Contents

Prime Representing Polynomial with 10 Unknowns - Introduction.
Part II

Existence and Uniqueness of Algebraic Closures
By ChRISTOPH SCHWARZWELLER 281

Formalization of Orthogonal Decomposition for Hilbert Spaces By Hiroyuki Okazaki .. 295

Prime Representing Polynomial with 10 Unknowns - Introduction. Part II

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Summary. In our previous work [7] we prove that the set of prime numbers is diophantine using the 26 -variable polynomial proposed in [4. In this paper, we focus on the reduction of the number of variables to 10 and it is the smallest variables number known today [5], 10]. Using the Mizar [3, [2] system, we formalize the first step in this direction by proving Theorem 15 formulated as follows: Let $k \in \mathbb{N}$. Then k is prime if and only if there exists $f, i, j, m, u \in \mathbb{N}^{+}$, $r, s, t \in \mathbb{N}$ unknowns such that

$$
\begin{gather*}
D F I \text { is square } \wedge\left(M^{2}-1\right) S^{2}+1 \text { is square } \wedge \\
\left((M U)^{2}-1\right) T^{2}+1 \text { is square } \wedge \\
\left(4 f^{2}-1\right)(r-m S T U)^{2}+4 u^{2} S^{2} T^{2}<8 f u S T(r-m S T U) \\
F L \mid(H-C) Z+F(f+1) Q+F(k+1)\left(\left(W^{2}-1\right) S u-W^{2} u^{2}+1\right) \tag{0.1}
\end{gather*}
$$

where auxiliary variables $A-I, L, M, S-W, Q \in \mathbb{Z}$ are simply abbreviations defined as follows $W=100 \mathrm{fk}(k+1), U=100 u^{3} W^{3}+1, M=100 \mathrm{mUW}+1$, $S=(M-1) s+k+1, T=(M U-1) t+W-k+1, Q=2 M W-W^{2}-1, L=(k+1) Q$, $A=M(U+1), B=W+1, C=r+W+1, D=\left(A^{2}-1\right) C^{2}+1, E=2 i C^{2} L D$, $F=\left(A^{2}-1\right) E^{2}+1, G=A+F(F-A), H=B+2(j-1) C, I=\left(G^{2}-1\right) H^{2}+1$. It is easily see that (0.1) uses 8 unknowns explicitly along with five implicit one for each diophantine relationship: is square, inequality, and divisibility. Together with k this gives a total of 14 variables. This work has been partially presented in 8 .

MSC: 11D45 68V20
Keywords: polynomial reduction; diophantine equation
MML identifier: HILB10_8, version: 8.1.12 5.72.1435

1. Theta Notation

From now on A denotes a non trivial natural number, B, C, n, m, k denote natural numbers, and e denotes a natural number.

Let θ be a real number. We say that θ is theta if and only if (Def. 1) $-1 \leqslant \theta \leqslant 1$.

Let us observe that 0 is theta and there exists a real number which is theta.
A Theta is a theta real number. Let θ be a Theta. Let us observe that $-\theta$ is theta.

Let u be a Theta. Let us note that $\theta \cdot u$ is theta. Now we state the propositions:
(1) Let us consider a Theta θ. Then $|\theta| \leqslant 1$.
(2) Let us consider a Theta θ, and real numbers $\lambda, \varepsilon_{1}, \varepsilon_{2}$. Suppose $\lambda=\theta \cdot \varepsilon_{1}$ and $\left|\varepsilon_{1}\right| \leqslant\left|\varepsilon_{2}\right|$. Then there exists a Theta θ_{1} such that $\lambda=\theta_{1} \cdot \varepsilon_{2}$.
(3) Let us consider Theta's θ_{1}, θ_{2}, and real numbers $\lambda, \varepsilon_{1}, \varepsilon_{2}$. Suppose $\lambda=\left(1+\theta_{1} \cdot \varepsilon_{1}\right) \cdot\left(1+\theta_{2} \cdot \varepsilon_{2}\right)$ and $0 \leqslant \varepsilon_{1} \leqslant 1$ and $0 \leqslant \varepsilon_{2}$. Then there exists a Theta θ such that $\lambda=1+\theta \cdot\left(\varepsilon_{1}+2 \cdot \varepsilon_{2}\right)$.
(4) Let us consider Theta's θ_{1}, θ_{2}, and real numbers $\varepsilon_{1}, \varepsilon_{2}$. Suppose $\theta_{1} \cdot \varepsilon_{1} \leqslant$ $\varepsilon_{2} \leqslant \theta_{2} \cdot \varepsilon_{1}$. Then there exists a Theta θ such that $\varepsilon_{2}=\theta \cdot \varepsilon_{1}$.
(5) Let us consider a Theta θ, and real numbers $\lambda, \varepsilon_{1}, \varepsilon_{2}$. Suppose $\lambda=\theta \cdot \varepsilon_{1}$ and $\varepsilon_{1} \leqslant \varepsilon_{2}$ and $0 \leqslant \varepsilon_{1}$. Then there exists a Theta θ_{1} such that $\lambda=\theta_{1} \cdot \varepsilon_{2}$. The theorem is a consequence of (2).
(6) Let us consider Theta's θ_{1}, θ_{2}, and real numbers $\varepsilon_{1}, \varepsilon_{2}$. Suppose $0 \leqslant \varepsilon_{1}$ and $0 \leqslant \varepsilon_{2}$. Then there exists a Theta θ such that $\theta_{1} \cdot \varepsilon_{1}+\theta_{2} \cdot \varepsilon_{2}=\theta \cdot\left(\varepsilon_{1}+\varepsilon_{2}\right)$. The theorem is a consequence of (4).
(7) Let us consider a Theta θ_{1}, and a real number ε. Suppose $0 \leqslant \varepsilon \leqslant \frac{1}{2}$. Then there exists a Theta θ_{2} such that $\frac{1}{1+\theta_{1} \cdot \varepsilon}=1+\theta_{2} \cdot 2 \cdot \varepsilon$. The theorem is a consequence of (2).
(8) If $m^{2} \leqslant n$, then there exists a Theta θ such that $\binom{n}{m}=\frac{n^{m}}{m!} \cdot\left(1+\theta \cdot \frac{m^{2}}{n}\right)$. Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1}^{2} \leqslant n$, then there exists a Theta θ such that $\binom{n}{\$_{1}}=\frac{n^{\Phi_{1}}}{\$_{1}!} \cdot\left(1+\theta \cdot \frac{\Phi_{1}^{2}}{n}\right)$. For every m such that $\mathcal{P}[m]$ holds $\mathcal{P}[m+1]$. For every $m, \mathcal{P}[m]$.
(9) Let us consider a Theta θ, and real numbers α, ε. Suppose $\alpha=(1+\theta \cdot \varepsilon)^{n}$ and $0 \leqslant \varepsilon \leqslant \frac{1}{2 \cdot n}$. Then there exists a Theta θ_{1} such that $\alpha=1+\theta_{1} \cdot 2 \cdot n \cdot \varepsilon$. Proof: Define \mathcal{P} [natural number] \equiv for every Theta θ for every real numbers α, ε such that $\alpha=(1+\theta \cdot \varepsilon)^{\$_{1}}$ and $0 \leqslant \varepsilon \leqslant \frac{1}{2 \cdot \Phi_{1}}$ there exists a Theta θ_{1} such that $\alpha=1+\theta_{1} \cdot 2 \cdot \$_{1} \cdot \varepsilon$. $\mathcal{P}[0]$. If $\mathcal{P}[m]$, then $\mathcal{P}[m+1]$. $\mathcal{P}[m]$.

2. More on Solutions to Pell's Equation

In the sequel a denotes a non trivial natural number. Now we state the propositions:
(10) If $n \leqslant a$, then there exists a Theta θ such that $\mathrm{y}_{a}(n+1)=(2 \cdot a)^{n} \cdot(1+$ $\left.\theta \cdot \frac{n}{a}\right)$. The theorem is a consequence of (9) and (4).
(11) Let us consider a non trivial natural number a, and natural numbers y, n. Suppose $y>0$ and $n>0$ and $\left(a^{2}-1\right) \cdot y^{2}+1$ is a square and $y \equiv n(\bmod a-1)$ and $y \leqslant \mathrm{y}_{a}(a-1)$ and $n \leqslant a-1$. Then $y=\mathrm{y}_{a}(n)$.
(12) Let us consider a non trivial natural number a, and natural numbers s, n. Then $s^{2} \cdot\left(s^{n}\right)^{2}-\left(s^{2}-1\right) \cdot \mathrm{y}_{a}(n+1) \cdot s^{n}-1 \equiv 0\left(\bmod 2 \cdot a \cdot s-s^{2}-1\right)$. Proof: Set $S=s^{2}$. Define \mathcal{P} [natural number] $\equiv S \cdot\left(s^{\$_{1}}\right)^{2}-(S-1)$. $\mathrm{y}_{a}\left(\$_{1}+1\right) \cdot s^{\$_{1}}-1 \equiv 0\left(\bmod 2 \cdot a \cdot s-s^{2}-1\right)$. For every natural number k such that for every n such that $n<k$ holds $\mathcal{P}[n]$ holds $\mathcal{P}[k] . \mathcal{P}[n]$.
(13) Let us consider a non trivial natural number a, and natural numbers s, n, r. Suppose $s>0$ and $r>0$ and $s^{2} \cdot r^{2}-\left(s^{2}-1\right) \cdot \mathrm{y}_{a}(n+1) \cdot r-1 \equiv$ $0\left(\bmod 2 \cdot a \cdot s-s^{2}-1\right)$ and $s \cdot\left(s^{n}\right)^{2} \cdot s^{n}<a$ and $s \cdot r^{2} \cdot r<a$. Then $r=s^{n}$. The theorem is a consequence of (12).
(14) Let us consider natural numbers a, b, c, d. Suppose $a \leqslant b \leqslant c$ and $2 \cdot c \leqslant d$ and $c>0$. Let us consider a finite sequence f of elements of \mathbb{R}. Suppose len $f=b-a+1$ and for every natural number i such that $i+1 \in \operatorname{dom} f$ holds $f(i+1)=\binom{c}{a+i} \cdot d^{c--^{\prime}(a+i)}$. Then $0<\sum f<2 \cdot c^{a} \cdot d^{c-{ }^{\prime} a}$.
Proof: Define \mathcal{P} [natural number] \equiv for every natural numbers a, b, c, d such that $a \leqslant b \leqslant c$ and $2 \cdot c \leqslant d$ and $c>0$ and $b-a=\$_{1}$ for every finite sequence f of elements of \mathbb{R} such that len $f=b-a+1$ and for every natural number i such that $i+1 \in \operatorname{dom} f$ holds $f(i+1)=\binom{c}{a+i} \cdot d^{c-^{\prime}(a+i)}$ holds $0 \leqslant 1-\left(\frac{c}{d}\right)^{b+1-^{\prime} a}$ and $0<\sum f \leqslant \frac{1-\left(\frac{c}{d}\right)^{b+1-^{\prime} a}}{1-\frac{c}{d}} \cdot c^{a} \cdot d^{c--^{\prime} a}$. $\mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1] . \mathcal{P}[n]$.
(15) Let us consider natural numbers f, k, m, r, s, t, u, and integers W, M, U, S, T, Q. Suppose $f>0$ and $k>0$ and $m>0$ and $u>0$ and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $W^{\mathbf{2}} \cdot u^{2}-\left(W^{2}-1\right) \cdot S \cdot u-1 \equiv 0(\bmod Q)$ and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+$ $4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$. Then
(i) $M \cdot(U+1)$ is a non trivial natural number, and
(ii) W is a natural number, and
(iii) for every non trivial natural number m_{1} and for every natural number w such that $m_{1}=M \cdot(U+1)$ and $w=W$ and $r+W+1=\mathrm{y}_{m_{1}}(w+1)$ holds $f=k$!.

Proof: Reconsider $W_{2}=W-k$ as a natural number. Reconsider $M_{3}=$ $M \cdot U$ as a non trivial natural number. Reconsider $M_{1}=M-1$ as a natural number. Set $R=r-m \cdot S \cdot T \cdot U \cdot\left(\frac{u}{\frac{r}{S \cdot T}-m \cdot U}-f\right) \cdot\left(\frac{u}{\frac{r}{S \cdot T}-m \cdot U}-f\right)<\frac{1}{4}$. $r<\mathrm{y}_{M}\left(M_{1}\right)$ and $r<\mathrm{y}_{M}\left(M_{3}-1\right) . S=\mathrm{y}_{M}(k+1) . T=\mathrm{y}_{M_{3}}\left(W_{2}+1\right)$. $R<3 \cdot u \cdot S \cdot T \cdot m \cdot U+3 \cdot u>\frac{r}{S \cdot T}$. Consider θ_{1} being a Theta such that $\mathrm{y}_{m_{1}}(w+1)=\left(2 \cdot m_{1}\right)^{w} \cdot\left(1+\theta_{1} \cdot \frac{w}{m_{1}}\right)$. Reconsider $I=1$ as a Theta. Consider θ_{2} being a Theta such that $\theta_{1} \cdot \frac{w}{m_{1}}-\frac{W+1}{\left(2 \cdot m_{1}\right)^{W}}=\theta_{2} \cdot \frac{1}{M} \cdot u=W^{k}$. Consider θ_{3} being a Theta such that $\mathrm{y}_{M}(k+1)=(2 \cdot M)^{k} \cdot\left(1+\theta_{3} \cdot \frac{k}{M}\right)$. Consider θ_{4} being a Theta such that $\mathrm{y}_{M_{3}}\left(W_{2}+1\right)=\left(2 \cdot M_{3}\right)^{W_{2}} \cdot\left(1+\theta_{4} \cdot \frac{W_{2}}{M_{3}}\right)$. Consider θ_{3}^{\prime} being a Theta such that $\frac{1}{1+\theta_{3} \cdot \frac{k}{M}}=1+\theta_{3}^{\prime} \cdot 2 \cdot \frac{k}{M}$. Consider θ_{4}^{\prime} being a Theta such that $\frac{1}{1+\theta_{4} \cdot \frac{W_{2}}{M_{3}}}=1+\theta_{4}^{\prime} \cdot 2 \cdot \frac{W_{2}}{M_{3}}$. Consider θ_{5} being a Theta such that $\left(1+\theta_{3}^{\prime} \cdot\left(2 \cdot \frac{k}{M}\right)\right) \cdot\left(1+\theta_{2} \cdot \frac{1}{M}\right)=1+\theta_{5} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}\right)$.

Consider θ_{6} being a Theta such that $\left(1+\theta_{5} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}\right)\right) \cdot\left(1+\theta_{4}^{\prime} \cdot(2 \cdot\right.$ $\left.\left.\frac{W_{2}}{M_{3}}\right)\right)=1+\theta_{6} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}+2 \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)$. Consider θ_{7} being a Theta such that $\theta_{6} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}+2 \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)=\theta_{7} \cdot \frac{5 \cdot k}{M}$. Set $I_{1}=\left\langle\binom{ W}{0} U^{0} 1^{W}, \ldots,\binom{W}{W} U^{W} 1^{0}\right\rangle$. Set $I_{3}=I_{1} \upharpoonright k$. Consider I_{2} being a finite sequence such that $I_{1}=I_{3} \wedge I_{2}$. For every natural number i such that $i+1 \in \operatorname{dom} I_{3}$ holds $I_{3}(i+1)=$ $\binom{W}{0+i} \cdot U^{W-^{\prime}(0+i)} .0<\sum I_{3}<2 \cdot W^{0} \cdot U^{W-^{\prime} 0}$. Set $U_{2}=\frac{1}{U^{W_{2}+1}} \cdot I_{3} . \operatorname{rng} U_{2} \subseteq \mathbb{N}$. Reconsider $Z=\sum U_{2}$ as an element of \mathbb{N}. For every natural number i such that $i+1 \in$ dom I_{2} holds $I_{2}(i+1)=\binom{W}{k+i} \cdot U^{W-^{\prime}(k+i)} \cdot 0<\sum I_{2}<$ $2 \cdot W^{k} \cdot U^{W-^{\prime} k} \cdot\left|\theta_{7}\right| \leqslant 1$ and $\left|\frac{5 \cdot k}{M}\right| \leqslant 1 .\left|\theta_{7} \cdot\left(Z \cdot \frac{5 \cdot k}{M}\right)\right| \leqslant 1 \cdot\left|Z \cdot \frac{5 \cdot k}{M}\right|$. Consider θ_{8} being a Theta such that $\left(1+I \cdot \frac{1}{U}\right)^{W}=1+\theta_{8} \cdot 2 \cdot W \cdot \frac{1}{U}$. Consider θ_{9} being a Theta such that $\theta_{7} \cdot\left(1+\theta_{8} \cdot 2 \cdot W \cdot \frac{1}{U}\right)=\theta_{9} \cdot 2$.

Consider i_{3} being a finite sequence of elements of \mathbb{R}, x being an element of \mathbb{R} such that $I_{2}=\langle x\rangle^{\wedge} i_{3}$. For every natural number i such that $i+1 \in$ dom i_{3} holds $i_{3}(i+1)=\binom{W}{k+1+i} \cdot U^{W-^{\prime}(k+1+i)} \cdot 0<\sum i_{3}<2 \cdot W^{k+1}$. $U^{W-^{\prime}(k+1)}$. Consider θ_{10} being a Theta such that $I \cdot\left(\frac{1}{U^{W_{2}}} \cdot\left(\sum i_{3}\right)\right)=$ $\theta_{10} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}\right)$. Reconsider $\theta_{12}=\frac{1}{\binom{W}{k}}$ as a Theta. Consider θ_{11} being a Theta such that $\theta_{10} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}\right)+\theta_{9} \cdot \frac{U^{k} \cdot 10 \cdot k}{M}=\theta_{11} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)$. Consider θ_{13}^{\prime} being a Theta such that $\binom{W}{k}=\frac{W^{k}}{k!} \cdot\left(1+\theta_{13}^{\prime} \cdot \frac{k^{2}}{W}\right)$. Consider θ_{13} being a Theta such that $\frac{1}{1+\theta_{13}^{\prime} \cdot \frac{k^{2}}{W}}=1+\theta_{13} \cdot 2 \cdot \frac{k^{2}}{W}$. Consider θ_{14} being a Theta such that $\frac{1}{1+\theta_{12} \cdot \theta_{11} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)}=1+\theta_{14} \cdot 2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)$.

Consider θ_{15} being a Theta such that $\left(1+\theta_{14} \cdot\left(2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)\right)\right)$. $\left(1+\theta_{13} \cdot\left(2 \cdot \frac{k^{2}}{W}\right)\right)=1+\theta_{15} \cdot\left(2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)+2 \cdot\left(2 \cdot \frac{k^{2}}{W}\right)\right)$.
(16) Let us consider natural numbers f, k. Suppose $f=k$! and $k>0$. Then there exist natural numbers m, r, s, t, u and there exist natural numbers W, U, S, T, Q and there exists a non trivial natural number M such that $m>0$ and $u>0$ and $r+W+1=\mathrm{y}_{M \cdot(U+1)}(W+1)$ and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $W^{2} \cdot u^{2}-\left(W^{2}-1\right) \cdot S \cdot u-1 \equiv 0(\bmod Q)$ and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+$ $4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$.
Proof: Set $W=100 \cdot f \cdot k \cdot(k+1)$. Set $u=W^{k}$. Set $U=100 \cdot u^{3} \cdot W^{3}+1$. Set $I_{1}=\left\langle\binom{ W}{0} U^{0} 1^{W}, \ldots,\binom{W}{W} U^{W} 1^{0}\right\rangle$. Set $I_{3}=I_{1} \upharpoonright k$. Reconsider $W_{2}=$ $W-k$ as a natural number. Consider I_{2} being a finite sequence such that $I_{1}=I_{3} \wedge I_{2}$. For every natural number i such that $i+1 \in \operatorname{dom} I_{3}$ holds $I_{3}(i+1)=\binom{W}{0+i} \cdot U^{W-^{\prime}(0+i)} \cdot 0<\sum I_{3}<2 \cdot W^{0} \cdot U^{W-^{\prime} 0}$. Set $U_{2}=\frac{1}{U^{W_{2}+1}} \cdot I_{3}$. $\operatorname{rng} U_{2} \subseteq \mathbb{N}$. Reconsider $Z=\sum U_{2}$ as an element of \mathbb{N}. Set $m=Z$. Set $M=100 \cdot m \cdot U \cdot W+1$. Set $m_{1}=M \cdot(U+1)$. Reconsider $M_{3}=M \cdot U$ as a non trivial natural number. Set $S=\mathrm{y}_{M}(k+1)$. Set $T=\mathrm{y}_{M_{3}}\left(W_{2}+1\right)$. Reconsider $r=\mathrm{y}_{m_{1}}(W+1)-(W+1)$ as a natural number. Consider s being an integer such that $(M-1) \cdot s=S-(k+1)$.

Consider t being an integer such that $\left(M_{3}-1\right) \cdot t=T-\left(W_{2}+1\right)$. For every natural number i such that $i+1 \in$ dom I_{2} holds $I_{2}(i+1)=$ $\left(\begin{array}{c}W+i\end{array}\right) \cdot U^{W-{ }^{\prime}(k+i)} \cdot 0<\sum I_{2}<2 \cdot W^{k} \cdot U^{W-^{\prime} k}$. Consider θ_{1} being a Theta such that $\mathrm{y}_{m_{1}}(W+1)=\left(2 \cdot m_{1}\right)^{W} \cdot\left(1+\theta_{1} \cdot \frac{W}{m_{1}}\right)$. Reconsider $I=1$ as a Theta. Consider θ_{3} being a Theta such that $\mathrm{y}_{M}(k+1)=(2 \cdot M)^{k} \cdot\left(1+\theta_{3} \cdot \frac{k}{M}\right)$. Consider θ_{4} being a Theta such that $\mathrm{y}_{M_{3}}\left(W_{2}+1\right)=\left(2 \cdot M_{3}\right)^{W_{2}} \cdot\left(1+\theta_{4} \cdot \frac{W_{2}}{M_{3}}\right)$. Consider θ_{3}^{\prime} being a Theta such that $\frac{1}{1+\theta_{3} \cdot \frac{k}{M}}=1+\theta_{3}^{\prime} \cdot 2 \cdot \frac{k}{M}$. Consider θ_{4}^{\prime} being a Theta such that $\frac{1}{1+\theta_{4} \cdot \frac{W_{2}}{M_{3}}}=1+\theta_{4}^{\prime} \cdot 2 \cdot \frac{W_{2}}{M_{3}}$. Consider θ_{2} being a Theta such that $\theta_{1} \cdot \frac{W}{m_{1}}-\frac{W+1}{\left(2 \cdot m_{1}\right)^{W}}=\theta_{2} \cdot \frac{1}{M}$. Consider θ_{5} being a Theta such that $\left(1+\theta_{3}^{\prime} \cdot\left(2 \cdot \frac{k}{M}\right)\right) \cdot\left(1+\theta_{2} \cdot \frac{1}{M}\right)=1+\theta_{5} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}\right)$. Consider θ_{6} being a Theta such that $\left(1+\theta_{5} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}\right)\right) \cdot\left(1+\theta_{4}^{\prime} \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)=$ $1+\theta_{6} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}+2 \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)$. Consider θ_{7} being a Theta such that $\theta_{6} \cdot\left(2 \cdot \frac{k}{M}+2 \cdot \frac{1}{M}+2 \cdot\left(2 \cdot \frac{W_{2}}{M_{3}}\right)\right)=\theta_{7} \cdot \frac{5 \cdot k}{M}$.

Consider u_{1} being a finite sequence of elements of \mathbb{N}, y being an element of \mathbb{N} such that $U_{2}=\langle y\rangle{ }^{\wedge} u_{1}$. Consider θ_{8} being a Theta such that $\left(1+I \cdot \frac{1}{U}\right)^{W}=1+\theta_{8} \cdot 2 \cdot W \cdot \frac{1}{U}$. Consider θ_{9} being a Theta such that
$\theta_{7} \cdot\left(1+\theta_{8} \cdot 2 \cdot W \cdot \frac{1}{U}\right)=\theta_{9} \cdot 2$. Consider i_{3} being a finite sequence of elements of \mathbb{R}, x being an element of \mathbb{R} such that $I_{2}=\langle x\rangle{ }^{\wedge} i_{3}$. For every natural number i such that $i+1 \in \operatorname{dom} i_{3}$ holds $i_{3}(i+1)=\binom{W}{k+1+i} \cdot U^{W}-^{\prime}(k+1+i)$. $0<\sum i_{3}<2 \cdot W^{k+1} \cdot U^{W-^{\prime}(k+1)}$. Consider θ_{10} being a Theta such that $I \cdot\left(\frac{1}{U^{W_{2}}} \cdot\left(\sum i_{3}\right)\right)=\theta_{10} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}\right)$. Reconsider $\theta_{12}=\frac{1}{\binom{W}{k}}$ as a Theta.

Consider θ_{11} being a Theta such that $\theta_{10} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}\right)+\theta_{9} \cdot \frac{U^{k} \cdot 10 \cdot k}{M}=$ $\theta_{11} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)$. Consider θ_{13}^{\prime} being a Theta such that $\binom{W}{k}=$ $\frac{W^{k}}{k!} \cdot\left(1+\theta_{13}^{\prime} \cdot \frac{k^{2}}{W}\right)$. Consider θ_{13} being a Theta such that $\frac{1}{1+\theta_{13}^{\prime} \cdot \frac{k^{2}}{W}}=1+\theta_{13}$. $2 \cdot \frac{k^{2}}{W}$. Consider θ_{14} being a Theta such that $\frac{1}{1+\theta_{12} \cdot \theta_{11} \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)}=$ $1+\theta_{14} \cdot 2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)$. Consider θ_{15} being a Theta such that $\left(1+\theta_{14} \cdot\left(2 \cdot\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)\right)\right) \cdot\left(1+\theta_{13} \cdot\left(2 \cdot \frac{k^{2}}{W}\right)\right)=1+\theta_{15} \cdot(2 \cdot$ $\left.\left(2 \cdot W^{k+1} \cdot \frac{1}{U}+\frac{U^{k} \cdot 10 \cdot k}{M}\right)+2 \cdot\left(2 \cdot \frac{k^{2}}{W}\right)\right)$. Set $R=r-m \cdot S \cdot T \cdot U . R \neq 0$.
(17) Let us consider a non trivial natural number A, natural numbers C, B, and e. Suppose $0<B$. Suppose $C=\mathrm{y}_{A}(B)$. Then there exist natural numbers i, j and there exist natural numbers D, E, F, G, H, I such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $B \leqslant C$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot(i+1) \cdot D \cdot(e+1) \cdot C^{2}$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot j \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$. Proof: Set $x=\mathrm{x}_{A}(B)$. Set $D=x^{2}$. There exist natural numbers q, i such that $2 \cdot D \cdot(e+1) \cdot C^{2} \cdot(i+1)=\mathrm{y}_{A}(q)$ by [1, (14)], [6, (4)]. Consider q, i being natural numbers such that $2 \cdot D \cdot(e+1) \cdot C^{2} \cdot(i+1)=\mathrm{y}_{A}(q)$. Set $F=\left(\mathrm{x}_{A}(q)\right)^{2}$. Reconsider $G=A+F \cdot(F-A)$ as a non trivial natural number. Set $H=\mathrm{y}_{G}(B) . H \equiv B(\bmod 2 \cdot C)$. Consider j being an integer such that $H-B=2 \cdot C \cdot j$.
(18) Let us consider a non trivial natural number A, natural numbers C, B, and a natural number e. Suppose $0<B$. Let us consider natural numbers i, j, and integers D, E, F, G, H, I. Suppose $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $B \leqslant C$ and $D=\left(A^{\mathbf{2}}-1\right) \cdot C^{\mathbf{2}}+1$ and $E=2 \cdot(i+1) \cdot D \cdot(e+1) \cdot C^{\mathbf{2}}$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot j \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$. Then $C=\mathrm{y}_{A}(B)$.
Proof: Consider d being a natural number such that $d^{2}=D$. Consider f being a natural number such that $f^{2}=F$. Consider i_{2} being a natural number such that $i_{2}{ }^{2}=I$. Consider i_{1} being a natural number such that $d=\mathrm{x}_{A}\left(i_{1}\right)$ and $C=\mathrm{y}_{A}\left(i_{1}\right)$. Consider n_{1} being a natural number such that $f=\mathrm{x}_{A}\left(n_{1}\right)$ and $E=\mathrm{y}_{A}\left(n_{1}\right)$. Consider j_{1} being a natural number such that $i_{2}=\mathrm{x}_{G}\left(j_{1}\right)$ and $H=\mathrm{y}_{G}\left(j_{1}\right) . \mathrm{y}_{G}\left(j_{1}\right) \equiv j_{1}(\bmod 2 \cdot C)$.
(19) Diophantine Representation of Solutions to Pell's Equation: Let us consider a non trivial natural number A, natural numbers C, B, and e. Suppose $0<B$. Then $C=\mathrm{y}_{A}(B)$ if and only if there exist natural numbers i, j and there exist integers D, E, F, G, H, I such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $B \leqslant C$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot(i+1) \cdot D \cdot(e+1) \cdot C^{2}$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot j \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$. The theorem is a consequence of (17) and (18).
(20) Let us consider a non trivial natural number A, a natural number C, and positive natural numbers B, L. Then $C=\mathrm{y}_{A}(B)$ if and only if there exist positive natural numbers i, j and there exist integers D, E, F, G, H, I such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $B \leqslant C$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$. The theorem is a consequence of (17) and (18).

3. Prime Diophantine Representation

Now we state the propositions:
(21) Let us consider a natural number k, and a positive natural number L. Suppose $k>0$. Then $k+1$ is prime if and only if there exist positive natural numbers f, i, j, m, u and there exist natural numbers r, s, t and there exist integers $A, B, C, D, E, F, G, H, I, W, U, M, S, T, Q$ such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $W^{2} \cdot u^{2}-\left(W^{2}-1\right) \cdot S \cdot u-1 \equiv 0(\bmod Q)$ and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $k+1 \mid f+1$ and $A=M \cdot(U+1)$ and $B=W+1$ and $C=r+W+1$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$.
Proof: If $k+1$ is prime, then there exist positive natural numbers f, i, j, m, u and there exist natural numbers r, s, t and there exist integers A, $B, C, D, E, F, G, H, I, W, U, M, S, T, Q$ such that $D \cdot F \cdot I$ is a square and $F \mid H-C$ and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $W^{2} \cdot u^{2}-\left(W^{2}-1\right) \cdot S \cdot u-1 \equiv 0(\bmod Q)$ and $\left(4 \cdot f^{2}-1\right)$. $(r-m \cdot S \cdot T \cdot U)^{2}+4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $k+1 \mid f+1$ and $A=M \cdot(U+1)$ and $B=W+1$ and $C=r+W+1$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and
$G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1 . C=\mathrm{y}_{A}(B) . f=k!$.
(22) Let us consider integers a, b, A, B. Suppose a and b are relatively prime. Then $a \mid A$ and $b \mid B$ if and only if $a \cdot b \mid a \cdot B+b \cdot A$.
(23) Diophantine Representation of Prime Numbers with 8 Explicite Unknowns:
Let us consider a natural number k. Suppose $k>0$. Then $k+1$ is prime if and only if there exist positive natural numbers f, i, j, m, u and there exist natural numbers r, s, t and there exist integers A, B, C, D, $E, F, G, H, I, L, W, U, M, S, T, Q$ such that $D \cdot F \cdot I$ is a square and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $F \cdot L \mid(H-C) \cdot L+F \cdot(f+1) \cdot Q+F \cdot(k+1) \cdot\left(\left(W^{2}-1\right) \cdot S \cdot u-W^{2} \cdot u^{2}+1\right)$ and $A=M \cdot(U+1)$ and $B=W+1$ and $C=r+W+1$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$ and $L=(k+1) \cdot Q$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$.
Proof: If $k+1$ is prime, then there exist positive natural numbers f, i, j, m, u and there exist natural numbers r, s, t and there exist integers A, B, $C, D, E, F, G, H, I, L, W, U, M, S, T, Q$ such that $D \cdot F \cdot I$ is a square and $\left(M^{2}-1\right) \cdot S^{2}+1$ is a square and $\left((M \cdot U)^{2}-1\right) \cdot T^{2}+1$ is a square and $\left(4 \cdot f^{2}-1\right) \cdot(r-m \cdot S \cdot T \cdot U)^{2}+4 \cdot u^{2} \cdot S^{2} \cdot T^{2}<8 \cdot f \cdot u \cdot S \cdot T \cdot(r-m \cdot S \cdot T \cdot U)$ and $F \cdot L \mid(H-C) \cdot L+F \cdot(f+1) \cdot Q+F \cdot(k+1) \cdot\left(\left(W^{2}-1\right) \cdot S \cdot u-W^{2} \cdot u^{2}+1\right)$ and $A=M \cdot(U+1)$ and $B=W+1$ and $C=r+W+1$ and $D=\left(A^{2}-1\right) \cdot C^{2}+1$ and $E=2 \cdot i \cdot C^{2} \cdot L \cdot D$ and $F=\left(A^{2}-1\right) \cdot E^{2}+1$ and $G=A+F \cdot(F-A)$ and $H=B+2 \cdot(j-1) \cdot C$ and $I=\left(G^{2}-1\right) \cdot H^{2}+1$ and $L=(k+1) \cdot Q$ and $W=100 \cdot f \cdot k \cdot(k+1)$ and $U=100 \cdot u^{3} \cdot W^{3}+1$ and $M=100 \cdot m \cdot U \cdot W+1$ and $S=(M-1) \cdot s+k+1$ and $T=(M \cdot U-1) \cdot t+W-k+1$ and $Q=2 \cdot M \cdot W-W^{2}-1$ by [9, (22)], (16).
$F \mid H-C$ and $Q \cdot(k+1) \mid(f+1) \cdot Q+(k+1) \cdot\left(\left(W^{2}-1\right) \cdot S \cdot u-W^{2} \cdot u^{2}+1\right)$.
$Q \mid\left(W^{2}-1\right) \cdot S \cdot u-W^{2} \cdot u^{2}+1$ and $k+1 \mid f+1 . C=\mathrm{y}_{A}(B) . f=k!$.

References

[1] Marcin Acewicz and Karol Pak. Pell's equation. Formalized Mathematics, 25(3):197-204, 2017. doi 10.1515/forma-2017-0019.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. dol/10.10U7/s10817-017-9440-6
[4] James P. Jones, Sato Daihachiro, Hideo Wada, and Douglas Wiens. Diophantine representation of the set of prime numbers. The American Mathematical Monthly, 83(6):449-464, 1976.
[5] Yuri Matiyasevich. Primes are nonnegative values of a polynomial in 10 variables. Journal of Soviet Mathematics, 15:33-44, 1981. doi 10.1007/BF01404106
[6] Karol Pąk. The Matiyasevich theorem. Preliminaries. Formalized Mathematics, 25(4): 315-322, 2017. doi 10.1515/forma-2017-0029
[7] Karol Pak. Prime representing polynomial. Formalized Mathematics, 29(4):221-228, 2021. doi:10.2478/forma-2021-0020.
[8] Karol Pakk and Cezary Kaliszyk. Formalizing a diophantine representation of the set of prime numbers. In June Andronick and Leonardo de Moura, editors, 13th Internatıonal Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 26:1-26:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi 10.4230/LIPIcs.ITP.2022.26
[9] Marco Riccardi. The perfect number theorem and Wilson's theorem. Formalized Mathematics, $17(\mathbf{2}): 123-128$, 2009. doi $10.2478 / \mathrm{v} 10037-009-0013-\mathrm{y}$
[10] Zhi-Wei Sun. Further results on Hilbert's Tenth Problem. Science China Mathematics, 64:281-306, 2021. doi $10.1007 / \mathrm{s} 11425-020-1813-5$

Accepted December 27, 2022

Prime Representing Polynomial with 10 Unknowns

Karol Pak
Institute of Computer Science
University of Białystok
Poland

Summary. In this article we formalize in Mizar [1], [2] the final step of our attempt to formally construct a prime representing polynomial with 10 variables proposed by Yuri Matiyasevich in (4).

The first part of the article includes many auxiliary lemmas related to multivariate polynomials. We start from the properties of monomials, among them their evaluation as well as the power function on polynomials to define the substitution for multivariate polynomials. For simplicity, we assume that a polynomial and substituted ones as i-th variable have the same number of variables. Then we study the number of variables that are used in given multivariate polynomials. By the used variable we mean a variable that is raised at least once to a non-zero power. We consider both adding unused variables and eliminating them.

The second part of the paper deals with the construction of the polynomial proposed by Yuri Matiyasevich. First, we introduce a diophantine polynomial over 4 variables that has roots in integers if and only if indicated variable is the square of a natural number, and another two is the square of an odd natural number. We modify the polynomial by adding two variables in such a way that the root additionally requires the divisibility of these added variables. Then we modify again the polynomial by adding two variables to also guarantee the nonnegativity condition of one of these variables. Finally, we combine the prime diophantine representation proved in [7] with the obtained polynomial constructing a prime representing polynomial with 10 variables. This work has been partially presented in [8] with the obtained polynomial constructing a prime representing polynomial with 10 variables in Theorem (85).

MSC: 11D45 68V20
Keywords: polynomial reduction; prime representing polynomial
MML identifier: POLYNOM9, version: 8.1.12 5.72.1435

1. Preliminaries

From now on i, j, k, n, m denote natural numbers, X denotes a set, b, s denote bags of X, and x denotes an object. Now we state the propositions:
(1) Let us consider an integer i. Then $i \star \mathbf{1}_{\mathbb{C}_{\mathrm{F}}}=i$.

Proof: Define \mathcal{P} [natural number] $\equiv \$_{1} \star \mathbf{1}_{\mathbb{C}_{F}}=\$_{1}$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$ by [9, (62),(60)]. $\mathcal{P}[n]$. Consider k being a natural number such that $i=k$ or $i=-k$.
(2) Let us consider complex numbers z_{1}, z_{2}. Suppose $\Re\left(z_{1}\right) \geqslant 0$ and $\Re\left(z_{2}\right) \geqslant$ 0 and $\Im\left(z_{1}\right) \geqslant 0$ and $\Im\left(z_{2}\right) \geqslant 0$ and $z_{1}^{2}=z_{2}^{2}$ and z_{1}^{2} is a real number. Then $z_{1}=z_{2}$.
(3) Let us consider integers a, b. If $a^{2} \mid b^{2}$, then $a \mid b$.
(4) Let us consider a positive natural number m. Then $\overline{\overline{2^{(\operatorname{Seg} m) \backslash\{1\}}}}=2^{m-^{\prime} 1}$. Proof: Define \mathcal{P} [natural number] $\equiv \overline{\overline{2^{\left(\operatorname{Seg}\left(1+\$_{1}\right)\right) \backslash\{1\}}}}=2^{\$_{1}}$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1] . \mathcal{P}[n]$.
(5) Let us consider an ordinal number n, and a finite subset A of n. Then \subseteq_{n} linearly orders A.
(6) Let us consider an element x of \mathbb{R}_{F}. Suppose $x \neq 0_{\mathbb{R}_{F}}$.

Then power $\mathbb{R}_{\mathbb{R}_{F}}(x, n) \neq 0_{\mathbb{R}_{F}}$.
Proof: Define \mathcal{P} [natural number] $\equiv \operatorname{power}_{\mathbb{R}_{F}}\left(x, \$_{1}\right) \neq 0_{\mathbb{R}_{F}}$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1] . \mathcal{P}[i]$.

2. More on Bags

Let us consider a bag b of X. Now we state the propositions:
(7) $\quad \operatorname{support}(n \cdot b) \subseteq \operatorname{support} b$.
(8) If $n \neq 0$, then $\operatorname{support}(n \cdot b)=\operatorname{support} b$. The theorem is a consequence of (7).
(9) $\operatorname{support}(b+\cdot(x, n)) \subseteq\{x\} \cup \operatorname{support} b$.

Let X be a set, b be a bag of X, and n be a natural number. Observe that $n \cdot b$ is finite-support. Let x be an object. One can check that $b+\cdot(x, n)$ is finite-support. Now we state the propositions:
(10) Let us consider a bag b of X. Then $0 \cdot b=\operatorname{EmptyBag} X$.
(11) Let us consider an ordinal number n, a right zeroed, add-associative, right complementable, well unital, distributive, Abelian, non trivial, commutative, associative, non empty double loop structure L, a function x from n into L, a bag b of n, and a natural number i. If $i \neq 0$, then $\operatorname{eval}(i \cdot b, x)=\operatorname{power}_{L}(\operatorname{eval}(b, x), i)$.

Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \neq 0$, then $\operatorname{eval}\left(\$_{1} \cdot b, x\right)=$ $\operatorname{power}_{L}\left(\operatorname{eval}(b, x), \$_{1}\right)$. If $\mathcal{P}[j]$, then $\mathcal{P}[j+1] . \mathcal{P}[j]$.
(12) Let us consider a non empty set X, an element x of X, and an element i of \mathbb{N}. Then EmptyBag $X+\cdot(x, i)=(\{x\}, i)$-bag.
(13) Let us consider a set X, x, and i. Suppose $x \in X$ and $i \neq 0$. Then support(EmptyBag $X+\cdot(x, i))=\{x\}$. The theorem is a consequence of (12).
(14) Let us consider an ordinal number n, a well unital, non trivial double loop structure L, and a function y from n into L. Suppose $x \in n$. Then $\operatorname{eval}(\operatorname{EmptyBag} n+\cdot(x, i), y)=\operatorname{power}_{L}(y(x), i)$. The theorem is a consequence of (13).
Let us consider a bag b of X. Now we state the propositions:
$b=(b+\cdot(x, 0))+($ EmptyBag $X+\cdot(x, b(x)))$.
Proof: Set $E=$ EmptyBag X. Set $b_{5}=b+\cdot(x, 0)$. Set $E_{6}=E+\cdot(x, b(x))$. For every object y such that $y \in \operatorname{dom} b$ holds $b(y)=\left(b_{5}+E_{6}\right)(y)$.
(16) $\operatorname{support}(b+\cdot(x, 0))=($ support $b) \backslash\{x\}$.

PROOF: $\operatorname{support}(b+\cdot(x, 0)) \subseteq($ support $b) \backslash\{x\}$.
(17) Let us consider an ordinal number n, a right zeroed, add-associative, right complementable, well unital, distributive, Abelian, non trivial, commutative, associative, non empty double loop structure L, a function x from n into L, a bag b of n, an object i, and a natural number j. Suppose $i \in n$. Then $(\operatorname{eval}(b+\cdot(i, j), x)) \cdot \operatorname{power}_{L}\left(x_{/ i}, b(i)\right)=(\operatorname{eval}(b, x))$. $\operatorname{power}_{L}\left(x_{/ i}, j\right)$. The theorem is a consequence of (15) and (14).
Let A, B be sets, f be a function from A into B, x be an object, and b be an element of B. Observe that the functor $f+\cdot(x, b)$ yields a function from A into B. Now we state the propositions:
(18) Let us consider an ordinal number n, a well unital, non trivial double loop structure L, a bag b of n, a function f from n into L, and an element u of L. If $b(x)=0$, then $\operatorname{eval}(b, f+\cdot(x, u))=\operatorname{eval}(b, f)$.
Proof: Set $S=\operatorname{SgmX}\left(\subseteq_{n}\right.$, support $\left.b\right)$. Set $f_{6}=f+\cdot(x, u)$. Consider y being a finite sequence of elements of L such that len $y=\operatorname{len} S$ and $\operatorname{eval}\left(b, f_{6}\right)=\prod y$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} y$ holds $y_{/ i}=\operatorname{power}_{L}\left(f_{6} \cdot S_{/ i}, b \cdot S_{/ i}\right)$. For every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} y$ holds $y_{/ i}=\operatorname{power}_{L}\left(f \cdot S_{/ i}, b \cdot S_{/ i}\right)$.
(19) Let us consider a natural number n, a bag b of n, and i. If $b(i)=$ degree (b), then $b=\operatorname{EmptyBag} n+\cdot(i, b(i))$. The theorem is a consequence of (15) and (13).
(20) Let us consider a set X, and bags b_{1}, b_{2} of X. Suppose $2 \cdot b_{1}+\cdot\left(0, b_{1}(0)\right)=$
$2 \cdot b_{2}+\cdot\left(0, b_{2}(0)\right)$. Then $b_{1}=b_{2}$.
Proof: For every x such that $x \in X$ holds $b_{1}(x)=b_{2}(x)$.
(21) Let us consider a set X, and a bag b of X. Then support $(2 \cdot b+\cdot(0, b(0)))=$ support b.
PROOF: support $(2 \cdot b+\cdot(0, b(0))) \subseteq \operatorname{support} b$. support $b \subseteq \operatorname{support}(2 \cdot b+\cdot$ $(0, b(0)))$.
(22) Let us consider a bag b of X. Then $b+\cdot(x, i+k)=(b+\cdot(x, i))+$ (EmptyBag $X+\cdot(x, k)$).
Proof: Set $E_{3}=\operatorname{EmptyBag} X$. For every object y such that $y \in X$ holds $(b+\cdot(x, i+k))(y)=\left((b+\cdot(x, i))+\left(E_{3}+\cdot(x, k)\right)\right)(y)$.
(23) Let us consider an add-associative, right zeroed, right complementable, non empty double loop structure L, an element a of L, and a bag b of X. Then $\operatorname{Monom}(-a, b)=-\operatorname{Monom}(a, b)$.
Proof: If $x \in \operatorname{Bags} X$, then $(\operatorname{Monom}(-a, b))(x)=(-\operatorname{Monom}(a, b))(x)$.
(24) Let us consider an add-associative, right zeroed, right complementable, non empty double loop structure L, elements a_{1}, a_{2} of L, and a bag b of X. Then $\operatorname{Monom}\left(a_{1}, b\right)+\operatorname{Monom}\left(a_{2}, b\right)=\operatorname{Monom}\left(a_{1}+a_{2}, b\right)$.
Proof: If $x \in \operatorname{Bags} X$, then $\left(\operatorname{Monom}\left(a_{1}, b\right)+\operatorname{Monom}\left(a_{2}, b\right)\right)(x)=$ $\left(\operatorname{Monom}\left(a_{1}+a_{2}, b\right)\right)(x)$.
(25) Let us consider a non empty zero structure L, and a bag b of X. Then $\operatorname{Monom}\left(0_{L}, b\right)=0_{X} L$.
Proof: If $x \in \operatorname{Bags} X$, then $\left(\operatorname{Monom}\left(0_{L}, b\right)\right)(x)=\left(0_{X} L\right)(x)$.
(26) Let us consider an ordinal number O, a right zeroed, add-associative, right complementable, right unital, distributive, non trivial double loop structure R, a polynomial p of O, R, and a bag b of O. Then $\operatorname{Support}(p-$ $\operatorname{Monom}(p(b), b))=($ Support $p) \backslash\{b\}$. The theorem is a consequence of (25).
(27) Let us consider a natural number n, and an object p. Suppose $p \in n$. Let us consider an integer element i of \mathbb{R}_{F}, and a function x from n into \mathbb{R}_{F}. Then $\operatorname{eval}(\operatorname{Monom}(i, \operatorname{EmptyBag} n+\cdot(p, 1)), x)=i \cdot\left(x_{/ p}\right)$. The theorem is a consequence of (14).
Let X be a set, b be a bag of X, and i be an integer element of \mathbb{R}_{F}. One can check that $\operatorname{Monom}(i, b)$ is \mathbb{Z}-valued.

3. Power of Multivariate Polynomial

From now on O denotes an ordinal number, R denotes a right zeroed, addassociative, right complementable, right unital, distributive, non trivial double loop structure, and p denotes a polynomial of O, R.

Let n be an ordinal number, R be a right zeroed, add-associative, right complementable, right unital, distributive, non trivial double loop structure,
p be a polynomial of n, R, and k be a natural number. The functor p^{k} yielding a polynomial of n, R is defined by the term
(Def. 1) $\operatorname{power}_{\operatorname{PolyRing}(n, R)}(p, k)$.
Now we state the propositions:
(28) If R is well unital, then $p^{0}=1_{-}(O, R)$ and $p^{1}=p$.

Proof: Set $P_{7}=\operatorname{PolyRing}(O, R)$. Reconsider $E=1_{-}(O, R)$ as an element of P_{7}. For every element H of $P_{7}, H \cdot E=H$ and $E \cdot H=H . P_{7}$ is unital.
(29) $p^{n+1}=p^{n} * p$.
(30) Let us consider an Abelian, well unital, commutative, associative, right zeroed, add-associative, right complementable, right unital, distributive, non trivial double loop structure R, a polynomial p of O, R, and a function f from O into R. Then $\operatorname{eval}\left(p^{k}, f\right)=\operatorname{power}_{R}(\operatorname{eval}(p, f), k)$.
Proof: Define \mathcal{P} [natural number] $\equiv \operatorname{eval}\left(p^{\$_{1}}, f\right)=\operatorname{power}_{R}\left(\operatorname{eval}(p, f), \$_{1}\right)$. $\operatorname{eval}\left(p^{0}, f\right)=\operatorname{eval}\left(1_{-}(O, R), f\right)$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1] . \mathcal{P}[n]$.
Let O be an ordinal number, p be a \mathbb{Z}-valued polynomial of $O, \mathbb{R}_{\mathrm{F}}$, and n be a natural number. Observe that p^{n} is \mathbb{Z}-valued.

4. Substitution in Multivariate Polynomials

Let X be a set, b, s be bags of X, and x be an object. The functor $\operatorname{Subst}(b, x, s)$ yielding a bag of X is defined by the term
(Def. 2) $\quad(b+\cdot(x, 0))+s$.
Now we state the propositions:
(31) $\operatorname{support} \operatorname{Subst}(b, x, s)=(\operatorname{support} b) \backslash\{x\} \cup \operatorname{support} s$. The theorem is a consequence of (16).
(32) Let us consider bags s_{1}, s_{2}, b of X. If $\operatorname{Subst}\left(b, x, s_{1}\right)=\operatorname{Subst}\left(b, x, s_{2}\right)$, then $s_{1}=s_{2}$.
Let X be an ordinal number, L be a right zeroed, add-associative, right complementable, right unital, distributive, non trivial double loop structure, t be a bag of X, p be a polynomial of X, L, and x be an object. The functor Subst (t, x, p) yielding a series of X, L is defined by
(Def. 3) for every bag b of X, if there exists a bag s of X such that $b=\operatorname{Subst}(t, x, s)$, then for every bag s of X such that $b=\operatorname{Subst}(t, x, s)$ holds $i t(b)=$ $\left(p^{t(x)}\right)(s)$ and if for every bag s of $X, b \neq \operatorname{Subst}(t, x, s)$, then $i t(b)=0_{L}$.
In the sequel O denotes an ordinal number, R denotes a right zeroed, addassociative, right complementable, right unital, distributive, non trivial double loop structure, and p denotes a polynomial of O, R.

Now we state the propositions:
(33) Let us consider bags t, s of O. Then $(\operatorname{Subst}(t, x, p))(\operatorname{Subst}(t, x, s))=$ $\left(p^{t(x)}\right)(s)$.
(34) Let us consider a bag t of O, and a one-to-one finite sequence o_{1} of elements of Bags O. Suppose rng $o_{1}=\operatorname{Support} p^{t(x)}$. Then there exists a one-to-one finite sequence o_{2} of elements of Bags O such that
(i) $\operatorname{rng} o_{2}=\operatorname{Support} \operatorname{Subst}(t, x, p)$, and
(ii) len $o_{2}=\operatorname{len} o_{1}$, and
(iii) for every j such that $1 \leqslant j \leqslant \operatorname{len} o_{2}$ holds $o_{2}(j)=\operatorname{Subst}\left(t, x, o_{1 / j}\right)$.

Proof: Set $S=\operatorname{Subst}(t, x, p)$. Define $\mathcal{O}($ object $)=\operatorname{Subst}\left(t, x, o_{1 / \$_{1}}\right)$. Consider o_{2} being a finite sequence such that len $o_{2}=\operatorname{len} o_{1}$ and for every k such that $k \in \operatorname{dom} o_{2}$ holds $o_{2}(k)=\mathcal{O}(k)$. rng $o_{2} \subseteq$ Support S. Support $S \subseteq \operatorname{rng} o_{2} . o_{2}$ is one-to-one.
Let O be an ordinal number, R be a right zeroed, add-associative, right complementable, right unital, distributive, non trivial double loop structure, t be a bag of O, p be a polynomial of O, R, and x be an object. Let us note that $\operatorname{Subst}(t, x, p)$ is finite-Support.

Now we state the proposition:
(35) Let us consider a commutative, associative, Abelian, right zeroed, add-associative, right complementable, well unital, distributive, non trivial double loop structure R, a bag t of O, a polynomial p of O, R, an object i, and a function x from O into R. Suppose $i \in O$. Then $\operatorname{eval}(\operatorname{Subst}(t, i, p), x)=\operatorname{eval}(t, x+\cdot(i, \operatorname{eval}(p, x)))$.
Proof: Set $x_{4}=x+\cdot(i, \operatorname{eval}(p, x))$. Set $P=p^{t(i)}$. Set $t_{0}=t+\cdot(i, 0)$. Set $S_{7}=\operatorname{SgmX}($ BagOrder O, Support $P)$. Set $S_{13}=\operatorname{Subst}(t, i, p)$. Consider y being a finite sequence of elements of R such that len $y=\operatorname{len} S_{7}$ and $\operatorname{eval}(P, x)=\sum y$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} y$ holds $y_{/ i}=P \cdot S_{7 / i} \cdot\left(\operatorname{eval}\left(S_{7 / i}, x\right)\right)$. Consider t_{2} being a one-to-one finite sequence of elements of Bags O such that rng $t_{2}=$ Support S_{13} and len $t_{2}=\operatorname{len} S_{7}$ and for every j such that $1 \leqslant j \leqslant \operatorname{len} t_{2}$ holds $t_{2}(j)=\operatorname{Subst}\left(t, i, S_{7 / j}\right)$. Consider Y being a finite sequence of elements of R such that len $Y=$ $\overline{\text { Support } S_{13}}$ and eval $\left(S_{13}, x\right)=\sum Y$ and for every natural number i such that $1 \leqslant i \leqslant \operatorname{len} Y$ holds $Y_{/ i}=S_{13} \cdot t_{2 / i} \cdot\left(\operatorname{eval}\left(t_{2 / i}, x\right)\right) . \operatorname{eval}(P, x)=$ $\operatorname{power}_{R}(\operatorname{eval}(p, x), t(i))$. For every j such that $1 \leqslant j \leqslant \operatorname{len} Y$ holds $Y(j)=$ $\left(y \cdot\left(\operatorname{eval}\left(t_{0}, x\right)\right)\right)(j) .\left(\operatorname{eval}\left(t_{0}, x_{4}\right)\right) \cdot \operatorname{power}_{R}\left(x_{4 / i}, t(i)\right)=\left(\operatorname{eval}\left(t, x_{4}\right)\right) \cdot\left(1_{R}\right)$.

Let X be a set, L be an add-associative, right zeroed, right complementable, right distributive, non empty double loop structure, p be a finite-Support series of X, L, and a be an element of L. One can verify that $a \cdot p$ is finite-Support.

Let X be an ordinal number, L be a right zeroed, add-associative, right complementable, right unital, well unital, distributive, non trivial double loop structure, p, s be polynomials of X, L, and x be an object. The functor $\operatorname{Subst}(p, x, s)$ yielding a polynomial of X, L is defined by
(Def. 4) there exists a finite sequence S of elements of $\operatorname{PolyRing}(X, L)$ such that it $=\sum S$ and len $\operatorname{SgmX}($ BagOrder $X, \operatorname{Support} p)=\operatorname{len} S$ and for every i such that $i \in \operatorname{dom} S$ holds $S(i)=p\left((\operatorname{SgmX}(\operatorname{BagOrder} X \text {, Support } p))_{/ i}\right)$. (Subst $\left.\left((\operatorname{SgmX}(\operatorname{BagOrder} X, \operatorname{Support} p))_{/ i}, x, s\right)\right)$.
Let O be an ordinal number, t be a bag of O, and p be a \mathbb{Z}-valued polynomial of $O, \mathbb{R}_{\mathrm{F}}$. Let us observe that $\operatorname{Subst}(t, x, p)$ is \mathbb{Z}-valued.

Let p, s be \mathbb{Z}-valued polynomials of $O, \mathbb{R}_{\mathrm{F}}$. Observe that $\operatorname{Subst}(p, x, s)$ is \mathbb{Z}-valued.

Now we state the propositions:
(36) Let us consider an ordinal number O, a right zeroed, add-associative, right complementable, Abelian, well unital, distributive, non trivial double loop structure L, a polynomial p of O, L, a function x from O into L, and a finite sequence P of elements of $\operatorname{PolyRing}(O, L)$. Suppose $p=\sum P$. Let us consider a finite sequence E of elements of L. Suppose len $E=\operatorname{len} P$ and for every polynomial s of O, L and for every i such that $i \in \operatorname{dom} E$ and $s=P(i)$ holds $E(i)=\operatorname{eval}(s, x)$. Then $\operatorname{eval}(p, x)=\sum E$.
Proof: Define \mathcal{P} [natural number] \equiv for every natural number i such that $\$_{1}=i$ and $i \leqslant \operatorname{len} P$ for every polynomial q of O, L such that $q=\sum(P \upharpoonright i)$ holds $\sum(E \upharpoonright i)=\operatorname{eval}(q, x) . \mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1] . \mathcal{P}[n]$.
(37) Let us consider a commutative, associative, Abelian, right zeroed, addassociative, right complementable, well unital, distributive, non trivial double loop structure R, polynomials p, s of O, R, an object i, and a function x from O into R. Suppose $i \in O$. Then $\operatorname{eval(Subst}(p, i, s), x)=$ $\operatorname{eval}(p, x+\cdot(i, \operatorname{eval}(s, x)))$.
Proof: Set $x_{4}=x+\cdot(i, \operatorname{eval}(s, x))$. Set $B=\operatorname{SgmX}(\operatorname{BagOrder} O, \operatorname{Support} p)$. Consider f being a finite sequence of elements of R such that len $f=\operatorname{len} B$ and $\operatorname{eval}\left(p, x_{4}\right)=\sum f$ and for every element j of \mathbb{N} such that $1 \leqslant j \leqslant \operatorname{len} f$ holds $f_{/ j}=p \cdot B_{/ j} \cdot\left(\operatorname{eval}\left(B_{/ j}, x_{4}\right)\right)$. Consider S being a finite sequence of elements of $\operatorname{PolyRing}(O, R)$ such that $\operatorname{Subst}(p, i, s)=\sum S$ and len $B=\operatorname{len} S$ and for every j such that $j \in \operatorname{dom} S$ holds $S(j)=p\left(B_{/ j}\right) \cdot\left(\operatorname{Subst}\left(B_{/ j}, i, s\right)\right)$. For every polynomial q of O, R and for every j such that $j \in \operatorname{dom} f$ and $q=S(j)$ holds $f(j)=\operatorname{eval}(q, x)$.

5. Set of Variables Used in Multivariate Polynomial

Let X be a set, S be a zero structure, and p be a series of X, S. The functor $\operatorname{vars}(p)$ yielding a subset of X is defined by
(Def. 5) for every object $x, x \in i t$ iff there exists a bag b of X such that $b \in$ Support p and $b(x) \neq 0$.

Now we state the propositions:
(38) Let us consider an ordinal number X, a non empty zero structure S, and a series p of X, S. Then $\operatorname{vars}(p)=\emptyset$ if and only if p is constant.
(39) Let us consider a set X, a zero structure S, and a series p of X, S. Then $\operatorname{vars}(p)=\bigcup\{$ support b, where b is an element of Bags $X: b \in \operatorname{Support} p\}$.
(40) Let us consider a set X, a zero structure S, a series p of X, S, and a bag b of X. If $b \in \operatorname{Support} p$, then $\operatorname{support} b \subseteq \operatorname{vars}(p)$. The theorem is a consequence of (39).
Let X be an ordinal number, S be a non empty zero structure, and p be a polynomial of X, S. Let us observe that $\operatorname{vars}(p)$ is finite.

Now we state the propositions:
(41) Let us consider a set X, a right zeroed, non empty additive loop structure S, and series p, q of X, S. Then $\operatorname{vars}(p+q) \subseteq \operatorname{vars}(p) \cup \operatorname{vars}(q)$.
(42) Let us consider a set X, an add-associative, right zeroed, right complementable, non empty additive loop structure S, and a series p of X, S. Then vars $(p)=\operatorname{vars}(-p)$.
Proof: $\operatorname{vars}(p) \subseteq \operatorname{vars}(-p)$. Consider b being a bag of X such that $b \in$ Support $(-p)$ and $b(x) \neq 0$.
(43) Let us consider an ordinal number X, an add-associative, right complementable, right zeroed, right unital, distributive, non empty double loop structure S, and polynomials p, q of X, S. Then $\operatorname{vars}(p * q) \subseteq$ $\operatorname{vars}(p) \cup \operatorname{vars}(q)$.
(44) Let us consider a set X, an add-associative, right zeroed, right complementable, right distributive, non empty double loop structure S, a series p of X, S, and an element a of S. Then $\operatorname{vars}(a \cdot p) \subseteq \operatorname{vars}(p)$.
(45) Let us consider an ordinal number X, a right zeroed, add-associative, right complementable, right unital, distributive, well unital, non trivial double loop structure S, a polynomial p of X, S, and a natural number k. Then $\operatorname{vars}\left(p^{k}\right) \subseteq \operatorname{vars}(p)$.
Proof: Define \mathcal{P} [natural number] $\equiv \operatorname{vars}\left(p^{\$_{1}}\right) \subseteq \operatorname{vars}(p) . p^{0}=1_{-}(X, S)$. $\operatorname{vars}\left(p^{0}\right)=\emptyset$. If $\mathcal{P}[k]$, then $\mathcal{P}[k+1] . \mathcal{P}[k]$.
(46) Let us consider an ordinal number X, a right zeroed, add-associative, right complementable, right unital, distributive, well unital, non trivial double loop structure S, a polynomial p of X, S, and a bag t of X. Then $\operatorname{vars}(\operatorname{Subst}(t, x, p)) \subseteq(\operatorname{support} t) \backslash\{x\} \cup \operatorname{vars}(p)$. The theorem is a consequence of (45).
(47) Let us consider an ordinal number X, a right zeroed, add-associative, right complementable, right unital, distributive, well unital, non trivial double loop structure S, and polynomials p, s of X, S.
Then $\operatorname{vars}(\operatorname{Subst}(p, x, s)) \subseteq(\operatorname{vars}(p)) \backslash\{x\} \cup \operatorname{vars}(s)$.
Proof:
Set $P_{7}=\operatorname{PolyRing}(X, S)$. Set $S_{11}=\operatorname{SgmX}($ BagOrder X, Support $p)$. Consider F being a finite sequence of elements of P_{7} such that $\operatorname{Subst}(p, x, s)=$ $\sum F$ and len $S_{11}=\operatorname{len} F$ and for every i such that $i \in \operatorname{dom} F$ holds $F(i)=p\left(S_{11 / i}\right) \cdot\left(\operatorname{Subst}\left(S_{11 / i}, x, s\right)\right)$. Define $\mathcal{P}[$ natural number $] \equiv$ for every natural number i such that $i=\$_{1}$ and $i \leqslant \operatorname{len} F$ for every polynomial q of X, S such that $q=\sum(F \upharpoonright i)$ holds $\operatorname{vars}(q) \subseteq(\operatorname{vars}(p)) \backslash\{x\} \cup \operatorname{vars}(s) . \mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1] . \mathcal{P}[n]$.
(48) Let us consider a set X, a non empty zero structure S, and an element s of S. Then $\operatorname{vars}(\operatorname{Monom}(s, \operatorname{EmptyBag} X+\cdot(x, n))) \subseteq\{x\}$.

6. Polynomial Without the Last Variable

Let n be a natural number, L be a non empty zero structure, and p be a series of $n+1, L$. The functor p-removed_last yielding a series of n, L is defined by
(Def. 6) for every bag b of $n, i t(b)=p(b$ extended by 0$)$.
Let p be a polynomial of $n+1, L$. One can check that p-removed_last is finite-Support. Now we state the propositions:
(49) Let us consider a natural number n, a non empty zero structure L, and a series p of n, L. Then (the p extended by 0)-removed_last $=p$.
Proof: Set $e_{0}=$ the p extended by 0 . For every element a of Bags n, $p(a)=\left(e_{0}\right.$-removed_last)(a) by [5, (6)].
(50) Let us consider a natural number n, a non empty zero structure L, and a series p of $n+1, L$. Suppose $n \notin \operatorname{vars}(p)$. Then the p-removed_last extended by $0=p$.
Proof: Set $r=p$-removed_last. For every element a of $\operatorname{Bags}(n+1), p(a)=$ (the r extended by 0$)(a)$.
(51) Let us consider a natural number n, a right zeroed, add-associative, right complementable, well unital, distributive, non trivial double loop structure L, a polynomial p of $n+1, L$, a function x from n into L, and
a function y from $n+1$ into L. Suppose $n \notin \operatorname{vars}(p)$ and $y \upharpoonright n=x$. Then $\operatorname{eval}(p$-removed_last, $x)=\operatorname{eval}(p, y)$. The theorem is a consequence of (50).
(52) Let us consider a natural number n, a non empty zero structure L, and a series p of $n+1, L$. Then vars $(p$-removed_last $) \subseteq(\operatorname{vars}(p)) \backslash\{n\}$.
(53) Let us consider an ordinal number X, a right zeroed, add-associative, right complementable, well unital, distributive, non trivial double loop structure S, a polynomial p of X, S, an object i, and a function x from X into S. Suppose $i \in X \backslash(\operatorname{vars}(p))$. Let us consider an element s of S. Then $\operatorname{eval}(p, x)=\operatorname{eval}(p, x+\cdot(i, s))$.
Proof: Set $x_{9}=x+\cdot(o, s)$. Set $S_{4}=\operatorname{SgmX}($ BagOrder X, Support $p)$. Consider y being a finite sequence of elements of the carrier of S such that len $y=\operatorname{len} S_{4}$ and $\operatorname{eval}(p, x)=\sum y$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} y$ holds $y_{/ i}=p \cdot S_{4 / i} \cdot\left(\operatorname{eval}\left(S_{4 / i}, x\right)\right)$. Consider y_{3} being a finite sequence of elements of the carrier of S such that len $y_{3}=\operatorname{len} S_{4}$ and $\operatorname{eval}\left(p, x_{9}\right)=\sum y_{3}$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} y_{3}$ holds $y_{3 / i}=p \cdot S_{4 / i} \cdot\left(\operatorname{eval}\left(S_{4 / i}, x_{9}\right)\right)$. For every natural number i such that $1 \leqslant i \leqslant \operatorname{len} S_{4}$ holds $y(i)=y_{3}(i)$.

7. Square Root Function - Some Generalization

Let n be an ordinal number, x be an object, A be a finite subset of n, and f be a real-valued function. The functor $f(x)+\sqrt[C]{f\left(A_{1}\right)}+\sqrt[C]{f\left(A_{2}\right)}+\ldots$ yielding a finite sequence of elements of \mathbb{C}_{F} is defined by
(Def. 7) len $i t=1+\overline{\bar{A}}$ and $i t(1)=f(x)$ and for every natural number i such that $i \in \operatorname{dom}\left(\operatorname{SgmX}\left(\subseteq_{n}, A\right)\right)$ holds $i t(i+1)^{\mathbf{2}}=f\left(\left(\operatorname{SgmX}\left(\subseteq_{n}, A\right)\right)(i)\right)$ and $\Re(i t(i+1)) \geqslant 0$ and $\Im(i t(i+1)) \geqslant 0$.
Let n be a natural number and f be a finite function.
The functor count_reps (f, n) yielding a bag of n is defined by
(Def. 8) for every natural number i such that $i \in n$ holds $i t(i)=\overline{\overline{f^{-1}(\{i+1\})}}$.
Now we state the propositions:
(54) count_reps $(\emptyset, n)=$ EmptyBag n.
(55) Let us consider a finite sequence f. Then count_reps $\left(f^{\frown}\langle i+1\rangle, n\right)=$ count_reps $(f, n)+($ EmptyBag $n+\cdot(i, 1))$.
Proof: Set $s_{1}=\operatorname{count_ reps}(f \frown\langle i+1\rangle, n)$. Set $s=\operatorname{count_ reps}(f, n)$. Set $E=\operatorname{EmptyBag} n$. For every object x such that $x \in \operatorname{dom} s_{1}$ holds $s_{1}(x)=(s+(E+\cdot(i, 1)))(x)$.
Let f be a finite function, L be a double loop structure, and E be a function. The functor $\operatorname{Sgn}_{L, E}(f)$ yielding an element of L is defined by
(Def. 9) for every natural number c such that
$c=\overline{\overline{\{x,} \text { where } x \text { is an element of dom } f: x \in \operatorname{dom} f \text { and } f(x) \in E(x)\}}$ holds if c is even, then $i t=1_{L}$ and if c is odd, then $i t=-1_{L}$.
Now we state the propositions:
(56) Let us consider a double loop structure L, and a function E. Then $\operatorname{Sgn}_{L, E}(\emptyset)=1_{L}$.
(57) Let us consider a double loop structure L, finite sequences f, e, an object x, and a set E. Suppose len $f=\operatorname{len} e$ and $x \notin E$. Then $\operatorname{Sgn}_{L,(e \curvearrowright\langle E\rangle)}(f \frown$ $\langle x\rangle)=\operatorname{Sgn}_{L, e}(f)$.
Proof: Set $f_{5}=f \frown\langle x\rangle$. Set $e_{7}=e^{\frown}\langle E\rangle$. Set $X_{1}=\{x$, where x is an element of $\operatorname{dom} f_{5}: x \in \operatorname{dom} f_{5}$ and $\left.f_{5}(x) \in e_{7}(x)\right\}$. Set $X=\{x$, where x is an element of $\operatorname{dom} f: x \in \operatorname{dom} f$ and $f(x) \in e(x)\} . X \subseteq \operatorname{dom} f$. $X=X_{1}$.
(58) Let us consider an add-associative, right zeroed, right complementable, non empty double loop structure L, finite sequences f, e, an object x, and a set E. Suppose len $f=\operatorname{len} e$ and $x \in E$. Then $\operatorname{Sgn}_{L,\left(e^{\wedge}\langle E\rangle\right)}\left(f^{\wedge}\langle x\rangle\right)=$ $-\operatorname{Sgn}_{L, e}(f)$.
Proof: Set $f_{5}=f^{\frown}\langle x\rangle$. Set $e_{7}=e^{\frown}\langle E\rangle$. Set $X_{1}=\{x$, where x is an element of $\operatorname{dom} f_{5}: x \in \operatorname{dom} f_{5}$ and $\left.f_{5}(x) \in e_{7}(x)\right\}$. Set $X=\{x$, where x is an element of $\operatorname{dom} f: x \in \operatorname{dom} f$ and $f(x) \in e(x)\} . X \subseteq X_{1} . X_{1} \subseteq$ $\operatorname{dom} f_{5}$. len $f+1 \notin X . X_{1} \subseteq X \cup\{\operatorname{len} f+1\}$.
(59) Let us consider an add-associative, right zeroed, right complementable, well unital, distributive, associative, Abelian, commutative, non empty, non trivial double loop structure L, a natural number n, a finite sequence f of elements of L, and a function x_{6} from n into L. Suppose $x_{6}=\operatorname{FS} 2 X F S(f)$.

Let us consider a finite set F, an enumeration E of F, and a finite sequence d. Suppose $d \in \operatorname{dom}_{\kappa}(\operatorname{SignGenOp}(f$, (the addition of $\left.L), F)\right)$. $E(\kappa)$. Then (the multiplication of $L) \odot(\operatorname{App}((\operatorname{SignGenOp}(f$, (the addition of $L), F)) \cdot E))(d)=\operatorname{eval}\left(\operatorname{Monom}\left(\operatorname{Sgn}_{L, E}(d)\right.\right.$, count_reps $\left.\left.(d, n)\right), x_{6}\right)$.
Proof: Set $M=$ the multiplication of L. Set $A=$ the addition of L. Define \mathcal{P} [natural number] \equiv for every finite set F such that $\overline{\bar{F}}=\$_{1}$ for every enumeration E of F for every finite sequence d such that $d \in$ $\operatorname{dom}_{\kappa}(\operatorname{SignGenOp}(f, A, F)) \cdot E(\kappa)$ holds $M \odot(\operatorname{App}((\operatorname{SignGenOp}(f, A, F))$. $E))(d)=\operatorname{eval}\left(\operatorname{Monom}\left(\operatorname{Sgn}_{L, E}(d)\right.\right.$, count_reps $\left.\left.(d, n)\right), x_{6}\right) . \mathcal{P}[0]$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1] . \mathcal{P}[i]$.
(60) Let us consider a finite function f. Suppose f has evenly repeated values. Then (count_reps $(f, n))(x)$ is even.
(61) Let us consider a finite sequence f of elements of $\operatorname{Seg} n$.

Then degree(count_reps $(f, n))=\operatorname{len} f$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence f of elements of $\operatorname{Seg} n$ such that len $f=\$_{1}$ holds degree(count_reps $\left.(f, n)\right)=\operatorname{len} f . \mathcal{P}[0]$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1] . \mathcal{P}[i]$.
(62) Let us consider a double loop structure L, a finite function f, and a function E. Then
(i) $\operatorname{Sgn}_{L, E}(f)=1_{L}$, or
(ii) $\operatorname{Sgn}_{L, E}(f)=-1_{L}$.
(63) Let us consider a finite sequence f of elements of $\operatorname{Seg} n$, and i. Suppose $i \in n$ and count_reps $(f, n)=\operatorname{EmptyBag} n+\cdot(i, \operatorname{len} f)$. Then $f=\operatorname{len} f \mapsto$ $(i+1)$.
(64) If $i \in n$, then countreps $(m \mapsto(i+1), n)=\operatorname{EmptyBag} n+\cdot(i, m)$.

Proof: Set $E=\operatorname{EmptyBag} n$. Set $s=$ count_reps $(m \mapsto(i+1), n)$. For every x such that $x \in n$ holds $s(x)=(E+\cdot(i, m))(x)$.

8. Jpolynom

Let L be an Abelian, commutative, add-associative, right zeroed, right complementable, associative, well unital, distributive, non empty, non trivial double loop structure and m be a natural number. Assume $m>1$.

A $\mathrm{J}_{\text {poly }}$ of m, L is a polynomial of m, L defined by
(Def. 10) $i t\left(\right.$ EmptyBag $\left.m+\cdot\left(0,2^{m-^{\prime} 1}\right)\right)=1_{L}$ and for every bag b of m such that $b \in \operatorname{Support}$ it holds degree $(b)=2^{m-^{\prime} 1}$ and there exists an integer i such that $i t(b)=i \star \mathbf{1}_{L}$ and if $2^{m-^{\prime} 1} \in \operatorname{rng} b$, then $i t(b)=1_{L}$ or $i t(b)=-1_{L}$ and for every $n, b(n)$ is even and for every finite sequence f of elements of L and for every function x_{6} from m into L such that $x_{6}=\operatorname{FS} 2 \operatorname{XFS}(f)$ holds eval $\left(i t, x_{6}\right)=\operatorname{SignGenOp}(f$, (the multiplication of $L)$, (the addition of L), ($\operatorname{Seg} m) \backslash\{1\}$).
Let f be a real-valued finite sequence. The functor $\sqrt[C]{f}$ yielding a finite sequence of elements of \mathbb{C}_{F} is defined by
(Def. 11) len $i t=\operatorname{len} f$ and $i t(1)=f(1)$ and for every natural number i such that $i \in \operatorname{dom} f$ and $i \neq 1$ holds $i t(i)^{2}=f(i)$ and $\Re(i t(i)) \geqslant 0$ and $\Im(i t(i)) \geqslant 0$.
Let L be a non empty 1 -sorted structure, m be a set, and P be a series of m, L. The functor $\mathrm{J}^{\sqrt{ }}(P)$ yielding a series of m, L is defined by
(Def. 12) for every bag b of $m, i t(b)=P(2 \cdot b+\cdot(0, b(0)))$.
Let L be a non empty zero structure, m be an ordinal number, and P be a polynomial of m, L. Observe that $\mathrm{J}^{\sqrt{ }}(P)$ is finite-Support. Now we state the propositions:
(65) Let us consider a non empty zero structure L, a natural number m, and a polynomial p of m, L. Suppose for every bag b of m for every n such that $b \in \operatorname{Support} p$ holds $b(n)$ is even. Let us consider a one-to-one finite sequence C_{2} of elements of Bags m. Suppose $\operatorname{rng} C_{2}=\operatorname{Support} \mathrm{J}^{\sqrt{ }}(p)$. Then there exists a one-to-one finite sequence S of elements of Bags m such that
(i) len $S=\operatorname{len} C_{2}$, and
(ii) $\operatorname{rng} S=\operatorname{Support} p$, and
(iii) for every i such that $i \in \operatorname{dom} S$ holds $S(i)=2 \cdot C_{2 / i}+\cdot\left(0,\left(C_{2 / i}\right)(0)\right)$.

Proof: Define $\mathcal{B}($ bag of $m)=2 \cdot \$_{1}+\cdot\left(0, \$_{1}(0)\right)$. Define \mathcal{F} (object) $=$ $\mathcal{B}\left(C_{2 / \$_{1}}\right)$. Consider S being a finite sequence such that len $S=\operatorname{len} C_{2}$ and for every k such that $k \in \operatorname{dom} S$ holds $S(k)=\mathcal{F}(k)$. rng $S \subseteq$ Support p. Support $p \subseteq \operatorname{rng} S . S$ is one-to-one.
(66) Let us consider a non trivial natural number m, a $\mathrm{J}_{\text {poly }}$ of $m, \mathbb{C}_{\mathrm{F}}$, a finite sequence f of elements of \mathbb{R}, and functions x_{6}, c_{2} from m into \mathbb{C}_{F}. Suppose $x_{6}=\operatorname{FS} 2 \operatorname{XFS}(f)$ and $c_{2}=\operatorname{FS} 2 \operatorname{XFS}(\sqrt[C]{f})$. Then $\operatorname{eval}\left(p, c_{2}\right)=$ $\operatorname{eval}\left(J^{\sqrt{ }}(p), x_{6}\right)$.
Proof: Reconsider $L=\mathbb{C}_{F}$ as a field. Reconsider $x_{7}=x_{6}, c_{3}=c_{2}$ as a function from m into L. Set $c=\mathrm{J}^{\sqrt{ }}(p)$. Reconsider $P=p, C=c$ as a polynomial of m, L. Set $C_{2}=\operatorname{SgmX}($ BagOrder m, Support $C)$. Consider C_{3} being a finite sequence of elements of L such that len $C_{3}=\operatorname{len} C_{2}$ and $\operatorname{eval}\left(C, x_{7}\right)=\sum C_{3}$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant$ len C_{3} holds $C_{3 / i}=C \cdot C_{2 / i} \cdot\left(\operatorname{eval}\left(C_{2 / i}, x_{7}\right)\right)$. Consider S being a one-toone finite sequence of elements of Bags m such that len $S=\operatorname{len} C_{2}$ and $\operatorname{rng} S=\operatorname{Support} p$ and for every i such that $i \in \operatorname{dom} S$ holds $S(i)=$ $2 \cdot C_{2 / i}+\cdot\left(0,\left(C_{2 / i}\right)(0)\right)$. Consider y being a finite sequence of elements of L such that len $y=\overline{\overline{\operatorname{Support} p}}$ and $\operatorname{eval}\left(P, c_{3}\right)=\sum y$ and for every natural number i such that $1 \leqslant i \leqslant \operatorname{len} y$ holds $y_{/ i}=P \cdot S_{/ i} \cdot\left(\operatorname{eval}\left(S_{/ i}, c_{3}\right)\right)$. For every i such that $1 \leqslant i \leqslant \operatorname{len} y$ holds $y(i)=C_{3}(i)$.
(67) Let us consider a finite sequence f_{2} of elements of \mathbb{C}_{F}, and a finite sequence f_{4} of elements of \mathbb{R}_{F}. If $f_{2}=f_{4}$, then $\prod f_{2}=\prod f_{4}$.
Proof: Reconsider $F_{1}=\mathbb{C}_{F}, F_{2}=\mathbb{R}_{\mathrm{F}}$ as a field. Define \mathcal{P} [natural number] \equiv for every finite sequence f_{2} of elements of F_{1} for every finite sequence f_{4} of elements of F_{2} such that $f_{2}=f_{4}$ and len $f_{2}=\$_{1}$ holds $\prod f_{2}=\prod f_{4} . \mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1] . \mathcal{P}[n]$.
(68) Let us consider an ordinal number m, a bag b of m, a function x_{5} from m into \mathbb{C}_{F}, and a function x_{10} from m into \mathbb{R}_{F}. If $x_{5}=x_{10}$, then $\operatorname{eval}\left(b, x_{5}\right)=$ $\operatorname{eval}\left(b, x_{10}\right)$.

Proof: Reconsider $F_{1}=\mathbb{C}_{\mathrm{F}}, F_{2}=\mathbb{R}_{\mathrm{F}}$ as a field.
Set $S=\operatorname{SgmX}\left(\subseteq_{m}\right.$, support $\left.b\right)$. Consider y_{1} being a finite sequence of elements of F_{1} such that len $y_{1}=\operatorname{len} S$ and $\operatorname{eval}\left(b, x_{5}\right)=\prod y_{1}$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} y_{1}$ holds $y_{1 / i}=\operatorname{power}_{F_{1}}\left(x_{5} \cdot S_{/ i}, b \cdot S_{/ i}\right)$. Consider y_{2} being a finite sequence of elements of F_{2} such that len $y_{2}=$ len S and $\operatorname{eval}\left(b, x_{10}\right)=\prod y_{2}$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} y_{2}$ holds $y_{2 / i}=\operatorname{power}_{F_{2}}\left(x_{10} \cdot S_{/ i}, b \cdot S_{/ i}\right)$. For every i such that $1 \leqslant i \leqslant \operatorname{len} S$ holds $y_{1}(i)=y_{2}(i)$ by [3, (7)].
(69) Let us consider an ordinal number m, a polynomial P_{8} of m, \mathbb{C}_{F}, and a polynomial P_{14} of $m, \mathbb{R}_{\mathrm{F}}$. Suppose $P_{8}=P_{14}$. Let us consider a function x_{5} from m into \mathbb{C}_{F}, and a function x_{10} from m into \mathbb{R}_{F}. Suppose $x_{5}=x_{10}$. Then $\operatorname{eval}\left(P_{8}, x_{5}\right)=\operatorname{eval}\left(P_{14}, x_{10}\right)$.
Proof: Reconsider $F_{1}=\mathbb{C}_{\mathrm{F}}, F_{2}=\mathbb{R}_{\mathrm{F}}$ as a field.
Set $S=\operatorname{SgmX}\left(\operatorname{BagOrder} m\right.$, $\left.\operatorname{Support} P_{8}\right)$. Consider C_{3} being a finite sequence of elements of the carrier of F_{1} such that len $C_{3}=\operatorname{len} S$ and $\operatorname{eval}\left(P_{8}, x_{5}\right)=\sum C_{3}$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} C_{3}$ holds $C_{3 / i}=P_{8} \cdot S_{/ i} \cdot\left(\operatorname{eval}\left(S_{/ i}, x_{5}\right)\right)$.

Support $P_{8} \subseteq$ Support P_{14}. Support $P_{14} \subseteq \operatorname{Support} P_{8}$. Consider R_{4} being a finite sequence of elements of the carrier of F_{2} such that len $R_{4}=$ len S and $\operatorname{eval}\left(P_{14}, x_{10}\right)=\sum R_{4}$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} R_{4}$ holds $R_{4 / i}=P_{14} \cdot S_{/ i} \cdot\left(\operatorname{eval}\left(S_{/ i}, x_{10}\right)\right)$. Define \mathcal{P} [natural number] \equiv for every natural number i such that $i=\$_{1} \leqslant \operatorname{len} S$ holds $\sum\left(R_{4} \backslash i\right)=\sum\left(C_{3} \backslash i\right) . \mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$. $\mathcal{P}[n]$.
Let m be a natural number. Assume $m>1$. Let M be a $\mathrm{J}_{\text {poly }}$ of $m, \mathbb{C}_{\mathrm{F}}$. The functor $J^{\sqrt{C}}(M)$ yielding a \mathbb{Z}-valued polynomial of m, \mathbb{R}_{F} is defined by the term (Def. 13) $\mathrm{J}^{\sqrt{ }}(M)$.

Now we state the proposition:
(70) Let us consider a non trivial natural number m, a $\mathrm{J}_{\text {poly }}$ of $m, \mathbb{C}_{\mathrm{F}}$, and a function f from m into \mathbb{R}_{F}. Then $\operatorname{eval}\left(J^{\sqrt{\mathbb{C}}}(M), f\right)=0$ if and only if there exists a subset A of $(\operatorname{Seg} m) \backslash\{1\}$ such that (the addition of $\left.\mathbb{C}_{F}\right) \odot \operatorname{SignGen}\left(\sqrt[C]{\operatorname{XFS} 2 \mathrm{FS}\left({ }^{(} f\right)},\left(\right.\right.$ the addition of $\left.\left.\mathbb{C}_{F}\right), A\right)=0$.
Proof: Reconsider $F=\mathrm{XFS} 2 \mathrm{FS}\left({ }^{@} f\right)$ as a finite sequence of elements of \mathbb{R}. Set $M_{3}=$ the multiplication of \mathbb{C}_{F}. Set $A_{1}=$ the addition of \mathbb{C}_{F}. Reconsider $x_{6}=\operatorname{FS} 2 \operatorname{XFS}(F)$ as a function from m into \mathbb{C}_{F}. Reconsider $c_{1}=\sqrt[C]{F}$ as an m-elements finite sequence of elements of \mathbb{C}_{F}. Reconsider $f_{3}=\operatorname{FS} 2 \operatorname{XFS}\left(c_{1}\right)$ as a function from m into $\mathbb{C}_{\mathrm{F}} \cdot \operatorname{eval}\left(\mathrm{J}^{\sqrt{\mathbb{C}}}(M), f\right)=$ $\operatorname{eval}\left(J^{\sqrt{ }}(M), x_{6}\right) . \operatorname{eval}\left(J^{\sqrt{\mathbb{C}}}(M), f\right)=\operatorname{eval}\left(M, f_{3}\right) . \operatorname{Set} B=(\operatorname{Seg} m) \backslash\{1\}$. Set $t_{1}=$ the enumeration of 2^{B}. Set $C_{1}=\left(\operatorname{SignGenOp}\left(c_{1}, A_{1}, 2^{B}\right)\right) \cdot t_{1}$. Define $\mathcal{P}[$ set $] \equiv$ for every element X of Findom C_{1} such that $X=\$_{1}$
holds $M_{3-} \sum_{X}\left(A_{1} \odot C_{1}\right)=0_{\mathbb{C}_{\mathrm{F}}}$ iff there exists x such that $x \in X$ and $0_{\mathbb{C}_{\mathrm{F}}}=\left(A_{1} \odot C_{1}\right)(x)$.

For every element B_{9} of Fin dom C_{1} and for every element b of $\operatorname{dom} C_{1}$ such that $\mathcal{P}\left[B_{9}\right]$ and $b \notin B_{9}$ holds $\mathcal{P}\left[B_{9} \cup\{b\}\right]$. For every element B of Fin $\operatorname{dom} C_{1}, \mathcal{P}[B]$. If $\operatorname{eval}\left(\mathrm{J}^{\sqrt{\mathbb{C}}}(M), f\right)=0$, then there exists a subset A of $(\operatorname{Seg} m) \backslash\{1\}$ such that $A_{1} \odot \operatorname{SignGen}\left(\sqrt[C]{\mathrm{XFS} 2 \mathrm{FS}\left({ }^{@} f\right)}, A_{1}, A\right)=0$ by [6, (80)]. Consider x such that $x \in \operatorname{dom} t_{1}$ and $t_{1}(x)=A$.

Let x, y, z, t be objects. Let us note that $\langle x, y, z, t\rangle$ is 4 -elements. Let x be a real number. Note that $\langle x\rangle$ is \mathbb{R}-valued. Let x, y, z, t be real numbers. One can check that $\langle x, y, z, t\rangle$ is \mathbb{R}-valued. Now we state the propositions:
(71) Let us consider a real-valued finite sequence f. If $i>1$ and $f(i) \geqslant 0$, then $(\sqrt[C]{f})(i)=\sqrt{f(i)}$. The theorem is a consequence of (2).
(72) Let us consider a finite sequence f of elements of \mathbb{C}_{F}, and a set A. Then there exists an integer i such that
(i) $i=1$ or $i=-1$, and
(ii) $\left(\operatorname{SignGen}\left(f,\left(\right.\right.\right.$ the addition of $\left.\left.\left.\mathbb{C}_{\mathrm{F}}\right), A\right)\right)(x)=i \cdot f(x)$.

9. Prime Representing Polynomial Construction

Now we state the propositions:
(73) Let us consider a $\mathrm{J}_{\text {poly }}$ of $4, \mathbb{C}_{\mathrm{F}}$, and natural numbers x_{1}, x_{2}, x_{3}. Suppose x_{1} is odd and x_{2} is odd. Let us consider an integer z. Suppose $\operatorname{eval}\left(\mathrm{J}^{\sqrt{\mathbb{C}}}(M),{ }^{@}\left\langle z, x_{1}, 4 \cdot x_{2}, 16 \cdot x_{3}\right\rangle\right)=0$. Then
(i) x_{1} is a square, and
(ii) x_{2} is a square, and
(iii) x_{3} is a square, and
(iv) $-z \leqslant \sqrt{x_{1}}+2 \cdot \sqrt{x_{2}}+4 \cdot \sqrt{x_{3}}$.

Proof: Set $A_{2}=$ the addition of \mathbb{C}_{F}. Set $f=\left\langle z, x_{1}, 4 \cdot x_{2}, 16 \cdot x_{3}\right\rangle$. Consider A being a subset of $(\operatorname{Seg} 4) \backslash\{1\}$ such that $A_{2} \odot \operatorname{SignGen}\left(\sqrt[C]{\text { XFS2FS }\left(\varrho^{@} f\right)}, A_{2}\right.$, $A)=0$. Set $c=\sqrt[C]{\mathrm{XFS} 2 \mathrm{FS}(f)}$. Set $S=\operatorname{SignGen}\left(c, A_{2}, A\right)$. Set $i_{4}=1$. Consider i_{1} being an integer such that ($i_{1}=1$ or $i_{1}=-1$) and $S(2)=$ $i_{1} \cdot c(2)$. Consider i_{2} being an integer such that $\left(i_{2}=1\right.$ or $\left.i_{2}=-1\right)$ and $S(3)=i_{2} \cdot c(3)$. Consider i_{3} being an integer such that ($i_{3}=1$ or $\left.i_{3}=-1\right)$ and $S(4)=i_{3} \cdot c(4) \cdot c(2)=\sqrt{x_{1}} \cdot c(3)=\sqrt{4 \cdot x_{2}} \cdot c(4)=\sqrt{4 \cdot 4 \cdot x_{3}}$. $S(1) \neq 0$. Set $Y=z \cdot z+16 \cdot x_{3}-x_{1}-4 \cdot x_{2} . Y \neq 0$. Reconsider $Y_{1}=$ $2 \cdot Y \cdot 8 \cdot\left(i_{4} \cdot i_{3}\right) \cdot z \cdot \sqrt{x_{3}}$ as an integer. $16 \cdot Y \cdot z \mid Y_{1}$. Consider m being
an integer such that $16 \cdot Y \cdot z \cdot m=Y_{1}$. Reconsider $S_{3}=\sqrt{x_{3}}$ as an integer. Set $Z_{1}=i_{4} \cdot 2 \cdot z-1+i_{3} \cdot 8 \cdot S_{3} . Z_{1} \neq 0$. Set $Y_{1}=Z_{1} \cdot Z_{1}+16 \cdot x_{2}-1-4 \cdot x_{1}$. $Y_{1} \neq 0$. Reconsider $Y_{2}=16 \cdot Y_{1} \cdot Z_{1} \cdot i_{2} \cdot \sqrt{x_{2}}$ as an integer. Consider m_{1} being an integer such that $16 \cdot Y_{1} \cdot Z_{1} \cdot m_{1}=Y_{2}$. Reconsider $Y_{3}=2 \cdot i_{1} \cdot \sqrt{x_{1}}$ as an integer. Consider m_{2} being an integer such that $2 \cdot m_{2}=Y_{3}$.
(74) Let us consider a $\mathrm{J}_{\text {poly }}$ of $4, \mathbb{C}_{\mathrm{F}}$, and natural numbers x_{1}, x_{2}, x_{3}. Suppose x_{1} is a square and x_{2} is a square and x_{3} is a square. Then there exists an integer z such that
(i) $-z=\sqrt{x_{1}}+2 \cdot \sqrt{x_{2}}+4 \cdot \sqrt{x_{3}}$, and
(ii) $\operatorname{eval}\left(\mathrm{J}^{\sqrt{\mathbb{C}}}(M),{ }^{@}\left\langle z, x_{1}, 4 \cdot x_{2}, 16 \cdot x_{3}\right\rangle\right)=0$.

The theorem is a consequence of (71) and (70).
(75) Let us consider a right zeroed, add-associative, right complementable, well unital, distributive, non trivial double loop structure L, and a polynomial p of n, L. Then there exists a polynomial q of $n+m, L$ such that
(i) $\operatorname{rng} q \subseteq \operatorname{rng} p \cup\left\{0_{L}\right\}$, and
(ii) for every bag b of $n+m, b \in \operatorname{Support} q$ iff $b \upharpoonright n \in \operatorname{Support} p$ and for every i such that $i \geqslant n$ holds $b(i)=0$, and
(iii) for every bag b of $n+m$ such that $b \in \operatorname{Support} q$ holds $q(b)=p(b \upharpoonright n)$, and
(iv) for every function x from n into L and for every function y from $n+m$ into L such that $y\lceil n=x \operatorname{holds} \operatorname{eval}(p, x)=\operatorname{eval}(q, y)$.
Proof: Define \mathcal{P} [natural number] \equiv there exists a polynomial q of $n+\$_{1}, L$ such that $\operatorname{rng} q \subseteq \operatorname{rng} p \cup\left\{0_{L}\right\}$ and for every bag b of $n+\$_{1}, b \in$ Support q iff $b \upharpoonright n \in \operatorname{Support} p$ and for every i such that $i \geqslant n$ holds $b(i)=0$ and for every bag b of $n+\$_{1}$ such that $b \in \operatorname{Support} q$ holds $q(b)=p(b \upharpoonright n)$ and for every function x from n into L and for every function y from $n+\$_{1}$ into L such that $y \upharpoonright n=x$ holds $\operatorname{eval}(p, x)=\operatorname{eval}(q, y)$. $\mathcal{P}[0]$. If $\mathcal{P}[k]$, then $\mathcal{P}[k+1] . \mathcal{P}[k]$.
(76) Let us consider a $\mathrm{J}_{\text {poly }}$ of $4, \mathbb{C}_{\mathrm{F}}$. Then there exists a \mathbb{Z}-valued polynomial K_{2} of $6, \mathbb{R}_{\mathrm{F}}$ such that
(i) for every function f from 6 into \mathbb{R}_{F} such that $f(5) \neq 0$ holds $\operatorname{eval}\left(K_{2}, f\right)$ $=\operatorname{power}_{\mathbb{R}_{\mathrm{F}}}\left(f_{/ 5}, 8\right) \cdot\left(\operatorname{eval}\left(\mathrm{J}^{\sqrt{\mathbb{C}}}(M),{ }^{@}\left\langle-f(0)+\frac{f(4)}{f(5)}, f(1), f(2), f(3)\right\rangle\right)\right)$, and
(ii) for every \mathbb{Z}-valued function f from 6 into \mathbb{R}_{F} such that $f(5) \neq 0$ and $\operatorname{eval}\left(K_{2}, f\right)=0$ holds $f(5) \mid f(4)$.
Proof: Set $p=J^{\sqrt{\mathbb{C}}}(M)$. Set $R=\mathbb{R}_{\mathrm{F}}$. Consider q being a polynomial of $4+2, R$ such that $\operatorname{rng} q \subseteq \operatorname{rng} p \cup\left\{0_{R}\right\}$ and for every bag b of $4+$
$2, b \in \operatorname{Support} q$ iff $b \upharpoonright 4 \in \operatorname{Support} p$ and for every i such that $i \geqslant 4$ holds $b(i)=0$ and for every bag b of $4+2$ such that $b \in \operatorname{Support} q$ holds $q(b)=p(b \upharpoonright 4)$ and for every function x from 4 into R and for every function y from $4+2$ into R such that $y \upharpoonright 4=x \operatorname{holds} \operatorname{eval}(p, x)=\operatorname{eval}(q, y)$. Set $Y_{5}=\operatorname{EmptyBag} 6+\cdot(0,1)$. Set $Y=\operatorname{Monom}\left(-1_{R}, Y_{5}\right)$. Set $Z_{9}=$ EmptyBag $6+\cdot(4,1)$. Set $Z=\operatorname{Monom}\left(1_{R}, Z_{9}\right)$. Set $Y_{4}=Y+Z$. Set $S_{15}=\operatorname{SgmX}($ BagOrder 6 , Support $q)$.

Consider S being a finite sequence of elements of $\operatorname{PolyRing}(6, R)$ such that $\operatorname{Subst}\left(q, 0, Y_{4}\right)=\sum S$ and len $S_{15}=\operatorname{len} S$ and for every i such that $i \in \operatorname{dom} S$ holds $S(i)=q\left(S_{15 / i}\right) \cdot\left(\operatorname{Subst}\left(S_{15 / i}, 0, Y_{4}\right)\right)$. Set $E_{1}=$ EmptyBag 6. Set $M_{1}=$ EmptyBag $4+\cdot(0,8)$. Set $M_{2}=E_{1}+\cdot(0,8)$. $2 \cdot M_{1}+\cdot\left(0, M_{1}(0)\right)=M_{1}$. For every x such that $x \in 4$ holds $\left(M_{2} \upharpoonright 4\right)(x)=$ $M_{1}(x)$. For every i such that $i \geqslant 4$ holds $M_{2}(i)=0$. Consider I being an object such that $I \in \operatorname{dom} S_{15}$ and $S_{15}(I)=M_{2}$. Define \mathcal{P} [natural number $] \equiv\left(Y_{4}{ }^{\$_{1}}\right)\left(E_{1}+\cdot\left(4, \$_{1}\right)\right)=1_{R} . Y_{4}{ }^{0}=1_{-}(6, R)$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$. $\mathcal{P}[i]$. Set $Z_{8}=E_{1}+\cdot(4,8) .\left(\operatorname{Subst}\left(S_{15 / I}, 0, Y_{4}\right)\right)\left(Z_{8}\right)=\left(Y_{4}{ }^{M_{2}(0)}\right)\left(Z_{8}\right)$. For every i such that $i \in \operatorname{dom} S$ for every bag b of 6 such that $b \in$ Support $q\left(S_{15 / i}\right) \cdot\left(\operatorname{Subst}\left(S_{15 / i}, 0, Y_{4}\right)\right)$ and $b(4) \geqslant 8$ holds $i=I$ and $b=Z_{8}$.

For every i such that $i \in \operatorname{dom} S$ for every bag b of 6 such that $b \in$ Support $q\left(S_{15 / i}\right) \cdot\left(\operatorname{Subst}\left(S_{15 / i}, 0, Y_{4}\right)\right)$ holds $b(5)=0$. Define \mathcal{W} [natural number] \equiv for every natural number i such that $\$_{1}=i$ and $i \leqslant \operatorname{len} S$ for every polynomial w of $6, R$ such that $w=\sum(S \backslash i)$ holds if $I \leqslant i$, then $w\left(Z_{8}\right)=\mathbf{1}_{R}$ and if $i<I$, then $w\left(Z_{8}\right)=0_{R}$ and for every bag b of 6 such that $b \in$ Support w and $b \neq Z_{8}$ holds $b(4)<8$ and for every bag b of 6 such that $b \in \operatorname{Support} w$ holds $b(5)=0 . \mathcal{W}[0]$. If $\mathcal{W}[n]$, then $\mathcal{W}[n+1]$. Set $S_{9}=\operatorname{Subst}\left(q, 0, Y_{4}\right) . \mathcal{W}[n]$. Define $\mathcal{J}[$ bag of 6 , element of $R] \equiv$ if $\$_{1}(4)+$ $\$_{1}(5)=8$, then $\$_{2}=S_{9}\left(\$_{1}+\cdot(5,0)\right)$ and if $\$_{1}(4)+\$_{1}(5) \neq 8$, then $\$_{2}=0_{R}$. For every element x of Bags 6 , there exists an element y of R such that $\mathcal{J}[x, y]$. Consider W being a function from Bags 6 into R such that for every element x of Bags 6, $\mathcal{J}[x, W(x)]$. Set $S_{7}=\operatorname{SgmX}\left(\right.$ BagOrder 6, Support $\left.S_{9}\right)$. Define \mathcal{O} (object) $=S_{7 / \$_{1}}+\cdot\left(5,8-^{\prime}\left(S_{7 / \$_{1}}\right)(4)\right)$.

Consider S_{10} being a finite sequence such that len $S_{10}=\operatorname{len} S_{7}$ and for every k such that $k \in \operatorname{dom} S_{10}$ holds $S_{10}(k)=\mathcal{O}(k)$. rng $S_{10} \subseteq$ Support W. Support $W \subseteq \operatorname{rng} S_{10} . S_{10}$ is one-to-one. Reconsider $R_{1}=R$ as a field. $\operatorname{Monom}\left(-1_{R_{1}}, Y_{5}\right)=-\operatorname{Monom}\left(1_{R_{1}}, Y_{5}\right) . \operatorname{rng} W \subseteq \mathbb{Z}$. Reconsider $S_{8}=S_{9}$, $J=W$ as a polynomial of $6, R_{1}$. For every function f from 6 into \mathbb{R}_{F} and for every element d of \mathbb{R}_{F} such that $f(5) \neq 0$ and $d=\frac{f(4)}{f(5)}$ holds $\operatorname{eval}(W, f)=\operatorname{power}_{\mathbb{R}_{F}}\left(f_{/ 5}, 8\right) \cdot\left(\operatorname{eval}\left(S_{9}, f+\cdot(4, d)\right)\right)$. For every function f from 6 into \mathbb{R}_{F} such that $f(5) \neq 0$ holds $\operatorname{eval}(W, f)=\operatorname{power}_{R}\left(f_{/ 5}, 8\right)$. $\left(\operatorname{eval}\left(J^{\sqrt{\mathbb{C}}}(M),{ }^{@}\left\langle-f(0)+\frac{f(4)}{f(5)}, f(1), f(2), f(3)\right\rangle\right)\right)$. Set $N=\operatorname{gcd}(f(5), f(4))$.

Consider g_{5}, g_{4} being integers such that $f(5)=N \cdot g_{5}$ and $f(4)=N \cdot g_{4}$ and g_{5} and g_{4} are relatively prime. Reconsider $N_{5}=N, g_{2}=g_{5}, g_{3}=g_{4}$ as an element of R. Set $g=\left(f+\cdot\left(4, g_{3}\right)\right)+\cdot\left(5, g_{2}\right)$.

Reconsider $g_{1}=g$ as a function from 6 into $R_{1} . \operatorname{rng} g \subseteq \mathbb{Z} . \operatorname{power}_{\mathbb{R}_{F}}\left(N_{5}\right.$, 8) $\neq 0_{R}$. Set $R_{8}=E_{1}+(4,8)$. Set $M_{5}=\operatorname{Monom}\left(1_{R_{1}}, R_{8}\right)$. Set $S=$ $\operatorname{SgmX}\left(\operatorname{BagOrder} 6, \operatorname{Support}\left(J-M_{5}\right)\right)$. Consider R_{4} being a finite sequence of elements of R_{1} such that len $R_{4}=\operatorname{len} S$ and $\operatorname{eval}\left(J-M_{5}, g_{1}\right)=\sum R_{4}$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant$ len R_{4} holds $R_{4 / i}=\left(J-M_{5}\right)$. $S_{/ i} \cdot\left(\operatorname{eval}\left(S_{/ i}, g_{1}\right)\right)$. Define \mathcal{P} [natural number] \equiv for every natural number i such that $i=\$_{1} \leqslant$ len S there exists an integer s such that $s \cdot g(5)=$ $\sum\left(R_{4} \upharpoonright i\right) . \mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$. $\mathcal{P}[n]$. Consider s being an integer such that $s \cdot g(5)=\sum\left(R_{4} \upharpoonright\right.$ len $\left.R_{4}\right)$. eval $\left(R_{8}, g\right)=\operatorname{power}_{R}(g(4), 8)$. Define $\mathcal{H}[$ natural number $] \equiv$ if $g_{5} \mid g_{4}{ }^{\$_{1}}$, then $g_{5} \mid g_{4} . \mathcal{H}[0]$. If $\mathcal{H}[j]$, then $\mathcal{H}[j+1]$. $\mathcal{H}[j]$.
Let x be an integer. One can verify that $\langle x\rangle$ is \mathbb{Z}-valued. Let x, y, z, t be integers. Let us observe that $\langle x, y, z, t\rangle$ is \mathbb{Z}-valued.

Now we state the propositions:
(77) There exists a \mathbb{Z}-valued polynomial K_{3} of $8, \mathbb{R}_{F}$ such that for every natural numbers $x_{1}, x_{2}, x_{3}, P, R, N$ for every integer V such that x_{1} is odd and x_{2} is odd and $P>0$ and $N>\sqrt{x_{1}}+2 \cdot \sqrt{x_{2}}+4 \cdot \sqrt{x_{3}}+R$ holds x_{1} is a square and x_{2} is a square and x_{3} is a square and $P \mid R$ and $V \geqslant 0$ iff there exists a natural number z such that for every function f from 8 into \mathbb{R}_{F} such that $f=\left\langle z, x_{1}, 4 \cdot x_{2}, 16 \cdot x_{3}\right\rangle^{\wedge}\langle R, P, N, V\rangle$ holds eval $\left(K_{3}, f\right)=0$. Proof: Set $M=$ the $J_{\text {poly }}$ of $4, \mathbb{C}_{\mathrm{F}}$. Set $R_{3}=\mathbb{R}_{\mathrm{F}}$. Reconsider $R_{1}=R_{3}$ as a field. Consider K_{2} being a \mathbb{Z}-valued polynomial of $6, \mathbb{R}_{F}$ such that for every function f from 6 into \mathbb{R}_{F} such that $f(5) \neq 0$ holds eval $\left(K_{2}, f\right)=$ $\operatorname{power}_{\mathbb{R}_{\mathbf{F}}}\left(f_{/ 5}, 8\right) \cdot\left(\operatorname{eval}\left(\mathrm{J}^{\sqrt{\mathbb{C}}}(M),{ }^{@}\left\langle-f(0)+\frac{f(4)}{f(5)}, f(1), f(2), f(3)\right\rangle\right)\right)$ and for every \mathbb{Z}-valued function f from 6 into $\mathbb{R}_{\text {F }}$ such that $f(5) \neq 0$ and eval $\left(K_{2}, f\right)$ $=0$ holds $f(5) \mid f(4)$. Consider K_{28} being a polynomial of $6+2, R_{3}$ such that $\operatorname{rng} K_{28} \subseteq \operatorname{rng} K_{2} \cup\left\{0_{R_{3}}\right\}$ and for every bag b of $6+2, b \in$ Support K_{28} iff $b \upharpoonright 6 \in$ Support K_{2} and for every i such that $i \geqslant 6$ holds $b(i)=0$ and for every bag b of $6+2$ such that $b \in \operatorname{Support} K_{28}$ holds $K_{28}(b)=K_{2}(b \upharpoonright 6)$ and for every function x from 6 into R_{3} and for every function y from $6+2$ into R_{3} such that $y\left\lceil 6=x\right.$ holds $\operatorname{eval}\left(K_{2}, x\right)=\operatorname{eval}\left(K_{28}, y\right)$. Set $n_{1}=$ EmptyBag $8+\cdot(6,1)$. Set $n=\operatorname{Monom}\left(1_{R_{3}}, n_{1}\right)$. Set $v_{1}=\operatorname{EmptyBag} 8+$. $(7,1)$. Set $v=\operatorname{Monom}\left(-1_{R_{3}}, v_{1}\right)$. Set $z_{3}=\operatorname{EmptyBag} 8+\cdot(0,1)$.

Set $z=\operatorname{Monom}\left(1_{R_{3}}, z_{3}\right)$. $\operatorname{Monom}\left(-1_{R_{1}}, v_{1}\right)=-\operatorname{Monom}\left(1_{R_{1}}, v_{1}\right)$. Set $z_{4}=z+n * v$. Reconsider $K_{3}=\operatorname{Subst}\left(K_{28}, 0, z_{4}\right)$ as a \mathbb{Z}-valued polynomial of $8, R_{3}$. If x_{1} is a square and x_{2} is a square and x_{3} is a square and $P \mid R$ and $V \geqslant 0$, then there exists a natural number z such
that for every function f from 8 into \mathbb{R}_{F} such that $f=\left\langle z, x_{1}, 4 \cdot x_{2}, 16\right.$. $\left.x_{3}\right\rangle^{\wedge}\langle R, P, N, V\rangle$ holds eval $\left(K_{3}, f\right)=0$. Reconsider $f=\left\langle z z, x_{1}, 4 \cdot x_{2}, 16\right.$. $\left.x_{3}\right\rangle^{\wedge}\langle R, P, N, V\rangle$ as a \mathbb{Z}-valued function from 8 into $\mathbb{R}_{\mathrm{F}} \cdot \operatorname{eval}\left(K_{3}, f\right)=$ $\operatorname{eval}\left(K_{28}, f+\cdot\left(0, \operatorname{eval}\left(z_{4}, f\right)\right)\right)$. Set $y=-N \cdot V+z z$. Reconsider $Y=y, z_{5}=$ $z z, N_{4}=N, V_{5}=V$ as an element of $R_{3} . \operatorname{eval}\left(z_{3}, f\right)=\operatorname{power}_{R_{3}}(f(0), 1)$. $\operatorname{eval}\left(v_{1}, f\right)=\operatorname{power}_{R_{3}}(f(7), 1) . \operatorname{eval}\left(n_{1}, f\right)=\operatorname{power}_{R_{3}}(f(6), 1)$. Set $f_{6}=$ $(f+\cdot(0, Y)) \upharpoonright 6$. Consider d being a natural number such that $P \cdot d=R$. power $_{R_{3}}\left(f_{6 / 5}, 8\right) \neq 0 . x_{1}$ is a square and x_{2} is a square and x_{3} is a square and $-(-y+d) \leqslant \sqrt{x_{1}}+2 \cdot \sqrt{x_{2}}+4 \cdot \sqrt{x_{3}}$.
(78) Let us consider a set X, a right zeroed, non empty additive loop structure S, series p, q of X, S, and a set V. Suppose $\operatorname{vars}(p) \subseteq V$ and $\operatorname{vars}(q) \subseteq V$. Then $\operatorname{vars}(p+q) \subseteq V$. The theorem is a consequence of (41).
(79) Let us consider an ordinal number X, an add-associative, right complementable, right zeroed, right unital, distributive, non empty double loop structure S, polynomials p, q of X, S, and a set V. Suppose $\operatorname{vars}(p) \subseteq V$ and $\operatorname{vars}(q) \subseteq V$. Then $\operatorname{vars}(p * q) \subseteq V$. The theorem is a consequence of (43).
(80) Let us consider a set X, an add-associative, right zeroed, right complementable, right distributive, non empty double loop structure S, a series p of X, S, an element a of S, and a set V. If $\operatorname{vars}(p) \subseteq V$, then $\operatorname{vars}(a \cdot p) \subseteq V$. The theorem is a consequence of (44).
(81) Let us consider a set X, an add-associative, right zeroed, right complementable, non empty additive loop structure S, series p, q of X, S, and a set V. Suppose $\operatorname{vars}(p) \subseteq V$ and $\operatorname{vars}(q) \subseteq V$. Then $\operatorname{vars}(p-q) \subseteq V$. The theorem is a consequence of (42) and (41).
(82) There exists a \mathbb{Z}-valued polynomial Z of $17, \mathbb{R}_{\mathrm{F}}$ such that
(i) $\operatorname{vars}(Z) \subseteq\{0\} \cup 17 \backslash 8$, and
(ii) for every natural number x_{8} such that $x_{8}>0$ holds $x_{8}+1$ is prime iff there exists a \mathbb{Z}-valued function x from 17 into \mathbb{R}_{F} such that $x_{/ 8}=x_{8}$ and $x_{/ 9}$ is a positive natural number and $x_{/ 10}$ is a positive natural number and $x_{/ 11}$ is a positive natural number and $x_{/ 12}$ is a positive natural number and $x_{/ 13}$ is a positive natural number and $x_{/ 14}$ is a natural number and $x_{/ 15}$ is a natural number and $x_{/ 16}$ is a natural number and $x_{/ 0}$ is a natural number and $\operatorname{eval}(Z, x)=0_{\mathbb{R}_{F}}$.
Proof: Set $N=17$. Set $E_{2}=\operatorname{EmptyBag} N$. Set $V_{4}=N \backslash 8 . n \in V_{4}$ iff $8 \leqslant n<N$. Set $k=8$. Set $P_{11}=\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(k, 1)\right) . \operatorname{vars}\left(P_{11}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}\left(P_{11}, x\right)=x_{/ k}$. Set $f=9$. Set $P_{9}=\operatorname{Monom}\left(1_{\mathbb{R}_{F}}, E_{2}+\cdot(f, 1)\right) . \operatorname{vars}\left(P_{9}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}\left(P_{9}, x\right)=x_{/ f}$. Set $i=10$. Set $\Pi=\operatorname{Monom}\left(1_{\mathbb{R}_{F}}, E_{2}+\cdot(i, 1)\right)$.
$\operatorname{vars}(\Pi) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}(\Pi, x)=x_{/ i}$. Set $j=11$. Set $P_{10}=\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(j, 1)\right) . \operatorname{vars}\left(P_{10}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}\left(P_{10}, x\right)=x_{/ j}$. Set $m=12$. Set $P_{12}=\operatorname{Monom}\left(1_{\mathbb{R}_{F}}, E_{2}+\cdot(m, 1)\right) . \operatorname{vars}\left(P_{12}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}\left(P_{12}, x\right)=x_{/ m}$. Set $u=13$. Set $P_{17}=\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\right.$. $(u, 1))$. vars $\left(P_{17}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}\left(P_{17}, x\right)=$ $x_{/ u}$. Set $r=14$. Set $P_{14}=\operatorname{Monom}\left(1_{\mathbb{R}_{F}}, E_{2}+\cdot(r, 1)\right)$. vars $\left(P_{14}\right) \subseteq V_{4}$. For every function x from N into \mathbb{R}_{F}, eval $\left(P_{14}, x\right)=x_{/ r}$.

Set $s=15$. Set $P_{15}=\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(s, 1)\right) . \operatorname{vars}\left(P_{15}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}\left(P_{15}, x\right)=x_{/ s}$. Set $t=16$. Set $P_{16}=\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(t, 1)\right) . \operatorname{vars}\left(P_{16}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}\left(P_{16}, x\right)=x_{/ t}$. Reconsider $H_{1}=100$ as an integer element of \mathbb{R}_{F}. Set $O=1_{-}\left(N, \mathbb{R}_{\mathrm{F}}\right)$. vars $(O) \subseteq V_{4}$. Reconsider $W=H_{1} \cdot\left(\left(P_{9} * P_{11}\right) *\right.$ $\left.\left(P_{11}+O\right)\right)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(W) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}(W, x)=H_{1} \cdot\left(x_{/ f}\right) \cdot\left(x_{/ k}\right) \cdot\left(x_{/ k}+1_{\mathbb{R}_{\mathrm{F}}}\right)$. Reconsider $U=H_{1} \cdot\left(\left(\left(P_{17} * P_{17}\right) * P_{17}\right) *((W * W) * W)\right)+O$ as a \mathbb{Z}^{-} valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(U) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}(U, x)=H_{1} \cdot\left(x_{/ u}\right)^{3} \cdot(\operatorname{eval}(W, x))^{3}+1_{\mathbb{R}_{\mathrm{F}}}$. Reconsider $M=$ $H_{1} \cdot\left(\left(P_{12} * U\right) * W\right)+O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(M) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}(M, x)=H_{1} \cdot\left(x_{/ m}\right) \cdot(\operatorname{eval}(U, x))$. $(\operatorname{eval}(W, x))+1_{\mathbb{R}_{\mathrm{F}}}$. Reconsider $S=(M-O) * P_{15}+P_{11}+O$ as a \mathbb{Z}-valued polynomial of N, \mathbb{R}_{F}. $\operatorname{vars}(S) \subseteq V_{4}$. For every function x from N into \mathbb{R}_{F}, $\operatorname{eval}(S, x)=\left(\operatorname{eval}(M, x)-1_{\mathbb{R}_{F}}\right) \cdot\left(x_{/ s}\right)+x_{/ k}+1_{\mathbb{R}_{F}}$.

Reconsider $T=(M * U-O) * P_{16}+W-P_{11}+O$ as a \mathbb{Z}-valued polynomial of N, \mathbb{R}_{F}. $\operatorname{vars}(T) \subseteq V_{4}$. For every function x from N into \mathbb{R}_{F}, $\operatorname{eval}(T, x)=\left((\operatorname{eval}(M, x)) \cdot(\operatorname{eval}(U, x))-1_{\mathbb{R}_{F}}\right) \cdot\left(x_{/ t}\right)+\operatorname{eval}(W, x)-x_{/ k}+1_{\mathbb{R}_{F}}$. Reconsider $T_{2}=2$ as an integer element of \mathbb{R}_{F}. Reconsider $Q=T_{2} \cdot(M *$ $W)-W * W-O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(Q) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}(Q, x)=T_{2} \cdot(\operatorname{eval}(M, x))$. $(\operatorname{eval}(W, x))-(\operatorname{eval}(W, x))^{\mathbf{2}}-1_{\mathbb{R}_{\mathrm{F}}}$. Reconsider $L=\left(P_{11}+O\right) * Q$ as a \mathbb{Z}^{-} valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(L) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}(L, x)=\left(x_{/ k}+1_{\mathbb{R}_{\mathrm{F}}}\right) \cdot(\operatorname{eval}(Q, x))$. Reconsider $A=M *(U+O)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(A) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}(A, x)=(\operatorname{eval}(M, x)) \cdot\left(\operatorname{eval}(U, x)+1_{\mathbb{R}_{F}}\right)$. Reconsider $B=W+O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(B) \subseteq V_{4}$. For every function x from N into \mathbb{R}_{F}, eval $(B, x)=\operatorname{eval}(W, x)+1_{\mathbb{R}_{F}}$. Reconsider $C=P_{14}+W+O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. vars $(C) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}(C, x)=x_{/ r}+\operatorname{eval}(W, x)+1_{\mathbb{R}_{\mathrm{F}}}$.

Reconsider $D=(A * A-O) *(C * C)+O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}} . \operatorname{vars}(D) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}(D, x)=$
$\left((\operatorname{eval}(A, x))^{2}-1_{\mathbb{R}_{\mathrm{F}}}\right) \cdot(\operatorname{eval}(C, x))^{2}+1_{\mathbb{R}_{\mathrm{F}}}$. Reconsider $E=T_{2} \cdot((((\Pi *$ $C) * C) * L) * D$) as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(E) \subseteq V_{4}$. For every function x from N into \mathbb{R}_{F}, eval $(E, x)=T_{2} \cdot\left(x_{/ i}\right) \cdot(\operatorname{eval}(C, x))^{2}$. $(\operatorname{eval}(L, x)) \cdot(\operatorname{eval}(D, x))$. Reconsider $F=(A * A-O) *(E * E)+O$ as a $\mathbb{Z}-$ valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(F) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}(F, x)=\left((\operatorname{eval}(A, x))^{2}-1_{\mathbb{R}_{\mathrm{F}}}\right) \cdot(\operatorname{eval}(E, x))^{2}+1_{\mathbb{R}_{\mathrm{F}}}$. Reconsider $G=A+F *(F-A)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}} \cdot \operatorname{vars}(G) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}(G, x)=\operatorname{eval}(A, x)+(\operatorname{eval}(F, x))$. $(\operatorname{eval}(F, x)-\operatorname{eval}(A, x))$. Reconsider $H=B+T_{2} \cdot\left(\left(P_{10}-O\right) * C\right)$ as a \mathbb{Z} valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(H) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}(H, x)=\operatorname{eval}(B, x)+T_{2} \cdot\left(x_{/ j}-1_{\mathbb{R}_{\mathrm{F}}}\right) \cdot(\operatorname{eval}(C, x))$. Reconsider $I=(G * G-O) *(H * H)+O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(I) \subseteq$ V_{4}. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}(I, x)=\left((\operatorname{eval}(G, x))^{2}-1_{\mathbb{R}_{F}}\right)$. $(\operatorname{eval}(H, x))^{2}+1_{\mathbb{R}_{\mathbb{F}}}$.

Reconsider $X_{1}=(M * M-O) *(S * S)+O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}\left(X_{1}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}\left(X_{1}, x\right)=$ $\left((\operatorname{eval}(M, x))^{2}-1_{\mathbb{R}_{\mathrm{F}}}\right) \cdot(\operatorname{eval}(S, x))^{2}+1_{\mathbb{R}_{\mathrm{F}}}$. Reconsider $X_{2}=((M * U) *$ $(M * U)-O) *(T * T)+O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}\left(X_{2}\right) \subseteq$ V_{4}. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}\left(X_{2}, x\right)=(((\operatorname{eval}(M, x))$. $\left.(e \operatorname{val}(U, x)))^{2}-1_{\mathbb{R}_{\mathrm{F}}}\right) \cdot(\operatorname{eval}(T, x))^{2}+1_{\mathbb{R}_{\mathrm{F}}}$. Reconsider $X_{3}=(D * F) * I$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}\left(X_{3}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}\left(X_{3}, x\right)=(\operatorname{eval}(D, x)) \cdot(\operatorname{eval}(F, x)) \cdot(\operatorname{eval}(I, x))$. Reconsider $P=F * L$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(P) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}(P, x)=(\operatorname{eval}(F, x)) \cdot(\operatorname{eval}(L, x))$. Reconsider $R=(H-C) * L+\left(F *\left(P_{9}+O\right)\right) * Q+\left(F *\left(P_{11}+O\right)\right) *$ $\left(((W * W-O) * S) * P_{17}-(W * W) *\left(P_{17} * P_{17}\right)+O\right)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(R) \subseteq V_{4}$. For every function x from N into \mathbb{R}_{F}, $\operatorname{eval}(R, x)=(\operatorname{eval}(H, x)-\operatorname{eval}(C, x)) \cdot(\operatorname{eval}(L, x))+(\operatorname{eval}(F, x)) \cdot\left(x_{/ f}+1_{\mathbb{R}_{\mathbb{F}}}\right)$. $(\operatorname{eval}(Q, x))+(\operatorname{eval}(F, x)) \cdot\left(x_{/ k}+1_{\mathbb{R}_{F}}\right) \cdot\left(\left((\operatorname{eval}(W, x))^{2}-1_{\mathbb{R}_{F}}\right) \cdot(\operatorname{eval}(S, x)) \cdot\right.$ $\left.\left(x_{/ u}\right)-(\operatorname{eval}(W, x))^{2} \cdot\left(x_{/ u}\right)^{2}+1_{\mathbb{R}_{F}}\right)$.

Reconsider $E_{4}=8$ as an integer element of \mathbb{R}_{F}. Reconsider $V_{1}=$ $E_{4} \cdot\left(\left(\left(\left(P_{9} * P_{17}\right) * S\right) * T\right) *\left(P_{14}-\left(\left(P_{12} * S\right) * T\right) * U\right)\right)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}\left(V_{1}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{F}, \operatorname{eval}\left(V_{1}, x\right)=E_{4} \cdot\left(x_{/ f} \cdot\left(x_{/ u}\right) \cdot(\operatorname{eval}(S, x)) \cdot(\operatorname{eval}(T, x)) \cdot\left(x_{/ r}-x_{/ m}\right.\right.$. $(\operatorname{eval}(S, x)) \cdot(\operatorname{eval}(T, x)) \cdot(\operatorname{eval}(U, x))))$. Reconsider $F_{4}=4$ as an integer element of \mathbb{R}_{F}. Reconsider $V_{2}=F_{4} \cdot\left(\left(\left(P_{17} * P_{17}\right) *(S * S)\right) *(T * T)\right)$ as a \mathbb{Z}-valued polynomial of N, \mathbb{R}_{F}. $\operatorname{vars}\left(V_{2}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}\left(V_{2}, x\right)=F_{4} \cdot\left(x_{/ u}\right)^{2} \cdot(\operatorname{eval}(S, x))^{2} \cdot(\operatorname{eval}(T, x))^{2}$. Reconsider $V_{3}=\left(F_{4} \cdot\left(P_{9} * P_{9}\right)-O\right) *\left(\left(P_{14}-\left(\left(P_{12} * S\right) * T\right) * U\right) *\left(P_{14}-\left(\left(P_{12} * S\right) * T\right) * U\right)\right)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}\left(V_{3}\right) \subseteq V_{4}$. For every function x
from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}\left(V_{3}, x\right)=\left(F_{4} \cdot\left(x_{/ f}\right)^{2}-1_{\mathbb{R}_{\mathrm{F}}}\right) \cdot\left(x_{/ r}-x_{/ m} \cdot(\operatorname{eval}(S, x)) \cdot\right.$ $(\operatorname{eval}(T, x)) \cdot(\operatorname{eval}(U, x)))^{2}$. Reconsider $N_{1}=M * S+T_{2} \cdot((M * U) * T)$ as a \mathbb{Z}-valued polynomial of N, \mathbb{R}_{F}. $\operatorname{vars}\left(N_{1}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}\left(N_{1}, x\right)=(\operatorname{eval}(M, x)) \cdot(\operatorname{eval}(S, x))+T_{2} \cdot(\operatorname{eval}(M, x))$. $(\operatorname{eval}(U, x)) \cdot(\operatorname{eval}(T, x))$.

Reconsider $N_{2}=F_{4} \cdot(((((A * A) * C) * E) * G) * H)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}\left(N_{2}\right) \subseteq V_{4}$. For every function x from N into $\mathbb{R}_{\mathrm{F}}, \operatorname{eval}\left(N_{2}, x\right)=F_{4} \cdot((\operatorname{eval}(A, x)) \cdot(\operatorname{eval}(A, x)) \cdot(\operatorname{eval}(C, x)) \cdot(\operatorname{eval}(E, x))$. $(\operatorname{eval}(G, x)) \cdot(\operatorname{eval}(H, x)))$. Reconsider $V=V_{1}-V_{2}-V_{3}-O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. Reconsider $N_{3}=N_{1}+N_{2}+R+O$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(V) \subseteq V_{4}$. $\operatorname{vars}\left(N_{3}\right) \subseteq V_{4}$. For every function x from N into \mathbb{R}_{F} such that $x_{/ k}$ is a positive natural number and $x_{/ f}$ is a positive natural number and $x_{/ i}$ is a positive natural number and $x_{/ j}$ is a positive natural number and $x_{/ m}$ is a positive natural number and $x_{/ u}$ is a positive natural number and $x_{/ r}$ is a natural number and $x_{/ s}$ is a natural number and $x_{/ t}$ is a natural number holds eval $\left(X_{1}, x\right)$ is an odd natural number and eval $\left(X_{2}, x\right)$ is an odd natural number and eval $\left(X_{3}, x\right)$ is a natural number and $\operatorname{eval}(P, x)$ is a positive natural number and eval (R, x) is a natural number and eval $\left(N_{3}, x\right)$ is a natural number and $\operatorname{eval}\left(N_{3}, x\right)>\sqrt{\operatorname{eval}\left(X_{1}, x\right)}+2 \cdot \sqrt{\operatorname{eval}\left(X_{2}, x\right)}+4 \cdot \sqrt{\operatorname{eval}\left(X_{3}, x\right)}+\operatorname{eval}(R, x)$.

Consider K_{3} being a \mathbb{Z}-valued polynomial of $8, \mathbb{R}_{\mathrm{F}}$ such that for every natural numbers $x_{1}, x_{2}, x_{3}, P, R, N$ and for every integer V such that x_{1} is odd and x_{2} is odd and $P>0$ and $N>\sqrt{x_{1}}+2 \cdot \sqrt{x_{2}}+4 \cdot \sqrt{x_{3}}+R$ holds x_{1} is a square and x_{2} is a square and x_{3} is a square and $P \mid R$ and $V \geqslant 0$ iff there exists a natural number z such that for every function f from 8 into \mathbb{R}_{F} such that $f=\left\langle z, x_{1}, 4 \cdot x_{2}, 16 \cdot x_{3}\right\rangle \wedge\langle R, P, N, V\rangle$ holds $\operatorname{eval}\left(K_{3}, f\right)=0$. Consider Z being a polynomial of $8+9, \mathbb{R}_{\mathrm{F}}$ such that $\operatorname{rng} Z \subseteq \operatorname{rng} K_{3} \cup$ $\left\{0_{\mathbb{R}_{\mathbb{F}}}\right\}$ and for every bag b of $8+9, b \in$ Support Z iff $b \upharpoonright 8 \in \operatorname{Support} K_{3}$ and for every i such that $i \geqslant 8$ holds $b(i)=0$ and for every bag b of $8+9$ such that $b \in \operatorname{Support} Z$ holds $Z(b)=K_{3}(b\lceil 8)$ and for every function x from 8 into \mathbb{R}_{F} and for every function y from $8+9$ into \mathbb{R}_{F} such that $y \upharpoonright 8=x$ holds $\operatorname{eval}\left(K_{3}, x\right)=\operatorname{eval}(Z, y)$. Reconsider $Z_{1}=\operatorname{Subst}\left(Z, 1, X_{1}\right)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{2}=\operatorname{Subst}\left(Z_{1}, 2, F_{4} \cdot X_{2}\right)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{3}=\operatorname{Subst}\left(Z_{2}, 3, F_{4} \cdot F_{4} \cdot X_{3}\right)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{4}=\operatorname{Subst}\left(Z_{3}, 4, R\right)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{5}=\operatorname{Subst}\left(Z_{4}, 5, P\right)$ as a \mathbb{Z} valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{6}=\operatorname{Subst}\left(Z_{5}, 6, N_{3}\right)$ as a \mathbb{Z} valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{7}=\operatorname{Subst}\left(Z_{6}, 7, V\right)$ as a \mathbb{Z}-valued polynomial of $N, \mathbb{R}_{\mathrm{F}}$.

For every natural number x_{8} such that $x_{8}>0$ holds $x_{8}+1$ is prime iff
there exists a \mathbb{Z}-valued function x from N into \mathbb{R}_{F} such that $x_{/ k}=x_{8}$ and $x_{/ f}$ is a positive natural number and $x_{/ i}$ is a positive natural number and $x_{/ j}$ is a positive natural number and $x_{/ m}$ is a positive natural number and $x_{/ u}$ is a positive natural number and $x_{/ r}$ is a natural number and $x_{/ s}$ is a natural number and $x_{/ t}$ is a natural number and $x_{/ 0}$ is a natural number and $\operatorname{eval}\left(Z_{7}, x\right)=0_{\mathbb{R}_{\mathrm{F}}}$ by $[7,(23)] . \operatorname{vars}(Z) \subseteq 8 . \operatorname{vars}\left(Z_{1}\right) \subseteq(\operatorname{vars}(Z)) \backslash\{1\} \cup$ $\operatorname{vars}\left(X_{1}\right) \cdot \operatorname{vars}\left(F_{4} \cdot X_{2}\right) \subseteq V_{4} \cdot \operatorname{vars}\left(Z_{2}\right) \subseteq\left(\operatorname{vars}\left(Z_{1}\right)\right) \backslash\{2\} \cup \operatorname{vars}\left(F_{4} \cdot X_{2}\right)$. $\operatorname{vars}\left(F_{4} \cdot F_{4} \cdot X_{3}\right) \subseteq V_{4} . \operatorname{vars}\left(Z_{3}\right) \subseteq\left(\operatorname{vars}\left(Z_{2}\right)\right) \backslash\{3\} \cup \operatorname{vars}\left(F_{4} \cdot F_{4} \cdot X_{3}\right)$. $\operatorname{vars}\left(Z_{4}\right) \subseteq\left(\operatorname{vars}\left(Z_{3}\right)\right) \backslash\{4\} \cup \operatorname{vars}(R) . \operatorname{vars}\left(Z_{5}\right) \subseteq\left(\operatorname{vars}\left(Z_{4}\right)\right) \backslash\{5\} \cup \operatorname{vars}(P)$. $\operatorname{vars}\left(Z_{6}\right) \subseteq\left(\operatorname{vars}\left(Z_{5}\right)\right) \backslash\{6\} \cup \operatorname{vars}\left(N_{3}\right) . \operatorname{vars}\left(Z_{7}\right) \subseteq\left(\operatorname{vars}\left(Z_{6}\right)\right) \backslash\{7\} \cup$ $\operatorname{vars}(V)$.
(83) Let us consider a right zeroed, add-associative, right complementable, well unital, distributive, non trivial double loop structure L, and a polynomial p of $n+m, L$. Suppose $\operatorname{vars}(p) \subseteq n$. Then there exists a polynomial q of n, L such that
(i) $\operatorname{vars}(q) \subseteq n$, and
(ii) $\operatorname{rng} q \subseteq \operatorname{rng} p$, and
(iii) for every bag b of $n+m, b \upharpoonright n \in \operatorname{Support} q$ and for every i such that $i \geqslant n$ holds $b(i)=0$ iff $b \in \operatorname{Support} p$, and
(iv) for every bag b of $n+m$ such that $b \in \operatorname{Support} p$ holds $q(b \mid n)=p(b)$, and
(v) for every function x from $n+m$ into L and for every function y from n into L such that $x \upharpoonright n=y$ holds $\operatorname{eval}(p, x)=\operatorname{eval}(q, y)$.
Proof: Define \mathcal{P} [natural number] $\equiv \$_{1} \leqslant m$ and there exists a polynomial q of $n+\$_{1}, L$ such that $\operatorname{vars}(q) \subseteq n$ and $\operatorname{rng} q \subseteq \operatorname{rng} p$ and for every bag b of $n+m, b \upharpoonright\left(n+\$_{1}\right) \in \operatorname{Support} q$ and for every i such that $i \geqslant n+\$_{1}$ holds $b(i)=0$ iff $b \in \operatorname{Support} p$ and for every bag b of $n+m$ such that $b \in \operatorname{Support} p$ holds $q\left(b \upharpoonright\left(n+\$_{1}\right)\right)=p(b)$ and for every function x from $n+m$ into L and for every function y from $n+\$_{1}$ into L such that $x \upharpoonright\left(n+\$_{1}\right)=y$ holds $\operatorname{eval}(p, x)=\operatorname{eval}(q, y)$. There exists k such that $\mathcal{P}[k]$. For every natural number k such that $k \neq 0$ and $\mathcal{P}[k]$ there exists a natural number n such that $n<k$ and $\mathcal{P}[n] . \mathcal{P}[0]$.
(84) Let us consider an ordinal number X, a non empty zero structure L, a series s of X, L, and a permutation p_{4} of X. Then vars(the s permuted by $\left.p_{4}\right) \subseteq p_{4}{ }^{\circ}(\operatorname{vars}(s))$.
(85) Prime Representing Polynomial with 10 Variables:

There exists a \mathbb{Z}-valued polynomial P_{13} of $10, \mathbb{R}_{F}$ such that for every positive natural number $k, k+1$ is prime iff there exists a natural-valued function v from 10 into \mathbb{R}_{F} such that $v(1)=k$ and $\operatorname{eval}\left(P_{13}, v\right)=0_{\mathbb{R}_{F}}$.

Proof: Consider p_{1} being a \mathbb{Z}-valued polynomial of $17, \mathbb{R}_{F}$ such that $\operatorname{vars}\left(p_{1}\right) \subseteq\{0\} \cup 17 \backslash 8$ and for every natural number x_{8} such that $x_{8}>0$ holds $x_{8}+1$ is prime iff there exists a \mathbb{Z}-valued function x from 17 into \mathbb{R}_{F} such that $x_{/ 8}=x_{8}$ and $x_{/ 9}$ is a positive natural number and $x_{/ 10}$ is a positive natural number and $x_{/ 11}$ is a positive natural number and $x_{/ 12}$ is a positive natural number and $x_{/ 13}$ is a positive natural number and $x_{/ 14}$ is a natural number and $x_{/ 15}$ is a natural number and $x_{/ 16}$ is a natural number and $x_{/ 0}$ is a natural number and $\operatorname{eval}\left(p_{1}, x\right)=0_{\mathbb{R}_{F}}$. Set $N=16$. Set $I_{2}=\operatorname{idseq}(N)$. Set $E=9$. Set $I_{1}=\operatorname{idseq}(E)$. Consider f being a finite sequence such that $I_{2}=I_{1} \cap f$. Set $R=f \frown I_{1}$. Set $Z=\operatorname{id}_{\{0\}}$. Set $R_{2}=R+Z$. $\mathbb{Z}_{17} \backslash(\operatorname{rng} f) \subseteq \mathbb{Z}_{10}$. For every i such that $1 \leqslant i \leqslant 9$ holds $\left(R_{2}{ }^{-1}\right)(i)=i+7$ and $R_{2}(i+7)=i$. Set $P_{2}=$ the p_{1} permuted by R_{2}. Reconsider $p_{2}=P_{2}$ as a \mathbb{Z}-valued polynomial of $10+7, \mathbb{R}_{\mathrm{F}} \cdot \operatorname{vars}\left(p_{2}\right) \subseteq R_{2}{ }^{\circ}\left(\operatorname{vars}\left(p_{1}\right)\right)$.

Consider p_{3} being a polynomial of $10, \mathbb{R}_{\mathrm{F}}$ such that $\operatorname{vars}\left(p_{3}\right) \subseteq 10$ and $\operatorname{rng} p_{3} \subseteq \operatorname{rng} p_{2}$ and for every bag b of $10+7, b \upharpoonright 10 \in \operatorname{Support} p_{3}$ and for every i such that $i \geqslant 10$ holds $b(i)=0$ iff $b \in \operatorname{Support} p_{2}$ and for every bag b of $10+7$ such that $b \in \operatorname{Support} p_{2}$ holds $p_{3}(b \upharpoonright 10)=p_{2}(b)$ and for every function x from $10+7$ into \mathbb{R}_{F} and for every function y from 10 into \mathbb{R}_{F} such that $x \upharpoonright 10=y \operatorname{holds} \operatorname{eval}\left(p_{2}, x\right)=\operatorname{eval}\left(p_{3}, y\right)$. For every natural number x_{8} such that $x_{8}>0$ holds $x_{8}+1$ is prime iff there exists a \mathbb{Z}^{-} valued function x from 10 into \mathbb{R}_{F} such that $x(0)$ is a natural number and $x(1)=x_{8}$ and $x(2)$ is a positive natural number and $x(3)$ is a positive natural number and $x(4)$ is a positive natural number and $x(5)$ is a positive natural number and $x(6)$ is a positive natural number and $x(7)$ is a natural number and $x(8)$ is a natural number and $x(9)$ is a natural number and $\operatorname{eval}\left(p_{3}, x\right)=0_{\mathbb{R}_{\mathrm{F}}}$. Set $E_{2}=$ EmptyBag 10. Set $O=1_{-}\left(10, \mathbb{R}_{\mathrm{F}}\right)$. Set $P_{2}=$ $\operatorname{Monom}\left(1_{\mathbb{R}_{F}}, E_{2}+\cdot(2,1)\right)+O$. Set $P_{3}=\operatorname{Monom}\left(1_{\mathbb{R}_{F}}, E_{2}+\cdot(3,1)\right)+O$. Set $P_{4}=\operatorname{Monom}\left(1_{\mathbb{R}_{F}}, E_{2}+\cdot(4,1)\right)+O$. Set $P_{5}=\operatorname{Monom}\left(1_{\mathbb{R}_{F}}, E_{2}+\cdot(5,1)\right)+O$. Set $P_{6}=\operatorname{Monom}\left(1_{\mathbb{R}_{F}}, E_{2}+\cdot(6,1)\right)+O$.

Reconsider $Z_{2}=\operatorname{Subst}\left(p_{3}, 2, P_{2}\right)$ as a \mathbb{Z}-valued polynomial of $10, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{3}=\operatorname{Subst}\left(Z_{2}, 3, P_{3}\right)$ as a \mathbb{Z}-valued polynomial of $10, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{4}=\operatorname{Subst}\left(Z_{3}, 4, P_{4}\right)$ as a \mathbb{Z}-valued polynomial of $10, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{5}=\operatorname{Subst}\left(Z_{4}, 5, P_{5}\right)$ as a \mathbb{Z}-valued polynomial of $10, \mathbb{R}_{\mathrm{F}}$. Reconsider $Z_{6}=\operatorname{Subst}\left(Z_{5}, 6, P_{6}\right)$ as a \mathbb{Z}-valued polynomial of $10, \mathbb{R}_{\mathrm{F}}$. $\operatorname{vars}(O)=\emptyset \cdot \operatorname{vars}\left(\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(5,1)\right)\right) \cup \operatorname{vars}(O) \subseteq\{5\} \cup \emptyset \cdot \operatorname{vars}\left(P_{5}\right) \subseteq$ $\operatorname{vars}\left(\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(5,1)\right)\right) \cup \operatorname{vars}(O) \cdot \operatorname{vars}\left(\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(4,1)\right)\right) \cup$ $\operatorname{vars}(O) \subseteq\{4\} \cup \emptyset . \operatorname{vars}\left(P_{4}\right) \subseteq \operatorname{vars}\left(\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(4,1)\right)\right) \cup \operatorname{vars}(O)$. $\operatorname{vars}\left(\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(3,1)\right)\right) \cup \operatorname{vars}(O) \subseteq\{3\} \cup \emptyset . \operatorname{vars}\left(P_{3}\right) \subseteq \operatorname{vars}($ Monom $\left.\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(3,1)\right)\right) \cup \operatorname{vars}(O) . \operatorname{vars}\left(\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(2,1)\right)\right) \cup \operatorname{vars}(O) \subseteq$ $\{2\} \cup \emptyset . \operatorname{vars}\left(P_{2}\right) \subseteq \operatorname{vars}\left(\operatorname{Monom}\left(1_{\mathbb{R}_{\mathrm{F}}}, E_{2}+\cdot(2,1)\right)\right) \cup \operatorname{vars}(O)$.

If $k+1$ is prime, then there exists a natural-valued function v from 10 into \mathbb{R}_{F} such that $v(1)=k$ and $\operatorname{eval}\left(Z_{6}, v\right)=0_{\mathbb{R}_{\mathrm{F}}}$. Set $V_{10}=V V+$. $\left(6, \operatorname{eval}\left(P_{6}, V V\right)\right) \cdot \operatorname{eval}\left(Z_{6}, V V\right)=\operatorname{eval}\left(Z_{5}, V_{10}\right) . \operatorname{Set} V_{9}=V_{10}+\cdot\left(5, \operatorname{eval}\left(P_{5}\right.\right.$, $V V)) \cdot \operatorname{eval}\left(P_{5}, V_{10}\right)=\operatorname{eval}\left(P_{5}, V V\right) \cdot \operatorname{eval}\left(Z_{5}, V_{10}\right)=\operatorname{eval}\left(Z_{4}, V_{9}\right) . \operatorname{Set} V_{8}=$ $V_{9}+\cdot\left(4, \operatorname{eval}\left(P_{4}, V V\right)\right) \cdot \operatorname{eval}\left(P_{4}, V_{9}\right)=\operatorname{eval}\left(P_{4}, V_{10}\right) \cdot \operatorname{eval}\left(Z_{4}, V_{9}\right)=\operatorname{eval}\left(Z_{3}\right.$, $\left.V_{8}\right)$. Set $V_{7}=V_{8}+\cdot\left(3, \operatorname{eval}\left(P_{3}, V V\right)\right) \cdot \operatorname{eval}\left(P_{3}, V_{8}\right)=\operatorname{eval}\left(P_{3}, V_{9}\right) \cdot \operatorname{eval}\left(Z_{3}, V_{8}\right)$ $=\operatorname{eval}\left(Z_{2}, V_{7}\right)$. Set $V_{6}=V_{7}+\cdot\left(2, \operatorname{eval}\left(P_{2}, V V\right)\right) \cdot \operatorname{eval}\left(P_{2}, V_{7}\right)=\operatorname{eval}\left(P_{2}, V_{8}\right)$. $\operatorname{eval}\left(Z_{2}, V_{7}\right)=\operatorname{eval}\left(p_{3}, V_{6}\right)$. For every natural number y such that $y=0$ or $y=1$ or $y=7$ or $y=8$ or $y=9$ holds $V_{6}(y)=V V(y)$.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi $10.1007 / 978-3-319-20615-8 _17$.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Artur Korniłowicz and Adam Naumowicz. Niven's theorem. Formalized Mathematics, 24 (4):301-308, 2016. doi 10.1515/forma-2016-0026
[4] Yuri Matiyasevich. Primes are nonnegative values of a polynomial in 10 variables. Journal of Soviet Mathematics, 15:33-44, 1981. doi 10.1007/BF01404106
[5] Karol Pak. Diophantine sets. Preliminaries. Formalized Mathematics, 26(1):81-90, 2018. doi 10.2478/forma-2018-0007.
[6] Karol Pąk. Prime representing polynomial with 10 unknowns - Introduction. Formalized Mathematics, 30(3):169-198, 2022. doi 10.2478/forma-2022-0013
[7] Karol Pąk. Prime representing polynomial with 10 unknowns - Introduction. Part II. Formalized Mathematics, 30(4):245-253, 2022. doi $10.2478 /$ forma-2022-0020
[8] Karol Pąk and Cezary Kaliszyk. Formalizing a diophantine representation of the set of prime numbers In June Andronick and Leonardo de Moura, editors, 13th International Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 26:1-26:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi $10.4230 /$ LIPIcs.ITP. 2022.26
[9] Christoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. Formalized Mathematics, 23(4):333-349, 2015. doi 10.1515/forma-2015-0027.

Existence and Uniqueness of Algebraic Closures

Christoph Schwarzweller (D)
Institute of Informatics
University of Gdańsk
Poland

Summary. This is the second part of a two-part article formalizing existence and uniqueness of algebraic closures, using the Mizar [2] (1) formalism. Our proof follows Artin's classical one as presented by Lang in [3]. In the first part we proved that for a given field F there exists a field extension E such that every non-constant polynomial $p \in F[X]$ has a root in E. Artin's proof applies Kronecker's construction to each polynomial $p \in F[X] \backslash F$ simultaneously. To do so we needed the polynomial ring $F\left[X_{1}, X_{2}, \ldots\right]$ with infinitely many variables, one for each polynomal $p \in F[X] \backslash F$. The desired field extension E then is $F\left[X_{1}, X_{2}, \ldots\right] \backslash I$, where I is a maximal ideal generated by all non-constant polynomials $p \in F[X]$. Note, that to show that I is maximal Zorn's lemma has to be applied.

In this second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every nonconstant polynomial $p \in A[X]$ has a root. The field of algebraic elements of A then is an algebraic closure of F. To prove uniqueness of algebraic closures, e.g. that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism $F \longrightarrow A$, where A is an algebraic closure of F can be extended to a monomorphism $E \longrightarrow A$, where E is any algebraic extension of F. In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn's lemma.

MSC: 12 F 0568 V 20
Keywords: algebraic closures; polynomial rings with countably infinite number of variables; Emil Artin

MML identifier: FIELD_12, version: 8.1.12 5.72.1435

1. Preliminaries

Let L be a non empty double loop structure. One can verify that the double loop structure of L is non empty. Let L be a non trivial double loop structure. One can verify that the double loop structure of L is non trivial. Let L be a non degenerated double loop structure. One can verify that the double loop structure of L is non degenerated. Let L be an add-associative double loop structure. One can check that the double loop structure of L is add-associative.

Let L be a right zeroed double loop structure. Let us note that the double loop structure of L is right zeroed. Let L be a right complementable double loop structure. Observe that the double loop structure of L is right complementable. Let L be an Abelian double loop structure. Let us observe that the double loop structure of L is Abelian. Let L be an associative double loop structure. One can check that the double loop structure of L is associative.

Let L be a well unital, non empty double loop structure. Observe that the double loop structure of L is well unital. Let L be a left distributive, non empty double loop structure. One can check that the double loop structure of L is left distributive. Let L be a right distributive, non empty double loop structure. Observe that the double loop structure of L is right distributive. Let L be a commutative double loop structure. One can verify that the double loop structure of L is commutative.

Let L be an integral domain-like, non empty double loop structure. Let us note that the double loop structure of L is integral domain-like. Let L be an almost left invertible double loop structure. Observe that the double loop structure of L is almost left invertible. Now we state the proposition:
(1) Let us consider a field F. Then the double loop structure of $F \approx F$.

Let F be a field. Let us note that there exists an extension of F which is strict. Let L be an F-monomorphic field. Let us note that there exists an extension of L which is F-homomorphic and F-monomorphic and there exists an element of the carrier of PolyRing (F) which is monic and irreducible. Let F be a non algebraic closed field. Observe that there exists an element of the carrier of $\operatorname{PolyRing}(F)$ which is monic and non constant and has not roots. Now we state the propositions:
(2) Let us consider a field F_{1}, an F_{1}-monomorphic, F_{1}-homomorphic field F_{2}, a monomorphism h of F_{1} and F_{2}, and an element p of the carrier of $\operatorname{PolyRing}\left(F_{1}\right)$. Then $(\operatorname{PolyHom}(h))(-p)=-(\operatorname{PolyHom}(h))(p)$.
(3) Let us consider a field F_{1}, an F_{1}-monomorphic, F_{1}-homomorphic field F_{2}, a monomorphism h of F_{1} and F_{2}, and elements p, q of the carrier of $\operatorname{PolyRing}\left(F_{1}\right)$. If $p \mid q$, then $(\operatorname{PolyHom}(h))(p) \mid(\operatorname{PolyHom}(h))(q)$.

Let F_{1} be a field, F_{2} be an F_{1}-monomorphic, F_{1}-homomorphic field, h be a monomorphism of F_{1} and F_{2}, and p be a non constant element of the carrier of PolyRing $\left(F_{1}\right)$. Let us observe that $(\operatorname{PolyHom}(h))(p)$ is non constant as an element of the carrier of PolyRing $\left(F_{2}\right)$.

Let R be a GCD domain and a, b be elements of R. We say that a and b are relatively prime if and only if
(Def. 1) 1_{R} is a GCD of a and b.
Let us consider a field F and elements p, q of the carrier of $\operatorname{PolyRing}(F)$. Now we state the propositions:
(4) p and q are relatively prime if and only if $\operatorname{gcd}(p, q)=\mathbf{1} . F$.
(5) If p and q are relatively prime, then p and q have no common roots.
(6) Let us consider a field F, and an element p of the carrier of $\operatorname{PolyRing}(F)$. Then there exists an extension E of F and there exists an F-algebraic element a of E such that $p=\operatorname{MinPoly}(a, F)$ if and only if p is monic and irreducible.
(7) Let us consider a field F, and an irreducible element p of the carrier of $\operatorname{PolyRing}(F)$. Then there exists an F-finite extension E of F such that
(i) $\operatorname{deg}(E, F)=\operatorname{deg}(p)$, and
(ii) p has a root in E.

The theorem is a consequence of (6).
(8) Let us consider a field F, and a non constant element p of the carrier of $\operatorname{PolyRing}(F)$. Then there exists an F-finite extension E of F such that
(i) p has a root in E, and
(ii) $\operatorname{deg}(E, F) \leqslant \operatorname{deg}(p)$.

The theorem is a consequence of (7).
(9) Let us consider a field F, an F-algebraic extension E of F, an E-extending extension K of F, and an element a of K. If a is E-algebraic, then a is F-algebraic.
(10) Let us consider fields F_{1}, F_{2}, L, an extension E_{1} of F_{1}, a E_{1}-extending extension K_{1} of F_{1}, a function h_{1} from F_{1} into L, a function h_{2} from E_{1} into L, and a function h_{3} from K_{1} into L. Suppose h_{2} is h_{1}-extending and h_{3} is h_{2}-extending. Then h_{3} is h_{1}-extending.
Let F be a field. Let us observe that every extension of F is F-monomorphic and F-homomorphic.

Let E be an extension of F. Let us note that there exists a field which is E-homomorphic, E-monomorphic, F-homomorphic, and F-monomorphic.

2. Sequences of Fields

A sequence is a function defined by
(Def. 2) $\quad \operatorname{dom} i t=\mathbb{N}$.
Let us observe that every sequence is \mathbb{N}-defined.
Let f be a binary relation. We say that f is field-yielding if and only if
(Def. 3) for every object x such that $x \in \operatorname{rng} f$ holds x is a field.
Observe that there exists a sequence which is field-yielding and every function which is field-yielding is also 1-sorted yielding.

Let f be a field-yielding sequence and i be an element of \mathbb{N}. One can check that the functor $f(i)$ yields a field. Let i be a natural number. Observe that the functor $f(i)$ yields a field.

The scheme RecExField deals with a field \mathcal{A} and a ternary predicate \mathcal{P} and states that
(Sch. 1) There exists a field-yielding sequence f such that $f(0)=\mathcal{A}$ and for every natural number $n, \mathcal{P}[n, f(n), f(n+1)]$
provided

- for every natural number n and for every field x, there exists a field y such that $\mathcal{P}[n, x, y]$.

Let f be a field-yielding sequence. We say that f is ascending if and only if
(Def. 4) for every element i of $\mathbb{N}, f(i+1)$ is an extension of $f(i)$.
Note that there exists a field-yielding sequence which is ascending.
Let f be a field-yielding sequence. The support of f yielding a non empty set is defined by the term
(Def. 5) U the set of all the carrier of $f(i)$ where i is an element of \mathbb{N}.
Now we state the propositions:
(11) Let us consider an ascending, field-yielding sequence f, elements i, j of \mathbb{N}, and an element a of $f(i)$. If $i \leqslant j$, then $a \in$ the carrier of $f(j)$.
Proof: Define \mathcal{P} [natural number] \equiv there exists an element k of \mathbb{N} such that $k=i+\$_{1}$ and $a \in$ the carrier of $f(k)$. For every natural number k, $\mathcal{P}[k]$. Consider n being a natural number such that $i+n=j$.
(12) Let us consider an ascending, field-yielding sequence f, and elements i, j of \mathbb{N}. If $i \leqslant j$, then $f(j)$ is an extension of $f(i)$.
Proof: Define \mathcal{P} [natural number] \equiv there exists an element k of \mathbb{N} such that $k=i+\$_{1}$ and $f(k)$ is an extension of $f(i) . \mathcal{P}[0]$. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $i+n=j$.
(13) Let us consider an ascending, field-yielding sequence f, elements i, j of \mathbb{N}, elements x_{2}, y_{2} of $f(i)$, and elements x_{3}, y_{3} of $f(j)$. Suppose $x_{2}=x_{3}$ and $y_{2}=y_{3}$. Then
(i) $x_{2}+y_{2}=x_{3}+y_{3}$, and
(ii) $x_{2} \cdot y_{2}=x_{3} \cdot y_{3}$.

The theorem is a consequence of (12).
Let f be an ascending, field-yielding sequence. The functor addseq (f) yielding a binary operation on the support of f is defined by
(Def. 6) for every elements a, b of the support of f, there exists an element i of \mathbb{N} and there exist elements x, y of $f(i)$ such that $x=a$ and $y=b$ and $i t(a, b)=x+y$.
The functor multseq (f) yielding a binary operation on the support of f is defined by
(Def. 7) for every elements a, b of the support of f, there exists an element i of \mathbb{N} and there exist elements x, y of $f(i)$ such that $x=a$ and $y=b$ and $i t(a, b)=x \cdot y$.
The functor SeqField (f) yielding a strict double loop structure is defined by
(Def. 8) the carrier of $i t=$ the support of f and the addition of $i t=\operatorname{addseq}(f)$ and the multiplication of $i t=\operatorname{multseq}(f)$ and the one of $i t=1_{f(0)}$ and the zero of it $=0_{f(0)}$.
Now we state the propositions:
(14) Let us consider an ascending, field-yielding sequence f, and an element i of \mathbb{N}. Then
(i) $1_{\text {SeqField }(f)}=1_{f(i)}$, and
(ii) $0_{\text {SeqField }(f)}=0_{f(i)}$.

Proof: Define \mathcal{P} [natural number] \equiv there exists an element k of \mathbb{N} such that $k=\$_{1}$ and $1_{f(k)}=1_{f(0)}$ and $0_{f(k)}=0_{f(0)}$. For every natural number $k, \mathcal{P}[k]$.
(15) Let us consider an ascending, field-yielding sequence f, elements a, b of SeqField (f), an element i of \mathbb{N}, and elements x, y of $f(i)$. If $x=a$ and $y=b$, then $a+b=x+y$ and $a \cdot b=x \cdot y$. The theorem is a consequence of (13).
Let f be an ascending, field-yielding sequence. Observe that $\operatorname{SeqField}(f)$ is non degenerated and $\operatorname{SeqField}(f)$ is Abelian, add-associative, right zeroed, and right complementable and SeqField (f) is commutative, associative, well unital, distributive, and almost left invertible. Now we state the propositions:
(16) Let us consider an ascending, field-yielding sequence f, and an element i of \mathbb{N}. Then $f(i)$ is a subfield of $\operatorname{SeqField}(f)$.
Proof: Set $F=f(i)$. Set $K=\operatorname{SeqField}(f)$. The addition of $F=$ (the addition of K) $\upharpoonright($ the carrier of F). The multiplication of $F=$ (the multiplication of K) $\upharpoonright($ the carrier of $F) .1_{F}=1_{K}$ and $0_{F}=0_{K} . \square$
(17) Let us consider a field E, and an ascending, field-yielding sequence f. Suppose for every element i of $\mathbb{N}, f(i)$ is a subfield of E. Then $\operatorname{SeqField}(f)$ is a subfield of E.
Proof: Set $F=\operatorname{SeqField}(f)$. The carrier of $F \subseteq$ the carrier of K.
The addition of $F=($ the addition of $K) \upharpoonright($ the carrier of $F)$. The multiplication of $F=($ the multiplication of $K) \upharpoonright($ the carrier of $F)$.
(18) Let us consider an ascending, field-yielding sequence f, and a finite subset X of $\operatorname{SeqField}(f)$. Then there exists an element i of \mathbb{N} such that $X \subseteq$ the carrier of $f(i)$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite subset X of $\operatorname{SeqField}(f)$ such that $\overline{\bar{X}}=\$_{1}$ there exists an element i of \mathbb{N} such that $X \subseteq$ the carrier of $f(i) . \mathcal{P}[0]$. $\mathcal{P}[1]$. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $\overline{\bar{X}}=n$. Consider i being an element of \mathbb{N} such that $X \subseteq$ the carrier of $f(i)$.

3. Maximal Algebraic and Algebraic Closed Fields

Let F be a field. We say that F is maximal algebraic if and only if
(Def. 9) for every F-algebraic extension E of $F, E \approx F$.
Let us consider a field F. Now we state the propositions:
(19) F is maximal algebraic if and only if F is algebraic closed. The theorem is a consequence of (7).
(20) $\quad F$ is algebraic closed if and only if every non constant polynomial over F has roots.
(21) F is algebraic closed if and only if for every irreducible element p of the carrier of PolyRing $(F), \operatorname{deg}(p)=1$.
(22) $\quad F$ is algebraic closed if and only if for every non constant polynomial p over F, p splits in F.
(23) F is algebraic closed if and only if every non constant, monic polynomial over F is a product of linear polynomials of F.
(24) F is algebraic closed if and only if for every elements p, q of the carrier of PolyRing $(F), p$ and q are relatively prime iff p and q have no common roots. The theorem is a consequence of (4) and (5).
(25) $\quad F$ is algebraic closed if and only if for every F-algebraic extension E of $F, E \approx F$. The theorem is a consequence of (19).
(26) F is algebraic closed if and only if for every F-finite extension E of F, $E \approx F$. The theorem is a consequence of (19).
Let us note that every field which is algebraic closed is also infinite.

4. Existence of Algebraic Closures

Let F be a field. A closure sequence of F is an ascending, field-yielding sequence defined by
(Def. 10) $\quad i t(0)=F$ and for every element i of \mathbb{N} and for every field K and for every extension E of K such that $K=i t(i)$ and $E=i t(i+1)$ for every non constant element p of the carrier of $\operatorname{PolyRing}(K), p$ has a root in E.
Now we state the proposition:
(27) Let us consider an ascending, field-yielding sequence f, and a polynomial p over $\operatorname{SeqField}(f)$. Then there exists an element i of \mathbb{N} such that p is a polynomial over $f(i)$. The theorem is a consequence of (18) and (16).
Let F be a field and f be a closure sequence of F. Let us observe that $\operatorname{SeqField}(f)$ is F-extending and $\operatorname{SeqField}(f)$ is algebraic closed.

Now we state the proposition:
(28) Let us consider a field F. Then there exists an extension E of F such that E is algebraic closed.
Let F be a field. An algebraic closure of F is an extension of F defined by
(Def. 11) it is F-algebraic and algebraic closed.
Note that every algebraic closure of F is F-algebraic and algebraic closed and there exists an algebraic closed field which is F-homomorphic and F monomorphic. Now we state the propositions:
(29) Let us consider a field F. Then there exists a field E such that E is an algebraic closure of F.
(30) Let us consider a field F, and an F-algebraic extension E of F. Then there exists an algebraic closure A of F such that E is a subfield of A.
Let F be a field and E be an F-algebraic extension of F. Let us observe that there exists an algebraic closure of F which is E-extending.

Now we state the propositions:
(31) Let us consider a field F, and an F-algebraic extension E of F. Then every algebraic closure of E is an algebraic closure of F.
(32) Let us consider a field F, an extension E of F, and an algebraic closure A of F. If A is E-extending, then A is an algebraic closure of E.
(33) Let us consider a field F, and algebraic closures A_{1}, A_{2} of F. If A_{1} is A_{2}-extending, then $A_{2} \approx A_{1}$. The theorem is a consequence of (25).

5. Some More Preliminaries

Let R be a ring and S be an R-homomorphic ring. Observe that there exists a ring which is S-homomorphic and R-homomorphic.

Let T be an S-homomorphic ring, f be an additive function from R into S, and g be an additive function from S into T. Let us note that $g \cdot f$ is additive as a function from R into T.

Let f be a multiplicative function from R into S and g be a multiplicative function from S into T. Let us note that $g \cdot f$ is multiplicative as a function from R into T.

Let f be a unity-preserving function from R into S and g be a unitypreserving function from S into T. Let us note that $g \cdot f$ is unity-preserving as a function from R into T. Now we state the propositions:
(34) Let us consider a field F, and an extension E of F. Then id_{F} is a monomorphism of F and E.
Proof: Reconsider $f=\operatorname{id}_{F}$ as a function from F into $E . f$ is additive, multiplicative, unity-preserving, and monomorphic.
(35) Let us consider a ring R, an R-homomorphic ring S, an S-homomorphic, R-homomorphic ring T, an additive function f from R into S, and an additive function g from S into T. Then $\operatorname{PolyHom}(g \cdot f)=\operatorname{PolyHom}(g)$. PolyHom (f).
(36) Let us consider a ring R, an R-homomorphic ring S, an R-homomorphic, S-homomorphic ring T, an additive function f from R into S, and an additive function g from S into T. Suppose $g \cdot f=\mathrm{id}_{R}$. Then $\operatorname{PolyHom}(g \cdot f)=$ $\operatorname{id}_{\text {PolyRing }(R)}$. The theorem is a consequence of (35).
(37) Let us consider fields F_{1}, F_{2}, and an extension E of F_{1}. If $F_{1} \approx F_{2}$, then E is an extension of F_{2}.
(38) Let us consider fields F_{1}, F_{2}. Suppose $F_{1} \approx F_{2}$. Then
(i) $0 . F_{1}=\mathbf{0} \cdot F_{2}$, and
(ii) $1 \cdot F_{1}=1 \cdot F_{2}$.
(39) Let us consider fields F_{1}, F_{2}, and a polynomial p over F_{1}. If $F_{1} \approx F_{2}$, then p is a polynomial over F_{2}.
(40) Let us consider fields F_{1}, F_{2}, and a non zero polynomial p over F_{1}. If $F_{1} \approx F_{2}$, then p is a non zero polynomial over F_{2}. The theorem is a consequence of (39) and (38).
(41) Let us consider fields F_{1}, F_{2}, a polynomial p over F_{1}, a polynomial q over F_{2}, an element a of F_{1}, and an element b of F_{2}. Suppose $F_{1} \approx F_{2}$ and $p=q$ and $a=b$. Then $\operatorname{eval}(p, a)=\operatorname{eval}(q, b)$.
(42) Let us consider fields F_{1}, F_{2}, an extension E_{1} of F_{1}, an extension E_{2} of F_{2}, a polynomial p over F_{1}, a polynomial q over F_{2}, an element a of E_{1}, and an element b of E_{2}. Suppose $F_{1} \approx F_{2}$ and $E_{1} \approx E_{2}$ and $p=q$ and $a=b$. Then $\operatorname{ExtEval}(p, a)=\operatorname{ExtEval}(q, b)$. The theorem is a consequence of (41).
(43) Let us consider fields F_{1}, F_{2}, and an F_{1}-algebraic extension E of F_{1}. If $F_{1} \approx F_{2}$, then E is an F_{2}-algebraic extension of F_{2}. The theorem is a consequence of (37), (40), and (42).
(44) Let us consider fields F_{1}, F_{2}, and an algebraic closure E of F_{1}. If $F_{1} \approx F_{2}$, then E is an algebraic closure of F_{2}. The theorem is a consequence of (43).
Let X be a set. We say that X is field-membered if and only if
(Def. 12) for every object x such that $x \in X$ holds x is a field.
Observe that there exists a set which is field-membered and non empty.
Let X be a non empty, field-membered set.
One can check that an element of X is a field. Let F be a field. The functor SubFields (F) yielding a set is defined by
(Def. 13) for every object $o, o \in i t$ iff there exists a strict field K such that $o=K$ and K is a subfield of F.
One can check that SubFields (F) is non empty and field-membered. Now we state the proposition:
(45) Let us consider fields F, K. Then $K \in \operatorname{SubFields}(F)$ if and only if K is a strict subfield of F.

6. Uniqueness of Algebraic Closures

Let F be a field, E be an extension of F, L be an F-monomorphic field, and f be a monomorphism of F and L. The functor $\operatorname{ExtSet}(f, E)$ yielding a non empty set is defined by the term
(Def. 14) $\quad\{\langle K, g\rangle$, where K is an element of $\operatorname{SubFields}(E), g$ is a function from K into L : there exists an extension K_{1} of F and there exists a function g_{1} from K_{1} into L such that $K_{1}=K$ and $g_{1}=g$ and g_{1} is monomorphic and f-extending\}.
Note that every element of $\operatorname{ExtSet}(f, E)$ is pair.

Let p be an element of $\operatorname{ExtSet}(f, E)$. One can verify that the functor $(p)_{1}$ yields a strict extension of F. One can verify that the functor $(p)_{\mathbf{2}}$ yields a function from $(p)_{1}$ into L. Now we state the proposition:
(46) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, a strict extension K of F, and a function g from K into L. Suppose g is monomorphic. Then $\langle K, g\rangle \in \operatorname{ExtSet}(f, E)$ if and only if E is an extension of K and F is a subfield of K and g is f-extending. The theorem is a consequence of (45).
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and p, q be elements of $\operatorname{ExtSet}(f, E)$. We say that $p \leqslant q$ if and only if
(Def. 15) $(q)_{\mathbf{1}}$ is an extension of $(p)_{\mathbf{1}}$ and for every extension K of $(p)_{\mathbf{1}}$ and for every function g from K into L such that $K=(q)_{1}$ and $g=(q)_{\mathbf{2}}$ holds g is $(p)_{\mathbf{2}}$-extending.
Let S be a non empty subset of $\operatorname{ExtSet}(f, E)$. We say that S is ascending if and only if
(Def. 16) for every elements p, q of $S, p \leqslant q$ or $q \leqslant p$.
One can check that there exists a non empty subset of $\operatorname{ExtSet}(f, E)$ which is ascending. Now we state the propositions:
(47) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and an element p of $\operatorname{ExtSet}(f, E)$. Then $p \leqslant p$.
(48) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and elements p, q of $\operatorname{ExtSet}(f, E)$. If $p \leqslant q \leqslant p$, then $p=q$.
(49) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and elements p, q, r of $\operatorname{ExtSet}(f, E)$. If $p \leqslant q \leqslant r$, then $p \leqslant r$.
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be a non empty subset of $\operatorname{ExtSet}(f, E)$. The functor unionCarrier (S, f, E) yielding a non empty set is defined by the term
(Def. 17) \bigcup the set of all the carrier of $(p)_{1}$ where p is an element of S.
Let S be an ascending, non empty subset of $\operatorname{ExtSet}(f, E)$. The functors: union $\operatorname{Add}(S, f, E)$ and unionMult (S, f, E) yielding binary operations on union $\operatorname{Carrier}(S, f, E)$ are defined by conditions
(Def. 18) for every elements a, b of unionCarrier (S, f, E), there exists an element p of S and there exist elements x, y of $(p)_{\mathbf{1}}$ such that $x=a$ and $y=b$ and
unionAdd $(S, f, E)(a, b)=x+y$,
(Def. 19) for every elements a, b of unionCarrier (S, f, E), there exists an element p of S and there exist elements x, y of $(p)_{\mathbf{1}}$ such that $x=a$ and $y=b$ and unionMult $(S, f, E)(a, b)=x \cdot y$,
respectively. The functors: unionOne (S, f, E) and unionZero (S, f, E) yielding elements of unionCarrier (S, f, E) are defined by conditions
(Def. 20) there exists an element p of S such that unionOne $(S, f, E)=1_{(p)_{1}}$,
(Def. 21) there exists an element p of S such that unionZero $(S, f, E)=0_{(p)_{1}}$, respectively. The functor unionField (S, f, E) yielding a strict double loop structure is defined by
(Def. 22) the carrier of $i t=$ unionCarrier (S, f, E) and the addition of $i t=$ union $\operatorname{Add}(S, f, E)$ and the multiplication of $i t=\operatorname{unionMult}(S, f, E)$ and the one of $i t=$ unionOne (S, f, E) and the zero of $i t=$ unionZero (S, f, E).
Now we state the propositions:
(50) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, a non empty subset S of $\operatorname{ExtSet}(f, E)$, elements p, q of S, and an element a of $(p)_{\mathbf{1}}$. If $p \leqslant q$, then $a \in$ the carrier of $(q)_{1}$.
(51) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$, and an element p of S. Then
(i) $1_{\text {unionField }(S, f, E)}=1_{(p)_{1}}$, and
(ii) $0_{\text {unionField }(S, f, E)}=0_{(p)_{1}}$.
(52) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$, elements a, b of unionField (S, f, E), an element p of S, and elements x, y of $(p)_{\mathbf{1}}$. If $x=a$ and $y=b$, then $a+b=x+y$ and $a \cdot b=x \cdot y$.
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be an ascending, non empty subset of $\operatorname{ExtSet}(f, E)$. Let us observe that unionField (S, f, E) is non degenerated and unionField (S, f, E) is Abelian, add-associative, right zeroed, and right complementable and unionField (S, f, E) is commutative, associative, well unital, distributive, and almost left invertible. Now we state the proposition:
(53) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$, and an element p of S. Then $(p)_{\mathbf{1}}$ is a subfield of unionField (S, f, E).

Proof: Set $K=$ unionField (S, f, E). The addition of $(p)_{\mathbf{1}}=($ the addition of $K) \upharpoonright\left(\right.$ the carrier of $\left.(p)_{\mathbf{1}}\right)$. The multiplication of $(p)_{\mathbf{1}}=($ the multiplication of $K) \upharpoonright\left(\right.$ the carrier of $\left.(p)_{1}\right) .1_{(p)_{1}}=1_{K}$ and $0_{K}=0_{(p)_{1}}$.
Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$. Now we state the propositions:
(54) F is a subfield of unionField (S, f, E). The theorem is a consequence of (53).
(55) unionField (S, f, E) is a subfield of E.

Proof: Set $K=$ unionField (S, f, E). The carrier of $K \subseteq$ the carrier of E. The addition of $K=$ (the addition of E) \upharpoonright (the carrier of K). The multiplication of $K=($ the multiplication of $E) \upharpoonright($ the carrier of $K)$. Set $p=$ the element of S. Consider U being an element of $\operatorname{SubFields}(E)$, g being a function from U into L such that $p=\langle U, g\rangle$ and there exists an extension K_{1} of F and there exists a function g_{1} from K_{1} into L such that $K_{1}=U$ and $g_{1}=g$ and g_{1} is monomorphic and f-extending. $(p)_{1}$ is a subfield of $E .1_{K}=1_{(p)_{1}} \cdot 0_{K}=0_{(p)_{1}} . \square$
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be an ascending, non empty subset of $\operatorname{ExtSet}(f, E)$. Note that unionField (S, f, E) is F-extending.

The functor unionExt (S, f, E) yielding a function from unionField (S, f, E) into L is defined by
(Def. 23) for every element p of S, it $\left\lceil\left(\right.\right.$ the carrier of $\left.(p)_{\mathbf{1}}\right)=(p)_{\mathbf{2}}$.
Now we state the proposition:
(56) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$. Then unionExt (S, f, E) is monomorphic and f-extending. The theorem is a consequence of (51) and (53).
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be an ascending, non empty subset of $\operatorname{ExtSet}(f, E)$. The functor sup S yielding an element of $\operatorname{ExtSet}(f, E)$ is defined by the term
(Def. 24) 〈unionField (S, f, E), unionExt $(S, f, E)\rangle$.
Now we state the propositions:
(57) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$, and an element p of S. Then $p \leqslant \sup S$. The theorem is a consequence of (53).
(58) Let us consider a field F, an extension E of F, an F-algebraic element a of E, an F-monomorphic, algebraic closed field L, and a monomorphism f of F and L. Then there exists a function g from $\operatorname{FAdj}(F,\{a\})$ into L such that g is monomorphic and f-extending. The theorem is a consequence of (3) and (2).
(59) Let us consider a field F, an F-algebraic extension E of F, an F-monomorphic, algebraic closed field L, and a monomorphism f of F and L. Then there exists a function g from E into L such that g is monomorphic and f-extending. The theorem is a consequence of (47), (49), (48), (57), (45), (58), (10), and (1).
(60) Let us consider a field F, an extension E of F, an F-homomorphic, E-homomorphic field L, a homomorphism from F to L, and a homomorphism g from E to L. Suppose g is f-extending. Then $\operatorname{Im} f$ is a subfield of $\operatorname{Im} g$.
(61) Let us consider a field F, an algebraic closure A of F, an A-monomorphic, A-homomorphic field L, and a monomorphism g of A and L. Then $\operatorname{Im} g$ is algebraic closed.
Proof: Reconsider $f=g^{-1}$ as a function from $\operatorname{Im} g$ into A. f is additive, multiplicative, unity-preserving, and monomorphic.
(62) Let us consider a field F, an F-monomorphic, F-homomorphic field L, an algebraic closure A of F, and a monomorphism f of F and L. Suppose L is an algebraic closure of $\operatorname{Im} f$. Let us consider a function g from A into L. If g is monomorphic and f-extending, then g is isomorphism. The theorem is a consequence of (61), (60), and (33).
(63) Let us consider a field F, and algebraic closures A_{1}, A_{2} of F. Then A_{1} and A_{2} are isomorphic over F.
Proof: Reconsider $L=A_{2}$ as an F-monomorphic, F-homomorphic, algebraic closed field. Reconsider $f=\mathrm{id}_{F}$ as a monomorphism of F and L. Consider g being a function from A_{1} into L such that g is monomorphic and f-extending. The double loop structure of $F \approx F$. $\operatorname{Im} f=$ the double loop structure of F by [4, (7)]. L is an algebraic closure of $\operatorname{Im} f . g$ is isomorphism.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi $10.1007 / 978-3-319-20615-8 _17$.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. dol 10.1007/s10817-017-9440-6
[3] Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
[4] Christoph Schwarzweller. Field extensions and Kronecker's construction. Formalized Mathematics, 27(3):229-235, 2019. doi 10.2478/forma-2019-0022

Accepted December 27, 2022

Formalization of Orthogonal Decomposition for Hilbert Spaces

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we formalize the theorems about orthogonal decomposition of Hilbert spaces, using the Mizar system [1, [2]. For any subspace S of a Hilbert space H, any vector can be represented by the sum of a vector in S and a vector orthogonal to S. The formalization of orthogonal complements of Hilbert spaces has been stored in the Mizar Mathematical Library [4. We referred to [5] and [6] in the formalization.

MSC: 46 Bxx 68 V 20
Keywords: Hilbert space; orthogonal decomposition; topological space
MML identifier: RUSUB_7, version: 8.1.12 5.72.1435

1. Preliminaries

From now on X denotes a real unitary space and x, y, y_{1}, y_{2} denote points of X. Now we state the proposition:
(1) Let us consider a real unitary space X, points x, y of X, and points z, t of MetricSpaceNorm(the real normed space of X). If $x=z$ and $y=t$, then $\|x-y\|=\rho(z, t)$.
Let us consider a real unitary space X, an element z of MetricSpaceNorm(the real normed space of X), and a real number r. Now we state the propositions:
(2) There exists a point x of X such that
(i) $x=z$, and
(ii) $\operatorname{Ball}(z, r)=\{y$, where y is a point of $X:\|x-y\|<r\}$.

The theorem is a consequence of (1).
(3) There exists a point x of X such that
(i) $x=z$, and
(ii) $\overline{\operatorname{Ball}}(z, r)=\{y$, where y is a point of $X:\|x-y\| \leqslant r\}$.

The theorem is a consequence of (1).
(4) Let us consider a real unitary space X, a sequence S of X, a sequence S_{1} of MetricSpaceNorm(the real normed space of X), a point x of X, and a point x_{2} of MetricSpaceNorm(the real normed space of X). Suppose $S=S_{1}$ and $x=x_{2}$. Then S_{1} is convergent to x_{2} if and only if for every real number r such that $0<r$ there exists a natural number m such that for every natural number n such that $m \leqslant n$ holds $\|S(n)-x\|<r$. The theorem is a consequence of (1).
Let us consider a real unitary space X, a sequence S of X, and a sequence S_{1} of MetricSpaceNorm(the real normed space of X). Now we state the propositions:
(5) If $S=S_{1}$, then S_{1} is convergent iff S is convergent. The theorem is a consequence of (4).
(6) If $S=S_{1}$ and S_{1} is convergent, then $\lim S_{1}=\lim S$. The theorem is a consequence of (5) and (4).

2. Topological Space Generated from Real Unitary Space

Now we state the proposition:
(7) Let us consider a real unitary space X, and a subset V of TopSpaceNorm (the real normed space of X). Then V is open if and only if for every point x of X such that $x \in V$ there exists a real number r such that $r>0$ and $\{y$, where y is a point of $X:\|x-y\|<r\} \subseteq V$. The theorem is a consequence of (2).
Let us consider a real unitary space X, a point x of X, and a real number r. Now we state the propositions:
(8) $\{y$, where y is a point of $X:\|x-y\|<r\}$ is an open subset of TopSpaceNorm(the real normed space of X). The theorem is a consequence of (2).
(9) $\{y$, where y is a point of $X:\|x-y\| \leqslant r\}$ is a closed subset of TopSpaceNorm (the real normed space of X). The theorem is a consequence of (3).
(10) Let us consider a real unitary space M, a subset X of TopSpaceNorm(the real normed space of M), and an object x. Then $x \in \bar{X}$ if and only if there exists a sequence S of M such that for every natural number $n, S(n) \in X$ and S is convergent and $\lim S=x$. The theorem is a consequence of (5) and (6).
(11) Let us consider a real unitary space M, and a subset X of TopSpaceNorm (the real normed space of M). Then X is closed if and only if for every sequence S of M such that for every natural number $n, S(n) \in X$ and S is convergent holds $\lim S \in X$. The theorem is a consequence of (5) and (6).
(12) Let us consider a real unitary space S, and a subset X of S. Then X is a closed subset of TopSpaceNorm(the real normed space of S) if and only if for every sequence s_{1} of S such that $\operatorname{rng} s_{1} \subseteq X$ and s_{1} is convergent holds $\lim s_{1} \in X$. The theorem is a consequence of (11).
(13) Let us consider a real unitary space S, a point x of S, a point y of MetricSpaceNorm(the real normed space of S), and a real number r. If $x=y$, then $\operatorname{Ball}(x, r)=\operatorname{Ball}(y, r)$. The theorem is a consequence of (1).
(14) Let us consider a real unitary space S. Then TopSpaceNorm(the real normed space of S) $=$ TopUnitSpace S. The theorem is a consequence of (13).

Let us consider a real unitary space S, a subset U of S, and a subset V of TopSpaceNorm(the real normed space of S). Now we state the propositions:
(15) If $U=V$, then U is closed iff V is closed.
(16) If $U=V$, then U is open iff V is open.
(17) Let us consider a real unitary space X, a subspace M of X, and points x, m_{0} of X. Suppose $m_{0} \in M$. Then for every point m of X such that $m \in M$ holds $\left\|x-m_{0}\right\| \leqslant\|x-m\|$ if and only if for every point m of X such that $m \in M$ holds $\left(\left(x-m_{0}\right) \mid m\right)=0$.
(18) Let us consider a real unitary space X, a subspace M of X, and points x, m_{1}, m_{2} of X. Suppose $m_{1}, m_{2} \in M$ and for every point m of X such that $m \in M$ holds $\left\|x-m_{1}\right\| \leqslant\|x-m\|$ and for every point m of X such that $m \in M$ holds $\left\|x-m_{2}\right\| \leqslant\|x-m\|$. Then $m_{1}=m_{2}$.
(19) Let us consider a real Hilbert space of X, a subspace M of X, and a point x of X. Suppose the carrier of M is a closed subset of TopSpaceNorm(the real normed space of X). Then there exists a point m_{0} of X such that
(i) $m_{0} \in M$, and
(ii) for every point m of X such that $m \in M$ holds $\left\|x-m_{0}\right\| \leqslant\|x-m\|$.

The theorem is a consequence of (12).

Let X be a real unitary space and M be a subset of X. The functor OrtCompSet (M) yielding a non empty subset of X is defined by
(Def. 1) for every point x of $X, x \in$ it iff for every point y of X such that $y \in M$ holds $(y \mid x)=0$.
Now we state the propositions:
(20) Let us consider a real unitary space X, and a subset M of X. Then OrtCompSet (M) is linearly closed.
Proof: For every vectors v, u of X such that $v, u \in \operatorname{OrtCompSet}(M)$ holds $v+u \in \operatorname{OrtCompSet}(M)$. For every real number a and for every vector v of X such that $v \in \operatorname{OrtCompSet}(M)$ holds $a \cdot v \in \operatorname{OrtCompSet}(M)$.
(21) Let us consider a real unitary space X, a non empty subset M of X, and a sequence s_{2} of X. Suppose $\operatorname{rng} s_{2} \subseteq$ the carrier of $\operatorname{OrtComp}(M)$ and s_{2} is convergent. Then $\lim s_{2} \in$ the carrier of $\operatorname{OrtComp}(M)$.
(22) Let us consider a real unitary space S, a non empty subset M of S, and a subset L of S. Suppose $L=$ the carrier of $\operatorname{OrtComp}(M)$. Then L is a closed subset of TopSpaceNorm(the real normed space of S). The theorem is a consequence of (21) and (12).
(23) Let us consider a real unitary space X. Then every non empty subset of X is a subset of $\operatorname{OrtComp}(\operatorname{OrtComp}(M))$.
(24) Let us consider a real unitary space X, and non empty subsets S, T of X. Suppose $S \subseteq T$. Then $\operatorname{OrtComp}(T)$ is a subspace of $\operatorname{OrtComp}(S)$.
(25) Let us consider a real Hilbert space of X, and a subspace M of X. Suppose X is strict and the carrier of M is a closed subset of TopSpaceNorm(the real normed space of X). Then X is the direct sum of M and $\operatorname{OrtComp}(M)$. Proof: For every object $z, z \in$ the carrier of $M+\operatorname{OrtComp}(M)$ iff $z \in$ the carrier of X. For every object $z, z \in$ the carrier of $M \cap \operatorname{OrtComp}(M)$ iff $z \in\left\{0_{X}\right\}$.
(26) Let us consider a real Hilbert space of X, and a strict subspace M of X. Suppose X is strict and the carrier of M is a closed subset of TopSpaceNorm(the real normed space of X).
Then $M=\operatorname{OrtComp}(\operatorname{OrtComp}(M))$.
Proof: Reconsider $N=$ the carrier of M as a subset of $X . N$ is a subset of $\operatorname{OrtComp}(\operatorname{OrtComp}(N))$. The carrier of $\operatorname{OrtComp}(\operatorname{OrtComp}(M)) \subseteq N$.
(27) Let us consider a real unitary space X, a subspace M of X, a subset K of X, and a subset L of TopSpaceNorm(the real normed space of X). Suppose the carrier of $M=L$ and $K=\bar{L}$. Then K is linearly closed.

Proof: For every vectors v, u of X such that $v, u \in K$ holds $v+u \in K$. For every real number a and for every vector v of X such that $v \in K$ holds $a \cdot v \in K$ by (10), [3, (15)].
(28) Let us consider a real Hilbert space of X, and a non empty subset M of X. Suppose X is strict. Then
(i) the carrier of $\operatorname{OrtComp}(\operatorname{OrtComp}(M))$ is a closed subset of TopSpaceNorm(the real normed space of X), and
(ii) there exists a subset L of TopSpaceNorm(the real normed space of X) such that $L=$ the carrier of $\operatorname{Lin}(M)$ and the carrier of OrtComp(Ort$\operatorname{Comp}(M))=\bar{L}$, and
(iii) $\operatorname{Lin}(M)$ is a subspace of $\operatorname{OrtComp}(\operatorname{OrtComp}(M))$.
(29) Let us consider a real Hilbert space of X, a strict subspace K of X, and a non empty subset M of X. Suppose X is strict and the carrier of K is a closed subset of TopSpaceNorm(the real normed space of X) and $\operatorname{Lin}(M)$ is a subspace of K. Then $\operatorname{OrtComp}(\operatorname{OrtComp}(M))$ is a subspace of K.

Acknowledgement: The authors would also like to express our gratitude to Prof. Yasunari Shidama for his support and encouragement.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Bylínski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s $10817-017-9440-6$
[3] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Subspaces and cosets of subspace of real unitary space Formalized Mathematics, 11(1):1-7, 2003.
[4] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Topology of real unitary space. Formalized Mathematics, 11(1):33-38, 2003.
[5] David G. Luenberger. Optimization by Vector Space Methods. John Wiley and Sons, 1969.
[6] Kôsaku Yosida. Functional Analysis. Springer, 1980.

