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Summary. In our previous work [7] we prove that the set of prime numbers
is diophantine using the 26-variable polynomial proposed in [4]. In this paper,
we focus on the reduction of the number of variables to 10 and it is the smal-
lest variables number known today [5], [10]. Using the Mizar [3], [2] system, we
formalize the first step in this direction by proving Theorem 1 [5] formulated as
follows: Let k ∈ N. Then k is prime if and only if there exists f, i, j,m, u ∈ N+,
r, s, t ∈ N unknowns such that

DFI is square ∧ (M2−1)S2+1 is square ∧
((MU)2 − 1)T 2+1 is square ∧

(4f2 − 1)(r −mSTU)2 + 4u2S2T 2 < 8fuST (r −mSTU)

FL | (H − C)Z + F (f + 1)Q+ F (k + 1)((W 2 − 1)Su−W 2u2 + 1) (0.1)

where auxiliary variables A − I, L,M, S − W,Q ∈ Z are simply abbreviations
defined as follows W = 100fk(k+1), U = 100u3W 3+1, M = 100mUW +1,
S = (M−1)s+k+1, T = (MU−1)t+W−k+1, Q = 2MW−W 2−1, L = (k+1)Q,
A = M(U+1), B = W+1, C = r+W+1, D = (A2−1)C2+1, E = 2iC2LD,
F = (A2−1)E2+1, G = A+F (F−A), H = B+2(j−1)C, I = (G2−1)H2+1. It
is easily see that (0.1) uses 8 unknowns explicitly along with five implicit one for
each diophantine relationship: is square, inequality, and divisibility. Together
with k this gives a total of 14 variables. This work has been partially presented
in [8].
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1. Theta Notation

From now on A denotes a non trivial natural number, B, C, n, m, k denote
natural numbers, and e denotes a natural number.

Let θ be a real number. We say that θ is theta if and only if

(Def. 1) −1 ¬ θ ¬ 1.

Let us observe that 0 is theta and there exists a real number which is theta.
A Theta is a theta real number. Let θ be a Theta. Let us observe that −θ

is theta.
Let u be a Theta. Let us note that θ·u is theta. Now we state the propositions:

(1) Let us consider a Theta θ. Then |θ| ¬ 1.

(2) Let us consider a Theta θ, and real numbers λ, ε1, ε2. Suppose λ = θ · ε1
and |ε1| ¬ |ε2|. Then there exists a Theta θ1 such that λ = θ1 · ε2.

(3) Let us consider Theta’s θ1, θ2, and real numbers λ, ε1, ε2. Suppose
λ = (1 + θ1 · ε1) · (1 + θ2 · ε2) and 0 ¬ ε1 ¬ 1 and 0 ¬ ε2. Then there exists
a Theta θ such that λ = 1 + θ · (ε1 + 2 · ε2).

(4) Let us consider Theta’s θ1, θ2, and real numbers ε1, ε2. Suppose θ1 ·ε1 ¬
ε2 ¬ θ2 · ε1. Then there exists a Theta θ such that ε2 = θ · ε1.

(5) Let us consider a Theta θ, and real numbers λ, ε1, ε2. Suppose λ = θ · ε1
and ε1 ¬ ε2 and 0 ¬ ε1. Then there exists a Theta θ1 such that λ = θ1 ·ε2.
The theorem is a consequence of (2).

(6) Let us consider Theta’s θ1, θ2, and real numbers ε1, ε2. Suppose 0 ¬ ε1
and 0 ¬ ε2. Then there exists a Theta θ such that θ1·ε1+θ2·ε2 = θ·(ε1+ε2).
The theorem is a consequence of (4).

(7) Let us consider a Theta θ1, and a real number ε. Suppose 0 ¬ ε ¬ 12 .
Then there exists a Theta θ2 such that 1

1+θ1·ε = 1 + θ2 · 2 · ε. The theorem
is a consequence of (2).

(8) If m2 ¬ n, then there exists a Theta θ such that
(n
m

)
= nm

m! · (1 + θ · m2n ).
Proof: Define P[natural number] ≡ if $21 ¬ n, then there exists a Theta

θ such that
( n
$1

)
= n$1
$1!
· (1 + θ · $

2
1
n ). For every m such that P[m] holds

P[m+ 1]. For every m, P[m]. �

(9) Let us consider a Theta θ, and real numbers α, ε. Suppose α = (1 + θ · ε)n

and 0 ¬ ε ¬ 1
2·n . Then there exists a Theta θ1 such that α = 1+θ1 ·2 ·n ·ε.

Proof: Define P[natural number] ≡ for every Theta θ for every real
numbers α, ε such that α = (1 + θ · ε)$1 and 0 ¬ ε ¬ 1

2·$1 there exists
a Theta θ1 such that α = 1 + θ1 · 2 · $1 · ε. P[0]. If P[m], then P[m + 1].
P[m]. �
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2. More on Solutions to Pell’s Equation

In the sequel a denotes a non trivial natural number. Now we state the
propositions:

(10) If n ¬ a, then there exists a Theta θ such that ya(n+ 1) = (2 · a)n · (1 +
θ · na ). The theorem is a consequence of (9) and (4).

(11) Let us consider a non trivial natural number a, and natural numbers
y, n. Suppose y > 0 and n > 0 and (a2 − 1) · y2 + 1 is a square and
y ≡ n (mod a− 1) and y ¬ ya(a− 1) and n ¬ a− 1. Then y = ya(n).

(12) Let us consider a non trivial natural number a, and natural numbers s,
n. Then s2 · (sn)2− (s2− 1) · ya(n+ 1) · sn− 1 ≡ 0 (mod 2 · a · s− s2− 1).
Proof: Set S = s2. Define P[natural number] ≡ S · (s$1)2 − (S − 1) ·
ya($1 + 1) · s$1 − 1 ≡ 0 (mod 2 · a · s− s2 − 1). For every natural number
k such that for every n such that n < k holds P[n] holds P[k]. P[n]. �

(13) Let us consider a non trivial natural number a, and natural numbers s,
n, r. Suppose s > 0 and r > 0 and s2 · r2 − (s2 − 1) · ya(n + 1) · r − 1 ≡
0 (mod 2 ·a ·s−s2−1) and s · (sn)2 ·sn < a and s · r2 · r < a. Then r = sn.
The theorem is a consequence of (12).

(14) Let us consider natural numbers a, b, c, d. Suppose a ¬ b ¬ c and 2·c ¬ d
and c > 0. Let us consider a finite sequence f of elements of R. Suppose
len f = b− a+ 1 and for every natural number i such that i+ 1 ∈ dom f

holds f(i+ 1) =
( c
a+i

)
· dc−′(a+i). Then 0 <

∑
f < 2 · ca · dc−′a.

Proof: Define P[natural number] ≡ for every natural numbers a, b, c, d
such that a ¬ b ¬ c and 2 · c ¬ d and c > 0 and b − a = $1 for every
finite sequence f of elements of R such that len f = b−a+1 and for every
natural number i such that i+ 1 ∈ dom f holds f(i+ 1) =

( c
a+i

)
· dc−′(a+i)

holds 0 ¬ 1− ( cd)b+1−
′a and 0 <

∑
f ¬ 1−(

c
d
)b+1−

′a

1− c
d

·ca ·dc−′a. P[0]. If P[n],

then P[n+ 1]. P[n]. �

(15) Let us consider natural numbers f , k, m, r, s, t, u, and integers W ,
M , U , S, T , Q. Suppose f > 0 and k > 0 and m > 0 and u > 0 and
(M2 − 1) · S2 + 1 is a square and ((M · U)2 − 1) · T 2 + 1 is a square and
W 2 ·u2−(W 2−1) ·S ·u−1 ≡ 0 (modQ) and (4 ·f2−1) ·(r−m ·S ·T ·U)2+
4 ·u2 ·S2 ·T 2 < 8 ·f ·u ·S ·T ·(r−m ·S ·T ·U) and W = 100 ·f ·k ·(k+1) and
U = 100 ·u3 ·W 3+1 and M = 100 ·m ·U ·W +1 and S = (M−1) ·s+k+1
and T = (M · U − 1) · t+W − k + 1 and Q = 2 ·M ·W −W 2 − 1. Then

(i) M · (U + 1) is a non trivial natural number, and

(ii) W is a natural number, and
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(iii) for every non trivial natural number m1 and for every natural number
w such that m1 = M ·(U+1) and w = W and r+W+1 = ym1(w+1)
holds f = k!.

Proof: Reconsider W2 = W − k as a natural number. Reconsider M3 =
M ·U as a non trivial natural number. Reconsider M1 = M−1 as a natural
number. Set R = r − m · S · T · U . ( u

r
S·T −m·U

− f) · ( u
r
S·T −m·U

− f) < 1
4 .

r < yM (M1) and r < yM (M3 − 1). S = yM (k + 1). T = yM3(W2 + 1).
R < 3 · u · S · T . m · U + 3 · u > r

S·T . Consider θ1 being a Theta such that
ym1(w+1) = (2 ·m1)w ·(1+θ1 · wm1 ). Reconsider I = 1 as a Theta. Consider
θ2 being a Theta such that θ1 · wm1 −

W+1
(2·m1)W

= θ2 · 1M . u = W k. Consider

θ3 being a Theta such that yM (k+1) = (2 ·M)k · (1+θ3 · kM ). Consider θ4
being a Theta such that yM3(W2+1) = (2 ·M3)W2 · (1+θ4 · W2M3 ). Consider
θ′3 being a Theta such that 1

1+θ3· kM
= 1 + θ′3 · 2 · kM . Consider θ′4 being

a Theta such that 1
1+θ4·

W2
M3

= 1 + θ′4 · 2 · W2M3 . Consider θ5 being a Theta

such that (1 + θ′3 · (2 · kM )) · (1 + θ2 · 1M ) = 1 + θ5 · (2 · kM + 2 · 1M ).

Consider θ6 being a Theta such that (1+θ5 ·(2 · kM +2 · 1M )) ·(1+θ′4 ·(2 ·
W2
M3

)) = 1+θ6·(2· kM +2· 1M +2·(2·W2M3 )). Consider θ7 being a Theta such that

θ6 ·(2· kM +2· 1M +2·(2·W2M3 )) = θ7 · 5·kM . Set I1 = 〈
(W
0

)
U01W , . . . ,

(W
W

)
UW 10〉.

Set I3 = I1�k. Consider I2 being a finite sequence such that I1 = I3
a I2.

For every natural number i such that i + 1 ∈ dom I3 holds I3(i + 1) =(W
0+i

)
·UW−′(0+i). 0 <

∑
I3 < 2·W 0·UW−′0. Set U2 = 1

UW2+1
·I3. rngU2 ⊆ N.

Reconsider Z =
∑
U2 as an element of N. For every natural number i

such that i + 1 ∈ dom I2 holds I2(i + 1) =
( W
k+i

)
· UW−′(k+i). 0 <

∑
I2 <

2 ·W k ·UW−′k. |θ7| ¬ 1 and |5·kM | ¬ 1. |θ7 · (Z · 5·kM )| ¬ 1 · |Z · 5·kM |. Consider

θ8 being a Theta such that (1 + I · 1U )W = 1 + θ8 · 2 ·W · 1U . Consider θ9
being a Theta such that θ7 · (1 + θ8 · 2 ·W · 1U ) = θ9 · 2.

Consider i3 being a finite sequence of elements of R, x being an element
of R such that I2 = 〈x〉 a i3. For every natural number i such that i+ 1 ∈
dom i3 holds i3(i + 1) =

( W
k+1+i

)
· UW−′(k+1+i). 0 <

∑
i3 < 2 · W k+1 ·

UW−
′(k+1). Consider θ10 being a Theta such that I · ( 1

UW2
· (
∑
i3)) =

θ10 · (2 ·W k+1 · 1U ). Reconsider θ12 = 1
(Wk ) as a Theta. Consider θ11 being

a Theta such that θ10·(2·W k+1· 1U )+θ9·U
k·10·k
M = θ11·(2·W k+1· 1U +Uk·10·k

M ).

Consider θ′13 being a Theta such that
(W
k

)
= Wk

k! ·(1+θ′13 · k
2

W ). Consider θ13
being a Theta such that 1

1+θ′13·
k2
W

= 1+θ13·2· k
2

W . Consider θ14 being a Theta

such that 1
1+θ12·θ11·(2·Wk+1· 1U+

Uk·10·k
M

)
= 1 + θ14 · 2 · (2 ·W k+1 · 1U + Uk·10·k

M ).
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Consider θ15 being a Theta such that (1+θ14 ·(2 ·(2 ·W k+1 · 1U + Uk·10·k
M ))) ·

(1 + θ13 · (2 · k
2

W )) = 1 + θ15 · (2 · (2 ·W k+1 · 1U + Uk·10·k
M ) + 2 · (2 · k2W )). �

(16) Let us consider natural numbers f , k. Suppose f = k! and k > 0.
Then there exist natural numbers m, r, s, t, u and there exist natural
numbers W , U , S, T , Q and there exists a non trivial natural number
M such that m > 0 and u > 0 and r + W + 1 = yM ·(U+1)(W + 1) and
(M2 − 1) · S2 + 1 is a square and ((M · U)2 − 1) · T 2 + 1 is a square and
W 2 ·u2−(W 2−1) ·S ·u−1 ≡ 0 (modQ) and (4 ·f2−1) ·(r−m ·S ·T ·U)2+
4 ·u2 ·S2 ·T 2 < 8 ·f ·u ·S ·T ·(r−m ·S ·T ·U) and W = 100 ·f ·k ·(k+1) and
U = 100 ·u3 ·W 3+1 and M = 100 ·m ·U ·W +1 and S = (M−1) ·s+k+1
and T = (M · U − 1) · t+W − k + 1 and Q = 2 ·M ·W −W 2 − 1.

Proof: Set W = 100 ·f ·k · (k+1). Set u = W k. Set U = 100 ·u3 ·W 3+1.
Set I1 = 〈

(W
0

)
U01W , . . . ,

(W
W

)
UW 10〉. Set I3 = I1�k. Reconsider W2 =

W − k as a natural number. Consider I2 being a finite sequence such that
I1 = I3

a I2. For every natural number i such that i + 1 ∈ dom I3 holds
I3(i+1) =

(W
0+i

)
·UW−′(0+i). 0 <

∑
I3 < 2·W 0 ·UW−′0. Set U2 = 1

UW2+1
·I3.

rngU2 ⊆ N. Reconsider Z =
∑
U2 as an element of N. Set m = Z. Set

M = 100 ·m ·U ·W + 1. Set m1 = M · (U + 1). Reconsider M3 = M ·U as
a non trivial natural number. Set S = yM (k + 1). Set T = yM3(W2 + 1).
Reconsider r = ym1(W + 1) − (W + 1) as a natural number. Consider s
being an integer such that (M − 1) · s = S − (k + 1).

Consider t being an integer such that (M3 − 1) · t = T − (W2 + 1).
For every natural number i such that i + 1 ∈ dom I2 holds I2(i + 1) =( W
k+i

)
·UW−′(k+i). 0 <

∑
I2 < 2·W k ·UW−′k. Consider θ1 being a Theta such

that ym1(W + 1) = (2 ·m1)W · (1 + θ1 · Wm1 ). Reconsider I = 1 as a Theta.

Consider θ3 being a Theta such that yM (k + 1) = (2 ·M)k · (1 + θ3 · kM ).
Consider θ4 being a Theta such that yM3(W2+1) = (2 ·M3)W2 ·(1+θ4·W2M3 ).
Consider θ′3 being a Theta such that 1

1+θ3· kM
= 1 + θ′3 · 2 · kM . Consider

θ′4 being a Theta such that 1
1+θ4·

W2
M3

= 1 + θ′4 · 2 · W2M3 . Consider θ2 being

a Theta such that θ1 · Wm1 −
W+1
(2·m1)W

= θ2 · 1M . Consider θ5 being a Theta

such that (1 + θ′3 · (2 · kM )) · (1 + θ2 · 1M ) = 1 + θ5 · (2 · kM + 2 · 1M ). Consider
θ6 being a Theta such that (1 + θ5 · (2 · kM + 2 · 1M )) · (1 + θ′4 · (2 · W2M3 )) =
1 + θ6 · (2 · kM + 2 · 1M + 2 · (2 · W2M3 )). Consider θ7 being a Theta such that
θ6 · (2 · kM + 2 · 1M + 2 · (2 · W2M3 )) = θ7 · 5·kM .

Consider u1 being a finite sequence of elements of N, y being an ele-
ment of N such that U2 = 〈y〉 a u1. Consider θ8 being a Theta such that
(1 + I · 1U )W = 1 + θ8 · 2 · W · 1U . Consider θ9 being a Theta such that
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θ7 ·(1+θ8 ·2 ·W · 1U ) = θ9 ·2. Consider i3 being a finite sequence of elements
of R, x being an element of R such that I2 = 〈x〉 a i3. For every natural
number i such that i+ 1 ∈ dom i3 holds i3(i+ 1) =

( W
k+1+i

)
·UW−′(k+1+i).

0 <
∑
i3 < 2 ·W k+1 · UW−′(k+1). Consider θ10 being a Theta such that

I · ( 1
UW2
· (
∑
i3)) = θ10 · (2 ·W k+1 · 1U ). Reconsider θ12 = 1

(Wk ) as a Theta.

Consider θ11 being a Theta such that θ10 · (2 ·W k+1 · 1U )+θ9 · U
k·10·k
M =

θ11 · (2 ·W k+1 · 1U + Uk·10·k
M ). Consider θ′13 being a Theta such that

(W
k

)
=

Wk

k! ·(1+θ′13 · k
2

W ). Consider θ13 being a Theta such that 1
1+θ′13·

k2
W

= 1+θ13 ·

2 · k2W . Consider θ14 being a Theta such that 1
1+θ12·θ11·(2·Wk+1· 1U+

Uk·10·k
M

)
=

1 + θ14 · 2 · (2 ·W k+1 · 1U + Uk·10·k
M ). Consider θ15 being a Theta such that

(1 + θ14 · (2 · (2 ·W k+1 · 1U + Uk·10·k
M ))) · (1 + θ13 · (2 · k

2

W )) = 1 + θ15 · (2 ·
(2 ·W k+1 · 1U + Uk·10·k

M ) + 2 · (2 · k2W )). Set R = r −m · S · T · U . R 6= 0. �

(17) Let us consider a non trivial natural number A, natural numbers C, B,
and e. Suppose 0 < B. Suppose C = yA(B). Then there exist natural
numbers i, j and there exist natural numbers D, E, F , G, H, I such that
D ·F · I is a square and F | H −C and B ¬ C and D = (A2 − 1) ·C2 + 1
and E = 2 · (i + 1) · D · (e + 1) · C2 and F = (A2 − 1) · E2 + 1 and
G = A+ F · (F −A) and H = B + 2 · j · C and I = (G2 − 1) ·H2 + 1.
Proof: Set x = xA(B). Set D = x2. There exist natural numbers q, i
such that 2 ·D · (e+ 1) ·C2 · (i+ 1) = yA(q) by [1, (14)], [6, (4)]. Consider
q, i being natural numbers such that 2 ·D · (e+ 1) · C2 · (i+ 1) = yA(q).
Set F = (xA(q))2. Reconsider G = A+F · (F −A) as a non trivial natural
number. Set H = yG(B). H ≡ B (mod 2 ·C). Consider j being an integer
such that H −B = 2 · C · j. �

(18) Let us consider a non trivial natural number A, natural numbers C, B,
and a natural number e. Suppose 0 < B. Let us consider natural numbers i,
j, and integers D, E, F , G, H, I. Suppose D·F ·I is a square and F | H−C
and B ¬ C and D = (A2 − 1) ·C2 + 1 and E = 2 · (i+ 1) ·D · (e+ 1) ·C2
and F = (A2 − 1) ·E2 + 1 and G = A+F · (F −A) and H = B + 2 · j ·C
and I = (G2 − 1) ·H2 + 1. Then C = yA(B).
Proof: Consider d being a natural number such that d2 = D. Consider
f being a natural number such that f2 = F . Consider i2 being a natural
number such that i22 = I. Consider i1 being a natural number such that
d = xA(i1) and C = yA(i1). Consider n1 being a natural number such that
f = xA(n1) and E = yA(n1). Consider j1 being a natural number such
that i2 = xG(j1) and H = yG(j1). yG(j1) ≡ j1 (mod 2 · C). �
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(19) Diophantine Representation of Solutions to Pell’s Equation:
Let us consider a non trivial natural number A, natural numbers C, B,
and e. Suppose 0 < B. Then C = yA(B) if and only if there exist natural
numbers i, j and there exist integers D, E, F , G, H, I such that D ·F · I
is a square and F | H − C and B ¬ C and D = (A2 − 1) · C2 + 1 and
E = 2·(i+1)·D·(e+1)·C2 and F = (A2−1)·E2+1 and G = A+F ·(F−A)
and H = B+2·j ·C and I = (G2−1)·H2+1. The theorem is a consequence
of (17) and (18).

(20) Let us consider a non trivial natural number A, a natural number C,
and positive natural numbers B, L. Then C = yA(B) if and only if there
exist positive natural numbers i, j and there exist integers D, E, F , G,
H, I such that D · F · I is a square and F | H − C and B ¬ C and
D = (A2−1) ·C2+1 and E = 2 · i ·C2 ·L ·D and F = (A2−1) ·E2+1 and
G = A+F · (F −A) and H = B+ 2 · (j− 1) ·C and I = (G2− 1) ·H2+ 1.
The theorem is a consequence of (17) and (18).

3. Prime Diophantine Representation

Now we state the propositions:

(21) Let us consider a natural number k, and a positive natural number L.
Suppose k > 0. Then k + 1 is prime if and only if there exist positive
natural numbers f , i, j, m, u and there exist natural numbers r, s, t and
there exist integers A, B, C, D, E, F , G, H, I, W , U , M , S, T , Q such
that D ·F ·I is a square and F | H−C and (M2−1) ·S2+1 is a square and
((M ·U)2−1)·T 2+1 is a square and W 2 ·u2−(W 2−1)·S ·u−1 ≡ 0 (modQ)
and (4·f2−1)·(r−m·S ·T ·U)2+4·u2 ·S2 ·T 2 < 8·f ·u·S ·T ·(r−m·S ·T ·U)
and k+1 | f+1 and A = M ·(U+1) and B = W+1 and C = r+W+1 and
D = (A2−1) ·C2+1 and E = 2 · i ·C2 ·L ·D and F = (A2−1) ·E2+1 and
G = A+F ·(F−A) and H = B+2 ·(j−1) ·C and I = (G2−1) ·H2+1 and
W = 100 ·f ·k ·(k+1) and U = 100 ·u3 ·W 3+1 and M = 100 ·m ·U ·W +1
and S = (M − 1) · s + k + 1 and T = (M · U − 1) · t + W − k + 1 and
Q = 2 ·M ·W −W 2 − 1.
Proof: If k + 1 is prime, then there exist positive natural numbers f , i,
j, m, u and there exist natural numbers r, s, t and there exist integers A,
B, C, D, E, F , G, H, I, W , U , M , S, T , Q such that D ·F · I is a square
and F | H−C and (M2−1) ·S2+1 is a square and ((M ·U)2−1) ·T 2+1
is a square and W 2 ·u2− (W 2− 1) ·S ·u− 1 ≡ 0 (modQ) and (4 · f2− 1) ·
(r−m · S · T ·U)2 + 4 · u2 · S2 · T 2 < 8 · f · u · S · T · (r−m · S · T ·U) and
k+ 1 | f + 1 and A = M · (U + 1) and B = W + 1 and C = r+W + 1 and
D = (A2−1) ·C2+1 and E = 2 · i ·C2 ·L ·D and F = (A2−1) ·E2+1 and
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G = A+F ·(F−A) and H = B+2 ·(j−1) ·C and I = (G2−1) ·H2+1 and
W = 100 ·f ·k ·(k+1) and U = 100 ·u3 ·W 3+1 and M = 100 ·m ·U ·W +1
and S = (M − 1) · s + k + 1 and T = (M · U − 1) · t + W − k + 1 and
Q = 2 ·M ·W −W 2 − 1. C = yA(B). f = k!. �

(22) Let us consider integers a, b, A, B. Suppose a and b are relatively prime.
Then a | A and b | B if and only if a · b | a ·B + b ·A.

(23) Diophantine Representation of Prime Numbers with 8 Expli-
cite Unknowns:
Let us consider a natural number k. Suppose k > 0. Then k + 1 is pri-
me if and only if there exist positive natural numbers f , i, j, m, u and
there exist natural numbers r, s, t and there exist integers A, B, C, D,
E, F , G, H, I, L, W , U , M , S, T , Q such that D · F · I is a square and
(M2 − 1) · S2 + 1 is a square and ((M · U)2 − 1) · T 2 + 1 is a square and
(4·f2−1)·(r−m·S ·T ·U)2+4·u2 ·S2 ·T 2 < 8·f ·u·S ·T ·(r−m·S ·T ·U) and
F ·L | (H−C)·L+F ·(f+1)·Q+F ·(k+1)·((W 2−1)·S ·u−W 2 ·u2+1) and
A = M ·(U+1) and B = W+1 and C = r+W+1 and D = (A2−1)·C2+1
and E = 2 · i ·C2 ·L ·D and F = (A2−1) ·E2+ 1 and G = A+F · (F −A)
and H = B+2 ·(j−1) ·C and I = (G2−1) ·H2+1 and L = (k+1) ·Q and
W = 100 ·f ·k ·(k+1) and U = 100 ·u3 ·W 3+1 and M = 100 ·m ·U ·W +1
and S = (M − 1) · s + k + 1 and T = (M · U − 1) · t + W − k + 1 and
Q = 2 ·M ·W −W 2 − 1.
Proof: If k+1 is prime, then there exist positive natural numbers f , i, j,
m, u and there exist natural numbers r, s, t and there exist integers A, B,
C, D, E, F , G, H, I, L, W , U , M , S, T , Q such that D ·F · I is a square
and (M2−1) ·S2+1 is a square and ((M ·U)2−1) ·T 2+1 is a square and
(4·f2−1)·(r−m·S ·T ·U)2+4·u2 ·S2 ·T 2 < 8·f ·u·S ·T ·(r−m·S ·T ·U) and
F ·L | (H−C)·L+F ·(f+1)·Q+F ·(k+1)·((W 2−1)·S ·u−W 2 ·u2+1) and
A = M ·(U+1) and B = W+1 and C = r+W+1 and D = (A2−1)·C2+1
and E = 2 · i ·C2 ·L ·D and F = (A2−1) ·E2+ 1 and G = A+F · (F −A)
and H = B+2 ·(j−1) ·C and I = (G2−1) ·H2+1 and L = (k+1) ·Q and
W = 100 ·f ·k ·(k+1) and U = 100 ·u3 ·W 3+1 and M = 100 ·m ·U ·W +1
and S = (M − 1) · s + k + 1 and T = (M · U − 1) · t + W − k + 1 and
Q = 2 ·M ·W −W 2 − 1 by [9, (22)], (16).

F | H−C and Q·(k+1) | (f+1)·Q+(k+1)·((W 2−1)·S ·u−W 2·u2+1).
Q | (W 2 − 1) · S · u−W 2 · u2 + 1 and k+ 1 | f + 1. C = yA(B). f = k!. �
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attempt to formally construct a prime representing polynomial with 10 variables
proposed by Yuri Matiyasevich in [4].
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negativity condition of one of these variables. Finally, we combine the prime dio-
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1. Preliminaries

From now on i, j, k, n, m denote natural numbers, X denotes a set, b, s
denote bags of X, and x denotes an object. Now we state the propositions:

(1) Let us consider an integer i. Then i ?1CF = i.
Proof: Define P[natural number] ≡ $1 ?1CF = $1. If P[n], then P[n+ 1]
by [9, (62),(60)]. P[n]. Consider k being a natural number such that i = k

or i = −k. �

(2) Let us consider complex numbers z1, z2. Suppose <(z1) ­ 0 and <(z2) ­
0 and =(z1) ­ 0 and =(z2) ­ 0 and z1

2 = z2
2 and z1

2 is a real number.
Then z1 = z2.

(3) Let us consider integers a, b. If a2 | b2, then a | b.

(4) Let us consider a positive natural number m. Then 2(Segm)\{1} = 2m−
′1.

Proof: Define P[natural number] ≡ 2(Seg(1+$1))\{1} = 2$1 . If P[n], then
P[n+ 1]. P[n]. �

(5) Let us consider an ordinal number n, and a finite subset A of n. Then
⊆
n linearly orders A.

(6) Let us consider an element x of RF. Suppose x 6= 0RF .
Then powerRF(x, n) 6= 0RF .
Proof: Define P[natural number] ≡ powerRF(x, $1) 6= 0RF . If P[i], then
P[i+ 1]. P[i]. �

2. More on Bags

Let us consider a bag b of X. Now we state the propositions:

(7) support(n · b) ⊆ support b.

(8) If n 6= 0, then support(n · b) = support b. The theorem is a consequence
of (7).

(9) support(b+· (x, n)) ⊆ {x} ∪ support b.

Let X be a set, b be a bag of X, and n be a natural number. Observe that
n · b is finite-support. Let x be an object. One can check that b +· (x, n) is
finite-support. Now we state the propositions:

(10) Let us consider a bag b of X. Then 0 · b = EmptyBagX.

(11) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, well unital, distributive, Abelian, non trivial,
commutative, associative, non empty double loop structure L, a function
x from n into L, a bag b of n, and a natural number i. If i 6= 0, then
eval(i · b, x) = powerL(eval(b, x), i).
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Proof: Define P[natural number] ≡ if $1 6= 0, then eval($1 · b, x) =
powerL(eval(b, x), $1). If P[j], then P[j + 1]. P[j]. �

(12) Let us consider a non empty set X, an element x of X, and an element
i of N. Then EmptyBagX +· (x, i) = ({x}, i) -bag.

(13) Let us consider a set X, x, and i. Suppose x ∈ X and i 6= 0. Then
support(EmptyBagX +· (x, i)) = {x}. The theorem is a consequence of
(12).

(14) Let us consider an ordinal number n, a well unital, non trivial double
loop structure L, and a function y from n into L. Suppose x ∈ n. Then
eval(EmptyBag n +· (x, i), y) = powerL(y(x), i). The theorem is a conse-
quence of (13).

Let us consider a bag b of X. Now we state the propositions:

(15) b = (b+· (x, 0)) + (EmptyBagX +· (x, b(x))).
Proof: Set E = EmptyBagX. Set b5 = b+·(x, 0). Set E6 = E+·(x, b(x)).
For every object y such that y ∈ dom b holds b(y) = (b5 + E6)(y). �

(16) support(b+· (x, 0)) = (support b) \ {x}.
Proof: support(b+· (x, 0)) ⊆ (support b) \ {x}. �

(17) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, well unital, distributive, Abelian, non trivial,
commutative, associative, non empty double loop structure L, a function
x from n into L, a bag b of n, an object i, and a natural number j.
Suppose i ∈ n. Then (eval(b+· (i, j), x)) · powerL(x/i, b(i)) = (eval(b, x)) ·
powerL(x/i, j). The theorem is a consequence of (15) and (14).

Let A, B be sets, f be a function from A into B, x be an object, and b be
an element of B. Observe that the functor f +· (x, b) yields a function from A

into B. Now we state the propositions:

(18) Let us consider an ordinal number n, a well unital, non trivial double
loop structure L, a bag b of n, a function f from n into L, and an element
u of L. If b(x) = 0, then eval(b, f +· (x, u)) = eval(b, f).
Proof: Set S = SgmX(⊆n, support b). Set f6 = f +· (x, u). Consider
y being a finite sequence of elements of L such that len y = lenS and
eval(b, f6) =

∏
y and for every element i of N such that 1 ¬ i ¬ len y

holds y/i = powerL(f6 · S/i, b · S/i). For every element i of N such that
1 ¬ i ¬ len y holds y/i = powerL(f · S/i, b · S/i). �

(19) Let us consider a natural number n, a bag b of n, and i. If b(i) =
degree(b), then b = EmptyBag n+· (i, b(i)). The theorem is a consequence
of (15) and (13).

(20) Let us consider a set X, and bags b1, b2 of X. Suppose 2·b1+·(0, b1(0)) =
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2 · b2 +· (0, b2(0)). Then b1 = b2.
Proof: For every x such that x ∈ X holds b1(x) = b2(x). �

(21) Let us consider a set X, and a bag b of X. Then support(2·b+·(0, b(0))) =
support b.
Proof: support(2 · b+· (0, b(0))) ⊆ support b. support b ⊆ support(2 · b+·
(0, b(0))). �

(22) Let us consider a bag b of X. Then b +· (x, i + k) = (b +· (x, i)) +
(EmptyBagX +· (x, k)).
Proof: Set E3 = EmptyBagX. For every object y such that y ∈ X holds
(b+· (x, i+ k))(y) = ((b+· (x, i)) + (E3 +· (x, k)))(y). �

(23) Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure L, an element a of L, and a bag b of X.
Then Monom(−a, b) = −Monom(a, b).
Proof: If x ∈ BagsX, then (Monom(−a, b))(x) = (−Monom(a, b))(x). �

(24) Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure L, elements a1, a2 of L, and a bag b of
X. Then Monom(a1, b) + Monom(a2, b) = Monom(a1 + a2, b).
Proof: If x ∈ BagsX, then (Monom(a1, b) + Monom(a2, b))(x) =
(Monom(a1 + a2, b))(x). �

(25) Let us consider a non empty zero structure L, and a bag b of X. Then
Monom(0L, b) = 0XL.
Proof: If x ∈ BagsX, then (Monom(0L, b))(x) = (0XL)(x). �

(26) Let us consider an ordinal number O, a right zeroed, add-associative,
right complementable, right unital, distributive, non trivial double loop
structure R, a polynomial p of O,R, and a bag b of O. Then Support(p−
Monom(p(b), b)) = (Support p)\{b}. The theorem is a consequence of (25).

(27) Let us consider a natural number n, and an object p. Suppose p ∈ n. Let
us consider an integer element i of RF, and a function x from n into RF.
Then eval(Monom(i,EmptyBag n+· (p, 1)), x) = i · (x/p). The theorem is
a consequence of (14).

Let X be a set, b be a bag of X, and i be an integer element of RF. One can
check that Monom(i, b) is Z-valued.

3. Power of Multivariate Polynomial

From now on O denotes an ordinal number, R denotes a right zeroed, add-
associative, right complementable, right unital, distributive, non trivial double
loop structure, and p denotes a polynomial of O,R.

Let n be an ordinal number, R be a right zeroed, add-associative, right
complementable, right unital, distributive, non trivial double loop structure,
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p be a polynomial of n,R, and k be a natural number. The functor pk yielding
a polynomial of n,R is defined by the term

(Def. 1) powerPolyRing(n,R)(p, k).

Now we state the propositions:

(28) If R is well unital, then p0 = 1 (O,R) and p1 = p.
Proof: Set P7 = PolyRing(O,R). Reconsider E = 1 (O,R) as an element
of P7. For every element H of P7, H ·E = H and E ·H = H. P7 is unital.
�

(29) pn+1 = pn ∗ p.
(30) Let us consider an Abelian, well unital, commutative, associative, right

zeroed, add-associative, right complementable, right unital, distributive,
non trivial double loop structure R, a polynomial p of O,R, and a function
f from O into R. Then eval(pk, f) = powerR(eval(p, f), k).
Proof: Define P[natural number] ≡ eval(p$1 , f) = powerR(eval(p, f), $1).
eval(p0, f) = eval(1 (O,R), f). If P[n], then P[n+ 1]. P[n]. �

Let O be an ordinal number, p be a Z-valued polynomial of O,RF, and n be
a natural number. Observe that pn is Z-valued.

4. Substitution in Multivariate Polynomials

LetX be a set, b, s be bags ofX, and x be an object. The functor Subst(b, x, s)
yielding a bag of X is defined by the term

(Def. 2) (b+· (x, 0)) + s.

Now we state the propositions:

(31) support Subst(b, x, s) = (support b) \ {x} ∪ support s. The theorem is
a consequence of (16).

(32) Let us consider bags s1, s2, b of X. If Subst(b, x, s1) = Subst(b, x, s2),
then s1 = s2.

Let X be an ordinal number, L be a right zeroed, add-associative, right
complementable, right unital, distributive, non trivial double loop structure,
t be a bag of X, p be a polynomial of X,L, and x be an object. The functor
Subst(t, x, p) yielding a series of X, L is defined by

(Def. 3) for every bag b ofX, if there exists a bag s ofX such that b = Subst(t, x, s),
then for every bag s of X such that b = Subst(t, x, s) holds it(b) =
(pt(x))(s) and if for every bag s of X, b 6= Subst(t, x, s), then it(b) = 0L.

In the sequel O denotes an ordinal number, R denotes a right zeroed, add-
associative, right complementable, right unital, distributive, non trivial double
loop structure, and p denotes a polynomial of O,R.
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Now we state the propositions:

(33) Let us consider bags t, s of O. Then (Subst(t, x, p))(Subst(t, x, s)) =
(pt(x))(s).

(34) Let us consider a bag t of O, and a one-to-one finite sequence o1 of
elements of BagsO. Suppose rng o1 = Support pt(x). Then there exists
a one-to-one finite sequence o2 of elements of BagsO such that

(i) rng o2 = Support Subst(t, x, p), and

(ii) len o2 = len o1, and

(iii) for every j such that 1 ¬ j ¬ len o2 holds o2(j) = Subst(t, x, o1/j).

Proof: Set S = Subst(t, x, p). Define O(object) = Subst(t, x, o1/$1). Con-
sider o2 being a finite sequence such that len o2 = len o1 and for eve-
ry k such that k ∈ dom o2 holds o2(k) = O(k). rng o2 ⊆ SupportS.
SupportS ⊆ rng o2. o2 is one-to-one. �

Let O be an ordinal number, R be a right zeroed, add-associative, right
complementable, right unital, distributive, non trivial double loop structure,
t be a bag of O, p be a polynomial of O,R, and x be an object. Let us note that
Subst(t, x, p) is finite-Support.

Now we state the proposition:

(35) Let us consider a commutative, associative, Abelian, right zeroed,
add-associative, right complementable, well unital, distributive, non
trivial double loop structure R, a bag t of O, a polynomial p of O,R,
an object i, and a function x from O into R. Suppose i ∈ O. Then
eval(Subst(t, i, p), x) = eval(t, x+· (i, eval(p, x))).
Proof: Set x4 = x+· (i, eval(p, x)). Set P = pt(i). Set t0 = t+· (i, 0). Set
S7 = SgmX(BagOrderO,SupportP ). Set S13 = Subst(t, i, p). Consider
y being a finite sequence of elements of R such that len y = lenS7 and
eval(P, x) =

∑
y and for every element i of N such that 1 ¬ i ¬ len y holds

y/i = P ·S7/i ·(eval(S7/i, x)). Consider t2 being a one-to-one finite sequence
of elements of BagsO such that rng t2 = SupportS13 and len t2 = lenS7
and for every j such that 1 ¬ j ¬ len t2 holds t2(j) = Subst(t, i, S7/j).
Consider Y being a finite sequence of elements of R such that lenY =
SupportS13 and eval(S13, x) =

∑
Y and for every natural number i such

that 1 ¬ i ¬ lenY holds Y/i = S13 · t2/i · (eval(t2/i, x)). eval(P, x) =
powerR(eval(p, x), t(i)). For every j such that 1 ¬ j ¬ lenY holds Y (j) =
(y · (eval(t0, x)))(j). (eval(t0, x4)) · powerR(x4/i, t(i)) = (eval(t, x4)) · (1R).
�

Let X be a set, L be an add-associative, right zeroed, right complementable,
right distributive, non empty double loop structure, p be a finite-Support series
of X, L, and a be an element of L. One can verify that a · p is finite-Support.
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Let X be an ordinal number, L be a right zeroed, add-associative, right
complementable, right unital, well unital, distributive, non trivial double
loop structure, p, s be polynomials of X,L, and x be an object. The functor
Subst(p, x, s) yielding a polynomial of X,L is defined by

(Def. 4) there exists a finite sequence S of elements of PolyRing(X,L) such that
it =

∑
S and len SgmX(BagOrderX,Support p) = lenS and for every i

such that i ∈ domS holds S(i) = p((SgmX(BagOrderX,Support p))/i) ·
(Subst((SgmX(BagOrderX,Support p))/i, x, s)).

Let O be an ordinal number, t be a bag of O, and p be a Z-valued polynomial
of O,RF. Let us observe that Subst(t, x, p) is Z-valued.

Let p, s be Z-valued polynomials of O,RF. Observe that Subst(p, x, s) is
Z-valued.

Now we state the propositions:

(36) Let us consider an ordinal number O, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial
double loop structure L, a polynomial p of O,L, a function x from O

into L, and a finite sequence P of elements of PolyRing(O,L). Suppose
p =

∑
P . Let us consider a finite sequence E of elements of L. Suppose

lenE = lenP and for every polynomial s of O,L and for every i such that
i ∈ domE and s = P (i) holds E(i) = eval(s, x). Then eval(p, x) =

∑
E.

Proof: Define P[natural number] ≡ for every natural number i such that
$1 = i and i ¬ lenP for every polynomial q of O,L such that q =

∑
(P �i)

holds
∑

(E�i) = eval(q, x). P[0]. If P[n], then P[n+ 1]. P[n]. �

(37) Let us consider a commutative, associative, Abelian, right zeroed, add-
associative, right complementable, well unital, distributive, non tri-
vial double loop structure R, polynomials p, s of O,R, an object i, and
a function x from O into R. Suppose i ∈ O. Then eval(Subst(p, i, s), x) =
eval(p, x+· (i, eval(s, x))).
Proof: Set x4 = x+·(i, eval(s, x)). SetB = SgmX(BagOrderO,Support p).
Consider f being a finite sequence of elements of R such that len f = lenB
and eval(p, x4) =

∑
f and for every element j of N such that 1 ¬ j ¬ len f

holds f/j = p·B/j ·(eval(B/j , x4)). Consider S being a finite sequence of ele-
ments of PolyRing(O,R) such that Subst(p, i, s) =

∑
S and lenB = lenS

and for every j such that j ∈ domS holds S(j) = p(B/j)·(Subst(B/j , i, s)).
For every polynomial q of O,R and for every j such that j ∈ dom f and
q = S(j) holds f(j) = eval(q, x). �
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5. Set of Variables Used in Multivariate Polynomial

Let X be a set, S be a zero structure, and p be a series of X, S. The functor
vars(p) yielding a subset of X is defined by

(Def. 5) for every object x, x ∈ it iff there exists a bag b of X such that b ∈
Support p and b(x) 6= 0.

Now we state the propositions:

(38) Let us consider an ordinal number X, a non empty zero structure S, and
a series p of X, S. Then vars(p) = ∅ if and only if p is constant.

(39) Let us consider a set X, a zero structure S, and a series p of X, S. Then
vars(p) =

⋃
{support b, where b is an element of BagsX : b ∈ Support p}.

(40) Let us consider a set X, a zero structure S, a series p of X, S, and
a bag b of X. If b ∈ Support p, then support b ⊆ vars(p). The theorem is
a consequence of (39).

Let X be an ordinal number, S be a non empty zero structure, and p be
a polynomial of X,S. Let us observe that vars(p) is finite.

Now we state the propositions:

(41) Let us consider a set X, a right zeroed, non empty additive loop structure
S, and series p, q of X, S. Then vars(p+ q) ⊆ vars(p) ∪ vars(q).

(42) Let us consider a set X, an add-associative, right zeroed, right comple-
mentable, non empty additive loop structure S, and a series p of X, S.
Then vars(p) = vars(−p).
Proof: vars(p) ⊆ vars(−p). Consider b being a bag of X such that b ∈
Support(−p) and b(x) 6= 0. �

(43) Let us consider an ordinal number X, an add-associative, right com-
plementable, right zeroed, right unital, distributive, non empty do-
uble loop structure S, and polynomials p, q of X,S. Then vars(p ∗ q) ⊆
vars(p) ∪ vars(q).

(44) Let us consider a set X, an add-associative, right zeroed, right comple-
mentable, right distributive, non empty double loop structure S, a series
p of X, S, and an element a of S. Then vars(a · p) ⊆ vars(p).

(45) Let us consider an ordinal number X, a right zeroed, add-associative,
right complementable, right unital, distributive, well unital, non trivial
double loop structure S, a polynomial p of X,S, and a natural number k.
Then vars(pk) ⊆ vars(p).
Proof: Define P[natural number] ≡ vars(p$1) ⊆ vars(p). p0 = 1 (X,S).
vars(p0) = ∅. If P[k], then P[k + 1]. P[k]. �
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(46) Let us consider an ordinal number X, a right zeroed, add-associative,
right complementable, right unital, distributive, well unital, non trivial
double loop structure S, a polynomial p of X,S, and a bag t of X. Then
vars(Subst(t, x, p)) ⊆ (support t) \ {x} ∪ vars(p). The theorem is a conse-
quence of (45).

(47) Let us consider an ordinal number X, a right zeroed, add-associative,
right complementable, right unital, distributive, well unital, non trivial
double loop structure S, and polynomials p, s of X,S.
Then vars(Subst(p, x, s)) ⊆ (vars(p)) \ {x} ∪ vars(s).
Proof:
Set P7 = PolyRing(X,S). Set S11 = SgmX(BagOrderX,Support p). Con-
sider F being a finite sequence of elements of P7 such that Subst(p, x, s) =∑
F and lenS11 = lenF and for every i such that i ∈ domF holds

F (i) = p(S11/i) ·(Subst(S11/i, x, s)). Define P[natural number] ≡ for every
natural number i such that i = $1 and i ¬ lenF for every polynomial q of
X,S such that q =

∑
(F �i) holds vars(q) ⊆ (vars(p)) \ {x} ∪ vars(s). P[0].

If P[n], then P[n+ 1]. P[n]. �

(48) Let us consider a set X, a non empty zero structure S, and an element
s of S. Then vars(Monom(s,EmptyBagX +· (x, n))) ⊆ {x}.

6. Polynomial Without the Last Variable

Let n be a natural number, L be a non empty zero structure, and p be a series
of n+ 1, L. The functor p-removed last yielding a series of n, L is defined by

(Def. 6) for every bag b of n, it(b) = p(b extended by 0).

Let p be a polynomial of n + 1,L. One can check that p-removed last is
finite-Support. Now we state the propositions:

(49) Let us consider a natural number n, a non empty zero structure L, and
a series p of n, L. Then (the p extended by 0)-removed last = p.
Proof: Set e0 = the p extended by 0. For every element a of Bagsn,
p(a) = (e0-removed last)(a) by [5, (6)]. �

(50) Let us consider a natural number n, a non empty zero structure L, and
a series p of n + 1, L. Suppose n /∈ vars(p). Then the p-removed last
extended by 0 = p.
Proof: Set r = p-removed last. For every element a of Bags(n+1), p(a) =
(the r extended by 0)(a). �

(51) Let us consider a natural number n, a right zeroed, add-associative,
right complementable, well unital, distributive, non trivial double loop
structure L, a polynomial p of n + 1,L, a function x from n into L, and
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a function y from n + 1 into L. Suppose n /∈ vars(p) and y�n = x. Then
eval(p-removed last, x) = eval(p, y). The theorem is a consequence of (50).

(52) Let us consider a natural number n, a non empty zero structure L, and
a series p of n+ 1, L. Then vars(p-removed last) ⊆ (vars(p)) \ {n}.

(53) Let us consider an ordinal number X, a right zeroed, add-associative,
right complementable, well unital, distributive, non trivial double loop
structure S, a polynomial p of X,S, an object i, and a function x from X

into S. Suppose i ∈ X \ (vars(p)). Let us consider an element s of S. Then
eval(p, x) = eval(p, x+· (i, s)).
Proof: Set x9 = x +· (o, s). Set S4 = SgmX(BagOrderX,Support p).
Consider y being a finite sequence of elements of the carrier of S such that
len y = lenS4 and eval(p, x) =

∑
y and for every element i of N such that

1 ¬ i ¬ len y holds y/i = p ·S4/i · (eval(S4/i, x)). Consider y3 being a finite
sequence of elements of the carrier of S such that len y3 = lenS4 and
eval(p, x9) =

∑
y3 and for every element i of N such that 1 ¬ i ¬ len y3

holds y3/i = p ·S4/i · (eval(S4/i, x9)). For every natural number i such that
1 ¬ i ¬ lenS4 holds y(i) = y3(i). �

7. Square Root Function – Some Generalization

Let n be an ordinal number, x be an object, A be a finite subset of n, and f
be a real-valued function. The functor f(x) + C

√
f(A1) + C

√
f(A2) + . . . yielding

a finite sequence of elements of CF is defined by

(Def. 7) len it = 1 + A and it(1) = f(x) and for every natural number i such
that i ∈ dom(SgmX(⊆n, A)) holds it(i + 1)2 = f((SgmX(⊆n, A))(i)) and
<(it(i+ 1)) ­ 0 and =(it(i+ 1)) ­ 0.

Let n be a natural number and f be a finite function.
The functor count reps(f, n) yielding a bag of n is defined by

(Def. 8) for every natural number i such that i ∈ n holds it(i) = f−1({i+ 1}).

Now we state the propositions:

(54) count reps(∅, n) = EmptyBag n.

(55) Let us consider a finite sequence f . Then count reps(f a 〈i + 1〉, n) =
count reps(f, n) + (EmptyBag n+· (i, 1)).
Proof: Set s1 = count reps(f a 〈i + 1〉, n). Set s = count reps(f, n).
Set E = EmptyBagn. For every object x such that x ∈ dom s1 holds
s1(x) = (s+ (E +· (i, 1)))(x). �

Let f be a finite function, L be a double loop structure, and E be a function.
The functor SgnL,E(f) yielding an element of L is defined by
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(Def. 9) for every natural number c such that

c = {x, where x is an element of dom f : x ∈ dom f and f(x) ∈ E(x)}
holds if c is even, then it = 1L and if c is odd, then it = −1L.

Now we state the propositions:

(56) Let us consider a double loop structure L, and a function E. Then
SgnL,E(∅) = 1L.

(57) Let us consider a double loop structure L, finite sequences f , e, an object
x, and a set E. Suppose len f = len e and x /∈ E. Then SgnL,(ea〈E〉)(f

a

〈x〉) = SgnL,e(f).
Proof: Set f5 = f a 〈x〉. Set e7 = e a 〈E〉. Set X1 = {x, where x is
an element of dom f5 : x ∈ dom f5 and f5(x) ∈ e7(x)}. SetX = {x, where
x is an element of dom f : x ∈ dom f and f(x) ∈ e(x)}. X ⊆ dom f .
X = X1. �

(58) Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure L, finite sequences f , e, an object x, and
a set E. Suppose len f = len e and x ∈ E. Then SgnL,(ea〈E〉)(f

a 〈x〉) =
−SgnL,e(f).
Proof: Set f5 = f a 〈x〉. Set e7 = e a 〈E〉. Set X1 = {x, where x is
an element of dom f5 : x ∈ dom f5 and f5(x) ∈ e7(x)}. SetX = {x, where
x is an element of dom f : x ∈ dom f and f(x) ∈ e(x)}. X ⊆ X1. X1 ⊆
dom f5. len f + 1 /∈ X. X1 ⊆ X ∪ {len f + 1}. �

(59) Let us consider an add-associative, right zeroed, right complementa-
ble, well unital, distributive, associative, Abelian, commutative, non
empty, non trivial double loop structure L, a natural number n, a finite
sequence f of elements of L, and a function x6 from n into L. Suppose
x6 = FS2XFS(f).

Let us consider a finite set F , an enumeration E of F , and a finite
sequence d. Suppose d ∈ domκ(SignGenOp(f, (the addition of L), F )) ·
E(κ). Then (the multiplication of L)�(App((SignGenOp(f, (the addition
of L), F )) · E))(d) = eval(Monom(SgnL,E(d), count reps(d, n)), x6).
Proof: Set M = the multiplication of L. Set A = the addition of L.
Define P[natural number] ≡ for every finite set F such that F = $1
for every enumeration E of F for every finite sequence d such that d ∈
domκ(SignGenOp(f,A, F )) ·E(κ) holds M�(App((SignGenOp(f,A, F )) ·
E))(d) = eval(Monom(SgnL,E(d), count reps(d, n)), x6). P[0]. If P[i], then
P[i+ 1]. P[i]. �

(60) Let us consider a finite function f . Suppose f has evenly repeated values.
Then (count reps(f, n))(x) is even.

(61) Let us consider a finite sequence f of elements of Seg n.
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Then degree(count reps(f, n)) = len f .
Proof: Define P[natural number] ≡ for every finite sequence f of elements
of Seg n such that len f = $1 holds degree(count reps(f, n)) = len f . P[0].
If P[i], then P[i+ 1]. P[i]. �

(62) Let us consider a double loop structure L, a finite function f , and a func-
tion E. Then

(i) SgnL,E(f) = 1L, or

(ii) SgnL,E(f) = −1L.

(63) Let us consider a finite sequence f of elements of Seg n, and i. Suppose
i ∈ n and count reps(f, n) = EmptyBag n +· (i, len f). Then f = len f 7→
(i+ 1).

(64) If i ∈ n, then count reps(m 7→ (i+ 1), n) = EmptyBag n+· (i,m).
Proof: Set E = EmptyBag n. Set s = count reps(m 7→ (i + 1), n). For
every x such that x ∈ n holds s(x) = (E +· (i,m))(x). �

8. Jpolynom

Let L be an Abelian, commutative, add-associative, right zeroed, right
complementable, associative, well unital, distributive, non empty, non trivial
double loop structure and m be a natural number. Assume m > 1.

A Jpoly of m, L is a polynomial of m,L defined by

(Def. 10) it(EmptyBagm +· (0, 2m−′1)) = 1L and for every bag b of m such that
b ∈ Support it holds degree(b) = 2m−

′1 and there exists an integer i such
that it(b) = i ?1L and if 2m−

′1 ∈ rng b, then it(b) = 1L or it(b) = −1L
and for every n, b(n) is even and for every finite sequence f of elements
of L and for every function x6 from m into L such that x6 = FS2XFS(f)
holds eval(it , x6) = SignGenOp(f, (the multiplication of L), (the addition
of L), (Segm) \ {1}).

Let f be a real-valued finite sequence. The functor C√f yielding a finite
sequence of elements of CF is defined by

(Def. 11) len it = len f and it(1) = f(1) and for every natural number i such that
i ∈ dom f and i 6= 1 holds it(i)2 = f(i) and <(it(i)) ­ 0 and =(it(i)) ­ 0.

Let L be a non empty 1-sorted structure, m be a set, and P be a series of
m, L. The functor J

√
·(P ) yielding a series of m, L is defined by

(Def. 12) for every bag b of m, it(b) = P (2 · b+· (0, b(0))).

Let L be a non empty zero structure, m be an ordinal number, and P be
a polynomial of m,L. Observe that J

√
·(P ) is finite-Support. Now we state the

propositions:
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(65) Let us consider a non empty zero structure L, a natural number m, and
a polynomial p of m,L. Suppose for every bag b of m for every n such
that b ∈ Support p holds b(n) is even. Let us consider a one-to-one finite
sequence C2 of elements of Bagsm. Suppose rngC2 = Support J

√
·(p).

Then there exists a one-to-one finite sequence S of elements of Bagsm
such that

(i) lenS = lenC2, and

(ii) rngS = Support p, and

(iii) for every i such that i ∈ domS holds S(i) = 2 ·C2/i +· (0, (C2/i)(0)).

Proof: Define B(bag of m) = 2 · $1 +· (0, $1(0)). Define F(object) =
B(C2/$1). Consider S being a finite sequence such that lenS = lenC2 and
for every k such that k ∈ domS holds S(k) = F(k). rngS ⊆ Support p.
Support p ⊆ rngS. S is one-to-one. �

(66) Let us consider a non trivial natural number m, a Jpoly of m, CF, a fi-
nite sequence f of elements of R, and functions x6, c2 from m into CF.
Suppose x6 = FS2XFS(f) and c2 = FS2XFS( C√f). Then eval(p, c2) =
eval(J

√
·(p), x6).

Proof: Reconsider L = CF as a field. Reconsider x7 = x6, c3 = c2 as
a function from m into L. Set c = J

√
·(p). Reconsider P = p, C = c as

a polynomial of m,L. Set C2 = SgmX(BagOrderm,SupportC). Consider
C3 being a finite sequence of elements of L such that lenC3 = lenC2
and eval(C, x7) =

∑
C3 and for every element i of N such that 1 ¬ i ¬

lenC3 holds C3/i = C · C2/i · (eval(C2/i, x7)). Consider S being a one-to-
one finite sequence of elements of Bagsm such that lenS = lenC2 and
rngS = Support p and for every i such that i ∈ domS holds S(i) =
2 ·C2/i +· (0, (C2/i)(0)). Consider y being a finite sequence of elements of

L such that len y = Support p and eval(P, c3) =
∑
y and for every natural

number i such that 1 ¬ i ¬ len y holds y/i = P · S/i · (eval(S/i, c3)). For
every i such that 1 ¬ i ¬ len y holds y(i) = C3(i). �

(67) Let us consider a finite sequence f2 of elements of CF, and a finite sequ-
ence f4 of elements of RF. If f2 = f4, then

∏
f2 =

∏
f4.

Proof: Reconsider F1 = CF, F2 = RF as a field. Define P[natural
number] ≡ for every finite sequence f2 of elements of F1 for every fini-
te sequence f4 of elements of F2 such that f2 = f4 and len f2 = $1 holds∏
f2 =

∏
f4. P[0]. If P[n], then P[n+ 1]. P[n]. �

(68) Let us consider an ordinal number m, a bag b of m, a function x5 from m

into CF, and a function x10 from m into RF. If x5 = x10, then eval(b, x5) =
eval(b, x10).
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Proof: Reconsider F1 = CF, F2 = RF as a field.
Set S = SgmX(⊆m, support b). Consider y1 being a finite sequence of ele-
ments of F1 such that len y1 = lenS and eval(b, x5) =

∏
y1 and for every

element i of N such that 1 ¬ i ¬ len y1 holds y1/i = powerF1(x5 ·S/i, b·S/i).
Consider y2 being a finite sequence of elements of F2 such that len y2 =
lenS and eval(b, x10) =

∏
y2 and for every element i of N such that

1 ¬ i ¬ len y2 holds y2/i = powerF2(x10 · S/i, b · S/i). For every i such
that 1 ¬ i ¬ lenS holds y1(i) = y2(i) by [3, (7)]. �

(69) Let us consider an ordinal number m, a polynomial P8 of m,CF, and
a polynomial P14 of m,RF. Suppose P8 = P14. Let us consider a function
x5 from m into CF, and a function x10 from m into RF. Suppose x5 = x10.
Then eval(P8, x5) = eval(P14, x10).
Proof: Reconsider F1 = CF, F2 = RF as a field.
Set S = SgmX(BagOrderm,SupportP8). Consider C3 being a finite se-
quence of elements of the carrier of F1 such that lenC3 = lenS and
eval(P8, x5) =

∑
C3 and for every element i of N such that 1 ¬ i ¬ lenC3

holds C3/i = P8 · S/i · (eval(S/i, x5)).
SupportP8 ⊆ SupportP14. SupportP14 ⊆ SupportP8. Consider R4

being a finite sequence of elements of the carrier of F2 such that lenR4 =
lenS and eval(P14, x10) =

∑
R4 and for every element i of N such that

1 ¬ i ¬ lenR4 holds R4/i = P14 · S/i · (eval(S/i, x10)). Define P[natural
number] ≡ for every natural number i such that i = $1 ¬ lenS holds∑

(R4�i) =
∑

(C3�i). P[0]. If P[n], then P[n+ 1]. P[n]. �

Let m be a natural number. Assume m > 1. Let M be a Jpoly of m, CF. The
functor J

√
C(M) yielding a Z-valued polynomial of m,RF is defined by the term

(Def. 13) J
√
·(M).

Now we state the proposition:

(70) Let us consider a non trivial natural number m, a Jpoly of m, CF, and
a function f from m into RF. Then eval(J

√
C(M), f) = 0 if and only

if there exists a subset A of (Segm) \ {1} such that (the addition of

CF)� SignGen( C
√

XFS2FS(@f), (the addition of CF), A) = 0.

Proof: Reconsider F = XFS2FS(@f) as a finite sequence of elements
of R. Set M3 = the multiplication of CF. Set A1 = the addition of CF.
Reconsider x6 = FS2XFS(F ) as a function from m into CF. Reconsider
c1 = C√F as an m-elements finite sequence of elements of CF. Reconsi-
der f3 = FS2XFS(c1) as a function from m into CF. eval(J

√
C(M), f) =

eval(J
√
·(M), x6). eval(J

√
C(M), f) = eval(M,f3). Set B = (Segm) \ {1}.

Set t1 = the enumeration of 2B. Set C1 = (SignGenOp(c1, A1, 2B)) · t1.
Define P[set] ≡ for every element X of Fin domC1 such that X = $1
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holds M3-
∑
X(A1 � C1) = 0CF iff there exists x such that x ∈ X and

0CF = (A1 � C1)(x).
For every element B9 of Fin domC1 and for every element b of domC1

such that P[B9] and b /∈ B9 holds P[B9 ∪ {b}]. For every element B of
Fin domC1, P[B]. If eval(J

√
C(M), f) = 0, then there exists a subset A of

(Segm) \ {1} such that A1 � SignGen( C
√

XFS2FS(@f), A1, A) = 0 by [6,
(80)]. Consider x such that x ∈ dom t1 and t1(x) = A. �

Let x, y, z, t be objects. Let us note that 〈x, y, z, t〉 is 4-elements. Let x be
a real number. Note that 〈x〉 is R-valued. Let x, y, z, t be real numbers. One
can check that 〈x, y, z, t〉 is R-valued. Now we state the propositions:

(71) Let us consider a real-valued finite sequence f . If i > 1 and f(i) ­ 0,
then ( C√f)(i) =

√
f(i). The theorem is a consequence of (2).

(72) Let us consider a finite sequence f of elements of CF, and a set A. Then
there exists an integer i such that

(i) i = 1 or i = −1, and

(ii) (SignGen(f, (the addition of CF), A))(x) = i · f(x).

9. Prime Representing Polynomial Construction

Now we state the propositions:

(73) Let us consider a Jpoly of 4, CF, and natural numbers x1, x2, x3. Sup-
pose x1 is odd and x2 is odd. Let us consider an integer z. Suppose
eval(J

√
C(M),@〈z, x1, 4 · x2, 16 · x3〉) = 0. Then

(i) x1 is a square, and

(ii) x2 is a square, and

(iii) x3 is a square, and

(iv) −z ¬ √x1 + 2 · √x2 + 4 · √x3.
Proof: Set A2 = the addition of CF. Set f = 〈z, x1, 4·x2, 16·x3〉. Consider

A being a subset of (Seg 4)\{1} such thatA2�SignGen( C
√

XFS2FS(@@f), A2,

A) = 0. Set c = C
√

XFS2FS(f). Set S = SignGen(c, A2, A). Set i4 = 1.
Consider i1 being an integer such that (i1 = 1 or i1 = −1) and S(2) =
i1 · c(2). Consider i2 being an integer such that (i2 = 1 or i2 = −1)
and S(3) = i2 · c(3). Consider i3 being an integer such that (i3 = 1 or
i3 = −1) and S(4) = i3·c(4). c(2) =

√
x1. c(3) =

√
4 · x2. c(4) =

√
4 · 4 · x3.

S(1) 6= 0. Set Y = z · z + 16 · x3 − x1 − 4 · x2. Y 6= 0. Reconsider Y1 =
2 · Y · 8 · (i4 · i3) · z ·

√
x3 as an integer. 16 · Y · z | Y1. Consider m being
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an integer such that 16 ·Y ·z ·m = Y1. Reconsider S3 =
√
x3 as an integer.

Set Z1 = i4 ·2 ·z−1+ i3 ·8 ·S3. Z1 6= 0. Set Y1 = Z1 ·Z1+16 ·x2−1−4 ·x1.
Y1 6= 0. Reconsider Y2 = 16 · Y1 · Z1 · i2 ·

√
x2 as an integer. Consider m1

being an integer such that 16 ·Y1 ·Z1 ·m1 = Y2. Reconsider Y3 = 2 · i1 ·
√
x1

as an integer. Consider m2 being an integer such that 2 ·m2 = Y3. �

(74) Let us consider a Jpoly of 4, CF, and natural numbers x1, x2, x3. Suppose
x1 is a square and x2 is a square and x3 is a square. Then there exists
an integer z such that

(i) −z =
√
x1 + 2 · √x2 + 4 · √x3, and

(ii) eval(J
√

C(M),@〈z, x1, 4 · x2, 16 · x3〉) = 0.

The theorem is a consequence of (71) and (70).

(75) Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, and a po-
lynomial p of n,L. Then there exists a polynomial q of n+m,L such that

(i) rng q ⊆ rng p ∪ {0L}, and

(ii) for every bag b of n + m, b ∈ Support q iff b�n ∈ Support p and for
every i such that i ­ n holds b(i) = 0, and

(iii) for every bag b of n+m such that b ∈ Support q holds q(b) = p(b�n),
and

(iv) for every function x from n into L and for every function y from
n+m into L such that y�n = x holds eval(p, x) = eval(q, y).

Proof: Define P[natural number] ≡ there exists a polynomial q of n+$1,L
such that rng q ⊆ rng p∪{0L} and for every bag b of n+ $1, b ∈ Support q
iff b�n ∈ Support p and for every i such that i ­ n holds b(i) = 0 and
for every bag b of n+ $1 such that b ∈ Support q holds q(b) = p(b�n) and
for every function x from n into L and for every function y from n + $1
into L such that y�n = x holds eval(p, x) = eval(q, y). P[0]. If P[k], then
P[k + 1]. P[k]. �

(76) Let us consider a Jpoly of 4, CF. Then there exists a Z-valued polynomial
K2 of 6,RF such that

(i) for every function f from 6 into RF such that f(5) 6= 0 holds eval(K2, f)

= powerRF(f/5, 8) · (eval(J
√

C(M),@〈−f(0) + f(4)
f(5) , f(1), f(2), f(3)〉)),

and

(ii) for every Z-valued function f from 6 into RF such that f(5) 6= 0 and
eval(K2, f) = 0 holds f(5) | f(4).

Proof: Set p = J
√

C(M). Set R = RF. Consider q being a polynomial
of 4 + 2,R such that rng q ⊆ rng p ∪ {0R} and for every bag b of 4 +
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2, b ∈ Support q iff b�4 ∈ Support p and for every i such that i ­ 4
holds b(i) = 0 and for every bag b of 4 + 2 such that b ∈ Support q
holds q(b) = p(b�4) and for every function x from 4 into R and for every
function y from 4+2 into R such that y�4 = x holds eval(p, x) = eval(q, y).
Set Y5 = EmptyBag 6 +· (0, 1). Set Y = Monom(−1R, Y5). Set Z9 =
EmptyBag 6 +· (4, 1). Set Z = Monom(1R, Z9). Set Y4 = Y + Z. Set
S15 = SgmX(BagOrder 6,Support q).

Consider S being a finite sequence of elements of PolyRing(6, R)
such that Subst(q, 0, Y4) =

∑
S and lenS15 = lenS and for every i

such that i ∈ domS holds S(i) = q(S15/i) · (Subst(S15/i, 0, Y4)). Set
E1 = EmptyBag 6. Set M1 = EmptyBag 4 +· (0, 8). Set M2 = E1+· (0, 8).
2 ·M1+· (0,M1(0)) = M1. For every x such that x ∈ 4 holds (M2�4)(x) =
M1(x). For every i such that i ­ 4 holds M2(i) = 0. Consider I being
an object such that I ∈ domS15 and S15(I) = M2. Define P[natural
number] ≡ (Y4$1)(E1+· (4, $1)) = 1R. Y40 = 1 (6, R). If P[i], then P[i+1].
P[i]. Set Z8 = E1 +· (4, 8). (Subst(S15/I , 0, Y4))(Z8) = (Y4M2(0))(Z8).
For every i such that i ∈ domS for every bag b of 6 such that b ∈
Support q(S15/i)·(Subst(S15/i, 0, Y4)) and b(4) ­ 8 holds i = I and b = Z8.

For every i such that i ∈ domS for every bag b of 6 such that b ∈
Support q(S15/i) · (Subst(S15/i, 0, Y4)) holds b(5) = 0. Define W[natural
number] ≡ for every natural number i such that $1 = i and i ¬ lenS for
every polynomial w of 6,R such that w =

∑
(S�i) holds if I ¬ i, then

w(Z8) = 1R and if i < I, then w(Z8) = 0R and for every bag b of 6 such
that b ∈ Supportw and b 6= Z8 holds b(4) < 8 and for every bag b of 6
such that b ∈ Supportw holds b(5) = 0. W[0]. If W[n], then W[n+ 1]. Set
S9 = Subst(q, 0, Y4). W[n]. Define J [bag of 6, element of R] ≡ if $1(4) +
$1(5) = 8, then $2 = S9($1+·(5, 0)) and if $1(4)+$1(5) 6= 8, then $2 = 0R.
For every element x of Bags 6, there exists an element y of R such that
J [x, y]. ConsiderW being a function from Bags 6 intoR such that for every
element x of Bags 6, J [x,W (x)]. Set S7 = SgmX(BagOrder 6, SupportS9).
Define O(object) = S7/$1 +· (5, 8−′ (S7/$1)(4)).

Consider S10 being a finite sequence such that lenS10 = lenS7 and for
every k such that k ∈ domS10 holds S10(k) = O(k). rngS10 ⊆ SupportW .
SupportW ⊆ rngS10. S10 is one-to-one. Reconsider R1 = R as a field.
Monom(−1R1 , Y5) = −Monom(1R1 , Y5). rngW ⊆ Z. Reconsider S8 = S9,
J = W as a polynomial of 6,R1. For every function f from 6 into RF
and for every element d of RF such that f(5) 6= 0 and d = f(4)

f(5) holds
eval(W, f) = powerRF(f/5, 8) · (eval(S9, f +· (4, d))). For every function
f from 6 into RF such that f(5) 6= 0 holds eval(W, f) = powerR(f/5, 8) ·
(eval(J

√
C(M),@〈−f(0)+ f(4)

f(5) , f(1), f(2), f(3)〉)). Set N = gcd(f(5), f(4)).
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Consider g5, g4 being integers such that f(5) = N · g5 and f(4) = N · g4
and g5 and g4 are relatively prime. Reconsider N5 = N , g2 = g5, g3 = g4
as an element of R. Set g = (f +· (4, g3)) +· (5, g2).

Reconsider g1 = g as a function from 6 into R1. rng g ⊆ Z. powerRF(N5,
8) 6= 0R. Set R8 = E1 +· (4, 8). Set M5 = Monom(1R1 , R8). Set S =
SgmX(BagOrder 6, Support(J−M5)). Consider R4 being a finite sequence
of elements of R1 such that lenR4 = lenS and eval(J−M5, g1) =

∑
R4 and

for every element i of N such that 1 ¬ i ¬ lenR4 holds R4/i = (J −M5) ·
S/i · (eval(S/i, g1)). Define P[natural number] ≡ for every natural number
i such that i = $1 ¬ lenS there exists an integer s such that s · g(5) =∑

(R4�i). P[0]. If P[n], then P[n + 1]. P[n]. Consider s being an integer
such that s · g(5) =

∑
(R4� lenR4). eval(R8, g) = powerR(g(4), 8). Define

H[natural number] ≡ if g5 | g4$1 , then g5 | g4. H[0]. If H[j], then H[j + 1].
H[j]. �

Let x be an integer. One can verify that 〈x〉 is Z-valued. Let x, y, z, t be
integers. Let us observe that 〈x, y, z, t〉 is Z-valued.

Now we state the propositions:

(77) There exists a Z-valued polynomial K3 of 8,RF such that for every na-
tural numbers x1, x2, x3, P , R, N for every integer V such that x1 is odd
and x2 is odd and P > 0 and N >

√
x1 + 2 · √x2 + 4 · √x3 + R holds x1

is a square and x2 is a square and x3 is a square and P | R and V ­ 0 iff
there exists a natural number z such that for every function f from 8 into
RF such that f = 〈z, x1, 4 ·x2, 16 ·x3〉a 〈R,P,N, V 〉 holds eval(K3, f) = 0.
Proof: Set M = the Jpoly of 4, CF. Set R3 = RF. Reconsider R1 = R3
as a field. Consider K2 being a Z-valued polynomial of 6,RF such that for
every function f from 6 into RF such that f(5) 6= 0 holds eval(K2, f) =
powerRF(f/5, 8) · (eval(J

√
C(M),@〈−f(0) + f(4)

f(5) , f(1), f(2), f(3)〉)) and for
every Z-valued function f from 6 into RF such that f(5) 6= 0 and eval(K2, f)
= 0 holds f(5) | f(4). Consider K28 being a polynomial of 6 + 2,R3 such
that rngK28 ⊆ rngK2∪{0R3} and for every bag b of 6+2, b ∈ SupportK28
iff b�6 ∈ SupportK2 and for every i such that i ­ 6 holds b(i) = 0 and for
every bag b of 6 + 2 such that b ∈ SupportK28 holds K28(b) = K2(b�6)
and for every function x from 6 into R3 and for every function y from
6 + 2 into R3 such that y�6 = x holds eval(K2, x) = eval(K28, y). Set n1 =
EmptyBag 8 +· (6, 1). Set n = Monom(1R3 , n1). Set v1 = EmptyBag 8 +·
(7, 1). Set v = Monom(−1R3 , v1). Set z3 = EmptyBag 8 +· (0, 1).

Set z = Monom(1R3 , z3). Monom(−1R1 , v1) = −Monom(1R1 , v1). Set
z4 = z + n ∗ v. Reconsider K3 = Subst(K28, 0, z4) as a Z-valued poly-
nomial of 8,R3. If x1 is a square and x2 is a square and x3 is a squ-
are and P | R and V ­ 0, then there exists a natural number z such
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that for every function f from 8 into RF such that f = 〈z, x1, 4 · x2, 16 ·
x3〉a 〈R,P,N, V 〉 holds eval(K3, f) = 0. Reconsider f = 〈zz, x1, 4 · x2, 16 ·
x3〉 a 〈R,P,N, V 〉 as a Z-valued function from 8 into RF. eval(K3, f) =
eval(K28, f+·(0, eval(z4, f))). Set y = −N · V +zz. Reconsider Y = y, z5 =
zz, N4 = N , V5 = V as an element of R3. eval(z3, f) = powerR3(f(0), 1).
eval(v1, f) = powerR3(f(7), 1). eval(n1, f) = powerR3(f(6), 1). Set f6 =
(f +· (0, Y ))�6. Consider d being a natural number such that P · d = R.
powerR3(f6/5, 8) 6= 0. x1 is a square and x2 is a square and x3 is a square
and −(−y + d) ¬ √x1 + 2 · √x2 + 4 · √x3. �

(78) Let us consider a set X, a right zeroed, non empty additive loop structure
S, series p, q of X, S, and a set V . Suppose vars(p) ⊆ V and vars(q) ⊆ V .
Then vars(p+ q) ⊆ V . The theorem is a consequence of (41).

(79) Let us consider an ordinal number X, an add-associative, right comple-
mentable, right zeroed, right unital, distributive, non empty double loop
structure S, polynomials p, q of X,S, and a set V . Suppose vars(p) ⊆ V

and vars(q) ⊆ V . Then vars(p ∗ q) ⊆ V . The theorem is a consequence of
(43).

(80) Let us consider a set X, an add-associative, right zeroed, right comple-
mentable, right distributive, non empty double loop structure S, a series p
of X, S, an element a of S, and a set V . If vars(p) ⊆ V , then vars(a·p) ⊆ V .
The theorem is a consequence of (44).

(81) Let us consider a set X, an add-associative, right zeroed, right comple-
mentable, non empty additive loop structure S, series p, q of X, S, and
a set V . Suppose vars(p) ⊆ V and vars(q) ⊆ V . Then vars(p − q) ⊆ V .
The theorem is a consequence of (42) and (41).

(82) There exists a Z-valued polynomial Z of 17,RF such that

(i) vars(Z) ⊆ {0} ∪ 17 \ 8, and

(ii) for every natural number x8 such that x8 > 0 holds x8+1 is prime iff
there exists a Z-valued function x from 17 into RF such that x/8 = x8
and x/9 is a positive natural number and x/10 is a positive natural
number and x/11 is a positive natural number and x/12 is a positive
natural number and x/13 is a positive natural number and x/14 is
a natural number and x/15 is a natural number and x/16 is a natural
number and x/0 is a natural number and eval(Z, x) = 0RF .

Proof: Set N = 17. Set E2 = EmptyBagN . Set V4 = N \ 8. n ∈ V4 iff
8 ¬ n < N . Set k = 8. Set P11 = Monom(1RF , E2+·(k, 1)). vars(P11) ⊆ V4.
For every function x from N into RF, eval(P11, x) = x/k. Set f = 9. Set
P9 = Monom(1RF , E2+·(f, 1)). vars(P9) ⊆ V4. For every function x fromN

into RF, eval(P9, x) = x/f . Set i = 10. Set Π = Monom(1RF , E2 +· (i, 1)).
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vars(Π) ⊆ V4. For every function x from N into RF, eval(Π, x) = x/i.
Set j = 11. Set P10 = Monom(1RF , E2 +· (j, 1)). vars(P10) ⊆ V4. For
every function x from N into RF, eval(P10, x) = x/j . Set m = 12. Set
P12 = Monom(1RF , E2+·(m, 1)). vars(P12) ⊆ V4. For every function x from
N into RF, eval(P12, x) = x/m. Set u = 13. Set P17 = Monom(1RF , E2 +·
(u, 1)). vars(P17) ⊆ V4. For every function x fromN into RF, eval(P17, x) =
x/u. Set r = 14. Set P14 = Monom(1RF , E2 +· (r, 1)). vars(P14) ⊆ V4. For
every function x from N into RF, eval(P14, x) = x/r.

Set s = 15. Set P15 = Monom(1RF , E2 +· (s, 1)). vars(P15) ⊆ V4. For
every function x from N into RF, eval(P15, x) = x/s. Set t = 16. Set
P16 = Monom(1RF , E2+· (t, 1)). vars(P16) ⊆ V4. For every function x from
N into RF, eval(P16, x) = x/t. Reconsider H1 = 100 as an integer element
of RF. Set O = 1 (N,RF). vars(O) ⊆ V4. Reconsider W = H1 · ((P9 ∗P11)∗
(P11 + O)) as a Z-valued polynomial of N ,RF. vars(W ) ⊆ V4. For every
function x from N into RF, eval(W,x) = H1 · (x/f ) · (x/k) · (x/k + 1RF).
Reconsider U = H1 · (((P17 ∗ P17) ∗ P17) ∗ ((W ∗W ) ∗W )) + O as a Z-
valued polynomial of N ,RF. vars(U) ⊆ V4. For every function x from N

into RF, eval(U, x) = H1 · (x/u)3 · (eval(W,x))3 + 1RF . Reconsider M =
H1 · ((P12 ∗U)∗W ) +O as a Z-valued polynomial of N ,RF. vars(M) ⊆ V4.
For every function x from N into RF, eval(M,x) = H1 ·(x/m) ·(eval(U, x)) ·
(eval(W,x)) + 1RF . Reconsider S = (M −O) ∗P15+P11+O as a Z-valued
polynomial of N ,RF. vars(S) ⊆ V4. For every function x from N into RF,
eval(S, x) = (eval(M,x)− 1RF) · (x/s) + x/k + 1RF .

Reconsider T = (M ∗ U − O) ∗ P16 + W − P11 + O as a Z-valued
polynomial of N ,RF. vars(T ) ⊆ V4. For every function x from N into RF,
eval(T, x) = ((eval(M,x))·(eval(U, x))−1RF)·(x/t)+eval(W,x)−x/k+1RF .
Reconsider T2 = 2 as an integer element of RF. Reconsider Q = T2 · (M ∗
W ) − W ∗ W − O as a Z-valued polynomial of N ,RF. vars(Q) ⊆ V4.
For every function x from N into RF, eval(Q, x) = T2 · (eval(M,x)) ·
(eval(W,x))− (eval(W,x))2 − 1RF . Reconsider L = (P11 +O) ∗Q as a Z-
valued polynomial of N ,RF. vars(L) ⊆ V4. For every function x from N

into RF, eval(L, x) = (x/k+1RF)·(eval(Q, x)). Reconsider A = M ∗(U+O)
as a Z-valued polynomial of N ,RF. vars(A) ⊆ V4. For every function x

from N into RF, eval(A, x) = (eval(M,x)) · (eval(U, x) + 1RF). Reconsider
B = W + O as a Z-valued polynomial of N ,RF. vars(B) ⊆ V4. For every
function x from N into RF, eval(B, x) = eval(W,x) + 1RF . Reconsider
C = P14 + W + O as a Z-valued polynomial of N ,RF. vars(C) ⊆ V4. For
every function x from N into RF, eval(C, x) = x/r + eval(W,x) + 1RF .

Reconsider D = (A ∗A−O) ∗ (C ∗C) +O as a Z-valued polynomial of
N ,RF. vars(D) ⊆ V4. For every function x from N into RF, eval(D,x) =
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((eval(A, x))2 − 1RF) · (eval(C, x))2 + 1RF . Reconsider E = T2 · ((((Π ∗
C) ∗ C) ∗ L) ∗ D) as a Z-valued polynomial of N ,RF. vars(E) ⊆ V4. For
every function x from N into RF, eval(E, x) = T2 · (x/i) · (eval(C, x))2 ·
(eval(L, x)) · (eval(D,x)). Reconsider F = (A∗A−O)∗ (E ∗E)+O as a Z-
valued polynomial of N ,RF. vars(F ) ⊆ V4. For every function x from N

into RF, eval(F, x) = ((eval(A, x))2−1RF) ·(eval(E, x))2+1RF . Reconsider
G = A+F ∗ (F −A) as a Z-valued polynomial of N ,RF. vars(G) ⊆ V4. For
every function x from N into RF, eval(G, x) = eval(A, x) + (eval(F, x)) ·
(eval(F, x)− eval(A, x)). Reconsider H = B + T2 · ((P10 −O) ∗C) as a Z-
valued polynomial of N ,RF. vars(H) ⊆ V4. For every function x from N

into RF, eval(H,x) = eval(B, x)+T2 · (x/j−1RF) · (eval(C, x)). Reconsider
I = (G∗G−O)∗(H ∗H)+O as a Z-valued polynomial of N ,RF. vars(I) ⊆
V4. For every function x from N into RF, eval(I, x) = ((eval(G, x))2−1RF)·
(eval(H,x))2 + 1RF .

Reconsider X1 = (M ∗M−O)∗(S ∗S)+O as a Z-valued polynomial of
N ,RF. vars(X1) ⊆ V4. For every function x from N into RF, eval(X1, x) =
((eval(M,x))2 − 1RF) · (eval(S, x))2 + 1RF . Reconsider X2 = ((M ∗ U) ∗
(M ∗U)−O) ∗ (T ∗T ) +O as a Z-valued polynomial of N ,RF. vars(X2) ⊆
V4. For every function x from N into RF, eval(X2, x) = (((eval(M,x)) ·
(eval(U, x)))2 − 1RF) · (eval(T, x))2 + 1RF . Reconsider X3 = (D ∗ F ) ∗ I
as a Z-valued polynomial of N ,RF. vars(X3) ⊆ V4. For every function
x from N into RF, eval(X3, x) = (eval(D,x)) · (eval(F, x)) · (eval(I, x)).
Reconsider P = F ∗ L as a Z-valued polynomial of N ,RF. vars(P ) ⊆ V4.
For every function x from N into RF, eval(P, x) = (eval(F, x))·(eval(L, x)).
Reconsider R = (H − C) ∗ L + (F ∗ (P9 + O)) ∗ Q + (F ∗ (P11 + O)) ∗
(((W ∗ W − O) ∗ S) ∗ P17 − (W ∗ W ) ∗ (P17 ∗ P17) + O) as a Z-valued
polynomial of N ,RF. vars(R) ⊆ V4. For every function x from N into RF,
eval(R, x) = (eval(H,x)−eval(C, x))·(eval(L, x))+(eval(F, x))·(x/f+1RF)·
(eval(Q, x))+(eval(F, x)) · (x/k+1RF) · (((eval(W,x))2−1RF) · (eval(S, x)) ·
(x/u)− (eval(W,x))2 · (x/u)2 + 1RF).

Reconsider E4 = 8 as an integer element of RF. Reconsider V1 =
E4 · ((((P9 ∗ P17) ∗ S) ∗ T ) ∗ (P14 − ((P12 ∗ S) ∗ T ) ∗ U)) as a Z-valued
polynomial of N ,RF. vars(V1) ⊆ V4. For every function x from N into
RF, eval(V1, x) = E4 · (x/f · (x/u) · (eval(S, x)) · (eval(T, x)) · (x/r − x/m ·
(eval(S, x)) · (eval(T, x)) · (eval(U, x)))). Reconsider F4 = 4 as an integer
element of RF. Reconsider V2 = F4 · (((P17 ∗ P17) ∗ (S ∗ S)) ∗ (T ∗ T )) as
a Z-valued polynomial of N ,RF. vars(V2) ⊆ V4. For every function x from
N into RF, eval(V2, x) = F4 ·(x/u)2 ·(eval(S, x))2 ·(eval(T, x))2. Reconsider
V3 = (F4 ·(P9∗P9)−O)∗((P14−((P12∗S)∗T )∗U)∗(P14−((P12∗S)∗T )∗U))
as a Z-valued polynomial of N ,RF. vars(V3) ⊆ V4. For every function x
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from N into RF, eval(V3, x) = (F4 · (x/f )2− 1RF) · (x/r−x/m · (eval(S, x)) ·
(eval(T, x)) · (eval(U, x)))2. Reconsider N1 = M ∗ S + T2 · ((M ∗ U) ∗ T )
as a Z-valued polynomial of N ,RF. vars(N1) ⊆ V4. For every function x

from N into RF, eval(N1, x) = (eval(M,x)) ·(eval(S, x))+T2 ·(eval(M,x)) ·
(eval(U, x)) · (eval(T, x)).

Reconsider N2 = F4 · (((((A ∗ A) ∗ C) ∗ E) ∗ G) ∗ H) as a Z-valued
polynomial of N ,RF. vars(N2) ⊆ V4. For every function x from N into
RF, eval(N2, x) = F4 · ((eval(A, x)) · (eval(A, x)) · (eval(C, x)) · (eval(E, x)) ·
(eval(G, x)) · (eval(H,x))). Reconsider V = V1−V2−V3−O as a Z-valued
polynomial of N ,RF. Reconsider N3 = N1 + N2 + R + O as a Z-valued
polynomial of N ,RF. vars(V ) ⊆ V4. vars(N3) ⊆ V4. For every function
x from N into RF such that x/k is a positive natural number and x/f
is a positive natural number and x/i is a positive natural number and
x/j is a positive natural number and x/m is a positive natural number
and x/u is a positive natural number and x/r is a natural number and
x/s is a natural number and x/t is a natural number holds eval(X1, x)
is an odd natural number and eval(X2, x) is an odd natural number and
eval(X3, x) is a natural number and eval(P, x) is a positive natural number
and eval(R, x) is a natural number and eval(N3, x) is a natural number and
eval(N3, x) >

√
eval(X1, x)+2·

√
eval(X2, x)+4·

√
eval(X3, x)+eval(R, x).

Consider K3 being a Z-valued polynomial of 8,RF such that for every
natural numbers x1, x2, x3, P , R, N and for every integer V such that x1
is odd and x2 is odd and P > 0 and N >

√
x1+2 ·√x2+4 ·√x3+R holds

x1 is a square and x2 is a square and x3 is a square and P | R and V ­ 0 iff
there exists a natural number z such that for every function f from 8 into
RF such that f = 〈z, x1, 4 ·x2, 16 ·x3〉a 〈R,P,N, V 〉 holds eval(K3, f) = 0.
Consider Z being a polynomial of 8 + 9,RF such that rngZ ⊆ rngK3 ∪
{0RF} and for every bag b of 8 + 9, b ∈ SupportZ iff b�8 ∈ SupportK3
and for every i such that i ­ 8 holds b(i) = 0 and for every bag b of 8 + 9
such that b ∈ SupportZ holds Z(b) = K3(b�8) and for every function x

from 8 into RF and for every function y from 8 + 9 into RF such that
y�8 = x holds eval(K3, x) = eval(Z, y). Reconsider Z1 = Subst(Z, 1, X1)
as a Z-valued polynomial of N ,RF. Reconsider Z2 = Subst(Z1, 2, F4·X2) as
a Z-valued polynomial of N ,RF. Reconsider Z3 = Subst(Z2, 3, F4 ·F4 ·X3)
as a Z-valued polynomial of N ,RF. Reconsider Z4 = Subst(Z3, 4, R) as
a Z-valued polynomial of N ,RF. Reconsider Z5 = Subst(Z4, 5, P ) as a Z-
valued polynomial of N ,RF. Reconsider Z6 = Subst(Z5, 6, N3) as a Z-
valued polynomial of N ,RF. Reconsider Z7 = Subst(Z6, 7, V ) as a Z-valued
polynomial of N ,RF.

For every natural number x8 such that x8 > 0 holds x8+ 1 is prime iff
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there exists a Z-valued function x from N into RF such that x/k = x8 and
x/f is a positive natural number and x/i is a positive natural number and
x/j is a positive natural number and x/m is a positive natural number and
x/u is a positive natural number and x/r is a natural number and x/s is
a natural number and x/t is a natural number and x/0 is a natural number
and eval(Z7, x) = 0RF by [7, (23)]. vars(Z) ⊆ 8. vars(Z1) ⊆ (vars(Z))\{1}∪
vars(X1). vars(F4 ·X2) ⊆ V4. vars(Z2) ⊆ (vars(Z1)) \ {2} ∪ vars(F4 ·X2).
vars(F4 · F4 · X3) ⊆ V4. vars(Z3) ⊆ (vars(Z2)) \ {3} ∪ vars(F4 · F4 · X3).
vars(Z4) ⊆ (vars(Z3))\{4}∪vars(R). vars(Z5) ⊆ (vars(Z4))\{5}∪vars(P ).
vars(Z6) ⊆ (vars(Z5)) \ {6} ∪ vars(N3). vars(Z7) ⊆ (vars(Z6)) \ {7} ∪
vars(V ). �

(83) Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, and a poly-
nomial p of n+m,L. Suppose vars(p) ⊆ n. Then there exists a polynomial
q of n,L such that

(i) vars(q) ⊆ n, and

(ii) rng q ⊆ rng p, and

(iii) for every bag b of n + m, b�n ∈ Support q and for every i such that
i ­ n holds b(i) = 0 iff b ∈ Support p, and

(iv) for every bag b of n+m such that b ∈ Support p holds q(b�n) = p(b),
and

(v) for every function x from n+m into L and for every function y from
n into L such that x�n = y holds eval(p, x) = eval(q, y).

Proof: Define P[natural number] ≡ $1 ¬ m and there exists a polynomial
q of n + $1,L such that vars(q) ⊆ n and rng q ⊆ rng p and for every bag
b of n + m, b�(n + $1) ∈ Support q and for every i such that i ­ n + $1
holds b(i) = 0 iff b ∈ Support p and for every bag b of n + m such that
b ∈ Support p holds q(b�(n + $1)) = p(b) and for every function x from
n + m into L and for every function y from n + $1 into L such that
x�(n+ $1) = y holds eval(p, x) = eval(q, y). There exists k such that P[k].
For every natural number k such that k 6= 0 and P[k] there exists a natural
number n such that n < k and P[n]. P[0]. �

(84) Let us consider an ordinal number X, a non empty zero structure L,
a series s of X, L, and a permutation p4 of X. Then vars(the s permuted
by p4) ⊆ p4◦(vars(s)).

(85) Prime Representing Polynomial with 10 Variables:
There exists a Z-valued polynomial P13 of 10,RF such that for every po-
sitive natural number k, k + 1 is prime iff there exists a natural-valued
function v from 10 into RF such that v(1) = k and eval(P13, v) = 0RF .
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Proof: Consider p1 being a Z-valued polynomial of 17,RF such that
vars(p1) ⊆ {0} ∪ 17 \ 8 and for every natural number x8 such that x8 > 0
holds x8+1 is prime iff there exists a Z-valued function x from 17 into RF
such that x/8 = x8 and x/9 is a positive natural number and x/10 is a po-
sitive natural number and x/11 is a positive natural number and x/12 is
a positive natural number and x/13 is a positive natural number and x/14 is
a natural number and x/15 is a natural number and x/16 is a natural num-
ber and x/0 is a natural number and eval(p1, x) = 0RF . Set N = 16. Set
I2 = idseq(N). Set E = 9. Set I1 = idseq(E). Consider f being a finite se-
quence such that I2 = I1

af . Set R = faI1. Set Z = id{0}. Set R2 = R+·Z.
Z17 \(rng f) ⊆ Z10. For every i such that 1 ¬ i ¬ 9 holds (R2−1)(i) = i+7
and R2(i + 7) = i. Set P2 = the p1 permuted by R2. Reconsider p2 = P2
as a Z-valued polynomial of 10 + 7,RF. vars(p2) ⊆ R2◦(vars(p1)).

Consider p3 being a polynomial of 10,RF such that vars(p3) ⊆ 10 and
rng p3 ⊆ rng p2 and for every bag b of 10 + 7, b�10 ∈ Support p3 and for
every i such that i ­ 10 holds b(i) = 0 iff b ∈ Support p2 and for every
bag b of 10 + 7 such that b ∈ Support p2 holds p3(b�10) = p2(b) and for
every function x from 10+7 into RF and for every function y from 10 into
RF such that x�10 = y holds eval(p2, x) = eval(p3, y). For every natural
number x8 such that x8 > 0 holds x8 + 1 is prime iff there exists a Z-
valued function x from 10 into RF such that x(0) is a natural number
and x(1) = x8 and x(2) is a positive natural number and x(3) is a positive
natural number and x(4) is a positive natural number and x(5) is a positive
natural number and x(6) is a positive natural number and x(7) is a natural
number and x(8) is a natural number and x(9) is a natural number and
eval(p3, x) = 0RF . Set E2 = EmptyBag 10. Set O = 1 (10,RF). Set P2 =
Monom(1RF , E2+· (2, 1)) +O. Set P3 = Monom(1RF , E2+· (3, 1)) +O. Set
P4 = Monom(1RF , E2+·(4, 1))+O. Set P5 = Monom(1RF , E2+·(5, 1))+O.
Set P6 = Monom(1RF , E2 +· (6, 1)) +O.

Reconsider Z2 = Subst(p3, 2, P2) as a Z-valued polynomial of 10,RF.
Reconsider Z3 = Subst(Z2, 3, P3) as a Z-valued polynomial of 10,RF.
Reconsider Z4 = Subst(Z3, 4, P4) as a Z-valued polynomial of 10,RF.
Reconsider Z5 = Subst(Z4, 5, P5) as a Z-valued polynomial of 10,RF.
Reconsider Z6 = Subst(Z5, 6, P6) as a Z-valued polynomial of 10,RF.
vars(O) = ∅. vars(Monom(1RF , E2+·(5, 1)))∪vars(O) ⊆ {5}∪∅. vars(P5) ⊆
vars(Monom(1RF , E2+·(5, 1)))∪vars(O). vars(Monom(1RF , E2+·(4, 1)))∪
vars(O) ⊆ {4} ∪ ∅. vars(P4) ⊆ vars(Monom(1RF , E2 +· (4, 1))) ∪ vars(O).
vars(Monom(1RF , E2+·(3, 1)))∪vars(O) ⊆ {3}∪∅. vars(P3) ⊆ vars(Monom

(1RF , E2 +· (3, 1))) ∪ vars(O). vars(Monom(1RF , E2 +· (2, 1))) ∪ vars(O) ⊆
{2} ∪ ∅. vars(P2) ⊆ vars(Monom(1RF , E2 +· (2, 1))) ∪ vars(O).
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If k + 1 is prime, then there exists a natural-valued function v from
10 into RF such that v(1) = k and eval(Z6, v) = 0RF . Set V10 = V V +·
(6, eval(P6, V V )). eval(Z6, V V ) = eval(Z5, V10). Set V9 = V10+·(5, eval(P5,
V V )). eval(P5, V10) = eval(P5, V V ). eval(Z5, V10) = eval(Z4, V9). Set V8 =
V9+·(4, eval(P4, V V )). eval(P4, V9) = eval(P4, V10). eval(Z4, V9) = eval(Z3,
V8).Set V7 = V8+·(3, eval(P3, V V )). eval(P3, V8)=eval(P3, V9). eval(Z3, V8)
= eval(Z2, V7). Set V6 = V7+·(2, eval(P2, V V )). eval(P2, V7) = eval(P2, V8).
eval(Z2, V7) = eval(p3, V6). For every natural number y such that y = 0 or
y = 1 or y = 7 or y = 8 or y = 9 holds V6(y) = V V (y). �
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1. Preliminaries

Let L be a non empty double loop structure. One can verify that the double
loop structure of L is non empty. Let L be a non trivial double loop structure.
One can verify that the double loop structure of L is non trivial. Let L be a non
degenerated double loop structure. One can verify that the double loop structure
of L is non degenerated. Let L be an add-associative double loop structure. One
can check that the double loop structure of L is add-associative.

Let L be a right zeroed double loop structure. Let us note that the double
loop structure of L is right zeroed. Let L be a right complementable double loop
structure. Observe that the double loop structure of L is right complementable.
Let L be an Abelian double loop structure. Let us observe that the double loop
structure of L is Abelian. Let L be an associative double loop structure. One
can check that the double loop structure of L is associative.

Let L be a well unital, non empty double loop structure. Observe that the do-
uble loop structure of L is well unital. Let L be a left distributive, non empty
double loop structure. One can check that the double loop structure of L is
left distributive. Let L be a right distributive, non empty double loop struc-
ture. Observe that the double loop structure of L is right distributive. Let L
be a commutative double loop structure. One can verify that the double loop
structure of L is commutative.

Let L be an integral domain-like, non empty double loop structure. Let
us note that the double loop structure of L is integral domain-like. Let L be
an almost left invertible double loop structure. Observe that the double loop
structure of L is almost left invertible. Now we state the proposition:

(1) Let us consider a field F . Then the double loop structure of F ≈ F .

Let F be a field. Let us note that there exists an extension of F which is strict.
Let L be an F -monomorphic field. Let us note that there exists an extension
of L which is F -homomorphic and F -monomorphic and there exists an element
of the carrier of PolyRing(F ) which is monic and irreducible. Let F be a non
algebraic closed field. Observe that there exists an element of the carrier of
PolyRing(F ) which is monic and non constant and has not roots. Now we state
the propositions:

(2) Let us consider a field F1, an F1-monomorphic, F1-homomorphic field
F2, a monomorphism h of F1 and F2, and an element p of the carrier of
PolyRing(F1). Then (PolyHom(h))(−p) = −(PolyHom(h))(p).

(3) Let us consider a field F1, an F1-monomorphic, F1-homomorphic field
F2, a monomorphism h of F1 and F2, and elements p, q of the carrier of
PolyRing(F1). If p | q, then (PolyHom(h))(p) | (PolyHom(h))(q).
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Let F1 be a field, F2 be an F1-monomorphic, F1-homomorphic field, h be
a monomorphism of F1 and F2, and p be a non constant element of the car-
rier of PolyRing(F1). Let us observe that (PolyHom(h))(p) is non constant as
an element of the carrier of PolyRing(F2).

Let R be a GCD domain and a, b be elements of R. We say that a and b are
relatively prime if and only if

(Def. 1) 1R is a GCD of a and b.

Let us consider a field F and elements p, q of the carrier of PolyRing(F ).
Now we state the propositions:

(4) p and q are relatively prime if and only if gcd(p, q) = 1.F .

(5) If p and q are relatively prime, then p and q have no common roots.

(6) Let us consider a field F , and an element p of the carrier of PolyRing(F ).
Then there exists an extension E of F and there exists an F-algebraic
element a of E such that p = MinPoly(a, F ) if and only if p is monic and
irreducible.

(7) Let us consider a field F , and an irreducible element p of the carrier of
PolyRing(F ). Then there exists an F -finite extension E of F such that

(i) deg(E,F ) = deg(p), and

(ii) p has a root in E.

The theorem is a consequence of (6).

(8) Let us consider a field F , and a non constant element p of the carrier of
PolyRing(F ). Then there exists an F -finite extension E of F such that

(i) p has a root in E, and

(ii) deg(E,F ) ¬ deg(p).

The theorem is a consequence of (7).

(9) Let us consider a field F , an F-algebraic extension E of F , an E-extending
extension K of F , and an element a of K. If a is E-algebraic, then a is
F-algebraic.

(10) Let us consider fields F1, F2, L, an extension E1 of F1, a E1-extending
extension K1 of F1, a function h1 from F1 into L, a function h2 from E1
into L, and a function h3 from K1 into L. Suppose h2 is h1-extending and
h3 is h2-extending. Then h3 is h1-extending.

Let F be a field. Let us observe that every extension of F is F -monomorphic
and F -homomorphic.

Let E be an extension of F . Let us note that there exists a field which is
E-homomorphic, E-monomorphic, F -homomorphic, and F -monomorphic.
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2. Sequences of Fields

A sequence is a function defined by

(Def. 2) dom it = N.

Let us observe that every sequence is N-defined.
Let f be a binary relation. We say that f is field-yielding if and only if

(Def. 3) for every object x such that x ∈ rng f holds x is a field.

Observe that there exists a sequence which is field-yielding and every func-
tion which is field-yielding is also 1-sorted yielding.

Let f be a field-yielding sequence and i be an element of N. One can check
that the functor f(i) yields a field. Let i be a natural number. Observe that the
functor f(i) yields a field.

The scheme RecExField deals with a field A and a ternary predicate P and
states that

(Sch. 1) There exists a field-yielding sequence f such that f(0) = A and for every
natural number n, P[n, f(n), f(n+ 1)]

provided

• for every natural number n and for every field x, there exists a field y such
that P[n, x, y].

Let f be a field-yielding sequence. We say that f is ascending if and only if

(Def. 4) for every element i of N, f(i+ 1) is an extension of f(i).

Note that there exists a field-yielding sequence which is ascending.
Let f be a field-yielding sequence. The support of f yielding a non empty

set is defined by the term

(Def. 5)
⋃

the set of all the carrier of f(i) where i is an element of N.

Now we state the propositions:

(11) Let us consider an ascending, field-yielding sequence f , elements i, j of
N, and an element a of f(i). If i ¬ j, then a ∈ the carrier of f(j).
Proof: Define P[natural number] ≡ there exists an element k of N such
that k = i + $1 and a ∈ the carrier of f(k). For every natural number k,
P[k]. Consider n being a natural number such that i+ n = j. �

(12) Let us consider an ascending, field-yielding sequence f , and elements i,
j of N. If i ¬ j, then f(j) is an extension of f(i).
Proof: Define P[natural number] ≡ there exists an element k of N such
that k = i + $1 and f(k) is an extension of f(i). P[0]. For every natural
number k, P[k]. Consider n being a natural number such that i + n = j.
�
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(13) Let us consider an ascending, field-yielding sequence f , elements i, j of
N, elements x2, y2 of f(i), and elements x3, y3 of f(j). Suppose x2 = x3
and y2 = y3. Then

(i) x2 + y2 = x3 + y3, and

(ii) x2 · y2 = x3 · y3.

The theorem is a consequence of (12).

Let f be an ascending, field-yielding sequence. The functor addseq(f) yiel-
ding a binary operation on the support of f is defined by

(Def. 6) for every elements a, b of the support of f , there exists an element i of
N and there exist elements x, y of f(i) such that x = a and y = b and
it(a, b) = x+ y.

The functor multseq(f) yielding a binary operation on the support of f is
defined by

(Def. 7) for every elements a, b of the support of f , there exists an element i of
N and there exist elements x, y of f(i) such that x = a and y = b and
it(a, b) = x · y.

The functor SeqField(f) yielding a strict double loop structure is defined by

(Def. 8) the carrier of it = the support of f and the addition of it = addseq(f)
and the multiplication of it = multseq(f) and the one of it = 1f(0) and
the zero of it = 0f(0).

Now we state the propositions:

(14) Let us consider an ascending, field-yielding sequence f , and an element
i of N. Then

(i) 1SeqField(f) = 1f(i), and

(ii) 0SeqField(f) = 0f(i).

Proof: Define P[natural number] ≡ there exists an element k of N such
that k = $1 and 1f(k) = 1f(0) and 0f(k) = 0f(0). For every natural number
k, P[k]. �

(15) Let us consider an ascending, field-yielding sequence f , elements a, b of
SeqField(f), an element i of N, and elements x, y of f(i). If x = a and
y = b, then a+ b = x+ y and a · b = x · y. The theorem is a consequence
of (13).

Let f be an ascending, field-yielding sequence. Observe that SeqField(f) is
non degenerated and SeqField(f) is Abelian, add-associative, right zeroed, and
right complementable and SeqField(f) is commutative, associative, well unital,
distributive, and almost left invertible. Now we state the propositions:
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(16) Let us consider an ascending, field-yielding sequence f , and an element
i of N. Then f(i) is a subfield of SeqField(f).
Proof: Set F = f(i). Set K = SeqField(f). The addition of F =
(the addition of K) � (the carrier of F ). The multiplication of F =
(the multiplication of K) � (the carrier of F ). 1F = 1K and 0F = 0K . �

(17) Let us consider a field E, and an ascending, field-yielding sequence f .
Suppose for every element i of N, f(i) is a subfield of E. Then SeqField(f)
is a subfield of E.
Proof: Set F = SeqField(f). The carrier of F ⊆ the carrier of K.
The addition of F = (the addition ofK) � (the carrier of F ). The multipli-
cation of F = (the multiplication of K) � (the carrier of F ). �

(18) Let us consider an ascending, field-yielding sequence f , and a finite
subset X of SeqField(f). Then there exists an element i of N such that
X ⊆ the carrier of f(i).
Proof: Define P[natural number]≡for every finite subsetX of SeqField(f)
such that X = $1 there exists an element i of N such that X ⊆ the carrier
of f(i). P[0]. P[1]. For every natural number k, P[k]. Consider n being
a natural number such that X = n. Consider i being an element of N such
that X ⊆ the carrier of f(i). �

3. Maximal Algebraic and Algebraic Closed Fields

Let F be a field. We say that F is maximal algebraic if and only if

(Def. 9) for every F-algebraic extension E of F , E ≈ F .

Let us consider a field F . Now we state the propositions:

(19) F is maximal algebraic if and only if F is algebraic closed. The theorem
is a consequence of (7).

(20) F is algebraic closed if and only if every non constant polynomial over
F has roots.

(21) F is algebraic closed if and only if for every irreducible element p of
the carrier of PolyRing(F ), deg(p) = 1.

(22) F is algebraic closed if and only if for every non constant polynomial p
over F , p splits in F .

(23) F is algebraic closed if and only if every non constant, monic polynomial
over F is a product of linear polynomials of F .

(24) F is algebraic closed if and only if for every elements p, q of the carrier
of PolyRing(F ), p and q are relatively prime iff p and q have no common
roots. The theorem is a consequence of (4) and (5).
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(25) F is algebraic closed if and only if for every F-algebraic extension E of
F , E ≈ F . The theorem is a consequence of (19).

(26) F is algebraic closed if and only if for every F -finite extension E of F ,
E ≈ F . The theorem is a consequence of (19).

Let us note that every field which is algebraic closed is also infinite.

4. Existence of Algebraic Closures

Let F be a field. A closure sequence of F is an ascending, field-yielding
sequence defined by

(Def. 10) it(0) = F and for every element i of N and for every field K and for
every extension E of K such that K = it(i) and E = it(i + 1) for every
non constant element p of the carrier of PolyRing(K), p has a root in E.

Now we state the proposition:

(27) Let us consider an ascending, field-yielding sequence f , and a polynomial
p over SeqField(f). Then there exists an element i of N such that p is
a polynomial over f(i). The theorem is a consequence of (18) and (16).

Let F be a field and f be a closure sequence of F . Let us observe that
SeqField(f) is F -extending and SeqField(f) is algebraic closed.

Now we state the proposition:

(28) Let us consider a field F . Then there exists an extension E of F such
that E is algebraic closed.

Let F be a field. An algebraic closure of F is an extension of F defined by

(Def. 11) it is F-algebraic and algebraic closed.

Note that every algebraic closure of F is F-algebraic and algebraic closed
and there exists an algebraic closed field which is F -homomorphic and F -
monomorphic. Now we state the propositions:

(29) Let us consider a field F . Then there exists a field E such that E is
an algebraic closure of F .

(30) Let us consider a field F , and an F-algebraic extension E of F . Then
there exists an algebraic closure A of F such that E is a subfield of A.

Let F be a field and E be an F-algebraic extension of F . Let us observe that
there exists an algebraic closure of F which is E-extending.

Now we state the propositions:

(31) Let us consider a field F , and an F-algebraic extension E of F . Then
every algebraic closure of E is an algebraic closure of F .

(32) Let us consider a field F , an extension E of F , and an algebraic closure
A of F . If A is E-extending, then A is an algebraic closure of E.
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(33) Let us consider a field F , and algebraic closures A1, A2 of F . If A1 is
A2-extending, then A2 ≈ A1. The theorem is a consequence of (25).

5. Some More Preliminaries

Let R be a ring and S be an R-homomorphic ring. Observe that there exists
a ring which is S-homomorphic and R-homomorphic.

Let T be an S-homomorphic ring, f be an additive function from R into S,
and g be an additive function from S into T . Let us note that g · f is additive
as a function from R into T .

Let f be a multiplicative function from R into S and g be a multiplicative
function from S into T . Let us note that g ·f is multiplicative as a function from
R into T .

Let f be a unity-preserving function from R into S and g be a unity-
preserving function from S into T . Let us note that g · f is unity-preserving
as a function from R into T . Now we state the propositions:

(34) Let us consider a field F , and an extension E of F . Then idF is a mo-
nomorphism of F and E.
Proof: Reconsider f = idF as a function from F into E. f is additive,
multiplicative, unity-preserving, and monomorphic. �

(35) Let us consider a ring R, an R-homomorphic ring S, an S-homomorphic,
R-homomorphic ring T , an additive function f from R into S, and an ad-
ditive function g from S into T . Then PolyHom(g · f) = PolyHom(g) ·
PolyHom(f).

(36) Let us consider a ring R, an R-homomorphic ring S, an R-homomorphic,
S-homomorphic ring T , an additive function f from R into S, and an addi-
tive function g from S into T . Suppose g ·f = idR. Then PolyHom(g ·f) =
idPolyRing(R). The theorem is a consequence of (35).

(37) Let us consider fields F1, F2, and an extension E of F1. If F1 ≈ F2, then
E is an extension of F2.

(38) Let us consider fields F1, F2. Suppose F1 ≈ F2. Then

(i) 0.F1 = 0.F2, and

(ii) 1.F1 = 1.F2.

(39) Let us consider fields F1, F2, and a polynomial p over F1. If F1 ≈ F2,
then p is a polynomial over F2.

(40) Let us consider fields F1, F2, and a non zero polynomial p over F1.
If F1 ≈ F2, then p is a non zero polynomial over F2. The theorem is
a consequence of (39) and (38).
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(41) Let us consider fields F1, F2, a polynomial p over F1, a polynomial q
over F2, an element a of F1, and an element b of F2. Suppose F1 ≈ F2 and
p = q and a = b. Then eval(p, a) = eval(q, b).

(42) Let us consider fields F1, F2, an extension E1 of F1, an extension E2 of
F2, a polynomial p over F1, a polynomial q over F2, an element a of E1,
and an element b of E2. Suppose F1 ≈ F2 and E1 ≈ E2 and p = q and
a = b. Then ExtEval(p, a) = ExtEval(q, b). The theorem is a consequence
of (41).

(43) Let us consider fields F1, F2, and an F1-algebraic extension E of F1.
If F1 ≈ F2, then E is an F2-algebraic extension of F2. The theorem is
a consequence of (37), (40), and (42).

(44) Let us consider fields F1, F2, and an algebraic closure E of F1. If F1 ≈ F2,
then E is an algebraic closure of F2. The theorem is a consequence of (43).

Let X be a set. We say that X is field-membered if and only if

(Def. 12) for every object x such that x ∈ X holds x is a field.

Observe that there exists a set which is field-membered and non empty.
Let X be a non empty, field-membered set.
One can check that an element of X is a field. Let F be a field. The functor

SubFields(F ) yielding a set is defined by

(Def. 13) for every object o, o ∈ it iff there exists a strict field K such that o = K

and K is a subfield of F .

One can check that SubFields(F ) is non empty and field-membered. Now
we state the proposition:

(45) Let us consider fields F , K. Then K ∈ SubFields(F ) if and only if K is
a strict subfield of F .

6. Uniqueness of Algebraic Closures

Let F be a field, E be an extension of F , L be an F -monomorphic field,
and f be a monomorphism of F and L. The functor ExtSet(f,E) yielding a non
empty set is defined by the term

(Def. 14) {〈〈K, g〉〉, where K is an element of SubFields(E), g is a function from K

into L : there exists an extension K1 of F and there exists a function g1
from K1 into L such that K1 = K and g1 = g and g1 is monomorphic and
f -extending}.

Note that every element of ExtSet(f,E) is pair.
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Let p be an element of ExtSet(f,E). One can verify that the functor (p)1
yields a strict extension of F . One can verify that the functor (p)2 yields a func-
tion from (p)1 into L. Now we state the proposition:

(46) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, a strict extension K of F , and a function
g from K into L. Suppose g is monomorphic. Then 〈〈K, g〉〉 ∈ ExtSet(f,E)
if and only if E is an extension of K and F is a subfield of K and g is
f -extending. The theorem is a consequence of (45).

Let F be a field, E be an extension of F , L be an F -monomorphic field, f
be a monomorphism of F and L, and p, q be elements of ExtSet(f,E). We say
that p ¬ q if and only if

(Def. 15) (q)1 is an extension of (p)1 and for every extension K of (p)1 and for
every function g from K into L such that K = (q)1 and g = (q)2 holds g
is (p)2-extending.

Let S be a non empty subset of ExtSet(f,E). We say that S is ascending if
and only if

(Def. 16) for every elements p, q of S, p ¬ q or q ¬ p.
One can check that there exists a non empty subset of ExtSet(f,E) which

is ascending. Now we state the propositions:

(47) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and an element p of ExtSet(f,E). Then
p ¬ p.

(48) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and elements p, q of ExtSet(f,E). If
p ¬ q ¬ p, then p = q.

(49) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and elements p, q, r of ExtSet(f,E).
If p ¬ q ¬ r, then p ¬ r.

Let F be a field, E be an extension of F , L be an F -monomorphic field, f
be a monomorphism of F and L, and S be a non empty subset of ExtSet(f,E).
The functor unionCarrier(S, f,E) yielding a non empty set is defined by the
term

(Def. 17)
⋃

the set of all the carrier of (p)1 where p is an element of S.

Let S be an ascending, non empty subset of ExtSet(f,E). The functors:
unionAdd(S, f,E) and unionMult(S, f,E) yielding binary operations on union
Carrier(S, f,E) are defined by conditions

(Def. 18) for every elements a, b of unionCarrier(S, f,E), there exists an element
p of S and there exist elements x, y of (p)1 such that x = a and y = b and
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unionAdd(S, f,E)(a, b) = x+ y,

(Def. 19) for every elements a, b of unionCarrier(S, f,E), there exists an element
p of S and there exist elements x, y of (p)1 such that x = a and y = b and
unionMult(S, f,E)(a, b) = x · y,

respectively. The functors: unionOne(S, f,E) and unionZero(S, f,E) yielding
elements of unionCarrier(S, f,E) are defined by conditions

(Def. 20) there exists an element p of S such that unionOne(S, f,E) = 1(p)1 ,

(Def. 21) there exists an element p of S such that unionZero(S, f,E) = 0(p)1 ,

respectively. The functor unionField(S, f,E) yielding a strict double loop struc-
ture is defined by

(Def. 22) the carrier of it = unionCarrier(S, f,E) and the addition of it = union
Add(S, f,E) and the multiplication of it = unionMult(S, f,E) and the one
of it = unionOne(S, f,E) and the zero of it = unionZero(S, f,E).

Now we state the propositions:

(50) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, a non empty subset S of ExtSet(f,E),
elements p, q of S, and an element a of (p)1. If p ¬ q, then a ∈ the carrier
of (q)1.

(51) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, an ascending, non empty subset S of
ExtSet(f,E), and an element p of S. Then

(i) 1unionField(S,f,E) = 1(p)1 , and

(ii) 0unionField(S,f,E) = 0(p)1 .

(52) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, an ascending, non empty subset S of
ExtSet(f,E), elements a, b of unionField(S, f,E), an element p of S, and
elements x, y of (p)1. If x = a and y = b, then a+b = x+y and a ·b = x ·y.

Let F be a field, E be an extension of F , L be an F -monomorphic field,
f be a monomorphism of F and L, and S be an ascending, non empty subset
of ExtSet(f,E). Let us observe that unionField(S, f,E) is non degenerated and
unionField(S, f,E) is Abelian, add-associative, right zeroed, and right comple-
mentable and unionField(S, f,E) is commutative, associative, well unital, di-
stributive, and almost left invertible. Now we state the proposition:

(53) Let us consider a field F , an extension E of F , an F -monomorphic
field L, a monomorphism f of F and L, an ascending, non empty sub-
set S of ExtSet(f,E), and an element p of S. Then (p)1 is a subfield of
unionField(S, f,E).
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Proof: SetK = unionField(S, f,E). The addition of (p)1 = (the addition
of K) � (the carrier of (p)1). The multiplication of (p)1 = (the multiplicat-
ion of K) � (the carrier of (p)1). 1(p)1 = 1K and 0K = 0(p)1 . �

Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and an ascending, non empty subset S of
ExtSet(f,E). Now we state the propositions:

(54) F is a subfield of unionField(S, f,E). The theorem is a consequence of
(53).

(55) unionField(S, f,E) is a subfield of E.
Proof: Set K = unionField(S, f,E). The carrier of K ⊆ the carrier
of E. The addition of K = (the addition of E) � (the carrier of K).
The multiplication of K = (the multiplication of E) � (the carrier of K).
Set p = the element of S. Consider U being an element of SubFields(E),
g being a function from U into L such that p = 〈〈U, g〉〉 and there exists
an extension K1 of F and there exists a function g1 from K1 into L such
that K1 = U and g1 = g and g1 is monomorphic and f -extending. (p)1 is
a subfield of E. 1K = 1(p)1 . 0K = 0(p)1 . �

Let F be a field, E be an extension of F , L be an F -monomorphic field, f
be a monomorphism of F and L, and S be an ascending, non empty subset of
ExtSet(f,E). Note that unionField(S, f,E) is F -extending.

The functor unionExt(S, f,E) yielding a function from unionField(S, f,E)
into L is defined by

(Def. 23) for every element p of S, it�(the carrier of (p)1) = (p)2.

Now we state the proposition:

(56) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and an ascending, non empty subset S
of ExtSet(f,E). Then unionExt(S, f,E) is monomorphic and f -extending.
The theorem is a consequence of (51) and (53).

Let F be a field, E be an extension of F , L be an F -monomorphic field, f
be a monomorphism of F and L, and S be an ascending, non empty subset of
ExtSet(f,E). The functor supS yielding an element of ExtSet(f,E) is defined
by the term

(Def. 24) 〈〈unionField(S, f,E), unionExt(S, f,E)〉〉.
Now we state the propositions:

(57) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, an ascending, non empty subset S of
ExtSet(f,E), and an element p of S. Then p ¬ supS. The theorem is
a consequence of (53).
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(58) Let us consider a field F , an extension E of F , an F-algebraic element a
of E, an F -monomorphic, algebraic closed field L, and a monomorphism f

of F and L. Then there exists a function g from FAdj(F, {a}) into L such
that g is monomorphic and f -extending. The theorem is a consequence of
(3) and (2).

(59) Let us consider a field F , an F-algebraic extension E of F , an F -monomor-
phic, algebraic closed field L, and a monomorphism f of F and L. Then
there exists a function g from E into L such that g is monomorphic and
f -extending. The theorem is a consequence of (47), (49), (48), (57), (45),
(58), (10), and (1).

(60) Let us consider a field F , an extension E of F , an F -homomorphic,
E-homomorphic field L, a homomorphism f from F to L, and a homo-
morphism g from E to L. Suppose g is f -extending. Then Im f is a subfield
of Im g.

(61) Let us consider a field F , an algebraic closure A of F , an A-monomorphic,
A-homomorphic field L, and a monomorphism g of A and L. Then Im g

is algebraic closed.
Proof: Reconsider f = g−1 as a function from Im g into A. f is additive,
multiplicative, unity-preserving, and monomorphic. �

(62) Let us consider a field F , an F -monomorphic, F -homomorphic field L,
an algebraic closure A of F , and a monomorphism f of F and L. Suppose
L is an algebraic closure of Im f . Let us consider a function g from A

into L. If g is monomorphic and f -extending, then g is isomorphism. The
theorem is a consequence of (61), (60), and (33).

(63) Let us consider a field F , and algebraic closures A1, A2 of F . Then A1
and A2 are isomorphic over F .
Proof: Reconsider L = A2 as an F -monomorphic, F -homomorphic, al-
gebraic closed field. Reconsider f = idF as a monomorphism of F and L.
Consider g being a function from A1 into L such that g is monomorphic
and f -extending. The double loop structure of F ≈ F . Im f = the double
loop structure of F by [4, (7)]. L is an algebraic closure of Im f . g is
isomorphism. �
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1. Preliminaries

From now on X denotes a real unitary space and x, y, y1, y2 denote points
of X. Now we state the proposition:

(1) Let us consider a real unitary space X, points x, y of X, and points z,
t of MetricSpaceNorm(the real normed space of X). If x = z and y = t,
then ‖x− y‖ = ρ(z, t).

Let us consider a real unitary spaceX, an element z of MetricSpaceNorm(the
real normed space of X), and a real number r. Now we state the propositions:

(2) There exists a point x of X such that

(i) x = z, and

(ii) Ball(z, r) = {y, where y is a point of X : ‖x− y‖ < r}.
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The theorem is a consequence of (1).

(3) There exists a point x of X such that

(i) x = z, and

(ii) Ball(z, r) = {y, where y is a point of X : ‖x− y‖ ¬ r}.

The theorem is a consequence of (1).

(4) Let us consider a real unitary space X, a sequence S of X, a sequence
S1 of MetricSpaceNorm(the real normed space of X), a point x of X, and
a point x2 of MetricSpaceNorm(the real normed space of X). Suppose
S = S1 and x = x2. Then S1 is convergent to x2 if and only if for every
real number r such that 0 < r there exists a natural number m such that
for every natural number n such that m ¬ n holds ‖S(n) − x‖ < r. The
theorem is a consequence of (1).

Let us consider a real unitary space X, a sequence S of X, and a sequ-
ence S1 of MetricSpaceNorm(the real normed space of X). Now we state the
propositions:

(5) If S = S1, then S1 is convergent iff S is convergent. The theorem is
a consequence of (4).

(6) If S = S1 and S1 is convergent, then limS1 = limS. The theorem is
a consequence of (5) and (4).

2. Topological Space Generated from Real Unitary Space

Now we state the proposition:

(7) Let us consider a real unitary space X, and a subset V of TopSpaceNorm
(the real normed space of X). Then V is open if and only if for every
point x of X such that x ∈ V there exists a real number r such that
r > 0 and {y, where y is a point of X : ‖x− y‖ < r} ⊆ V . The theorem is
a consequence of (2).

Let us consider a real unitary space X, a point x of X, and a real number
r. Now we state the propositions:

(8) {y, where y is a point of X : ‖x − y‖ < r} is an open subset of
TopSpaceNorm(the real normed space of X). The theorem is a consequ-
ence of (2).

(9) {y, where y is a point of X : ‖x − y‖ ¬ r} is a closed subset of
TopSpaceNorm(the real normed space of X). The theorem is a consequ-
ence of (3).
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(10) Let us consider a real unitary spaceM , a subsetX of TopSpaceNorm(the
real normed space of M), and an object x. Then x ∈ X if and only if there
exists a sequence S of M such that for every natural number n, S(n) ∈ X
and S is convergent and limS = x. The theorem is a consequence of (5)
and (6).

(11) Let us consider a real unitary space M , and a subset X of TopSpaceNorm
(the real normed space of M). Then X is closed if and only if for every
sequence S of M such that for every natural number n, S(n) ∈ X and S

is convergent holds limS ∈ X. The theorem is a consequence of (5) and
(6).

(12) Let us consider a real unitary space S, and a subset X of S. Then X is
a closed subset of TopSpaceNorm(the real normed space of S) if and only
if for every sequence s1 of S such that rng s1 ⊆ X and s1 is convergent
holds lim s1 ∈ X. The theorem is a consequence of (11).

(13) Let us consider a real unitary space S, a point x of S, a point y of
MetricSpaceNorm(the real normed space of S), and a real number r. If
x = y, then Ball(x, r) = Ball(y, r). The theorem is a consequence of (1).

(14) Let us consider a real unitary space S. Then TopSpaceNorm(the real
normed space of S) = TopUnitSpaceS. The theorem is a consequence of
(13).

Let us consider a real unitary space S, a subset U of S, and a subset V of
TopSpaceNorm(the real normed space of S). Now we state the propositions:

(15) If U = V , then U is closed iff V is closed.

(16) If U = V , then U is open iff V is open.

(17) Let us consider a real unitary space X, a subspace M of X, and points
x, m0 of X. Suppose m0 ∈ M . Then for every point m of X such that
m ∈ M holds ‖x −m0‖ ¬ ‖x −m‖ if and only if for every point m of X
such that m ∈M holds ((x−m0)|m) = 0.

(18) Let us consider a real unitary space X, a subspace M of X, and points
x, m1, m2 of X. Suppose m1, m2 ∈ M and for every point m of X such
that m ∈M holds ‖x−m1‖ ¬ ‖x−m‖ and for every point m of X such
that m ∈M holds ‖x−m2‖ ¬ ‖x−m‖. Then m1 = m2.

(19) Let us consider a real Hilbert space of X, a subspace M of X, and a point
x of X. Suppose the carrier of M is a closed subset of TopSpaceNorm(the
real normed space of X). Then there exists a point m0 of X such that

(i) m0 ∈M , and

(ii) for every point m of X such that m ∈M holds ‖x−m0‖ ¬ ‖x−m‖.
The theorem is a consequence of (12).
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Let X be a real unitary space and M be a subset of X. The functor
OrtCompSet(M) yielding a non empty subset of X is defined by

(Def. 1) for every point x of X, x ∈ it iff for every point y of X such that y ∈M
holds (y|x) = 0.

Now we state the propositions:

(20) Let us consider a real unitary space X, and a subset M of X. Then
OrtCompSet(M) is linearly closed.
Proof: For every vectors v, u of X such that v, u ∈ OrtCompSet(M)
holds v+u ∈ OrtCompSet(M). For every real number a and for every vec-
tor v of X such that v ∈ OrtCompSet(M) holds a · v ∈ OrtCompSet(M).
�

(21) Let us consider a real unitary space X, a non empty subset M of X, and
a sequence s2 of X. Suppose rng s2 ⊆ the carrier of OrtComp(M) and s2
is convergent. Then lim s2 ∈ the carrier of OrtComp(M).

(22) Let us consider a real unitary space S, a non empty subset M of S,
and a subset L of S. Suppose L = the carrier of OrtComp(M). Then
L is a closed subset of TopSpaceNorm(the real normed space of S). The
theorem is a consequence of (21) and (12).

(23) Let us consider a real unitary space X. Then every non empty subset of
X is a subset of OrtComp(OrtComp(M)).

(24) Let us consider a real unitary space X, and non empty subsets S, T of
X. Suppose S ⊆ T . Then OrtComp(T ) is a subspace of OrtComp(S).

(25) Let us consider a real Hilbert space of X, and a subspace M of X. Suppo-
se X is strict and the carrier of M is a closed subset of TopSpaceNorm(the
real normed space ofX). ThenX is the direct sum ofM and OrtComp(M).
Proof: For every object z, z ∈ the carrier of M + OrtComp(M) iff z ∈
the carrier of X. For every object z, z ∈ the carrier of M ∩OrtComp(M)
iff z ∈ {0X}. �

(26) Let us consider a real Hilbert space of X, and a strict subspace M

of X. Suppose X is strict and the carrier of M is a closed subset of
TopSpaceNorm(the real normed space of X).
Then M = OrtComp(OrtComp(M)).
Proof: Reconsider N = the carrier of M as a subset of X. N is a subset of
OrtComp(OrtComp(N)). The carrier of OrtComp(OrtComp(M)) ⊆ N .
�

(27) Let us consider a real unitary space X, a subspace M of X, a subset
K of X, and a subset L of TopSpaceNorm(the real normed space of X).
Suppose the carrier of M = L and K = L. Then K is linearly closed.
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Proof: For every vectors v, u of X such that v, u ∈ K holds v + u ∈ K.
For every real number a and for every vector v of X such that v ∈ K holds
a · v ∈ K by (10), [3, (15)]. �

(28) Let us consider a real Hilbert space of X, and a non empty subset M of
X. Suppose X is strict. Then

(i) the carrier of OrtComp(OrtComp(M)) is a closed subset of TopSpace-
Norm(the real normed space of X), and

(ii) there exists a subset L of TopSpaceNorm(the real normed space of X)
such that L = the carrier of Lin(M) and the carrier of OrtComp(Ort-
Comp(M)) = L, and

(iii) Lin(M) is a subspace of OrtComp(OrtComp(M)).

(29) Let us consider a real Hilbert space of X, a strict subspace K of X,
and a non empty subset M of X. Suppose X is strict and the carrier of
K is a closed subset of TopSpaceNorm(the real normed space of X) and
Lin(M) is a subspace of K. Then OrtComp(OrtComp(M)) is a subspace
of K.

Acknowledgement: The authors would also like to express our gratitude
to Prof. Yasunari Shidama for his support and encouragement.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[3] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Subspaces and cosets of sub-
space of real unitary space. Formalized Mathematics, 11(1):1–7, 2003.

[4] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Topology of real unitary space.
Formalized Mathematics, 11(1):33–38, 2003.

[5] David G. Luenberger. Optimization by Vector Space Methods. John Wiley and Sons, 1969.
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