ∈ f(x),
then it(x) = f(x) \ {a} ∪ {b} and if a /∈ f(x), then it(x) = f(x) ∪ {a}.

The functor Ext(f, a, b) yielding a function is defined by

(Def. 5) dom it = dom f and for every x such that x ∈ dom f holds if a ∈ f(x),
then it(x) = f(x) ∪ {b} and if a /∈ f(x), then it(x) = f(x).

Let f be a finite sequence. Observe that Swap(f, a, b) is (len f)-element and
finite sequence-like and Ext(f, a, b) is (len f)-element and finite sequence-like.
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Let us consider finite sequences f , g. Now we state the propositions:

(18) Swap(f a g, a, b) = Swap(f, a, b) a Swap(g, a, b).
Proof: Set S9 = Swap(f, a, b). Set S11 = Swap(g, a, b). Set S10 = Swap(fa

g, a, b). For every k such that 1 ¬ k ¬ lenS10 holds S10(k) = (S9
aS11)(k).

�

(19) Ext(f a g, a, b) = Ext(f, a, b) a Ext(g, a, b).
Proof: Set E25 = Ext(f, a, b). Set E27 = Ext(g, a, b). Set E26 = Ext(f a

g, a, b). For every k such that 1 ¬ k ¬ lenE26 holds E26(k) = (E25
a

E27)(k). �

Let us consider a function f . Now we state the propositions:

(20) If b 6= x and b 6= y, then b ∈ (Ext(f, x, y))(a) iff b ∈ f(a).
Proof: If b ∈ (Ext(f, x, y))(a), then b ∈ f(a). �

(21) If b 6= x and b 6= y, then b ∈ (Swap(f, x, y))(a) iff b ∈ f(a).
Proof: If b ∈ (Swap(f, x, y))(a), then b ∈ f(a). �

(22) If x 6= y and y /∈
⋃
X and y /∈

⋃
Y, then ext(X,x, y) misses swap(Y, x, y).

The theorem is a consequence of (14) and (17).

(23) Let us consider functions f , g. Then (Swap(f, x, y))·g = Swap(f ·g, x, y).
Proof: Set S = Swap(f, x, y). Set S11 = Swap(f · g, x, y). dom(S · g) ⊆
dom(f · g). dom(f · g) ⊆ dom(S · g). For every a such that a ∈ domS11

holds S11(a) = (S · g)(a). �

(24) Let us consider a function f . Then Swap(f, x, y)�X = Swap(f�X,x, y).
The theorem is a consequence of (23).

(25) Let us consider functions f , g. Then (Ext(f, x, y)) · g = Ext(f · g, x, y).
Proof: Set E = Ext(f, x, y). Set E27 = Ext(f · g, x, y). dom(E · g) ⊆
dom(f · g). dom(f · g) ⊆ dom(E · g). For every a such that a ∈ domE27

holds E27(a) = (E · g)(a). �

(26) Let us consider a function f . Then Ext(f, x, y)�X = Ext(f�X,x, y). The
theorem is a consequence of (25).

Let X be a finite set. Let us observe that every enumeration of X is X -
element and X-valued. Let us consider a finite set F and an enumeration E of
F . Now we state the propositions:

(27) If y /∈
⋃
F , then Swap(E, x, y) is an enumeration of swap(F, x, y). The

theorem is a consequence of (11).

(28) If y /∈
⋃
F , then Ext(E, x, y) is an enumeration of ext(F, x, y). The

theorem is a consequence of (10).

(29) If x ∈ X, then ext({X}, x, y) = {X ∪ {y}}.
(30) If x /∈ X, then ext({X}, x, y) = {X}.
(31) If x ∈ X, then swap({X}, x, y) = {X \ {x} ∪ {y}}.
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(32) If x /∈ X, then swap({X}, x, y) = {X ∪ {x}}.
Let X be a non empty set and a, b be objects. One can check that ext(X, a, b)

is non empty and swap(X, a, b) is non empty. Now we state the propositions:

(33) If y /∈
⋃
X and y /∈

⋃
Y, thenX misses Y iff ext(X,x, y) misses ext(Y, x, y).

Proof: If X misses Y, then ext(X,x, y) misses ext(Y, x, y). Consider a
being an object such that a ∈ X and a ∈ Y. �

(34) If x 6= y and y /∈
⋃
X and y /∈

⋃
Y, then X misses Y iff swap(X,x, y)

misses swap(Y, x, y).
Proof: If X misses Y, then swap(X,x, y) misses swap(Y, x, y). Consider
a being an object such that a ∈ X and a ∈ Y. �

Let us consider a function f . Now we state the propositions:

(35) If z ∈ dom f , then Ext(〈f(z)〉, x, y) = 〈(Ext(f, x, y))(z)〉.
(36) If z ∈ dom f , then Swap(〈f(z)〉, x, y) = 〈(Swap(f, x, y))(z)〉.
(37) If z ∈ dom f , then ext({f(z)}, x, y) = {(Ext(f, x, y))(z)}. The theorem

is a consequence of (29) and (30).

(38) If z ∈ dom f , then swap({f(z)}, x, y) = {(Swap(f, x, y))(z)}. The the-
orem is a consequence of (31) and (32).

(39) Suppose m 6= 0. Then 2(Seg(m+2))\{1} = ext(2(Seg(m+1))\{1}, 1 + m, 2 +
m)∪ swap(2(Seg(m+1))\{1}, 1 +m, 2 +m). The theorem is a consequence of
(10), (11), (9), and (22).

3. Function where Each Value is Repeated an Even Number of
Times

Let f be a finite function. We say that f has evenly repeated values if and
only if

(Def. 6) f−1({y}) is even.

One can verify that every finite function which is empty has also evenly
repeated values.

Let x be an object. Observe that 〈x, x〉 has evenly repeated values.
Now we state the proposition:

(40) Let us consider finite sequences f , g with evenly repeated values. Then
f a g has evenly repeated values.

Let F be a set. We say that F is with evenly repeated values-member if and
only if

(Def. 7) for every object y such that y ∈ F holds y is a finite function with evenly
repeated values.
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One can verify that every set which is empty is also with evenly repeated
values-member.

Let X be a finite sequence-membered set. Note that every element of FinX
is finite sequence-membered.

Let Y be a finite sequence-membered set. Note that X∪Y is finite sequence-
membered. Now we state the propositions:

(41) Let us consider finite sequence-membered sets P1, S1, S2. Then P1
a

(S1 ∪ S2) = P1
a S1 ∪ P1

a S2.

(42) Let us consider finite sequence-membered sets P1, P2, S1. Then (P1 ∪
P2) a S1 = P1

a S1 ∪ P2
a S1.

(43) Let us consider finite sequences f , g. Then {f} a {g} = {f a g}.
Let f be a finite function with evenly repeated values. Observe that {f}

is with evenly repeated values-member. Let g be a finite function with evenly
repeated values. Let us note that {f, g} is with evenly repeated values-member.
Let F , G be with evenly repeated values-member, finite sequence-membered
sets. Let us note that F a G is with evenly repeated values-member. Now we
state the proposition:

(44) Let us consider a finite function f , and a permutation p of dom f . Then
f has evenly repeated values if and only if f ·p has evenly repeated values.
Proof: If f has evenly repeated values, then f · p has evenly repeated
values. �

4. Cartesian Product of Domains in Finite Sequences

Let F be a finite sequence-yielding finite sequence. The functor domκ F (κ)
yielding a finite subset of N∗ is defined by

(Def. 8) for every object x, x ∈ it iff there exists a finite sequence p such that
p = x and len p = lenF and for every i such that i ∈ dom p holds p(i) ∈
dom(F (i)).

Now we state the propositions:

(45) domκ F (κ) is not empty if and only if F is non-empty.
Proof: If domκ F (κ) is not empty, then F is non-empty. Set L = lenF 7→
1. For every i such that i ∈ domL holds L(i) ∈ dom(F (i)). �

(46) domκ ∅(κ) = {∅}.
Let F be a finite sequence-yielding finite sequence. Let us observe that

domκ F (κ) is finite sequence-membered. Now we state the proposition:

(47) p ∈ domκ F (κ) if and only if len p = lenF and for every i such that
i ∈ dom p holds p(i) ∈ dom(F (i)).
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Let F be a finite sequence-yielding finite sequence. Let us note that every
element of domκ F (κ) is N-valued.

Let F be a non-empty, finite sequence-yielding finite sequence. Let us note
that domκ F (κ) is non empty. Now we state the propositions:

(48) If f ∈ domκ F (κ) and g ∈ domκG(κ), then f a g ∈ domκ F
a G(κ).

Proof: Set f11 = f a g. Set F8 = F a G. len f = lenF and len g = lenG.
For every i such that i ∈ dom f11 holds f11(i) ∈ dom(F8(i)). �

(49) Let us consider finite sequence-membered sets P , S. Suppose P ⊆ domκ

F (κ) and S ⊆ domκG(κ). Then P a S ⊆ domκ F
a G(κ). The theorem is

a consequence of (48).

(50) Suppose (len f = lenF or len g = lenG) and f a g ∈ domκ F
a G(κ).

Then

(i) f ∈ domκ F (κ), and

(ii) g ∈ domκG(κ).

Proof: Set f11 = fag. Set F8 = F aG. len f11 = len f+len g and lenF8 =
lenF + lenG and lenF8 = len f11. For every i such that i ∈ dom f holds
f(i) ∈ dom(F (i)). For every i such that i ∈ dom g holds g(i) ∈ dom(G(i)).
�

(51) f ∈ domκ〈g〉(κ) if and only if len f = 1 and f(1) ∈ dom g. The theorem
is a consequence of (47).

(52) domκ F
a 〈g a 〈x〉〉(κ) = domκ F

a 〈g〉(κ) ∪ {f a 〈1 + len g〉, where f is
an element of domκ F (κ) : f ∈ domκ F (κ)}.
Proof: Set S = {f a 〈1 + len g〉, where f is an element of domκ F (κ) :
f ∈ domκ F (κ)}. Set g4 = ga 〈x〉. domκ F

a 〈g4〉(κ) ⊆ domκ F
a 〈g〉(κ)∪S.

�

(53) domκ F
a 〈〈x〉〉(κ) = {f a 〈1〉, where f is an element of domκ F (κ) : f ∈

domκ F (κ)}. The theorem is a consequence of (45) and (52).

(54) Let us consider finite sequence-yielding finite sequences F , G. Then
(the concatenation of N)◦((domκ F (κ))× (domκG(κ))) = domκ F

aG(κ).
Proof: Set C = the concatenation of N. C◦((domκ F (κ))×(domκG(κ))) ⊆
domκ F

aG(κ) by [3, (4)], (48). Reconsider f11 = xy as an N-valued finite
sequence. len f11 = len(F a G) = lenF + lenG. Set f = f11� lenF . Con-
sider g being a finite sequence such that f11 = f a g. f ∈ domκ F (κ) and
g ∈ domκG(κ). �

(55) domκ〈f〉(κ) = {〈i〉, where i is an element of N : i ∈ dom f}.
Proof: domκ〈f〉(κ) ⊆ {〈i〉, where i is an element of N : i ∈ dom f}. Con-
sider i being an element of N such that y = 〈i〉 and i ∈ dom f . �

Let us consider n and F . One can check that F �n is finite sequence-yielding.
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Now we state the propositions:

(56) If f ∈ domκ F (κ), then f�n ∈ domκ F �n(κ). The theorem is a consequ-
ence of (47).

(57) domκ〈g〉(κ) = len g.
Proof: Set G = 〈g〉. Define P[object, object] ≡ for every finite sequ-
ence f such that f = $1 holds f(1) = $2. For every object x such
that x ∈ domκG(κ) there exists an object y such that y ∈ dom g and
P[x, y]. Consider F being a function such that domF = domκG(κ) and
rngF ⊆ dom g and for every object x such that x ∈ domκG(κ) holds
P[x, F (x)]. F is one-to-one. dom g ⊆ rngF . �

(58) domκ F a 〈f〉(κ) = domκ F (κ) · (len f).
Proof: Define D[natural number] ≡ for every finite sequence f such that

len f = $1 holds domκ F a 〈f〉(κ) = domκ F (κ) · (len f). D[0]. If D[n],
then D[n+ 1]. D[n]. �

5. Some Operations on Finite Sequences

Let F be a finite sequence-yielding finite sequence. The functor App(F )
yielding a finite sequence-yielding function is defined by

(Def. 9) dom it = domκ F (κ) and for every finite sequence p such that p ∈
domκ F (κ) holds len it(p) = len p and for every i such that i ∈ dom p

holds (it(p))(i) = F (i)(p(i)).

Let D be a non empty set and F be a (D∗)-valued finite sequence. Let us
note that the functor App(F ) yields a function from domκ F (κ) into D∗. Now
we state the propositions:

(59) (App(∅))(∅) = ∅. The theorem is a consequence of (46).

(60) If i ∈ dom f , then (App(〈f〉))(〈i〉) = 〈f(i)〉. The theorem is a consequ-
ence of (51).

(61) Suppose f ∈ domκ F (κ) and g ∈ domκG(κ). Then (App(FaG))(fag) =
(App(F ))(f) a (App(G))(g).
Proof: Set F8 = F a G. Set A1 = App(F ). Set A3 = App(G). Set A2 =
App(F8). f a g ∈ domκ F8(κ). len f = lenF and len g = lenG. For every i
such that 1 ¬ i ¬ lenA2(f a g) holds A2(f a g)(i) = (A1(f)aA3(g))(i). �

Let D be a non empty set and F be a non empty, (D∗)-valued finite sequence.
One can verify that App(F ) is non-empty.

Let f be a (D∗)-valued function and x be an object. One can check that
the functor f(x) yields a finite sequence of elements of D. Let B be a binary
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operation on D and F be a (D∗)-valued function. The functor B � F yielding
a function from domF into D is defined by

(Def. 10) for every x such that x ∈ domF holds it(x) = B � F (x).

From now on B, A, M denote binary operations on D, F , G denote (D∗)-
valued finite sequences, f denotes a finite sequence of elements of D, and d, d1,
d2 denote elements of D.

Let D be a non empty set, B be a binary operation on D, and F be a (D∗)-
valued finite sequence. Let us observe that B � F is (lenF )-element and finite
sequence-like.

Let D be a set and f be a finite sequence of elements of D. Observe that
the functor 〈f〉 yields a finite sequence of elements of D∗. Now we state the
propositions:

(62) A� 〈f〉 = 〈A� f〉.
(63) A� F a G = (A� F ) a (A�G).
Proof: Set F8 = F a G. For every n such that 1 ¬ n ¬ lenF + lenG
holds (A� F8)(n) = ((A� F ) a (A�G))(n). �

Let f be a non empty finite sequence. Observe that 〈f〉 is non-empty.
From now on F , G denote non-empty, non empty finite sequences of elements

of D∗ and f denotes a non empty finite sequence of elements of D.
Now we state the propositions:

(64) Suppose A is commutative and associative. Let us consider non emp-
ty finite sequences f , g, a function F from dom f into D, a function G

from dom g into D, and a function F8 from dom(f a g) into D. Sup-
pose f = F and g = G and f a g = F8. Then A-

∑
Ωdom(fag)

F8 =

A(A-
∑

Ωdom f F,A-
∑

Ωdom g G).
Proof: Define P[natural number] ≡ for every non empty finite sequences
f , g such that $1 = len g for every function F from dom f into D for every
function G from dom g into D for every function F8 from dom(f a g) into
D such that f = F and g = G and f a g = F8 holds A-

∑
Ωdom(fag)

F8 =

A(A-
∑

Ωdom f F,A-
∑

Ωdom g G). P[1]. For every n such that 1 ¬ n holds if
P[n], then P[n+ 1]. For every n such that 1 ¬ n holds P[n]. �

(65) Suppose M is commutative and associative. Then M -
∑

Ωdom(FaG)
(A �

F a G) = M(M -
∑

ΩdomF (A � F ),M -
∑

ΩdomG(A � G)). The theorem is
a consequence of (63) and (64).

(66) If M is commutative and associative, then M -
∑

Ωdom〈f〉(A�〈f〉) = A�f .
The theorem is a consequence of (62).

(67) Suppose M is commutative and associative and A is commutative and
associative and M is left distributive w.r.t. A. Let us consider a function
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f9 from dom f into D. Suppose for every x such that x ∈ dom f holds
f9(x) = M(M -

∑
ΩdomF (A � F ), f(x)). Then M -

∑
Ωdom(Fa〈f〉)

(A � F a

〈f〉) = A-
∑

Ωdom f f9.
Proof: Define P[natural number] ≡ for every f such that len f = $1 for
every function f9 from dom f into D such that for every x such that x ∈
dom f holds f9(x) = M(M -

∑
ΩdomF (A� F ), f(x)) holds M -

∑
Ωdom(Fa〈f〉)

(A� F a 〈f〉) = A-
∑

Ωdom f f9. If P[n], then P[n+ 1]. P[n]. �

(68) Suppose lenF = 1 and M is commutative and associative and A is com-
mutative and associative. ThenM -

∑
ΩdomF (A�F ) = A-

∑
Ωdom(App(F ))(M�

App(F )).
Proof: Set F1 = F (1). Set f = M � App(F ). Set X = dom(App(F )).
Consider G being a function from FinX into D such that A-

∑
ΩX f =

G(ΩX) and for every element e of D such that e is a unity w.r.t. A holds
G(∅) = e and for every element x of X, G({x}) = f(x) and for every
element B′ of FinX such that B′ ⊆ ΩX and B′ 6= ∅ for every element x
of X such that x ∈ ΩX \B′ holds G(B′ ∪ {x}) = A(G(B′), f(x)).

Consider s being a sequence of D such that s(1) = F1(1) and for
every natural number n such that 0 6= n and n < lenF1 holds s(n+ 1) =
A(s(n), F1(n + 1)) and A � F1 = s(lenF1). Define R(natural number) =
{〈i〉, where i is an element of N : i ∈ Seg $1}. Define P[natural number] ≡
if $1 ¬ lenF1, then for every element B′ of FinX such that B′ = R($1)
holds G(B′) = s($1). P[1]. For every j such that 1 ¬ j holds if P[j], then
P[j + 1]. For every i such that 1 ¬ i holds P[i]. R(lenF1) = X. �

(69) Suppose M is commutative and associative and A is commutative, asso-
ciative, and unital and M is distributive w.r.t. A. Then M -

∑
ΩdomF (A �

F ) = A-
∑

Ωdom(App(F ))(M �App(F )).
Proof: Define R[natural number] ≡ for every non-empty, non empty fini-
te sequence F of elements ofD∗ such that lenF = $1 holdsM -

∑
ΩdomF (A�

F ) = A-
∑

Ωdom(App(F ))(M �App(F )). If R[n], then R[n+ 1]. R[n]. �

6. Combination of Sign and Characteristic Functions

Let D be a non empty set, B be a binary operation on D, f be a finite sequence
of elements of D, and X be a set. The functor SignGen(f,B,X) yielding a finite
sequence of elements of D is defined by

(Def. 11) dom it = dom f and for every i such that i ∈ dom it holds if i ∈ X,
then it(i) = (the inverse operation w.r.t. B)(f(i)) and if i /∈ X, then
it(i) = f(i).

Note that SignGen(f,B,X) is (len f)-element.
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From now on f , g denote finite sequences of elements of D, a, b, c denote
sets, and F , F1, F2 denote finite sets. Now we state the propositions:

(70) If X misses dom f , then SignGen(f,B,X) = f .

(71) SignGen(f,B, ∅) = f . The theorem is a consequence of (70).

(72) SignGen(f�n,B,X) = SignGen(f,B,X)�n.

(73) Suppose n + 1 = len f and n + 1 ∈ X. Then SignGen(f,B,X) =
SignGen(f�n,B,X) a 〈(the inverse operation w.r.t. B)(f(n+ 1))〉.
Proof: Set n1 = n+ 1. Set I = (the inverse operation w.r.t. B)(f(n1)).
SignGen(f�n,B,X) = SignGen(f,B,X)�n. For every i such that 1 ¬ i ¬
len SignGen(f,B,X) holds (SignGen(f,B,X))(i) = (SignGen(f�n,B,X)a

〈I〉)(i). �
(74) If n+1 = len f and n+1 /∈ X, then SignGen(f,B,X) = SignGen(f�n,B,

X) a 〈f(n+ 1)〉.
Proof: Set n1 = n+ 1. Set I = f(n1). SignGen(f�n,B,X) = SignGen(f,
B,X)�n. For every i such that 1 ¬ i ¬ len SignGen(f,B,X) holds
(SignGen(f,B,X))(i) = (SignGen(f�n,B,X) a 〈I〉)(i). �

(75) If dom f ⊆ X, then SignGen(f,B,X) = (the inverse operation w.r.t.
B) · f .
Proof: For every k such that k ∈ dom(SignGen(f,B,X)) holds
(SignGen(f,B,X))(k) = ((the inverse operation w.r.t. B) · f)(k). �

(76) If B is unital and associative and has inverse operation, then
SignGen(SignGen(f,B,X), B,X) = f .
Proof: Set C = SignGen(f,B,X). For every k such that 1 ¬ k ¬ len f
holds (SignGen(C,B,X))(k) = f(k). �

Let E be a non empty set, D be a set, p be a D-valued finite sequence, and
h be a function from D into E. Let us observe that h · p is (len p)-element and
finite sequence-like.

Let D be a non empty set, B be a binary operation on D, f be a finite
sequence of elements ofD, and F be a finite set. The functor SignGenOp(f,B, F )
yielding a function from F into D∗ is defined by

(Def. 12) if X ∈ F , then it(X) = SignGen(f,B,X).

Now we state the propositions:

(77) Let us consider an enumeration E of {x}. Then E = 〈x〉.
(78) Let us consider an enumeration E of {X}. Then (SignGenOp(f,B, {X}))·

E = 〈SignGen(f,B,X)〉. The theorem is a consequence of (77).

(79) Let us consider an enumeration E1 of F1, and an enumeration E2 of F2.
Suppose F1 misses F2. Then E1

a E2 is an enumeration of F1 ∪ F2.



Prime representing polynomial with 10 unknowns – ... 181

(80) Let us consider an enumeration E of F . Suppose i ∈ domE or i ∈
dom((SignGenOp(f,B, F )) · E). Then ((SignGenOp(f,B, F )) · E)(i) =
SignGen(f,B,E(i)).
Proof: Set C = SignGenOp(f,B, F ). i ∈ dom(C · E). �

(81) Let us consider an enumeration E1 of F1, an enumeration E2 of F2,
and an enumeration E12 of F1 ∪ F2. Suppose E12 = E1

a E2. Then
(SignGenOp(f,B, F1 ∪ F2)) · E12 =
(SignGenOp(f,B, F1)) · E1

a (SignGenOp(f,B, F2)) · E2.
Proof: Set C1 = SignGenOp(f,B, F1). Set C2 = SignGenOp(f,B, F2).
Set C12 = SignGenOp(f,B, F1 ∪ F2). For every k such that 1 ¬ k ¬
lenC12 · E12 holds (C12 · E12)(k) = (C1 · E1

a C2 · E2)(k). �

Let us consider an enumeration E of F . Now we state the propositions:

(82) Suppose (B is unital or len f ­ 1) and 1 + len f /∈
⋃
F . Then B �

(SignGenOp(f a 〈d〉, B, F )) · E = B◦(B � (SignGenOp(f,B, F )) · E, d).
Proof: Set f10 = f a 〈d〉. Set C = SignGenOp(f,B, F ). Set C23 =
SignGenOp(f10, B, F ). For every x such that x ∈ dom(C ·E) holds (B◦(B�
C · E, d))(x) = (B � C23 · E)(x). �

(83) Suppose (B is unital or len f ­ 1) and 1 + len f ∈
⋂
F . Then B �

(SignGenOp(f a 〈d〉, B, F )) · E =
B◦(B � (SignGenOp(f,B, F )) · E, (the inverse operation w.r.t. B)(d)).
Proof: Set f10 = f a 〈d〉. Set C = SignGenOp(f,B, F ). Set C23 =
SignGenOp(f10, B, F ). Set I = the inverse operation w.r.t. B. For every
x such that x ∈ dom(C ·E) holds (B◦(B�C ·E, I(d)))(x) = (B�C23·E)(x).
�

(84) Suppose (B is unital or len f ­ 1) andB is associative and 1+len f /∈
⋃
F

and 2 + len f /∈
⋃
F . Then B� (SignGenOp((f a 〈d1〉)a 〈d2〉, B, F )) ·E =

B� (SignGenOp(f a 〈B(d1, d2)〉, B, F )) ·E. The theorem is a consequence
of (82).

(85) Suppose (B is unital or len f ­ 1) andB is associative and 1+len f /∈
⋃
F

and 2+len f ∈
⋂
F . Then B�(SignGenOp((fa〈d1〉)a〈d2〉, B, F ))·E = B�

(SignGenOp(f a 〈B(d1, (the inverse operation w.r.t. B)(d2))〉, B, F )) ·E.
The theorem is a consequence of (83) and (82).

(86) Suppose B is unital, associative, and commutative and has inverse ope-
ration and 1+len f ∈

⋂
F and 2+len f /∈

⋃
F . Then B�(SignGenOp((f a

〈d1〉)a〈d2〉, B, F ))·E = B�(SignGenOp(fa〈B(d1, ((the inverse operation
w.r.t. B)(d2))〉, B, F )) ·E. The theorem is a consequence of (82), (83), and
(2).

(87) Suppose B is unital, associative, and commutative and has inverse ope-
ration and 1 + len f , 2 + len f ∈

⋂
F . Then B � (SignGenOp((f a 〈d1〉) a
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〈d2〉, B, F )) ·E = B�(SignGenOp(f a 〈B(d1, d2)〉, B, F )) ·E. The theorem
is a consequence of (83) and (2).

(88) If X misses
⋃
F , then there exists an enumeration E36 of F d {X} such

that for every i such that i ∈ domE holds E36(i) = X ∪ E(i).
Proof: Define F(set) = E($1) ∪ X. Consider f being a function such
that dom f = domE and for every set A such that A ∈ domE holds
f(A) = F(A). rng f ⊆ F d {X}. F d {X} ⊆ rng f . f is one-to-one. �

(89) SignGen(f,B,X) = SignGen(f,B,X ∩ dom f).

(90) Let us consider an enumeration E1 of F1, and an enumeration E2 of F2.
Suppose F1 = F2 and for every i such that i ∈ domE1 holds dom f ∩
E1(i) = dom f ∩ E2(i). Then (SignGenOp(f,A, F1)) · E1 =
(SignGenOp(f,A, F2)) · E2.
Proof: Set C1 = SignGenOp(f,A, F1). Set C2 = SignGenOp(f,A, F2).
For every i such that 1 ¬ i ¬ lenE1 holds (C1 · E1)(i) = (C2 · E2)(i). �

(91) Suppose A is unital, associative, and commutative and has inverse ope-
ration. Let us consider a finite, non empty set F . Suppose

⋃
F ⊆ dom f .

Let us consider finite sets F1, F2. Suppose F1 = F d 2{len f+1} and F2 =
F d 2{len f+1,len f+2}. Then there exists an enumeration E1 of F1 and there
exists an enumeration E2 of F2 such that A � (SignGenOp((f a 〈d1〉) a
〈d2〉, A, F2)) · E2 = (A� (SignGenOp(f a 〈A(d1, d2)〉, A, F1)) · E1) a (A�
(SignGenOp(fa〈A(d1, (the inverse operation w.r.t. A)(d2))〉, A, F1))·E1).
Proof: Set L = len f . Set U1 = F d {{L+ 1}}. Set U2 = F d {{L+ 2}}.
Set U12 = F d {{L + 1, L + 2}}. Set E = the enumeration of F . Set
I = the inverse operation w.r.t. A. Set f12 = (f a 〈d1〉) a 〈d2〉. Set f3 =
f a 〈A(d1, d2)〉. Set f4 = f a 〈A(d1, I(d2))〉.

Consider E1 being an enumeration of U1 such that for every i such
that i ∈ domE holds E1(i) = {L+ 1} ∪E(i). L+ 2 /∈

⋃
U1. L+ 1 /∈

⋃
U2.

If a ∈ U12, then L+ 1, L+ 2 ∈ a. Consider E2 being an enumeration of U2

such that for every i such that i ∈ domE holds E2(i) = {L + 2} ∪ E(i).
Consider E12 being an enumeration of U12 such that for every i such
that i ∈ domE holds E12(i) = {L + 1, L + 2} ∪ E(i). F misses U1. U1

misses U2. Reconsider E7 = E2
a E1 as an enumeration of U2 ∪ U1. F

misses U12. Reconsider E37 = E a E12 as an enumeration of F ∪ U12.
U12 = F = U2 . U12 = F = U1 . For every i such that i ∈ domE1 holds
dom f3 ∩ E1(i) = dom f3 ∩ E12(i). For every i such that i ∈ domE holds
dom f4 ∩ E(i) = dom f4 ∩ E2(i). F ∪ U12 misses U2 ∪ U1.

Reconsider E16 = E37
a E7 as an enumeration of (F ∪ U12) ∪ (U2 ∪

U1). ({∅} ∪ {{L + 1, L + 2}}) ∪ ({{L + 1}} ∪ {{L + 2}}) = 2{L+1,L+2}.
F = F d {∅}. F ∪ U12 = F d ({∅} ∪ {{L + 1, L + 2}}) and U2 ∪ U1 =
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F d ({{L + 1}} ∪ {{L + 2}}). Reconsider e1 = E16 as an enumeration of
F2. F ∪ U1 = F d ({∅} ∪ {{L + 1}}). A � (SignGenOp(f12, A, F ∪ U12)) ·
E37 = A � (SignGenOp(f12, A, F )) · E a (SignGenOp(f12, A, U12)) · E12.
A � (SignGenOp(f12, A, U2 ∪ U1)) · E7 = A � (SignGenOp(f12, A, U2)) ·
E2
a (SignGenOp(f12, A, U1)) · E1. (SignGenOp(f12, A, F2)) · e1 =

(SignGenOp(f12, A, (F ∪ U12) ∪ (U2 ∪ U1))) · E16. �

7. Product over All Combinations of Sings

Let D be a non empty set, A be a binary operation on D, and M be a binary
operation on D. Assume M is commutative and associative. Let f be a finite se-
quence of elements ofD and F be a finite set. The functor SignGenOp(f,M,A, F )
yielding an element of D is defined by

(Def. 13) for every enumeration E of 2F , it = M -
∑

Ωdom((SignGenOp(f,A,2F ))·E)
(A �

(SignGenOp(f,A, 2F )) · E).

Now we state the propositions:

(92) Suppose M is commutative and associative and A is commutative, asso-
ciative, and unital and has inverse operation and M is distributive w.r.t.
A. Let us consider non-empty, non empty finite sequences C4, C7, C5 of
elements of D∗. Suppose C5 = C4

a C7. Let us consider an element S1 of
Fin dom(App(C4)), an element s2 of dom(App(C7)), and an element S12

of Fin dom(App(C5)). Suppose S12 = S1
a {s2}. Then M(A-

∑
S1(M �

App(C4)), (M �App(C7))(s2)) = A-
∑
S12(M �App(C5)).

Proof: Define P[set] ≡ for every element S1 of Fin dom(App(C4)) for eve-
ry element S12 of Fin dom(App(C5)) such that S1 = $1 and S12 = S1

a{s2}
holdsM(A-

∑
S1(M�App(C4)), A-

∑
{s2}f (M�App(C7))) = A-

∑
S12(M�

App(C5)). P[∅dom(App(C4))]. For every element B′ of Fin dom(App(C4))
and for every element b of dom(App(C4)) such that P[B′] and b /∈ B′

holds P[B′ ∪ {b}]. For every element B of Fin dom(App(C4)), P[B]. �

(93) Suppose M is commutative and associative and A is commutative, asso-
ciative, and unital and has inverse operation and M is distributive w.r.t.
A. Let us consider non-empty, non empty finite sequences C4, C7, C5 of
elements of D∗. Suppose C5 = C4

a C7. Let us consider an element S1 of
Fin dom(App(C4)), an element S2 of Fin dom(App(C7)), and an element
S12 of Fin dom(App(C5)). Suppose S12 = S1

a S2. Then M(A-
∑
S1(M �

App(C4)), A-
∑
S2(M �App(C7))) = A-

∑
S12(M �App(C5)).

Proof: Set a1 = A-
∑
S1(M �App(C4)). Define P[natural number] ≡ for

every element S2 of Fin dom(App(C7)) for every element S12 of Fin dom(A-
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pp(C5)) such that S2 = $1 and S12 = S1
a S2 holds M(a1, A-

∑
S2(M �

App(C7))) = A-
∑
S12(M � App(C5)). P[0]. If P[n], then P[n + 1] by [6,

(55)], [4, (16)]. P[n]. �

(94) Let us consider an enumeration E1 of F1. Then domκ(SignGenOp(f,A,
F1)) · E1(κ) ⊆ domκ(SignGenOp(f a g,A, F1)) · E1(κ).
Proof: lenx = lenE1. For every i such that i ∈ domx holds x(i) ∈
dom(((SignGenOp(f a g,A, F1)) · E1)(i)). �

(95) SupposeA is unital, commutative, and associative. Let us consider an enu-
meration E1 of F1, and non-empty, non empty finite sequences C4, C7

of elements of D∗. Suppose C4 = (SignGenOp(f,A, F1)) · E1 and C7 =
(SignGenOp(fag,A, F1))·E1. Let us consider an element S1 of Fin dom(Ap-
p(C4)), and an element S2 of Fin dom(App(C7)). Suppose S1 = S2.
Then A-

∑
S1(M �App(C4)) = A-

∑
S2(M �App(C7)).

Proof: For every x such that x ∈ dom((M �App(C4))�S1) holds ((M �
App(C4))�S1)(x) = ((M �App(C7))�S2)(x). �

(96) Let us consider an enumeration E of F . Suppose lenE = n+ 1. Then

(i) E�n is an enumeration of F \ {E(lenE)}, and

(ii) 〈E(lenE)〉 is an enumeration of {E(lenE)}, and

(iii) F = F \ {E(lenE)} ∪ {E(lenE)}.
Let F be a with evenly repeated values-member set. Note that every element

of F is finite, function-like, and relation-like and every element of F has evenly
repeated values. Now we state the proposition:

(97) Let us consider an enumeration E1 of F1, and a function p. Suppose⋃
F1 ⊆ dom p and p�

⋃
F1 is one-to-one. Then

(i) (◦p) · E1 is an enumeration of (◦p)◦F1, and

(ii) E1 = (◦p) · E1 .

Proof: Set I3 = ◦f . Reconsider f7 = I3 · E1 as a finite sequence. f7 is
one-to-one. rng f7 ⊆ (◦f)◦F1. (◦f)◦F1 ⊆ rng f7. �

Let us consider an enumeration E1 of F1, a function g, an enumeration g1

of (◦g)◦F1, a finite sequence f11 of elements of D, and a finite sequence s. Now
we state the propositions:

(98) Suppose
⋃
F1 ⊆ dom g and g�

⋃
F1 is one-to-one. Then suppose g1 =

(◦g)·E1. Then suppose g◦ dom f ⊆ dom f11. Then suppose s ∈ domκ(SignGe-
nOp(f,A, F1)) · E1(κ) and rng s ⊆ dom g.
Then g · s ∈ domκ(SignGenOp(f11, A, (◦g)◦F1)) · g1(κ).
Proof: len(SignGenOp(f,A, F1))·E1 = lenE1 = len g1 = len(SignGenOp(f,
A, (◦g)◦F1)) ·g1. Reconsider g3 = g ·s as a finite sequence. len s = len(Sign-
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GenOp(f,A, F1)) · E1. For every i such that i ∈ dom g3 holds g3(i) ∈
dom(((SignGenOp(gf,A, (◦g)◦F1)) · g1)(i)). �

(99) Suppose
⋃
F1 ⊆ dom g and g is one-to-one. Then suppose g1 = (◦g) ·E1.

Then suppose f11 = f · (g−1)�dom f11 and g◦ dom f ⊆ dom f11. Then
suppose s ∈ domκ(SignGenOp(f,A, F1)) ·E1(κ) and rng s ⊆ dom g. Then
(App((SignGenOp(f,A, F1))·E1))(s) = (App((SignGenOp(f11, A, (◦g)◦F1))·
g1))(g · s).
Proof: len(SignGenOp(f,A, F1))·E1 = lenE1 = len g1 = len(SignGenOp
(f,A, (◦g)◦F1)) · g1. Reconsider g3 = g · s as a finite sequence. Reconsider
g3 = g·s as a finite sequence. len g3 = len s = len(SignGenOp(f,A, (◦g)◦F1))·
g1. g3 ∈ domκ(SignGenOp(gf,A, (◦g)◦F1))·g1(κ). len s = len(SignGenOp(f,
A, F1)) ·E1. g3 = g · s and g3 ∈ domκ(SignGenOp(gf,A, (◦g)◦F1)) · g1(κ).
For every i such that 1 ¬ i ¬ len s holds (App((SignGenOp(f,A, F1)) ·
E1))(s)(i) = (App((SignGenOp(gf,A, (◦g)◦F1)) · g1))(g3)(i). �

(100) Let us consider an enumeration E1 of F1. Suppose
⋃
F1 ⊆ dom f . Let us

consider a permutation g of dom f , and an enumeration g1 of (◦g)◦F1.
Suppose g1 = (◦g) · E1. Let us consider a finite sequence f11 of ele-
ments of D. Suppose f11 = f · (g−1). Let us consider an element S1 of
Fin dom(App((SignGenOp(f,A, F1)) ·E1)). Then {g · s, where s is a finite
sequence of elements of N : s ∈ S1} is an element of Fin dom(App((SignGen-
Op(f11, A, (◦g)◦F1)) · g1)).
Proof: {g · s, where s is a finite sequence of elements of N : s ∈ S1} ⊆
dom(App((SignGenOp(f11, A, (◦g)◦F1)) · g1)). �

(101) SupposeA is unital, commutative, and associative. Let us consider an enu-
meration E1 of F1. Suppose

⋃
F1 ⊆ dom f . Let us consider a permutation

g of dom f , and an enumeration g1 of (◦g)◦F1. Suppose g1 = (◦g) · E1.
Let us consider a finite sequence f11 of elements of D. Suppose f11 =
f · (g−1). Let us consider non-empty, non empty finite sequences C4,
C7 of elements of D∗. Suppose C4 = (SignGenOp(f,A, F1)) · E1 and
C7 = (SignGenOp(f11, A, (◦g)◦F1)) · g1. Let us consider an element S1

of Fin dom(App(C4)), and an element S2 of Fin dom(App(C7)). Suppose
S2 = {g · s, where s is a finite sequence of elements of N : s ∈ S1}. Then
A-
∑
S1(M �App(C4)) = A-

∑
S2(M �App(C7)).

Proof: Define P[set] ≡ for every element S1 of Fin dom(App(C4)) for
every element S2 of Fin dom(App(C7)) such that S1 = $1 and S2 = {g ·
s, where s is a finite sequence of elements of N : s ∈ S1} holdsA-

∑
S1(M�

App(C4)) = A-
∑
S2(M�App(C7)). P[∅dom(App(C4))]. For every element B′

of Fin dom(App(C4)) and for every element b of dom(App(C4)) such that
P[B′] and b /∈ B′ holds P[B′∪{b}]. For every elementB of Fin dom(App(C4)),
P[B]. �
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(102) Let us consider an enumeration E1 of F1. Suppose n ∈ dom f . Then
lenE1 7→ n ∈ domκ(SignGenOp(f,A, F1)) · E1(κ).
Proof: Set C3 = (SignGenOp(f,A, F1)) · E1. Set s = lenE1 7→ n. For
every i such that i ∈ dom s holds s(i) ∈ dom(C3(i)). �

(103) Suppose B is unital, associative, and commutative and has inverse opera-
tion. Then (the inverse operation w.r.t. B)(B(d1, d2)) = B((the inverse
operation w.r.t. B)(d1), (the inverse operation w.r.t. B)(d2)).

Let x be an object and n be an even natural number. One can check that
n 7→ x has evenly repeated values.

Let us consider finite sequences f , g. Now we state the propositions:

(104) If f a g has evenly repeated values and f has evenly repeated values,
then g has evenly repeated values.

(105) If f a g has evenly repeated values and g has evenly repeated values,
then f has evenly repeated values.

Let x be an object and n be an even natural number. Let us note that n 7→ x

has evenly repeated values.
Let X, Y be with evenly repeated values-member sets. Note that X ∪ Y is

with evenly repeated values-member.
Let n, k be natural numbers. The functor doms(n, k) yielding a finite sequence-

membered, finite set is defined by the term

(Def. 14) (Seg n)k.

Note that every element of doms(n, k) is (Seg n)-valued.
Let n be a non empty natural number and k be a natural number. Let us

note that doms(n, k) is non empty and every element of doms(n, k) is k-element.
Now we state the proposition:

(106) Let us consider an enumeration E of F . Then domκ(SignGenOp(f,A, F ))·
E(κ) = doms(len f, F ).
Proof: domκ(SignGenOp(f,A, F )) · E(κ) ⊆ doms(len f, F ). Consider s
being an element of (Seg len f)∗ such that x = s and len s = F . For every
i such that i ∈ dom s holds s(i) ∈ dom(((SignGenOp(f,A, F )) · E)(i)). �

Let us consider an enumeration E1 of F1 and an enumeration E2 of F2. Now
we state the propositions:

(107) Suppose F1 = F2 and len f ¬ len g. Then domκ(SignGenOp(f,A, F1)) ·
E1(κ) ⊆ domκ(SignGenOp(g,A, F2)) · E2(κ).
Proof: lenx = len(SignGenOp(g,A, F2)) · E2. For every i such that i ∈
domx holds x(i) ∈ dom(((SignGenOp(g,A, F2)) · E2)(i)). �

(108) Suppose F1 = F2 . Then domκ(SignGenOp(f,A, F1)) · E1(κ) =
domκ(SignGenOp(f,A, F2)) · E2(κ).
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Proof: domκ(SignGenOp(f,A, F1))·E1(κ) ⊆ domκ(SignGenOp(f,A, F2))·
E2(κ). lenx = len(SignGenOp(f,A, F1)) · E1. For every i such that i ∈
domx holds x(i) ∈ dom(((SignGenOp(f,A, F1)) · E1)(i)). �

(109) Let us consider an enumeration E of F , and a permutation p of domE.
Then E · p is an enumeration of F .

Let us consider an enumeration E of F , a permutation p of domE, and
a finite sequence s. Now we state the propositions:

(110) If s ∈ domκ(SignGenOp(f,A, F )) · E(κ),
then s · p ∈ domκ(SignGenOp(f,A, F )) · (E · p)(κ).
Proof: Reconsider E28 = E·p as an enumeration of F . len s = len(SignGe-
nOp(f,A, F )) ·E = lenE = F . Reconsider s7 = s · p as a finite sequence.
For every i such that i ∈ dom s7 holds s7(i) ∈ dom(((SignGenOp(f,A, F ))·
E28)(i)). �

(111) Suppose s ∈ domκ(SignGenOp(f,A, F )) ·E(κ). Then (App((SignGenOp
(f,A, F )) · E))(s) · p = (App((SignGenOp(f,A, F )) · (E · p)))(s · p).
Proof: Set C = SignGenOp(f,A, F ). s·p ∈ domκC ·(E ·p)(κ). Reconsider
s7 = s · p as a finite sequence. len s = lenC · E = lenE. For every i such
that i ∈ dom((App(C · (E · p)))(s7)) holds ((App(C · E))(s) · p)(i) =
(App(C · (E · p)))(s7)(i). �

(112) SupposeM is commutative and associative. Then suppose s ∈ domκ(Sign-
GenOp(f,A, F ))·E(κ) and (len s ­ 1 orM is unital). Then (M�App((Sign-
GenOp(f,A, F ))·E))(s) = (M�App((SignGenOp(f,A, F ))·(E ·p)))(s·p).
The theorem is a consequence of (110), (47), and (111).

(113) Let us consider an enumeration E of F , a permutation p of domE, and
an element S of Fin dom(App((SignGenOp(f,A, F )) · E)). Then {s · p,
where s is a finite sequence of elements of N : s ∈ S} is an element of
Fin dom(App((SignGenOp(f,A, F )) · (E · p))). The theorem is a consequ-
ence of (110).

(114) Let us consider an enumeration E of F , a permutation p of domE, and
an element S of Fin doms(n, F ). Then {s · p, where s is a finite sequence
of elements of N : s ∈ S} is an element of Fin doms(n, F ). The theorem
is a consequence of (109), (110), and (106).

(115) SupposeM is commutative and associative and A is unital, commutative,
and associative. Let us consider an enumeration E of F , and a permutation
p of domE. Suppose M is unital or lenE ­ 1. Let us consider non-
empty, non empty finite sequences C3, C11 of elements of D∗. Suppose
C3 = (SignGenOp(f,A, F )) · E and C11 = (SignGenOp(f,A, F )) · (E · p).
Let us consider an element S of Fin dom(App(C3)), and an element S13

of Fin dom(App(C11)).
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Suppose S13 = {s · p, where s is a finite sequence of elements of N :
s ∈ S}. Then A-

∑
S(M �App(C3)) = A-

∑
S13(M �App(C11)).

Proof: Define P[set] ≡ for every element S of Fin dom(App(C3)) for eve-
ry element S13 of Fin dom(App(C11)) such that S = $1 and S13 = {s ·
p, where s is a finite sequence of elements of N : s ∈ S} holds A-

∑
S(M �

App(C3)) = A-
∑
S13(M � App(C11)). P[∅dom(App(C3))]. For every ele-

ment B′ of Fin dom(App(C3)) and for every element b of dom(App(C3))
such that P[B′] and b /∈ B′ holds P[B′ ∪ {b}]. For every element B of
Fin dom(App(C3)), P[B]. �

(116) Suppose A is unital and associative and has inverse operation. Let us
consider finite sets F , F9. Suppose F9 = F d 2{len f+1} and

⋃
F ⊆ dom f .

Let us consider an enumeration E1 of F9. Then there exists an enumeration
E2 of F9 such that (SignGenOp(f a 〈d1〉, A, F9)) · E1 = (SignGenOp(f a

〈(the inverse operation w.r.t. A)(d1)〉, A, F9)) · E2.
Proof: Set I = the inverse operation w.r.t. A. Define P[object, object] ≡
$2 ∈ domE1 and if 1 + len f ∈ E1($1), then E1($2) = E1($1) \ {1 + len f}
and if 1 + len f /∈ E1($1), then E1($2) = E1($1) ∪ {1 + len f}. For every x
such that x ∈ domE1 there exists y such that P[x, y].

Consider p being a function such that dom p = domE1 and for every
x such that x ∈ domE1 holds P[x, p(x)]. rng p ⊆ domE1. domE1 ⊆
rng p. Reconsider E4 = E1 · p as an enumeration of F9. For every i such
that 1 ¬ i ¬ len(SignGenOp(f a 〈d1〉, A, F9)) ·E1 holds ((SignGenOp(f a

〈d1〉, A, F9)) · E1)(i) = ((SignGenOp(f a 〈I(d1)〉, A, F9)) · E4)(i). �

(117) Suppose A is unital, associative, and commutative and has inverse ope-
ration. Let us consider a finite, non empty set F . Suppose

⋃
F ⊆ dom f .

Let us consider finite sets F1, F2. Suppose F1 = F d 2{len f+1} and F2 =
F d 2{len f+1,len f+2}. Then there exist enumerations E1, E2 of F1 and the-
re exists an enumeration E of F2 such that A� (SignGenOp((f a 〈d1〉) a
〈d2〉, A, F2)) · E = (A � (SignGenOp(f a 〈A(d1, d2)〉, A, F1)) · E1) a (A �
(SignGenOp(fa〈A((the inverse operation w.r.t. A)(d1), d2)〉, A, F1))·E2).
The theorem is a consequence of (91), (116), and (2).

(118) Suppose A is unital. Let us consider an enumeration E of F , and a fini-
te sequence s. Suppose F = ∅ and s ∈ domκ(SignGenOp(f,B, F )) · E(κ).
Then (A�App((SignGenOp(f,B, F ))·E))(s) = 1A. The theorem is a con-
sequence of (47) and (59).

(119) Let us consider an enumeration E of F , a permutation p of domE,
and a subset S of doms(n, F ). Then {s · p, where s is a finite sequence
of elements of N : s ∈ S} is a subset of doms(n, F ). The theorem is
a consequence of (109), (110), and (106).
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(120) Let us consider finite sequences f , g. Suppose (len f = n or len g = m)
and f a g ∈ doms(k, n+m). Then

(i) f ∈ doms(k, n), and

(ii) g ∈ doms(k,m).

(121) Let us consider a finite sequence f . If f ∈ doms(n, k), then len f = k.

(122) Let us consider finite sequences f , g. Suppose f ∈ doms(k, n) and g ∈
doms(k,m). Then f a g ∈ doms(k, n+m).

(123) doms(k, n)adoms(k,m) = doms(k, n+m). The theorem is a consequence
of (122) and (120).

(124) Let us consider an enumeration E of F , a permutation p of domE, and
a finite sequence s. Suppose s ∈ doms(m, F ). Then s · p ∈ doms(m, F ).
The theorem is a consequence of (109) and (121).

(125) If k ¬ n, then doms(k,m) ⊆ doms(n,m).

(126) Suppose A is commutative, associative, and unital and has inverse opera-
tion and M is associative, commutative, and unital and M is distributive
w.r.t. A. Let us consider an enumeration E1 of F1, and an enumeration E2

of F2. Suppose
⋃
F1 ⊆ Seg(1+m) and

⋃
F2 ⊆ Seg(1+m). Let us consider

an enumeration E17 of ext(F1, 1 +m, 2 +m), and an enumeration E33 of
swap(F2, 1 +m, 2 +m).

Suppose E17 = Ext(E1, 1+m, 2+m) and E33 = Swap(E2, 1+m, 2+m).
Let us consider an enumeration E21 of ext(F1, 1+m, 2+m)∪swap(F2, 1+
m, 2 + m). Suppose E21 = E17

a E33. Let us consider finite sequences s1,
s2. Suppose s1 ∈ doms(m+ 1, F1 ) and s2 ∈ doms(m+ 1, F2 ) and s1

a s2

has evenly repeated values and s1
−1({1 +m}) = s2

−1({1 +m}). Then
there exists a subset S of doms(m+ 2, F1 + F2 ) such that

(i) if s1
−1({1 +m}) = 0, then s1

a s2 ∈ S, and

(ii) S is with evenly repeated values-member, and

(iii) for every finite sequences C4, C7 of elements of D∗ and for eve-
ry f , d1, and d2 such that len f = m and C4 = (SignGenOp(f a

〈A(d1, d2)〉, A, F1))·E1 and C7 = (SignGenOp(fa〈A((the inverse ope-
ration w.r.t. A)(d1), d2)〉, A, F2)) ·E2 for every non-empty, non empty
finite sequence C17 of elements ofD∗ such that C17 = (SignGenOp((fa

〈d1〉) a 〈d2〉, A, ext(F1, 1 + len f, 2 + len f) ∪ swap(F2, 1 + len f, 2 +
len f)))·E21 for every element S7 of Fin dom(App(C17)) such that S =
S7 holds M((M �App(C4))(s1), (M �App(C7))(s2)) = A-

∑
S7(M �

App(C17)) and for every finite sequence h and for every i such that
h ∈ S7 and i ∈ domh holds if (s1

a s2)(i) = 1+len f , then h(i) ∈ {1+
len f, 2+len f} and if (s1

a s2)(i) 6= 1+len f , then h(i) = (s1
a s2)(i).
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Proof: Define P[natural number] ≡ for every F1 and F2 for every enume-
ration E1 of F1 for every enumeration E2 of F2 such that

⋃
F1 ⊆ Seg(1+m)

and
⋃
F2 ⊆ Seg(1 +m) for every enumeration E17 of ext(F1, 1 +m, 2 +m)

for every enumeration E33 of swap(F2, 1 + m, 2 + m) such that E17 =
Ext(E1, 1 + m, 2 + m) and E33 = Swap(E2, 1 + m, 2 + m) for every enu-
meration E21 of ext(F1, 1 + m, 2 + m) ∪ swap(F2, 1 + m, 2 + m) such
that E21 = E17

a E33 for every finite sequences s1, s2 such that s1 ∈
doms(m+1, F1 ) and s2 ∈ doms(m+1, F2 ) and s1

as2 has evenly repeated

values and s1
−1({1 +m}) = $1 = s2

−1({1 +m}) there exists a subset S

of doms(m+2, F1 + F2 ) such that if s1
−1({1 +m}) = 0, then s1

a s2 ∈ S.
S is with evenly repeated values-member and for every finite sequ-

ences C4, C7 of elements of D∗ and for every f , d1, and d2 such that
len f = m and C4 = (SignGenOp(f a 〈A(d1, d2)〉, A, F1)) · E1 and C7 =
(SignGenOp(f a 〈A((the inverse operation w.r.t. A)(d1), d2)〉, A, F2)) ·E2

for every non-empty, non empty finite sequence C17 of elements of D∗ such
that C17 = (SignGenOp((f a 〈d1〉) a 〈d2〉, A, ext(F1, 1 + len f, 2 + len f) ∪
swap(F2, 1+len f, 2+len f)))·E21 for every element S7 of Fin dom(App(C17))
such that S = S7 holds M((M � App(C4))(s1), (M � App(C7))(s2)) =
A-
∑
S7(M � App(C17)) and for every finite sequence h and for every

i such that h ∈ S7 and i ∈ domh holds if (s1
a s2)(i) = 1 + len f ,

then h(i) ∈ {1 + len f, 2 + len f} and if (s1
a s2)(i) 6= 1 + len f , then

h(i) = (s1
a s2)(i). If P[n], then P[n+ 1]. P[0]. P[n]. �

(127) Suppose A is commutative, associative, and unital and has inverse ope-
ration and M is associative, commutative, and unital and M is distribu-
tive w.r.t. A. Let us consider an enumeration E1 of F1. Suppose

⋃
F1 ⊆

Seg(1 +m). Let us consider an enumeration E17 of ext(F1, 1 +m, 2 +m).
Suppose E17 = Ext(E1, 1 + m, 2 + m). Then there exists a subset S of
doms(m+ 2, F1 ) such that

(i) S = {1 +m, 2 +m}lenE1 , and

(ii) for every non-empty, non empty finite sequence C16 of elements of
D∗ and for every f , d1, and d2 such that len f = m and C16 =
(SignGenOp((f a 〈d1〉) a 〈d2〉, A, ext(F1, 1 + len f, 2 + len f))) · E17

for every element S7 of Fin dom(App(C16)) such that S7 = S holds
(M � App((SignGenOp(f a 〈A(d1, d2)〉, A, F1)) · E1))(lenE1 7→ (1 +
len f)) = A-

∑
S7(M �App(C16)).

Proof: Define P[natural number] ≡ for every F1 for every enumeration E1

of F1 such that
⋃
F1 ⊆ Seg(1 +m) and lenE1 = $1 for every enumeration

E17 of ext(F1, 1 +m, 2 +m) such that E17 = Ext(E1, 1 +m, 2 +m) there
exists a subset S of doms(m+2, F1 ) such that S = {1+m, 2+m}lenE1 and
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for every non-empty, non empty finite sequence C16 of elements of D∗ and
for every f , d1, and d2 such that len f = m and C16 = (SignGenOp((f a

〈d1〉) a 〈d2〉, A, ext(F1, 1 + len f, 2 + len f))) · E17 for every element S7 of
Fin dom(App(C16)) such that S7 = S holds (M � App((SignGenOp(f a

〈A(d1, d2)〉, A, F1)) ·E1))(lenE1 7→ (1 + len f)) = A-
∑
S7(M �App(C16)).

P[0]. If P[n], then P[n+ 1]. P[n]. �

(128) Suppose A is commutative, associative, and unital and has inverse ope-
ration. Let us consider an enumeration E1 of F1. Suppose

⋃
F1 ⊆ Seg(1 +

len f). Let us consider an enumeration E17 of ext(F1, 1 + len f, 2 + len f),
and an enumeration E33 of swap(F1, 1 + len f, 2 + len f). Suppose E17 =
Ext(E1, 1+len f, 2+len f) and E33 = Swap(E1, 1+len f, 2+len f). Let us
consider a non-empty, non empty finite sequence C16 of elements of D∗,
and a non-empty, non empty finite sequence C20 of elements of D∗.

Suppose C16 = (SignGenOp((f a 〈d1〉) a 〈d2〉, A, ext(F1, 1 + len f, 2 +
len f))) · E17 and C20 = (SignGenOp((f a 〈(the inverse operation w.r.t.
A)(d1)〉)a〈d2〉, A, swap(F1, 1+len f, 2+len f)))·E33. Let us consider an ele-
ment S1 of Fin dom(App(C16)), and an element S2 of Fin dom(App(C20)).
Suppose S1 = S2. Then A-

∑
S1(M�App(C16)) = A-

∑
S2(M�App(C20)).

Proof: Define P[natural number] ≡ for every element S1 of Fin dom(App
(C16)) for every element S2 of Fin dom(App(C20)) such that S1 = S2 and
S1 = $1 holds A-

∑
S1(M �App(C16)) = A-

∑
S2(M �App(C20)). P[0]. If

P[n], then P[n+ 1]. P[n]. �

(129) Suppose A is commutative, associative, and unital and has inverse ope-
ration and M is associative, commutative, and unital and M is distribu-
tive w.r.t. A. Let us consider an enumeration E1 of F1. Suppose

⋃
F1 ⊆

Seg(1+m). Let us consider an enumeration E33 of swap(F1, 1+m, 2+m).
Suppose E33 = Swap(E1, 1 + m, 2 + m). Then there exists a subset S of
doms(m+ 2, F1 ) such that

(i) S = {1 +m, 2 +m}lenE1 , and

(ii) for every non-empty, non empty finite sequence C20 of elements of
D∗ and for every f , d1, and d2 such that len f = m and C20 =
(SignGenOp((fa 〈d1〉)a 〈d2〉, A, swap(F1, 1+len f, 2+len f)))·E33 for
every element S7 of Fin dom(App(C20)) such that S7 = S holds (M�
App((SignGenOp(fa〈A((the inverse operation w.r.t. A)(d1), d2)〉, A,
F1)) · E1))(lenE1 7→ (1 + len f)) = A-

∑
S7(M �App(C20)).

The theorem is a consequence of (28), (127), (80), (10), (11), (107), and
(128).

(130) Suppose A is unital, associative, and commutative and has inverse opera-
tion andM is commutative and associative and len f 6= 0. Then SignGenOp
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((f a 〈d1〉)a 〈d2〉,M,A, (Seg(2 + len f))\{1}) = M(SignGenOp(f a 〈A(d1,

d2)〉,M,A, (Seg(1+len f))\{1}), SignGenOp(fa〈A((the inverse operation
w.r.t. A)(d1), d2)〉,M,A, (Seg(1 + len f)) \ {1})). The theorem is a conse-
quence of (6), (117), and (64).

(131) Let us consider an enumeration E of F . Suppose
⋃
F ⊆ Seg(1 + len f).

Let us consider an enumeration E17 of ext(F, 1 + len f, 2 + len f). Suppose
E17 = Ext(E, 1 + len f, 2 + len f). Let us consider finite sequences C4, C9

of elements of D∗. Suppose C4 = (SignGenOp(f a 〈d〉, A, F )) ·E and C9 =
(SignGenOp((f a 〈d1〉) a 〈d2〉, A, ext(F, 1 + len f, 2 + len f))) ·E17. Let us
consider a finite sequence s. Suppose s ∈ domκC4(κ) and rng s ⊆ dom f .
Then

(i) s ∈ domκC9(κ), and

(ii) (App(C4))(s) = (App(C9))(s).

Proof: domκC4(κ) ⊆ domκC9(κ). lenE = lenC4 = len s = lenC9. For
every i such that 1 ¬ i ¬ len s holds (App(C4))(s)(i) = (App(C9))(s)(i).
�

(132) Let us consider an enumeration E of F . Suppose
⋃
F ⊆ Seg(1 + len f).

Let us consider an enumeration E33 of swap(F, 1+len f, 2+len f). Suppose
E33 = Swap(E, 1 + len f, 2 + len f). Let us consider finite sequences C4,
C10 of elements of D∗. Suppose C4 = (SignGenOp(f a 〈d〉, A, F )) · E and
C10 = (SignGenOp((f a 〈d1〉)a 〈d2〉, A, swap(F, 1 + len f, 2 + len f))) ·E33.
Let us consider a finite sequence s. Suppose s ∈ domκC4(κ) and rng s ⊆
dom f . Then

(i) s ∈ domκC10(κ), and

(ii) (App(C4))(s) = (App(C10))(s).

Proof: domκC4(κ) ⊆ domκC9(κ). lenE = lenC4 = len s = lenC9. For
every i such that 1 ¬ i ¬ len s holds (App(C4))(s)(i) = (App(C9))(s)(i).
�

(133) Let us consider an enumeration E1 of F1, and (D∗)-valued finite se-
quences C4, C7. Suppose C4 = (SignGenOp(f a 〈d1〉, A, F1)) · E1 and
C7 = (SignGenOp(f a 〈d2〉, A, F1)) · E1. Let us consider a finite sequence
s. Suppose s ∈ domκC4(κ) and 1 + len f /∈ rng s. Then

(i) s ∈ domκC7(κ), and

(ii) (App(C4))(s) = (App(C7))(s).

Proof: domκC4(κ) ⊆ domκC7(κ). lenC4 = len s = lenC7. For every i

such that 1 ¬ i ¬ len s holds (App(C4))(s)(i) = (App(C7))(s)(i). �



Prime representing polynomial with 10 unknowns – ... 193

(134) Let us consider a finite sequence s. Suppose s−1({y}) = k. Then there
exists a permutation p of dom s and there exists a finite sequence s1 such
that s · p = s1

a (k 7→ y) and y /∈ rng s1.

(135) Let us consider a finite sequence f of elements of D. Suppose A is com-
mutative, associative, and unital and has inverse operation and M is as-
sociative, commutative, and unital and M is distributive w.r.t. A and
n ∈ dom f . Let us consider an enumeration E of F , and a subset D of
domE. Suppose for every i, i ∈ D iff n ∈ E(i). Then

(i) if D is even, then (M � App((SignGenOp(f,A, F )) · E))(lenE 7→
n) = M � lenE 7→ f/n, and

(ii) if D is odd, then (M�App((SignGenOp(f,A, F ))·E))(lenE 7→ n) =
(the inverse operation w.r.t. A)(M � lenE 7→ f/n).

Proof: Set I1 = the inverse operation w.r.t. A. Define P[natural number]
≡ for every F such that F = $1 for every enumeration E of F for every
subset I of domE such that for every i, i ∈ I iff n ∈ E(i) holds if I is even,
then (M�App((SignGenOp(f,A, F ))·E))(lenE 7→ n) = M�lenE 7→ f/n

and if I is odd, then (M �App((SignGenOp(f,A, F )) ·E))(lenE 7→ n) =
I1(M � lenE 7→ f/n). P[0]. If P[j], then P[j + 1]. P[j]. �

(136) Suppose M is commutative, associative, and unital and A is commuta-
tive, associative, and unital and has inverse operation and M is distri-
butive w.r.t. A. Let us consider a finite sequence f of elements of D,
an enumeration E1 of F1, an enumeration E2 of F2, and finite sequen-
ces s1, s2. Suppose s1 ∈ domκ(SignGenOp(f a 〈d1〉, A, F1)) · E1(κ) and

s2 ∈ domκ(SignGenOp(f a 〈d2〉, A, F2)) · E2(κ) and s1
−1({1 + len f}) =

s2
−1({1 + len f}). Then M((M �App((SignGenOp(f a 〈d1〉, A, F1)) ·E1))

(s1), (M�App((SignGenOp(fa〈d2〉, A, F2))·E2))(s2)) = M((M�App((Si-
gnGenOp(fa〈d2〉, A, F1))·E1))(s1), (M�App((SignGenOp(fa〈d1〉, A, F2))·
E2))(s2)).
Proof: Set L = 1 + len f . domκ(SignGenOp(f a 〈d1〉, A, F1)) · E1(κ) =
domκ(SignGenOp(fa〈d2〉, A, F1))·E1(κ) and domκ(SignGenOp(fa〈d2〉, A,
F2))·E2(κ) = domκ(SignGenOp(fa〈d1〉, A, F2))·E2(κ). Set k = s1

−1({L}).
len s1 = len(SignGenOp(fa〈d1〉, A, F1))·E1 = lenE1 and len s2 = len(Sign-
GenOp(f a 〈d2〉, A, F2)) ·E2 = lenE2. Set k1 = k 7→ L. Consider p1 being
a permutation of dom s1, S1 being a finite sequence such that s1 · p1 =
S1
a k1 and L /∈ rngS1. Reconsider E4 = E1 · p1 as an enumeration of F1.

Set e3 = E4� lenS1.
Consider e2 being a finite sequence such that E4 = e3

a e2. Set
F4 = rng e3. Set F3 = rng e2. Reconsider E6 = e3 as an enumeration
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of F4. Reconsider E5 = e2 as an enumeration of F3. Consider p2 being
a permutation of dom s2, S2 being a finite sequence such that s2 · p2 =
S2
a k1 and L /∈ rngS2. Reconsider E8 = E2 · p2 as an enumeration of

F2. Set e5 = E8� lenS2. Consider e4 being a finite sequence such that
E8 = e5

a e4. Set F6 = rng e5. Set F5 = rng e4. Reconsider E10 = e5

as an enumeration of F6. Reconsider E9 = e4 as an enumeration of F5.
(SignGenOp(f a 〈d1〉, A, F1)) · E4 = (SignGenOp(f a 〈d1〉, A, F4)) · E6

a

(SignGenOp(f a 〈d1〉, A, F3)) ·E5 and (SignGenOp(f a 〈d2〉, A, F2)) ·E8 =
(SignGenOp(f a 〈d2〉, A, F6)) ·E10

a (SignGenOp(f a 〈d2〉, A, F5)) ·E9. �

(137) Suppose M is commutative, associative, and unital and A is commu-
tative, associative, and unital and has inverse operation and M is di-
stributive w.r.t. A. Let us consider an enumeration E1 of F1. Suppose⋃
F1 ⊆ Seg(1+m) and lenE1 is even. Let us consider an enumeration E17

of ext(F1, 1+m, 2+m), and an enumeration E33 of swap(F1, 1+m, 2+m).
Suppose E17 = Ext(E1, 1 +m, 2 +m) and E33 = Swap(E1, 1 +m, 2 +m).
Then there exist subsets s6, s8 of doms(m+ 2, F1 ) such that

(i) s6 ⊆ {1 +m, 2 +m}lenE1 , and

(ii) s8 ⊆ {1 +m, 2 +m}lenE1 , and

(iii) s6 is with evenly repeated values-member, and

(iv) s8 is with evenly repeated values-member, and

(v) for every non-empty, non empty finite sequences C16, C20 of elements
of D∗ and for every f , d1, and d2 such that len f = m and C16 =
(SignGenOp((f a 〈d1〉)a 〈d2〉, A, ext(F1, 1+len f, 2+len f))) ·E17 and
C20 = (SignGenOp((f a 〈d1〉)a 〈d2〉, A, swap(F1, 1+len f, 2+len f))) ·
E33 for every element S8 of Fin dom(App(C16)) for every element
S14 of Fin dom(App(C20)) such that S8 = s6 and S14 = s8 holds
A((M�App((SignGenOp(f a 〈A(d1, d2)〉, A, F1))·E1))(lenE1 7→ (1+
len f)), (M�App((SignGenOp(f a 〈A((the inverse operation w.r.t.
A)(d1), d2)〉, A, F1)) · E1))(lenE1 7→ (1 + len f))) = A(A-

∑
S8(M �

App(C16)), A-
∑
S14(M �App(C20))).

Proof: Set I = the inverse operation w.r.t. A. Set L3 = lenE1. Set
L1 = 1+m. Set L2 = 2+m. Consider s6 being a subset of doms(m+2, F1 )
such that s6 = {1 + m, 2 + m}lenE1 and for every non-empty, non empty
finite sequence C16 of elements of D∗ and for every f , d1, and d2 such that
len f = m and C16 = (SignGenOp((f a 〈d1〉)a 〈d2〉, A, ext(F1, 1+len f, 2+
len f))) ·E17 for every element S7 of Fin dom(App(C16)) such that S7 = s6

holds (M �App((SignGenOp(f a 〈A(d1, d2)〉, A, F1)) ·E1))(lenE1 7→ (1 +
len f)) = A-

∑
S7(M �App(C16)).



Prime representing polynomial with 10 unknowns – ... 195

Consider s8 being a subset of doms(m + 2, F1 ) such that s8 = {1 +
m, 2 + m}lenE1 and for every non-empty, non empty finite sequence C20

of elements of D∗ and for every f , d1, and d2 such that len f = m and
C20 = (SignGenOp((f a 〈d1〉) a 〈d2〉, A, swap(F1, 1 + len f, 2 + len f))) ·
E33 for every element S7 of Fin dom(App(C20)) such that S7 = s8 holds
(M � App((SignGenOp(f a 〈A(I(d1), d2)〉, A, F1)) · E1))(lenE1 7→ (1 +
len f)) = A-

∑
S7(M �App(C20)). Set C = CFS({1+m, 2+m}L3). Define

P[natural number] ≡ if $1 ¬ lenC, then there exist subsets S5, R4, S15,
R6 of doms(m+ 2, F1 ) such that S5 ⊆ rng(C�$1) and R4 = rng(C�$1) =
R6 and S15 ⊆ rng(C�$1) and S5 is with evenly repeated values-member
and S15 is with evenly repeated values-member and for every non-empty,
non empty finite sequences C20, C15 of elements of D∗ and for every f ,
d1, and d2 such that len f = m and C20 = (SignGenOp((f a 〈d1〉) a
〈d2〉, A, swap(F1, 1 + len f, 2 + len f))) · E33 and C15 = (SignGenOp((f a

〈I(d1)〉) a 〈d2〉, A, swap(F1, 1 + len f, 2 + len f))) · E33 for every elements
S4, R3 of Fin dom(App(C15)).

For every elements S14, R5 of Fin dom(App(C20)) such that S5 =
S4 and R4 = R3 and S15 = S14 and R6 = R5 holds A(A-

∑
S4(M �

App(C15)), A-
∑
S14(M�App(C20))) = A(A-

∑
R3(M�App(C15)), A-

∑
R5

(M �App(C20))). P[0]. If P[n], then P[n+ 1]. P[n]. Consider S5, R4, S15,
R6 being subsets of doms(m + 2, F1 ) such that S5 ⊆ rng(C� lenC) and
R4 = rng(C� lenC) = R6 and S15 ⊆ rng(C� lenC) and S5 is with evenly
repeated values-member and S15 is with evenly repeated values-member
and for every non-empty, non empty finite sequences C20, C15 of elements
of D∗.

For every f , d1, and d2 such that len f = m and C20 = (SignGenOp((fa

〈d1〉)a〈d2〉, A, swap(F1, 1+len f, 2+len f)))·E33 and C15 = (SignGenOp((fa

〈I(d1)〉)a 〈d2〉, A, swap(F1, 1+len f, 2+len f))) ·E33 for every elements S4,
R3 of Fin dom(App(C15)) for every elements S14, R5 of Fin dom(App(C20))
such that S5 = S4 and R4 = R3 and S15 = S14 and R6 = R5 holds
A(A-

∑
S4(M � App(C15)), A-

∑
S14(M � App(C20))) = A(A-

∑
R3(M �

App(C15)), A-
∑
R5(M�App(C20))). Set C15 = (SignGenOp((fa〈I(d1)〉)a

〈d2〉, A, swap(F1, L1, L2))) · E33. For every x such that x ∈ domC15 holds
C15(x) is not empty. �

Let us consider an enumeration E of F , an enumeration E17 of ext(F, 1 +
m, 2 +m), an enumeration E33 of swap(F, 1 +m, 2 +m), an enumeration E21 of
ext(F, 1 + m, 2 + m) ∪ swap(F, 1 + m, 2 + m), and finite sequences s1, s2. Now
we state the propositions:

(138) Suppose A is commutative, associative, and unital and has inverse ope-
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ration and M is associative, commutative, and unital and M is distribu-
tive w.r.t. A. Then suppose

⋃
F ⊆ Seg(1 + m). Then suppose E17 =

Ext(E, 1 + m, 2 + m) and E33 = Swap(E, 1 + m, 2 + m). Then sup-
pose E21 = E17

a E33. Then suppose s1, s2 ∈ doms(m + 1, F ) and
s1 has evenly repeated values and s2 has evenly repeated values and
s1
−1({1 +m}) < s2

−1({1 +m}). Then there exist subsets D1, D2 of
doms(m+ 2, F + F ) such that

(i) D1 is with evenly repeated values-member, and

(ii) D2 is with evenly repeated values-member, and

(iii) for every finite sequences C4, C7 of elements of D∗ and for eve-
ry f , d1, and d2 such that len f = m and C4 = (SignGenOp(f a

〈A(d1, d2)〉, A, F )) ·E and C7 = (SignGenOp(f a 〈A((the inverse ope-
ration w.r.t. A)(d1), d2)〉, A, F ))·E for every non-empty, non empty fi-
nite sequence C17 of elements ofD∗ such that C17 = (SignGenOp((fa

〈d1〉)a〈d2〉, A, ext(F, 1+len f, 2+len f)∪swap(F, 1+len f, 2+len f)))·
E21 for every elements S1, S2 of Fin dom(App(C17)) such that S1 =
D1 and S2 = D2 holds S1 misses S2 andA(M((M�App(C4))(s1), (M�
App(C7))(s2)),M((M �App(C4))(s2), (M �App(C7))(s1))) =

A-
∑
S1∪S2(M � App(C17)) and for every finite sequence h and for

every i such that h ∈ S1 and i ∈ dom(s1
a s2) holds if (s1

a s2)(i) =
1+len f , then h(i) ∈ {1+len f, 2+len f} and if (s1

as2)(i) 6= 1+len f ,
then h(i) = (s1

a s2)(i) and for every finite sequence h and for every i
such that h ∈ S2 and i ∈ dom(s2

a s1) holds if (s2
a s1)(i) = 1+len f ,

then h(i) ∈ {1 + len f, 2 + len f} and if (s2
a s1)(i) 6= 1 + len f , then

h(i) = (s2
a s1)(i).

(139) Suppose A is commutative, associative, and unital and has inverse ope-
ration and M is associative, commutative, and unital and M is distri-
butive w.r.t. A. Then suppose

⋃
F ⊆ Seg(1 + m). Then suppose E17 =

Ext(E, 1 + m, 2 + m) and E33 = Swap(E, 1 + m, 2 + m). Then suppose
E21 = E17

aE33. Then suppose s1, s2 ∈ doms(m+1, F ) and s1 has evenly
repeated values and s2 has evenly repeated values and s1 6= s2. Then there
exist subsets D1, D2 of doms(m+ 2, F + F ) such that

(i) D1 is with evenly repeated values-member, and

(ii) D2 is with evenly repeated values-member, and

(iii) for every finite sequences C4, C7 of elements of D∗ and for eve-
ry f , d1, and d2 such that len f = m and C4 = (SignGenOp(f a

〈A(d1, d2)〉, A, F )) ·E and C7 = (SignGenOp(f a 〈A((the inverse ope-
ration w.r.t. A)(d1), d2)〉, A, F ))·E for every non-empty, non empty fi-
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nite sequence C17 of elements ofD∗ such that C17 = (SignGenOp((fa

〈d1〉)a〈d2〉, A, ext(F, 1+len f, 2+len f)∪swap(F, 1+len f, 2+len f)))·
E21 for every elements S1, S2 of Fin dom(App(C17)) such that S1 =
D1 and S2 = D2 holds S1 misses S2 andA(M((M�App(C4))(s1), (M�
App(C7))(s2)),M((M �App(C4))(s2), (M �App(C7))(s1))) =
A-
∑
S1∪S2(M � App(C17)) and for every finite sequence h and for

every i such that h ∈ S1 and i ∈ dom(s1
a s2) holds if (s1

a s2)(i) =
1+len f , then h(i) ∈ {1+len f, 2+len f} and if (s1

as2)(i) 6= 1+len f ,
then h(i) = (s1

a s2)(i) and for every finite sequence h and for every i
such that h ∈ S2 and i ∈ dom(s2

a s1) holds if (s2
a s1)(i) = 1+len f ,

then h(i) ∈ {1 + len f, 2 + len f} and if (s2
a s1)(i) 6= 1 + len f , then

h(i) = (s2
a s1)(i).

The theorem is a consequence of (126), (40), (106), (47), (80), and (138).

(140) SupposeM is commutative and associative and len f = 2. Then SignGen-
Op(f,M,A, {2}) = M(A(f(1), f(2)), A(f(1), (the inverse operation w.r.t.
A)(f(2)))). The theorem is a consequence of (71), (70), and (73).

Let us consider an enumeration E of 2{2} and a non-empty, non empty finite
sequence C3 of elements of D∗. Now we state the propositions:

(141) Suppose M is commutative and associative and A is commutative, asso-
ciative, and unital and has inverse operation and M is distributive w.r.t.
A. Then suppose C3 = (SignGenOp(f,A, 2{2})) · E and len f = 2. Then
there exists an element S of Fin dom(App(C3)) such that

(i) S = {〈1, 1〉, 〈2, 2〉}, and

(ii) SignGenOp(f,M,A, {2}) = A-
∑
S(M �App(C3)).

Proof: Set I = the inverse operation w.r.t. A. Reconsider f1 = f(1),
f2 = f(2) as an element of D. {〈1, 1〉, 〈2, 2〉} ⊆ domκC3(κ).
SignGenOp(f,M,A, {2}) = A(M(f1, f1),M(f2, I(f2))). �

(142) Suppose M is commutative and associative and A is commutative, asso-
ciative, and unital and has inverse operation and M is distributive w.r.t.
A. Then suppose C3 = (SignGenOp(f,A, 2{2})) · E and len f = 2. Then
there exists an element S of Fin dom(App(C3)) such that

(i) S is with evenly repeated values-member, and

(ii) SignGenOp(f,M,A, {2}) = A-
∑
S(M �App(C3)).

The theorem is a consequence of (141).

(143) Main Theorem:
Suppose A is commutative, associative, and unital and has inverse opera-
tion and M is associative, commutative, and unital and M is distributive
w.r.t. A and m > 1 and for every d, M(1A, d) = 1A.
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Then there exists an enumeration E of 2(Segm)\{1} and there exists a subset
S of doms(m, 2(Segm)\{1} ) such that S is with evenly repeated values-

member and 2(Segm)\{1} 7→ 1 ∈ S and for every non-empty, non empty
finite sequence C3 of elements of D∗ and for every f such that C3 =
(SignGenOp(f,A, 2(Segm)\{1})) · E and len f = m for every element S6 of
Fin dom(App(C3)) such that S6 = S holds SignGenOp(f,M,A, (Segm) \
{1}) = A-

∑
S6(M �App(C3)).

Proof: Define P[natural number] ≡ there exists an enumeration E of

2(Seg $1)\{1} and there exists a subset S of doms($1, 2(Seg $1)\{1} ) such that

S is with evenly repeated values-member and 2(Seg $1)\{1} 7→ 1 ∈ S and
for every non-empty, non empty finite sequence C3 of elements of D∗

and for every f such that C3 = (SignGenOp(f,A, 2(Seg $1)\{1})) · E and
len f = $1 for every element S6 of Fin dom(App(C3)) such that S6 = S

holds SignGenOp(f,M,A, (Seg $1) \ {1}) = A-
∑
S6(M �App(C3)).

P[2]. For every natural number j such that 2 ¬ j holds if P[j], then
P[j + 1]. For every natural number i such that 2 ¬ i holds P[i]. �
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Let us consider ordinal numbers n, m and bags b1, b2 of n. Now we state the
propositions:

(1) If support b1 = {m} and support b2 = {m}, then b1 ¬ b2 iff b1(m) ¬
b2(m).

(2) If support b1 = {m}, then b2 | b1 iff b2 = EmptyBagn or support b2 =
{m} and b2(m) ¬ b1(m). The theorem is a consequence of (1).

(3) Let us consider a field F , ordinal numbers m, n, and a bag b of n. Suppose
support b = {m}. Then

(i) len divisors b = b(m) + 1, and

(ii) for every natural number k and for every finite subset S of n such
that S = {m} and k ∈ dom(divisors b) holds (divisors b)(k) = (S, k−′
1) -bag.

The theorem is a consequence of (1) and (2).

Let n be an ordinal number and L be a right zeroed, add-associative, ri-
ght complementable, right unital, distributive, non degenerated double loop
structure. Let us note that PolyRing(n,L) is non degenerated.

Now we state the proposition:

(4) Let us consider a non degenerated commutative ring R, a commutative
ring extension S of R, and an ordinal number n. Then PolyRing(n, S) is
a commutative ring extension of PolyRing(n,R).
Proof: Every polynomial of n,R is a polynomial of n,S. The carrier of
PolyRing(n,R) ⊆ the carrier of PolyRing(n, S). For every polynomials p,
q of n,R and for every polynomials p1, q1 of n,S such that p = p1 and q = q1

holds p+ q = p1 + q1. The addition of PolyRing(n,R) = (the addition of
PolyRing(n, S)) � (the carrier of PolyRing(n,R)). For every polynomials
p, q of n,R and for every polynomials p1, q1 of n,S such that p = p1

and q = q1 holds p ∗ q = p1 ∗ q1. The multiplication of PolyRing(n,R) =
(the multiplication of PolyRing(n, S)) � (the carrier of PolyRing(n,R)).
�

Let R be a non degenerated ring, n be an ordinal number, and p be a poly-
nomial of n,R. The functor Leading-Term(p) yielding a bag of n is defined by
the term

(Def. 1)


(SgmX(BagOrdern,Support p))(len SgmX(BagOrdern, Support p)),
if p 6= 0nR,

EmptyBag n,otherwise.
The leading coefficient of p yielding an element of R is defined by the term

(Def. 2) p(Leading-Term(p)).
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The functor Leading-Monomial p yielding a monomial of n,R is defined by
the term

(Def. 3) Monom(the leading coefficient of p,Leading-Term(p)).

We introduce the notation LC p as a synonym of the leading coefficient
of p and LT p as a synonym of Leading-Term(p) and LM(p) as a synonym of
Leading-Monomial p.

Let us consider a non degenerated ring R, an ordinal number n, and a po-
lynomial p of n,R. Now we state the propositions:

(5) p = 0nR if and only if Support p = ∅.
(6) LC p = 0R if and only if p = 0nR. The theorem is a consequence of (5).

(7) Let us consider a non degenerated ring R, an ordinal number n, a poly-
nomial p of n,R, and a bag b of n. Suppose b ∈ Support p. Then b = LT p

if and only if for every bag b1 of n such that b1 ∈ Support p holds b1 ¬ b.
The theorem is a consequence of (5).

(8) Let us consider a non degenerated ring R, an ordinal number n, and
a polynomial p of n,R. Then Support LM(p) ⊆ Support p.

(9) Let us consider a field F , an ordinal number n, and a monomial p of
n,F . Then

(i) LC p = coefficient p, and

(ii) LT p = term p.

The theorem is a consequence of (5).

Let us consider a non degenerated ring R, an ordinal number n, and a po-
lynomial p of n,R. Now we state the propositions:

(10) (i) Support LM(p) = ∅, or

(ii) Support LM(p) = {LT p}.
The theorem is a consequence of (5), (8), and (6).

(11) LM(p) = 0nR if and only if p = 0nR. The theorem is a consequence of
(5), (8), and (6).

(12) (i) (LM(p))(LT p) = LC p, and

(ii) for every bag b of n such that b 6= LT p holds (LM(p))(b) = 0R.

(13) (i) LT LM(p) = LT p, and

(ii) LC LM(p) = LC p.

Let us consider an ordinal number n, a non degenerated ring R, and elements
a, b of R. Now we state the propositions:

(14) (a�(n,R)) + (b�(n,R)) = a+ b�(n,R).

(15) (a�(n,R)) ∗ (b�(n,R)) = a · b�(n,R).
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Let R, S be non degenerated commutative rings, n be an ordinal number,
p be a polynomial of n,R, and x be a function from n into S. The functor
ExtEval(p, x) yielding an element of S is defined by

(Def. 4) there exists a finite sequence y of elements of S such that it =
∑
y and

len y = len SgmX(BagOrdern, Support p) and for every element i of N such
that 1 ¬ i ¬ len y holds y(i) = (p · (SgmX(BagOrdern, Support p)))(i)(∈
S) · (eval((SgmX(BagOrdern, Support p))/i, x)).

Let us consider non degenerated commutative rings R, S, an ordinal number
n, and a function x from n into S. Now we state the propositions:

(16) ExtEval(0nR, x) = 0S . The theorem is a consequence of (5).

(17) If R is a subring of S, then ExtEval(1 (n,R), x) = 1S .

(18) Let us consider non degenerated commutative rings R, S, an ordinal
number n, a polynomial p of n,R, and a bag b of n. Suppose Support p =
{b}. Let us consider a function x from n into S. Then ExtEval(p, x) =
p(b)(∈ S) · (eval(b, x)).
Proof: Reconsider s2 = Support p as a finite subset of Bagsn. Set s1 =
SgmX(BagOrdern, s2). For every object u such that u ∈ dom s1 holds u ∈
{1}. Consider y being a finite sequence of elements of the carrier of S such
that ExtEval(p, x) =

∑
y and len y = len SgmX(BagOrdern, Support p)

and for every element i of N such that 1 ¬ i ¬ len y holds y(i) = (p ·
(SgmX(BagOrdern, s2)))(i)(∈ S) · (eval((SgmX(BagOrdern, s2))/i, x)). �

Let us consider non degenerated commutative rings R, S, an ordinal number
n, polynomials p, q of n,R, and a function x from n into S. Now we state the
propositions:

(19) If R is a subring of S, then ExtEval(p+ q, x) =
ExtEval(p, x) + ExtEval(q, x).
Proof: Define P[natural number] ≡ for every polynomial p of n,R such
that Support p = $1 holds ExtEval(p+q, x) = ExtEval(p, x)+ExtEval(q, x).
For every natural number k such that P[k] holds P[k+ 1]. P[0]. For every
natural number k, P[k]. �

(20) If R is a subring of S, then ExtEval(p ∗ q, x) =
(ExtEval(p, x)) · (ExtEval(q, x)).
Proof: Define P[natural number] ≡ for every polynomial p of n,R such
that Support p = $1 holds ExtEval(p∗q, x) = (ExtEval(p, x)) ·(ExtEval(q,
x)). For every natural number k such that P[k] holds P[k + 1]. P[0]. For
every natural number k, P[k]. �

Let F be a field. The functor nCP(F ) yielding a non empty subset of the car-
rier of PolyRing(F ) is defined by the term
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(Def. 5) the set of all p where p is a non constant element of the carrier of
PolyRing(F ).

One can verify that nCP(F ) is non empty and there exists a function from

nCP(F ) into nCP(F ) which is bijective.

Let g be a function from nCP(F ) into nCP(F ) and p be a non constant
element of the carrier of PolyRing(F ). Observe that the functor g(p) yields
an ordinal number. Let m be an ordinal number and p be a polynomial over F .
The functor Poly(m, p) yielding a polynomial of nCP(F ),F is defined by

(Def. 6) it(EmptyBag nCP(F )) = p(0) and for every bag b of nCP(F ) such that

support b = {m} holds it(b) = p(b(m)) and for every bag b of nCP(F )
such that support b 6= ∅ and support b 6= {m} holds it(b) = 0F .

Let g be a bijective function from nCP(F ) into nCP(F ). The functor nCP(g,

F ) yielding a non empty subset of PolyRing(nCP(F ) , F ) is defined by the
term

(Def. 7) the set of all Poly(g(p), p) where p is a non constant element of the carrier
of PolyRing(F ).

Let m be an ordinal number and p be a polynomial over F . Observe that
Poly(m,LM(p)) is monomial-like. Now we state the propositions:

(21) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a polynomial p over F . Then Poly(m, p) =
0

nCP(F )
F if and only if p = 0.F . The theorem is a consequence of (5).

(22) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a polynomial p over F , and an element a of

F . Then Poly(m, p) = a�(nCP(F ) , F ) if and only if p = a�F .

(23) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a non zero element p of the carrier of PolyRing(F ).

Then Support Poly(m, p) = {EmptyBag nCP(F )} if and only if p is con-
stant. The theorem is a consequence of (22) and (21).

(24) Let us consider a field F , and ordinal numbers m1, m2. Suppose m1,

m2 ∈ nCP(F ). Let us consider non constant polynomials p1, p2 over F .
Suppose Poly(m1, p1) = Poly(m2, p2). Then

(i) m1 = m2, and

(ii) p1 = p2.

The theorem is a consequence of (21), (23), and (5).

(25) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a constant polynomial p over F . Then
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(i) LT Poly(m, p) = EmptyBag nCP(F ), and

(ii) LC Poly(m, p) = p(0).

The theorem is a consequence of (22).

(26) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a non constant polynomial p over F . Then

(i) (LT Poly(m, p))(m) = deg(p), and

(ii) for every ordinal number o such that o 6= m holds

(LT Poly(m, p))(o) = 0.

Proof: Set n = nCP(F ). Set q = Poly(m, p). Reconsider S = {m}
as a finite subset of n. Reconsider d = deg(p) as a non zero element of
N. Set b = (S, d) -bag. b ∈ Support q. For every bag b1 of n such that
b1 ∈ Support q holds b1 ¬ b by [4, (7),(6)]. b = LT q. �

Let us consider a field F , an ordinal number m, and a polynomial p over F .
Now we state the propositions:

(27) Suppose m ∈ nCP(F ). Then

(i) LC Poly(m,LM(p)) = LC Poly(m, p), and

(ii) LT Poly(m,LM(p)) = LT Poly(m, p).

The theorem is a consequence of (25) and (26).

(28) Suppose m ∈ nCP(F ). Then Poly(m,LM(p)) = Monom(LC Poly(m, p),
LT Poly(m, p)). The theorem is a consequence of (9) and (27).

(29) If m ∈ nCP(F ), then LM(Poly(m, p)) = Poly(m,LM(p)).

(30) Let us consider a field F , an ordinal number m, and polynomials p, q
over F . Then Poly(m, p+ q) = Poly(m, p) + Poly(m, q).

(31) Let us consider a field F , an ordinal number m, and a polynomial p over
F . Then Poly(m,−p) = −Poly(m, p).

(32) Let us consider a field F , a non zero element a of F , a natural number i,

and an ordinal number m. Suppose m ∈ nCP(F ). Then Poly(m, anpoly(a,
0))∗Poly(m, anpoly(1F , i)) = Poly(m, anpoly(a, i)). The theorem is a con-
sequence of (22).

(33) Let us consider a field F , an element i of N, and an ordinal number m.

Suppose m ∈ nCP(F ). Then Poly(m, anpoly(1F , 1)) ∗Poly(m, anpoly(1F ,
i)) = Poly(m, anpoly(1F , i + 1)). The theorem is a consequence of (22)
and (3).

(34) Let us consider a field F , a natural number i, and an ordinal number m.

Suppose m ∈ nCP(F ). Then power
PolyRing(nCP(F ) ,F )

(Poly(m, anpoly(1F ,



Artin’s theorem towards the existence of algebraic ... 205

1)), i) = Poly(m, anpoly(1F , i)).
Proof: Set f = power

PolyRing(nCP(F ) ,F )
. Define P[natural number] ≡

f(Poly(m, anpoly(1F , 1)), $1) = Poly(m, anpoly(1F , $1)). P[0] by [5, (7)],
(22). For every natural number k, P[k]. �

(35) Let us consider a field F , a non constant element p of the carrier of

PolyRing(F ), and an ordinal number m. Suppose m ∈ nCP(F ). Then
Poly(m, anpoly(LC p,deg(p))) = LM(Poly(m, p)). The theorem is a con-
sequence of (28).

(36) Let us consider a field F , and a finite subset P of the carrier of PolyRing
(F ). Then there exists an extension E of F such that for every non constant
element p of the carrier of PolyRing(F ) such that p ∈ P holds p has a root
in E.
Proof: Define P[natural number] ≡ for every field F for every finite
subset P of the carrier of PolyRing(F ) such that P = $1 there exists
an extension E of F such that for every non constant element p of the car-
rier of PolyRing(F ) such that p ∈ P holds p has a root in E. P[0] by [6,
(6)]. For every natural number k, P[k]. Consider n being a natural number
such that P = n. �

(37) Let us consider a field F , an extension E of F , and an ordinal num-

ber m. Suppose m ∈ nCP(F ). Let us consider a polynomial p over F ,

and a function x from nCP(F ) into E. Then ExtEval(Poly(m, p), x) =
ExtEval(p, x/m).

Proof: Set q = Poly(m, p). Set n = nCP(F ). Define P[natural number] ≡
for every polynomial p over F for every function x from n into E such that
Support Poly(m, p) = $1 holds ExtEval(Poly(m, p), x) = ExtEval(p, x/m).
For every natural number k, P[k]. Consider n being a natural number such
that Support q = n. �

(38) Let us consider a non degenerated commutative ring R, a non empty
subset M of R, and an object o. Then o ∈M–ideal if and only if there exi-
sts a non empty, finite subset P of R and there exists a linear combination
L of P such that P ⊆M and o =

∑
L.

Let F be a field and g be a bijective function from nCP(F ) into nCP(F ).
Let us observe that (nCP(g, F ))–ideal is proper.

Let R be a non degenerated, commutative ring and I be a proper ideal of
R.

A maximal ideal of I is an ideal of R defined by

(Def. 8) I ⊆ it and it is maximal.

Observe that every maximal ideal of I is maximal.
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Let F be a field, g be a bijective function from nCP(F ) into nCP(F ), and
I be a maximal ideal of (nCP(g, F ))–ideal. The functor KroneckerField(F, g, I)
yielding a field is defined by the term

(Def. 9) PolyRing(nCP(F ) ,F )
I .

Let n be an ordinal number and R be a non degenerated ring. The functor
πn→n/R yielding a function from R into PolyRing(n,R) is defined by

(Def. 10) for every element a of R, it(a) = a�(n,R).

Let R be a non degenerated commutative ring. One can check that πn→n/R
is additive, multiplicative, and unity-preserving and πn→n/R is monomorphic.

Let F be a field, g be a bijective function from nCP(F ) into nCP(F ), and
I be a maximal ideal of (nCP(g, F ))–ideal. The functor emb(F, I, g) yielding
a function from F into KroneckerField(F, g, I) is defined by the term

(Def. 11) (the canonical homomorphism of I into quotient field)·
(π

nCP(F )→nCP(F )/F
).

Note that emb(F, I, g) is additive, multiplicative, and unity-preserving and
emb(F, I, g) is monomorphic and KroneckerField(F, g, I) is F -monomorphic and
F -homomorphic.

Let m be an ordinal number. The functor KrRoot(I,m) yielding an element
of KroneckerField(F, g, I) is defined by the term

(Def. 12) [Poly(m, 〈0F , 1F 〉)]EqRel(PolyRing(nCP(F ) ,F ),I)
.

Now we state the propositions:

(39) Let us consider a field F , a bijective function g from nCP(F ) into

nCP(F ), a maximal ideal I of (nCP(g, F ))–ideal, and an element a of

F . Then (emb(F, I, g))(a) = [a�(nCP(F ) , F )]
EqRel(PolyRing(nCP(F ) ,F ),I)

.

(40) Let us consider a field F , a bijective function g from nCP(F ) into

nCP(F ), a maximal ideal I of (nCP(g, F ))–ideal, an element p of the car-
rier of PolyRing(F ), and an element n of N. Then (PolyHom(emb(F, I, g)))

(p)(n) = [p(n)�(nCP(F ) , F )]
EqRel(PolyRing(nCP(F ) ,F ),I)

.

The theorem is a consequence of (39).

(41) Let us consider a field F , a bijective function g from nCP(F ) into

nCP(F ), a maximal ideal I of (nCP(g, F ))–ideal, an element p of the car-

rier of PolyRing(F ), and an ordinal number m. Suppose m ∈ nCP(F ).
Then eval((PolyHom(emb(F, I, g)))(p),KrRoot(I,m)) =
[Poly(m, p)]

EqRel(PolyRing(nCP(F ) ,F ),I)
.

(42) Let us consider a field F , a bijective function g from nCP(F ) into
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nCP(F ), a maximal ideal I of (nCP(g, F ))–ideal, and a non constant
element p of the carrier of PolyRing(F ). Then KrRoot(I, g(p)) is a root
of (PolyHom(emb(F, I, g)))(p). The theorem is a consequence of (41).

(43) Let us consider a field F . Then there exists an extension E1 of F such
that for every non constant element p of the carrier of PolyRing(F ), p has
a root in E1. The theorem is a consequence of (42), (39), and (40).
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Summary. This is Erdős’s proof of the divergence of the sum of prime
reciprocals, using the Mizar system [2], [3], as reported in “Proofs from THE
BOOK” [1].
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From now on i, j, k, k0, m, n, N denote natural numbers, x, y denote real
numbers, and p denotes a prime number. Now we state the propositions:

(1) k is not zero if and only if 1 ¬ k.

(2) If x2 ¬ y, then x ¬ √y.

(3) If x2 < y, then x <
√
y.

(4) If 0 ¬ x and 0 ¬ y and x ¬ y2, then
√
x ¬ y.

(5) If 0 ¬ x and 0 ¬ y and x < y2, then
√
x < y.

Let x be a non negative real number. Let us note that the functor bxc yields
a natural number. In the sequel s denotes a sequence of real numbers. Now we
state the propositions:

(6) If for every n, 0 ¬ s(n), then 0 ¬ ((
∑κ
α=0 s(α))κ∈N)(n).

(7) If s is summable and for every n, 0 ¬ s(n), then ((
∑κ
α=0 s(α))κ∈N)(i) ¬∑

s.

(8) If s is summable and for every n, 0 ¬ s(n) and i ¬ j, then
∑

(s ↑ j) ¬∑
(s ↑ i). The theorem is a consequence of (6).

1Work performed while visiting the Czech Institute for Informatics, Robotics and Cyber-
netics.
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(9) If s is summable and for every n, 0 ¬ s(n), then
∑

(s ↑ i) ¬
∑
s. The

theorem is a consequence of (8).

(10) If p < n, then P(p) + 1 ¬ P(n).

(11) n ¬ pr(n).

(12) If p < pr(n+ 1), then p ¬ pr(n). The theorem is a consequence of (10).

From now on N denotes a non zero natural number. Now we state the
proposition:

(13) Main Result The sum of the reciprocals of the primes diver-
ges:
invP is not summable.
Proof: Define P[non zero natural number,natural number,natural num-
ber] ≡ $1 ¬ $3 and for every p such that p | $1 holds p ¬ pr($2). Define
M(natural number,natural number) = {n, where n is a non zero natural
number : P[n, $1, $2]}.

For every k and N , M(k,N) is finite and M(k,N) ⊆ 2pr(k) · b
√
Nc

by (1), (2), [4, (47)]. For every k and N , N · ((
∑κ
α=0(invP)(α))κ∈N)(k) +

(SegN) \M(k,N) ¬ N · ((
∑κ
α=0(invP)(α))κ∈N)(k+N). Consider k being

an element of N such that
∑

(invP ↑k) < 1
2 . Set p = pr(k). For every N ,

N
2 < 2p · b

√
Nc by (8), (7), [5, (3)]. �

Observe that invP is non summable as a sequence of real numbers.
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Summary.We formalize in the Mizar system [3], [4] some basic properties
on left module over a ring such as constructing a module via a ring of endomor-
phism of an abelian group and the set of all homomorphisms of modules form a
module [1] along with Ch. 2 set. 1 of [2].

The formalized items are shown in the below list with notations: Mab for an
Abelian group with a suffix “ab” and M without a suffix is used for left modules
over a ring.

1. The endomorphism ring of an abelian group denoted by End(Mab).

2. A pair of an Abelian group Mab and a ring homomorphism R
ρ→ End(Mab)

determines a left R-module, formalized as a function AbGrLMod(Mab, ρ)
in the article.

3. The set of all functions from M to N form R-module and denoted by
Func ModR(M,N).

4. The set R-module homomorphisms of M to N , denoted by HomR(M,N),
forms R-module.

5. A formal proof of HomR(R̄,M) ∼= M is given, where the R̄ denotes the
regular representation of R, i.e. we regard R itself as a left R-module.

6. A formal proof of AbGrLMod(M ′ab, ρ
′) ∼= M where M ′ab is an abelian

group obtained by removing the scalar multiplication from M , and ρ′ is
obtained by currying the scalar multiplication of M .

The removal of the multiplication from M has been done by the forgettable
functor defined as AbGr in the article.
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Let M , N be Abelian groups. The functor ADD(M,N) yielding a binary
operation on (the carrier of N)(the carrier of M) is defined by

(Def. 1) for every elements f , g of (the carrier of N)α, it(f, g) = (the addition
of N)◦(f, g), where α is the carrier of M .

Now we state the propositions:

(1) Let us consider Abelian groupsM ,N , and elements f , g, h of (the carrier
of N)α. Then h = (ADD(M,N))(f, g) if and only if for every element x
of the carrier of M , h(x) = f(x) + g(x), where α is the carrier of M .

(2) Let us consider Abelian groups M , N , and homomorphisms f , g from
M to N . Then (ADD(M,N))(f, g) is a homomorphism from M to N . The
theorem is a consequence of (1).

Let M be an Abelian group. The functor set End(M) yielding a non empty
subset of (the carrier of M)(the carrier of M) is defined by the term

(Def. 2) {f , where f is a function from M into M : f is an endomorphism of M}.

The functor add End(M) yielding a binary operation on set End(M) is de-
fined by the term

(Def. 3) ADD(M,M)�(set End(M)× set End(M)).

Now we state the proposition:

(3) Let us consider an Abelian group M , and endomorphisms f , g of M .
Then

(i) f , g ∈ (the carrier of M)α, and

(ii) (add End(M))(〈〈f, g〉〉) = (ADD(M,M))(f, g), and

(iii) (ADD(M,M))(f, g) is an endomorphism of M ,

where α is the carrier of M . The theorem is a consequence of (2).

From now on M , N denote Abelian groups. Let M be an Abelian group
and f , g be elements of (the carrier of M)(the carrier of M). Let us note that the
functor g · f yields an element of (the carrier of M)(the carrier of M).

We prepare composition of homomorphisms.
Let M be an Abelian group. The functor FuncComp(M) yielding a binary

operation on (the carrier of M)(the carrier of M) is defined by

(Def. 4) for every elements f , g of (the carrier of M)α, it(f, g) = f · g, where α
is the carrier of M .

(4) Let us consider Abelian groupsM ,N , and elements f , g of (the carrier of
N)α. Then (ADD(M,N))(f, g) = (ADD(M,N))(g, f), where α is the car-
rier of M . The theorem is a consequence of (1).
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(5) Endomorphism of M is closed under Composition:
Let us consider an Abelian group M , and endomorphisms f , g of M . Then
(FuncComp(M))(f, g) is an endomorphism of M .
Proof: Reconsider F = (FuncComp(M))(f, g) as an element of (the carrier
of M)(the carrier of M). F is additive. �

Let M be an Abelian group. The functor mult End(M) yielding a binary
operation on set End(M) is defined by the term

(Def. 5) FuncComp(M)�(set End(M)× set End(M)).

Now we state the proposition:

(6) Let us consider an Abelian group M , and endomorphisms f , g of M .
Then

(i) f , g ∈ (the carrier of M)α, and

(ii) (mult End(M))(〈〈f, g〉〉) = (FuncComp(M))(f, g), and

(iii) (FuncComp(M))(f, g) is an endomorphism of M ,

where α is the carrier of M . The theorem is a consequence of (5).

Let M be an Abelian group. The functors: 0 End(M) and 1 End(M) yielding
elements of set End(M) are defined by terms

(Def. 6) ZeroMap(M,M),

(Def. 7) idM ,

respectively. Let f be an element of set End(M). The functor Inv f yielding
an element of set End(M) is defined by

(Def. 8) for every element x of M , it(x) = f(−x).

Now we state the proposition:

(7) Let us consider an Abelian group M , and an element f of set End(M).
Then (ADD(M,M))(f, Inv f) = ZeroMap(M,M).
Proof: Consider f1 being a function from the carrier of M into the carrier
of M such that f1 = f and f1 is an endomorphism of M . Consider g1 being
a function from the carrier of M into the carrier of M such that g1 = Inv f
and g1 is an endomorphism of M . For every element x of the carrier of M ,
(ADD(M,M))(f1, g1)(x) = (ZeroMap(M,M))(x). �

We define the Ring of Endomorphism of M as a structure.
Let M be an Abelian group. The functor End Ring(M) yielding a strict,

non empty double loop structure is defined by the term

(Def. 9) 〈set End(M), add End(M),mult End(M), 1 End(M), 0 End(M)〉.
Now we state the proposition:

(8) The structure of End-Ring(M) turns to be a Ring:
Let us consider an Abelian group M . Then End Ring(M) is a ring.
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Let M be an Abelian group. One can verify that End Ring(M) is Abelian,
add-associative, right zeroed, right complementable, associative, well unital, and
distributive and End Ring(M) is strict.

In the sequel R denotes a ring and r denotes an element of R.
Let us consider R. Let M , N be left modules over R.
A homomorphism from M to N by R is a function from M into N defined

by

(Def. 10) it is additive and homogeneous.

Now we state the proposition:

(9) Let us consider left modules M , N over R, and a homomorphism f from
M to N by R. Suppose f is one-to-one and onto. Then f−1 is a homo-
morphism from N to M by R.
Proof: Reconsider g = f−1 as a function from N into M . For every
elements a, b of the carrier of N , g(a+ b) = g(a) + g(b). For every element
r of R and for every element a of the carrier of N , g(r · a) = r · g(a). �

Let us consider R. Let M , N be left modules over R. We say that M ∼= N

if and only if

(Def. 11) there exists a homomorphism f from M to N by R such that f is one-
to-one and onto.

Let M be a left module over R.
An endomorphism of R and M is a homomorphism from M to M by R.

Now we state the propositions:

(10) Let us consider a left module M over R. Then M ∼= M .

(11) Let us consider left modules M , N over R. If M ∼= N , then N ∼= M .
The theorem is a consequence of (9).

Let us consider R. Let M , N be left modules over R. Observe that the
predicate M ∼= N is reflexive and symmetric. Now we state the propositions:

(12) Let us consider left modules L, M , N over R. If L ∼= M and M ∼= N ,
then L ∼= N .
Proof: Consider f being a homomorphism from L to M by R such that
f is one-to-one and onto. Consider g being a homomorphism from M to N
by R such that g is one-to-one and onto. Reconsider G = g ·f as a function
from L into N . For every elements x, y of L, G(x+ y) = G(x) +G(y). For
every element x of L and for every element a of R, G(a · x) = a ·G(x). �

(13) Let us consider left modules M , N over R, and a homomorphism f from
M to N by R. Then f is one-to-one if and only if ker f = {0M}.
Proof: If f is one-to-one, then ker f = {0M}. For every objects x1, x2

such that x1, x2 ∈ dom f and f(x1) = f(x2) holds x1 = x2. �
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Let us consider R. Let M be an Abelian group and s be a function from
R into End Ring(M). The functor LModlmult(M, s) yielding a function from
(the carrier of R)× (the carrier of M) into the carrier of M is defined by

(Def. 12) for every element x of the carrier of R and for every element y of the car-
rier of M , there exists an endomorphism h of M such that h = s(x) and
it(x, y) = h(y).

The functor AbGrLMod(M, s) yielding a strict, non empty vector space
structure over R is defined by the term

(Def. 13) 〈the carrier of M, the addition of M, 0M ,LModlmult(M, s)〉.
Now we state the proposition:

(14) Let us consider an Abelian group M , and a function s from R into
End Ring(M). Suppose s inherits ring homomorphism.
Then AbGrLMod(M, s) is a left module over R.
Proof: AbGrLMod(M, s) is Abelian. AbGrLMod(M, s) is add-associative.
AbGrLMod(M, s) is right zeroed. AbGrLMod(M, s) is right complemen-
table. AbGrLMod(M, s) is scalar unital. �

The set of all functions from R-module M into R-module N form R-module.
In the sequel M , N denote left modules over R.
Let us consider R, M , and N . The functor 0 Funcs(M,N) yielding an ele-

ment of (the carrier of N)(the carrier of M) is defined by the term

(Def. 14) ZeroMap(M,N).

The functor ADD(M,N) yielding a binary operation on (the carrier of
N)(the carrier of M) is defined by

(Def. 15) for every elements f , g of (the carrier of N)α, it(f, g) = (the addition
of N)◦(f, g), where α is the carrier of M .

From now on f , g, h denote elements of (the carrier of N)(the carrier of M).
Now we state the proposition:

(15) h = (ADD(M,N))(f, g) if and only if for every element x of the carrier
of M , h(x) = f(x) + g(x).

Let us consider R, M , and N . Let F be a function from (the carrier of R)×
(the carrier of N) into the carrier of N , a be an element of the carrier of R,
and f be a function from M into N . Observe that the functor F ◦(a, f) yields
an element of (the carrier of N)(the carrier of M). The functor LMULT(M,N) yiel-
ding a function from (the carrier of R) × (the carrier of N)(the carrier of M) into
(the carrier of N)(the carrier of M) is defined by

(Def. 16) for every element a of the carrier of R and for every element f of
(the carrier of N)α and for every element x of the carrier of M , it(〈〈a,
f〉〉)(x) = a · f(x), where α is the carrier of M .
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The functor Func Mod(R,M,N) yielding a non empty vector space structure
over R is defined by the term

(Def. 17) 〈(the carrier ofN)α,ADD(M,N), 0 Funcs(M,N),LMULT(M,N)〉, whe-
re α is the carrier of M .

Now we state the proposition:

(16) Let us consider an element a of the carrier of R, and elements f , h of
(the carrier of N)α. Then h = (LMULT(M,N))(〈〈a, f〉〉) if and only if for
every element x of M , h(x) = a · f(x), where α is the carrier of M .

In the sequel a, b denote elements of the carrier of R.
Let us consider R, M , and N . Note that Func Mod(R,M,N) is Abelian,

add-associative, right zeroed, right complementable, vector distributive, scalar
distributive, scalar associative, and scalar unital. Now we state the proposition:

(17) Func Mod(R,M,N) is a left module over R.

From now on R denotes a commutative ring and M , M1, N , N1 denote left
modules over R. Now we state the proposition:

(18) Hom(M,N) the set of all R homomorphisms form left R-
Module:
Let us consider homomorphisms f , g from M to N by R.
Then (ADD(M,N))(f, g) is a homomorphism from M to N by R. The
theorem is a consequence of (15).

Let us consider R, M1, M , and N . Let f be an element of (the carrier of
M)(the carrier of M1) and g be an element of (the carrier of N)(the carrier of M).
Let us observe that the functor g · f yields an element of (the carrier of
N)(the carrier of M1). Now we state the propositions:

(19) Let us consider left modules M , N , M1 over R, a homomorphism f from
M to N by R, and a homomorphism u from M1 to M by R. Then f · u is
a homomorphism from M1 to N by R.
Proof: For every elements x1, y1 of the carrier ofM1 and for every element
a of R, (f · u)(x1 + y1) = (f · u)(x1) + (f · u)(y1) and a · (f · u)(x1) =
a · (f · u)(x1). For every element x1 of the carrier of M1 and for every
element a of R, (f · u)(a · x1) = a · (f · u)(x1). �

(20) Let us consider an element a of the carrier of R, and a homomorphism
g from M to N by R. Then (LMULT(M,N))(〈〈a, g〉〉) is a homomorphism
from M to N by R.

Let us consider R, M , and N . The functor set Hom(M,N) yielding a non
empty subset of (the carrier of N)(the carrier of M) is defined by the term

(Def. 18) {f , where f is a function from M into N : f is a homomorphism from
M to N by R}.
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The functor add Hom(M,N) yielding a binary operation on set Hom(M,N)
is defined by the term

(Def. 19) ADD(M,N)�(set Hom(M,N)× set Hom(M,N)).

Let F be a function from (the carrier ofR)×(the carrier ofN) into the carrier
of N , a be an element of the carrier of R, and f be a function from M into
N . One can verify that the functor F ◦(a, f) yields an element of (the carrier
of N)(the carrier of M). The functor lmult Hom(M,N) yielding a function from
(the carrier of R)× set Hom(M,N) into set Hom(M,N) is defined by the term

(Def. 20) LMULT(M,N)�((the carrier of R)× set Hom(M,N)).

The functor 0 Hom(M,N) yielding an element of set Hom(M,N) is defined
by the term

(Def. 21) ZeroMap(M,N).

The functor Hom(R,M,N) yielding a non empty vector space structure over
R is defined by the term

(Def. 22) 〈set Hom(M,N), add Hom(M,N), 0 Hom(M,N), lmult Hom(M,N)〉.
Let us note that Hom(R,M,N) is non empty. Now we state the propositions:

(21) Let us consider homomorphisms f , g from M to N by R. Then

(i) f , g ∈ (the carrier of N)α, and

(ii) (add Hom(M,N))(〈〈f, g〉〉) = (ADD(M,N))(f, g), and

(iii) (ADD(M,N))(f, g) is a homomorphism from M to N by R,

where α is the carrier of M . The theorem is a consequence of (18).

(22) Let us consider an element a of the carrier of R, and a homomorphism
f from M to N by R. Then

(i) (lmult Hom(M,N))(〈〈a, f〉〉) = (LMULT(M,N))(〈〈a, f〉〉), and

(ii) (LMULT(M,N))(〈〈a, f〉〉) is a homomorphism from M to N by R.

The theorem is a consequence of (20).

(23) Let us consider elements f1, g1 of Func Mod(R,M,N), and elements f ,
g of Hom(R,M,N). If f1 = f and g1 = g, then f + g = f1 + g1. The
theorem is a consequence of (21).

(24) Hom(R,M,N) is a left module over R. The theorem is a consequence of
(23).

Let us consider R, M , and N . Note that Hom(R,M,N) is Abelian, add-
associative, right zeroed, right complementable, vector distributive, scalar di-
stributive, scalar associative, and scalar unital.

Let us consider M1. Let u be a homomorphism from M1 to M by R. The
functor τ(N, u) yielding a function from Hom(R,M,N) into Hom(R,M1, N) is
defined by
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(Def. 23) for every element f of Hom(R,M,N), there exists a homomorphism f1

from M to N by R such that f = f1 and it(f) = f1 · u.

Let us note that τ(N, u) is additive and homogeneous. Now we state the
proposition:

(25) Let us consider a homomorphism u from M1 to M by R. Then τ(N, u)
is a homomorphism from Hom(R,M,N) to Hom(R,M1, N) by R.

Let us consider R, M , N , and N1. Let u be a homomorphism from N to
N1 by R. The functor φ(M,u) yielding a function from Hom(R,M,N) into
Hom(R,M,N1) is defined by

(Def. 24) for every element f of Hom(R,M,N), there exists a homomorphism f1

from M to N by R such that f = f1 and it(f) = u · f1.

Let us observe that φ(M,u) is additive and homogeneous. Now we state the
propositions:

(26) Let us consider a homomorphism u from N to N1 by R. Then φ(M,u)
is a homomorphism from Hom(R,M,N) to Hom(R,M,N1) by R.

(27) Hom(R,LeftMod(R),M) ∼= M .
Proof: Reconsider R1 = LeftMod(R) as a left module over R. Recon-
sider m1 = 1R as an element of R1. Define F(element of (the carrier of
M)(the carrier of R1)) = $1(m1). ConsiderG being a function from (the carri-
er ofM)(the carrier of R1) intoM such that For every element x of (the carrier
of M)α, G(x) = F(x), where α is the carrier of R1. For every elements f ,
g of (the carrier of M)α, G((ADD(R1,M))(f, g)) = G(f) +G(g), where α
is the carrier of R1.

For every element f of (the carrier of M)α and for every element a of
R, G((LMULT(R1,M))(〈〈a, f〉〉)) = a ·G(f), where α is the carrier of R1.
Set c = the carrier of Hom(R,R1,M). Set G1 = G�c. For every object
y such that y ∈ rngG1 holds y ∈ the carrier of M . For every elements
f , g of Hom(R,R1,M), G1(f + g) = G1(f) + G1(g). For every element
f of Hom(R,R1,M) and for every element a of R, G1(a · f) = a · G1(f).
kerG1 = {0Hom(R,R1,M)}. For every object y such that y ∈ the carrier of
M holds y ∈ rngG1. �

Correspondence between Abelian Group (AbGr) and left R-module.
Let us consider R and M . The functor AbGr(M) yielding a non empty, strict

Abelian group is defined by the term

(Def. 25) 〈the carrier of M, the addition of M, 0M 〉.
Let us consider N . Let f be a homomorphism from M to N by R. The

functor AbGr(f) yielding a function from AbGr(M) into AbGr(N) is defined
by
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(Def. 26) for every object x such that x ∈ the carrier of AbGr(M) holds it(x) =
f(x).

Now we state the proposition:

(28) Let us consider a homomorphism f from M to N by R. Then AbGr(f)
is a homomorphism from AbGr(M) to AbGr(N).

Let us consider endomorphisms f , g, h of R and M . Now we state the
propositions:

(29) AbGr(h) = (FuncComp(AbGr(M)))(AbGr(f),AbGr(g)) if and only if
for every element x of the carrier of AbGr(M), (AbGr(h))(x) = ((AbGr(f))·
(AbGr(g)))(x).

(30) If h = f · g, then AbGr(h) = (AbGr(f)) · (AbGr(g)).
Proof: For every element x of the carrier of AbGr(M), (AbGr(h))(x) =
((AbGr(f)) · (AbGr(g)))(x). �

(31) AbGr(h) = (ADD(AbGr(M),AbGr(M)))(AbGr(f),AbGr(g)) if and on-
ly if for every element x of the carrier of AbGr(M), (AbGr(h))(x) =
(AbGr(f))(x) + (AbGr(g))(x).
Proof: If AbGr(h) = (ADD(AbGr(M),AbGr(M)))(AbGr(f),AbGr(g)),
then for every element x of the carrier of AbGr(M), (AbGr(h))(x) =
(AbGr(f))(x) + (AbGr(g))(x). AbGr(h) = (ADD(AbGr(M),AbGr(M)))
(AbGr(f),AbGr(g)). �

(32) If h = (ADD(M,M))(f, g), then AbGr(h) =
(ADD(AbGr(M),AbGr(M)))(AbGr(f),AbGr(g)). The theorem is a con-
sequence of (15) and (31).

(33) Let us consider a ring R, a left module M over R, an element a of R, and
an element m of M . Then (curry(the left multiplication of M))(a)(m) =
a ·m.

(34) Let us consider a commutative ring R, a left module M over R, and
an element a of R. Then (curry(the left multiplication of M))(a) is an en-
domorphism of R and M .
Proof: Set f = (curry(the left multiplication of M))(a). For every ele-
ments m1, m2 of M , f(m1 + m2) = f(m1) + f(m2). For every element b
of R and for every element m of M , f(b ·m) = b · f(m). �

(35) Let us consider endomorphisms f , g, h of R and M . Suppose h = f · g.
Then AbGr(h) = (FuncComp(AbGr(M)))(AbGr(f),AbGr(g)). The the-
orem is a consequence of (30) and (29).

Let R be a commutative ring and M be a left module over R. The cano-
nical homomorphism of M into quotient field yielding a function from R into
End Ring(AbGr(M)) is defined by
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(Def. 27) for every object x such that x ∈ the carrier of R there exists an endo-
morphism f of R and M such that f = (curry(the left multiplication of
M))(x) and it(x) = AbGr(f).

Observe that the canonical homomorphism of M into quotient field is addi-
tive. Now we state the proposition:

(36) Let us consider a commutative ring R, a left module M over R, and
an element a of R. Then (the canonical homomorphism of M into quotient
field)(a) is a homomorphism from AbGr(M) to AbGr(M).

Let R be a commutative ring and M be a left module over R. One can
verify that the canonical homomorphism of M into quotient field is linear and
AbGrLMod(AbGr(M), the canonical homomorphism of M into quotient field) is
non empty, Abelian, add-associative, right zeroed, right complementable, vector
distributive, scalar distributive, scalar associative, and scalar unital.

Now we state the propositions:

(37) Let us consider a commutative ring R, and a left module M over R. Then
LModlmult(AbGr(M), the canonical homomorphism of M into quotient
field) = the left multiplication of M .
Proof: Set F = LModlmult(AbGr(M), the canonical homomorphism of
M into quotient field). For every object z such that z ∈ (the carrier of
R)× (the carrier of M) holds F (z) = (the left multiplication of M)(z). �

(38) Let us consider a commutative ring R, and a strict left module M over
R. Then AbGrLMod(AbGr(M), the canonical homomorphism of M into
quotient field) = M .
Proof: AbGrLMod(AbGr(M), the canonical homomorphism of M into
quotient field) is a submodule of M . �

Let R be a commutative ring and M be a left module over R. The functor
ρ(M) yielding a function from M into AbGrLMod(AbGr(M), the canonical
homomorphism of M into quotient field) is defined by the term

(Def. 28) idM .

Now we state the proposition:

(39) Let us consider a commutative ring R, and a left module M over R.
Then ρ(M) is additive and homogeneous.
Proof: For every element x of the carrier of M and for every element a
of R, ρ(M)(a · x) = a · ρ(M)(x) by [5, (7)]. �

Let R be a commutative ring and M be a left module over R. Observe that
ρ(M) is additive and homogeneous.

Let us consider a commutative ring R and a left module M over R. Now we
state the propositions:
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(40) ρ(M) is one-to-one and onto.

(41) M ∼= AbGrLMod(AbGr(M), the canonical homomorphism of M into
quotient field). The theorem is a consequence of (40).
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1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i
denotes an integer, r denotes a real number, and p denotes a prime number.

Let p be a prime number. One can verify that 1 mod p reduces to 1.
Let us consider n. One can verify that εN mod n reduces to εN and εZ mod n

reduces to εZ. Now we state the proposition:

(1) Let us consider a non empty, natural-membered set X. Suppose for every
a such that a ∈ X there exists b such that b > a and b ∈ X. Then X is
infinite.

Let us note that Neven is infinite and Nodd is infinite and every element of
Neven is even and every element of Nodd is odd. Now we state the propositions:

(2) n mod (k + 1) = 0 or ... or n mod (k + 1) = k.

(3) Let us consider integers a, b, c. If a · b | c, then a | c and b | c.
(4) Let us consider integers a, b, m. If a ≡ b (modm), then m - a or m | b.
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(5) If k is odd, then (−1)k ≡ −1 (modn).

(6) Let us consider integers a, b. Suppose k 6= 0 and a ≡ b (modnk). Then
a ≡ b (modn).

(7) 24·n ≡ 1 (mod 5).
Proof: Define P[natural number] ≡ 24·$1 ≡ 1 (mod 5). P[0]. For every k
such that P[k] holds P[k + 1]. P[k]. �

(8) 212·n ≡ 1 (mod 13).
Proof: Define P[natural number] ≡ 212·$1 ≡ 1 (mod 13). P[0]. For every
k such that P[k] holds P[k + 1]. P[k]. �

(9) 〈i〉 mod n = 〈i mod n〉.
(10) If n 6= 0, then for every integer-valued finite sequence f ,

∑
f ≡
∑

(f mod
n) (modn).
Proof: Define P[finite sequence of elements of Z] ≡

∑
$1 ≡

∑
($1 mod

n) (modn). For every finite sequence p of elements of Z and for every
element x of Z such that P[p] holds P[p a 〈x〉]. For every finite sequence
p of elements of Z, P[p]. �

(11) If (a 6= 0 or b 6= 0) and c 6= 0 and a, b, c are mutually coprime, then a · b
and c are relatively prime.

(12) If (a 6= 0 or b 6= 0) and c 6= 0 and a, b, c are mutually coprime and a | n
and b | n and c | n, then a · b · c | n.

(13) If k is odd, then an + 1 | an·k + 1.

(14) Let us consider an even natural number n. Suppose n | 2n + 2. Then
there exists a non zero, odd natural number k such that 2n + 2 = n · k.

2. Main Problems

Now we state the propositions:

(15) Let us consider an even natural number n. Suppose n | 2n + 2 and
n− 1 | 2n + 1. Let us consider a natural number n1. If n1 = 2n + 2, then
n1−1 | 2n1 + 1 and n1 | 2n1 + 2. The theorem is a consequence of (14) and
(13).

(16) {n, where n is a non zero, even natural number : n | 2n + 2 and n− 1 |
2n + 1} is infinite.
Proof: Set X = {n, where n is a non zero, even natural number : n |
2n + 2 and n− 1 | 2n + 1}. X is natural-membered. For every a such that
a ∈ X there exists b such that b > a and b ∈ X. �

Let i be an integer. We say that i is double odd if and only if

(Def. 1) there exists an odd integer j such that i = 2 · j.
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Let i be a natural number. Let us observe that i is double odd if and only if
the condition (Def. 2) is satisfied.

(Def. 2) there exists an odd natural number j such that i = 2 · j.
Note that there exists an integer which is double odd and every integer which

is double odd is also even. Let i be an odd integer. Observe that i2 + 1 is double
odd and i2 + 1 is double odd.

Let r be a complex number and n be a natural number. The functor OddEven -
Powers(r, n) yielding a complex-valued finite sequence is defined by

(Def. 3) len it = n and for every natural number i such that 1 ¬ i ¬ n for every
natural number m such that m = n − i holds if i is odd, then it(i) = rm

and if i is even, then it(i) = −rm.

Let r be a real number. Let us observe that OddEvenPowers(r, n) is real-
valued. Let r be an integer. Let us observe that OddEvenPowers(r, n) is Z-
valued. Let us consider a complex number r. Now we state the propositions:

(17) OddEvenPowers(r, 1) = 〈1〉.
(18)

∑
OddEvenPowers(r, 1) = 1. The theorem is a consequence of (17).

(19) OddEvenPowers(r, 2·(k+1)+1) = 〈r2·k+2,−r2·k+1〉aOddEvenPowers(r, 2·
k + 1).
Proof: Set n = 2·(k+1)+1. SetN = 2·k+1. Set f = OddEvenPowers(r, n).
Set p = 〈r2·k+2,−r2·k+1〉. Set q = OddEvenPowers(r,N). For every natu-
ral number x such that x ∈ dom p holds f(x) = p(x). For every natural
number x such that x ∈ dom q holds f(len p+ x) = q(x). �

(20)
∑

OddEvenPowers(r, 2·k+3) = r2·k+2−r2·k+1+
∑

OddEvenPowers(r, 2·
k + 1). The theorem is a consequence of (19).

(21) r2·n+1 + 1 = (r + 1) · (
∑

OddEvenPowers(r, 2 · n+ 1)).
Proof: Define P[natural number] ≡ r2·$1+1+1 = (r+1)·(

∑
OddEvenPo -

wers(r, 2 · $1 + 1)). P[0]. If P[k], then P[k + 1]. P[k]. �

Let us consider an odd prime number p. Now we state the propositions:

(22) If pk+1 | apk + 1, then pk+2 | apk+1 + 1.
Proof: Set b = ap

k
. b ≡ −1 (mod p). For every natural number L,

b2·L ≡ 1 (mod p). For every natural number L, b2·L+1 ≡ −1 (mod p) by [1,
(34)]. Reconsider F = OddEvenPowers(b, p) as a Z-valued finite sequence.
Reconsider M = F mod p as a Z-valued finite sequence. For every natural
number x such that 1 ¬ x ¬ lenF holds M(x) = 1. Set P = p 7→ 1. For
every k such that k ∈ domP holds M(k) = P (k).

∑
F ≡

∑
M (mod p).

�

(23) If p | a+ 1, then pk+1 | apk + 1 and pk | apk + 1.
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Proof: Define P[natural number] ≡ p$1+1 | ap$1 + 1. For every natural
number x such that P[x] holds P[x+1]. For every natural number x, P[x].
�

(24) Let us consider an odd natural number a. Suppose a > 1. Let us consider
a natural number s. Suppose s is double odd and as+ 1 is double odd and
s | as + 1. Then

(i) as + 1 > s, and

(ii) as + 1 is double odd, and

(iii) aa
s+1 + 1 is double odd, and

(iv) as + 1 | aas+1 + 1.

(25) Let us consider a natural number a. If a > 1, then {n, where n is a natural
number : n | an + 1} is infinite. The theorem is a consequence of (24) and
(1).

(26) {n, where n is a natural number : n | 2n + 2} is infinite. The theorem is
a consequence of (16).

(27) {n, where n is a natural number : 5 | 2n − 3} is infinite.
Proof: Set A = {n, where n is a natural number : 5 | 2n − 3}. Define
F(natural number) = 4 · $1 + 3. Consider f being a many sorted set
indexed by N such that for every element d of N, f(d) = F(d). rng f ⊆ A.
f is one-to-one. �

(28) {n, where n is a natural number : 13 | 2n − 3} is infinite.
Proof: Set A = {n, where n is a natural number : 13 | 2n − 3}. Define
F(natural number) = 12 · $1 + 4. Consider f being a many sorted set
indexed by N such that for every element d of N, f(d) = F(d). rng f ⊆ A.
f is one-to-one. �

(29) 2n+12 ≡ 2n (mod 65).

(30) 2n ≡ 2nmod 12 (mod 65).
Proof: Define P[natural number] ≡ 2$1 ≡ 2$1mod 12 (mod 65). If P[k],
then P[k + 1] by [7, (11)], [4, (4)]. P[k]. �

(31) 65 - 2n − 3. The theorem is a consequence of (30) and (2).

(32) 341 is composite.

(33) 561 is composite.

(34) 645 is composite.

(35) 1105 is composite.

(36) 341 | 2341 − 2.

(37) 3 | 2561 − 2.

(38) 11 | 2561 − 2.
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(39) 17 | 2561 − 2.

(40) 561 | 2561−2. The theorem is a consequence of (37), (38), (39), and (12).

(41) 3 | 2645 − 2.

(42) 5 | 2645 − 2.

(43) 43 | 2645 − 2.

(44) 645 | 2645−2. The theorem is a consequence of (41), (42), (43), and (12).

(45) 5 | 21105 − 2.

(46) 13 | 21105 − 2.

(47) 17 | 21105 − 2.

(48) 1105 | 21105 − 2. The theorem is a consequence of (45), (46), (47), and
(12).

(49) Let us consider a composite natural number n. If n ¬ 1105 and n | 2n−2,
then n ∈ {341, 561, 645, 1105}.

(50) 341 - 3341 − 3. The theorem is a consequence of (4) and (3).

(51) 3 | 3561 − 3.

(52) 11 | 3561 − 3.

(53) 17 | 3561 − 3.

(54) 561 | 3561−3. The theorem is a consequence of (51), (52), (53), and (12).

Now we state the propositions:

(55) 43 - 3645 − 3.

(56) 645 - 3645 − 3. The theorem is a consequence of (55).

Now we state the propositions:

(57) 5 | 31105 − 3.

(58) 13 | 31105 − 3.

(59) 17 | 31105 − 3.

(60) 1105 | 31105 − 3. The theorem is a consequence of (57), (58), (59), and
(12).

(61) If n ¬ 1105 and n is composite and n | 2n − 2 and n | 3n − 3, then
n ∈ {561, 1105}. The theorem is a consequence of (49), (50), and (56).

(62) If n | 2n − 2 and n - 3n − 3, then n is composite.

(63) If n ¬ 341 and n | 2n − 2 and n - 3n − 3, then n = 341. The theorem is
a consequence of (62) and (49).

(64) If m and n are relatively prime, then a ·n+m and n are relatively prime.

(65) 7 | 106·k+4 + 3. The theorem is a consequence of (64).

(66) 106·k+4 + 3 is composite. The theorem is a consequence of (65).
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(67) {10n + 3, where n is a natural number : 10n + 3 is composite} is infinite.
Proof: Set X = {10n+3, where n is a natural number : 10n+3 is compo-
site}. Set z = 106·0+4 + 3. z is composite. X is natural-membered. For
every a such that a ∈ X there exists b such that b > a and b ∈ X by [5,
(66)]. �
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1. Problem 12

Now we state the proposition:

(1) Let us consider natural numbers n, k. If n ↑↑ k = 0, then n = 0.

Let x be an odd natural number and i be a natural number. Let us note
that x ↑↑ i is odd.

Let x be a non zero, even natural number and i be a non zero natural
number. One can verify that x ↑↑ i is even. Now we state the proposition:

(2) Let us consider a non zero natural number n. Then there exists a non zero
natural number x such that for every natural number i, n | x ↑↑(i+ 1) + 1.

1The Mizar processing has been performed using the infrastructure of the University of
Bialystok High Performance Computing Center.
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2. Problem 13

Now we state the proposition:

(3) Let us consider natural numbers n, k. Suppose n = 4 · k+ 3. Then there
exist natural numbers p, q such that

(i) p = 4 · q + 3, and

(ii) p is prime, and

(iii) p | n.

Proof: Define P[natural number] ≡ if there exists a natural number k
such that $1 = 4 · k + 3, then there exist natural numbers p, q such that
p = 4 · q + 3 and p is prime and p | $1. For every natural number m such
that for every natural number l such that l < m holds P[l] holds P[m] by
[3, (28)], [6, (29)]. For every natural number n, P[n]. Consider p, q being
natural numbers such that p = 4 · q + 3 and p is prime and p | n. �

The functor 4k + 3 Primes yielding a subset of N is defined by

(Def. 1) for every natural number n, n ∈ it iff there exists a natural number k
such that n = 4 · k + 3 and n is prime.

Now we state the proposition:

(4) Let us consider a natural number n. If n ∈ 4k + 3 Primes, then n ­ 3.

Let us observe that 4k + 3 Primes is infinite. Now we state the proposition:

(5) Let us consider a natural number n. Suppose n ∈ 4k + 3 Primes. Let
us consider an even natural number x, and a natural number i. Then
n - x ↑↑(i+ 2) + 1. The theorem is a consequence of (4).

3. Problem 31

Now we state the propositions:

(6) Let us consider an integer a. If 3 - a, then a3 mod 9 = 1 or a3 mod 9 = 8.

(7) Let us consider integers a, b, c. If 9 | a3 + b3 + c3, then 3 | a or 3 | b or
3 | c. The theorem is a consequence of (6).

4. Problem 32

Now we state the propositions:

(8) Let us consider integers a, b, c, n. Then a+ b+ c mod n = (a mod n) +
(b mod n) + (c mod n) mod n.
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(9) Let us consider integers a, b, c, d, n. Then a + b + c + d mod n =
(a mod n) + (b mod n) + (c mod n) + (d mod n) mod n. The theorem is
a consequence of (8).

(10) Let us consider integers a, b, c, d, e, n. Then a+ b+ c+ d+ e mod n =
(a mod n) + (b mod n) + (c mod n) + (d mod n) + (e mod n) mod n. The
theorem is a consequence of (9).

(11) Let us consider integers a1, a2, a3, a4, a5. Suppose 9 | a1
3 + a2

3 + a3
3 +

a4
3 + a5

3. Then 3 | a1 · a2 · a3 · a4 · a5. The theorem is a consequence of (6)
and (10).

5. Problem 33

From now on a, b, c, k, m, n denote natural numbers and p denotes a prime
number. Now we state the propositions:

(12) n mod (k + 1) = 0 or ... or n mod (k + 1) = k.

(13) Let us consider natural numbers x, y, z. If x and y are relatively prime
and x2 + y2 = z4, then 7 | x · y.

(14) (i) 15 and 20 are not relatively prime, and

(ii) 152 + 202 = 54, and

(iii) 7 - 15 · 20.

6. Problem 35

Let x, y be natural numbers. We say that x and y satisfy Sierpiński Problem
35 if and only if

(Def. 2) x ·(x+1) | y ·(y+1) and x - y and x+1 - y and x - y+1 and x+1 - y+1.

Now we state the propositions:

(15) Let us consider natural numbers x, y. Suppose x = 36 · k + 14 and
y = (12 · k + 5) · (18 · k + 7). Then x and y satisfy Sierpiński Problem 35.

(16) {〈〈x, y〉〉, where x, y are natural numbers : x and y satisfy Sierpiński
Problem 35} is infinite.
Proof: Set A = {〈〈x, y〉〉, where x, y are natural numbers : x and y satisfy
Sierpiński Problem 35}. Define F(natural number) = 〈〈36 · $1 + 14, (12 ·
$1 +5)·(18·$1 +7)〉〉. Consider f being a many sorted set indexed by N such
that for every element d of N, f(d) = F(d). rng f ⊆ A. f is one-to-one. �

(17) 14 and 35 satisfy Sierpiński Problem 35.
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(18) There exist no natural numbers x, y such that x < 14 and y < 35 and x
and y satisfy Sierpiński Problem 35.

7. Problem 40

Now we state the propositions:

(19) If a | b, then na − 1 | nb − 1.

(20) 22n + 1 | 222
n

+1 − 2. The theorem is a consequence of (19).

8. Problem 47

Now we state the propositions:

(21) If n | 4, then n = 1 or n = 2 or n = 4.

(22) If n > 6, then there exist natural numbers a, b such that a > 1 and
b > 1 and n = a + b and a and b are relatively prime. The theorem is
a consequence of (21).

9. Problem 76

Let n be a natural number. We say that n satisfies Sierpiński Problem 76a
if and only if

(Def. 3) for every natural number x such that n < x < n + 10 holds x is not
prime.

Let m be a natural number. We say that m satisfies Sierpiński Problem 76b
if and only if

(Def. 4) for every natural number x such that 10 ·m < x < 10 · (m+ 1) holds x
is not prime.

Now we state the propositions:

(23) 113 satisfies Sierpiński Problem 76a.

(24) 114 satisfies Sierpiński Problem 76a.

(25) 115 satisfies Sierpiński Problem 76a.

(26) 116 satisfies Sierpiński Problem 76a.

(27) 117 satisfies Sierpiński Problem 76a.

(28) 139 satisfies Sierpiński Problem 76a.

(29) 181 satisfies Sierpiński Problem 76a.
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(30) If n satisfies Sierpiński Problem 76a and n ¬ 181,
then n ∈ {113, 114, 115, 116, 117, 139, 181}.

(31) 20 satisfies Sierpiński Problem 76b.

(32) 32 satisfies Sierpiński Problem 76b.

(33) 51 satisfies Sierpiński Problem 76b.

(34) 53 satisfies Sierpiński Problem 76b.

(35) 62 satisfies Sierpiński Problem 76b.

(36) If m satisfies Sierpiński Problem 76b and m ¬ 62,
then m ∈ {20, 32, 51, 53, 62}.

10. Problem 79

Now we state the propositions:

(37) If c 6= 0 and c < b, then a·b+c
b is not integer.

(38) There exist no positive natural numbers m, n such that m2 − n2 = 1.

(39) There exist no positive natural numbers m, n such that m2 − n2 = 4.
The theorem is a consequence of (38).

(40) (2 · n+ 1)2 mod 8 = 1.
Proof: Define P[natural number] ≡ (2 · $1 + 1)2 mod 8 = 1. If P[k], then
P[k + 1]. P[k]. �

(41) If n is odd, then n2 mod 8 = 1. The theorem is a consequence of (40).

(42) Let us consider prime numbers q, s, t. Suppose q2 = s2 + t2. Then

(i) s is even and t is odd, or

(ii) s is odd and t is even.

The theorem is a consequence of (39).

(43) There exist no prime numbers q, s, t such that q2 = s2+t2. The theorem
is a consequence of (42) and (39).

(44) Let us consider prime numbers p, q, r, s, t. Suppose p2+q2 = r2+s2+t2.
Then

(i) p is even, or

(ii) q is even, or

(iii) r is even, or

(iv) s is even, or

(v) t is even.

(45) There exist no prime numbers p, q, r, s, t such that p2+q2 = r2+s2+t2.
The theorem is a consequence of (43) and (41).
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1. Preliminaries

Now we state the proposition:

(1) Let us consider a prime number p. If 3 | p, then p = 3.

Note that there exists a prime number which is even.
Now we state the propositions:

(2) Let us consider an even prime number p. Then p = 2.

(3) Let us consider prime numbers p, q. If p 6= q, then p and q are relatively
prime.

Let f be an integer-valued function. We say that f is with all coprime terms
if and only if
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(Def. 1) for every natural numbers i, j such that i, j ∈ dom f and i 6= j holds
f(i) and f(j) are relatively prime.

Now we state the proposition:

(4) Let us consider a sequence f of R, and a natural number n. Then f�n
is a finite 0-sequence.

2. Arithmetic Progressions

Let f be a real-valued function. We say that f is AP-like if and only if

(Def. 2) for every natural numbers i, k such that i, i+ 1, k, k+ 1 ∈ dom f holds
f(i+ 1)− f(i) = f(k + 1)− f(k).

Let f be a real-valued finite sequence. We say that f is finite arithmetic
progression-like if and only if

(Def. 3) for every natural number i such that i, i + 1, i + 2 ∈ dom f holds
f(i+ 2)− f(i+ 1) = f(i+ 1)− f(i).

One can check that every real-valued finite sequence which is constant is also
finite arithmetic progression-like and every sequence of R which is constant is
also AP-like and idN is AP-like and idR is AP-like and there exists a sequence of
R which is AP-like and there exists a real-valued function which is AP-like and
there exists an integer-valued, real-valued finite 0-sequence which is AP-like.

Let f be an AP-like, real-valued function and n be a natural number. Let
us note that f�n is AP-like.

An arithmetic progression is an AP-like sequence of R. Let a, r be real
numbers. The functor ArProg(a, r) yielding a sequence of R is defined by

(Def. 4) it(0) = a and for every natural number i, it(i+ 1) = it(i) + r.

Let us observe that ArProg(a, r) is AP-like. Now we state the proposition:

(5) Let us consider an arithmetic progression f , and a natural number i.
Then f(i+ 1)− f(i) = f(1)− f(0).

Let f be an arithmetic progression. The functor difference(f) yielding a real
number is defined by the term

(Def. 5) f(1)− f(0).

Now we state the propositions:

(6) Let us consider an arithmetic progression f .
Then f = ArProg(f(0),difference(f)).
Proof: Set a = f(0). Set r = f(1) − f(0). Define P[natural number] ≡
f($1) = (ArProg(a, r))($1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number n, P[n]. �



Elementary number theory problems. Part VI 237

(7) Let us consider real numbers a, r, and a natural number i.
Then (ArProg(a, r))(i) = a+ i · r.
Proof: Define P[natural number] ≡ (ArProg(a, r))($1) = a + $1 · r. For
every natural number k such that P[k] holds P[k + 1]. For every natural
number n, P[n]. �

Let a, r be integers. Let us note that ArProg(a, r) is integer-valued and there
exists an arithmetic progression which is integer-valued.

Let a be an integer and r be a non zero integer. Let us observe that ArProg(a, r)
is non constant.

Let a be a real number and r be a positive real number. Let us observe that
ArProg(a, r) is increasing.

Let r be a non positive real number. One can verify that ArProg(a, r) is
non-increasing.

Let r be a negative real number. Note that ArProg(a, r) is decreasing.
Let r be a non negative real number. Let us note that ArProg(a, r) is non-

decreasing and ArProg(a, 0) is constant and there exists an arithmetic pro-
gression which is constant and there exists an arithmetic progression which is
increasing and non-decreasing and there exists an arithmetic progression which
is decreasing and non-increasing.

Let f be an increasing arithmetic progression. One can verify that differen -
ce(f) is positive.

Let f be a decreasing arithmetic progression. Note that difference(f) is ne-
gative.

Let f be a non-increasing arithmetic progression. Observe that difference(f)
is non positive.

Let f be a non-decreasing arithmetic progression. Let us observe that differen -
ce(f) is non negative.

Let f be a constant arithmetic progression. One can verify that difference(f)
is zero. Now we state the proposition:

(8) Let us consider an arithmetic progression f . Suppose there exists a na-
tural number i such that f(i) is an integer and difference(f) is an integer.
Then f is integer-valued.
Proof: Consider i being a natural number such that f(i) is an integer and
difference(f) is an integer. Define P[natural number] ≡ f($1) is integer.
For every natural number k such that k 6= 0 and P[k] there exists a natural
number n such that n < k and P[n]. P[0]. For every object n such that
n ∈ dom f holds f(n) is integer. �
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3. Problem 50

Let n be a natural number. We say that n is Fibonacci if and only if

(Def. 6) there exists a natural number k such that n = Fib(k).

Let us note that there exists a natural number which is Fibonacci.
Now we state the propositions:

(9) Let us consider a natural number n. If Fib(n) > 1, then n > 2.

(10) Let us consider a natural number k. If k > 0, then Fib(k) > 0.

(11) Let us consider natural numbers k, m. Suppose Fib(k) < Fib(m+1) and
1 < k. Then Fib(k) ¬ Fib(m).

(12) Let us consider natural numbers k, n. Suppose n 6= 1 and k 6= 0 and
k 6= 1. If Fib(k) = Fib(n), then k = n. The theorem is a consequence of
(10).

Let us consider a natural number n. Now we state the propositions:

(13) If n > 2, then Fib(n) ­ 2.

(14) If n > 3, then Fib(n) ­ 3.

Let us consider natural numbers m, n. Now we state the propositions:

(15) If m < n and m > 3, then Fib(n)− Fib(m) > 1. The theorem is a con-
sequence of (13).

(16) If m < n and m > 4, then Fib(n)− Fib(m) > 2. The theorem is a con-
sequence of (14).

Let f be a sequence of R. We say that f is Fibonacci-valued if and only if

(Def. 7) for every natural number n, there exists a natural number f4 such that
f4 = f(n) and f4 is Fibonacci.

Let us observe that every sequence of R which is Fibonacci-valued is also
integer-valued and there exists a sequence of R which is Fibonacci-valued.

Let n be a natural number. One can verify that Fib(n) is Fibonacci.
Now we state the proposition:

(17) There exists a Fibonacci-valued sequence f of R such that f is increasing
and with all coprime terms.
Proof: Define F(natural number) = Fib(pr($1)). Consider f being a se-
quence of R such that for every natural number n, f(n) = F(n). For every
natural number n, f(n) < f(n+ 1) by [5, (46)]. For every natural number
n, there exists a natural number f4 such that f4 = f(n) and f4 is Fibo-
nacci. For every natural numbers i, j such that i, j ∈ dom f and i 6= j

holds f(i) and f(j) are relatively prime by [3, (21)], (3), [8, (5)]. �

Let us observe that there exists an integer-valued sequence of R which is
Fibonacci-valued, increasing, and with all coprime terms.
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4. Triangular Numbers

Let us consider a natural number n. Now we state the propositions:

(18) (i) 3 | n, or

(ii) 3 | n+ 1, or

(iii) 3 | n+ 2.
Proof: 3 | n− 1 iff 3 | n+ 2. �

(19) (i) 4 | n, or

(ii) 4 | n+ 1, or

(iii) 4 | n+ 2, or

(iv) 4 | n+ 3.

(20) Let us consider natural numbers n, k, l. Then 3 | n + l if and only if
3 | n+ l + 3 · k.

Let f be a function. We say that f is triangular-valued if and only if

(Def. 8) for every object n, f(n) is triangular.

One can check that every number which is triangular is also integer and
every sequence of R which is triangular-valued is also integer-valued and there
exists an integer-valued sequence of R which is triangular-valued and 〈0〉 is
triangular-valued as a finite sequence.

5. Problem 52

Now we state the propositions:

(21) Let us consider natural numbers m, k, l. Suppose k 6= l and 1 ¬ k ¬ m

and 1 ¬ l ¬ m. Then m! · k + 1 and m! · l + 1 are relatively prime.

(22) Let us consider a natural number n. Then there exists an AP-like,
integer-valued finite 0-sequence f such that

(i) dom f ­ n, and

(ii) f is with all coprime terms.

Proof: Set f = ArProg(n! + 1, n!). Reconsider f3 = f�n as an integer-
valued finite 0-sequence. For every natural number k, f(k) = n!·(k+1)+1.
For every natural number k such that k+1 ¬ n holds f3(k) = n!·(k+1)+1.
For every natural numbers i, j such that i, j ∈ dom f3 and i 6= j holds
f3(i) and f3(j) are relatively prime. �
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6. Problem 54

Let x, y, z be real numbers. We say that x, y and z form an arithmetic
progression if and only if

(Def. 9) y − x = z − y.

Now we state the propositions:

(23) Let us consider natural numbers x, y, z. Suppose y = 5 · x + 2 and
z = 7 · x+ 3. Then

(i) x · (x+ 1), y · (y + 1) and z · (z + 1) form an arithmetic progression,
and

(ii) x < y < z.

(24) {〈x, y, z〉, where x is a real number, y is a real number, z is a real number
: x · (x + 1), y · (y + 1) and z · (z + 1) form an arithmetic progression} is
infinite.
Proof: Set A1 = {〈x, y, z〉, where x is a real number, y is a real number,
z is a real number : x · (x+1), y · (y+1) and z · (z+1) form an arithmetic
progression}. Reconsider x = 1 as a natural number. Reconsider y = 5·x+2
as a natural number. Define P[element of R, element of A1] ≡ $2 = 〈$1,

5 · $1 + 2, 7 · $1 + 3〉. For every element x of R, there exists an element y
of A1 such that P[x, y]. Consider f being a function from R into A1 such
that for every element x of R, P[x, f(x)]. For every objects x1, x2 such
that x1, x2 ∈ R and f(x1) = f(x2) holds x1 = x2. �

7. Problem 55

Now we state the proposition:

(25) Let us consider natural numbers a, b, c. Suppose a2 + b2 = c2 and a, b
and c form an arithmetic progression. Then there exists an integer i such
that

(i) a = 3 · i, and

(ii) b = 4 · i, and

(iii) c = 5 · i.
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8. Problem 56

Let k be a natural number. Observe that Triangle(4 · k + 1) is odd and
Triangle 4 · k is even.

Let us consider a natural number n. Now we state the propositions:

(26) 3 | Triangle(3 · n+ 2).

(27) 3 | Triangle 3 · n.

(28) 3 | Triangle(3 · n+ 1)− 1.

(29) Let us consider a natural number i. Then 3 - (ArProg(2, 3))(i). The
theorem is a consequence of (7).

(30) {i, where i is a natural number : (ArProg(0, 1))(i) is triangular} is infi-
nite.
Proof: Set X = {i, where i is a natural number : (ArProg(0, 1))(i) is tri-
angular}. For every natural number m, there exists a natural number n
such that n ­ m and n ∈ X by [4, (19)], (7). �

(31) {i, where i is a natural number : (ArProg(0, 2))(i) is triangular} is infi-
nite.
Proof: Set X = {i, where i is a natural number : (ArProg(0, 2))(i) is tri-
angular}. For every natural number m, there exists a natural number n
such that n ­ m and n ∈ X. �

(32) {i, where i is a natural number : (ArProg(1, 2))(i) is triangular} is infi-
nite.
Proof: Set X = {i, where i is a natural number : (ArProg(1, 2))(i) is tri-
angular}. For every natural number m, there exists a natural number n
such that n ­ m and n ∈ X. �

(33) Let us consider a natural number i. Then 3 - (ArProg(2, 3))(i)− 1. The
theorem is a consequence of (7).

(34) Let us consider a natural number i. Then (ArProg(2, 3))(i) is not trian-
gular. The theorem is a consequence of (28), (33), (29), (26), and (27).

9. Problem 60

Let n be a natural number. We say that n is perfect power if and only if

(Def. 10) there exists a natural number x and there exists a natural number k
such that k > 1 and n = xk.

Now we state the proposition:

(35) There exists a natural number n such that

(i) n is perfect power, and
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(ii) n+ 1 is perfect power.

Let us note that there exists a natural number which is even and perfect
power. Now we state the propositions:

(36) Let us consider an even natural number n, and a natural number k. If
k > 1, then 4 | nk.

(37) Let us consider an even, perfect power natural number n. Then 4 | n.
The theorem is a consequence of (36).

(38) Let us consider a natural number k. Then 4 · k+ 2 is not perfect power.
The theorem is a consequence of (37).

(39) Let us consider a prime number p. Then p is not perfect power.

One can verify that every natural number which is prime is also non perfect
power and every natural number which is a square is also perfect power.

Now we state the proposition:

(40) There exists no natural number n such that n is perfect power and n+1
is perfect power and n+2 is perfect power and n+3 is perfect power. The
theorem is a consequence of (38).

10. Problem 64

Now we state the propositions:

(41) Let us consider natural numbers k, l, m. Suppose 0 < k < l < m and
it is not true that k = 2 and l = 3 and m = 4 and it is not true that
k = 1 and l = 4 and m = 5 and Fib(m) − Fib(l) = Fib(l) − Fib(k) and
Fib(l)− Fib(k) > 0. Then

(i) l > 2, and

(ii) k = l − 2, and

(iii) m = l + 1.

Proof: Set u2 = Fib(l). Set u3 = Fib(m). Fib(l) > 1. l > 2. u3 < u2 +u2.
Fib(m) ¬ Fib(l + 1). �

(42) Fib(1)− Fib(0) 6= Fib(2)− Fib(1).

(43) Fib(1)− Fib(0) = Fib(3)− Fib(1).

(44) Fib(2)− Fib(0) = Fib(3)− Fib(2).

(45) Fib(3)− Fib(2) = Fib(4)− Fib(3).

(46) Fib(5) = 5.

(47) Fib(5)− Fib(4) = Fib(4)− Fib(1).
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(48) There exist no natural numbers k, l, m, n such that 0 < k < l <

m < n and Fib(m) − Fib(l) = Fib(l) − Fib(k) = Fib(n) − Fib(m) and
Fib(l)−Fib(k) > 0. The theorem is a consequence of (41), (15), and (16).

11. Problem 70

Now we state the propositions:

(49) Let us consider an arithmetic progression f , and prime numbers p1, p2,
p3. Suppose difference(f) = 10 and there exists a natural number i such
that p1 = f(i) and p2 = f(i + 1) and p3 = f(i + 2). Then p1 = 3. The
theorem is a consequence of (20), (5), and (18).

(50) There exists no arithmetic progression f such that difference(f) = 10
and there exist prime numbers p1, p2, p3, p4 and there exists a natural
number i such that p1, p2, p3, p4 are mutually different and p1 = f(i)
and p2 = f(i + 1) and p3 = f(i + 2) and p4 = f(i + 3). The theorem is
a consequence of (8), (5), (20), (18), and (1).

12. Problem 71

Now we state the propositions:

(51) There exists no arithmetic progression f such that difference(f) = 100
and there exist prime numbers p1, p2, p3 and there exists a natural number
i such that p1, p2, p3 are mutually different and p1 = f(i) and p2 = f(i+1)
and p3 = f(i+ 2). The theorem is a consequence of (8), (5), (20), (1), and
(18).

(52) There exists no arithmetic progression f such that difference(f) = 1000
and there exist prime numbers p1, p2, p3 and there exists a natural number
i such that p1, p2, p3 are mutually different and p1 = f(i) and p2 = f(i+1)
and p3 = f(i+ 2). The theorem is a consequence of (8), (5), (20), (1), and
(18).

13. Problem 73

Let k be an integer. We say that k is not representable by a sum or a
difference of two primes if and only if

(Def. 11) there exist no prime numbers p1, p2 such that k = p1 +p2 or k = p1−p2.

Let f be an integer-valued sequence of R. We say that f is with terms not
representable by a sum or a difference of two primes if and only if
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(Def. 12) for every natural number i, f(i) is not representable by a sum or a
difference of two primes.

Now we state the propositions:

(53) Let us consider an integer k. Then 30 · k + 7 is odd.

(54) Let us consider a natural number k. Suppose k ­ 1. Then 30 · k + 7 is
not representable by a sum or a difference of two primes. The theorem is
a consequence of (53).

Note that ArProg(37, 30) is with terms not representable by a sum or a
difference of two primes.
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