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On Bag of 1. Part I

Yasushige Watase
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Summary. The article concerns about formalizing multivariable formal
power series and polynomials [3] in one variable in terms of “bag” (as described
in detail in [9]), the same notion as multiset over a finite set, in the Mizar system
1, [2]. Polynomial rings and ring of formal power series, both in one variable,
have been formalized in [6], [5] respectively, and elements of these rings are re-
presented by infinite sequences of scalars. On the other hand, formalization of
a multivariate polynomial requires extra techniques of using “bag” to represent
monomials of variables, and polynomials are formalized as a function from bags
of variables to the scalar ring. This means the way of construction of the rings
are different between single variable and multi variables case (which implies some
tedious constructions, e.g. in the case of ten variables in [§], or generally in the
problem of prime representing polynomial [7]). Introducing bag-based construc-
tion to one variable polynomial ring provides straight way to apply mathematical
induction to polynomial rings with respect to the number of variables. Another
consequence from the article, a polynomial ring is a subring of an algebra [4] over
the same scalar ring, namely a corresponding formal power series. A sketch of
actual formalization of the article is consists of the following four steps:

1. translation between Bags 1 (the set of all bags of a singleton) and N;

2. formalization of a bag-based formal power series in multivariable case over
a commutative ring denoted by Formal-Series(n, R);

3. formalization of a polynomial ring in one variable by restricting one variable
case denoted by Polynom-Ring(1, R). A formal proof of the fact that
polynomial rings are a subring of Formal-Series(n, R), that is R-Algebra,
is included as well;

4. formalization of a ring isomorphism to the existing polynomial ring in one
variable given by sequence: Polynom-Ring(1, R) — Polynom-Ring R.
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2 YASUSHIGE WATASE
1. PRELIMINARIES

From now on o, o1, 02 denote objects, n denotes an ordinal number, R, L
denote non degenerated commutative rings, and b denotes a bag of 1.
Let us consider a sequence f of R. Now we state the propositions:
(1) Support f = 0 if and only if f = 0.R.
(2) If Support f is finite, then f is a finite-Support sequence of R. The
theorem is a consequence of (1).
(3) If f is a finite-Support sequence of R, then Support f is finite.
Let us consider a bag b of 1. Now we state the propositions:
(4) TRANSLATION BAGS 1 NOTATION TO NAT:
(i) domb = {0}, and
(ii) rngb = {b(0)}.
(5) b=1+—b(0).
PROOF: For every o such that o € domb holds b(0) = (1 — b(0))(0). O
Let us consider bags b1, by of 1. Now we state the propositions:
(6) bi+by=1+— bl(O) + bQ(O)
PRrROOF: dom(b; +b2) = {0}. For every object x such that € dom(b; +b2)
holds (b1 + b2)(x) = (1 — b1(0) + b2(0))(x). O
(7) by —"ba =1+ b1(0) =" b2(0).
PRrROOF: dom(b; —'b2) = {0}. For every object z such that 2z € dom(by—'b2)
holds (b; —' b2)(z) = (1 —— b1(0) =" b2(0))(z). O
(8) b1(0) < b2(0) if and only if by | be.
PROOF: If b1(0) < b2(0), then by | by. O
(9) Let us consider an ordinal number n. Then BagOrder n linearly orders
Bagsn.
The functor NBagl yielding a function from N into Bags1 is defined by
(Def. 1) for every element m of N, it(m) =1 +—— m.
The functor BagN1 yielding a function from Bags 1 into N is defined by
(Def. 2) for every element b of Bags1, it(b) = b(0).
Now we state the propositions:
(10) (BagN1) - (NBagl) = idy.
PROOF: For every o such that o € dom((BagN1)-(NBagl)) holds ((BagN1)-
(NBagl))(o) = (idn)(0). O
(11) (NBagl) - (BagN1) = idpags1-
PROOF: For every o such that o € dom((NBagl)-(BagN1)) holds ((NBagl)-
(BagN1))(0) = (idBags1)(0). U



ON BAG OF 1. PART 1 3

One can check that NBagl is one-to-one and onto and BagN1 is one-to-one
and onto. Now we state the proposition:

(12) Let us consider bags by, by of 1. Then
(i) b € rngdivisors by iff b2(0) < b1(0), and
(ii) by € rng divisors by iff b ’ b1.
The theorem is a consequence of (9) and (8).
Let us consider a bag b of 1. Now we state the propositions:
(13) rngdivisorsb = {z, where x is a bag of 1 : x(0) < b(0)}. The theorem is
a consequence of (12).
(14) rng(NBagl [Zyg)41) = {z, where = is a bag of 1 : 2(0) < b(0)}.
PROOF: For every o such that o € rng(NBagl [Zy(g)4.1) holds o € {x, where
x is a bag of 1 : £(0) < b(0)}. For every o such that o € {z, where x is
a bag of 1: x(0) < b(0)} holds o € rng(NBagl [Zyg)41).- U
(15) lendivisorsb = b(0) + 1. The theorem is a consequence of (14) and (13).

2. NATURAL NUMBER VS. BAG OF SINGLETON

Let n be an ordinal number. Let us consider L. The functor Formal-Series(n,
L) yielding a strict, non empty algebra structure over L is defined by
(Def. 3) for every set x, z € the carrier of it iff x is a series of n, L and for every
elements x, y of it and for every series p, ¢ of n, L such that x = p and
y = ¢q holds x + y = p 4+ q and for every elements x, y of it and for every
series p, ¢ of n, L such that x = p and y = ¢ holds = - y = p * ¢ and for
every element a of L and for every element x of it and for every series p of
n, L such that z =p holds a- 2 =a-p and 0z = 0,L and 14 = 1_(n, L).
Let us observe that Formal-Series(n, L) is Abelian, add-associative, right ze-
roed, right complementable, commutative, and associative and Formal-Series(n,
L) is well unital and right distributive.
Now we state the proposition:
(16) Let us consider an ordinal number n, L, an element a of L, and series p,
gofn, L. Thena-(p+q)=a-p+a-q.
PROOF: For every element i of Bagsn, (a-(p+¢q))(i) = (a-p+a-q)(i). O
Let us consider an ordinal number n, L, elements a, b of L, and a series p of
n, L. Now we state the propositions:
(17) (a+b)-p=a-p+b-p.
PROOF: For every element ¢ of Bagsn, ((a+b)-p)(i) = (a-p+b-p)(i). O

(18) (a-b)-p=a-(b-p).
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(19) Let us consider an ordinal number n, L, and a series p of n, L. Then
lr-p=p.

Let n be an ordinal number. Let us consider L. One can verify that Formal-Ser-
ies(n, L) is vector distributive, scalar distributive, scalar associative, and scalar
unital. Now we state the proposition:

(20) Let us consider an ordinal number n, and L. Then Formal-Series(n, L)
is mix-associative.
PROOF: For every element a of L and for every elements x, y of Formal-Ser-
ies(n,L), a-(z-y)=(a-z) -y. O

Let n be an ordinal number. Let us consider L. Let us observe that Formal-Ser-
ies(n, L) is mix-associative.

3. CONSTRUCTING R-ALGEBRA OF MULTIVARIATE FORMAL POWER SERIES

Now we state the proposition:

(21) Polynom-Ring(n, R) is a subring of Formal-Series(n, R).
PRrROOF: Set P» = Polynom-Ring(n, R). Set F» = Formal-Series(n, R).
If o € the carrier of P,, then o € the carrier of F5. The addition of
P, = (the addition of Fy) [ (the carrier of P»). The multiplication of
P, = (the multiplication of Fy) [ (the carrier of P»). O

Let us consider R. Now we state the propositions:

(22) (01R) - (NBagl) = 0.R.
PROOF: For every o such that o € dom((0;R) - (NBagl)) holds ((01R) -
(NBagl))(o) = (0.R)(0). O

(23) (01R+- (EmptyBagl,1R)) - (NBagl) = 0.R +- (0, 1R).
PRrROOF: For every o such that o € dom(0.R +- (0,1g)) holds ((01R +-
(EmptyBag1,1g)) - (NBagl))(0o) = (0.R +- (0,1g))(0). O

(24) (01R+-(1+~——1,1g)) - (NBagl) =0.R+- (1,1R).
PROOF: For every o such that o € dom(0.R+-(1,1g)) holds ((0;R+-(1 —
1,1g)) - (NBagl))(o) = (0.R +- (1,1g))(0). O

(25) Let us consider a bag b of 1. Then

(i) SgmX(BagOrder 1, rngdivisorsb) = XFS2FS(NBagl [Zyg)11), and
(ii) divisorsb = XFS2FS(NBagl [Zy(0)41)-

PROOF: Set F' = NBagl [Zy()+1. For every natural numbers n, m such
that n, m € dom(XFS2FS(F)) and n < m holds (XFS2FS(F')),, #
(XFS2FS(F)) p, and ((XFS2FS(F)) p, (XFS2FS(F)),,,) € BagOrder 1.
Reconsider S = rngdivisorsb as a non empty, finite subset of Bags1. For
every bagpof 1, pe Siff p|b. O
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4. CONSTRUCTING ISOMORPHISM FROM FORMAL-SERIES(1, R) TO
FORMAL-SERIES R

Let us consider R. The functor BSFSeries(R) yielding a function from Formal-

Series(1, R) into Formal-Series R is defined by
(Def. 4) for every object = such that = € the carrier of Formal-Series(1, R) there
exists a series z1 of 1, R such that 1 = x and it(x) = z; - (NBagl).

Let us observe that BSFSeries(R) is one-to-one and onto. Now we state the
propositions:

(26) Let us consider a ring R, and series f, g of 1, R. Then (f+g¢)-(NBagl) =
f - (NBagl) + ¢ - (NBagl).
PRrROOF: For every o such that o € N holds ((f + g) - (NBagl))(o) =
(f - (NBagl) + g - (NBagl))(o). O

(27) Let us consider elements f, g of Formal-Series(1, R). Then (BSFSeries(R))
(f + g) = (BSFSeries(R))(f) + (BSFSeries(R))(g). The theorem is a con-
sequence of (26).

(28) Let us consider series f, g of 1, R. Then (fxg)-(NBagl) = f-(NBagl) *
g - (NBagl).
PRrROOF: For every o such that o € N holds ((f * g) - (NBagl))(o) = (f -
(NBagl) * g - (NBagl))(o). O

(29) Let us consider elements f, g of Formal-Series(1, R). Then (BSFSeries(R))
(f - g) = (BSFSeries(R))(f) - (BSFSeries(R))(g). The theorem is a conse-
quence of (28).

(30) (BSFSeries(R))(1rormal-Series(1,r)) = LFormal-Series 8- The theorem is a con-
sequence of (23).

Let us consider R. Let us note that BSFSeries(R) is additive, multiplicative,
and unity-preserving. Now we state the proposition:

(31) (i) BSFSeries(R) inherits ring isomorphism, and
(ii) Formal-Series R is (Formal-Series(1, R))-isomorphic.

Let us consider R. One can verify that Formal-Series R is (Formal-Series(1,
R))-homomorphic, (Formal-Series(1, R))-monomorphic, and (Formal-Series(1,
R))-isomorphic.

The functor SBFSeries(R) yielding a function from Formal-Series R into
Formal-Series(1, R) is defined by

(Def. 5) for every object x such that x € the carrier of Formal-Series R there
exists a sequence x; of R such that z; = z and it(z) = z;1 - (BagN1).

Now we state the proposition:
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(32) (BSFSeries(R))~! = SBFSeries(R).
PRrROOF: For every o such that o € dom((SBFSeries(R)) - (BSFSeries(R)))
holds ((SBFSeries(R)) - (BSFSeries(R)))(0) = (idgom(BSFSeries(R)))(0)- U
Let us consider R. One can check that SBFSeries(R) is one-to-one and onto.
Now we state the proposition:
(33) SBFSeries(R) inherits ring homomorphism.
PROOF: Set P = BSFSeries(R). Set F; = Formal-Series(1, R). Set Fy =
Formal-Series R. For every elements x, y of Fy, (P~!)(z+y) = (P~ !)(z)+
(P~H)(y) and (P~)(z - y) = (P7)(z) - (P71)(y) and (P7)(1p,) = 1.
U
Let us consider R. One can check that SBFSeries(R) is additive, multiplica-
tive, and unity-preserving. Now we state the proposition:
(34) (i) SBFSeries(R) inherits ring isomorphism, and
(ii) Formal-Series(1, R) is (Formal-Series R)-isomorphic.
Let us consider R. Let us observe that Formal-Series(1, R) is (Formal-Series R)-
homomorphic, (Formal-Series R)-monomorphic, and (Formal-Series R)-isomorphic.

5. CONSTRUCTING ISOMORPHISM FROM POLYNOM-RING(1, R) TO
PoLyNOM-RING R

Now we state the propositions:

(35) Polynom-Ring R is a subring of Formal-Series R.

(36) Let us consider sequences f1, g1 of R. Then (f; + ¢1) - (BagN1l) = f -
(BagN1) + g1 - (BagN1).
PROOF: For every o such that o € dom((f1 + ¢1) - (BagN1)) holds ((f1 +
1) - (BagN1))(0) = (f1 - (BagN1) + g1 - (BagN1))(o). [

(37) Let us consider a sequence f of the carrier of R. Then f = f - (BagN1) -
(NBagl). The theorem is a consequence of (10).

(38) Let us consider a series f of 1, R. Then f = f - (NBagl) - (BagN1). The
theorem is a consequence of (11).

(39) Let us consider a sequence f of R.
Then (NBagl)°(Support f) = Support f - (BagN1).
PROOF: For every o, o € (NBagl)°®(Support f) iff o € Support f - (BagN1).
([l

(40) Let us consider a subset B of N. Then B = (NBagl)°B.

(41) Let us consider a sequence f of R. Then Support f = Support f - (BagN1).
The theorem is a consequence of (40) and (39).
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(42) Let us consider a series f of 1, R. Then (BagN1)°(Support f) = Support f-
(NBagl).
PROOF: For every o, o € (BagN1)°(Support f) iff o € Support f-(NBagl).
g

(43) Let us consider a subset B of Bags1. Then B = (BagN1)°B.

(44) Let us consider a series f of 1, R. Then Support f = Support f - (NBagl).
The theorem is a consequence of (43) and (42).

Let us consider R. The functor BSPoly(R) yielding a function from Polynom-
Ring(1, R) into Polynom-Ring R is defined by the term
(Def. 6) BSFSeries(R)[Qpolynom-Ring(1,R)-
Now we state the proposition:
(45) BSPoly(R) is one-to-one and onto.
ProoF: BSPoly(R) is onto. [J
Let us consider R. Let us observe that BSPoly(R) is one-to-one and onto.
Let us consider elements p, ¢ of Polynom-Ring(1, R) and elements f, g of
Formal-Series(1, R). Now we state the propositions:
(46) Ifp=fandg=g,thenp+qg=f+g.
(47) Ifp=fandg=g,thenp-q=f-g.
Let us consider elements f, g of Polynom-Ring(1, R). Now we state the
propositions:
(48) (BSPoly(R))(f +g) = (BSPoly(R
is a consequence of (35), (27), and

(
(49)  (BSPoly(R))(f - g) = (BSPoly(R))
a consequence of (35), (29), and (4

(50) (BSPOIY(R))(1Polynom—ng(1 R)) Ip Polynom-Ring R- The theorem is a con-
sequence of (35) and (30).
Let us consider R. Note that BSPoly(R) is additive, multiplicative, and
unity-preserving. Now we state the proposition:

(51) (i) BSPoly(R) inherits ring isomorphism, and

))(f) + (BSPoly(R))(g). The theorem
46).

(f) - (BSPoly(R))(g). The theorem is
7).

(ii) Polynom-Ring R is (Polynom-Ring(1, R))-isomorphic.
Let us consider R. Let us observe that Polynom-Ring R is (Polynom-Ring(1,
R))-homomorphic, (Polynom-Ring(1, R))-monomorphic, and (Polynom-Ring(1,
R))-isomorphic.
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Differentiation on Interval

Noboru Endou
National Institute of Technology, Gifu College
2236-2 Kamimakuwa, Motosu, Gifu, Japan

Summary. This article generalizes the differential method on intervals,
using the Mizar system [2], [3], [I2]. Differentiation of real one-variable functions
is introduced in Mizar [13], along standard lines (for interesting survey of forma-
lizations of real analysis in various proof-assistants like ACL2 [11], Isabelle/HOL
[10], Coq [4], see [5]), but the differentiable interval is restricted to open intervals.
However, when considering the relationship with integration [9], since integration
is an operation on a closed interval, it would be convenient for differentiation to
be able to handle derivates on a closed interval as well. Regarding differentia-
bility on a closed interval, the right and left differentiability have already been
formalized [6], but they are the derivatives at the endpoints of an interval and
not demonstrated as a differentiation over intervals.

Therefore, in this paper, based on these results, although it is limited to real
one-variable functions, we formalize the differentiation on arbitrary intervals and
summarize them as various basic propositions. In particular, the chain rule [1]
is an important formula in relation to differentiation and integration, extending
recent formalized results [7], [§] in the latter field of research.

MSC: 26A06 68V20
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1. PRELIMINARIES

Now we state the propositions:

(1) Let us consider open subsets A, B of R, and partial functions f, g from
R to R. Suppose f is differentiable on A and rng(flA) C B and g is
differentiable on B. Then
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(i) g- f is differentiable on A, and
(ii) (g- f)/[A = ger f ffA'
(2) Let us consider an interval I. Then
(i) Jinf I,sup I] is an open subset of R, and
(ii) Jinf I,supI[ C I.
(3) Let us consider an interval I, and a real number x. Suppose = € I and
x #inf I and = # sup I. Then x € |inf I, sup I[.
Let us consider a partial function f from R to R, an interval I, and a real
number x. Now we state the propositions:
(4) If f is right differentiable in  and = € I and x # sup I, then f[[ is right
differentiable in x.
PRrROOF: Consider 7 being a real number such that » > 0 and [z, 4 r] C
dom f. For every 0O-convergent, non-zero sequence h of real numbers and
for every constant sequence ¢ of real numbers such that rnge = {z} and
rng(h + ¢) € dom(f[I) and for every natural number n, h(n) > 0 holds
R~ ((f11.(h+¢)) — (f[1.c)) is convergent. [J
(5) If f is left differentiable in  and = € I and = # inf I, then f[[I is left
differentiable in x.
ProOOF: Consider r being a real number such that » > 0 and [z — r, 2] C
dom f. For every 0-convergent, non-zero sequence h of real numbers and
for every constant sequence ¢ of real numbers such that rngec = {x} and
rng(h + ¢) € dom(f[I) and for every natural number n, h(n) < 0 holds
R~ ((f1T.(h+c)) — (f1.c)) is convergent. (]
(6) Let us consider a set X, and partial functions fi, fo from X to R. Suppose
dom f; = dom f3. Then

(i) fi+fo— fo = f1,and
(i) fi— fo+ fo= f1.

2. DIFFERENTIATION ON INTERVALS

Let f be a partial function from R to R and I be a non empty interval. We
say that f is differentiable on interval I if and only if
(Def. 1) I Cdom f and inf < sup ! and if inf I € I, then f is right differentiable
in inf I and if supl € I, then f is left differentiable in supl and f is
differentiable on |inf I, sup I].
Let I be an interval, non empty subset of R. Assume f is differentiable on
interval I. The functor f] yielding a partial function from R to R is defined by
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(Def. 2) dom it = I and for every real number x such that x € I holds if x = inf I,
then it(z) = f) (z) and if x = sup I, then it(x) = f’ (x) and if x # inf T
and x # sup I, then it(z) = f'(z).
Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:
(7) If a < band f is differentiable on interval [a, b], then f is differentiable
on |a, bl.
(8) Suppose a < b and f is differentiable on interval [a,b]. Then
(i) f1,(a) = f.(), and
(i) f1,5(8) = (), and
(iii) for every real number x such that x € ]a, b[ holds f['avb}(x) = f'(z).

Let us consider a partial function f from R to R, an interval I, and a real
number x. Now we state the propositions:

(9) If fII is right differentiable in z, then f is right differentiable in x and

(FID)y () = ().
PRrROOF: Consider 7 being a real number such that » > 0 and [z, 4 r] C
dom(f|I). For every O-convergent, non-zero sequence h of real numbers
and for every constant sequence ¢ of real numbers such that rngc = {z}
and rng(h + ¢) C dom f and for every natural number n, h(n) > 0 holds
R ((f«(h+c))—(f«c)) is convergent and lim(h =1 ((f«(h+c))—(f«c))) =

(1) (z). O

(10) If fI[I is left differentiable in x, then f is left differentiable in = and

(FID)(z) = ' ().
PRrROOF: Consider r being a real number such that » > 0 and [z — r, 2] C
dom(f|I). For every O-convergent, non-zero sequence h of real numbers
and for every constant sequence ¢ of real numbers such that rngc = {z}
and rng(h + ¢) C dom f and for every natural number n, h(n) < 0 holds
R ((f«(h+c))—(f«c)) is convergent and lim(h =1+ ((f«(h+c))—(f«c))) =

(1) (2). O
Let us consider a partial function f from R to R and a non empty interval
1. Now we state the propositions:

(11)  f is differentiable on interval I if and only if I C dom f and for every real
number x such that x € I holds if z = inf I, then f[I is right differentiable
in  and if x = supl, then f[I is left differentiable in x and if x €
Jinf I, sup I[, then f is differentiable in x.

Proor: Ifinf I € I, then f is right differentiable in inf I. If sup I € I, then
f is left differentiable in sup I. |inf I, sup I[ C I. For every real number z
such that = € Jinf I, sup I] holds f[]inf I,sup I[ is differentiable in z. OJ
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(12) If I is open interval, then f is differentiable on I iff f is differentiable on
interval I.

Let us consider a partial function f from R to R and real numbers xg, r.
Now we state the propositions:

(13) If f is right differentiable in ¢ and rng f = {r}, then f’ (z¢) = 0.
PROOF: For every non-zero, 0-convergent sequence h of real numbers and
for every constant sequence ¢ of real numbers such that rnge = {xg}
and rng(h + ¢) C dom f and for every natural number n, h(n) > 0 holds
R ((f«(h+c))—(f«c)) is convergent and lim(h =1+ ((f«(h+c))—(f«c))) =
0.0

(14) If f is left differentiable in ¢ and rng f = {r}, then f’ (zo) = 0.
PROOF: For every non-zero, 0-convergent sequence h of real numbers and
for every constant sequence ¢ of real numbers such that rnge = {xo}
and rng(h + ¢) C dom f and for every natural number n, h(n) < 0 holds
R ((f«(h+c))—(f«c)) is convergent and lim(h =1 ((f«(h+c))—(f«c))) =
0.0

(15) Let us consider a partial function f from R to R, and a non empty
interval I. Suppose I C dom f and inf/ < supl and there exists a real
number r such that rng f = {r}. Then

(i) f is differentiable on interval I, and
(ii) for every real number x such that x € I holds f}(x) = 0.

ProoOF: Consider r being a real number such that rmg f = {r}. Set
J = ]inf I,sup I]. For every real number z such that x € J holds f[J
is differentiable in z. For every real number x such that z € I holds
fi(z) = 0.0
Let us consider a partial function f from R to R and a real number xy. Now
we state the propositions:
(16) If dom f C |—o0,zp[ and f is left continuous in xg, then f is continuous
in xo.
(17) Ifdom f C Jxg,+oo[ and f is right continuous in xg, then f is continuous
m xo.

3. FUNDAMENTAL PROPERTIES

Now we state the proposition:

(18) Let us consider a partial function f from R to R, and a non empty
interval I. Suppose I C dom f and inf I <sup/ and f[I =id;. Then

(i) f is differentiable on interval I, and
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(ii) for every real number x such that x € I holds fj(x) = 1.

PRrROOF: For every set x such that z € I holds f(z) = z. Set J =
Jinf I, sup I[. For every set x such that € J holds (f[J)(x) = x. For
every real number z such that x € J holds f[J is differentiable in z. For
every real number x such that z € I holds fj(z) =1. O
Let us consider partial functions f, g from R to R and a non empty interval
1. Now we state the propositions:
(19) Suppose I C dom(f + g) and f is differentiable on interval I and g is
differentiable on interval /. Then

(i) f+ g is differentiable on interval I, and

(ii) (f +9)7 = /7 + 9 and
(iii) for every real number = such that = € I holds (f + ¢)}(z) = fi(x) +
91().

PROOF: Set J = |inf I,sup I[. For every real number z such that z € J
holds (f + g)[J is differentiable in z. For every element x of R such that
x € dom(f + g)j holds (f + g)7(x) = (f7 + g7)(2). O

(20) Suppose I C dom(f — g) and f is differentiable on interval I and g is
differentiable on interval I. Then

(i) f — g is differentiable on interval I, and
(i) (f —9)7 = f1— 9, and
(iii) for every real number z such that = € I holds (f — g)}(x) = fi(x) —
91().
PROOF: Reconsider J = ]inf I, sup I] as an open subset of R. J C I. For
every real number x such that x € J holds (f — g)[J is differentiable in x.
For every element z of R such that z € dom(f — ¢)} holds (f — g)}(z) =
(fr —9p)(x). O
Let us consider a partial function f from R to R and real numbers xg, 7.
Now we state the propositions:
(21) If f is right differentiable in ¢, then r- f is right differentiable in 2y and
(r- ) (zo) =7 - f(20).
(22) If f is left differentiable in xq, then 7 - f is left differentiable in xy and
(r- f)(zo) =7 f. ().
(23) Let us consider a partial function f from R to R, a non empty interval
I, and a real number r. Suppose f is differentiable on interval I. Then

(i) r- f is differentiable on interval I, and

(i) (r-f)y=r-f}, and
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(iii) for every real number z such that € I holds (r - f)}(x) =r- fj(x).
PROOF: For every real number x such that z € ]inf I, sup I| holds (r -
f)l)inf I, sup I] is differentiable in x. For every element x of R such that
x € dom(r - f); holds (r- f);(x) = (r- f7)(z). O

Let us consider partial functions f, g from R to R and a non empty interval

I. Now we state the propositions:
(24) Suppose f is differentiable on interval I and g is differentiable on interval

I. Then
(i) f - g is differentiable on interval I, and
(i) (f-9)r=g-f1+[f- g and
(iii) for every real number x such that x € I holds (f - g);(z) = g(z) -
f1(x) + f(2) - g7 ().
PRrROOF: Reconsider J = |inf I,sup I[ as an open subset of R. J C I.
For every element x of R such that z € dom(f - ¢g)} holds (f - ¢)}(z) =
(9-fr1+f-91)(). O
(25) Suppose I C dom(g) and f is differentiable on interval I and g is diffe-

rentiable on interval /. Then

i) L is differentiable on interval I , and
g

(i) (L)) =29 2] and

(iii) for every real number x such that x € I holds (5)’[(33)
f1(@)-g(x)~g;(z) f(z)
g9(x)? ’
PROOF: Reconsider J = ]inf I, sup I] as an open subset of R. J C I. For
every set  such that x € I holds g(x) # 0. For every element x of R such

that = € dom(g)’f holds (g)’f(x) = (%)(m) O

4. ONE-SIDED CONTINUITY

Now we state the proposition:

(26) Let us consider a partial function f from R to R, and a real number x.
Suppose xg € dom f and f is continuous in xg. Then f is left continuous
in xg and right continuous in xg.

Let us consider a real number xy and a partial function f from R to R. Now

we state the propositions:
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(27) f is left continuous in z if and only if g € dom f and for every real
number e such that 0 < e there exists a real number d such that 0 < d
and for every real number x such that x € dom f and g — d < z < x¢
holds | f(z) — f(zo)| < e.

(28) f is right continuous in zg if and only if xg € dom f and for every real
number e such that 0 < e there exists a real number d such that 0 < d
and for every real number x such that x € dom f and 9 < < xg + d
holds | f(z) — f(zo)| < e.

(29) Let us consider a partial function f from R to R, and a real number xy.
Suppose f is left continuous in xg and right continuous in xg. Then f is
continuous in xg.

PROOF: For every real number e such that 0 < e there exists a real number
d such that 0 < d and for every real number x such that x € dom f and
|z — x| < d holds |f(z) — f(zg)| <e. O
Let us consider a real number xy and a partial function f from R to R. Now
we state the propositions:
(30) Suppose f is left continuous in xg and for every real number r such that

r < xo there exists a real number g such that r < g < xg and g € dom f.
Then

(i) f is left convergent in z, and
(i) lim,,- f = f(zo)-
(31) Suppose f is right continuous in xy and for every real number r such

that xg < r there exists a real number g such that ¢ < r and x¢p < g and
g € dom f. Then

(i) f is right convergent in xg, and

(i) Ty, f = f(zo).

(32) Let us consider a partial function f from R to R, and a real number x.
Suppose xg € dom f and f is right convergent in x¢ and lim, + f = f(=o).
Then f is right continuous in x.

(33) Let us consider a real number z, and a partial function f from R to R.
Suppose zo € dom f and f is left convergent in o and lim, - f = f(=o).
Then f is left continuous in xg.

(34) Let us consider a partial function f from R to R, and a real number .
Suppose f is convergent in zg and limg, f = f(x¢). Then f is continuous
in xp.

PROOF: For every real number e such that 0 < e there exists a real number

d such that 0 < d and for every real number x such that x € dom f and
|x — 20| < d holds |f(z) — f(zo)] <e. O
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From now on h denotes a non-zero, 0-convergent sequence of real numbers
and ¢ denotes a constant sequence of real numbers.

Let us consider a partial function f from R to R and a real number xy. Now
we state the propositions:

(35) If f is right continuous in zg, then f[[xg, +00[ is continuous in zg.
PROOF: zg € dom f and for every real number e such that 0 < e there
exists a real number d such that 0 < d and for every real number z such
that z € dom f and 9 < = < x¢ + d holds |f(z) — f(zo)| < e. Set
fi = fl[zo,+oo[. For every real number e such that 0 < e there exists
a real number d such that 0 < d and for every real number x such that
x € dom f; and |xr — xg| < d holds |fi(z) — fi(xo)| <e. O

(36) If f is left continuous in g, then f[]—o0, zg] is continuous in xg.
PROOF: zg € dom f and for every real number e such that 0 < e there
exists a real number d such that 0 < d and for every real number x such
that + € dom f and g —d < = < o holds |f(z) — f(z0)| < e. Set
fi = fl]—00,xg]. For every real number e such that 0 < e there exists
a real number d such that 0 < d and for every real number x such that
x € dom f; and |x — xg| < d holds |fi(z) — fi(xo)| <e. O

(37) Let us consider a partial function f from R to R, and a non empty
interval I. If f is differentiable on interval I, then f[[I is continuous.
PROOF: For every real number = such that = € dom(f[/) holds f[[I is
continuous in z. [J

(38) Let us consider a partial function f from R to R, and non empty intervals
I, J. Suppose f is differentiable on interval I and J C I and inf J < sup J.
Then

(i) f is differentiable on interval J, and
(ii) for every real number x such that z € J holds fj(z) = f)(z).

PRrROOF: For every real number z such that x € J holds if x = inf J,
then f[J is right differentiable in x and if x = supJ, then f[J is left
differentiable in = and if x € |inf J, sup J[, then f is differentiable in z. For
every real number x such that z € J holds fj(z) = f’(z). O

(39) Let us consider a partial function f from R to R, an open subset Z of
R, and a non empty interval I. Suppose I C Z and inf I < sup [l and f is
differentiable on Z. Then f is differentiable on interval I.

PrOOF: For every real number x such that x € I holds if x = inf[,
then f[I is right differentiable in =z and if x = supl, then f[I is left
differentiable in = and if = € |inf I, sup I[, then f is differentiable in x. [J
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5. CHAIN RULE

From now on R, R;, Re denote rests and L, L1, Lo denote linear functions.
Let us consider a real number xg and partial functions f, g from R to R.
Now we state the propositions:
(40) Suppose f is right differentiable in zp and g is differentiable in f(xo).
Then

(i) g- f is right differentiable in x¢, and
(i) (g- ) (o) = g'(f(x0)) - fi(zo).

PRrROOF: Consider r being a real number such that r > 0 and [zg, zo+7] C
dom(g - f). For every h and ¢ such that rngec = {z¢} and rng(h + ¢) C
dom(g- f) and for every natural number n, h(n) > 0 holds h=1-((g- f«(h+
¢)) — (g - f«c)) is convergent and lim(h=! - ((g- fo(h+¢)) — (g- f«c))) =
9'(f(z0)) - fi(wo). O

(41) Suppose f is left differentiable in zg and g is differentiable in f(z(). Then

(i) g- f is left differentiable in xo, and
(i) (g- ) (o) = g'(f(x0)) - f~ (o).

PROOF: Consider r being a real number such that r» > 0 and [xg —r, 2] C
dom(g - f). For every h and c¢ such that rngec = {z¢} and rng(h + ¢) C
dom(g- f) and for every natural number n, h(n) < 0 holds h=1-((g- f«(h+
¢)) — (g - f«c)) is convergent and lim(h=! - ((g- f«(h+¢)) — (g- f«c))) =
9'(f(z0)) - fL(z0). O

(42) Suppose f is right differentiable in xy and ¢ is right differentiable in
f(zo) and for every real number r; such that 71 > 0 there exists a real
number ry such that ro > 0 and [zg, o+ ro] C dom([f(xo), f(zo) +71]1f)-
Then

(i) g - f is right differentiable in ¢, and
(i) (g- ) (o) = g4 (f (o)) - f (o).

PRrOOF: Consider r1 being a real number such that r; > 0 and [f(zo), f(x0)
+71] € domg. Consider 7y being a real number such that ro > 0 and
[0, 0 + ro] € dom([f(zo), f(x0) + m1]1f). For every h and ¢ such that
rngc = {xo} and rmg(h + ¢) C dom(g - f) and for every natural number
n, h(n) > 0 holds h™' - ((g - f«(h + ¢)) — (g - f«c)) is convergent and
lim(h™t - ((g- fu(h+¢)) = (g- f+0))) = g4 (f(0)) - fi(zo). O

(43) Suppose f is left differentiable in zy and g is right differentiable in f(xq)
and for every real number r; such that r; > 0 there exists a real number
ro such that o > 0 and [xg — 79, x0] € dom([f(x0), f(zo) + r1]1f). Then
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(i) g- f is left differentiable in xo, and
(i) (g- /)" (z0) = g4 (f(x0)) - fZ (o).

PRrROOF: Consider r1 being a real number such that r; > 0 and [f(z0), f(x0)
+71] € domg. Consider 7y being a real number such that ro > 0 and
[zo — 70, 20] C dom([f(z0), f(x0) + 71]1f). For every h and ¢ such that
rngc = {zo} and rng(h + ¢) C dom(g - f) and for every natural number
n, h(n) < 0 holds h™' - ((g - f«(h + ¢)) — (g - f«c)) is convergent and
Lm(h™ - ((g- fe(h+¢)) = (g- f+0))) = g (f(20)) - [ (x0). O

(44) Suppose f is differentiable in 29 and g is right differentiable in f(xo) and
for every real number r; such that r; > 0 there exists a real number rg
such that ro > 0 and [z — ro, zo + 7] € dom([f(z0), f(z0) +71]1f). Then

(i) g- f is differentiable in zp, and

(i) (g- 1) (wo) = g (f(w0)) - f' (o)
The theorem is a consequence of (42) and (43).

(45) Suppose f is right differentiable in zo and g is left differentiable in f(x¢)
and for every real number 71 such that r; > 0 there exists a real number
ro such that ro > 0 and [z, zo + 7] € dom([f(zo) — 71, f(z0)]1f). Then

(i) g - f is right differentiable in z(, and
(i) (g )i (@o) = g_(f(0)) - fi(20).

PRrROOF: Consider 1 being a real number such that r; > 0 and [f(zo) —
r1, f(x0)] € dom g. Consider 7y being a real number such that ro > 0 and
[0, 20 + ro] € dom([f(zo) — r1, f(x0)]1f). For every h and ¢ such that
rmgc = {xp} and rng(h + ¢) C dom(g - f) and for every natural number
n, h(n) > 0 holds h=1 - ((g - fu(h + ¢)) — (g - f«c)) is convergent and
(b (g fulh+ ) — (g F-0)) = g (F(x0)) - £ (o). O

(46) Suppose f is left differentiable in xo and g is left differentiable in f(xg)

and for every real number r; such that r; > 0 there exists a real number
ro such that 7o > 0 and [xg — 70, x0] € dom([f(xo) — 71, f(x0)]1f). Then

(i) g- f is left differentiable in xo, and
(i) (g- )" (o) = g~ (f(w0)) - [~ (20).

ProOF: Consider r; being a real number such that 1 > 0 and [f(zo) —
1, f(z9)] € dom g. Consider ry being a real number such that ro > 0 and
[0 — r0,20] C dom([f(zo) — 71, f(x0)]1f). For every h and c¢ such that
rngc = {xo} and rmg(h + ¢) C dom(g - f) and for every natural number
n, h(n) < 0 holds A=t - ((g - f«(h +¢)) — (g - f«c)) is convergent and
lim(h™! - ((g- fu(h+¢)) = (g- f+€))) = g_(f(0)) - f-(x0). O
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(47) Suppose f is differentiable in xg and g is left differentiable in f(xg) and
for every real number r; such that r; > 0 there exists a real number ¢
such that ro > 0 and [z — ro, zo + 70] € dom([f(zo) — 71, f(z0)]1f). Then

(i) g- f is differentiable in z, and
(i) (g- 1) (o) = g~(f(w0)) - f'(w0)-

The theorem is a consequence of (45) and (46).

(48) Suppose f is right differentiable in xy and ¢ is right differentiable in
f(zo) and there exists a real number r such that » > 0 and f[[zo,x0 + 7]
is non-decreasing. Then

(i) ¢ - f is right differentiable in ¢, and

(i) (g9 ) (z0) = g} (f(20)) - fi(20)-
PRroOF: Consider R being a real number such that R > 0 and f [[z¢, 29+ R]
is non-decreasing. xy € dom f. For every real number ry such that r; >
0 there exists a real number ry such that 79 > 0 and [zg,z¢ + r9] C
dom([f(zo), f(x0) + r1]1f). O

(49) Suppose f is left differentiable in 2y and g is right differentiable in f(x¢)
and there exists a real number r such that » > 0 and f[[xg — r,x0] is
non-increasing. Then

(i) ¢ - f is left differentiable in z(, and
(i) (g /)" (z0) = g4 (f(x0)) - f2 (o).

PrOOF: Consider R being a real number such that R > 0 and f[[xo— R, o]
is non-increasing. xg € dom f. For every real number r; such that r; >
0 there exists a real number 7y such that ro > 0 and [xg — r¢,z0] C
dom([f(zo), f(wo) + r1]1f). O

(50) Suppose f is right differentiable in z¢ and g is left differentiable in f(xq)
and there exists a real number r such that » > 0 and f[[xo,zo + 7] is
non-increasing. Then

(i) g- f is right differentiable in x¢, and

(il) (9- )i (o) = g~ (f(z0)) - fi(z0).
PRrROOF: Consider R being a real number such that R > 0 and f [[zo, o+ R]
is non-increasing. xg € dom f. For every real number ry such that r; >
0 there exists a real number ry such that 7o > 0 and [xg,z¢ + r9] C
dom([f(zo) — 71, f(z0)]1f). O

(51) Suppose f is left differentiable in xy and g is left differentiable in f(xq)
and there exists a real number r such that » > 0 and f[[zg — 7, x0] is
non-decreasing. Then
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(i) g- f is left differentiable in xo, and
(if) (g9 f)=(20) = g~ (f(20)) - fL(x0).

PRrOOF: Consider R being a real number such that R > 0 and f [[zo— R, o]

is non-decreasing. o € dom f. For every real number r; such that r; >
0 there exists a real number ry such that 7o > 0 and [xg — 79,20] C

dom([f(zo) — r1, f(xo)]1f). O

(52) CHAIN RULE:

[4]

[5]

(10]

(11]

Let us consider partial functions f, g from R to R, and non empty intervals
I, J. Suppose f is differentiable on interval I and g is differentiable on
interval J and f°I C J. Then

(i) g- f is differentiable on interval I, and
W) (¢-Nr=9s-f-Ir
The theorem is a consequence of (4), (5), (11), and (3).
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Summary. In this paper problems 48, 80, 87, 89, and 124 from [7] are for-
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1. PRELIMINARIES

From now on X denotes a set, a, b, ¢, k, m, n denote natural numbers, 7, j
denote integers, r denotes a real number, and p, p1, p2 denote prime numbers.
Now we state the propositions:

1
2
3
4
)

ged(m,m - n) =m.
If m #£ 1, then m and m - n are not relatively prime.
Ifi#—1andi#1andi|j, thenitj+1.
Ifi#—1landi#1and|j, thenifj—1.
If ¢ | 7, then i and j + 1 are relatively prime.
PROOF: For every integer m such that m | ¢ and m | j + 1 holds m | 1 by
[8, (1)]. O
(6) Ifi|j, then ¢ and j — 1 are relatively prime.
PROOF: For every integer m such that m | i and m | j — 1 holds m | 1. O
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(7) Ifa+b+cisodd and a, b, ¢ are mutually coprime, then a is odd and b
is odd and c is odd.

(8) (i) 4-n mod 8=0, or

(ii) 4-n mod 8 = 4.

) Ifn|2,thenn=1o0orn=2.

) Ifn|6,thenn=1orn=2orn=3o0rn=_6.

) Ifn|9,thenn=1orn=3o0rn=09.

12) Ifn|10,thenn=1orn=2orn=>5or n=10.

) Ifn|25 thenn=1orn=>5o0rn=25.
) Ifn|26,thenn=1o0rn=2orn=13orn=26.
)

Ifn|36,thenn=1orn=2orn=3orn=4orn=6orn=9
orn =12 or n =18 or n = 36.

16) Ifn|50,thenn=1orn=2orn=>5o0rn=10 or n =25 or n = 50.
17) If n |65, thenn=1orn=>5orn =13 or n = 65.

18) Ifn|82,thenn=1o0orn=2orn=41orn=82.

19) Ifn| 122, thenn=1o0orn=2orn =61 or n = 122.

20) Ifn|145,then n=1o0r n="5 or n =29 or n = 145.

)
)
)
)
)
) Ifn|226,thenn=1o0rn=2orn=113 or n = 226.
22) Ifn|325,thenn=1orn=>5o0rn=13orn = 25o0rn=65orn=325.
) Ifn|362, then n=1o0rn=2orn=181 or n = 362.
) Ifn|485,thenn=1o0rn=>5or n =97 or n = 485.
) Ifn|626,then n=1orn=2orn=313 or n = 626.
) Ifm-n=p, thenm=1andn=porm=pandn=1.
) Ifm-n=10,then m=1andn=10orm=2and n=>5or m =5 and
n =2 or m = 10 and n = 1. The theorem is a consequence of (12).
(28) If m-n=25thenm=1andn=250orm=>5andn=>5o0rm=25
and n = 1. The theorem is a consequence of (13).

(29) If m-n=26,thenm=1andn=26o0rm=2andn =13 or m =13
and n =2 or m = 26 and n = 1. The theorem is a consequence of (14).
(30) If m-n=>50,thenm=1andn=50orm=2andn=250rm=>5

and n =10 or m =10 and n =5 or m = 25 and n = 2 or m = 50 and
n = 1. The theorem is a consequence of (16).
(31) If m-n=65thenm=1and n=650rm=>5andn=13 or m =13
and n =5 or m = 65 and n = 1. The theorem is a consequence of (17).

(32) If m-n =82, thenm=1and n=82or m=2and n=41or m =41
and n =2 or m = 82 and n = 1. The theorem is a consequence of (18).
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(33) If m-n =122, then m =1 and n =122 or m = 2 and n = 61 or m = 61
and n =2 or m = 122 and n = 1. The theorem is a consequence of (19).

(34) If m-n=145then m =1and n =145 or m =5 and n = 29 or m = 29
and n =5 or m = 145 and n = 1. The theorem is a consequence of (20).

(35) If m-n = 226, then m = 1 and n = 226 or m = 2 and n = 113 or
m = 113 and n = 2 or m = 226 and n = 1. The theorem is a consequence
of (21).

(36) If m-n=325thenm=1andn=23250orm=>5and n=65o0rm=13
and n =25 or m = 25 and n = 13 or m = 65 and n = 5 or m = 325 and
n = 1. The theorem is a consequence of (22).

(37) If m-n = 362, then m = 1 and n = 362 or m = 2 and n = 181 or
m = 181 and n = 2 or m = 362 and n = 1. The theorem is a consequence
of (23).

(38) If m-n =485, then m =1 and n =485 or m =5 and n = 97 or m = 97
and n =5 or m = 485 and n = 1. The theorem is a consequence of (24).

(39) If m-n = 626, then m = 1 and n = 626 or m = 2 and n = 313 or
m =313 and n = 2 or m = 626 and n = 1. The theorem is a consequence
of (25).

(40) If p; # po, then 2 < p; and 3 < pg or 3 < py and 2 < po.

2. PROBLEM 48

Let n be a natural number. We say that n satisfies Sierpinski Problem 48 if
and only if

(Def. 1) there exist natural numbers a, b, ¢ such that n = a+b+cand a > 1
and b > 1 and ¢ > 1 and a, b, c are mutually coprime.
Now we state the propositions:
(41) If n is even and n > 8, then n satisfies Sierpinski Problem 48. The
theorem is a consequence of (5) and (6).

(42) If n > 17, then n satisfies Sierpinski Problem 48. The theorem is a con-
sequence of (41), (10), (4), (11), (9), (6), (5), and (3).

(43) 17 doesn’t satisfy Sierpinski Problem 48. The theorem is a consequence
of (7) and (1).
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3. PROBLEM &0

Now we state the propositions:
(44) Let us consider prime numbers p, ¢, and a natural number n. Suppose
p-(p+1)+¢q-(¢g+1)=n-(n+1). Then
(i) p=2and g =2 and n =3, or
(ii) p=5and ¢ =3 and n =6, or
(ili) p=3 and ¢ =5 and n = 6.
The theorem is a consequence of (26).

(45) Let us consider prime numbers p, ¢, 7. If p-(p+1)+¢q-(¢g+1) = r-(r+1),
then p = ¢ = 2 and r = 3. The theorem is a consequence of (44).

4. PROBLEM 87

Let n be a natural number. We say that n satisfies Sierpinski Problem 87a
if and only if
(Def. 2) there exist prime numbers a, b, ¢ such that a, b, ¢ are mutually different
andn’+1=a-b-c
We say that n satisfies Sierpinski Problem 87b if and only if
(Def. 3) there exist odd prime numbers a, b, ¢ such that a, b, ¢ are mutually
different and n? +1=a-b-c.
Now we state the propositions:
(46) 132+1=2.5-17.
(47) 13 satisfies Sierpinski Problem 87a. The theorem is a consequence of
(46).
(48) 17 +1=2-5-29.
(49) 17 satisfies Sierpinski Problem 87a. The theorem is a consequence of
(48).
(50) 2124+1=2-13-17.
(51) 21 satisfies Sierpinski Problem 87a. The theorem is a consequence of
(50).
(52) 232+1=2-5-53.
(53) 23 satisfies Sierpinski Problem 87a. The theorem is a consequence of
(52).
(54) 27*4+1=2-5-73.
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(55) 27 satisfies Sierpinski Problem 87a. The theorem is a consequence of
(54).

(56) If n satisfies Sierpinski Problem 87a and n < 27,
then n € {13,17,21, 23, 27}.

(57) 1122 4+1=5-13-193.

(58) 112 satisfies Sierpinski Problem 87b. The theorem is a consequence of
(57).

5. PROBLEM &9

Let us consider n. We say that n has exactly two different prime divisors if
and only if

(Def. 4) there exist prime numbers p, ¢ such that p # ¢ and p | n and ¢ | n and
for every prime number r such that r # p and r # ¢ holds r 1 n.

Let n be a complex number. We say that n is a product of two different
primes if and only if

(Def. 5) there exist prime numbers p, g such that p # ¢ and n =p - q.
Now we state the propositions:
(59) Let us consider prime numbers p, ¢, and natural numbers a, b. Suppose
a#landb#1and p-q=a-b. Then
(i) p=aand ¢ =0b, or
(ii) p="band g = a.
(60) If n is a product of two different primes, then for every a and b such that
a#1and b#1and n=a-bholds a is prime and b is prime.
(61) p is not a product of two different primes.
(62) If p1 # po, then p; - pa is a product of two different primes.

(63) Ifa+#1and a# n and ais not prime and a | n, then n is not a product
of two different primes.

(64) p-pisnot a product of two different primes.

(65) If n is a product of two different primes, then n > 6. The theorem is
a consequence of (40).
Let us consider n. We say that n satisfies Sierpinski Problem 89 if and only
if
(Def. 6) n is a product of two different primes and n + 1 is a product of two
different primes and n + 2 is a product of two different primes.

Now we state the propositions:
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(66) 33 satisfies Sierpinski Problem 89.

(67) 85 satisfies Sierpinski Problem 89.

(68) 93 satisfies Sierpinski Problem 89.

(69) 141 satisfies Sierpinski Problem 89.

(70) 201 satisfies Sierpinski Problem 89.

(71) If n satisfies Sierpinski Problem 89 and n < 201,
then n € {33,85,93, 141, 201}.

(72) There exists no n such that n satisfies Sierpinski Problem 89 and n + 1
satisfies Sierpinski Problem 89 and n 4+ 2 satisfies Sierpinski Problem 89
and n + 3 satisfies Sierpinski Problem 89.

(73) (i) 33 =311, and
(ii) 33 has exactly two different prime divisors.
(74) (i) 34=2-17, and

34 has exactly two different prime divisors.
i) 35 =5-7, and

)
(
(i)
(75)
(ii) 35 has exactly two different prime divisors.

(76) (i) 36=2-2-3-3, and
(ii) 36 has exactly two different prime divisors.

The theorem is a consequence of (15).

6. PROBLEM 124

Now we state the propositions:

(77) Ifn=28-k+1, then 29 | (227 + 1)* + 22,

(78) Ifk > 0 and n = 28 - k + 1, then (22" + 1)° + 22 is composite. The
theorem is a consequence of (77).

(79) {(2°™ + 1)2 + 22, where n is a natural number : (227 + 1)2 + 2% is com-
posite} is infinite.
PROOF: Set X = {(22" + 1)>4+22, where n is a natural number: (227 + 1)°
+22 is composite}. Set n = 28 - 1 + 1. (22" + 1)2 + 22 is composite. X is
natural-membered. For every a such that a € X there exists b such that
b>aand be X. U
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INTRODUCTION

Subsets of the set of all subgraphs of a graphs are rather rarely addressed
directly (cf. [13], [4], [3]), but used as a tool in a wide variety of graph theory to-
pics; e.g. they are needed for graph factorisation, graph reconstruction, random
graphs, counting a special type of subgraphs and proving that every connected
graph has a spanning subgraph (cf. [2], [I4], [5]). The latter is proven in Section
7 of this article, together with the sharper result that we can even guarantee
a spanning graph containing an arbitrary edge of the connected graph. As a
necessity for that the set of all subtrees of a graph was introduced, as Jessica
Enright and Piotr Rudnicki wished for in [6]. This article lays the groundwork
for further formalization of any of these topics, in some sense extending and reu-
sing [8] and [10]. It is noteworthy that the attribute plain from [9] was utilized
here.
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32 SEBASTIAN KOCH
1. SUBGRAPH SET AND SUBGRAPH RELATION

From now on G, GG1, G2 denote graphs and H denotes a subgraph of G.
Let us consider G. The functor G.allSubgraphs() yielding a graph-membered
set is defined by the term
(Def. 1) {the plain subgraph of G induced by V and E, where V is a non
empty subset of the vertices of G, E is a subset of the edges of G :
E C G.edgesBetween(V)}.
We introduce the notation G.allSG() as a synonym of G.allSubgraphs(). Let
G be a finite graph. One can check that G.allSG() is finite. Now we state the
propositions:
(1) Gz € G1.allSG() if and only if G5 is a plain subgraph of Gj.
(2) H]J(the graph selectors) € G.allSG(). The theorem is a consequence of
(1).
(3) GI(the graph selectors) € G.allSG(). The theorem is a consequence of
(2).
Let us consider GG. Let V be a non empty subset of the vertices of G. The
functor createGraph(V') yielding a plain subgraph of G is defined by the term
(Def. 2) createGraph(V, ), the function from () into V,the function from () into
V).
Let us note that createGraph(V') is edgeless. Now we state the propositions:
(4) Let us consider a non empty subset V' of the vertices of G.
Then createGraph(V) € G.allSG().
(5) Let us consider a non empty subset V' of the vertices of G, and a subgraph
H of G induced by V and (). Then H = createGraph(V).
(6) Let us consider a subgraph H of G with edges the edges of G removed.
Then H ~ createGraph(€2,), where « is the vertices of G. The theorem is
a consequence of (5).
(7) G is edgeless if and only if G & createGraph(€2,), where « is the vertices
of G. The theorem is a consequence of (6).
(8) Let us consider a non empty subset V' of the vertices of Gj. Suppose
V' C the vertices of Go. Then createGraph(V') is a subgraph of Gs.
(9) G is edgeless if and only if G.allSG() = the set of all createGraph(V)
where V' is a non empty subset of the vertices of G. The theorem is a con-
sequence of (1), (7), (4), and (3).
Let us consider G. Let v be a vertex of G. The functor createGraph(v)
yielding a plain subgraph of G is defined by the term

(Def. 3) createGraph({v}).
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Let us note that createGraph(v) is trivial and edgeless. Now we state the
propositions:
(10) Let us consider a vertex v of G. Then createGraph(v) € G.allSG().

(11) Let us consider a vertex v of G, and a subgraph H of G induced by {v}
and (. Then H = createGraph(v).

(12) Let us consider a vertex v of G1. Suppose v € the vertices of G3. Then
createGraph(v) is a subgraph of Ga.

Let G be a non edgeless graph and e be an edge of G.
The functor createGraph(e) yielding a plain subgraph of G is defined by

(Def. 4) there exists a non empty subset V' of the vertices of G and there exist
functions S, T from {e} into V such that it = createGraph(V,{e},S,T)
and {(the source of G)(e), (the target of G)(e)} =V and
S = e——(the source of G)(e) and T = e——(the target of G)(e).

Let us consider a non edgeless graph G and an edge e of G. Now we state
the propositions:
(13) (i) the edges of createGraph(e) = {e}, and
(ii) the vertices of createGraph(e) = {(the source of G)(e), (the target
of G)(e)}.
(14) e joins (the source of G)(e) to (the target of G)(e) in createGraph(e).
The theorem is a consequence of (13).

Let us consider a non edgeless graph G, an edge e of G, and objects eq, v,
w. Now we state the propositions:

(15) Suppose eg joins v to w in createGraph(e). Then
(i) ep = e, and
(ii) v = (the source of G)(e), and
(iii) w = (the target of G)(e).
The theorem is a consequence of (13).

(16) If ep joins v and w in createGraph(e), then ey = e. The theorem is
a consequence of (15).

Let G be a non edgeless graph and e be an edge of G. One can check that
createGraph(e) is non edgeless, non-multi, connected, and finite. Let us consider
a non edgeless graph G and an edge e of G. Now we state the propositions:

(17) createGraph(e) is loopless if and only if e ¢ G.loops(). The theorem is
a consequence of (14) and (15).

(18) createGraph(e) is acyclic if and only if e ¢ G.loops(). The theorem is
a consequence of (17), (13), and (16).

(19) createGraph(e) € G.allSG().
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(20) Let us consider a non edgeless graph G, an edge e of G, and a subgraph
H of G induced by {(the source of G)(e), (the target of G)(e)} and {e}.
Then H = createGraph(e). The theorem is a consequence of (13).

(21) Let us consider a non edgeless graph G, an edge e of G, and a subset V'
of the vertices of G. Then every supergraph of createGraph(e) extended
by the vertices from V' is a subgraph of G.

(22) Let us consider an edgeless graph G, a graph union set S, and a graph
union G’ of S. Suppose for every vertex v of GG, there exists an element
H' of S such that v € the vertices of H'. Then G is a subgraph of G'.

(23) Let us consider a non edgeless graph G, a graph union set S, and a graph
union G’ of S. Suppose for every vertex v of GG, there exists an element
H' of S such that v € the vertices of H' and for every edge e of G, there
exists an element H' of S such that createGraph(e) is a subgraph of H'.
Then G is a subgraph of G’. The theorem is a consequence of (13).

(24) Let us consider an edgeless graph G, a graph union set S, and a graph
union G’ of S. Suppose for every vertex v of G, createGraph(v) € S. Then
G is a subgraph of G'. The theorem is a consequence of (22).

(25) Let us consider a non edgeless graph G, a graph union set S, and a graph
union G’ of S. Suppose for every vertex v of G, createGraph(v) € S and
for every edge e of G, createGraph(e) € S. Then G is a subgraph of G’.
The theorem is a consequence of (23).

(26) Let us consider a non edgeless graph G, a set E, an edge e of G, and
a subgraph H of G with edges F removed. If e ¢ E, then createGraph(e)
is a subgraph of H. The theorem is a consequence of (13).

Let us consider a non edgeless graph G, a subgraph H of G with loops
removed, a graph union set S, and a graph union G’ of S. Now we state the
propositions:

(27) Suppose for every vertex v of G, there exists an element H' of S such that
v € the vertices of H' and for every edge e of G such that e ¢ G.loops()
there exists an element H' of S such that createGraph(e) is a subgraph
of H'. Then H is a subgraph of G’. The theorem is a consequence of (13)
and (26).

(28) Suppose for every vertex v of G, createGraph(v) € S and for every edge
e of G such that e ¢ G.oops() holds createGraph(e) € S. Then H is
a subgraph of G’. The theorem is a consequence of (27).

Let us consider G. Let us observe that G.allSG() is non empty, U-tolerating,
and plain. Let S be a non empty subset of G.allSG(). Let us observe that
an element of S is a subgraph of G. Now we state the propositions:
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(29) Go.allSG() C G1.allSG() if and only if G9 is a subgraph of G7. The
theorem is a consequence of (3) and (1).
(30) Gi = G3 if and only if G;.allSG() = G2.allSG(). The theorem is a con-
sequence of (29).
Let us consider G; and Gs. Let F' be a partial graph mapping from G to G.
The functor SG2SGFunc(F') yielding a function from G.allSG() into Go.allSG()
is defined by

(Def. 5) for every plain subgraph H of Gy, it(H) = rng(F'[H).
One can verify that SG2SGFunc(F') is non empty and graph-yielding and

dom(SG2SGFunc(F)) is graph-membered and dom(SG2SGFunc(F')) is plain.
Now we state the proposition:

(31) Let us consider a partial graph mapping F' from G to Ga. If F' is weak
subgraph embedding, then SG2SGFunc(F') is one-to-one. The theorem is
a consequence of (1).
Let G1 be a graph, G2 be a G-isomorphic graph, and F' be an isomorphism
between G7 and G5. Let us observe that SG2SGFunc(F') is one-to-one. Now we
state the propositions:

(32) Let us consider a partial graph mapping F' from G to Ga. Suppose F
is onto. Then rng SG2SGFunc(F') = G.allSG(). The theorem is a conse-
quence of (1).

(33) If G2 is Gj-directed-isomorphic, then G1.allSG() and G».allSG() are
directed-isomorphic. The theorem is a consequence of (32), (31), and (1).

(34) If Go is Gi-isomorphic, then G;.allSG() and G2.allSG() are isomorphic.
The theorem is a consequence of (32), (31), and (1).

(35) G is a graph union of G.allSG(). The theorem is a consequence of (3)
and (1).

(36) (i) G is loopless iff G.allSG() is loopless, and

(ii) G is non-multi iff G.allSG() is non-multi, and

(iii) G is non-directed-multi iff G.allSG() is non-directed-multi, and

(iv) G is simple iff G.allSG() is simple, and

(v) G is directed-simple iff G.allSG() is directed-simple, and

(vi) G is acyclic iff G.allSG() is acyclic, and

(vii) G is edgeless iff G.allSG() is edgeless.

Let G be a loopless graph. Observe that G.allSG() is loopless. Let G be
a non-multi graph. Let us observe that G.allSG() is non-multi. Let G be a non-
directed-multi graph. One can verify that G.allSG() is non-directed-multi. Let
G be a simple graph. One can check that G.allSG() is simple.
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Let G be a directed-simple graph. Let us note that G.allSG() is directed-
simple. Let G be an acyclic graph. Let us observe that G.allSG() is acyclic. Let
G be an edgeless graph. One can verify that G.allSG() is edgeless. Now we state
the propositions:

(37) The vertices of G.allSG() = 2*\ {0}, where « is the vertices of G. The
theorem is a consequence of (1).

(38) The edges of G.allSG() = 2%, where « is the edges of G. The theorem is
a consequence of (1).

Let us consider G. The functor SubgraphRel(G) yielding a binary relation
on G.allSG() is defined by

(Def. 6) for every elements Hy, Hy of G.allSG(), (H1, H2) € it iff Hy is a sub-
graph of Hs.

Now we state the propositions:

(39) (H/[(the graph selectors), G[(the graph selectors)) € SubgraphRel(G).
The theorem is a consequence of (2) and (3).

(40) field SubgraphRel(G) = G.allSG().
PRrOOF: G.allSG() C field SubgraphRel(G). O

(41) SubgraphRel(G) partially orders G.allSG().

Let us consider G. One can verify that SubgraphRel(G) is reflexive, anti-
symmetric, transitive, and partial-order. Now we state the propositions:

(42) G|(the graph selectors) is maximal in SubgraphRel(G). The theorem is
a consequence of (3), (40), (1), and (39).

(43) SubgraphRel(H) = SubgraphRel(G) |? H.allSG(). The theorem is a con-
sequence of (29) and (40).

(44) Let us consider a non empty subset S of G.allSG(), and a graph union
G’ of S. Suppose SubgraphRel(G) |? S is a linear order. Let us consider
a walk W of G’. Then there exists an element H of S such that W is
a walk of H.
PROOF: Define P[walk of G'] = there exists an element H of S such that
$1 is a walk of H. For every trivial walk W of G’, P[W]. For every walk
W of G’ and for every object e such that e € W .last().edgesInOut() and
P[W] holds P[W .addEdge(e)]. For every walk W of G', P[W]. O
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2. INDUCED SUBGRAPH SET

Let us consider G. The functor G.alllnducedSG() yielding a subset
of G.allSG() is defined by the term

(Def. 7) the set of all the plain subgraph of G induced by V where V' is a non

empty subset of the vertices of G.
Now we state the proposition:
(45) Gy € G.alllnducedSG() if and only if there exists a non empty subset

V' of the vertices of (G1 such that G is a plain subgraph of G; induced by
V.
Let G be a vertex-finite graph. Observe that G.alllnducedSG() is finite. Now
we state the propositions:

(46) Let us consider a non empty subset V' of the vertices of G, and a subgraph
H of G induced by V. Then H [(the graph selectors) € G.alllnducedSG().
The theorem is a consequence of (45).

(47) GI(the graph selectors) € G.alllnducedSG(). The theorem is a consequ-
ence of (46).
Let us consider G. Observe that G.alllnducedSG() is non empty, U-tolerating,
and plain. Now we state the propositions:
(48) Gsq.alllnducedSG() C G;.alllnducedSG() if and only if there exists a non
empty subset V' of the vertices of (G; such that G is a subgraph of G}
induced by V. The theorem is a consequence of (47) and (45).

(49) Gi = Gy if and only if Gj.alllnducedSG() = Gs.alllnducedSG(). The
theorem is a consequence of (48).

Let us consider a partial graph mapping F' from G1 to Go. Now we state the
propositions:
(50) If F is total and onto, then Ga.alllnducedSG() C rng(SG2SGFunc(F)
[G1.alllnducedSG()). The theorem is a consequence of (49).
(51) If F'is total and continuous, then rng(SG2SGFunc(F')[G;.alllnducedSG())
C Gy.alllnducedSG(). The theorem is a consequence of (45).

(52) If F is isomorphism, then rng(SG2SGFunc(F')[G;.alllnducedSG()) =
Go.alllnducedSG(). The theorem is a consequence of (50) and (51).

(53) If G is G-directed-isomorphic, then Gj.alllnducedSG() and
Go.alllnducedSG() are directed-isomorphic. The theorem is a consequence
of (52), (31), and (45).

(54) If Go is Gy-isomorphic, then G7.alllnducedSG() and Ge.alllnducedSG()
are isomorphic. The theorem is a consequence of (52), (31), and (45).



38 SEBASTIAN KOCH

(55) @ is a graph union of G.alllnducedSG(). The theorem is a consequence
of (47).

(56) (i) G is loopless iff G.alllnducedSG() is loopless, and
(ii) G is non-multi iff G.alllnducedSG() is non-multi, and

(iii) G is non-directed-multi iff G.alllnducedSG() is non-directed-multi,
and

(iv) G is simple iff G.alllnducedSG() is simple, and
(v) G is directed-simple iff G.alllnducedSG() is directed-simple, and
(vi) G is acyclic iff G.alllnducedSG() is acyclic, and

(vil) G is edgeless iff G.alllnducedSG() is edgeless, and

(viii) G is chordal iff G.alllnducedSG() is chordal, and

(ix) G is loopfull iff G.alllnducedSG() is loopfull.

Let G be a loopless graph. One can verify that G.alllnducedSG() is lo-
opless. Let G be a non-multi graph. Note that G.alllnducedSG() is non-multi.
Let G be a non-directed-multi graph. Observe that G.alllnducedSG() is non-
directed-multi. Let G be a simple graph. One can verify that G.alllnducedSG()
is simple. Let G be a directed-simple graph. Note that G.alllnducedSG() is
directed-simple. Let G be an acyclic graph. Observe that G.alllnducedSG() is
acyclic. Let G be an edgeless graph. One can verify that G.alllnducedSG() is
edgeless. Let G be a chordal graph. Note that G.alllnducedSG() is chordal. Let
G be a loopfull graph. Let us note that G.alllnducedSG() is loopfull. Now we
state the propositions:

(57) G isedgeless if and only if G.alllnducedSG() = the set of all createGraph
(V') where V' is a non empty subset of the vertices of G. The theorem is
a consequence of (9), (45), and (47).

(58) G is edgeless if and only if G.allSG() = G.alllnducedSG(). The theorem
is a consequence of (9), (57), and (45).

(59) The vertices of G.alllnducedSG() = 2%\ {0}, where « is the vertices of
G. The theorem is a consequence of (37).

3. SPANNING SUBGRAPH SET

Let us consider G. The functor G.allSpanningSG() yielding a subset of
G.allSG() is defined by the term

(Def. 8) {H, where H is an element of Q¢ .nsq() : H is spanning}.

We introduce the notation G.allFactors() as a synonym of G.allSpanningSG().
Now we state the propositions:
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(60) G9 € Gy.allSpanningSG() if and only if G is a plain, spanning subgraph
of G. The theorem is a consequence of (1).

(61) Let us consider a spanning subgraph H of G. Then H [(the graph
selectors) € G.allSpanningSG(). The theorem is a consequence of (60).

(62) GI(the graph selectors) € G.allSpanningSG(). The theorem is a conse-
quence of (61).

(63) createGraph(f),) € G.allSpanningSG(), where « is the vertices of G.
The theorem is a consequence of (60).

(64) Let us consider a non edgeless graph G, an edge e of G, and a plain
supergraph H of createGraph(e) extended by the vertices from the vertices
of G. Then H € G.allSpanningSG(). The theorem is a consequence of (21)
and (60).

Let G be a graph. Let us note that G.allSpanningSG() is non empty, U-
tolerating, and plain. Now we state the propositions:

(65) Go.allSpanningSG() C G.allSpanningSG() if and only if Gy is a span-
ning subgraph of G;. The theorem is a consequence of (62) and (60).
(66) Gi1 =~ Gq if and only if G.allSpanningSG() = Gs.allSpanningSG(). The

theorem is a consequence of (65).
Let us consider a partial graph mapping F' from G to G2. Now we state the
propositions:

(67) Suppose rng Fy = the vertices of Go.

Then rng(SG2SGFunc(F')[G1.allSpanningSG()) C Gs.allSpanningSG().

(68) Suppose F'is onto and Fy is one-to-one and total.

Then rng(SG2SGFunc(F')[G;.allSpanningSG()) = Ga.allSpanningSG().
The theorem is a consequence of (67), (32), (1), and (60).

(69) If F is isomorphism, then rng(SG2SGFunc(F')|G.allSpanningSG()) =
G2.allSpanningSG(). The theorem is a consequence of (68).

(70) If G2 is Gi-directed-isomorphic, then G;.allSpanningSG() and
G9.allSpanningSG() are directed-isomorphic. The theorem is a consequ-
ence of (69), (31), and (60).

(71) If G is Gi-isomorphic, then G;.allSpanningSG() and Gz.allSpanningSG()
are isomorphic. The theorem is a consequence of (69), (31), and (60).
(72) G is a graph union of G.allSpanningSG(). The theorem is a consequence

of (62).
(73) (i) G is loopless iff G.allSpanningSG() is loopless, and
(ii) G is non-multi iff G.allSpanningSG() is non-multi, and
(iii) G is non-directed-multi iff G.allSpanningSG() is non-directed-multi,
and
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(iv) G is simple iff G.allSpanningSG() is simple, and

(v
(vi) G is acyclic iff G.allSpanningSG() is acyclic, and

)
)

G is directed-simple iff G.allSpanningSG() is directed-simple, and

(vil) G is edgeless iff G.allSpanningSG() is edgeless.
Let G be a loopless graph. Note that G.allSpanningSG() is loopless. Let
G be a non-multi graph. Observe that G.allSpanningSG() is non-multi. Let G
be a non-directed-multi graph. One can verify that G.allSpanningSG() is non-
directed-multi. Let G be a simple graph. Note that G.allSpanningSG() is simple.
Let G be a directed-simple graph. Observe that G.allSpanningSG() is directed-
simple. Let G be an acyclic graph. One can verify that G.allSpanningSG() is
acyclic. Let G be an edgeless graph. Note that G.allSpanningSG() is edgeless.
Now we state the propositions:
(74) G isedgeless if and only if G.allSpanningSG() = {G[(the graph selectors)}.
The theorem is a consequence of (60) and (62).
(75) The vertices of G.allSpanningSG() = {the vertices of G}. The theorem
is a consequence of (60).
(76) The edges of G.allSpanningSG() = 2%, where « is the edges of G. The
theorem is a consequence of (38) and (60).
(77)  G.alllnducedSG() NG.allSpanningSG() = {G[(the graph selectors)}. The
theorem is a consequence of (45), (60), (47), and (62).

4. FOREST SUBGRAPH SET

Let us consider G. The functor G.allForests() yielding a subset of G.allSG()
is defined by the term
(Def. 9) {H, where H is an element of Q¢ .nsq() : H is acyclic}.
Now we state the propositions:
(78) G9 € Gy.allForests() if and only if G is a plain, acyclic subgraph of Gj.
The theorem is a consequence of (1).

(79) Let us consider an acyclic subgraph H of G. Then H [(the graph selectors)
€ G.allForests(). The theorem is a consequence of (78).

(80) @ is acyclic if and only if G[(the graph selectors) € G.allForests(). The
theorem is a consequence of (79) and (78).

(81) Let us consider a non empty subset V' of the vertices of G.
Then createGraph(V') € G.allForests().

(82) Let us consider a vertex v of G. Then createGraph(v) € G.allForests().
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(83) Let us consider a non edgeless graph G, and an edge e of G. Suppose
e ¢ G.loops(). Then createGraph(e) € G.allForests(). The theorem is
a consequence of (18) and (78).

(84) Let us consider a non edgeless graph G, an edge e of G, a subset V of
the vertices of G, and a plain supergraph H of createGraph(e) extended
by the vertices from V. If e ¢ G.loops(), then H € G.allForests(). The
theorem is a consequence of (18), (21), and (78).

Let us consider G. Let us note that G.allForests() is non empty, U-tolerating,
plain, acyclic, and simple. Now we state the propositions:

(85) H.allForests() C G.allForests(). The theorem is a consequence of (78).

(86) Let us consider a loopless graph Go.

Suppose Gy.allForests() C Gj.allForests(). Then Gy is a subgraph of G.
PRrROOF: The edges of G2 C the edges of G;1. U

(87) Let us consider a subgraph H of G with loops removed.

Then G.allForests() = H.allForests(). The theorem is a consequence of
(85) and (78).

(88) Let us consider loopless graphs G1, Ga. Then G; ~ G2 if and only if
G1.allForests() = Gq.allForests(). The theorem is a consequence of (87)
and (86).

(89) Let us consider a subgraph G'3 of G1 with loops removed, and a subgraph
G4 of G5 with loops removed. Then G35 ~ G4 if and only if G;.allForests() =
Go.allForests(). The theorem is a consequence of (87) and (88).

Let us consider a partial graph mapping F' from G to G2. Now we state the
propositions:

(90) If F' is weak subgraph embedding,
then rng(SG2SGFunc(F')[G;.allForests()) C Gs.allForests(). The theorem
is a consequence of (78) and (1).

(91) If F is one-to-one and onto, then Gs.allForests() C rng(SG2SGFunc(F')
[G.allForests()). The theorem is a consequence of (78).

(92) If F is isomorphism, then Gy.allForests() = rng(SG2SGFunc(F')
[G1.allForests()). The theorem is a consequence of (90) and (91).

(93) If G is Gi-directed-isomorphic, then G.allForests() and Gy.allForests()
are directed-isomorphic. The theorem is a consequence of (92), (31), and
(78).

(94) If G2 is Gy-isomorphic, then Gj.allForests() and Gq.allForests() are iso-
morphic. The theorem is a consequence of (92), (31), and (78).

Let us consider a subgraph G3 of G with loops removed and a subgraph G4
of G5 with loops removed. Now we state the propositions:
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(95) If G4 is Gs-directed-isomorphic, then G.allForests() and Gs.allForests()
are directed-isomorphic. The theorem is a consequence of (87) and (93).

(96) If G4 is G3-isomorphic, then Gj.allForests() and Gy.allForests() are iso-
morphic. The theorem is a consequence of (87) and (94).

(97) Every subgraph of G with loops removed is a graph union of G.allForests().
The theorem is a consequence of (35), (82), (83), (13), (87), and (78).
(98) G is loopless if and only if G is a graph union of G.allForests(). The

theorem is a consequence of (97).
(99) The edges of G = G.loops() if and only if G.allForests() is edgeless. The
theorem is a consequence of (78) and (83).

(100) The edges of G = G.loops() if and only if G.allForests() = the set of all
createGraph(V') where V' is a non empty subset of the vertices of G. The
theorem is a consequence of (99), (78), and (81).

(101) The vertices of G.allForests() = 2%\ {0}, where « is the vertices of G.
The theorem is a consequence of (37) and (81).

5. SPANNING FOREST SUBGRAPH SET

Let us consider G. The functor G.allSpanningForests() yielding a subset of

G.allSG() is defined by the term

(Def. 10) {H, where H is an element of Qa.ansa() @ H is spanning and acyclic}.
Now we state the propositions:

(102) G9 € Gi.allSpanningForests() if and only if G2 is a plain, spanning,
acyclic subgraph of G;. The theorem is a consequence of (1).

(103) G.allSpanningForests() = G.allSpanningSG() NG.allForests(). The the-
orem is a consequence of (102), (60), and (78).

(104) Let us consider a spanning, acyclic subgraph H of G. Then H |(the graph
selectors) € G.allSpanningForests(). The theorem is a consequence of
(102).

(105) G is acyclic if and only if G'[(the graph selectors) € G.allSpanningForests().
The theorem is a consequence of (103), (80), and (62).

(106) createGraph(€2,) € G.allSpanningForests(), where « is the vertices of G.
The theorem is a consequence of (81), (63), and (103).

(107) Let us consider a non edgeless graph G, an edge e of G, and a plain
supergraph H of createGraph(e) extended by the vertices from the vertices
of G. If e ¢ G.loops(), then H € G.allSpanningForests(). The theorem is
a consequence of (64), (84), and (103).
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Let us consider G. One can check that G.allSpanningForests() is non empty,
U-tolerating, plain, acyclic, and simple. Now we state the propositions:

(108) Let us consider a spanning subgraph H of G. Then H .allSpanningForests() C
G.allSpanningForests(). The theorem is a consequence of (102).

(109) Let us consider a loopless graph Gs. Suppose G.allSpanningForests() C
G .allSpanningForests(). Then G is a spanning subgraph of Gp. The the-
orem is a consequence of (102), (107), and (13).

(110) Let us consider a subgraph H of G with loops removed.

Then G.allSpanningForests() = H.allSpanningForests(). The theorem is
a consequence of (108) and (102).

(111) Let us consider loopless graphs Gp, G3. Then G7 =~ G2 if and only if
G1.allSpanningForests() = G.allSpanningForests(). The theorem is a con-
sequence of (110) and (109).

(112) Let us consider a subgraph G's of G1 with loops removed, and a subgraph
G4 of G9 with loops removed. Then G3 =~ G4 if and only if
G .allSpanningForests() = Ga.allSpanningForests(). The theorem is a con-
sequence of (110) and (111).

Let us consider a partial graph mapping F' from G1 to Go. Now we state the
propositions:

(113) Suppose F' is weak subgraph embedding and rng Fyy = the vertices of Gs.
Then rng(SG2SGFunc(F')[G;.allSpanningForests()) C Ga.allSpanning
Forests(). The theorem is a consequence of (67), (90), and (103).

(114) Suppose F' is weak subgraph embedding and onto.

Then Gs.allSpanningForests() = rng(SG2SGFunc(F')[G;.allSpanning
Forests()). The theorem is a consequence of (113), (68), (91), (103), and
(31).

Let us consider graphs G1, G2. Now we state the propositions:

(115) If Go is Gi-directed-isomorphic, then G;.allSpanningForests() and
G9.allSpanningForests() are directed-isomorphic. The theorem is a conse-
quence of (114), (31), and (102).

(116) If G2 is Gi-isomorphic, then Gj.allSpanningForests() and
G9.allSpanningForests() are isomorphic. The theorem is a consequence of
(114), (31), and (102).

Let us consider a subgraph G3 of GG; with loops removed and a subgraph G4
of G5 with loops removed. Now we state the propositions:

(117) If G4 is Gs-directed-isomorphic, then G;.allSpanningForests() and
G9.allSpanningForests() are directed-isomorphic. The theorem is a conse-
quence of (110) and (115).
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(118) If G4 is Gs-isomorphic, then G7.allSpanningForests() and
Go.allSpanningForests() are isomorphic. The theorem is a consequence of
(110) and (116).

(119) Every subgraph of G with loops removed is a graph union
of G.allSpanningForests(). The theorem is a consequence of (35), (106),
(107), (13), (110), and (102).

(120) G is loopless if and only if G is a graph union of G.allSpanningForests|().
The theorem is a consequence of (119).

(121) The edges of G = G.loops() if and only if G.allSpanningForests() is edge-
less. The theorem is a consequence of (99), (103), and (107).

(122) The edges of G = G.loops() if and only if for every subgraph H of G
with loops removed, G.allSpanningForests() = { H [ (the graph selectors)}.
The theorem is a consequence of (102) and (104).

(123) The vertices of G.allSpanningForests() = {the vertices of G}. The the-
orem is a consequence of (103) and (75).

6. CONNECTED SUBGRAPH SET

Let us consider G. The functor G.allConnectedSG() yielding a subset of
G.allSG() is defined by the term
(Def. 11) {H, where H is an element of Q¢ ansq() : H is connected}.
Now we state the propositions:
(124) G2 € G;.allConnectedSG() if and only if G2 is a plain, connected sub-
graph of G1. The theorem is a consequence of (1).
(125) Let us consider a connected subgraph H of G. Then H|[(the graph
selectors) € G.allConnectedSG(). The theorem is a consequence of (124).
(126) G is connected if and only if G[(the graph selectors) €
G.allConnectedSG(). The theorem is a consequence of (125) and (124).
(127) Let us consider a vertex v of G.
Then createGraph(v) € G.allConnectedSG().
(128) Let us consider a non edgeless graph G, and an edge e of G. Then
createGraph(e) € G.allConnectedSG().

Let us consider G. One can check that G.allConnectedSG() is non empty,
U-tolerating, plain, and connected. Now we state the propositions:

(129) H.allConnectedSG() C G.allConnectedSG(). The theorem is a consequ-
ence of (124).
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(130) If G.allConnectedSG() C Gy.allConnectedSG(), then Gy is a subgraph
of Gl.
PRrROOF: The edges of G2 C the edges of G;1. U
(131) Gi1 =~ G2 if and only if G;.allConnectedSG() = Gs.allConnectedSG().
The theorem is a consequence of (129) and (130).
Let us consider a partial graph mapping F' from G to G2. Now we state the
propositions:
(132) If F is total, then rmg(SG2SGFunc(F')[G1.allConnectedSG()) C
G2.allConnectedSG(). The theorem is a consequence of (124) and (1).

(133) If F' is one-to-one and onto, then Ga.allConnectedSG() C
rng(SG2SGFunc(F')[G;.allConnectedSG()). The theorem is a consequence
of (124).

(134) If F is isomorphism, then G.allConnectedSG() = rng(SG2SGFunc(F)
[G1.allConnectedSG()). The theorem is a consequence of (132) and (133).

(135) If Go is Gi-directed-isomorphic, then G;.allConnectedSG() and
G2.allConnectedSG() are directed-isomorphic. The theorem is a consequ-
ence of (134), (31), and (124).

(136) If G is Gy-isomorphic, then Gj.allConnectedSG() and
G.allConnectedSG() are isomorphic. The theorem is a consequence of
(134), (31), and (124).

(137) G is a graph union of G.allConnectedSG(). The theorem is a consequence
of (35), (127), (24), (128), and (25).

7. TREE SUBGRAPH SET AND SUBTREE RELATION

Let us consider G. The functor G.allTrees() yielding a subset of G.allSG()
is defined by the term

(Def. 12) {H, where H is an element of Q¢ isq() @ H is tree-like}.
Now we state the propositions:
(138) G2 € Gy.allTrees() if and only if Go is a plain, tree-like subgraph of G.
The theorem is a consequence of (1).

(139) G.allTrees() = G.allForests() NG.allConnectedSG(). The theorem is a con-
sequence of (138), (78), and (124).

(140) Let us consider a tree-like subgraph H of G. Then H [(the graph selectors)
€ G.allTrees(). The theorem is a consequence of (138).

(141) G is tree-like if and only if G[(the graph selectors) € G.allTrees(). The
theorem is a consequence of (140) and (138).
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(142) Let us consider a vertex v of G. Then createGraph(v) € G.allTrees().

(143) Let us consider a non edgeless graph G, and an edge e of G. Suppo-
se e ¢ G.loops(). Then createGraph(e) € G.allTrees(). The theorem is
a consequence of (18) and (138).

Let us consider G. Observe that G.allTrees() is non empty, U-tolerating,
plain, tree-like, and simple. Now we state the propositions:

(144) H.allTrees() C G.allTrees(). The theorem is a consequence of (138).

(145) Let us consider a loopless graph Go.
Suppose Ga.allTrees() C G.allTrees(). Then Gs is a subgraph of Gp. The
theorem is a consequence of (142), (138), (143), and (13).

(146) Let us consider a subgraph H of G with loops removed. Then G.allTrees()
= H.allTrees(). The theorem is a consequence of (144) and (138).

(147) Let us consider loopless graphs G1, G3. Then G7 =~ G2 if and only if
G1.allTrees() = Go.allTrees(). The theorem is a consequence of (146) and
(145).

(148) Let us consider a subgraph G'3 of G7 with loops removed, and a subgraph
G4 of G with loops removed. Then G3 ~ G4 if and only if G.allTrees() =
G.allTrees(). The theorem is a consequence of (146) and (147).

Let us consider a partial graph mapping F' from G to G2. Now we state the
propositions:

(149) If F' is weak subgraph embedding,
then rng(SG2SGFunc(F')[G.allTrees()) C Ga.allTrees(). The theorem is
a consequence of (139), (90), and (132).

(150) If F' is weak subgraph embedding and onto, then Ga.allTrees() =
rng(SG2SGFunc(F')[Gy.allTrees()). The theorem is a consequence of (91),
(133), (139), (149), and (31).

Let us consider graphs G1, G3. Now we state the propositions:

(151) If Go is G-directed-isomorphic, then Gj.allTrees() and Ga.allTrees()
are directed-isomorphic. The theorem is a consequence of (150), (31), and
(138).

(152) If G is Gi-isomorphic, then Gj.allTrees() and Ga.allTrees() are isomor-
phic. The theorem is a consequence of (150), (31), and (138).

Let us consider a subgraph G3 of G; with loops removed and a subgraph G4
of G2 with loops removed. Now we state the propositions:

(153) If G4 is Gs-directed-isomorphic, then G7.allTrees() and Gs.allTrees() are
directed-isomorphic. The theorem is a consequence of (146) and (151).

(154) If G4 is G-isomorphic, then G;.allTrees() and Gs.allTrees() are isomor-
phic. The theorem is a consequence of (146) and (152).
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(155) Every subgraph of G with loops removed is a graph union of G.allTrees().
The theorem is a consequence of (35), (142), (143), (13), (146), and (138).

(156) G is loopless if and only if G is a graph union of G.allTrees(). The
theorem is a consequence of (155).

(157) The edges of G = G.loops() if and only if G.allTrees() is edgeless. The
theorem is a consequence of (138) and (143).

(158) The edges of G = G.loops() if and only if G.allTrees() = the set of all
createGraph(v) where v is a vertex of G. The theorem is a consequence of
(157), (138), and (142).

Let us consider G. The functor SubtreeRel(G) yielding a binary relation on

G.allTrees() is defined by the term

(Def. 13) SubgraphRel(G) |? G.allTrees().
Now we state the propositions:

(159) Let us consider plain, tree-like subgraphs Hi, Hy of G. Then (Hy, Hs) €
SubtreeRel(G) if and only if H; is a subgraph of Hs. The theorem is
a consequence of (1) and (138).

(160) field SubtreeRel(G) = G.allTrees(). The theorem is a consequence of
(40).

(161) SubtreeRel(G) partially orders G.allTrees(). The theorem is a consequ-
ence of (41) and (160).

Let us consider G. Let us observe that SubtreeRel(G) is reflexive, antisym-
metric, transitive, and partial-order. Now we state the propositions:

(162) SubtreeRel(H) = SubtreeRel(G) |? H.allTrees(). The theorem is a con-
sequence of (43) and (144).

(163) Let us consider a loopless graph G. Then G is edgeless if and only if
SubtreeRel(G) = idg.aiTrees()- The theorem is a consequence of (160),
(138), (159), (143), and (13).

(164) Let us consider a subgraph H of G with loops removed.

Then SubtreeRel(G) = SubtreeRel(H). The theorem is a consequence of
(146) and (162).

(165) The edges of G = G'loops() if and only if SubtreeRel(G) = idg alTrees()-
The theorem is a consequence of (164), (163), and (146).

(166) G.allTrees() has the upper Zorn property w.r.t. SubtreeRel(G). The the-
orem is a consequence of (160), (159), (44), (35), and (138).

Let G be a connected graph.

EVERY CONNECTED GRAPH HAS A SPANNING TREE: there exists a subgraph
of G which is plain, spanning, and tree-like.

Now we state the proposition:
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(167) Let us consider a connected graph G, and an object e. Suppose e €
(the edges of G) \ (G.loops()). Then there exists a plain, spanning, tree-
like subgraph T' of G such that e € the edges of T'.

8. SPANNING TREE SUBGRAPH SET

Let us consider G. The functor G.allSpanningTrees() yielding a subset of
G.allSG() is defined by the term

(Def. 14) {H, where H is an element of Q¢ ansq() : H is spanning and tree-like}.
Now we state the propositions:
(168) G9 € G.allSpanningTrees() if and only if Gy is plain, spanning, acyclic
subgraph of G and connected. The theorem is a consequence of (1).
(169) G.allSpanningTrees() = G.allSpanningSG() NG.allTrees(). The theorem
is a consequence of (168), (60), and (138).

(170) G.allSpanningTrees() = G.allConnectedSG() NG.allSpanningForests().
The theorem is a consequence of (168), (102), and (124).

(171) Let us consider a spanning, acyclic subgraph H of G. Suppose H is con-
nected. Then H[(the graph selectors) € G.allSpanningTrees(). The the-
orem is a consequence of (168).

(172) G is tree-like if and only if G[(the graph selectors) € G.allSpanningTrees().
The theorem is a consequence of (169), (141), and (62).

(173) G is connected if and only if G.allSpanningTrees() # (). The theorem is
a consequence of (168).

Let G be a non connected graph. Let us note that G.allSpanningTrees() is
empty. Let G be a connected graph. Observe that G.allSpanningTrees() is non
empty, tree-like, and simple. Now we state the propositions:

(174) Let us consider a connected graph G, and a connected, spanning sub-
graph H of G. Then H.allSpanningTrees() C G.allSpanningTrees(). The
theorem is a consequence of (168).

(175) Let us consider a loopless, connected graph Gg. Suppose G.allSpanning
Trees() C G.allSpanningTrees(). Then Gg is a spanning subgraph of Gj.
The theorem is a consequence of (168) and (167).

(176) Let us consider a subgraph H of G with loops removed.
Then G.allSpanningTrees() = H.allSpanningTrees(). The theorem is a con-
sequence of (174) and (168).

(177) Let us consider loopless, connected graphs Gp, Ga. Then G; ~ Gy if
and only if G;.allSpanningTrees() = G2.allSpanningTrees(). The theorem
is a consequence of (176) and (175).
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(178) Let us consider connected graphs G1, Go, a subgraph G3 of G with loops
removed, and a subgraph G4 of Gy with loops removed. Then G3 =~ G4 if
and only if G;.allSpanningTrees() = G.allSpanningTrees(). The theorem
is a consequence of (176) and (177).

Let us consider a partial graph mapping F' from G to G2. Now we state the
propositions:

(179) Suppose F is weak subgraph embedding and rng Fyy = the vertices of
G2. Then rng(SG2SGFunc(F')[G;.allSpanningTrees()) C G.allSpanning
Trees(). The theorem is a consequence of (132), (113), and (170).

(180) Suppose F' is weak subgraph embedding and onto. Then G5.allSpanning
Trees() = rng(SG2SGFunc(F')|G;.allSpanningTrees()). The theorem is
a consequence of (179), (133), (114), (170), and (31).

(181) If Go is Gi-directed-isomorphic, then Gj.allSpanningTrees() and
Go.allSpanningTrees() are directed-isomorphic. The theorem is a consequ-
ence of (180), (31), and (168).

(182) If Go is Gi-isomorphic, then Gj.allSpanningTrees() and
Go.allSpanningTrees() are isomorphic. The theorem is a consequence of
(180), (31), and (168).

Let us consider a subgraph G3 of G7 with loops removed and a subgraph G4
of G5 with loops removed. Now we state the propositions:

(183) If G4 is Gs-directed-isomorphic, then Gj.allSpanningTrees() and
Go.allSpanningTrees() are directed-isomorphic. The theorem is a consequ-
ence of (176) and (181).

(184) If G4 is Gs-isomorphic, then G;.allSpanningTrees() and Gs.allSpanning
Trees() are isomorphic. The theorem is a consequence of (176) and (182).

(185) Let us consider a connected graph G. Then every subgraph of G with
loops removed is a graph union of G.allSpanningTrees(). The theorem is
a consequence of (35), (168), (167), and (176).

(186) Every loopless, connected graph is a graph union of G.allSpanningTrees().
The theorem is a consequence of (185).

(187) G is tree-like if and only if G.allSpanningTrees() = {G/(the graph
selectors)}. The theorem is a consequence of (168) and (172).

(188) G is connected if and only if the vertices of G.allSpanningTrees() =
{the vertices of G}. The theorem is a consequence of (123) and (170).
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9. COMPONENT SUBGRAPH SET

Let us consider G. The functor G.allComponents() yielding a subset of
G.allSG() is defined by the term
(Def. 15) {H, where H is an element of Q¢ .isq() : H is component-like}.
Now we state the propositions:
(189) G2 € Gi.allComponents() if and only if G is a plain component of G.
The theorem is a consequence of (1).
(190) G.allComponents() C G.alllnducedSG() NG.allConnectedSG(). The the-
orem is a consequence of (189) and (124).
(191) Let us consider a component H of G. Then H [(the graph selectors) €
G.allComponents(). The theorem is a consequence of (189).
(192) G'is connected if and only if G[(the graph selectors) € G.allComponents().
The theorem is a consequence of (191) and (189).

Let us consider G. Let us observe that G.allComponents() is non empty,
vertex-disjoint, edge-disjoint, U-tolerating, plain, and connected. Now we state
the propositions:

(193) If Go.allComponents() C G;.allComponents(), then G is a subgraph of
G1. The theorem is a consequence of (189).

(194) G1 = Gs if and only if G.allComponents() = Ga.allComponents(). The
theorem is a consequence of (189) and (193).

(195) Let us consider a non empty, one-to-one partial graph mapping F' from
G1 to Ga. Suppose F' is isomorphism. Then G.allComponents() =
rng(SG2SGFunc(F') |Gy .allComponents()). The theorem is a consequence
of (189).

(196) If Go is Gi-directed-isomorphic, then Gj.allComponents() and
Go.allComponents() are directed-isomorphic. The theorem is a consequ-
ence of (195), (31), and (189).

(197) 1If Go is Gi-isomorphic, then G;.allComponents() and Gs.allComponents|()
are isomorphic. The theorem is a consequence of (195), (31), and (189).

(198) G is a graph union of G.allComponents(). The theorem is a consequence
of (35), (189), (22), (14), (13), and (23).

(199) (i) G is loopless iff G.allComponents() is loopless, and
(ii) G is non-multi iff G.allComponents() is non-multi, and

(iii) G is non-directed-multi iff G.allComponents() is non-directed-multi,
and

(iv) G is simple iff G.allComponents() is simple, and
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(v) G is directed-simple iff G.allComponents() is directed-simple, and

(vii

)

(vi) G is acyclic iff G.allComponents() is acyclic, and
) G is edgeless iff G.allComponents() is edgeless, and
i)

(viii) G is chordal iff G.allComponents() is chordal, and

(ix) G is loopfull iff G.allComponents() is loopfull.
The theorem is a consequence of (198).

Let G be a loopless graph. Observe that G.allComponents() is loopless. Let G
be a non-multi graph. One can verify that G.allComponents() is non-multi. Let
G be a non-directed-multi graph. Note that G.allComponents() is non-directed-
multi. Let G be a simple graph. Observe that G.allComponents() is simple.
Let G be a directed-simple graph. One can verify that G.allComponents() is
directed-simple.

Let G be an acyclic graph. Note that G.allComponents() is acyclic. Let G
be an edgeless graph. Observe that G.allComponents() is edgeless. Let G be
a chordal graph. One can verify that G.allComponents() is chordal. Let G be
a loopfull graph. One can check that G.allComponents() is loopfull. Now we
state the propositions:

(200) G is connected if and only if G.allComponents() = {G|[(the graph
selectors) }. The theorem is a consequence of (192) and (189).
(201) The vertices of G.allComponents() = G.componentSet().

(202) G.numComponents() = G.allComponents().
PROOF: Define Plobject, object] = there exists a plain component H of
G such that $; = H and $2 = the vertices of H. For every object x such
that € G.allComponents() there exists an object y such that Pz, y].
Consider f being a function such that dom f = G.allComponents() and
for every object z such that z € G.allComponents() holds Pz, f(z)]. O
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Summary. In this article, we formalize the Gram-Schmidt process in the
Mizar system [2], [3] (compare another formalization using Isabelle/HOL proof
assistant [I]). This process is one of the most famous methods for orthonorma-
lizing a set of vectors. The method is named after Jgrgen Pedersen Gram and
Erhard Schmidt [4]. There are many applications of the Gram-Schmidt process in
the field of computer science, e.g., error correcting codes or cryptology [8]. First,
we prove some preliminary theorems about real unitary space. Next, we formali-
ze the definition of the Gram-Schmidt process that finds orthonormal basis. We
followed [5] in the formalization, continuing work developed in [7], [6].
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1. PRELIMINARIES

Let V' be a non empty RLS structure, r be a finite sequence of elements of
R, and « be a finite sequence of elements of V. The functor r oz yielding a finite
sequence of elements of V' is defined by

(Def. 1) lenit = lenx and for every natural number ¢ such that 1 < ¢ < lenz
holds it(i) = r/; - (x);).

Now we state the proposition:
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(1) Let us consider a real linear space V', a subset A of V, a finite sequence
x of elements of V, and a finite sequence r of elements of R. Suppose
rmgx C A and lenz = lenr. Then > (r o z) € Lin(A).
PROOF: Define P[natural number] = for every finite sequence x of elements
of V for every finite sequence r of elements of R such that $; = lenz and
rmgr C A and lenxz = lenr holds Y (r o z) € Lin(A). P[0]. For every
natural number k such that P[k] holds P[k +1]. For every natural number
k, Plk]. O
Let us consider a real linear space V and subsets A, B of V. Now we state
the propositions:

(2) If A C the carrier of Lin(B), then Lin(A) is a subspace of Lin(B).

(3) Suppose A C the carrier of Lin(B) and B C the carrier of Lin(A). Then
Lin(A) = Lin(B). The theorem is a consequence of (2).

Let V' be a non empty unitary space structure, u be a point of V', and x be
a finite sequence of elements of V. The functor (u|x) yielding a finite sequence
of elements of R is defined by

(Def. 2) lenit = lenz and for every natural number ¢ such that 1 < i < lenx
holds it(i) = (ulz ;).
Now we state the propositions:

(4) Let us consider a non empty unitary space structure V', a point u of V,
a finite sequence = of elements of V', and a natural number 7. Suppose
1 <i<lenz. Then ((ulz)ox)(i) = (ulx;) - (/).

(5) Let us consider a real unitary space V, a point u of V, and a finite
sequence z of elements of V. Then (u| > z) = Y (ulx).
PROOF: Define P[natural number] = for every finite sequence x of elements
of V such that $; = lenz holds (u|Y" x) = > (u|z). P[0]. For every natural
number k such that P[k] holds P[k+ 1]. For every natural number k, P[k].
O

(6) Let us consider a real unitary space V', a point u of V', a natural number

n, and a finite sequence x of elements of V. Suppose 1 < n < lenz and for
every natural number 7 such that 1 < < lenz and n # i holds (ulz ;) = 0.
Then (u| }-z) = (ulz ).
PROOF: Define P[natural number| = for every finite sequence x of elements
of V such that $; = lenx and 1 < n < lenz and for every natural number
i such that 1 < i < lenx and n # 7 holds (u|z/;) = 0 holds (u|} x) =
(u|z ). For every natural number k such that P[k] holds P[k + 1]. For
every natural number k, Plk]. O

Let us consider a real unitary space H. Now we state the propositions:
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(7) There exists a function F' from (the carrier of H) x (the carrier of H)*

into (the carrier of H)* such that for every point x of H for every finite
sequence e of elements of H, there exists a finite sequence Fy of elements
of H such that Fy = F(z,e) and Fy = (x]e) oe.
PROOF: Set C' = the carrier of H. Define R[object, object, object] = there
exists a point x of H and there exists a finite sequence e of elements of
C such that $; = z and $5 = e and there exists a finite sequence Fy of
elements of C' such that Fy, = $3 and F, = (z|e) o e. For every objects z, y
such that z € C and y € C* there exists an object z such that z € C* and
Rlz,y, z]. Consider F being a function from C x C* into C* such that for
every objects z, y such that z € C' and y € C* holds R|[z,y, F(z,y)]. O

(8) Every orthonormal family of H is linearly independent.

PROOF: For every linear combination [ of G such that > 1 = 0y holds
the support of [ = (). O

2. GRAM-SCHMIDT PROCESS

Let H be a real unitary space. The functor Seqp,.;(H) yielding a function
from (the carrier of H) x (the carrier of H)* into (the carrier of H)* is defined
by

(Def. 3) for every point x of H and for every finite sequence e of elements of H,
there exists a finite sequence F of elements of H such that Fy = it(z,e)
and Fy = (z]e) oe.

Now we state the proposition:

(9) Let us consider a real unitary space H, and a finite sequence x of elements
of H. Suppose x is one-to-one and rng z is linearly independent and 1 <
len z. Then there exists a finite sequence e of elements of H such that

(i) lenz =lene, and
(ii) rnge is an orthonormal family of H, and

e is one-to-one, and

)
)
(iv) Lin(rngz) = Lin(rnge), and
) en = m (1), and

) for every natural number k such that 1 < k < lenx there exists a fi-
nite sequence g of elements of H such that g = (Seqp,.;(H))({Z 14k,

— 1 . —

efk)) and €/k+1 = 215k 9l (x/1+k Zg)v and
(vii) for every natural number k such that & < len x holds rng(e[k) is an or-
thonormal family of H and e[k is one-to-one and Lin(rng(z[k)) =
Lin(rng(elk)).
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PROOF: Set C' = the carrier of H. Reconsider Fy; = |J{C?, where i is
a natural number : i < lenx} as a non empty set. Set F' = Seqp,,;(H).
Define R[object, object, object] = there exists a C-valued finite sequence
e and there exists a natural number n such that e = $5 and n = $; and
if lene < lenz, then there exists a C-valued finite sequence g such that
9= F(<x/1+lenea 6)) and §3 = e <m ’ (x/1+lcne - Zg» For
every natural number n such that 1 < n < len z for every element e of I,
there exists an element f of F} such that R[n, e, f]. Set Ey = (ﬁ(x/lh

Consider E being a finite sequence of elements of F} such that len ' =
lenz and E(1) = Ep or lenz = 0 and for every natural number n such
that 1 < n < lenz holds R[n, E(n), E(n + 1)]. For every natural number
k such that k < lenx there exists a finite sequence e of elements of C
such that lene = k+ 1 and E(k + 1) = e. For every natural number k
such that 1 < k < lenz there exist finite sequences f, g of elements of C
such that F(k) = f and len f = k and g = F'((x/144, [)) and E(k + 1) =
f’“<m-(x/1+k—z 9)). Define Q[natural number, object, object] =
there exist finite sequences f, g of elements of C' and there exists a point e;
of H such that E($1) = f and len f = $; and e; = 33 and g = F({z/14s,,
f)) and E($1+1) = f " (e1) and e; = ﬁ_z“ “(z /148, — > g)- For

/148 g
every natural number k£ such that 1 < k < lenx for every element e of H,
there exists an element h of H such that Q[k, e, h]. Set eg = W (1)

Consider e being a finite sequence of elements of H such that lene =
lenz and e(l) = eg or lenz = 0 and for every natural number n such
that 1 < n < lenz holds Q[n,e(n),e(n + 1)]. For every natural number
n such that 1 < n < lenz there exist finite sequences f, g of elements
of C' such that E(n) = f and lenf = n and g = F((214n, f)) and
En+1) = f" <€/n+1> and e/, = m ) (5’3/1+n — > g). For
every natural number n such that 1 < n < lenz holds E(n) = e[n. For
every natural number k£ such that 1 < k < lenzx there exists a finite
sequence g of elements of C' such that g = F({x144, e[k)) and e/, =
m (/14 — 2 9). Define S[natural number] = if $; < lenw,

then rng(e[$;) is an orthonormal family of H and e[$; is one-to-one and
Lin(rng(x[$1)) = Lin(rng(e[$1)). S[0]. For every natural number k such
that S[k] holds S|k + 1]. For every natural number k, S[k]. O

Let H be a real unitary space and = be a finite sequence of elements of H.

Assume z is one-to-one and rng x is linearly independent and 1 < lenz. The

functor PROCESSGramSchmidt (z) yielding a finite sequence of elements of H is
defined by
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(Def. 4) lenxz = lenit and rngit is an orthonormal family of H and it is one-
to-one and Lin(rngz) = Lin(rngit) and it;; = m “(z/1) and for every
natural number k such that 1 < k < lenz there exists a finite sequence g
of elements of H such that g = (Seqp,,;(H))({7 /14, it[k)) and it /1 =

1
||95/1+k*29||
k < lenz holds rng(it[k) is an orthonormal family of H and it[k is one-

to-one and Lin(rng(z[k)) = Lin(rng(it[k)).

Now we state the proposition:

(z/14% — >_g) and for every natural number k such that

(10) Let us consider a real unitary space H, and a finite sequence x of ele-
ments of H. Suppose z is one-to-one and rng z is linearly independent and
1 < lenz. Then rng PROCESSGramSchmidt (%) is linearly independent. The
theorem is a consequence of (8).
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Summary. Since isosceles triangular and trapezoidal membership func-
tions [4] are easy to manage, they were applied to various fuzzy approximate
reasoning [10], [I3], [I4]. The centroids of isosceles triangular and trapezoidal
membership functions are mentioned in this article [16], [9] and formalized in
[I1] and [I2]. Some propositions of the composition mapping (f +- g, or £ +* g
using Mizar formalism, where f, g are affine mappings), are proved following [3],
[15]. Then different notations for the same isosceles triangular and trapezoidal
membership function are formalized.

We proved the agreement of the same function expressed with different pa-
rameters and formalized those centroids with parameters. In addition, various
properties of membership functions on intervals where the endpoints of the do-
main are fixed and on general intervals are formalized in Mizar [I], [2]. Our formal
development contains also some numerical results which can be potentially useful
to encode either fuzzy numbers [7], or even fuzzy implications [5], [6] and extends
the possibility of building hybrid rough-fuzzy approach in the future [g].
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1. PRELIMINARIES

Let us consider real numbers a, b, ¢, d. Now we state the propositions:
(1) la,d]\ [b,¢] € [a,b[U]c,d].
(2) Ifa<b<c<d,then [a,d]\ [bc] Cla,b]U]lc,d].
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(3) Let us consider real numbers p, g, r, s. If p < r < s < g, then [r,s] C
[P, q]-

2. CoNTINUOUS FUNCTIONS

Let us consider functions f, g from R into R. Now we state the propositions:
(4) If f is continuous and g is continuous, then max(f, g) is continuous.
(5) If f is continuous and g is continuous, then min(f, g) is continuous.
Let us consider non empty, closed interval subsets A, B of R. Now we state
the propositions:
(6) If B C A, then inf A < inf B or sup B < sup A.
(7) If BC A, then inf A < inf B and sup B < sup A.
(8) Let us consider a real number 7, and functions f, g from R into R. Then
r-(f+g)=r-f+r-g
PROOF: Set Fy =71 - (f+-g). Set Fy =r- f+-r-g. For every object = such
that @ € dom F; holds Fy(z) = Fy(z). O
From now on A denotes a non empty subset of R. Now we state the propo-
sitions:
(9) Let us consider a real number r, and a function f from R into R. Then
(r- )IA=r-(fTA).
PROOF: Set F' = (r- f)[A. Set g =1 (fA). For every object x such that
x € dom F' holds F(z) = g(z). O

(10) Let us consider a real number r, and a partial function f from R to R.
Suppose A C dom f. Then (r- f)[A=1r-(f[A).

PROOF: Set F' = (r- f)[A. Set g =r- (f[A). For every object x such that
x € dom F holds F(z) = g(z). O

(11) Let us consider a real number s, and functions f, g from R into R. Then
f1]—o00, s]+-g![s, +o0] is a function from R into R.

(12) Let us consider real numbers a, b, r.

Then 7 - (AffineMap(a, b)) = AffineMap(r - a,r - b).
(13) Let us consider a real number s, and functions f, g from R into R. Then
() dom(f1] o0, 5+-g1ls, +oo]) = R, and
(ii) dom(f[]—o0, s[+-g[[s, +oo[) = R.

(14) Let us consider real numbers a, b, ¢. Suppose b > 0 and ¢ > 0. Let us con-
sider a real number z. Then ((AfﬁneMap(%, b— %b)) []—00, a]+-(AffineMap
(=20 + ), +ool)(x) = b — |52,

PROOF: For every real number x, ((AfﬁneMap(g, b—%b)) []—00, a]+-(Affine
Map(—2, b+ 22)) [[a, +oc[)(w) = b — |[“E-2]. O
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Let us consider real numbers a, b, ¢, and a function f from R into R.

(15)
Suppose b > 0 and ¢ > 0 and for every real number z, f(z) = b —
|2E=9) | Then f = (AffineMap(2,b — %2))]—o0, a]+-(AffineMap(—2, b +

“Tb)) [[a, +oo[. The theorem is a consequence of (14).
Let us consider real numbers a, b. Now we state the propositions:

(16) Suppose a > 0. Then | AffineMap(a, b)| = —(AffineMap(a, b)) []—oo, =2[+
-(AfineMap(a, b)) [[Z2, +ool.
PRrROOF: For every object = such that = € dom | AffineMap(a,b)| holds
| AffineMap(a, b)|(z) = (—(AffineMap(a, b)) []—oco, =2[+-(AffineMap(a, b))

[52, 4o00[)(z). O
Suppose a < 0. Then | AffineMap(a, b)| = (AffineMap(a, b)) []—o0 _—b[—|—-

—(AffineMap(a, b)) [[=2, +o0].
PRrROOF: Set f = (AffineMap(a, b)) []—oo, %b[—l—-—(AfﬁneMap(a, b))
+oo[. For every object x such that z € dom((—(AffineMap(a,b)))
+0o0[) holds (—(AffineMap(a, b)) [[Z2, +oo[)(z) = ((—(AffineMap(a, b)))
[[=2, 400[)(2). For every element z of R, f(z) = | AffineMap(a, b)|(z). O
(18) Let us consider real numbers a, b, ¢, and a function f from R into R.
Suppose b > 0 and ¢ > 0 and for every real number z, f(z) = max(0,b —
|). Let us consider a real number z. If x ¢ [a — ¢,a + ¢], then

am
5,

| b-(x—a)

C

f(z)=0.

(19) Let us consider real numbers a, b, ¢, and functions f, g from R into R.
Suppose a < b < ¢. Then (f[]—o0,b]+-g[[b, +00[)[]a, c] = fl[a, b]+-g[[b, ].
PRrROOF: For every object x such that x € dom((f[]—o0, b]+-¢[[b, +o0])[[a,
c]) holds ((f[]—00,b]+-gl[b, +-00[)[[a, c])(x) = (fI[a, b]+-g![b, c])(x). O

Let us consider real numbers a, b, ¢ and a function f from R into R. Now

we state the propositions:
(20) Suppose b > 0 and ¢ > 0. Then ((AffineMap(2, b—%2))[]—o0, a]+-(Affine
Map(_g7 b + a?b)) Haa +OOD HCL —Ga + C] = (AﬂineMap<ga - aTb)) f[a -
¢, al+-(AfineMap(—2,b+ %b))[[a,a+ c]. The theorem is a consequence of

19).
(21) ( Sl)lppose a < b < cand f is integrable on [a,c] and f[[a,c| is bounded.
Then
(i) f is integrable on [a,b], and
(ii) f is integrable on [b, ], and
(iii) flla,b] is bounded, and
)

(iv) [a,b] € dom f, and
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(v) /Cf(x)da::/bf(:c)dx—i—/cf(a:)da:.
a a b

(22) Let us consider real numbers a, b, ¢, d, and a function f from R into R.
Suppose a < b < ¢ < d and f is integrable on [a, d] and f[[a, d] is bounded
and for every real number x such that = € [a,b] U [¢,d] holds f(z) = 0.
Then centroid(f, [a,d]) = centroid(f, [b, ¢]).

(23) Let us consider non empty, closed interval subsets A, B of R, and a func-
tion f from R into R. Suppose inf B # sup B and B C A and f is inte-
grable on A and f[A is bounded and for every real number x such that
x € A\ B holds f(z) = 0 and f(inf B) = 0 and f(supB) = 0. Then
centroid(f, A) = centroid(f, B).

PROOF: inf A < inf B and sup B < sup A. For every real number x such
that z € [inf A, inf B] U [sup B, sup A] holds f(z) = 0. O

3. TRIANGULAR AND TRAPEZOIDAL MEMBERSHIP FUNCTIONS

Now we state the proposition:

(24) Let us consider real numbers a, ¢, and a function f from R into R.
Suppose ¢ > 0 and for every real number z, f(x) = max(0,1 — |=%]).
Then f is a triangular fuzzy set of R.

PRrROOF: Define H(element of R) = (1 — \$1—0_“\)(€ R). Consider h being
a function from R into R such that for every element = of R, h(x) = H(x).
For every real number z, f(x) = max(0, min(1, h(z))). O

Let us consider real numbers a, b, ¢ and a function f from R into R. Now
we state the propositions:
(25) Suppose b > 1 and ¢ > 0 and for every real number z, f(x) =
min(1, max(0,b — \b(zic_a)\)) Then f is trapezoidal fuzzy set of R and
normalized fuzzy set of R.

(26) If b > 0 and ¢ > 0 and for every real number z, f(z) = max(0,b —
]M]), then f =b- TriangularFS((a — ¢), a, (a + ¢)).

C

PROOF: Set g = b - TriangularFS((a — ¢),a, (a + ¢)). For every object z
such that z € dom f holds f(z) = g(z). O

(27) If b > 0 and ¢ > 0 and for every real number x, f(zr) = max(0,b —
|b'(xic_a)|), then f is Lipschitzian.
PROOF: For every real number z, f(x) = max(0, min(b,b- (1 —|*2%]))). O

28) Suppose b > 0 and ¢ > 0 and flla — ¢,a + ¢] = (AffineMap(2,b —
(28) c

ab_(p_ab ab_(p_ab
ab)) finfla—c, a-c], e —og e |4 (AffineMap(—2, b4 %)) [ e =05

c c c c
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supla — ¢, a + ¢|]. Then centroid(f, [a — ¢,a + ¢]) = a.
(29) Suppose b > 0 and ¢ > 0 and for every real number z, f(x) = max(0,b—
|b.(xc—a) |) Then f”a —c,a+ c] = (AfﬁneMap(%, b— %b)) [[inf[a —c,a+

ab_(p_ab ab_(p ab
o], Pt (AffineMap(=2, b+ %)) [ =t supla—e, a+-]).
c c , b . c c b+Lb_(b_Lb)
PROOF: Set g = (AffineMap(Z,b — %2))[[inf[a — ¢, a + ¢], —F—F— |+

b abyy ot —(0—- %) ) :
(AffineMap(—¢,b + %2))[[—%——%<,sup[a — ¢, a + ¢]]. For every object
x such that = € dom(f[[a — c,ca +Cc]) holds (f[la —¢,a+ ¢])(x) = g(x). O

(30) If b > 0 and ¢ > 0 and for every real number z, f(z) = max(0,b —
b-(x—a)

|==—=|), then centroid(f, [a —c,a+c]) = a. The theorem is a consequence

of (29) and (28).

In the sequel A denotes a non empty, closed interval subset of R. Let us
consider real numbers a, b, ¢ and a function f from R into R. Now we state the
propositions:

(31) If b > 0 and ¢ > 0 and for every real number z, f(zr) = max(0,b —
IMD, then f is integrable on A and f[A is bounded. The theorem is

C
a consequence of (27).

(32) Suppose b > 0 and ¢ > 0 and for every real number z, f(x) = max(0,b—
2=y Then

(i) f(infla — ¢c,a+¢]) =0, and
(ii) f(a—c) =0, and
(iii) f(supla —¢,a+¢]) =0, and
(iv) fla+¢)=0.

(33) If b >0and ¢ > 0 and [a —c,a + ¢] € A and for every real number
z, f(z) = max(0,b — |l)(x7;a)|), then centroid(f, A) = a. The theorem is
a consequence of (18), (32), (31), (23), and (30).
Let us consider real numbers a, b, c. Now we state the propositions:
(34) Ifa < b < cand b—a = c—b, then centroid(TriangularFS(a, b, ¢), [a, c]) =
b.
PROOF: For every real number z, (TriangularFS(a, b, ¢))(x) = max(0,1 —
%]). centroid(TriangularFS(a, b,c),[b — (b —a),b+ (b —a)]) = b. O
(35) If a < b < c, then TriangularFS(a, b, ¢) is integrable on A and
TriangularFS(a, b, ¢)[ A is bounded.
Let us consider real numbers a, b, ¢, d. Now we state the propositions:
(36) Ifa <b< candb—a = c—bandd # 0, then centroid(d-TriangularFS(a, b,
¢),[a,c]) = b. The theorem is a consequence of (35) and (34).
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(37) If a < b < ¢ < d, then TrapezoidalFS(a,b, ¢, d) is integrable on A and
TrapezoidalFS(a, b, ¢,d)[ A is bounded.

(38) Let us consider real numbers a, b, ¢, d, r. If a < b < ¢ < d, then
r-TrapezoidalF'S(a, b, ¢, d) is integrable on A. The theorem is a consequence
of (37).

(39) Let us consider real numbers a1, ¢, ag, d, and a function f from R into
R. Suppose ¢ > 0 and d > 0 and a; < ag and f = (d- TrapezoidalF'S((a; —
¢),a1,az, (a2 +c)))lar — ¢,az2 + ¢]. Then f is integrable on [a; — ¢, a2 + ¢].
The theorem is a consequence of (38).

(40) Let us consider real numbers a, b, ¢, functions f, g from R into R, and
a partial function h from R to R. Suppose a < b < c and f is continuous
and ¢ is continuous and hl[a,c] = f[[a,b]+-g[[b,c] and f(b) = g(b) and
[a,c] € dom h. Then hlla, ] is continuous.

PROOF: For every real numbers xg, r such that =y € [a,c] and 0 < r there
exists a real number s such that 0 < s and for every real number x; such
that 21 € [a,c] and |z — zg| < s holds |h(z1) — h(zo)| <. O

(41) Let us consider real numbers a, b, p, ¢, and a function f from R into R.
Suppose a # p and f = (AffineMap(a,b))[]—o0, =2 Z] -(AffineMap(p, q))
= p,+oo[ Then f is Lipschitzian.

(42) Let us consider real numbers a, b, ¢, and functions f, g, h from R in-
to R. Suppose a < b < ¢ and f is continuous and ¢ is continuous and
hila,c] = flla,b]+-gl[b,c] and f(b) = g(b). Then / (idg - h)(x)dx =

[a,c]

[ s+ @+ [ (idz - g)(a)de.
[a,b] [b,q]
PROOF: Set G = (idr - f)[[a, b]+-(idr - 9)[[b, ¢]. [a, ] = RN]a, c|. For every
object x such that = € dom((idgr - h)[[a,c]) holds (idg - (h[[a,c]))(z) =
((idg - h)[a, c])(x). For every object x such that x € dom G holds G(x) =
(idg - (h[a,¢]))(z). Reconsider h; = h as a partial function from R to R.
hilla, c] is continuous. O

Let us consider real numbers a, b, ¢, d, . Now we state the propositions:

(43) Suppose a < b < ¢ < d. Then ((AfﬁneMap(b - —5=))[la, b]+-(Affine
Map(0, 1)) [[b, ¢])++(AfineMap(— 71, 74 C))[[c d] = TrapezoidalFS(a, b,
¢, d)|[a,d].

PROOF: For every object = such that € dom(TrapezoidalFS(a, b, ¢, d)[a,

d]) holds (((AfﬁneMap(b - —5==)) a, b]+-(AffineMap(0, 1)) [[b, c])+

(AffineMap(— -, 52 C))[[c d))(z) = (TrapezoidalFS(a, b, ¢,d)[[a,d])(x). O
(44) Suppose a < b < ¢ < d. Then TrapezoidalFS(a, b, ¢,d) = (AffineMap(0,
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0))IR \ ]a, d[+- TrapezoidalFS(a, b, ¢,d)[a, d]. The theorem is a consequ-
ence of (43).
(45) Suppose a < b < ¢ < d. Then ((r - (AfﬁneMap(b = —52))) a, ]+ (r -
(AffineMap(0, 1)))[[b, c])++(r - (AffineMap(— 52, 2))1e, d] =
(r - TrapezoidalFS(a, b, ¢, d))[[a, d].
PROOF: Set f; = (AffineMap(zL-, —+2))[[a,b]. Set fo = (AffineMap(0,
1))1[b, c]. Set f3 = (AfineMap(— -, 74))[[e, d]. Set Fy = AffineMap(;1-,
—3%). Set F, = AffineMap(0,1). Set F3 = AfﬁneMap(——C ﬂ) For
every object  such that z € dom(r-((fi+-f2)+-f3)) holds (((r-F1)[|a, b]+-
(r- F2) b, c])+(r - F3)l[c,d])(x) = (r - ((fr+-f2)+f3))(x). O

Let us consider real numbers a1, ¢, as, d. Now we state the propositions:

(46) Suppose ¢ > 0 and d > 0 and a1 < as.
Then ((AfﬁneMap(f —4. (a3 — ¢)))la1—c¢, a1]+-(AfineMap(0, d)) [[a1, as)])
+-(AffineMap(—4, ¢ . (ag + ¢)))l[az, a2 + ¢] = (d - TrapezoidalFS((a; —
¢),a1,az, (a2 + ¢)))l[ar — ¢,az + ¢|. The theorem is a consequence of (12)
and (45).

d

d
(47) Suppose ¢ > 0 and d > 0 and a; < ag. Then / (AffineMap(—, ——
¢ c

[a1—c,a1]

d d
(a1 — ¢)))(@)da+ / (AffineMap(0, d)) () da+ / (AffineMap(~*,
[a1,a2] [az,a2+C]
(ag +¢)))(x)dx =d - (ag — a1 + ¢).
(48) Let us consider real numbers aj, ¢, az, d, and a function f from R

into R. Suppose c > 0and d > 0 and a1 < ag and fl[a; — c,a2 + ¢| =
((AffineMap(2, —2 - (a1 — ¢))) a1 — ¢, a1]+-(AffineMap(0, d)) | [a1, az])+-

(AfﬁneMap(fE, ¢ - (a2 +¢)))Iaz, az + c|. Then / f(z)dx =
[a1—c,a2+c]
/ (AﬂineMap(g, —(EZ (a1 — ¢)))(z)dz+ / (AffineMap(0, d))(x)dz+

la1—c,a1] [a1,a2]

dd
(AfﬁneMap(—E, . (a2 4 ¢)))(z)dz. The theorem is a consequence

laz,a2+C]
of (46).

(49) Let us consider real numbers aj, ¢, ag, d. Suppose ¢ > 0 and d > 0 and
a1 < az. Then centroid(d - TrapezoidalF'S((a1 — ¢), a1, as, (a2 + ¢)), [a1 —
c,az + c]) = 4492 The theorem is a consequence of (46), (48), and (47).
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Summary. A classical algebraic geometry is study of zero points of system
of multivariate polynomials [3], [7] and those zero points would be corresponding
to points, lines, curves, surfaces in an affine space. In this article we give some
basic definition of the area of affine algebraic geometry such as algebraic set,
ideal of set of points, and those properties according to [4] in the Mizar system
51, 21

We treat an affine space as the n-fold Cartesian product k" as the same
manner appeared in [4]. Points in this space are identified as n-tuples of elements
from the set k. The formalization of points, which are n-tuples of numbers, is
described in terms of a mapping from n to k, where the domain n corresponds
to the set n = {0,1,...,n — 1}, and the target domain k is the same as the
scalar ring or field of polynomials. The same approach has been applied when
evaluating multivariate polynomials using n-tuples of numbers [10].

This formalization aims at providing basic notions of the field which enable to
formalize geometric objects such as algebraic curves which is used e.g. in coding
theory [II] as well as further formalization of the fields [8] in the Mizar system,
including the theory of polynomials [6].
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1. EVALUATION FUNCTIONS REVISITED

From now on A denotes a non degenerated commutative ring, R denotes
a non degenerated integral domain, n denotes a non empty ordinal number, o,
o1, o2 denote objects, X, Y denote subsets of (2r)", S, T denote subsets of
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Polynom-Ring(n, R), F, G denote finite sequences of elements of the carrier of
Polynom-Ring(n, R), and x denotes a function from n into R.

Let n be an ordinal number, L be a right zeroed, add-associative, right
complementable, well unital, distributive, non trivial double loop structu-
re, and p be a polynomial of n,L. Note that the functor {p} yields a subset
of Polynom-Ring(n, L). Let f be an element of Polynom-Ring(n, L) and z be
a function from n into L. The functor Eval(f,z) yielding an element of L is
defined by

(Def. 1) there exists a polynomial p of n,L such that p = f and it = eval(p, z).

Let F' be a finite sequence of elements of the carrier of Polynom-Ring(n, L).
The functor Eval(F, x) yielding a finite sequence of elements of the carrier of L
is defined by

(Def. 2) domit = dom F' and for every natural number ¢ such that i € dom F’
holds it (i) = Eval(F;, ).
Now we state the propositions:

(1) Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, and an or-
dinal number n. Then Support 0, L = (.

(2) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial do-
uble loop structure L, elements f, g of Polynom-Ring(n, L), and a function
x from n into L. Then Eval(f + g, z) = Eval(f, z) + Eval(g, ).

(3) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial,
commutative, associative, non empty double loop structure L, elements
f, g of Polynom-Ring(n, L), and a function z from 7 into L. Then Eval(f -
g,x) = (Eval(f,z)) - (Eval(g, )).

(4) Let us consider a natural number Ny, an ordinal number n, a right
zeroed, add-associative, right complementable, Abelian, well unital,
distributive, non trivial, commutative, associative, non empty do-
uble loop structure L, a finite sequence F' of elements of the carrier of
Polynom-Ring(n, L), and a function z from n into L. Suppose len F' =
No + 1. Then Eval(F,z) = Eval(F [Ny, z) ™ (Eval(Fen p, 7))

PROOF: For every natural number k such that 1 < k < lenEval(F, x)
holds (Eval(F, z))(k) = (Eval(F'[No,x) ~ (Eval(F)en ), 7)) (k). O

(5) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial,
commutative, associative, non empty double loop structure L, a finite
sequence F' of elements of the carrier of Polynom-Ring(n, L), and a func-
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tion x from n into L. Then Eval(}" F,z) = > Eval(F, z). The theorem is
a consequence of (2) and (4).

2. MoNIC MULTIVARIATE POLYNOMIALS WITH DEGREE 1

Let us consider n and R. Let a be a function from n into R and ¢ be an ele-
ment of n. The functor deglPoly(a,i) yielding a polynomial of n,R is defined
by the term

(Def. 3) 1.1(i, R) — (a(i)[(n, R)).
Let us consider an element a of R and an element i of n. Now we state the
propositions:

(6) (i) (1-1(¢, R))(UnitBagi) = 1g, and
(i) (al(n, R)
(iii) (1-1(¢, R))(EmptyBagn) = Og, and
(iv) (al(n, R))(UnitBagi) = Op.
PrOOF: Set U = UnitBagi. U # EmptyBagn. [J

(7) (i) 1-1(4, R) is a polynomial of n,R, and

)(EmptyBagn) = a, and

(ii) al(n,R) is a polynomial of n,R.
(8) Let us consider a non zero element a of R, an element b of R, and
an element ¢ of n. Then (a[(n, R)) *1.1(i, R) + (b[(n, R)) is a polynomial
of n,R.
(9) Let us consider an element a of R, and an element i of n.
Then Support(1-1(, R) + (a[(n, R))) C {UnitBagi} U {EmptyBagn}.
(10) degree(EmptyBagn) = 0.
(11) Let us consider an element z of n. Then degree(UnitBagx) = 1.

(12) Let us consider an element a of R, and an element ¢ of n.
Then degree(1-1(¢, R) + (al(n, R))) = 1. The theorem is a consequence of

(9), (6), (1), (10), and (11).

3. AFFINE SPACE AND ALGEBRAIC SETS FROM IDEAL

Let us consider R and n. Let f be a polynomial of n,R. The functor Roots(f)
yielding a subset of (z)"™ is defined by the term

(Def. 4) {z, where z is a function from n into R : eval(f,z) = Ogr}.

Now we state the propositions:
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(13) Roots(0,R) = (Qr)".
PrOOF: If 0 € (2r)", then o € Roots(0,R). O
(14) Roots(1_(n, R)) = Biqun-
Let us consider R, n, and S. The functor Roots(S) yielding a subset of (Qr)"
is defined by the term
{z, where z is a function from n into R : for every polynomial p of
(Def. 5) n,R such that p € S holds eval(p,z) = 0g},if S # 0,
(), otherwise.
Now we state the proposition:
(15) Let us consider a polynomial p of n,R. Then Roots({p}) = Roots(p).
Let us consider R and n. Let I be a subset of (Qr)". We say that I is
algebraic set from ideal if and only if
(Def. 6) there exists an ideal J of Polynom-Ring(n, R) such that I = Roots(J).
Let us note that there exists a non empty subset of (2z)"™ which is algebraic
set from ideal.

4. ALGEBRAIC SETS

Let us consider n and R. An algebraic set of n and R is an algebraic set
from ideal subset of (25)"™. Now we state the propositions:

(16) Let us consider non empty subsets S, T of Polynom-Ring(n, R). If S C T,
then Roots(T") C Roots(S).

(17) Let us consider a non empty subset S of Polynom-Ring(n,R). Then
Roots(S) = Roots(S—-ideal).

PRrROOF: Roots(S) C Roots(S-ideal). O

(18) Let us consider ideals I, J of Polynom-Ring(n, R). Then Roots(IU.J) =
Roots(I) N Roots(J). The theorem is a consequence of (16).

(19) Let us consider algebraic sets S, T of n and R. Then SNT is an algebraic
set of n and R. The theorem is a consequence of (18) and (17).

Let us consider A. Let F' be a non empty subset of Ideals A. One can ve-
rify that the functor |J F' yields a non empty subset of A. Now we state the
propositions:

(20) Let us consider a non empty subset F' of Ideals Polynom-Ring(n, R).
Then Roots(lJ F') = N{Roots(I), where I is an ideal of Polynom-Ring(n,
R):1I¢€ F}.

PROOF: Set P; = Polynom-Ring(n, R). Set M = {Roots(I), where I is
an ideal of P, : I € F}. Consider I being an object such that I € F.
Consider I; being an ideal of P; such that I = I. For every o such that
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o € Roots( F) holds o € N M. For every o such that o € (M holds
o € Roots(U F). O

(21) Let us consider polynomials f, g of n,R.
Then Roots({f * g}) = Roots({f}) U Roots({g}).
PRrROOF: If 0 € Roots({f * g}), then o € Roots({f}) U Roots({g}). If 0 €
Roots({f}) URoots({g}), then o € Roots({f * g}). O

Let us consider ideals I, J of Polynom-Ring(n, R). Now we state the propo-
sitions:

(22) Roots(I NJ) = Roots(I) URoots(J).
PRrOOF: Roots(I) € Roots(I NJ) and Roots(J) € Roots(I N J). For every
o such that o € Roots(I N J) holds o € Roots(I) U Roots(J). O

(23) Roots(I * J) = Roots(I) U Roots(J).
PRrOOF: Roots(IN.J) C Roots(IJ). For every o such that o € Roots(I*.J)
holds o € Roots(I) U Roots(J). O

5. THE COLLECTION OF ALGEBRAIC SETS

Let us consider n and R. The functor AlgSets(n, R) yielding a set is defined
by the term

(Def. 7)  {S, where S is a subset of (2g)" : S is an algebraic set of n and R}.
Now we state the proposition:
(24) Let us consider a non zero natural number m, and a subset F' of AlgSets(n,
R). Suppose T =m. Then \J F' is an algebraic set of n and R.
PROOF: Define P[natural number] = for every subset G of AlgSets(n, R)
such that G = $1 holds |JG is an algebraic set of n and R. For every non
zero natural number m such that P[m] holds Plm + 1] by [9, (1)]. P[1].
For every non zero natural number n, P[n]. O
Let us consider n and R. Let a be a function from n into R. The functor
polyset(a) yielding a non empty subset of Polynom-Ring(n, R) is defined by the
term

(Def. 8) {f, where f is a polynomial of n,R : there exists an element ¢ of n such
that f = deglPoly(a,1)}.
Now we state the propositions:
(25) Let us consider a function a from n into R. Then Roots(polyset(a)) =
{a}.
ProOF: If 0 € Roots(polyset(a)), then o € {a} by [10, (24)], [I, (1)]. If
o € {a}, then o € Roots(polyset(a)) by [10, (24)], [T, (1)]. O
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(26) Let us consider an element x of (2g)™. Then {z} is an algebraic set of
n and R. The theorem is a consequence of (25) and (17).

(27) Let us consider a non zero natural number m, and a subset P of S((q)n)-

Suppose P = m. Then \J P is an algebraic set of n and R.
PRrROOF: S((QR)n) C AlgSets(n, R). O

6. THE IDEAL OF A SET OF POINTS

Let us consider R, n, and X. The functor Ideal(X) yielding a non empty
subset of Polynom-Ring(n, R) is defined by the term

(Def. 9) {f, where f is a polynomial of n,R : X C Roots(f)}.
Now we state the proposition:
(28) Ideal(X) is an ideal of Polynom-Ring(n, R).
Let us consider R, n, and X. One can check that Ideal(X) is closed un-

der addition as a subset of Polynom-Ring(n, R) and Ideal(X) is right ideal as
a subset of Polynom-Ring(n, R). Now we state the propositions:

(29) If X CY, then Ideal(Y) C Ideal(X).

(30) X =0 if and only if Ideal(X) = Qpolynom-Ring(n, R)-
PrOOF: If X = (), then Ideal(X) = Qpoiynom-Ring(n,r)- 1f Ideal(X) =
Qpolynom-Ring(n,7)> then X = Bqyn. O

(31)  {Opolynom-Ring(n,r)} S Ideal(2(q,)n). The theorem is a consequence of
(13).

(32) S C Ideal(Roots(S)).

(33) X C Roots(Ideal(X)).
PROOF: For every o such that o € X holds o € Roots(Ideal(X)). O

(34) Roots(Ideal(Roots(S))) = Roots(S). The theorem is a consequence of
(33), (16), (32), and (30).

(35) Ideal(Roots(Ideal(X))) = Ideal(X).

(36) Let us consider an algebraic set X of n and R. Then X = Roots(Ideal(X)).
The theorem is a consequence of (34).

(37) Let us consider algebraic sets V, W of n and R. Then V = W if and
only if Ideal(V') = Ideal(W'). The theorem is a consequence of (36).

(38) Let us consider algebraic sets X, Y of n and R. If X C Y, then Ideal(Y') C
Ideal(X). The theorem is a consequence of (36) and (29).

(39) Ideal(X) = Ideal(X). The theorem is a consequence of (30) and (15).
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7. REDUCIBLE ALGEBRAIC SETS

Let us consider R and n. Let I be an algebraic set of n and R. We say that
I is reducible if and only if

(Def. 10) there exist algebraic sets Vj, V5 of n and R such that [ = V3 UV, and
VicIand Vo CI.

Let V be an algebraic set of n and R. We introduce the notation V is
irreducible as an antonym for V' is reducible. Now we state the proposition:

(40) Let us consider a non empty algebraic set V of n and R. Then V is
irreducible if and only if Ideal(V') is a prime ideal of Polynom-Ring(n, R).
PRrROOF: If Ideal(V) is a prime ideal of Polynom-Ring(n, R), then V is irre-
ducible. If V' is irreducible, then Ideal(V') is a prime ideal of Polynom-Ring
(n,R). O
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1. DIRECTED-COMPLETE GRAPHS

Let G be a graph. We say that G is directed-complete if and only if

(Def. 1) for every vertices v, w of G such that v # w there exists an object e such

that e joins v to w in G.

Let ¢ be a non empty cardinal number. The functors: canCompleteGraph(c)
and canDCompleteGraph(c) yielding graphs are defined by terms

(Def. 2) createGraph(e, <. \ (id.)),

(Def. 3) createGraph(c, (¢ x ¢) \ (id.)),

respectively. Observe that the vertices of canCompleteGraph(c) reduces to ¢ and
the vertices of canDCompleteGraph(c) reduces to c.

Observe that every vertex of canCompleteGraph(c) is ordinal and every ver-
tex of canDCompleteGraph(c) is ordinal and every vertex of canCompleteGraph
(w) is natural and every vertex of canDCompleteGraph(w) is natural.

Let n be a non zero natural number. Observe that canCompleteGraph(n) is
finite and canDCompleteGraph(n) is finite and every vertex of canCompleteGra-
ph(n) is natural and every vertex of canDCompleteGraph(n) is natural.

Let ¢ be a non empty cardinal number. One can verify that canCompleteGra-
ph(c) is plain, c-vertex, simple, and complete and canDCompleteGraph(c) is
plain, c-vertex, directed-simple, and directed-complete. Now we state the pro-
positions:

(1) Let us consider a non empty cardinal number ¢, and a vertex v of
canCompleteGraph(c). Then

(i) v.inNeighbors() = v, and
(ii) v.outNeighbors() = ¢\ (succv).
(2) Let us consider a vertex v of canCompleteGraph(w). Then
(i) v.inDegree() = v, and
(ii) v.outDegree() = w.
The theorem is a consequence of (1).

(3) Let us consider a non zero natural number n,
and a vertex v of canCompleteGraph(n). Then

(i) v.inDegree() = v, and
(ii) v.outDegree() =n —ov — 1.
The theorem is a consequence of (1).

Let ¢ be a non empty cardinal number. Let us observe that there exists
a graph which is simple, c-vertex, and complete and there exists a graph which
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is directed-simple, c-vertex, and directed-complete and every graph which is
directed-complete is also complete and every graph which is trivial is also
directed-complete and every graph which is non trivial and directed-complete
is also non non-multi and non edgeless and there exists a graph which is non
directed-complete. Now we state the propositions:

(4) Let us consider graphs Gp, Ga. Suppose G; ~ G2 and G is directed-
complete. Then G, is directed-complete.

(5) Let us consider a graph G1, and a subgraph Gy of G; with loops removed.
Then G is directed-complete if and only if G is directed-complete.

(6) Let us consider a graph Gi, and a subgraph G2 of G with directed-
parallel edges removed. Then G is directed-complete if and only if G is
directed-complete.

(7) Let us consider a graph G, and a directed-simple graph Ga of G;. Then
(71 is directed-complete if and only if G5 is directed-complete. The theorem
is a consequence of (6) and (5).

(8) Let us consider a graph G, and a graph G2 given by reversing directions
of the edges of Gi. Then G is directed-complete if and only if Gy is
directed-complete.

Let G be a directed-complete graph. Let us note that every subgraph of G
with loops removed is directed-complete and every subgraph of G with directed-
parallel edges removed is directed-complete and every directed-simple graph of
G is directed-complete and every graph given by reversing directions of the edges
of GG is directed-complete.

Let V' be a set. Observe that every subgraph of G induced by V is directed-
complete and every graph by adding a loop to each vertex of G in V is directed-
complete. Let v, e, w be objects. Note that every supergraph of G extended by
e between vertices v and w is directed-complete.

Let GG be a non directed-complete graph. One can verify that every subgraph
of G with loops removed is non directed-complete and every subgraph of G with
directed-parallel edges removed is non directed-complete and every directed-
simple graph of G is non directed-complete and every graph given by reversing
directions of the edges of GG is non directed-complete and every subgraph of G
which is spanning is also non directed-complete.

Let us consider graphs GG1, G2 and a partial graph mapping F' from G; to
G2. Now we state the propositions:

(9) If F is directed-continuous and strong subgraph embedding, then if G
is directed-complete, then (g7 is directed-complete.
(10) If F is directed-isomorphism, then G is directed-complete iff G is
directed-complete. The theorem is a consequence of (9).

7
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Let G be a directed-complete graph. Observe that every graph which is
G-directed-isomorphic is also directed-complete. Now we state the propositions:

(11) Let us consider a directed-complete graph G, and a vertex v of G. Then
(i) (the vertices of G) \ {v} C v.inNeighbors(), and
(ii) (the vertices of G) \ {v} C v.outNeighbors(), and
(iii) (the vertices of G) \ {v} C v.allNeighbors().

(12) Let us consider a loopless, directed-complete graph G, and a vertex v of
G. Then

(i) v.inNeighbors() = (the vertices of G) \ {v}, and
(ii) v.outNeighbors() = (the vertices of G) \ {v}, and
(iii) v.allNeighbors() = (the vertices of G) \ {v}.

The theorem is a consequence of (11).

(13) Let us consider a directed-simple, directed-complete graph G, and a ver-
tex v of G. Then

(i) v.inDegree() + 1 = G.order(), and
(ii) v.outDegree() + 1 = G.order().

The theorem is a consequence of (12).

(14) Let us consider a graph Gi, and a directed graph complement Gy of
G1 with loops. Then the edges of G; = Gj.loops() if and only if Gy is
directed-complete.

Let G be an edgeless graph. Let us observe that every directed graph com-
plement of G with loops is directed-complete. Now we state the proposition:

(15) Let us consider a graph Gj, and a directed graph complement Gy of
G with loops. Then G; is directed-complete if and only if the edges of
G2 = G2.1oops().
One can verify that there exists a graph which is loopfull and directed-
complete.
Let G be a loopfull, directed-complete graph. Let us observe that every direc-
ted graph complement of G with loops is edgeless. Now we state the proposition:
(16) Let us consider a graph G, and a directed graph complement Gy of Gj.
Then the edges of G1 = G1.loops() if and only if G5 is directed-complete.
The theorem is a consequence of (14).

Let G be an edgeless graph. Note that every directed graph complement of
G is directed-complete. Now we state the proposition:
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(17) Let us consider a graph G, and a directed graph complement G5 of Gj.
Then G is directed-complete if and only if G2 is edgeless. The theorem
is a consequence of (15).

Let G be a directed-complete graph. One can verify that every directed graph
complement of G is edgeless. Let G be a non directed-complete graph. One can
check that every directed graph complement of GG is non edgeless.

Let G be a graph and G be a directed graph complement of GGy with loops.
One can verify that every graph union of G; and Gs is directed-complete. Let
G be a directed graph complement of GG;. Note that every graph union of Gy
and Gs is directed-complete. Now we state the propositions:

(18) Let us consider a graph G. Then G is directed-complete if and only if
((the vertices of G) x (the vertices of G))\ (idy) C VertDomRel(G), where
« is the vertices of G.

(19) Let us consider a non empty set V', and a binary relation £ on V. Then
createGraph(V, F) is directed-complete if and only if (V' x V) \ (idy) C E.

2. REGULAR GRAPHS

From now on ¢, c1, co denote cardinal numbers, G, G1, G2 denote graphs,
and v denotes a vertex of G.

Let us consider ¢ and G. We say that G is c-regular if and only if

(Def. 4) for every v, v.degree() = c.

One can check that every graph which is c-regular is also with max degree
and every graph which is (c+1)-vertex, simple, and complete is also c-regular and
there exists a graph which is simple and c-regular. Now we state the propositions:

(20) DEGREE OF REGULARITY IS UNIQUE:
If G is ci-regular and co-regular, then ¢ = co.
(21) G is c-regular if and only if every component of G is c-regular.

Let us consider c. Let us observe that there exists a graph which is non c-
regular. Let G be a c-regular graph. Note that every component of G is c-regular.
Now we state the propositions:

(22) Let us consider a c-regular graph G. Then
(i) 0(G) = ¢, and
(ii) A(G) =c.
(23) If 6(G) = c and A(G) = ¢, then G is c-regular.
Let n be a natural number. Observe that every graph which is n-regular is

also locally-finite and there exists a graph which is simple, vertex-finite, and
n-regular. Now we state the proposition:

79
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(24) G is edgeless if and only if G is O-regular.

One can verify that every graph which is edgeless is also 0-regular and every
graph which is O-regular is also edgeless. Let ¢ be a non empty cardinal number.
Let us observe that every graph which is c-regular is also non edgeless. Now we
state the propositions:

(25) Let us consider a simple, c-regular graph G. Then ¢ C G.order().

(26) Let us consider a natural number n, and a simple, vertex-finite, n-regular
graph G1. Then every graph complement of Gy is (Gy.order() —' (n+1))-
regular.

(27) If there exists v such that v is isolated and G is c-regular, then ¢ = 0.
(28) If there exists v such that v is endvertex and G is c-regular, then ¢ = 1.

Let G be a 1-regular graph. Observe that every vertex of GG is endvertex.
Now we state the proposition:

(29) Let us consider a l-regular graph G, and a trail 7' of G. Suppose T is
not trivial. Then there exists an object e such that
(i) e joins T first() and T'.last() in G, and
(ii) T = G.walkOf(T first(), e, Tlast()).

One can verify that every graph which is 1-regular and connected is also
2-vertex, 1-edge, and complete and every graph which is simple, 2-vertex, and
connected is also 1-regular. Now we state the propositions:

(30) Let us consider a partial graph mapping F' from G; to Ga. Suppose F
is isomorphism. Then G is c-regular if and only if G is c-regular.

(31) If G; = G2 and G is c-regular, then G9 is c-regular.

(32) Let us consider a set E, and a graph G2 given by reversing directions of

the edges E of G1. Then G is c-regular if and only if G3 is c-regular. The
theorem is a consequence of (30).

Let G be a graph. We say that G is cubic if and only if
(Def. 5) G is 3-regular.

One can verify that every graph which is cubic is also 3-regular and every
graph which is 3-regular is also cubic. Now we state the propositions:

(33) @ is cubic if and only if for every v, v.degree() = 3.

(34) Let us consider a partial graph mapping F' from G to Go. If F is iso-
morphism, then G is cubic iff G5 is cubic.

(35) If G; = G5 and G is cubic, then G is cubic.

(36) Let us consider a set E, and a graph G2 given by reversing directions of
the edges F of G1. Then G is cubic if and only if G is cubic.

Let G be a graph. We say that G is regular if and only if
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(Def. 6) there exists a cardinal number ¢ such that G is c-regular.
Now we state the proposition:

(37) G is regular if and only if 6(G) = A(G). The theorem is a consequence
of (22) and (23).

Let G be a locally-finite graph. One can check that G is regular if and only
if the condition (Def. 7) is satisfied.

(Def. 7) there exists a natural number n such that G is n-regular.

Let ¢ be a cardinal number. Let us note that every graph which is c-regular
is also regular and every graph which is cubic is also regular and every graph
which is regular is also with max degree and there exists a graph which is simple,
non edgeless, finite, and regular.

Let G be a regular graph. Note that every component of G is regular. Let G
be a simple, finite, regular graph. One can verify that every graph complement
of G is regular. Now we state the propositions:

(38) If there exists v such that v is isolated and G is regular, then G is
edgeless. The theorem is a consequence of (27).

(39) If there exists v such that v is endvertex and G is regular, then G is
1-regular. The theorem is a consequence of (28).

(40) Let us consider a partial graph mapping F from G to Gs. If F' is isomor-
phism, then G is regular iff G5 is regular. The theorem is a consequence
of (30).

(41) If G; = Gy and G is regular, then G is regular. The theorem is a con-
sequence of (40).

(42) Let us consider a set E, and a graph G2 given by reversing directions of
the edges E of G;. Then G is regular if and only if G is regular. The
theorem is a consequence of (40).

3. DIRECTED-REGULAR GRAPHS

Let us consider ¢ and G. We say that G is c-directed-regular if and only if
(Def. 8) for every v, v.inDegree() = ¢ and v.outDegree() = c.

Let us note that every graph which is c-directed-regular is also with max in-
degree and with max outdegree and every graph which is (c+1)-vertex, directed-
simple, and directed-complete is also c-directed-regular and there exists a graph
which is directed-simple and c-directed-regular. Now we state the proposition:

(43) DEGREE OF DIRECTED REGULARITY IS UNIQUE:
If G is cj-directed-regular and co-directed-regular, then ¢; = cs.
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Let us consider ¢. One can check that there exists a graph which is non c-
directed-regular. Let G be a c-directed-regular graph. Observe that every com-
ponent of G is c-directed-regular. Now we state the propositions:

(44) Let us consider a c-directed-regular graph G. Then
(i) 07(G) =¢, and
(i) 67(G) = ¢, and
(iii) A7 (G) = ¢, and
(iv) AT(G) =c.
(45) If 5~ (G) = cand 67 (G) = c and A=(G) = ¢ and AT(G) = ¢, then G is
c-directed-regular.
(46) Let us consider a natural number n. If G is n-directed-regular, then G
is (2 - n)-regular.

Let n be a natural number. One can check that every graph which is n-
directed-regular is also (2 - n)-regular and locally-finite and there exists a graph
which is directed-simple, finite, and n-directed-regular.

Let ¢ be an infinite cardinal number. Let us note that every graph which is
c-directed-regular is also c-regular. Now we state the proposition:

(47) G is edgeless if and only if G is 0-directed-regular. The theorem is a con-
sequence of (46).

One can verify that every graph which is edgeless is also 0-directed-regular
and every graph which is 0-directed-regular is also edgeless.

Let ¢ be a non empty cardinal number. Let us observe that every graph
which is c-directed-regular is also non edgeless. Now we state the propositions:

(48) Let us consider a directed-simple, c-directed-regular graph G. Then ¢ C
G.order().

(49) Let us consider a natural number n, and a directed-simple, vertex-finite,
n-directed-regular graph G7. Then every directed graph complement of
G1 is (Gy.order() —' (n + 1))-directed-regular.

(50) If there exists v such that v is isolated and G is c-directed-regular, then
c=0.

Let us consider c. Let G be a c-directed-regular graph. Let us note that every
vertex of GG is non endvertex and every graph which is 2-edge, 2-vertex, and
directed-simple is also 1-directed-regular and complete and every graph which
is trivial and 1-edge is also 1-directed-regular. Now we state the propositions:

(51) Let us consider a partial graph mapping F' from G; to G3. Suppose F
is directed-isomorphism. Then G is c-directed-regular if and only if G5 is
c-directed-regular.
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(52) If G; = G5 and G is c-directed-regular, then Gy is c-directed-regular.
Let G be a graph. We say that G is directed-regular if and only if
(Def. 9) there exists a cardinal number ¢ such that G is c-directed-regular.
Now we state the proposition:
(53) G is directed-regular if and only if §~(G) = A~ (G) and 6+ (G) = AT(G)
and 6 (G) = §1(G). The theorem is a consequence of (44) and (45).

Let G be a locally-finite graph. One can verify that G is directed-regular if
and only if the condition (Def. 10) is satisfied.

(Def. 10) there exists a natural number n such that G is n-directed-regular.

Let ¢ be a cardinal number. Note that every graph which is c-directed-regular
is also directed-regular and every graph which is directed-regular is also with
max degree and there exists a graph which is directed-simple, non edgeless,
finite, and directed-regular.

Let G be a directed-regular graph. Observe that every component of G
is directed-regular. Let G be a directed-simple, finite, directed-regular graph.
Note that every directed graph complement of G is directed-regular. Let G be
a directed-regular graph. Note that every vertex of G is non endvertex. Now we
state the propositions:

(54) Let us consider a partial graph mapping F' from G; to Ga. Suppose F
is directed-isomorphism. Then G; is directed-regular if and only if Gy is
directed-regular. The theorem is a consequence of (51).

(55) If G; =~ Gy and G is directed-regular, then G is directed-regular. The
theorem is a consequence of (54).

4. COUNTING THE EDGES

Now we state the propositions:

(56) Let us consider a set P, and a cardinal number c¢. Suppose P is mutually-
disjoint and for every set A such that A € P holds A = c. Then U:P =
c-P.

(57) Let us consider a non empty set X, a partition P of X, and a cardinal
number c. Suppose for every element z of X, EqClass(z, P) = c¢. Then
X =c- P. The theorem is a consequence of (56).

Let f be a function and X be a set. One can verify that (f,idx) is one-to-one.

Let f be a one-to-one function. One can verify that f~ is one-to-one and
A\ f is one-to-one.

Let X be a set and f be a function. Let us observe that (idx, f) is one-to-one.

Now we state the proposition:
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(58) Let us consider a c-regular graph G. Then 2 - G.size() = ¢ - G.order().
The theorem is a consequence of (56).

5. THE DEGREE MAP AND DEGREE SEQUENCE

Let G be a graph. The functors: G.degreeMap(), G.inDegreeMap(), and
G.outDegreeMap() yielding many sorted sets indexed by the vertices of G are
defined by conditions

(Def. 11) for every vertex v of G, G.degreeMap()(v) = v.degree(),
(Def. 12) for every vertex v of G, G.inDegreeMap()(v) = v.inDegree(),
(Def. 13) for every vertex v of G, G.outDegreeMap()(v) = v.outDegree(),

respectively. Let us observe that G.degreeMap() is cardinal yielding and G.inDe-
greeMap() is cardinal yielding and G.outDegreeMap() is cardinal yielding. Now
we state the propositions:

(59) Let us consider a graph G. Then
(i) G.degreeMap() = G.order(), and
(ii) G.inDegreeMap() = G.order(), and

(iii) G.outDegreeMap() = G.order().

(60) Let us consider a graph G, and a vertex v of G. Then (G.degreeMap())(v)
= (G.inDegreeMap())(v) + (G.outDegreeMap())(v).
Let G be a locally-finite graph. Note that G.degreeMap() is natural-valued
and G.inDegreeMap() is natural-valued and G.outDegreeMap() is natural-valued.
The functors: G.degreeMap(), G.inDegreeMap(), and G.outDegreeMap() yield
functions from the vertices of GG into N. Let G be a vertex-finite graph. Note that
G.degreeMap() is finite and G.inDegreeMap() is finite and G.outDegreeMap()
is finite. Now we state the proposition:

(61) Let us consider a cardinal number ¢, a trivial, c-edge graph G, and
a vertex v of GG. Then

(i) G.inDegreeMap() = v——c, and
(ii) G.outDegreeMap() = v——c, and
(iii) G.degreeMap() = v——2 - c.

Let G be a trivial graph. Let us note that G.degreeMap() is trivial and
G.inDegreeMap() is trivial and G.outDegreeMap() is trivial. Now we state the
propositions:

(62) Let us consider a graph G, a set V, and a supergraph G; of G extended
by the vertices from V. Then



ABOUT REGULAR GRAPHS 85

(i) Gy.degreeMap() = Go.degreeMap() +-(V \ (the vertices of G2)
—0), and
(ii) Gi.inDegreeMap() = Ga.inDegreeMap() +-(V \ (the vertices of G2)
— 0), and
(iii) Gp.outDegreeMap() = Ga.outDegreeMap()+-(V \ (the vertices of
Go) — 0).
(63) Let us consider a graph G, and a component C' of G. Then
(i) C.degreeMap() = G.degreeMap() [(the vertices of C'), and
(ii) C.inDegreeMap() = G.inDegreeMap() [(the vertices of C'), and
(iii) C.outDegreeMap() = G.outDegreeMap() [(the vertices of C').

Let G be a graph and v be a denumeration of the vertices of G. Let us observe
that (G.degreeMap()) - v is transfinite sequence-like and (G.order())-elements
and (G.inDegreeMap()) - v is transfinite sequence-like and (G.order())-elements
and (G.outDegreeMap())-v is transfinite sequence-like and (G.order())-elements.

Let us consider a finite graph G and a denumeration v of the vertices of G.
Now we state the propositions:

(64) (G.degreeMap()) - v = (G.inDegreeMap()) - v + (G.outDegreeMap()) - v.
The theorem is a consequence of (60).

(65) (i) G.size() = >_(G.inDegreeMap()) - v, and
(ii) G.size() = Y (G.outDegreeMap()) - v.

(66) 2-(G.size()) = >_(G.degreeMap()) - v. The theorem is a consequence of
(65) and (64).

(67) HANDSHAKING LEMMA:
Let us consider a finite graph G, and a natural number k. Suppose k =

{w, where w is a vertex of G : w.degree() is not even }. Then k is even.
PROOF: Set v = the denumeration of the vertices of G. Define M (natural
number) = ((G.degreeMap()) - v)($1) mod 2. Consider m being a finite 0-
sequence of N such that lenm = len(G.degreeMap()) - v and for every
natural number k such that k£ € len(G.degreeMap()) - v holds m(k) =
M(k). O
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Summary. In this paper problems 25, 86, 88, 105, 111, 137-142, and
184-185 from [12] are formalized, using the Mizar formalism [3], [1], [4]. This is
a continuation of the work from [5], [6], and [2] as suggested in [8]. The auto-
matization of selected lemmas from [I1] proven in this paper as proposed in [9]

could be an interesting future work.
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1. PRELIMINARIES

From now on X denotes a set, a, b, ¢, k, m, n denote natural numbers, 1,
j denote integers, 7, s denote real numbers, and p, p1, p2, p3, ¢ denote prime

numbers.
Let us consider n and r. Let us observe that n—r +r is natural and n+r—r

is natural. Now we state the propositions:
(1) Let us consider natural numbers m, n. If m < n < m+2, then n = m+1.

(2) Ny =N\ {0}

Let us note that N is infinite. Now we state the propositions:

(3) Let us consider finite sequences f, g. Suppose f " g is X-valued. Then
(i) fis X-valued, and
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(i) g is X-valued.

(4) Let us consider complex-valued many sorted sets fi, f2, f3 indexed by
X. Suppose for every object x such that x € X holds fi(z) = fa(z)- f3(x).
Then f1 = fa- fs.

(5) Ifb;éOandc;éO,then%fc>r.

(6) If m < n, then m!|nl.

PROOF: Define Plnatural number] = if m < $;, then m! | $;!. If P[k], then
Plk +1]. Plk]. O

(7) If p1 | po, then p1 = po.

(8) If m and n are relatively prime, then a-n+m and n are relatively prime.

(9) Ifn|27 thenn=1orn=3o0orn=9orn=27.

2. PROBLEM 25

Now we state the proposition:
(10) Let us consider a function f. Then support(EmptyBag X+-f) = support f.
Let X be a set and f be a finite-support function.
Observe that EmptyBag X +-f is finite-support.
Let p be a prime number and n be a non zero natural number. Observe that
p-count(p™) is non zero. Now we state the propositions:

(11) Let us consider a finite-support function b.
Then dom(b - (CFS(support d))) = dom(CFS(support b)).
(12) Let us consider complex-valued functions f, g. Then support(f - g) C
support f.
Let f, g be finite-support, complex-valued functions. One can verify that
f - g is finite-support. Now we state the propositions:

(13) Let us consider complex-valued functions f, g. Suppose support f =
support g. Then support(f - g) = support f. The theorem is a consequence
of (12).

(14) Let us consider finite-support, complex-valued many sorted sets by, by
indexed by X. Suppose support by = support bg. Then [](by -b2) = (I]b1) -
(ITb2)-

PROOF: Set by = by - by. support by = support b;. support by = support bs.
Consider fy being a finite sequence of elements of C such that [[bg =[] fo
and fy = by - (CFS(support bg)). Consider fi being a finite sequence of ele-
ments of C such that [Tb; = [[ f1 and f; = b;-(CFS(support by )). Consider
f2 being a finite sequence of elements of C such that [[be =[] f2 and fo =
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by-(CFS(support b3)). dom(by-(CFS(support by))) = dom(CFS(support by)).
dom fo = dom f;. dom fy = dom fo. For every object ¢ such that ¢ €
dom fj holds fo(c) = fi(c) - fa(c). O
Let n be a non zero natural number. The functor EulerFactorization(n)
yielding a function is defined by

(Def. 1) dom it = support PPF(n) and for every natural number p such that p €
dom it there exists a non zero natural number ¢ such that ¢ = p-count(n)
and it(p) = p¢ — p°~ L.
Observe that dom(EulerFactorization(n)) is finite and EulerFactorization(n)
is P-defined. Now we state the propositions:
(15) Let us consider a non zero natural number n, and an object p. Suppose
p € dom(EulerFactorization(n)). Then p is a prime number.

(16) Let us consider a non zero natural number n, and a natural number p.
Suppose p € dom(EulerFactorization(n)). Then there exists a non zero
natural number c such that

(i) ¢ = p-count(n), and
(i) (EulerFactorization(n))(p) = p*~* - (p — 1).
Let n be a non zero natural number. Let us observe that EulerFactorization(n)

is natural-valued and EulerFactorization(n) is finite-support and EulerFactoriza-
tion(1) is empty. Now we state the propositions:
(17) Let us consider a non zero natural number n.
Then EulerFactorization(p™) = p——s(p" — p"~1).
(18) EulerFactorization(p) = p——(p — 1). The theorem is a consequence of
(17).
Let us consider a non zero natural number n. Now we state the propositions:

(19) support EulerFactorization(n) = dom(EulerFactorization(n)). The the-
orem is a consequence of (15).

(20) If n > 1, then support EulerFactorization(n) is not empty.

(21) If n > 1, then EulerFactorization(n) is not empty. The theorem is a con-
sequence of (20).

Let us consider non zero natural numbers s, t. Now we state the propositions:

(22) If s and t are relatively prime, then dom(EulerFactorization(s)) misses
dom(EulerFactorization(t)).

(23) Suppose s and ¢ are relatively prime. Then EmptyBag P+ EulerFactoriza-
tion(s-t) = (EmptyBag P+ EulerFactorization(s))+(EmptyBag P+- Euler-
Factorization(t)).
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PROOF: Set n = s-t. Set N = EulerFactorization(n). Set S = EulerFactori-
zation(s). Set T = EulerFactorization(t). For every object = such that
x € P holds (B+-N)(z) = (B+-S)(x) + (B+-T)(z) by [7, (25), (58)], (22).
O

(24) Let us consider a non zero natural number n.
Then Euler n = [[(EmptyBag P+ EulerFactorization(n)).
PRrROOF: Set N = EulerFactorization(n). Define P[natural number| = for
every non zero natural number n such that support(B+- EulerFactorizatio-
n(n)) C Seg$; holds [[(B+- EulerFactorization(n)) = Euler n. P[0]. For
every natural number k such that P[k] holds P[k + 1]. For every natural
number k, P[k]. Set G = B+-N. support G = support N. [J

Let n be a non zero natural number. The functor EulerFactorization;(n)
yielding a function is defined by

(Def. 2) dom it = support PPF(n) and for every natural number p such that p €
dom it there exists a non zero natural number ¢ such that ¢ = p-count(n)
and it(p) = p°~L.

Let us observe that dom(EulerFactorization; (n)) is finite and EulerFactoriza-
tionj(n) is P-defined. Now we state the proposition:

(25) Let us consider a non zero natural number n, and an object p. Suppose
p € dom(EulerFactorization;(n)). Then p is a prime number.

Let n be a non zero natural number. Note that EulerFactorization;(n) is
natural-valued and EulerFactorization;(n) is finite-support. Now we state the
proposition:

(26) Let us consider a non zero natural number n. Then support EulerFactori-
zation) (n) = dom(EulerFactorization; (n)). The theorem is a consequence
of (25).

Let n be a non zero natural number. The functor EulerFactorizations(n)

yielding a function is defined by

(Def. 3) domit = support PPF(n) and for every natural number p such that
p € dom it holds it(p) = p — 1.
One can verify that dom(EulerFactorizations(n)) is finite and EulerFactoriza-
tiong(n) is P-defined. Now we state the proposition:
(27) Let us consider a non zero natural number n, and an object p. Suppose
p € dom(EulerFactorizationa(n)). Then p is a prime number.
Let n be a non zero natural number. Let us note that EulerFactorizations(n)
is natural-valued and EulerFactorizations(n) is finite-support.
Let us consider a non zero natural number n. Now we state the propositions:
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(28) support EulerFactorizations(n) = dom(EulerFactorizationy(n)). The the-
orem is a consequence of (27).

(29) EmptyBagP+- EulerFactorization(n) = (EmptyBag P+ EulerFactoriza-
tiony (n)) - (EmptyBag P+ EulerFactorizationg(n)).
PRrROOF: Set N = EulerFactorization(n). Set S = EulerFactorization;(n).
Set T' = EulerFactorizations(n). For every object x such that = € P holds
(B+-N)(x) = (B+-S)(z) - (B+T)(z). O

(30) Let us consider integer-valued finite sequences fi, fo. Suppose len f1 =
len fo and for every n such that 1 < n < len f; holds fi(n) | f2(n). Then
I1/1 [T fe

(31) Let us consider a non zero natural number n.
Then [](EmptyBag P+ EulerFactorization (n)) | n.
PRrROOF: Set by = PPF(n). Set F; = EulerFactorization;(n). Set by =
B+-Fy. Consider fy being a finite sequence of elements of C such that
[Tbo = [1fo and fo = by - (CFS(support bg)). Consider f; being a fi-
nite sequence of elements of C such that [[by = [[f1 and f1 = b1 -
(CFS(support by)). support by = support Fi. support F; = dom F;. dom fj
= dom(CFS(support by)). dom f; = dom(CFS(support by)). For every na-
tural number x such that 1 < z <len f; holds fi(z) | fo(x). [T f1 | I fo-
]

Let f be a real-valued function and r be a real number. We say that f <r
if and only if
(Def. 4) for every object x such that x € dom f holds f(z) < 7.
Now we state the propositions:
(32) Let us consider a real-valued function f, and real numbers 7, ro. If
f <71 <rg, then f < ro.
(33) Let us consider real-valued functions f, g. If rngg C rng f and f < n,
then g < n.
Let us consider extended real-valued finite sequences f, g. Now we state the
propositions:
(34) If f ™ g is increasing, then f is increasing and g is increasing.
(35) If f~ g is positive yielding, then f is positive yielding and g is positive
yielding.
(36) Let us consider a natural-valued finite sequence f. If f < n and f is in-
creasing and positive yielding, then [] f | n!. The theorem is a consequence
of (3), (34), (35), and (6).
Let f be a natural-valued finite sequence. Note that sort, f is natural-valued
and sortq f is natural-valued. Let f be an integer-valued finite sequence. One
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can check that sort, f is integer-valued and sortq f is integer-valued. Let f be
a rational-valued finite sequence. One can verify that sort, f is rational-valued
and sortq f is rational-valued. Now we state the proposition:

(37) Let us consider binary relations P, R. Suppose rng R C rng P and P is
positive yielding. Then R is positive yielding.
Let f be a positive yielding, real-valued finite sequence. Let us observe
that sort, f is positive yielding and every function which is P-defined is also
N-defined. Now we state the propositions:

(38) Let us consider a real-valued, finite-support function f. Suppose f < n.
Let us consider a real-valued finite sequence F'. Suppose F' = (EmptyBag P
+-f) - (CFS(support(EmptyBagP+-f))). Then F' < n.

(39) Let us consider a natural-valued, finite-support function f, and a real-
valued finite sequence F'.

Suppose F' = (EmptyBag P+- f) - (CFS(support(EmptyBagP+-f))). Then
F is positive yielding. The theorem is a consequence of (11).
Let us consider a natural-valued, finite-support, P-defined function f and
a real-valued finite sequence F'. Now we state the propositions:

(40) Suppose f is increasing. Then suppose F' = (EmptyBag P+- f)-(CFS(sup-
port(EmptyBagP+-f))). Then sort, F' is one-to-one. The theorem is a con-
sequence of (10) and (11).

(41) Suppose f is increasing. Then suppose F' = (EmptyBag P+ f)-(CEFS(sup-
port(EmptyBagP+-f))). Then sort, F is increasing. The theorem is a con-
sequence of (11) and (10).

(42) Let us consider a natural-valued, finite-support, P-defined function f.
Suppose f < n and f is increasing. Then [[(EmptyBagP+:f) | n!. The
theorem is a consequence of (38), (39), (41), (33), and (36).

(43) Let us consider a non zero natural number n. Then EulerFactorizationa(n)
< n — 1. The theorem is a consequence of (27).

Let n be a non zero natural number. Let us note that EulerFactorizations(n)
is increasing and EulerFactorizations(n) is positive yielding.
Let us consider a non zero natural number n. Now we state the propositions:

(44) TI(EmptyBagP+- EulerFactorizations(n)) | (n — 1)!.

(45) Eulern | n!. The theorem is a consequence of (24), (31), (43), (42), (10),
(26), (28), (29), and (14).

(46) Let us consider an odd natural number n. Then n | 2% — 1. The theorem
is a consequence of (45).
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3. PROBLEM &6

Now we state the proposition:

(47) Suppose p1, p2, p3 are mutually different. Then

(i) p1 > 2 and py > 3 and p3 > 5, or
(ii) p1 > 2 and py > 5 and p3 > 3, or
(iii) p1 > 3 and p2 > 2 and p3 > 5, or
(iv) p1 > 3 and p2 > 5 and p3 > 2, or
(v) p1 > 5 and py > 2 and p3 > 3, or
(vi) p1 > 5 and py > 3 and p3 > 2.

Let n be a natural number. We say that n satisfies Sierpinski Problem 86 if
and only if

(Def. 5) there exist prime numbers p1, p2, p3 such that p;, pa2, ps are mutually

different and n? — 1 = py - po - p3.
Now we state the propositions:

(48) If n satisfies Sierpinski Problem 86, then n > 6. The theorem is a con-
sequence of (47).

(49) Let us consider prime numbers a, b, c. f n? — 1 =a-b-c, then n — 1 is
prime or n + 1 is prime.
(50) Suppose n satisfies Sierpinski Problem 86. Then
(i) n— 1 is prime and there exist prime numbers z, y such that x # y
andn+1=x-y, or
(ii) m + 1 is prime and there exist prime numbers x, y such that x # y
andn—1=z-y.
The theorem is a consequence of (49).

(51) If n satisfies Sierpinski Problem 86, then n is even. The theorem is a con-
sequence of (50) and (48).

142 -1=3-5-13.
162—-1=3-5-17.
202 -1=3-7-19.
222 -1=3.7-23.
322 -1=3-11-31.
14 satisfies Sierpinski Problem 86. The theorem is a consequence of (52).
16 satisfies Sierpinski Problem 86. The theorem is a consequence of (53).

20 satisfies Sierpinski Problem 86. The theorem is a consequence of (54).
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(60) 22 satisfies Sierpinski Problem 86. The theorem is a consequence of (55).
(61) 32 satisfies Sierpinski Problem 86. The theorem is a consequence of (56).

(62) If n satisfies Sierpinski Problem 86 and n < 32,
then n € {14, 16, 20, 22, 32}. The theorem is a consequence of (48).

4. PROBLEM 184

Now we state the propositions:
(63) 3%* =1 (mod8).
(64) 813"+ 1. The theorem is a consequence of (63).

(65) If n # 0 and 2™ — 3" = 1, then m = 2 and n = 1. The theorem is
a consequence of (64).

5. PROBLEM 185

Now we state the propositions:

(66) 3%k =1 (mod4).

(67) If 2" mod 4 =2, then n = 1.

(68) If2"™ —2" =2, then m =2 and n=1.
(69)

69) If nis odd and 3" — 2™ =1, then n = m = 1. The theorem is a conse-

quence of (66) and (67).

(70) If n is even and 3™ — 2™ = 1, then n = 2 and m = 3. The theorem is
a consequence of (68).

(71) If 3" —2m =1, then n =m =1 or n = 2 and m = 3. The theorem is
a consequence of (69) and (70).

6. PROBLEM 88

Let us consider n. We say that n has unique prime divisor if and only if

(Def. 6) there exists a prime number p such that p | n and for every prime number
r such that r # p holds r 1 n.

Assume n has unique prime divisor. The only divisor of n yielding a prime
number is defined by

(Def. 7) it | n and for every prime number r such that r # it holds r { n.
Now we state the proposition:

(72) If n has unique prime divisor and p | n, then the only divisor of n = p.



ELEMENTARY NUMBER THEORY PROBLEMS. PART VIII 95

Let us observe that every natural number which is prime has unique prime
divisor. Now we state the proposition:
(73) The only divisor of p = p.
One can check that every natural number which is zero does not have unique
prime divisor. Now we state the proposition:
(74) 1 does not have unique prime divisor.

Let p be a prime number. Let us observe that p° does not have unique prime
divisor. Let k be a non zero natural number. One can verify that p* has unique
prime divisor. Now we state the propositions:

(75) If p1 # pa, then p; - p2 does not have unique prime divisor.
(76) If n has unique prime divisor, then there exists a non zero natural number
k such that n = (the only divisor of n)*.

(77) If n > 7, then there exists a natural number m and there exist prime
numbers p, g such that p # ¢ and (m =norm =n+1or m = n + 2)
and p | m and ¢ | m.

Proor: Consider k such that n=6-korn=6-k+1lorn=6-k+2or
n=6-k+3orn=6-k+4orn==6-k+5. nhas unique prime divisor.
n + 1 has unique prime divisor. n 4+ 2 has unique prime divisor. [

7. PROBLEM 105

Let us consider n. We say that n has more than two different prime divisors
if and only if
(Def. 8) there exist prime numbers q;, g2, g3 such that qi, g2, g3 are mutually
different and ¢; | n and ¢ | n and g3 | n.

Let n be a non zero natural number. We say that n satisfies Sierpinski
Problem 105 if and only if

(Def. 9) n — 1 has more than two different prime divisors and n + 1 has more
than two different prime divisors.

Now we state the proposition:

(78) If n has unique prime divisor, then n has no more than two different
prime divisors.
Note that every natural number which is zero has more than two different
prime divisors. Now we state the proposition:

(79) If n > 0 and n has more than two different prime divisors, then n > 30.
The theorem is a consequence of (47).
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Let us note that every natural number which is prime does not have more
than two different prime divisors. Let us consider p; and ps. Observe that pq - ps
does not have more than two different prime divisors.

Let us consider p and n. Let us note that p” does not have more than two
different prime divisors. Let us consider p, g, m and n. Note that p™ - ¢" does
not have more than two different prime divisors. Now we state the propositions:

(80) 131 satisfies Sierpinski Problem 105.
(81) There exists no prime number p such that p < 130 and p satisfies Sier-
pinski Problem 105. The theorem is a consequence of (79).

8. PROBLEM 111

Now we state the propositions:
(82) 1+3+32+33+31=11%
(83)
(84) 1+ p+p?+p®+p*is a square if and only if p = 3.
(85)

m | p* if and only if m € {1, p, p?,p?,p*}.

The set of positive divisors of p* = {1, p, p?, p?, p*}. The theorem is a con-
sequence of (83).
(86) {p, where p is a prime number : 1+ p + p? + p® + p? is a square} = {3}.
The theorem is a consequence of (84).

9. PROBLEM 137

Let D be a non empty set. Let us observe that every sequence of D is total.
Let f be a (C x D)-valued many sorted set indexed by N and n be a natural
number. Note that (f(n))1 is complex. Let f be a (D x C)-valued many sorted
set indexed by N. Note that (f(n))z2 is complex.

Let f be an (R x D)-valued many sorted set indexed by N. Note that (f(n))1
is real. Let f be a (D x R)-valued many sorted set indexed by N. Note that
(f(n))2 is real. Let f be a (Q x D)-valued many sorted set indexed by N. Note
that (f(n))1 is rational. Let f be a (D x Q)-valued many sorted set indexed by
N. Note that (f(n))2 is rational.

Let f be a (Z x D)-valued many sorted set indexed by N. Note that (f(n))1
is integer. Let f be a (D x Z)-valued many sorted set indexed by N. Note that
(f(n))z2 is integer. Let f be an (N x D)-valued many sorted set indexed by N.
Note that (f(n))1 is natural. Let f be a (D x N)-valued many sorted set indexed
by N. Note that (f(n))s is natural.
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Let a, b, x1, x2, 3, Y1, Y2, Y3 be complex numbers. The functor recSeqCart(a,
b, 1, %2, x3,Y1, Y2, y3) yielding a (C x C)-valued many sorted set indexed by N
is defined by

(Def. 10) it(0) = (a, b) and for every natural number n, it(n+1) = (x1-((it(n))1)+
z2 - ((it(n))z) + =3, y1 - ((it(n))1) + y2 - ((it(n))2) + ys)-

Let a, b, z1, 22, x3, Y1, Y2, y3 be real numbers. Let us observe that recSeqCart
(a,b,z1,22,23,Y1,Y2,y3) is (R x R)-valued. Let a, b, x1, z2, x3, y1, Y2, y3 be ra-
tional numbers. Let us observe that recSeqCart(a, b, z1, 2, T3, y1, Y2, y3) is (Q X
Q)-valued.

Let a, b, x1, x2, 3, Y1, Y2, Y3 be integers. Let us observe that recSeqCart(a, b,
X1, %2, %3, Y1,Y2,Yy3) is (Z x Z)-valued. Let a, b, x1, x2, T3, Y1, Y2, Y3 be natural
numbers. Let us observe that recSeqCart(a, b, x1, z2, 23,91, y2,y3) is (N x N)-
valued. Let us consider real numbers a, b, a1, as, as, by, ba, bg and a natural
number n. Now we state the propositions:

(87) Suppose a >0 and b > 0 and a3 > 0 and b3 > 0 and (a; > 0 and as > 0
or a; > 0 and ag > 0) and (by > 0 and ba > 0 or by > 0 and be > 0). Then

(1) ((recSeqCart(a, bv ai, az, as, b17 b27 b3))(n))1 > Oa and

(11) ((reCSeqCart(a, b7 ai, az, as, bla b27 b3))(n))2 > 0.
PROOF: Set f = recSeqCart(a,b,a,as,as, by, b, bs). Define P[natural
number| = (f($1))1 > 0 and (f($1))2 > 0. P[0]. If P[k], then Pk + 1].
Plk]. O

(88) Suppose a > 0 and b >0 and a; > 0 and az > 0 and a3 > 0 and b; > 0
and by > 0 and b3 > 0. Then

(i) ((recSeqCart(a,b, a1, az,as,by, b, b3))(n))1 > 0, and
(ii) ((recSeqCart(a,b,a1,as,as,bi,ba,b3))(n))2 > 0.
PRrROOF: Set f = recSeqCart(a,b, a1, as,as, by, be,bs). Define Plnatural
number| = (f($1))1 > 0 and (f($1))2 > 0. P[0]. If P[k], then Pk + 1].
Plk]. O
(89) Let us consider real numbers a, b, a1, az, as, b1, by, bs. Suppose a > 0

and b >0and a1 > 1 and a9 > 0 and ag > 0 and b; > 0 and by > 1 and
bg > 0. Let us consider natural numbers m, n. Suppose m > n. Then

(i) ((recSeqCart(a,b,a1,as,as,bi,ba,b3))(m))1 > ((recSeqCart(a, b, ai,
ag, as, by, ba,b3))(n))1, and

(ii) ((recSeqCart(a,b,ai,as,as,br,ba,b3))(m))2 > ((recSeqCart(a, b, a1,
az,as, by, b2, b3))(n))2.
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PRrROOF: Set f = recSeqCart(a,b, a1, as,as, by, be,bs). Define Plnatural
number] = if $; > n, then (f($1))1 > (f(n))1 and (f(31))2 > (f(n))2. If
P[k], then Pk + 1]. P[k]. O

(90) Let us consider real numbers a, b, aj, az, as, b1, by, bs. Suppose a > 0
and b > 0 and a1 > 1 and as > 0 and a3 > 0 and b; > 0 and by > 1
and bg > 0. Then recSeqCart(a, b, a1, az, as, by, by, b3) is one-to-one. The
theorem is a consequence of (89).

(91) {(=, y), where z, y are positive natural numbers : 3-22 —7-3y2+1 =0}
is infinite.
PROOF: Define R(complex number, complex number) = 3-$2 — 7. $2 + 1.
Set A = {(z, y), where z,y are positive natural numbers : R(z,y) = 0}.
Define G(real number, real number) = 55 - $; + 84 - $5 + 0. Define H(real
number, real number) = 36 - $; + 55 - $2 + 0. Define P|[object, element
of N x Njelement of N x N] = $3 = (G(($2)1, (32)2), H((32)1, ($2)2)).
Set f = recSeqCart(3,2,55,84,0,36,55,0). Define A [natural number] =
f(81) € A. If Na], then Na + 1]. Na]. rng f C A. f is one-to-one. [J

10. PROBLEM 138

One can check that there exists a set which is infinite and natural-membered.
Now we state the propositions:
(92) Ifi|p,theni=1ori=—1lori=pori=—p.
(93) {(x, y), where z,y are integers : 2- 23 +x -y — 7 = 0} = {(1, 5), (7,
—97), (-1, —9), (-7, —99) }.
PROOF: Set A = {(x, y), where x,y are integers : 2 - 23 + 2 -y — 7 = 0}.
Set B = {(1, 5),(7, =97),(—1, =9), (=7, —99)}. A C B by [10} (2)], (92).
O
(94) Let us consider a complex number r. If 7 0, then 2'(%)3—#%'(7“—%)—7 =
0.
(95) If n? < 98, then n < 4.
(96) {(z, y), where z, y are positive rational numbers : 2- 23 +2-y—7 =0}
is infinite.
PROOF: Define R(rational number, rational number) = 2 - $1°4+8,-$,— 7.
Set A = {(z, y), where z,y are positive rational numbers : R(z,y) = 0}.
Define G(natural number) = % Define H(natural number) = $; — %.
Define F(natural number) = (G($1), H($1)). Set D = N\ {0,1,2,3,4}.
Consider f being a many sorted set indexed by D such that for every
element d of D, f(d) = F(d). rng f C A. f is one-to-one. [J
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11. PROBLEM 139

Now we state the proposition:

(97) {(z, y), where z, y are positive natural numbers : (x — 1)% + (z +1)%2 =
y? + 1} is infinite.
PROOF: Define R(natural number, natural number) = ($; — 1)% + ($1 +
1)2 — ($2 4+ 1). Set A = {(z, y), where z,y are positive natural numbers :
R(x,y) = 0}. Define G(natural number, natural number) = 3-$; +2-$540.
Define H(natural number, natural number) = 4 - $; + 3 - $5 + 0. Define
Plobject, element of N x N,element of N x N] = $3 = (G(($2)1, ($2)2),
H(($2)1, ($2)2))- Set f = recSeqCart(2, 3, 3,2,0,4, 3,0). Define A'[natural
number] = f($1) € A. If Na], then Ma+1]. Na]. rng f C A. f is one-to-
one. Define R[natural number, natural number] = ($; — 1)2 + ($; +1)% =
$2+1. Set B = {{z, y), where x, y are positive natural numbers : R[z,y]}.
A=B.0O

12. PROBLEM 140

Let a be a rational number and n be a natural number. Let us observe that

n

a" is rational. Let ¢ be an integer. One can verify that a’ is rational. Now we

state the propositions:
(98) If n > 1, then 3" — 3= —2 > 0.
(99) If n> 1, then 3" + 317" —4 > 0.
(100) Let us consider complex numbers z, y. Suppose x = ?’n_?’i# and
Y= M%. Thenz-(x+1)=4-y-(y+1).
(101) If m < n, then 3™ — 317™ < 37 — 3l=n,
(102) There exist no positive natural numbers z, y such that = - (z + 1) =
4-y-(y+1).
(103) {(z, y), where z, y are positive rational numbers : z-(x+1) = 4-y-(y+1)}
is infinite.
PROOF: Define R(complex number, complex number) = $; - ($; +1) — 4 -
$2 - (32 4+ 1). Set A = {{x, y), where x,y are positive rational numbers :

R(z,y) = 0}. Define G(natural number) = w. Define H(natural

number) = w. Define F(natural number) = (G($1), H($1)). Set
D = N\{0,1}. Consider f being a many sorted set indexed by D such that
for every element d of D, f(d) = F(d). rng f C A. f is one-to-one. Define
R [complex number, complex number] = $; - ($; +1) =4 -85 - ($3+ 1). Set
B = {{x, y), where x,y are positive rational numbers : R[z,y]}. A = B.
]
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13. PROBLEM 141

Now we state the propositions:

(104) If m#0and p™ |a-b, then p|aorp]|b.
(105) If a and b are relatively prime and p" | a - b, then p" | a or p™ | b.

(106) If n # 0, then there exist no positive natural numbers z, y such that

x-(x+1)=p?>"-y-(y+1). The theorem is a consequence of (105).

14. PROBLEM 142

Now we state the proposition:

(107) Let us consider natural numbers k, x, y. Suppose 22 — 2 - y2 = k. Let

1]

[9]

(10]

(11]
(12]

us consider natural numbers ¢, u. If t = x — 2 -y and v = x — y, then
t2 —2.u%2 = —k.
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Summary. This is a “quality of life” article concerning product groups,
using the Mizar system [2], [4]. Like a Sonata, this article consists of three mo-
vements.

The first act, the slowest of the three, builds the infrastructure necessary
for the rest of the article. We prove group homomorphisms map arbitrary finite
products to arbitrary finite products, introduce a notion of “group yielding”
families, as well as families of homomorphisms. We close the first act with defining
the inclusion morphism of a subgroup into its parent group, and the projection
morphism of a product group onto one of its factors.

The second act introduces the universal property of products and its conse-
quences as found in, e.g., Kurosh [7]. Specifically, for the product of an arbitrary
family of groups, we prove the center of a product group is the product of centers.
More exciting, we prove for a product of a finite family groups, the commutator
subgroup of the product is the product of commutator subgroups, but this is
because in general: the direct sum of commutator subgroups is the subgroup of
the commutator subgroup of the product group, and the commutator subgroup
of the product is a subgroup of the product of derived subgroups. We conclude
this act by proving a few theorems concerning the image and kernel of morphi-
sms between product groups, as found in Hungerford [5], as well as quotients of
product groups.

The third act introduces the notion of an internal direct product. Isaacs [6]
points out (paraphrasing with Mizar terminology) that the internal direct pro-
duct is a predicate but the external direct product is a [Mizar] functor. To our
delight, we find the bulk of the “recognition theorem” (as stated by Dummit and
Foote [3], Aschbacher [I], and Robinson [I1]) are already formalized in the heroic
work of Nakasho, Okazaki, Yamazaki, and Shidama [9], [§]. We generalize the
notion of an internal product to a set of subgroups, proving it is equivalent to
the internal product of a family of subgroups [10].
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1. PRELIMINARIES

Now we state the propositions:

(1) Let us consider sets X, Y, Z, W. Suppose Z # () and W # (). Let us
consider a function f from X XY into Z, and a function ¢ from X x Y into
W. If for every element a of X for every element b of Y, f(a,b) = g(a,b),
then f =g.

(2) Let us consider a finite set A. Then CFS(A) is a many sorted set indexed
by Seg A.

(3) Let us consider non empty sets X, Y, and a function f from X into Y.

Suppose f is onto. Then there exists a function g from Y into X such that
Jf-g=idy.
PROOF: Define Plobject,object] = $1 = f($2). For every object y such
that y € Y there exists an object = such that € X and Py, z|. Consider
g being a function from Y into X such that for every object y such that
y € Y holds Ply, g(y)]. For every element y of Y, (f - g)(y) = y. O

Let I be a non empty set, A, B be many sorted sets indexed by I, f be
a many sorted function from A into B, and i be an element of I. Let us observe
that the functor f(7) yields a function from A(7) into B(i). Let Fy, F5 be 1-sorted
yielding many sorted sets indexed by I.

A many sorted function from Fj into Fb is a many sorted function from
the support of F} into the support of F5. Let ¢ be a many sorted function from
F}y into Fy and i be an element of I. Note that the functor ¢(7) yields a function
from F}(i) into F5(i). Now we state the proposition:

(4) Let us consider a non empty set I, many sorted sets A, B indexed by I,
and a many sorted set f indexed by I. Then f is a many sorted function
from A into B if and only if for every element i of I, f(i) is a function
from A(i) into B(q).

Let I, X be sets. Observe that there exists a many sorted set indexed by I
which is (2%)-valued.

Let M be a (2%)-valued many sorted set indexed by I. One can check that
the functor |J M yields a subset of X. Let I be a set, J be a subset of I, and
F be a many sorted set indexed by I. One can check that F[J is J-defined and
total.
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Let F be a 1-sorted yielding many sorted set indexed by I. Observe that
F[J is 1-sorted yielding, J-defined, and total. Now we state the proposition:
(5) Let us consider a non empty set I, a many sorted set M indexed by I,

and an object y. Then y € rng M if and only if there exists an element
of I such that y = M (3).

2. SEQUENCES OF GROUP ELEMENTS UNDER HOMOMORPHISMS

Now we state the propositions:

(6) Let us consider groups Gi, G2, a homomorphism ¢ from G; to Ga,
a finite sequence F; of elements of the carrier of G1, and a finite sequence
F of elements of the carrier of Gy. If Fy = ¢ - Fi, then [ Fo = (] F1).
PROOF: Define P|[finite sequence of elements of the carrier of G1] = ¢(I]$1)
= [I¢ - $1. Plea], where « is the carrier of G1. For every finite sequence
po of elements of the carrier of G; and for every element x of the carrier
of Gy such that P[pg] holds Plpy ~ (x)]. For every finite sequence py of
elements of the carrier of Gy, P[po]. O

(7) Let us consider groups G1, G2, a homomorphism ¢ from G; to G2, and
a finite sequence F; of elements of the carrier of G1. Then there exists
a finite sequence F5 of elements of the carrier of G5 such that

(i) len F} =len Fy, and

(11) FQ =@ Fl, and
(iil) [1F2 = (1 F1).
PROOF: Set n; = len F;. Define Plobject, object] = there exists a natural
number k such that k = $; and $3 = ¢(F1(k)). For every natural number
k such that k € Segn; there exists an object x such that P[k, z|. Consider
p being a finite sequence such that domp = Segn; and for every natural
number k such that k& € Segny holds Plk,p(k)]. p=¢ - F1. O

(8) Let us consider groups Gi, G2, a homomorphism ¢ from G; to Ga,

a finite sequence F; of elements of the carrier of G1, and a finite sequence
k1 of elements of Z. Then there exists a finite sequence F5 of elements of
the carrier of GG9 such that

(i) len Fy = len Fy, and

(11) F2 = Q- Fl, and

(i) TTF" = o(ITF™).
PRrOOF: Consider F being a finite sequence of elements of the carrier of G
such that len F} = len Fy and Fy = ¢ - F1 and [[ F» = ¢([] F1). For every
natural number k such that k € dom Fy*! holds (¢- Fi*1)(k) = F*1 (k). O
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3. PRELIMINARY WORK ABOUT GROUP-FAMILIES AND (GROUP-YIELDING
MANY SORTED SETS

Let I> be a binary relation. We say that I, is group yielding if and only if
(Def. 1) for every object G such that G € rng I holds G is a group.

One can check that every function which is group yielding is also 1-sorted
yielding and every function which is group yielding is also multiplicative magma
yielding. Now we state the proposition:

(9) Let us consider a set I. Then every associative, group-like multiplicative
magma family of I is group yielding.

Let I be a set. One can check that there exists a many sorted set indexed

by I which is group yielding and every multiplicative magma family of I which
is associative and group-like is also group yielding and there exists a function
which is group yielding. Now we state the proposition:

(10) Let us consider a non empty set I, a group yielding many sorted set F’
indexed by I, and an element i of I. Then F'(i) is a group.

Let I be a non empty set, i be an element of I, and F' be a group yielding
many sorted set indexed by I. Note that F'(i) is group-like, associative, unital,
and non empty as a multiplicative magma. Now we state the proposition:

(11) Let us consider a set I, and a many sorted set F' indexed by I. Then
F' is group yielding if and only if for every object ¢ such that ¢ € I holds

F(i) is a group.

Let I be a set. Let us observe that every multiplicative magma family of
which is group yielding is also group-like and associative and every group-like,
associative multiplicative magma family of I is group yielding and every group
yielding many sorted set indexed by [ is group-like, associative, and multiplica-
tive magma yielding.
From now on I denotes a non empty set, ¢ denotes an element of I, F’ denotes

a group family of I, and G denotes a group. Now we state the propositions:

(12) 0+~ G is a group family of ().
(13) Let us consider a natural number n. Then Segn — G is a group family
of Segn. The theorem is a consequence of (12).
Let G be a group and n be a natural number. One can verify that Segn — G

is group yielding. Now we state the proposition:
(14) (The support of F')(i) = the carrier of F(i).

The scheme GrFamSch deals with a non empty set I; and a unary functor
A yielding a group and states that
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(Sch. 1) There exists a group family F of I; such that for every element i of I3,
F(i) = A(7).

4. SUBGROUP-FAMILY OF A FAMILY OF GROUPS

Let I be a set and F', Is be group families of 1. We say that I is F-subgroup
yielding if and only if
(Def. 2) for every element ¢ of I and for every group G such that G = F(7) holds
I5(7) is a subgroup of G.
Now we state the propositions:
(15) Let us consider a group family S of I. Then S is F-subgroup yielding if
and only if for every element ¢ of I, S(i) is a subgroup of F'(3).
(16) Let us consider a set I. Then every group family of I is F-subgroup
yielding.
Let I be a set and F' be a group family of I. Let us observe that there exists
a group family of I which is F-subgroup yielding.
A subgroup family of F' is an F-subgroup yielding group family of I. Let [
be a non empty set, S be a subgroup family of F', and ¢ be an element of I.
Let us observe that the functor S(i) yields a subgroup of F(i). From now on S
denotes a subgroup family of F'. Now we state the proposition:
(17) Let us consider a group family S of I. Then S is a subgroup family of F’
if and only if for every element i of I, S(7) is a subgroup of F'(i).
The scheme SubFamSch deals with a non empty set I; and a group family
F of I} and a unary functor § yielding a group and states that

(Sch. 2) There exists a subgroup family S of F such that for every element i of
I, 5(i) = S(F ()
provided

e for every group G, §(G) is a subgroup of G.

Let I be a non empty set and Iy be a group family of 1. We say that Is is
componentwise strict if and only if
(Def. 3) for every element i of I, I(7) is strict.
One can check that there exists a group family of I which is componentwise
strict. Now we state the proposition:
(18) Let us consider a non empty set I, a group family F of I, and a subgroup
family Iy of F. Then Is is componentwise strict if and only if for every
element i of I, I5(7) is a strict subgroup of F'(7).
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Let I be a non empty set and F' be a group family of 1. One can verify that
there exists a subgroup family of F' which is componentwise strict. Let .S be
a componentwise strict subgroup family of F' and i be an element of I. Note
that S(7) is strict as a subgroup of F(1).

The scheme StrSubFamSch deals with a non empty set I; and a group family
F of I} and a unary functor § yielding a group and states that

(Sch. 3) There exists a componentwise strict subgroup family S of F such that
for every element i of Iy, S(i) = S(F(i))
provided

e for every group G, S(G) is a strict subgroup of G.

Now we state the proposition:
(19) Let us consider subgroup families A, B of F'. If for every element i of I,
A(i) = B(i), then A = B.
Let I be a non empty set and F be a group family of I. The functor {1}
yielding a componentwise strict subgroup family of F' is defined by
(Def. 4)  for every element i of I, it(i) = {1} .-
The functor Qf yielding a componentwise strict subgroup family of F' is
defined by
(Def. 5) for every element i of I, it(i) = Qp(;.
Let I5 be a subgroup family of F'. We say that I is normal if and only if
(Def. 6) for every element i of I, I5(7) is a normal subgroup of F(i).

Let us note that there exists a subgroup family of F' which is componentwise
strict and normal. Let S be a normal subgroup family of F' and ¢ be an element
of I. One can check that S(i) is normal as a subgroup of F(i).

Let S be a componentwise strict subgroup family of F. Note that S(i) is
strict as a subgroup of F'(i) and {1} is normal and Qp is normal. Let N be
a normal subgroup family of F. The functor '/ yielding a group family of I

is defined by
(Def. 7) for every element i of I, it(i) = F(i)/N(Z-).
Observe that ¥ /N is componentwise strict. Now we state the propositions:
(20) There exists a componentwise strict, normal subgroup family S of F
such that for every element i of I, S(i) = F(i)°.

PROOF: Define A(group) = $,°. Consider S being a componentwise strict
subgroup family of F' such that for every element ¢ of I, S(i) = A(F(7)).
For every element i of I, S(i) is a normal subgroup of F(z). O
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(21) Let us consider a strict multiplicative magma M. Suppose there exists
an object x such that the carrier of M = {x}. Then there exists a strict,
trivial group G such that M = G.

(22) Let us consider an empty set I, and a multiplicative magma family F' of
I. Then [] F is a trivial group. The theorem is a consequence of (21).

5. INCLUSION MORPHISM

Let G, H be groups. Assume H is a subgroup of G. The functor incl(H, G)
yielding a homomorphism from H to G is defined by the term
(Def. 8) id,, where « is the carrier of H.
Let G be a group and H be a subgroup of G. The functor z yielding
a homomorphism from H to G is defined by the term
(Def. 9) incl(H,G).
Now we state the propositions:
(23) Let us consider a group H, and an element h of H. If H is a subgroup
of G, then (incl(H, G))(h) = h.
(24) Let us consider a subgroup H of G. Then

(i) incl(H, G) is one-to-one, and
(ii) Imincl(H,G) = the multiplicative magma of H.

PRrROOF: Set f =incl(H,G). Ker f ={1}y. O
Let G be a group and H be a subgroup of G. Let us observe that incl(H, G)
is one-to-one. Now we state the propositions:

(25) Let us consider groups H, K. Suppose H is a subgroup of G. Let us
consider a homomorphism ¢ from G to K. Then ¢|(the carrier of H) =
¢ - (incl(H, G)).
PRrROOF: dom(p|(the carrier of H)) = the carrier of H. For every object z
such that x € dom(p|(the carrier of H)) holds (¢[(the carrier of H))(x) =
(¢ - (incl(H,G)))(z). O

(26) Let us consider a group K, a subgroup H of G, and a homomorphism ¢
from G to K. Then o[H = ¢ - (2).

PROOF: For every element h of H, (o[H)(h) = (¢ - (7))(h). O

(27) Let us consider a group G, and a strict subgroup H of G. Then Im(X) =
H.

107
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6. FAMILIES OF HOMOMORPHISMS

Let G be a group, I be a non empty set, and F' be a group family of I.
A homomorphism family of G and F' is a many sorted function indexed by
I defined by
(Def. 10) for every element 4 of I, it(i) is a homomorphism from G to F(i).
Let f be a homomorphism family of G and F' and ¢ be an element of I.
One can check that the functor f(i) yields a homomorphism from G to F(i).
In the sequel f denotes a homomorphism family of G and F. Now we state the
proposition:
(28) (i, f(0)) € -
Let I be a non empty set and F}, F» be group families of 1.
A homomorphism family of F} and F5 is a many sorted function from F}
into Fy defined by
(Def. 11) for every element ¢ of I, it(i) is a homomorphism from F (i) to Fb(4).
Let ¢ be an element of I and ¢ be a homomorphism family of F; and F5.
Note that ¢(7) is multiplicative as a function from Fj(i) into F»(7). Now we
state the proposition:
(29) Let us consider a non empty set I, group families A, B of I, and a many
sorted set f indexed by I. Then f is a homomorphism family of A and B
if and only if for every element i of I, f(i) is a homomorphism from A(%)
to B(i). The theorem is a consequence of (14).
The scheme HomFamSch deals with a non empty set I; and a group family
D of I1 and a group family C of I; and a unary functor A yielding a function
and states that
(Sch. 4) There exists a homomorphism family H of D; and C such that for every
element ¢ of Iy, H(i) = A(7)
provided

o for every element ¢ of I;, A(7) is a homomorphism from D; (i) to C(4).

Now we state the proposition:

(30) Let us consider a group G, a non empty set I, a group family F of I,
and a many sorted set f indexed by I. Then f is a homomorphism family
of G and F if and only if for every element i of I, f(i) is a homomorphism
from G to F(i).

The scheme RHomFamSch deals with a non empty set I; and a group D;
and a group family C of I; and a unary functor A yielding a function and states
that
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(Sch. 5) There exists a homomorphism family H of D; and C such that for every
element ¢ of Iy, H(i) = A(%)
provided

e for every element ¢ of I;, A(7) is a homomorphism from D; to C(7).

Now we state the proposition:

(31) Let us consider a non empty set I, group families A, B of I, and a many
sorted set f indexed by I. Then f is a homomorphism family of A and B
if and only if for every element i of I, f(i) is a homomorphism from A(7)
to B(i). The theorem is a consequence of (14).

7. PROJECTION MORPHISMS FROM PRODUCT GROUP TO DIRECT FACTORS

Now we state the proposition:
(32) Let us consider an element g of [] F'. Then ¢(7) is an element of F'().
Let I be a non empty set, F' be a group family of I, g be an element of [] F,
and i be an element of I. The functor g/; yielding an element of F(i) is defined
by the term
(Def. 12)  g(3).
We identify g(i) with g/;. The functor proj(F,i) yielding a homomorphism
from [] F to F'(i) is defined by
(Def. 13) for every element h of [] F, it(h) = h(i).
Now we state the proposition:
(33) proj(F,i) is onto.
PROOF: For every object y such that y € the carrier of F'(i) there exists
an object = such that = € the carrier of [[ F' and y = (proj(F,7))(z). O
Let I be a non empty set, F' be a group family of I, and ¢ be an element of
I. Let us observe that proj(F,) is onto. Now we state the propositions:
(34) proj(the support of F,i) is a function from [](the support of F') into
the carrier of F'(7).
(35) Let us consider an element g of [] F.
Then (proj(F,i))(g) = (proj(the support of F,))(g).
(36) proj(F,i) = proj(the support of F,i). The theorem is a consequence of
(34) and (35).
(37) Let us consider an element g of [ F, and an element h of F(i). Then
g+ (i,h) €[] F.
(38) Let us consider an element i of I, and an element g of [ F. Then g +-
(4, 1p(;)) € Kerproj(F,i). The theorem is a consequence of (37).



110 ALEXANDER M. NELSON

(39) Let us consider groups G, G2, and a homomorphism f from G7 to Gs.
If for every element g of G1, f(g) = g, then G is a subgroup of Gs.
PrROOF: The carrier of G; C the carrier of G5. Set U; = the carrier of GG7.
For every element a of U; and for every element b of Uy, (the multiplication
of G1)(a,b) = ((the multiplication of G2) | U1)(a,b). (The multiplication
of G2) | Uy is a binary operation on U;. [

(40) Let us consider elements i, j of I. Suppose i # j. Then (proj(F,j)) -
(1ProdHom(F, 7)) = F(i) — {1}5(j)-

ProOOF: Set U = the carrier of F(i). dom(F(i) — {1}p¢)) = U and
dom((proj(F,j)) - (1ProdHom(F,3))) = U. For every element z of U,
((proj(F, 7)) - (1ProdHom(F, i)))(z) = (F(i) — {1}p)(x). O

(41) (proj(F,i)) - (1ProdHom(F,i)) = id,, where « is the carrier of F'(i).
PROOF: Set U = the carrier of F'(i). For every element x of U, ((proj(F,1))-
(1ProdHom(F,1)))(z) = z. O

8. UNIVERSAL PROPERTY OF DIRECT PRODUCTS OF GROUPS

Let us consider a homomorphism family f of G and F. Now we state the
propositions:

(42) There exists a homomorphism ¢ from G to [[ F such that for every
element g of G for every element j of I, (f(j))(g) = (proj(F,j))(v(g))-
PROOF: Define Pobject, object] = there exists an element gg of [ F' such
that $2 = go and for every element j of I, f(j)($1) = go(j). Define F =
the carrier of G. For every object x such that x € F there exists an object
y such that y € the carrier of [[ F' and P[z, y]. Consider ¢ being a function
from F into the carrier of [ F' such that for every object x such that x € F
holds Plz, ¢(z)]. For every element g of G and for every element j of I,
©(9)(4) = f(j)(g). For every elements a, b of G, p(a-b) = p(a) - p(b). For
every element j of I, (f(j))(g) = (proj(F’j))(¢(g)). O

(43) There exists a homomorphism ¢ from G to []F such that for every
element i of I, f(i) = (proj(F,i)) - ¢.

PRroOOF: Consider ¢ being a homomorphism from G to [] F' such that for
every element g of G and for every element j of I, (f(j))(g) = (proj(F, j))
(¢(g)). For every element g of G, ((proj(F;i)) - ¢)(g) = f(i)(g9). O

(44) Let us consider a homomorphism family f of G and F, and homo-
morphisms @1, s from G to [[F. Suppose for every element ¢ of I,
f(@) = (proj(F,7))- ¢ and for every element i of I, f(i) = (proj(F,1))- 2.
Then ¢1 = 2.

PROOF: For every element g of G, v1(g) = p2(g). O
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Let G be a group, I be a non empty set, F' be a group family of I, and f be
a homomorphism family of G and F'. The functor ] f yielding a homomorphism
from G to [[ F is defined by

(Def. 14) for every element g of G and for every element i of I, f(i)(g) = it(g)(i).
Let us consider an element g of G. Now we state the propositions:

(45) for every element i of I, (I]f)(g)(i) = 1p(;) if and only if (I1/)(g) =

1]
ProOF: If for every element i of I, ([] f)(g)(i) = 1p(), then ([]f)(g) =
1, O

(46) g € Ker[] f if and only if for every element i of I, g € Ker f(i).
Proor: If g € Ker[] f, then for every element i of I, g € Ker f(i). If for
every element ¢ of I, g € Ker f(i), then g € Ker [] f. O

(47) Let us consider groups G1, G2, G3, a homomorphism f; from G; to
G2, a homomorphism fo from G5 to G3, and an element g of GG1. Then
g € Ker fo - f1 if and only if fi(g) € Ker fs.
ProorF: If g € Ker fo - fi1, then fi(g) € Ker fo. If fi(g9) € Ker fa, then
g €Kerfy- f1. 0

(48) Let us consider groups G1, Go, G3, a homomorphism f; from G; to G,

and a homomorphism fs from G5 to GG3. Then the carrier of Ker fo - f1 =
f1~((the carrier of Ker f5)).
PROOF: For every element g of Gy such that g € the carrier of Ker f5 - f;
holds g € f17!((the carrier of Ker f5)). For every element g of G such
that g € f1~!((the carrier of Ker f2)) holds g € the carrier of Ker fa - f1.
]

(49) The carrier of Ker[] f = (the set of all the carrier of Ker f(i) where
i is an element of I.
PROOF: Set F = the set of all the carrier of Ker f(i) where 7 is an element
of I. F # (). For every object g, g € Ker[] f iff for every set A such that
A € F holds g € A. For every object g, g € Ker [[ f iff g € (| F. For every
object g, g € the carrier of Ker[[ fiff g€ NF. O

(50) Let us consider a function f, a non empty set I, and a group family F
of I. Suppose dom f = I and for every element i of I, f(i) € F(i). Then
f € T1F. The theorem is a consequence of (14).

(51) Let us consider a group family S of I, and an element g of [] F'. Then
g € 1S if and only if for every element i of I, (proj(F,i))(g) € S(i). The
theorem is a consequence of (50).

(52) Let us consider group families Fi, F5 of I. Suppose for every element 4
of I, F(i) is a subgroup of F5(i). Then [] F} is a subgroup of [] F5.
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PROOF: Define A(element of I) = (incl(Fy($1), F2($1))) - (proj(Fi,$1)).
Consider f being a homomorphism family of [[ F} and F, such that for
every element i of I, f(i) = A(i). For every element g of [[ F} and for
every element i of I, f(i)(g) = g(i). Consider ¢ being a homomorphism
from [] £} to [[ F> such that for every element g of [[ Fi and for every
element ¢ of I, (f(7))(g) = (proj(Fz,1))(¢(g)). For every element g of [] F1,
plg) =g. 0
Let I be a non empty set, F' be a group family of I, and S be a subgroup
family of F'. The functor [] S yielding a strict subgroup of [] F' is defined by the
term

(Def. 15) TIS.
Now we state the propositions:
(563) Improj(F,i) = the multiplicative magma of F'(7).
PROOF: For every object g such that g € the carrier of F(i) holds g €
the carrier of Improj(F,i). O

(54) Let us consider componentwise strict subgroup families Fy, F5 of F. Sup-
pose for every element ¢ of I, Im proj(F}, ) is a subgroup of Im proj(Fs, ).
Then [] £} is a strict subgroup of [[ F>. The theorem is a consequence of
(53) and (52).

(55) Let us consider a strict subgroup G of [[ F, and S. Suppose for eve-
ry element ¢ of I, S(i) = Im(proj(F,q)) - (3) Let us consider a ho-
momorphism family f of G and S. Suppose for every element ¢ of I,
f(@) = (proj(F,1)) - (g) Then [] f = id,, where « is the carrier of G.
PROOF: For every element g of G and for every element ¢ of I, ((proj(F,i))-
(3))(9) = ((proj(F,i)) - (IT f))(g). For every element g of [] F' such that
g € G holds (] f)(g) = g. For every object = such that = € the carrier of
G holds (] f)(x) = z. O

(56) Let us consider groups G1, G2, a homomorphism ¢ from G; to G, and
an element x of G7. Suppose x € the commutators of G;. Then () €
the commutators of Gs.

(57) Let us consider groups Gi, G2, G3, a homomorphism f; from G; to
(G2, a homomorphism fs from G2 to GG3, and an element g of G;. Then
(f2- f1)(9) = f2(f1(9)).

(58) Let us consider groups G, G2, a subgroup H of G5, a homomorphism
fi1 from G; to G2, and a homomorphism fo from G to H. If fi = f5, then
Im f1 = Im f2.

PROOF: For every element g of Ga, g € Im f; iff g € Im f5. O
(59) Let us consider elements a, b of [[ ', and i. Then [a, b](i) = [a/;, b/;].
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The scheme SubFamFEz deals with a non empty set I; and a group family F
of I1 and a binary predicate P and states that
(Sch. 6) There exists a subgroup family S of F such that for every element i of
I, Pli, S(i)]
provided

e for every element 7 of I1, there exists a subgroup j of F (i) such that P[i, j].

Now we state the propositions:

(60) Let us consider a many sorted set A indexed by I. Suppose for every
element i of I, A(i) is a subset of F'(i). Then [] A is a subset of [] F.
PROOF: For every object x such that x € [[A holds x € the carrier of
[1F. O

(61) Let us consider a normal subgroup family S of F'. Then [ S is a normal
subgroup of [] F.

PROOF: For every element g of [T F, ([T S)? is a subgroup of [[S. O
Let I be a non empty set, F' be a group family of I, and S be a normal
subgroup family of F. Note that [][.S is normal as a subgroup of [ F.

9. COMMUTATOR SUBGROUP AND CENTER OF ProDUCT GROUPS

Now we state the proposition:
(62) Let us consider a group family Z of I. If for every element i of I, Z(i) =
Z(F(i)), then Z(ITF) =[1Z.
PRrROOF: For every element a of [[F, a € [[Z iff for every element b of
[[F,a-b=b-a. For every element a of [[ F, a € [[Z iff a € Z(]] F'). For
every element i of I, Z(i) is a subgroup of F(i). O
Let us consider a subgroup family D of F. Now we state the propositions:
(63) If for every element i of I, D(i) = F'(i)¢, then (I] F)¢ is a strict subgroup
of [ D.
PROOF: For every elements a, b of [ F, [a,b] € [[ D. O
(64) If for every element i of I, D(i) = F'(i)°, then sum D is a strict subgroup
of (T F)°.
PROOF: For every element g of [] I such that g € sum D holds g € ([ F)°.
O
(65) Let us consider a finite, non empty set I, a group family F' of I, and
a subgroup family D of F. Suppose for every element i of I, D(i) = F(i)°.
Then (J]F)¢ = [I D. The theorem is a consequence of (64) and (63).
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10. QUOTIENTS OF PRODUCT GROUPS

Let I be a non empty set, F1, F» be group families of I, and f be a homo-
morphism family of F; and F5. The functor [] f yielding a homomorphism from
[1 F1 to [] F> is defined by
(Def. 16) for every element i of I, (proj(Fa,i)) - it = f(i) - (proj(F1,1)).
The functor Ker f yielding a componentwise strict, normal subgroup family
of Iy is defined by
(Def. 17) for every element ¢ of I, it(i) = Ker(f(¢) qua homomorphism from F (7)
to Fy(i)).
The functor Im f yielding a componentwise strict subgroup family of Fj is
defined by
(Def. 18) for every element i of I, it(i) = Im(f(i) qua homomorphism from F}(7)
to Fy(i)).
Let us consider group families F, Fb of I and a homomorphism family f of
F1 and F5. Now we state the propositions:

(66) Ker[[f=TIIKerf.

PROOF: For every element g of [[ F1, g € Ker[[ f iff g € [[Ker f. O
(67) Im[[f=1IIImf.

PRrROOF: For every element g of [[Fo, g e Im][[ fiff g € [[Im f. O

(68) Let us consider a componentwise strict, normal subgroup family S of F.
Then HF/HS and [](¥'/s) are isomorphic.
PROOF: Define A(element of I') = the canonical homomorphism onto co-
sets of S(31). For every element ¢ of I, A(%) is a homomorphism from F (i)
to (¥'/5)(i). Consider f being a homomorphism family of F' and ¥'/g such
that for every element i of I, f(i) = A(i). Kerf = S. Ker[[f = [IS.

Imf=%/¢. Im[[f=][Imf. O

11. INTERNAL DIRECT PRODUCTS

Let I be a set, G be a group, and I be a homomorphism family of I and
G. We say that I, is normal if and only if

(Def. 19) for every object i such that ¢ € I holds I5(7) is a normal subgroup of G.
We say that Is is componentwise strict if and only if
(Def. 20) for every object ¢ such that i € I holds I»() is a strict subgroup of G.

Let us consider a non empty set I, a group GG, and a homomorphism family
F of I and G. Now we state the propositions:
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(69) F is normal if and only if for every element i of I, F(i) is a normal
subgroup of G.

(70) F is componentwise strict if and only if for every element i of I, F'(7) is
a strict subgroup of G.

Let I be a set and G be a group. Note that there exists a homomorphism
family of I and G which is componentwise strict and normal.

Let I be a non empty set, F' be a homomorphism family of I and G, and ¢
be an element of I. Note that the functor F'(7) yields a subgroup of G. Let F' be
a normal homomorphism family of I and G. One can check that F (i) is normal
as a subgroup of G. Now we state the propositions:

(71) Let us consider subgroups Hi, Hy of G. Suppose [Hi, Ha] = {1}. Let
us consider elements a, b of G. If a € Hy and b € Ho, thena-b=5-a.

(72) Let us consider a normal subgroup N of GG, and elements a, b of G. If
a € N, then a® € N.

(73) Let us consider normal subgroups H, K of G. Suppose H N K = {1}¢.
Let us consider elements h, k of G.If h € H and k € K, then h-k =k - h.
PRrROOF: [h, k] €e HN K. O

(74) Let us consider a normal homomorphism family F' of I and G, and
asubset A of G. Suppose A = |J{the carrier of F'(i), where i is an element
of I'}. Then there exists a strict, normal subgroup N of G such that N =
gr(A).

PROOF: Reconsider N = gr(A) as a strict subgroup of G. For every element
i of I, the carrier of F'(i) C the carrier of N. For every element a of G,
N*% is a subgroup of N. [J

Let I be a set, J be a subset of I, and F' be a group yielding many sorted set
indexed by I. One can verify that F'[J is group yielding, J-defined, and total.
Now we state the proposition:

(75) Let us consider a set I, a homomorphism family F of I and G, and a set
J. If J C 1, then F'[J is a homomorphism family of J and G.
PROOF: For every object j such that j € J holds (F'[J)(j) is a subgroup
of G. O

Let I be a set, G be a group, F' be a homomorphism family of I and G,
and J be a subset of I. Note that the functor F'[J yields a homomorphism
family of J and G. One can check that F'[J is group yielding. Now we state the
propositions:

(76) Let us consider a normal homomorphism family F' of I and G, a subset
A of G, and an element i of I. Suppose A = [J{the carrier of F(j), where
j is an element of I : i # j}. Then there exists a strict, normal subgroup

115
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N of G such that N = gr(A). The theorem is a consequence of (75), (69),
and (74).

(77) Let us consider a non empty subset J of I, and a normal homomorphism
family F' of I and G. Then F[J is a normal homomorphism family of J
and G.

PROOF: For every element j of J, (F'[J)(j) is a normal subgroup of G. O

(78) Let us consider a set I, a subset J of I, and a normal homomorphism
family F' of I and G. Then F'[J is a normal homomorphism family of J
and G.

PRrROOF: For every object ¢ such that ¢ € J holds (F[J)(7) is a normal
subgroup of G. U

Let I be a set, J be a subset of I, G be a group, and F' be a normal homomor-
phism family of I and G. Let us note that F'[J is normal as a homomorphism
family of J and G. Now we state the proposition:

(79) Let us consider a set I, a subset J of I, and a componentwise strict
homomorphism family F' of I and G. Then F'[J is a componentwise strict
homomorphism family of J and G.

PROOF: For every object i such that ¢ € J holds (F[J)(i) is a strict
subgroup of G. [J

Let I be a set, J be a subset of I, G be a group, and F' be a componentwise
strict homomorphism family of I and G. Let us note that F'[J is componentwise
strict as a homomorphism family of J and G. Now we state the propositions:

(80) Let us consider a set I, and a subset J of I. Suppose J is empty. Let us
consider a normal homomorphism family F' of I and G. Then the support
of FIJ = () —— 2%, where « is the carrier of G.

(81) Let us consider a set I, a subset J of I, a normal homomorphism family
F of I and G, and a subset A of G. Suppose A = |J(the support of F[J).
Then there exists a strict, normal subgroup N of G such that N = gr(A).

(82) Let us consider a set I, a normal homomorphism family F of I and G,
and a subset A of G. Suppose A = [J(the support of F'). Then there exists
a strict, normal subgroup N of G such that N = gr(A). The theorem is
a consequence of (81).

(83) Every componentwise strict homomorphism family of I and G is
(SubGr G)-valued. The theorem is a consequence of (5) and (70).

Let I be a non empty set and G be a group. Let us observe that every
componentwise strict homomorphism family of I and G is (SubGr G)-valued.
Let I be a set and F' be a 1-sorted yielding many sorted set indexed by I.
An element of F'is an element of the support of F. Now we state the proposition:
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(84) Let us consider a group family F' of I, an element g of F', and an element
i of I. Then ¢(7) is an element of F(i). The theorem is a consequence of
(14).

Let I be a non empty set, G be a group, and F' be a homomorphism family
of I and G. Observe that every element of F' is (the carrier of G)-valued and
every element of [[F is I-defined, relation-like, and function-like and every
element of [] F' is I-defined, (the carrier of G)-valued, and total. Now we state
the proposition:

(85) Let us consider a set I, a group G, and a homomorphism family F' of I
and G. Then the support of F is (2¢)-valued, where « is the carrier of G.
The theorem is a consequence of (14).

Let I be a set, G be a group, and F be a homomorphism family of I and
G. Observe that the support of F is (2(the carrier of G)y_yalyed. Now we state the
propositions:

(86) Let us consider a group G, a finite subset S of SubGr G, and a natural
number n. Suppose n = S. Then CFS(S) is a homomorphism family of
Segn and G.

PROOF: For every object y such that y € rng CFS(.S) holds y is a subgroup
of G. CFS(S) is a group family of Segn. For every object i such that
i € Segn holds (CFS(5))(4) is a subgroup of G. O

(87) Let us consider a group G, a finite subset N of the normal subgroups of
G, and a natural number n. Suppose n = N. Then CFS(NN) is a normal
homomorphism family of Segn and G.

PROOF: For every object i such that ¢ € Segn holds (CFS(N))(¢) is a nor-
mal subgroup of G. [J

(88) Let us consider a group G, an empty set I, and a homomorphism family
F of I and G. Then gr(|J(the support of F')) = {1}¢.

Let G be a group, I be a set, F' be a homomorphism family of I and G,
and ¢ be an object. Assume i € I. The functor F); yielding a subgroup of G is
defined by the term

(Def. 21)  F (7).
We say that G is an internal product of F' if and only if

(Def. 22) for every object i such that ¢ € I holds F'(i) is a normal subgroup of
G and the multiplicative magma of G = gr(|J(the support of F')) and for
every object ¢ such that ¢ € I for every strict, normal subgroup N of G
such that N = gr(|J(the support of F[I \ {j, where j is an element of
I:F(i)=F(j)})) holds F); N N = {1}¢.

Now we state the propositions:
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(89) Let us consider a group G, an empty set I, and a homomorphism family
F of I and G. Then G is an internal product of F' if and only if G is trivial.
The theorem is a consequence of (88).

(90) Let us consider a group G, a non empty set I, and a homomorphism
family F' of I and G. Then G is an internal product of F' if and only if for
every element i of I, F'(i) is a normal subgroup of G and the multiplicative
magma of G = gr(|J(the support of F')) and for every element i of I and
for every subset J of I such that J = I\ {j, where j is an element of
I : F(i) = F(j)} for every strict, normal subgroup N of G such that
N = gr(U(the support of F[J)) holds F'(i) N N = {1}4.

Let G be a group, I be a set, and F' be a normal homomorphism family of
I and G. One can check that G is an internal product of F' if and only if the
condition (Def. 23) is satisfied.

(Def. 23) the multiplicative magma of G = gr(|J(the support of F')) and for every
object ¢ such that ¢ € I for every strict, normal subgroup N of G such
that N = gr(U(the support of F'[I\{j, where j is an element of I : F(i) =
F(j)})) holds F; N N = {1}¢.

Let us consider a group G, a non empty set I, and a normal homomorphism
family F' of I and G. Now we state the propositions:

(91) G is an internal product of F' if and only if the multiplicative magma of
G = gr(U(the support of F')) and for every element ¢ of I and for every sub-
set J of I such that J = I\ {j, where j is an element of I : F(i) = F(j)}
for every strict, normal subgroup N of G such that N = gr(|J(the support
of F'[J)) holds F (i) N N = {1}. The theorem is a consequence of (90).

(92) Suppose F' is one-to-one. Then G is an internal product of F' if and only
if the multiplicative magma of G = gr(|J(the support of F')) and for every
element 7 of I and for every subset J of I such that J = I\ {i} for every
strict, normal subgroup N of G such that N = gr(|J(the support of F'[.J))
holds F'(i) " N = {1}¢. The theorem is a consequence of (91).

(93) THE CELEBRATED “RECOGNITION THEOREM”, SEE ASCHBACHER [I],
(1.9)], HUNGERFORD [5, (1.8.6)], RoBINsoN [I1], (1.4.7.11)]:
Let us consider a strict group G, a non empty set I, and a normal homo-
morphism family F' of I and G. Suppose F' is one-to-one. Then G is an
internal product of F' if and only if F' is an internal direct sum components
of G and I.
PROOF: For every element i of I and for every subset J of I, the support
of F|J = (the support of F)[J. If G is an internal product of F', then F
is an internal direct sum components of G and I. If F' is an internal direct
sum components of G and I, then G is an internal product of F. [
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Let G be a group and F be a subset of SubGr G. We say that G is an internal
product of F if and only if

(Def. 24) for every strict subgroup H of G such that H € F holds H is a nor-
mal subgroup of G and there exists a subset A of G such that A =
U{Us, where Us is a subset of G : there exists a strict subgroup H of
G such that H € F and Us = the carrier of H} and the multiplicative
magma of G = gr(A) and for every strict subgroup H of G such that
H € F for every subset A of G such that A = |J{U,, where Uy is a subset
of G : there exists a strict subgroup K of G such that K € F and Uy =
the carrier of K and K # H} holds H Ngr(4) = {1}¢.

Let H be a strict subgroup of G. We say that H is an internal product of F
if and only if
(Def. 25) for every strict subgroup H; of G such that H; € F holds H; is a nor-
mal subgroup of H and there exists a subset A of G such that A =
U{Us, where Us is a subset of G : there exists a strict subgroup H of
G such that H € F and Uz = the carrier of H} and H = gr(A) and
for every strict subgroup Hi of G such that H; € F for every subset
A of G such that A = (J{U4, where Uy is a subset of G : there exists
a strict subgroup K of G such that K € F and Uy = the carrier of K and
K # Hi} holds Hy Ngr(A) = {1}¢.
Now we state the propositions:
(94) G is a subgroup of Q.
(95) Let us consider a group GG, and a subgroup H of G. Suppose H is a normal
subgroup of g. Then H is a normal subgroup of G. The theorem is
a consequence of (94).

(96) Let us consider a group G, and a subset F of SubGrG. Then G is an
internal product of F if and only if Q¢ is an internal product of F. The
theorem is a consequence of (95).

(97) Let us consider a group G, a non empty set I, a componentwise strict
homomorphism family F' of I and G, and a subset F of SubGrG. Sup-
pose F = rng F. Then [J{A, where A is a subset of G : there exists
a strict subgroup H of G such that H € F and A = the carrier of H} =
U(the support of F'). The theorem is a consequence of (5) and (14).

(98) Let us consider a group G, a non empty set I, a componentwise strict
homomorphism family F' of I and GG, and a subset F of SubGr GG. Suppose
F = rng F'. Let us consider a strict subgroup H of GG, and an element
i of I. Suppose H = F(i). Let us consider a subset J of I. Suppose
J =T\ {j, where j is an element of I : F(i) = F'(j)}. Then J{A, where
A is a subset of G : there exists a strict subgroup K of G such that K €
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F and A = the carrier of K and K # H} = |J(the support of F'[.J).
PROOF: Set X = {A, where A is a subset of G : there exists a strict sub-
group K of G such that K € F and A = the carrier of K and K # H}.
For every object z, x € X iff z € rng(the support of F[J). O

(99) Let us consider a group G, a non empty set I, a componentwise strict

homomorphism family F' of I and GG, and a subset F of SubGr GG. Suppose
F = mgF. Then G is an internal product of F' if and only if G is an
internal product of F. The theorem is a consequence of (5), (97), (69),
(81), (98), and (70).
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Summary. In this article we continue the formalization of field theory in
Mizar [11, [2], [4], [3]. We introduce normal extensions: an (algebraic) extension E
of F' is normal if every polynomial of F' that has a root in E already splits in E.
We proved characterizations (for finite extensions) by minimal polynomials [7],
splitting fields, and fixing monomorphisms [6], [5]. This required extending results
from [II] and [12], in particular that F[T] = {p(a1,...an) | p € F[X], a; € T}
and F(T') = F[T] for finite algebraic ' C E. We also provided the counterexam-
ple that Q(4/2) is not normal over Q (compare [13]).

MSC: [12F05 168V20
Keywords: normal extension; fixing monomorphisms

MML identifier: FIELD_13| version: 8.1.12 5.75.1447

1. PRELIMINARIES

Let Y be a non empty set and y;, y2, y3 be elements of Y. Note that the
functor {y1,y2,ys} yields a subset of Y. Let R be an integral domain and p, ¢
be constant polynomials over R. Note that p * ¢ is constant. Let R be a ring.
Note that every ring extension of R is R-homomorphic and R-monomorphic.

Let F' be a field, p be a non constant element of the carrier of Polynom-Ring F,
and F be a splitting field of p. Let us observe that Roots(F,p) is non empty.
Let R be a ring, S be a ring extension of R, and T be a ring extension of S.
One can check that there exists a homomorphism from S to T which is R-fixing
and there exists a monomorphism of S and T" which is R-fixing. Now we state

the propositions:
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(1) Let us consider a ring R, a subring S of R, a non empty finite sequence

F' of elements of the carrier of R, and a non empty finite sequence G of
elements of the carrier of S. If F' = G, then [[F =[] G.
PROOF: Define P[natural number| = for every non empty finite sequence
F of elements of the carrier of R for every non empty finite sequence GG
of elements of the carrier of S such that len ¥ = $; and F = G holds
[IF =TIG. For every natural number k, P[k]. Consider n being a natural
number such that n =len F. [J

(2) Let us consider a field F', and a non empty finite sequence G of elements

of the carrier of Polynom-Ring F'. Then [[G = 0.F if and only if there
exists an element ¢ of dom G such that G(i) = 0.F.
PROOF: Define P[natural number| = for every non empty finite sequence
G of elements of the carrier of Polynom-Ring F' such that len G = $; and
for every element i of dom G, G(i) # 0.F holds [[G # 0.F. P[1]. For
every natural number k such that k& > 1 holds P[k]. O

(3) Let us consider a field F', and a non empty finite sequence G of elements
of the carrier of Polynom-Ring F'. Suppose for every element ¢ of dom G,
G(i) # 0.F. Let us consider a polynomial ¢ over F. Suppose ¢ = [[ G. Let
us consider an element i of dom G, and a polynomial p over F. If p = G(i),
then deg(p) < deg(q). The theorem is a consequence of (2).

(4) Let us consider a field F, an extension E of F, a non empty finite se-
quence G of elements of the carrier of Polynom-Ring F', and a polynomial
q over F'. Suppose ¢ = [[G. Let us consider an element a of E. Suppose
there exists an element 7 of dom G and there exists a polynomial p over F
such that p = G(¢) and ExtEval(p,a) = 0g. Then ExtEval(q,a) = 0.

(5) Let us consider a field F', a non empty finite sequence G of elements of
the carrier of Polynom-Ring F', and a non constant polynomial ¢ over F'.
Suppose ¢ = [[ G. Then ¢ splits in F' if and only if for every element i of
dom G and for every polynomial p over F' such that p = G(i) holds p is
constant or p splits in F.

(6) Let us consider a field F', an extension E of F, a non empty finite sequ-
ence G of elements of the carrier of Polynom-Ring F', and a non constant
polynomial g over F. Suppose ¢ = [[G. Then ¢ splits in E if and only if
for every element ¢ of dom G and for every polynomial p over F such that
p = G(i) holds p is constant or p splits in E. The theorem is a consequence
of (1) and (5).

(7) Let us consider a field F', an extension E of F', a non constant polynomial
p over F, and a non zero polynomial ¢ over F. If p * ¢q splits in E, then p
splits in F.
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(8) Let us consider a natural number n, a field F', an extension E of F', a po-
lynomial p of n,F', and a polynomial ¢ of n,E. If p = ¢, then Support ¢ =
Support p.

(9) Let us consider a natural number n, a field F, an extension E of F,

a polynomial p of n,F, a polynomial ¢ of n,F, and a function x from n
into E. If p = ¢, then ExtEval(p, x) = eval(q, x).
PRroOOF: Consider F3 being a finite sequence of elements of the carrier of S
such that ExtEval(p,z) = > F3 and len F3 = len SgmX(BagOrder n, Sup-
port p) and for every element i of N such that 1 < ¢ < len F3 holds F3(i) =
(p-(SgmX (BagOrder n, Support p)))i) (€ S)-(eval((SgmX(BagOrder n, Sup-
port p)) /;,x)). Consider Fy being a finite sequence of elements of the carrier
of S such that len Fy = len SgemX(BagOrder n, Support ¢) and eval(q, ) =
> Iy and for every element 7 of N such that 1 < <len Fy holds Fy; = g~
(SgmX(BagOrder n, Support q)) /;-(eval((SgmX (BagOrder n, Support q)) /5,
x)). For every natural number i such that ¢ € dom F3 holds Fy(i) = F5(i).
O

(10) Let us consider a natural number n, a field F', an extension E of F,
an element a of F, and an element b of E. If a = b, then al(n,F) =
bl(n, E).

(11) Let us consider a field F', an extension E; of F', and a field Es. If Fy ~ F»,
then E5 is an extension of F.

(12) Let us consider fields Fy, Fy, and a product of linear polynomials p of
Fy. If Fy = F3, then p is a product of linear polynomials of F5.

(13) Let us consider a field F, an extension F of F, a polynomial p over F,
a polynomial ¢ over E, an element a of F', and an element b of E. If p = q
and a =b,thena-p=>5-q.

(14) Let us consider fields F, F, a polynomial p over F, an element a of Fi,
a polynomial g over F5, and an element b of Fs. If I} &~ F5, then if p = ¢
and a = b, then a - p = b - ¢q. The theorem is a consequence of (13).

(15) Let us consider a field F, extensions Fj, Ey of F', and a polynomial p
over F. If Fy =~ F», then if p splits in F4, then p splits in Fy. The theorem
is a consequence of (12) and (14).

(16) Let us consider a field F, extensions Ej, Es of F, and a non constant
element p of the carrier of Polynom-Ring F'. Suppose E; ~ Es. If Ey is
a splitting field of p, then F5 is a splitting field of p. The theorem is
a consequence of (11) and (15).

(17) Let us consider a field F, and a linear element p of the carrier of Polynom-
Ring F'. Then F is a splitting field of p.

Let F be a field and F be an extension of F'. Let us observe that there exists
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a subset of E which is non empty, finite, and F-algebraic. Let a be an F-algebraic
element of E. Let us observe that {a} is F-algebraic as a subset of E.

Let 11, Ts be Fralgebraic subsets of E. One can verify that T3 U T5 is F-
algebraic as a subset of E. Let 71 be an Fralgebraic subset of F and T be
a subset of F. Let us observe that 77 N 15 is Fralgebraic as a subset of F and
Ty \ T, is F-algebraic as a subset of F. Let T be a non empty, Fralgebraic subset
of E.

Note that an element of T" is an element of E. Let us note that every element
of T is Falgebraic. Let 1, Fo be extensions of F', h be a function from F; into
FE5, and T be a subset of Ej. Observe that the functor h°T yields a subset of
FEs. Now we state the propositions:

(18) Let us consider a field F', an extension E of F', a subset T} of E, a subset
T, of E, an extension E; of FAdj(F,T3), and a subset T3 of E;. Suppose
E1 = F and T1 = T3. Then FAdJ(F, T1 U TQ) = FAdJ(FAdJ(F, TQ),Tg).
ProOOF: Th U Ty C the carrier of FAdj(FAdj(F,T3),T3). O

(19) Let us consider a field F', an extension E of F, an E-extending extension

K of F, a finite, Fralgebraic subset 77 of E, and a subset 15 of K. If
Ty = Ts, then FAdj(F,Ty) = FAdj(F, T3).
PROOF: Define P[natural number| = for every finite, F-algebraic subset
Ty of E for every subset Ty of K such that T} = $; and 77 = T holds
FAdj(F,T1) = FAdj(F,T»). P[0] by [14, (3)]. For every natural number k,
P[k]. Consider n being a natural number such that Ty = n. [

(20) Let us consider fields Fy, Fy, an element p; of the carrier of Polynom-Ring
F1, an element py of the carrier of Polynom-Ring F5, an extension Fj of
F1, and an extension Fo of F5. Suppose E1 = FEs and p; = po. Then
Roots(E1,p1) = Roots(Fa, p2).

(21) Let us consider a field F', extensions F, K of F, an extension Uy of E,
an extension Uy of K, a subset 17 of Uy, and a subset T of Us. Suppose
Uy =Usz and Ty =Ty and E ~ K. Then FAdj(F,T1) = FAdj(K, T3).
Proor: FAdj(E,Ty) is a subfield of FAdj(K, T3). FAdj(K, T?) is a subfield
of FAdj(E,Ty) by [9, (37)], [10, (7)], [11], (35),(37)]. O

(22) Let us consider a field F', an extension E of F, an F-extending extension
K of F, a subset 177 of K, and a finite subset Ty of K. Suppose T7 C Tb
and E ~ FAdj(F,T1). Then FAdj(E,T>) = FAdj(F,T). The theorem is
a consequence of (21) and (18).

(23) Let us consider a field Fj, a non constant element p; of the carrier
of Polynom-Ring F}, an extension F, of Fp, a non constant element po
of the carrier of Polynom-Ring F5, a splitting field £ of po, and an Fi-
algebraic subset T" of Fy. Suppose T' C Roots(FE, p2) and Fy ~ FAdj(Fy,T).
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If p1 = po, then FE is a splitting field of p;. The theorem is a consequence
of (19).

(24) Let us consider a field F, an extension F of F', an F-extending extension
K of E, and a non constant element p of the carrier of Polynom-Ring F'.
If p splits in E, then Roots(K, p) = Roots(E, p).

(25) Let us consider a field F;, an Fi-homomorphic field F», a homomorphism
h from Fy to F3, and an element a of F;. Then (PolyHom(h))(X—a) =
X—h(a).

(26) Let us consider a field F;, an Fj-isomorphic, Fj-homomorphic field F;,
an isomorphism h between F; and F3, an extension E7 of I}, an extension
FEs of Fy, an element a of Fq, an element b of Es, and an irreducible
element p of the carrier of Polynom-Ring F. Suppose ExtEval(p,a) = 0g,
and ExtEval((PolyHom(h))(p),b) = 0g,. Then (¥(a,b, h,p))(a) = b. The
theorem is a consequence of (25).

2. PRELIMINARIES ABOUT RING ADJUNCTIONS

Let Ry, Ry be rings. One can check that Ry ~ Rs if and only if the condition
(Def. 1) is satisfied.

(Def. 1) Rj is a subring of Ry and Ry is a subring of R;.
Now we state the propositions:
( Let us consider a ring R. Then R ~ R.
(28) Let us consider rings Ry, Rs. If Ry = Ra, then Ry ~ R;.
(29) Let us consider rings Ry, Ry, Rs. If R; = Ry and Ry ~ R3, then Ry ~ Rs.
(30)

©
3
S~—

Let us consider a ring R, a ring extension S of R, and subsets 17, 15 of

S. Suppose T1 C T. Then RAdj(R,T7) is a subring of RAdj(R, T?).

(31) Let us consider a ring R, a ring extension S of R, subsets T1, T3 of S,
a ring extension S of RAdj(R,T5), and a subset T3 of S1. Suppose S; = S
and 77 = T5. Then RAdJ(R, T U Tg) = RAdJ(RAdJ(R, TQ), Tg).

Proor: T1 U T, C the carrier of RAdj(RAdj(F,T3),T3). RAdj(F,T?) is
a subring of RAdj(F,T1 U T5). O
(32) Let us consider a ring R, a ring extension S of R, and a subset T" of S.
Then RAdj(R,T) = R if and only if T' is a subset of R.

Let n be a natural number, R, S be non degenerated commutative rings,
and = be a function from n into S. The functor HomExtEval(z, R) yielding
a function from Polynom-Ring(n, R) into S is defined by

(Def. 2) for every polynomial p of n,R, it(p) = ExtEval(p, z).
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Let R be a non degenerated commutative ring and .S be a commutative ring
extension of R. Let us observe that HomExtEval(x, R) is additive, multiplicative,
and unity-preserving. Now we state the proposition:

(33) Let us consider a natural number n, and a field F'. Then every extension
of F is (Polynom-Ring(n, F'))-homomorphic.

Let n be a natural number and F' be a field. One can check that there exists
an extension of F' which is (Polynom-Ring(n, F'))-homomorphic. Now we state
the proposition:

(34) Let us consider a natural number n, fields F', F, and a function x from n
into E. Then rng HomExtEval(x, F') = the set of all ExtEval(p, x) where
p is a polynomial of n,F.

Let n be a natural number, F be a field, £ be an extension of F', and = be
a function from n into E. The functor ImageHomExtEval(x, F') yielding a strict
double loop structure is defined by

(Def. 3) the carrier of it = rng HomExtEval(z, F) and the addition of it = (the
addition of E) | rng HomExtEval(x, F') and the multiplication of it =
(the multiplication of E) | rng HomExtEval(z, F') and the one of it = 1g
and the zero of it = 0g.

One can check that ImageHomExtEval(z, F') is non degenerated and Image-
HomExtEval(z, F') is Abelian, add-associative, right zeroed, and right comple-
mentable and ImageHomExtEval(z, F') is commutative, associative, well unital,
and distributive. Now we state the proposition:

(35) Let us consider a natural number n, a field F, an extension E of F', and
a function z from n into E. Then F is a subring of ImageHomExtEval(z, F').
The theorem is a consequence of (10), (9), and (34).

Let F be a field, T be a finite subset of F, and z be a function from 7T into
F. We say that z is T-evaluating if and only if

(Def. 4) x is one-to-one and rngx = T

Let us note that there exists a function from T into F which is T-evaluating
and every function from T into F which is T-evaluating is also T-valued and
one-to-one. Now we state the propositions:

(36) Let us consider a field F', an extension F of F', a non empty, finite subset

T of E, abag b of T, and a T-evaluating function = from 7" into E. Then
eval(b, z) € the carrier of RAdj(F,T).
PROOF: Define P[natural number] = for every bag b of T such that
support b = $; for every T-evaluating function x from 7T into E, eval(h, z) €
the carrier of RAdj(F,T). Set n = T. P[0]. For every natural number k,
P[k]. Consider n being a natural number such that supportb = n. O
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(37) Let us consider a field F, an extension F of F', a non empty, finite subset
T of E, a polynomial p of ?,F , and a T-evaluating function = from T
into E. Then ExtEval(p, ) € the carrier of RAdj(F,T).

PROOF: Define P[natural number| = for every polynomial p of ?,F such

that Supportp = $; holds ExtEval(p, x) € the carrier of RAdj(F,T). For

every natural number k such that P[k] holds P[k + 1]. P[0]. For every
natural number k, P[k]. O

Let us consider a field F', an extension F of F', a non empty, finite subset 1" of

FE, and a T-evaluating function x from T into E. Now we state the propositions:

(38) RAdj(F,T) = ImageHomExtEval(z, F'). The theorem is a consequence
of (35).

(39) The carrier of RAdj(F,T) = the set of all ExtEval(p, z) where p is a po
lynomial of T,F. The theorem is a consequence of (38) and (34).

(40) Let us consider a field F', an extension E of F, and a finite subset T' of

E. If T is F-algebraic, then FAdj(F,T) = RAdj(F,T).
PROOF: Define P[natural number] = for every field F' for every extension
FE of F for every finite subset 1" of E such that T = $1 holds if T is F-
algebraic, then FAdj(F,T) = RAdj(F,T). P[0]. For every natural number
k, P[k]. Consider n being a natural number such that 7 = n. O

3. ON FIXING MONOMORPHISMS

Let R be a ring and S be a ring extension of R. Note that there exists
a homomorphism of S which is R-fixing and there exists a monomorphism of S
which is R-fixing and there exists an automorphism of S which is R-fixing. Now
we state the propositions:

(41) Let us consider a field F, an extension E of F, an extension K of E,
an element p of the carrier of Polynom-Ring F', and an F-fixing homomor-
phism A from E to K. Then (PolyHom(h))(p) = p.

(42) Let us consider a field F, an extension E of F, an extension K of E,
an element p of the carrier of Polynom-Ring F', an element a of F, and
an F-fixing homomorphism h from E to K. Then h(ExtEval(p,a)) =
ExtEval(p, h(a)). The theorem is a consequence of (41).

(43) Let us consider a field F, an extension E of F, an F-fixing monomor-
phism h of E, and a non zero element p of the carrier of Polynom-Ring F'.
Then h°(Roots(E, p)) = Roots(E, p).

(44) Let us consider a field F', an F-algebraic extension E of F, and an F-
fixing monomorphism h of E. Then the carrier of £ C rng h. The theorem
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is a consequence of (43).

(45) Let us consider a field F', and an F-algebraic extension F of F. Then
every F-fixing monomorphism of E is an automorphism of £. The theorem
is a consequence of (44).

Let F be a field and F be an F-algebraic extension of F. Let us observe
that every F-fixing monomorphism of F is isomorphism. Now we state the
propositions:

(46) Let us consider a field F', an extension E of F', an F-extending extension
K of E, an F-fixing monomorphism h of £ and K, and an F-algebraic
subset T of E. Then h°T is F-algebraic. The theorem is a consequence of
(42).

(47) Let us consider a field F', an extension E of F', an F-extending extension
K of F, an F-fixing monomorphism h of I/ and K, a non empty, finite
subset T of E, a bag b of T, and a T-evaluating function x from T into
E. Then h(eval(b,x)) € the carrier of RAdj(F, h°T).

PROOF: Define P[natural number| = for every bag b of T such that
support b = $; for every T-evaluating function x from T into E, h(eval(b,
x)) € the carrier of RAdj(F,h°T). Set n = T. P[0]. For every natural

number k, P[k]. Consider n being a natural number such that supportb =
n.

(48) Let us consider a field F', an extension F of F', an F-extending extension

K of E, an F-fixing monomorphism h of I/ and K, a non empty, finite
subset T of E, a polynomial p of T',F, and a T-evaluating function = from
T into E. Then h(ExtEval(p,z)) € the carrier of RAdj(F, h°T).
PROOF: Define P[natural number] = for every polynomial p of T ,F such
that Support p = $; holds h(ExtEval(p, z)) € the carrier of RAdj(F, h°T).
For every natural number k such that P[k| holds P[k + 1]. P[0] by [8, (5),
(16)]. For every natural number k, P[k|. O

(49) Let us consider a field F', an extension F of F', an F-extending extension
K of E, an F-fixing monomorphism h of F and K, and a non empty,
finite, F-algebraic subset T' of E. Then h°(the carrier of FAdj(F,T)) C
the carrier of FAdj(F,h°T). The theorem is a consequence of (46), (40),
and (48).

(50) Let us consider a field F', an extension E of F', an E-extending extension
K of F, and a finite, Fralgebraic subset T" of K. Suppose 1" C the carrier
of E. Then FAdj(F,T) is a subfield of E. The theorem is a consequence
of (19).

(51) Let us consider a field F', an extension F of F', an E-extending extension
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K of F, an F-fixing homomorphism A from F to (K qua extension of F),
and a finite, Fralgebraic subset T' of E. Suppose h°T C the carrier of E.
Then FAdj(F,h°T) is a subfield of E. The theorem is a consequence of
(42) and (19).

(52) Let us consider a field F', an extension F of F, an F-extending exten-
sion K of F, an F-fixing monomorphism h of E and K, and a non empty,
finite, Fralgebraic subset T of E. Suppose h°T C the carrier of E. Then
h°(the carrier of FAdj(F,T)) C the carrier of E. The theorem is a conse-
quence of (51) and (49).

(53) Let us consider a field F', an extension E of F', an F-extending extension
K of E, an F-fixing monomorphism h of E and K, and a non constant
element p of the carrier of Polynom-Ring F'. Suppose p splits in E. Then
h?(Roots(E,p)) C the carrier of E. The theorem is a consequence of (42)
and (24).

4. NORMAL EXTENSIONS

Let F be a field and E be an extension of F. We say that F is F-normal if
and only if

(Def. 5) E is F-algebraic and for every irreducible element p of the carrier of

Polynom-Ring F' such that p has a root in E holds p splits in E.

Let us observe that every extension of F' which is F-normal is also Fralgebraic
and every extension of F' which is F-quadratic is also F-normal and every al-
gebraic closure of F' is F-normal and there exists an extension of F' which is
Flalgebraic and F-normal and FAdj(Fg,{+V/2}) is non (Fg)-normal. Now we
state the proposition:

(54) Let us consider a field F, and an F-algebraic extension E of F. Then E
is F-normal if and only if for every element a of E, MinPoly(a, F') splits
in F.
Let us consider a field F' and an F-finite extension FE of F. Now we state
the propositions:
(55) E is F-normal if and only if there exists a non constant element p of
the carrier of Polynom-Ring F' such that E is a splitting field of p.
(56) FE is F-normal if and only if for every extension K of E, every F-fixing
monomorphism of £ and K is an automorphism of E.
Let F' be a field and p be a non constant element of the carrier of Polynom-Ring
F. One can verify that every splitting field of p is F-normal. Now we state the
propositions:
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(57) Let us consider a field F', an extension E of F', and an F-algebraic element
a of E. Then FAdj(F,{a}) is F-normal if and only if MinPoly(a, F) splits
in FAdj(F,{a}).

(58) Let us consider a field F', an extension E of F', and a non empty, finite,
F-algebraic subset T of E. Then FAdj(F,T) is F-normal if and only if for
every element a of T', MinPoly(a, F') splits in FAdj(F,T). The theorem is
a consequence of (3), (6), and (4).
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Summary. In this paper, we introduce indefinite integrals [§] (antideri-
vatives) and proof integration by substitution in the Mizar system [2], [3]. In
our previous article [I5], we have introduced an indefinite-like integral, but it is
inadequate because it must be an integral over the whole set of real numbers and
in some sense it causes some duplication in the Mizar Mathematical Library [13].
For this reason, to define the antiderivative for a function, we use the derivative
of an arbitrary interval as defined recently in [7]. Furthermore, antiderivatives
are also used to modify the integration by substitution and integration by parts.

In the first section, we summarize the basic theorems on continuity and
derivativity (for interesting survey of formalizations of real analysis in another
proof-assistants like ACL2 [12], Isabelle/HOL [I1], Coq [4], see [5]). In the second
section, we generalize some theorems that were noticed during the formalization
process. In the last section, we define the antiderivatives and formalize the inte-
gration by substitution and the integration by parts. We referred to [I] and [6]
in our development.
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1. BASIC THEOREMS ON CONTINUITY AND DERIVATIVITY

From now on h, h; denote 0-convergent, non-zero sequences of real numbers
and ¢, ¢; denote constant sequences of real numbers. Let us observe that every
subset of R which is open interval is also open. Now we state the propositions:
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(1) Let us consider an interval I. If inf I € I, then inf I = inf .

(2) Let us consider an interval subset I of R. If sup I € I, then sup I = sup I.

(3) Let us consider real numbers a, b, and an interval I. If a, b € I, then
[a,b] C I.

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(4) Suppose a < b and [a,b] € dom f and f[[a,b] is continuous and f is

differentiable on ]a, b[ and fﬁ ap] 18 Tight convergent in a. Then

(i) f is right differentiable in a, and

(ii) fi(a) =lim,+ fﬁa,b[.
PRrooF: Consider e being a real number such that a < e < b. For every h
and ¢ such that rngc = {a} and rmng(h + ¢) C dom f and for every natural
number n, h(n) > 0 holds h=! - ((f«(h + ¢)) — (f«c)) is convergent and
(b ((Folh +€)) — (£20))) = limge f, - O
(5) Suppose a < b and |a,b] C dom f and fl]a,b] is continuous and f is
differentiable on ]a, b] and fﬁ ap] 18 left convergent in b. Then

(i) f is left differentiable in b, and

(i) f2(b) = limy- fﬁa’b[.
PRroOF: Consider e being a real number such that a < e < b. For every h
and c such that rngc = {b} and rng(h + ¢) C dom f and for every natural
number n, h(n) < 0 holds h=1 - ((f«(h + ¢)) — (f«c)) is convergent and
lm (R~ ((f«(h+¢)) = (fxc))) = limy- fﬁa,b[' O

(6) Let us consider real numbers a, b, z, a partial function f from R to R,
and an interval I. Suppose inf/ < a and b < sup/ and I C dom f and
fII is continuous and x € ]a,b[. Then f is continuous in z.

(7) Let us consider an open subset X of R, and partial functions f, F' from
R to R. Suppose X C dom f and f[X is continuous. Let us consider a real
number x. If z € X, then f is continuous in x.

Let us consider real numbers a, b, x and a partial function f from R to R.
Now we state the propositions:

(8) Suppose a < z < b and Ja,b[ C dom f and f is right convergent in z.

Then

(i) fl]a,b[ is right convergent in x, and
(i) T (f1]a, bl) = lim, s /.

PROOF: For every real number r such that x < r there exists a real number
g such that g < r and x < g and g € dom(f[]a, b[). For every real number
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r such that 0 < r there exists a real number d such that x < d and for
every real number z1 such that 1 < d and = < x; and x; € dom(f]a, b[)
holds |(f]a,b[)(z1) — lim,+ f| < 7. O

(9) Suppose a < z < b and |a,b][ C dom f and f is left convergent in z. Then

(i) fl]a,b[ is left convergent in z, and

(i) lim,—(fl]a,b]) = lim,- f.
PROOF: For every real number r such that r < z there exists a real number
g such that r < g < z and g € dom(f[]a,b[). For every real number r
such that 0 < r there exists a real number d such that d < x and for
every real number z; such that d < 21 < 2 and z; € dom(f[]a, b[) holds
[(f1]a, b)) (#1) — lim,- f| <r. O

(10) Suppose [a,b] C dom f and f[[a,b] is continuous and z € [a, b]. Then

(i) f is right convergent in z, and

(i) limg+(f[]a,b[) = f(x).
PROOF: For every real number r such that x < r there exists a real number
g such that g < r and « < g and g € dom f. For every real number r such
that 0 < r there exists a real number s such that x < s and for every
real number x; such that 1 < s and ¢ < x; and ;1 € dom f holds
|f(z1) — f(z)] < r. For every real number r such that 0 < r there exists
a real number s such that z < s and for every real number x; such that
z1 < sand z < z; and x; € dom(f[]a,b]) holds |(f[]a,b[)(x1) — f(z)] < 7.
f1]a, bl is right convergent in x and lim+ (f1]a,b]) = limy+ f. O
(11) Suppose [a,b] € dom f and f[[a,b] is continuous and z € |a, b]. Then
(i) f is left convergent in z, and

(ii) lim,-(ff]a,b]) = f(z).
PROOF: For every real number r such that » < z there exists a real number
g such that r < g < x and g € dom f. For every real number r such that
0 < r there exists a real number s such that s < x and for every real
number z; such that s < z; < z and 21 € dom f holds |f(z1) — f(z)| <.
For every real number r such that 0 < r there exists a real number s
such that s < x and for every real number x; such that s < z1 < =z
and x1 € dom(f]]a,b]) holds |(f]]a,b])(x1) — f(x)] < r. flla,b] is left
convergent in x and lim - (f[]a, b[) = lim,- f. O
Let us consider a real number z, a partial function f from R to R, a non
empty interval I, and a subset X of R. Now we state the propositions:
(12) If I € X and = € I and = # sup I, then f is right differentiable in x iff
fIX is right differentiable in .



134 NOBORU ENDOU

(13) If I € X and 2 € I and = # inf I, then f is left differentiable in = iff
f1X is left differentiable in x.

(14) Let us consider a partial function f from R to R, an open subset I of R,
and a subset X of R. Suppose I C X. Then f is differentiable on [ if and
only if f[X is differentiable on I.

Let us consider a partial function f from R to R, a non empty interval I,
and a subset X of R. Now we state the propositions:

(15) If I C X, then f is differentiable on interval I iff f[X is differentiable on
interval I. The theorem is a consequence of (1), (12), (2), (13), and (14).

(16) If I C X and f is differentiable on interval I, then f; = (f[X)}. The
theorem is a consequence of (15), (1), and (2).

(17) Let us consider a partial function f from R to R, and non empty intervals
I, J. Suppose f is differentiable on interval I and J C I and inf J < sup J.
Then f7J = f7.

PROOF: For every element z of R such that z € dom(f}[.J) holds

(f117)(x) = fi(=). O

2. GENERALIZATION OF PREVIOUS THEOREMS

Now we state the propositions:
(18) Let us consider extended real numbers a, b. If a < b, then there exists
a real number c such that a < ¢ < b.
(19) Let us consider extended real numbers p, ¢, and a partial function f from
R to R. Suppose f is differentiable on |p, ¢ and for every real number x
such that = € |p, ¢[ holds f’(x) = 0. Then f[]p, ¢[ is constant.

(20) Let us consider extended real numbers p, ¢, and partial functions f1, fo
from R to R. Suppose f; is differentiable on |p, ¢[ and fs is differentiable on
|p, q| and for every real number z such that = € ]p, ¢[ holds fi'(z) = fo/(z).
Then

(i) (f1 — f2)I]lp, ¢ is constant, and
(ii) there exists a real number 7 such that for every real number z such
that « € |p, ¢[ holds fi(x) = fa(x) + 7.
The theorem is a consequence of (19).
Let us consider extended real numbers p, ¢ and a partial function f from R
to R. Now we state the propositions:
(21) Suppose f is differentiable on |p, ¢[ and for every real number z such
that = € |p, ¢[ holds 0 < f’(z). Then f|]p, ¢[ is increasing.



ANTIDERIVATIVES AND INTEGRATION 135

(22) Suppose f is differentiable on ]p,q[ and for every real number z such
that = € |p, ¢[ holds f’(x) < 0. Then f[]p, q[ is decreasing.

(23) Suppose f is differentiable on ]p,q[ and for every real number z such
that = € |p, ¢[ holds 0 < f’(z). Then f|]p, ¢[ is non-decreasing.

(24) Suppose f is differentiable on ]p,q[ and for every real number z such
that = € |p, ¢ holds f’(x) < 0. Then f[]p, ¢[ is non-increasing.

(25) Let us consider an open subset X of R, a real number z, and a partial

function f from R to R. Suppose xg € X and f is differentiable on X.
Then f'(z0) = (f1X)'(z0).-
PROOF: Consider N being a neighbourhood of 2y such that N C dom(f[X)
and there exists a linear function L and there exists a rest R such that
(f1X)'(z0) = L(1) and for every real number = such that z € N holds
(f1X)(z) = (f1X)(xo) = L(x — x0) + R(x — z9). Consider L being a linear
function, R being a rest such that (f[X)'(z¢) = L(1) and for every real
number z such that x € N holds (f[X)(z) — (f1X)(zo) = L(x — z9) +
R(x — xq). For every real number z such that x € N holds f(x) — f(xo) =
L(z — z0) + R(z — z0). O

(26) Let us consider real numbers a, b, and a partial function f from R to R.
Suppose a < b and [a,b] C dom f and f[[a,b] is continuous. Then there
exists a partial function F' from R to R such that

(i) Ja,b[ € dom F', and

(ii) for every real number x such that x € |a, b] holds F'(z) = /f(x)dm,

and
(iii) F is differentiable on |a, b[, and
(iv) Fﬁmb[ = flla,bl.

PRrooF: Consider g being a real number such that a < zg < b. Consider
F being a partial function from R to R such that ]a,b[ C dom F' and for
x

every real number x such that = € |a,b] holds F(x) = /f(x)d:z: and F'

is differentiable in z¢ and F’'(x¢) = f(x¢). For every real number z such
that x € |a, b] holds F'[]a,b] is differentiable in z. For every element = of
R such that 2 € dom FF]a,b[ holds Fﬁa’b[(x) = (f1]a,b])(x). O

(27) Let us consider real numbers a, b, and partial functions f, F' from R
to R. Suppose a < b and [a,b] C dom f and f[[a,b] is continuous and
Ja,b[ € dom F' and for every real number x such that = € ]a,b[ holds
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F(x) = /f(a:)dx Then

(i) F is differentiable on |a, b[, and
(i) oy = F1los bl

PRrOOF: Consider G being a partial function from R to R such that Ja, b[ C
dom G and for every real number = such that x € ]a,b] holds G(x) =

/f(:z:)dx and G is differentiable on |a,b[ and G,[]a,b[ = fl]a,b[. For eve-

ry element z of R such that x € dom(F'[]a,b[) holds (F]a,b])(xz) =
(Glla,b])(z). O

3. ANTIDERIVATIVES AND RELATED THEOREMS

Let f, F be partial functions from R to R and I be a non empty interval.
We say that F'is antiderivative of f on I if and only if

(Def. 1) F is differentiable on interval I and F} = f]I.
Now we state the propositions:

(28) Let us consider partial functions f, F', g, G from R to R, and a non empty
interval I. Suppose F' is antiderivative of f on I and G is antiderivative
of g on I. Then

(i) F + G is antiderivative of f + ¢ on I, and
(ii) F — G is antiderivative of f — g on I.

(29) Let us consider partial functions f, F' from R to R, a non empty interval
I, and a real number r. If F' is antiderivative of f on I, then r - F is
antiderivative of r - f on 1.

Let us consider partial functions f, g, F', G from R to R and a non empty
interval I. Now we state the propositions:

(30) If F is antiderivative of f on I and G is antiderivative of g on I, then
F - G is antiderivative of f -G+ F - g on I.

(31) Suppose F is antiderivative of f on I and G is antiderivative of g on I and

for every set = such that x € I holds G(x) # 0. Then g is antiderivative

fG=Fg
of el

(32) Let us consider real numbers a, b, and partial functions f, F' from R
to R. Suppose a < b and [a,b] C dom f and f[[a,b] is continuous and

on I.

[a,b] € dom F' and for every real number x such that = € [a,b] holds
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F(x) = /f(x)dm. Let us consider a real number x. Suppose z € |a,b|.

Then
(i) F is differentiable in z, and
(i) F'(z) = f(x).
81
PROOF: Set O = |a, b|. Define Gy(real number) = (/f(:v)dz)(é R). Con-

sider (G being a function from R into R such that %or every element h of
R, G1(h) = Go(h). Reconsider G = G1]0O as a partial function from R to
R. For every real number x such that x € O holds G is differentiable in z
and G'(x) = f(z) by (6), [9, (10),(11)]. For every real number z such that
x € Ja,b] holds F is differentiable in z and F'(x) = f(z) by [14}, (2)]. O

Let us consider real numbers a, b and partial functions f, F' from R to R.

Now we state the propositions:

(33)

(34)

Suppose a < b and [a,b] C dom f and f[[a,b] is bounded and f is

integrable on [a,b] and [a,b] = dom F' and for every real number z such

that « € [a, b] holds F(z) = /f(a:)dx Then F' is Lipschitzian.

PRroOOF: Consider rg being a real number such that for every object x such
that « € [a, b]Ndom f holds |f(x)| < 9. Reconsider r = max(rg, 1) as a real
number. For every real numbers p, g such that p, ¢ € [a,b] and p < ¢ holds
f is integrable on [p, q] and f[[p, q] is bounded. For every real numbers x1,
xg such that 1, 9 € dom F' holds |F(z1) — F(x2)| < r - |z1 — x2| by [10,
(20),(23)]. O

Suppose a < b and [a,b] C dom f and f[[a,b] is continuous and [a,b] C
dom F' and for every real number z such that x € [a,b] holds F(z) =

€T
/ f(z)dz. Then Fﬁa b is right convergent in a and left convergent in b.
a

PROOF: For every real number x such that x € la,b[ holds Fl]a,b] is
differentiable in z. For every element x of R such that z € dom Fﬁa’b[
holds Fﬁa7b[(x) = (fl]a,b[)(x). For every real number r such that a < r
there exists a real number g such that g < r and a < g and g € dom Fﬁa’b[.
For every real number g; such that 0 < g; there exists a real number r
such that a < r and for every real number r such that ry < r and a < r;
and m € dom Fﬁmb[ holds ]Ff]a,b[(rl) — f(a)| < g1. For every real number
r such that r < b there exists a real number g such that » < g < b and
g € dom F F] ab[’ For every real number g; such that 0 < g¢; there exists
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(35)

(36)

(37)
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a real number r such that » < b and for every real number r; such that
r <1y <bandr €dom FF]a,b[ holds ]Fﬁmb[(rl) —fb)|<g:. O

Suppose a < b and [a,b] C dom f and f[[a,b] is continuous and [a, b] C
dom F' and for every real number z such that x € [a,b] holds F(z) =

/f(x)da:. Then
(i) F is right differentiable in a, and
(if) F'(a) = limg+ F, 4.
PRrROOF: For every real number x such that x € Ja,b] holds F]a,b[ is

differentiable in x. F] F]a bl is right convergent in a. For every real number z

such that x € [a, b] holds (F'[[a, b]) / f(x)dx. F|[a,b[is Lipschitzian.

O

Suppose a < b and [a,b] C dom f and f[[a,b] is continuous and [a, b]
domF and for every real number x such that = € [a,b] holds F(z)

/ f(x)dx. Then

1N

(i) F is left differentiable in b, and
PROOF: For every real number x such that x € |a,b] holds F[]a,b[ is
differentiable in zx. Fﬁ | is left convergent in b. For every real number x

such that x € [a, b] holds (F'[]a, b)) / f(z)dz. F]a,b] is Lipschitzian.

U
Suppose a < b and [a,b] C dom f and f[[a,b] is continuous and [a,b] C
dom F' and for every real number z such that x € [a,b] holds F(z) =

/f(x)dx Then

(i) F is differentiable on interval [a,b], and

(ii) F[/a,b] = flla,b].
PROOF: Reconsider I = [a,b] as a non empty interval. If inf I € I, then
F' is right differentiable in inf I. If sup I € I, then F' is left differentiable
in sup I. For every real number z such that x € ]a,b[ holds F'|]a,b| is
differentiable in z. F /] b = f1]a,b[. For every element x of R such that
T € domF[ p) holds F[a n(7) = (f1a,b])(x). O
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(38) Let us consider a partial function f from R to R, and real numbers a, b.

Then /af(x)d:z = —/b f(z)dx.
b a

(39) Let us consider real numbers a, b, and partial functions f, F' from R
to R. Suppose a < b and [a,b] C dom f and f[[a,b] is continuous and
[a,b] € dom F' and for every real number z such that z € [a,b] holds

F(z) = /f(:r)da:. Let us consider a real number z. Suppose x € ]a,b|.

a

Then
(i) F is differentiable in z, and

(ii) F'(z) = f(x).
The theorem is a consequence of (37).
(40) Let us consider real numbers a, b, and a partial function f from R to R.
Suppose a < b and [a,b] C dom f and f[[a,b] is continuous. Then there
exists a partial function F' from R to R such that

(i) F is antiderivative of f on [a,b], and
(ii) for every real number z such that = € [a, b] holds F(z) = /f(x)dx.

The theorem is a consequence of (37).

(41) Let us consider a real number ¢, partial functions f, F', G from R to R,

and a non empty interval I. Suppose I C dom f and F' is antiderivative of
fon I and I C domG and for every real number x such that x € I holds
G(z) = F(z) + c. Then G is antiderivative of f on I.
PROOF: Reconsider ¢y = ¢ as an element of R. Define F(element of R) =
cg. Consider Fy being a function from R into R such that for every element
z of R, Fy(z) = F(x). F|I is differentiable on interval I. G is differentiable
on interval I. [J

(42) Let us consider partial functions f, F' from R to R, and non empty
intervals I, J. Suppose inf I < supl and I C J and F is antiderivative of
fon J. Then F is antiderivative of f on 1.

(43) Let us consider real numbers a, b, a partial function f from R to R, and
a partition D of [a, b]. Suppose a < b and f is differentiable on interval [a, b]
and f[’a’b] is bounded. Then lower,sum(f[’ayb} [ [a,b], D) < f(b) — f(a) <
upper,sum(f[’a,b] I [a,b], D).

(44) Let us consider a partial function f from R to R, real numbers a, b, and
a non empty interval I. Suppose a, b € I and a < b and f is differentiable
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on interval I and f7 is integrable on [a, b] and f} is bounded. Then

b
() [ fon@)de = ) - f(a), and

b
(i) [ fi(w)de = £0) - f(a).

The theorem is a consequence of (3) and (17).

(45) Let us consider a partial function f from R to R, a real number a, and
a non empty interval I. Suppose f is differentiable on interval I and a € I.

a
Then / f1(xz)dz = 0. The theorem is a consequence of (3).
a

(46) Let us consider partial functions f, F'; G from R to R, and a non empty
interval I. Suppose F' is antiderivative of f on [ and G is antiderivative of
f on I. Then there exists a real number ¢ such that for every real number
x such that = € I holds F(x) = G(x) 4+ ¢. The theorem is a consequence
of (42), (1), (2), and (18).
(47) INTEGRATION BY SUBSTITUTION:
Let us consider real numbers a, b, p, ¢, and partial functions f, g from R to
R. Suppose a < b and p < ¢ and [a,b] C dom f and f[[a,d] is continuous
and ¢ is differentiable on interval [p, ¢] and gfp d is integrable on [p, ¢] and
gfp’q} is bounded and rng(g[[p, q]) C [a,b] and g(p) = a and g(q) = b. Then
b q
/f(x)d:c = /(f -g- gf%q})(m)da:. The theorem is a consequence of (37).
a p
(48) Let us consider real numbers a, b, and partial functions f, g from R
to R. Suppose a < b and f is differentiable on interval [a,b] and g is
differentiable on interval [a,b] and f[’a p) is integrable on [a,b] and f[’a 0]
is bounded and gfa b] is integrable on [a,b] and gf&b} is bounded. Then
b b
[y )@y = £®)- 90) = £(a) - 9(@) = [ (£ - gfuy) (@)

a a
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Summary. The article concerns about formalizing a certain lemma on
embedding of algebraic structures in the Mizar system, claiming that if a ring A
is embedded in a ring B then there exists a ring C which is isomorphic to B and
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Abelian groups and rings.
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INTRODUCTION

The article concerns about formalizing a certain lemma on embedding of
algebraic structures in the Mizar system [2], [3], along with the lemma appeared
in the book [12] at §13 of Chapter 1. The lemma claims that if a ring A is
embedded in a ring B then there exists a ring C' which is isomorphic to B and
includes A as a subring [11]. A basic idea to prove the lemma is that for given
monomorphism ¢ from A to B, one can obtain such ring C by introducing the
addition and multiplication on the set (B \ ¢(A)) U A, while B does not meet
A. The same argument has already been discussed and formalized in [9] in line
with field extensions [I0] (recently reused to formalize algebraic closures, see
e.g. [8]).

We treat here a general case, namely the case of B meets A, it is enough to

create a set X which does not meet A and X = B\ ¢(A) and construct a new
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ring C' from the set (X = B\ ¢(A)) U A. The formalized lemma can be applied
to another algebraic structures such as Abelian groups as shown in the article
as well with the same formulation of rings [6].

We need the following 3 steps required for precise arguments and formaliza-
tion to construct the target object C":

Step 1. Prepare a set X which does not meet A and isomorphic to B\ ¢(A) as
set-theoretical. The step is coded in Theorem 1 and 2;

Step 2. Make a X \ S a ring as C, corresponds to Theorem 7 and 12 for rings
and for Abelian groups, respectively;

Step 3. Construct an isomorphism G : A — C such that « = G o ¢ is an
identity mapping. Corresponding formal counterparts are Theorem 9 and
14 for rings and for Abelian groups, respectively.

As a consequence of the principle, taking Polynom-Ring(A) as B, we have a
polynomial ring over A with indeterminate X and includes A as a subring, say
A[X] = C. Here Polynom-Ring(A) is existing formalized ring of polynomials
[4], which is constructed by sequences. An indeterminate X is defined by the
image of (0,1,0,0,---) € Polynom-Ring(A) by the map G of Step 3. Some of the
Mizar functors had to be defined additionally as we used the groups not in their
multiplicative version [I], [7], which is more common in the Mizar Mathematical
Library, but in the additive setting [5].

1. PRELIMINARIES FROM SET THEORY

From now on a denotes a non empty set and b, z, o denote objects.
Now we state the propositions:
(1) There exists an object b such that for every set z, (x, b) ¢ a.

(2) Let us consider non empty sets a, b. Then there exists a non empty set
¢ such that

(i) anc=0, and

(ii) there exists a function f such that f is one-to-one and dom f = b
and rng f = c.

ProOF: Consider d being an object such that for every set z, (z, d) ¢ a.
Set C' = b x {d}. Consider f being a function such that f is one-to-one
anddomf=bandmgf=C.anC=0.0
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2. EMBEDDING PRINCIPLE APPLIED TO RINGS

Now we state the proposition:
(3) Let us consider a ring A, a non empty set X, a function f from A into
X, and elements a, b of X. Suppose f is bijective. Then f((the addition
of A)((f~Y)(a),(f~1)(b))) is an element of X.
Let A be a ring, X be a non empty set, f be a function from A into X,
and a, b be elements of X. Assume f is bijective. The functor addemb(f, a,b)
yielding an element of X is defined by the term
(Def. 1) f((the addition of A)((f~1)(a), (f~1)(b))).

Now we state the proposition:
(4) Let us consider a ring A, a non empty set X, a function f from A into X,
and elements a, b, c of X. Suppose f is bijective. Then addemb( f, a,addemb
(f,b,¢)) = addemb(f, addemb(f,a,b),c).
Let A be a ring, X be a non empty set, and f be a function from A into X.
The functor addemb( f) yielding a binary operation on X is defined by
(Def. 2) for every elements a, b of X, it(a,b) = addemb(f,a,b).
Now we state the proposition:
(5) Let us consider a ring A, a non empty set X, a function f from A into X,
and elements a, b of X. Suppose f is bijective. Then f((the multiplication
of A)((f~H(a),(f~1)(b))) is an element of X.
Let A be a ring, X be a non empty set, f be a function from A into X,
and a, b be elements of X. Assume f is bijective. The functor multemb(f, a,b)
yielding an element of X is defined by the term
(Def. 3)  f((the multiplication of A)((f~1)(a), (f~1)(b))).
The functor multemb( f) yielding a binary operation on X is defined by
(Def. 4) for every elements a, b of X, it(a,b) = multemb(f,a,b).

The functor embRing(f) yielding a strict, non empty double loop structure
is defined by the term

(Def. 5) (X, addemb(f), multemb(f), f(14), f(04)).
Now we state the propositions:

(6) Let us consider a ring A, a non empty set X, and a function f from A
into X. If f is bijective, then embRing(f) is a ring.
PROOF: Reconsider Z; = (X, addemb(f), multemb(f), f(14), f(04)) as
a non empty double loop structure. For every elements v, w of Z1, v+w =
w+wv. For every elements u, v, w of Z1, u+ (v+w) = (u+v)+w. For every
element v of Z;, v+0z, = v. Every element of Z; is right complementable.
For every elements a, b, v of Z1, (a+b)-v = a-v+b-v. For every elements
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a,byvof Z1,v-(a+b) =v-a+v-band (a+b)-v=a-v+b-v. For
every elements a, b, v of Z1, (a-b)-v =a- (b-v). For every element v of
Z1,v-(1z,)=vand 1z -v=v.0

(7) Let us consider a commutative ring A, a non empty set X, and a function
f from A into X. If f is bijective, then embRing(f) is a commutative ring.
PROOF: embRing(f) is commutative. [J

(8) Let us consider rings A, B, and a function ¢ from A into B. Suppose i
inherits ring homomorphism and ¢ = id4. Then A is a subring of B.
PRrROOF: For every object o such that o € the carrier of A holds o €
the carrier of B. The addition of A = (the addition of B) | (the carrier
of A). The multiplication of A = (the multiplication of B) [ (the carrier
of A). O

(9) Let us consider rings A, B, and a function f from A into B. Suppose f is

monomorphic and Qp \ (rng f) # (. Then there exists a ring C' and there
exists a set X and there exists a function h and there exists a function G
from B into C such that X N1 Q4 = () and h is one-to-one and domh =
Qp\ (rmg f) and rngh = X and Q¢ = X U Q4 and A is a subring of C
and G inherits ring isomorphism and idy = G - f.
PRroor: Consider X being a non empty set such that 24NX = () and there
exists a function h such that h is one-to-one and domh = Qp \ (rng f)
and rng h = X. Consider h being a function such that h is one-to-one and
domh =Qp\ (rng f) and tngh = X and Q4N X = 0.

Define Plelement of B, element of Q4UX] =$; € rng f and (f~1)($1) =
$2 or $1 ¢ rng f and $5 = h($;). Set C1; = Q4 U X. Consider g being
a function from the carrier of B into C such that for every element x of
B, P[z,g(x)]. g is bijective. Reconsider C' = embRing(g) as a non empty
ring. Reconsider G = g as a function from B into C. G is linear. For every
o such that o € Q4 holds (G - f)(0) = 0. A is a subring of C. O

3. EMBEDDING PRINCIPLE APPLIED TO ABELIAN GROUPS

Let GG be an Abelian group. A subgroup of GG is an Abelian group defined by
(Def. 6) the carrier of it C the carrier of G and the addition of it = (the addition
of G) | (the carrier of it) and 0;; = O¢.
Let G, H be Abelian groups and f be a homomorphism from G to H. The
functor Im f yielding a strict additive loop structure is defined by

(Def. 7) the carrier of it = rng f and the addition of it = (the addition of H) |
rng f and the zero of it = 0.

Now we state the proposition:
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(10) Let us consider an Abelian group A, a non empty set X, a function
f from A into X, and elements a, b of X. Suppose f is bijective. Then
f((the addition of A)((f~1)(a), (f~1)(b))) is an element of X.

Let A be an Abelian group, X be a non empty set, f be a function from A into
X, and a, b be elements of X. Assume f is bijective. The functor addemb(f, a, b)
yielding an element of X is defined by the term

(Def. 8)  f((the addition of A)((f~1)(a), (f~1)(b))).
Now we state the proposition:

(11) Let us consider an Abelian group A, a non empty set X, a function f
from A into X, and elements a, b, ¢ of X. Suppose f is bijective. Then
addemb( f, a,addemb(f, b, ¢)) = addemb( f, addemb(f, a, b), c).

Let A be an Abelian group, X be a non empty set, and f be a function from
A into X. The functor addemb(f) yielding a binary operation on X is defined
by
(Def. 9) for every elements a, b of X, it(a,b) = addemb(f,a,b).

The functor embAbGr(f) yielding a strict, non empty additive loop structure
is defined by the term

(Def. 10) (X, addemb(f), f(04)).
Now we state the propositions:

(12) Let us consider an Abelian group A, a non empty set X, and a function
f from A into X. If f is bijective, then embAbGr(f) is an Abelian group.
PROOF: Reconsider Z; = (X, addemb(f), f(04)) as a non empty additive
loop structure. For every elements v, w of Z1, v + w = w + v. For every
elements u, v, w of Z1, u+ (v+ w) = (u+v) + w. For every element v of
Z1, v+ 0z = v. Every element of Z; is right complementable. [J

(13) Let us consider Abelian groups A, B, and a homomorphism i from A to
B. If i = id 4, then A is a subgroup of B.
PROOF: For every object o such that o € the carrier of A holds o €
the carrier of B. The addition of A = (the addition of B) | (the carrier
of A). O

(14) Let us consider Abelian groups A, B, and a homomorphism f from A
to B. Suppose f is one-to-one and Qp \ (rng f) # (. Then there exists
an Abelian group C and there exists a set X and there exists a function h
and there exists a function G from B into C such that X N Q4 =0 and h
is one-to-one and domh = Qp \ (rng f) and rngh = X and Q¢ = X UQy
and A is a subgroup of C' and G is a homomorphism from B to C' and
ida=G-f.
PRrOOF: Consider X being a non empty set such that Q,NX = () and there
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exists a function h such that h is one-to-one and domh = Qp \ (rng f)
and rng h = X. Consider h being a function such that h is one-to-one and
domh = Qp\ (g f) and rngh = X and Q4 N X = (. Define P[element
of B,element of Q4 U X] =$; € g f and (f~1)($1) =$2 or $; ¢ g f
and $5 = h($1). Set C1 =Q4UX.

Consider g being a function from the carrier of B into C; such that for
every element x of B, P[x, g(x)]. g is bijective. Reconsider C' = embAbGr(g)
as a non empty Abelian group. Reconsider G = ¢ as a function from B
into C. G is additive. For every o such that o € Q4 holds (G - f)(0) = o.
A is a subgroup of C. [J

4. RELATION WITH POLYNOMIAL RINGS

Now we state the proposition:
(15) Let us consider a bag b of 0. Then

(i) domb = 0, and
(ii) b = EmptyBag(), and
(iii) rngb =0, and
(iv) EmptyBag( = 0 — 0, and
(v) Bags( = {EmptyBag0}.
From now on R denotes a right zeroed, add-associative, right complemen-

table, Abelian, well unital, distributive, associative, non trivial, non trivial
double loop structure. Now we state the propositions:

(16) Let us consider a polynomial f of 0,R. Then
(i) dom f = Bags0, and
(ii) Bags0 = {0}, and
(ili) mg f = {f(EmptyBag0)}.

The theorem is a consequence of (15).
(17) Every polynomial of 0,R is constant.

(18) Let us consider a polynomial f of 0,R. Then there exists an element a
of R such that f = al(0, R). The theorem is a consequence of (17).

Let us consider R. The functor 1_1(R) yielding a sequence of R is defined
by the term

(Def. 11)  0.R + (1, 1p).

Now we state the proposition:
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(19) Let us consider a non degenerated commutative ring R.
Then Support 1_1(R) = {1}.
PRrROOF: For every o such that o € Support 1_1(R) holds o € {1}. For every
o such that o € {1} holds o € Support 1_1(R). O

Let us consider R. One can verify that 1_.1(R) is finite-Support. Now we
state the propositions:

(20) Leading-Monomial 1 1(R) = 1_1(R).

(21) Let us consider an element m of R. Then eval(1_.1(R),m) = m. The
theorem is a consequence of (20).

In the sequel R denotes a non degenerated commutative ring. Now we state
the propositions:

(22) Let us consider an element pg of Polynom-Ring(0, R). Then pg is not
a polynomial over Polynom-Ring(0, R).

(23) Let us consider a non degenerated commutative ring R.

Then Polynom-Ring Polynom-Ring(0, R) and Polynom-Ring(1, R) are iso-
morphic.
Let us consider a non degenerated ring R. Now we state the propositions:

(24) QPolynom—RingR \ (rng(R CaLH(;m Polynom—Ring R)) 7é 0.

(25) There exists a non degenerated ring P; and there exists a set X and there
exists a function h and there exists a function G from Polynom-Ring R
into P; such that R is a subring of P;.

And G inherits ring isomorphism and idg = G+( ey Polynom-Ring R)
and X N Qr = 0 and h is one-to-one and domh = Qpolynom-Ring R \
(rng(R “S" Polynom-Ring R)) and mgh = X and Qp, = X U Qg. The
theorem is a consequence of (24) and (9).

(26) QPolynom—Ring(O,R) N QPolynom—RingPolynom—Ring(O,R) = @ The theorem is
a consequence of (22).

(27) Let us consider a non degenerated ring R. Then there exists a non dege-
nerated ring P and there exists a set X and there exists a function h and
there exists a function G from Polynom-Ring Polynom-Ring(0, R) into P;
such that Polynom-Ring(0, R) is a subring of P;.

And G inherits ring isomorphism and idpoiynom-Ring(0,7) = G (Polynom-
Ring(0, R) “<=" Polynom-Ring Polynom-Ring(0, R)) and
X N Qpolynom-Ring(0,r) = ¥ and h is one-to-one and dom h =

canHom

QPolynom-Ring Polynom-Ring(0,R) \ (rng(Polynom—Ring(O, R) — Polynom—
Ring Polynom-Ring(0, R))) and rngh = X and Qp; = XUQpgiynom-Ring(0,R)-
Let us consider R. Let A be an R-monomorphic commutative ring and = be
an element of A. We say that x is indeterminate if and only if
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(Def. 12) there exists a function g from Polynom-Ring R into A such that g is
isomorphism and x = g(1_1(R)).

Now we state the proposition:

(28) Let us consider a non degenerated commutative ring R. Then there exists
an element X of Polynom-Ring R such that

(i) X is indeterminate, and

(i) X = 1.1(R).
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Summary. This the next article in the series formalizing the book of Ba-
czynski and Jayaram “Fuzzy Implications”. We define the laws of contraposition
connected with various fuzzy negations, and in order to make the cluster registra-
tion mechanism fully working, we construct some more non-classical examples of
fuzzy implications. Finally, as the testbed of the reuse of lattice-theoretical ap-
proach, we introduce the lattice of fuzzy negations and show its basic properties.
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INTRODUCTION

The main aim of this Mizar article was to implement a formal counterpart
of the handbook of fuzzy implications [I]. This is the next submission in the
series formalizing this volume, following, among others, [5]. We define the laws
of contraposition with the connection to various fuzzy negations [6]. Developing
the approach proposed in [7], we deal with the part of Chapter 1.5, pp. 20-23
.

In the first section we introduce Mizar attributes [2] which define contrapo-
sitive symmetry (also in its weaker, left- and right-side form) with respect to

the given fuzzy negation, in Section 2 we recall the notion of fuzzy negation,
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taking into account the fact that if its converse is just the function (denoted in
the Mizar formalism by R™) implies their surjectivity or injectivity.

Section 3, 4, and 5 formalize complete proofs of lemmas and corollaries 1.5.3—
1.5.9 from Chapter 1.5 [I]. The sixth section introduces two fuzzy implications
introduced by Drewniak [3], which were not formalized in Mizar before: I3
and I, needed to formulate Example 1.5.10. Section 7 shows how nine basic
fuzzy implications are connected with contrapositive symmetry. Most of these
properties, once proven formally, can be obtained by the Mizar checker without
any additional references, only by virtue of cluster registrations mechanism.
These registrations in the Mizar code can be treated as the formal counterpart
of Table 1.9, p. 29 from Baczynski and Jayaram book, quoted below.

Fuzzy implication I | (CP) | (L-CP) | (R-CP)
Ik Nc N¢ N¢
Icp X X Np1
Irc Nc Nc Nc
Ixp Nc¢ N¢ N¢
IGG X X Np1
Irs Nc Nc Nc
IYG X X NDl
IWB X X NDQ
Irp NC NC NC

Additionally, in the final section we introduce the lattice of all fuzzy nega-
tions and show its basic properties [9], partially formulating and proving The-
orem 1.4.3, p. 14. We wanted to avoid duplication of lattice-theoretical notions
(ordering vs. lattice suprema and infima) [I1], and the availability of min and
max operations for various (formally distinct) classes of functions was an issue
we had to cope with [12].

Our work makes a step towards the formalization of fuzzy sets and fuzzy
numbers [4], [15] in the computerized proof assistant [§], [10]; see [13] and [14]
for another interesting effort in this direction.

1. LAwS OF CONTRAPOSITION

Let L be a non empty 1-sorted structure and a, b be elements of L. Let us
note that the functor {a, b} yields a subset of L. One can verify that there exists
a fuzzy negation which is decreasing.

Let N be a fuzzy negation and I be a binary operation on [0, 1]. We say that
I satisfies contraposition property w.r.t. N if and only if
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(Def. 1) for every elements z, y of [0,1], I(z,y) = I(N(y), N(z)).

We say that I satisfies left contraposition property w.r.t. N if and only if
(Def. 2) for every elements z, y of [0,1], I(N(z),y) = I(N(y),z).

We say that I satisfies right contraposition property w.r.t. N if and only if
(Def. 3) for every elements xz, y of [0,1], I(z, N(y)) = I(y, N(z)).

2. Fuzzy NEGATIONS REVISITED

Now we state the proposition:

(1) Ne = (AffineMap(—1, 1))][0, 1]
PROOF: Set N = N¢. Set f = (AffineMap(—1,1))[[0, 1]. For every object
x such that z € dom N holds f(z) = N(x). O

Note that N¢ is continuous and N¢ is strong and there exists a fuzzy ne-
gation which is strict and there exists a fuzzy negation which is strong. Every
fuzzy negation which is satisfying (N3) is also decreasing and every fuzzy nega-
tion which is decreasing is also satisfying (N3).

Observe that every unary operation on [0, 1] is R-defined and real-valued and
every real-valued function which is R-defined and decreasing is also one-to-one.
Every unary operation on [0, 1] which is decreasing is also one-to-one and every
fuzzy negation is non-increasing and every fuzzy negation which is strict is also
one-to-one. Now we state the proposition:

(2) Let us consider a function R. If R~ is a function, then R is one-to-one.
Let us consider fuzzy negations Ny, No. Now we state the propositions:
(3) If N;~ = Ny, then Nj is one-to-one.
(4) If N;~ = Ng, then Nj is onto.
PROOF: Ny is one-to-one. For every object y such that y € [0,1] there
exists an object = such that x € [0,1] and y = Ny (z). O

(5) Let us consider a binary operation I on [0, 1], a strict fuzzy negation N,
and a fuzzy negation Nj. Suppose N~ = Nj. Then [ satisfies left con-
traposition property w.r.t. NV if and only if I satisfies right contraposition
property w.r.t. Nj.

PROOF: N is onto. If I satisfies left contraposition property w.r.t. N, then
I satisfies right contraposition property w.r.t. N1. For every elements x, y
of [0,1], I(N(x),y) = I(N(y),x). O
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3. PROPOSITION 1.5.3

Let us consider a binary operation I on [0,1] and a strong fuzzy negation
N. Now we state the propositions:

(6) If I satisfies contraposition property w.r.t. N, then I satisfies left con-
traposition property w.r.t. V.

(7) If I satisfies left contraposition property w.r.t. N, then I satisfies right
contraposition property w.r.t. N.

(8) If I satisfies right contraposition property w.r.t. N, then I satisfies con-
traposition property w.r.t. N.

(9) [ satisfies contraposition property w.r.t. N if and only if I satisfies left
contraposition property w.r.t. N.

(10) I satisfies contraposition property w.r.t. N if and only if I satisfies right
contraposition property w.r.t. V.

4. LEMMA 1.5.4

Let us consider a binary operation I on [0, 1] and a fuzzy negation N. Now
we state the propositions:

(11) If I satisfies (I1) and contraposition property w.r.t. N, then I satisfies

(12).
PROOF: For every elements x, y, z of [0, 1] such that y < z holds I(z,y) <
I(z,2). O

(12) If I satisfies (I12) and contraposition property w.r.t. N, then I satisfies
(I1).
PROOF: For every elements z, y, z of [0, 1] such that z < y holds I(z, z) >
I(y,2z). O

(13) If I satisfies (LB) and contraposition property w.r.t. N, then I satisfies
(RB).

(14) If I satisfies (RB) and contraposition property w.r.t. N, then I satisfies
(LB).

(15) If I satisfies (NP) and contraposition property w.r.t. N, then N = N;
and Ny is strong.

(16) If I satisfies (NP) and contraposition property w.r.t. N, then I satisfies
(I3), (I4), and (I5). The theorem is a consequence of (15).

(17) Let us consider a binary operation I on [0, 1]. Suppose [ satisfies (NP).
If Ny is not strong, then for every fuzzy negation N, I does not satisfy
contraposition property w.r.t. V.



ON FUZZY NEGATIONS AND LAWS OF CONTRAPOSITION. LATTICE ... 155
5. LEMMA 1.5.6 AND COROLLARIES

Let us consider a binary operation I on [0, 1] and a strong fuzzy negation
N. Now we state the propositions:

(18) 1If N = Ny, then if I satisfies contraposition property w.r.t. N, then I
satisfies (NP).

(19) If N = Ny, then if I satisfies (EP), then [ satisfies (13), (I4), (I5), (NP),
and contraposition property w.r.t. N. The theorem is a consequence of
(18) and (16).

Let us consider a binary operation I on [0, 1] and a fuzzy negation N. Now
we state the propositions:

(20) If I satisfies contraposition property w.r.t. N, then I satisfies (I1) iff I
satisfies (12).

(21) If I satisfies contraposition property w.r.t. N, then I satisfies (LB) iff I
satisfies (RB).

(22) If I satisfies contraposition property w.r.t. N, then if N is strong, then
I satisfies (NP) iff N = Nj.

(23) If I satisfies contraposition property w.r.t. N, (I1), and (NP), then I €
FZ and Ny = N and N is strong. The theorem is a consequence of (20),
(16), and (15).

(24) Let us consider fuzzy implication I satisfying (NP) and (EP). Then N;
is strong if and only if I satisfies contraposition property w.r.t. (Ny).

6. SOME FURTHER EXAMPLES OF Fuzzy IMPLICATIONS

The functor I3 yielding a binary operation on [0, 1] is defined by
(Def. 4) for every elements z, y of [0,1], if = 0 or y # 0, then it(z,y) = 1 and
if z # 0 and y = 0, then it(x,y) = 0.

One can verify that I3 is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd
coordinate, 00-dominant, 11-dominant, and 10-weak. Now we state the propo-
sition:

(25) Ny, = Np.

Let us note that Iy satisfies (EP) but does not satisfy (NP) and I3 satisfies
contraposition property w.r.t. (Ng,).

The functor Iy, yielding a binary operation on [0, 1] is defined by

(Def. 5) for every elements z, y of [0,1], if x # 1 or y = 1, then it(z,y) = 1 and
if z =1 and y # 1, then it(x,y) = 0.
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One can verify that Iy4 is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd
coordinate, 00-dominant, 11-dominant, and 10-weak. Now we state the propo-
sition:

(26) Np, = Npa.

Let us note that 14 satisfies (EP) but does not satisfy (NP) and Iy, satisfies

contraposition property w.r.t. (Ny,).

7. CONTRAPOSITIVE SYMMETRY W.R.T. THE NATURAL NEGATION

Let I be a fuzzy implication. We say that I satisfies contraposition property
if and only if
(Def. 6) I satisfies contraposition property w.r.t. (Ny).
We say that [ satisfies left contraposition property if and only if
(Def. 7) I satisfies left contraposition property w.r.t. (Ny).
We say that [ satisfies right contraposition property if and only if
(Def. 8) I satisfies right contraposition property w.r.t. (Ny).

Observe that Ik satisfies left contraposition property w.r.t. (N¢), right
contraposition property w.r.t. (N¢), and contraposition property w.r.t. (N¢)
and Iy i satisfies left contraposition property, right contraposition property, and
contraposition property. Igp satisfies right contraposition property w.r.t. (Np1)
and Igp satisfies right contraposition property.

Note that Igc satisfies contraposition property w.r.t. (N¢), left contrapo-
sition property w.r.t. (N¢), and right contraposition property w.r.t. (N¢) and
IR satisfies contraposition property, left contraposition property, and right con-
traposition property. Ixp satisfies contraposition property w.r.t. (N¢) and Ixp
satisfies left contraposition property w.r.t. (N¢) and Ixp satisfies right con-
traposition property w.r.t. (N¢) and Ikp satisfies contraposition property, left
contraposition property, and right contraposition property.

Let us observe Igq satisfies right contraposition property w.r.t. (Npi) and
Igq satisfies right contraposition property. Now we state the proposition:

(27) Igs satisfies left contraposition property w.r.t. (N¢).

One can check that Irg satisfies contraposition property w.r.t. (N¢), left
contraposition property w.r.t. (N¢), and right contraposition property w.r.t.
(N¢). Now we state the proposition:

(28) Let us consider a decreasing fuzzy negation N. Then IRg satisfies con-
traposition property w.r.t. N.
PROOF: Set I = Igs.
For every elements x, y of [0, 1], I(z,y) = I(N(y), N(z)). O
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Let us observe that Iy satisfies right contraposition property w.r.t. (Npi)
and Iy satisfies right contraposition property. Iwp satisfies right contraposition
property w.r.t. (Npo) and I'ywp satisfies right contraposition property.

Note that Ipp satisfies contraposition property w.r.t. (N¢), left contrapo-
sition property w.r.t. (N¢), and right contraposition property w.r.t. (N¢) and
Irp satisfies contraposition property, left contraposition property, and right con-
traposition property.

8. Fuzzy LATTICE REVISITED

Now we state the propositions:
(29) FuzzyLattice [0, 1] is a complete, Heyting, distributive lattice.
(30) the set of all f where f is a fuzzy negation C [0, 1][%1],
Let Ny, Ny be fuzzy negations. The functors: max(Ny, No) and min(Ny, No)
yielding fuzzy negations are defined by conditions
(Def. 9) there exist functions f, g from [0, 1] into R such that f = N; and g = Ny
and max(Ny, N2) = max(f,g),
(Def. 10) there exist functions f, g from [0, 1] into R such that f = N; and g = No
and min(Ny, No) = min(f, g),
respectively. The functor FuzzyNegations yielding a strict, full relational sub-
structure of FuzzyLattice [0, 1] is defined by
(Def. 11) the carrier of it = the set of all N where N is a fuzzy negation.
Observe that FuzzyNegations is non empty, reflexive, transitive, and anti-
symmetric. Now we state the proposition:
(31) Let us consider fuzzy negations Ny, No.
Then max(Ny, N2) = maxppo.1 (N1, Na).
PROOF: Set A = [0, 1]. Set F = max (N1, Na). Set m = maxgo.1j (N1, Na).
Consider f; being a function such that m = f; and dom f; = A and
rng fi C R. For every object x such that x € [0, 1] holds F(x) = m(x). O
Let us consider fuzzy negations Ny, No and membership functions fs, go of
[0, 1]. Now we state the propositions:
(32) If Ny = fy and N3 = g9, then max(Ny, No) = max(fa, g2).
(33) If Ny = fo and N3 = go, then min(Ny, No) = min(fa, g2).
(34) Let us consider fuzzy negations Ny, Na.
Then min(Nl, Ng) = minR[o,u (Nl, NQ).
PRrROOF: Set A = [0, 1]. Set F = min(Ny, N2). Set m = mingp (N, Na).
Consider f; being a function such that m = f; and dom f; = A and
rng fi C R. For every object x such that x € [0, 1] holds F(x) = m(x). O
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Note that FuzzyNegations is join-inheriting and FuzzyNegations is meet-
inheriting.

Let us consider elements N7, N of FuzzyNegations and fuzzy negations Ny,
N>. Now we state the propositions:

(35) If Ny = N7 and Ny = Ny, then A7 UAN5 = max(Ny, Np). The theorem is
a consequence of (32).

(36) 1If Ny = N7 and Ny = Ny, then N7 MA, = min(Ny, N2). The theorem is
a consequence of (33).
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INTRODUCTION

In this paper, problems 62 from Section III, 91, 125 from Section IV, 143,
146, 147, 158, 166, 178, 180, and 181 from Section V of [10] are formalized, using
the Mizar formalism [I], 2l [4]. It contributes to the project for the formalization
of problems defined in [7].

In the preliminary section, we provide some very technical lemmas, mainly
about powers of complex numbers, which are helpful for this and future for-
malizations. To formulate the statement of Problem 62 the operation ArProg
introduced in [3] is used. Some useful theorems about primeness of products of
elements of finite sequences are proven.

Problem 91 is devoted to decomposing some Mersenne numbers [9] into
products of primes or arbitrary integers. For justification of the primeness of
Mersenne(17) and Mersenne(19) we formalized the lemma

Vp.gep D is odd A g|[Mersenne(p) = Jpen ¢ =2-k-p+ 1.

®© 2023 The Author(s) / AMU
(Association of Mizar Users)
161 under [CC BY-SA 3.0 license


https://sciendo.com/journal/forma
https://orcid.org/0000-0002-4565-9082
http://zbmath.org/classification/?q=cc:11A41
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/number09.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

162 ARTUR KORNILOWICZ

The proof of Problem 143 concerning solutions of the equation z? — Dy? = 22

in positive integers x, y, z for arbitrary integer D presented in the book has been
split into three cases depending on the sign of the parameter D.

The proof of Problem 158 about infiniteness of the number of solutions of
the equation % +44+24 % = 1 in integers x, y, z,t relies on the infiniteness of
the range of an injective function with infinite domain, where as the function
we use f: A — Z X 7Z X 7 x 7, where A is the set of all integers greater than 1
and for every integer n > 1, f(n) = [-n%,n?- (n? —1),(n? — 1)%, —n - (n? — 1)].

Problem 166 about representing number % as a sum of reciprocals of a finite
number of squares of positive integers is formulated as just one example of such
decomposition, as

I 1 1 1 1 1 1 1 1 1 1 1 1

e TR T e e T T T T ae e T
and its proof is evident to the Mizar verifier due to built-in arithmetic processing.

Problem 180 about solutions (in positive integers) of the equation y-(y+1) =
x-(x+1)- (x+2) is formulated as equations 2-(24+1)=1-(14+1)-(1+2) and
14-(14+1)=5-(541) - (54 2) with shapes which mimic the structure of the
problem. Its proof is also obvious to the Mizar verifier due to built-in arithmetic
processing [§].

The proof of Problem 181 about infiniteness of the number of solutions of
the equation 1+ 2 +1? = 22 in positive integers x,y, z uses the same technique
as we used in the proof of Problem 158 where f : Ny — N; x N x Ny such
that for every positive integer n, f(n) =[2-n,2-n22-n? +1].

1. PRELIMINARIES

From now on X denotes a set, a, b, ¢, k, m, n denote natural numbers, i, j
denote integers, r, s denote real numbers, p, p1, p2, p3 denote prime numbers,
and z denotes a complex number. Now we state the propositions:

1) 2l=z-2-2-2-2-2-2-2-2-2-2
(2) 22=z2-2-2-2-2-2-2-2-2-2-2- 2z The theorem is a consequence of
(3) 2¥=z2-2-2-2-2-2-2-2-2-2-2-2-2 The theorem is a consequence

(4) z2¥%=z2-2-2-2-2-2-2-2-2-2-2-2-2-2 The theorem is a consequence

(5) 2% =z2-2-2-2-2-2-2-2-2-2-2-2-2-z- 2. The theorem is a consequence
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6) 2'0=2.2-2-2-2-2-2-2-2-2-2-2-2-2z-2z-2 The theorem is
a consequence of (5).
() 2Y"=2-2-2-2z-2-2-2-2-2-2-2-2-2-2-2-z-z The theorem is
a consequence of (6).
®) 28=z.2-2.-2-2-2-2-2-2-2-2-2-2-2-2-2 22z The theorem is
a consequence of (7).
©9) 22=z.2.-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2 The theorem is
a consequence of (8).
(10) 22°=z2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-%- %2 The theorem
is a consequence of (9).
(11) Ifn > 2, then there exists a positive natural number k such that 2" —1 =
4-k—1.
PROOF: Define P[natural number| = if $; > 2, then there exists a positive
natural number k such that 281 — 1 = 4.k — 1. P[2]. For every natural

number j such that 2 < j holds if P[j], then P[j + 1]. For every natural
number ¢ such that 2 <4 holds P[i]. O

2. PROBLEM 62

Let X be a set. We say that X is included in a segment if and only if
(Def. 1) there exists a natural number k such that X C Segk.

Note that every set which is empty is also included in a segment.

Let n be a non zero natural number. Let us note that {n} is included in
a segment and there exists a set which is non empty and included in a segment
and every set which is included in a segment is also finite and natural-membered
and every finite, natural-membered set which has non empty elements is also
included in a segment.

Let a, r be natural numbers. Observe that ArProg(a,r) is natural-valued.

Let us consider i. The functor Coprimes(i) yielding a subset of Z is defined
by the term

(Def. 2) {j, where j is an integer : i and j are relatively prime}.
Now we state the proposition:

(12) Let us consider an included in a segment set X. If X C P and p |
[1Sgm X, then p € X.

Let us consider natural numbers a, b and a non zero natural number m. Now
we state the propositions:
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(13) Suppose a and b are relatively prime. Then [] Sgm{p, where p is a prime
number : p | m and p | a} and []Sgm{q, where ¢ is a prime number : ¢ |
m and ¢ | b} are relatively prime. The theorem is a consequence of (12).

(14) TISgm{p, where p is a prime number : p | m and p | a} and [] Sgm{r
where r is a prime number : 7 | mand r { a and r { b} are relatively
prime. The theorem is a consequence of (12).

(15) Suppose a and b are relatively prime. Then [] Sgm{q, where ¢ is a prime
number : ¢ | m and ¢ | b} and [ Sgm{r, where r is a prime number : r |
m and r {a and 7 1 b} are relatively prime. The theorem is a consequence
of (14).

(16) Let us consider an included in a segment set X. If a € X, then a |
[1Sgm X.

(17) Let us consider non zero natural numbers a, m. Suppose a and b are
relatively prime. Then rng ArProg(b, a) N Coprimes(m) is infinite.
PROOF: Set P; = {p, where p is a prime number : p | m and p | a}. Set
Ry = {r, where r is a prime number : r | m and r { a and r { b}. Set
P =1[Sgm P;. Set R =][]Sgm R;. a-P- R+b and m are relatively prime.
Set g = ArProg(b,a). Set X = rngg N Coprimes(m). For every natural
number x such that x € X there exists a natural number y such that
y>xand y € X by [3, (7)], [5, (64)]. O

3. PROBLEM 91

Let n be a complex number. We say that n is a product of two primes if and

only if
(Def. 3) there exist prime numbers py, pe such that n = py - po.

We introduce the notation n is not a product of two primes as an antonym
for n is a product of two primes.

One can check that every prime number is not a product of two primes. Let
us consider p; and ps. One can verify that p; - ps is a product of two primes.
Now we state the propositions:

(18) Ifa # 1 and a # n and a is not prime and a | n, then n is not a product
of two primes.

(19) If n is a product of two primes, then n > 4.
(20) If cis a product of two different primes, then ¢ is a product of two primes.

Let us consider p1, p2, and p3. One can check that py - ps - p3 is not a product
of two primes. Now we state the propositions:
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(21) If n is a product of two primes, then for every a and b such that a # 1
and b # 1 and n = a - b holds a is prime and b is prime.
(22) If 2™ —1 is prime and 2" + 1 is prime, then n = 2.
Let n be a zero natural number. Note that M, is zero. Let n be a non zero
natural number. Let us note that M, is odd. Now we state the propositions:

(23) Let us consider prime numbers p, ¢. Suppose p is odd and ¢ | M. Then
there exists a natural number k£ such that ¢ =2-%k-p+ 1.

(24) M7 is prime. The theorem is a consequence of (23).
(25) Mg is prime. The theorem is a consequence of (23).

(26) {2"—1, where n is a natural number : 2"—1 < 10% and 2"—1 is a product
of two primes} = {2* — 1,29 — 1,211 — 1}

PROOF: Set A = {2" —1:2" —1 < 10% and 2" — 1 is a product of two
primes}. Set B = {2% — 1,29 — 1,211 —1}. A C B by [6] (7)], (9). B C A.

d
Let us consider n. We say that n has at least three different divisors if and

only if
(Def. 4) there exist natural numbers q1, g2, g3 such that ¢1, g2, g3 are mutually
different and ¢; > 1 and g2 > 1 and g3 > 1 and ¢; | n and ¢z | n and g3 | n.

Observe that every natural number which has more than two different prime
divisors has also at least three different divisors and every natural number which
has more than two different prime divisors is also not a product of two primes.

Now we state the propositions:

(27) If n has more than two different prime divisors, then n is not a product
of two different primes.

(28) If nis even and n > 4, then 2" — 1 has at least three different divisors.
The theorem is a consequence of (22).

4. PROBLEM 125

Now we state the propositions:
(29) If Fermat m = Fermatn, then m = n.
(30) If m < n, then Fermat m < Fermat n.
(31) If m < n, then Fermat m < Fermatn. The theorem is a consequence of
(30).
(32) Ifi=j (modj), then j | i.
(33) i-n=n (modn).
(34) Ifa|mF+1,thenal (a-n+m)"+1.
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(35) 17| (34 -k+ 2)22 + 1. The theorem is a consequence of (34).
(36) 17| (34-k+ 4)21 + 1. The theorem is a consequence of (34).
(37) 17| (34-k+ 6)23 + 1. The theorem is a consequence of (34).
(38) 17| (34 -k+ 8)22 + 1. The theorem is a consequence of (34).
(39) 17| (34-k+ 10)23 + 1. The theorem is a consequence of (34).
(40) 17| (34 -k + 12)23 + 1. The theorem is a consequence of (34).
(41) 17| (34 -k + 14)23 + 1. The theorem is a consequence of (34).
(42) 17| (34-k+ 20)23 + 1. The theorem is a consequence of (34).
(43) 17| (34-k+ 22)23 + 1. The theorem is a consequence of (34).
(44) 17| (34-k+ 24)23 + 1. The theorem is a consequence of (34).
(45) 17| (34 -k + 26)22 + 1. The theorem is a consequence of (34).
(46) 17| (34-k+ 28)23 + 1. The theorem is a consequence of (34).
(47) 17| (34-k+ 30)21 + 1. The theorem is a consequence of (34).
(48) 17| (34-k+ 32)22 + 1. The theorem is a consequence of (34).
(49) If 1 < a < 100, then there exists a positive natural number n such that

n < 6 and a®" + 1 is composite. The theorem is a consequence of (37),
(38), (39), (40), (41), (42), (43), (44), (45), (46), (47), (48), (35), and (36).

5. PROBLEM 143

Now we state the proposition:

(50) Let us consider an integer D. Then {(z, y, z), where z, y, z are positive
natural numbers : 22 — D - y2 = 22} is infinite.

6. PROBLEM 146

Now we state the propositions:
(51) (i) n% mod 8 =0, or
(i) n2 mod 8 =1, or
(iii) n2 mod 8 = 4.
(52) Let us consider natural numbers z, 3, z. Then 22 —2-y? +8- 2 # 3. The
theorem is a consequence of (51).
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7. PROBLEM 147

Now we state the proposition:

(53) {(x, y), where z,y are natural numbers : y2 —z-(z+1)-(z+2)- (v +3) =
1} = {{=, y), where x,y are natural numbers : y = 22 + 3 -z + 1}.
PROOF: Set A = {(z, y), where x,y are natural numbers : y2 —xz-(z+1)-
(x+2)-(x+3) =1}. Set B = {(z, y), where z,y are natural numbers :
y=22+3-2+1}. A C B. Consider z, y being natural numbers such that
a={z,y)andy=22+3-2+1.0

8. PROBLEM 158

Now we state the propositions:
(54) Let us consider positive real numbers a, b, ¢, d. If § <1 and § < 1, then
7og <L
(55) Let us consider positive natural numbers x, y, z, t. Then %—I—%—i—%-ﬁ—% # 1.
The theorem is a consequence of (54).
Let n be a natural number. The functor (n,oco)y yielding a subset of N is
defined by the term
(Def. 5) N\ (Z,).
Let us consider n. One can check that (n,o0)y is infinite. Now we state the
propositions:
(56) k € (n,o0)y if and only if n < k.
PRrOOF: If k € (n,00)y, then n < k. O
(57) m+k € (n,00)n.
(58) n € (n,o0)n.
(59) If k>0, then n ¢ (n+ k,00)y. The theorem is a consequence of (56).
Let us consider n. Let us note that every element of (n,c0)y is n or greater
and there exists a natural number which is n or greater. Now we state the
proposition:
(60) Let us consider an n or greater natural number k. Then k € (n, c0)y.
Let us consider n. Let k be a non zero natural number. Observe that k- n
is n or greater. Let k be an n or greater natural number. One can verify that
k — n is natural. Now we state the proposition:
(61) {({z,y,z,t), where z, y, z, t are integers : T + £+ % + L =1} is infinite.
PROOF: Set G2 = (2, 00)N. Set A = {{(z,y, z,t), where x,y, z,t are integers :
s 9424 1 =1} Define V(natural number) = —$%. Define Y(natural
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number) = $2 - ($2 — 1). Define Z(natural number) = ($2 — 1)2. De-
fine 7 (natural number) = —$; - (32 — 1). Define F(element of G3) =
(V($1),Y($1), Z(8$1),7($1)). Consider f being a many sorted set inde-
xed by G2 such that for every element d of Ga, f(d) = F(d). rng f C A.
f is one-to-one. [J

9. PROBLEM 166

Now we state the proposition:

(62) §= et st drt gt bkt ods phs o gkt e
10. PROBLEM 178

Now we state the proposition:

(63) (n+1)°+(n+2)°+(n+3)°+(n+4)°# (n+5)°.

11. PROBLEM 180

Now we state the proposition:
(64) (i) 2-2+1)=1-(1+1)-(1+2),and
(ii) 14-(14+1)=5-(5+1)-(5+2).

12. PROBLEM 181

Now we state the proposition:

(65) {{z, y, z), where x, y, z are positive natural numbers : 1+ 22 +y? = 22}
is infinite.
PRrOOF: Set A = {(z, y, z), where z,y, z are positive natural numbers :
1+ 22 + y2 = 22}. Define V(natural number) = 2 - $;. Define )(natural
number) = 2-$2. Define Z(natural number) = 2-$2 4 1. Define F(natural
number) = (V($1), Y($1), Z(%1)). Consider f being a many sorted set
indexed by N, such that for every element d of N, f(d) = F(d). mg f C
A. f is one-to-one. [J
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INTRODUCTION

In this paper, Problems 84, 94, 99 from Section IV, 170, 173, 174, 175, 177,
179, 186, 187, 189, 190, 193, 194, 197, and 199 from Section V of [10] are for-
malized, using the Mizar formalism [I]. It contributes to the project announced
in [6].

Some of the problems in the book are formulated in terms of positive inte-
gers. To represent such numbers in the Mizar Mathematical Library [2], we use
notions either positive Integer or positive Nat or non zero Nat, which
are automatically understood as equivalent due to the built-in processing of
adjectives by the Mizar checker.

For proving the infiniteness of the set of pairs of consecutive primes that are
not twin primes (Problem 84), we implemented the operation max(0,6-n+ 1)p,
which represents the largest prime < 6n 4 1 denoted as pg, in the book. We
noted a small misprint in the proof presented in the book in the equation (6n +
5) + (6n + 1) = 4 — it should be (6n +5) — (6n + 1) = 4.

Problem 179 asks about all rational solutions of the equation

(z+ 124+ (x+23+ (2 +3)3 + (z+4)?° = (z+10)3.

@© 2023 The Author(s) / AMU
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171 under [CC BY-SA 3.0 license


https://sciendo.com/journal/forma
https://orcid.org/0000-0002-4565-9082
http://zbmath.org/classification/?q=cc:11A41
http://zbmath.org/classification/?q=cc:11D72
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/number10.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

172 ARTUR KORNILOWICZ

We generalized the problem to real numbers and presented the only solution
x = 10 in reals, which is also the only solution in rationals. Moreover, we
computed that the substitution x = t + 10 proposed in the book results in the
equation ¢(t? + 30t + 230) = 0.
The infiniteness of sets defined in Problems 189, 190, and 199 is proven using
function recSeqCart [4] with parameters adequate to given problems.
Problem 197 is devoted to the existence of solutions of the equation

1+ T2+ -+ Ty = 2122 Ty

in positive integers. In the case of n > 2, the proof in the book proposes x,,—1 =
1, but we computed that x,,_; must be equal to 2.

Proofs of other problems are straightforward formalizations of solutions given
in the book, by means of available development of number theory in Mizar [9],
using ellipsis [3] extensively, looking forward for more advanced automatization
of arithmetical calculations [7].

1. PRELIMINARIES

From now on a, b, ¢, k, m, n denote natural numbers, ¢, j, =, y denote
integers, p, ¢ denote prime numbers, and r, s denote real numbers. Now we
state the propositions:

(1) Let us consider natural numbers 7, j. If i < j, then there exists a positive
natural number k such that j =i + k.

(2) Let us consider a positive yielding, integer-valued finite sequence f. Then

[Ir>1

PROOF: Define P[set] = for every positive yielding, integer-valued finite
sequence F such that F' = $; holds [[ F' > 1. For every finite sequence p of
elements of Z and for every element x of Z such that P[p] holds P[p~ (z)].
For every finite sequence p of elements of Z, P[p]. O

(3) If m>2and n > 2, then m - n is composite.
(4) If ptn, then n and p are relatively prime.
(5) —1modp=p-—1.

2. PROBLEM 84

Let r, s be complex numbers. We say that r and s are twin if and only if
(Def. 1) |s—r|=2.
One can verify that the predicate is irreflexive and symmetric. Now we state the
proposition:

(6) Ifr <s, then r and s are twin iff s —r = 2.
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Let us consider n. The functor (0,6-n+ 1)y yielding a subset of N is defined
by the term
(Def. 2) {a, where a is a natural number : a < 6-n+ 1}.
Now we state the propositions:
(7) a<6-n+1ifandonlyifa € (0,6 -n+ 1)y.
(8) <0, 6-n-+ 1>N C Zgn+2.
Let us consider n. Observe that (0,6 - n + 1)y is non empty and finite. Now
we state the propositions:
(9) Ifm < n,then (0,6-m+1)y C (0,6-n+1)n. The theorem is a consequence
of (7).
(10) If m < n, then (0,6-m+1)y C (0,6-n+1)y. The theorem is a consequence
of (9) and (7).
(11) 1If(0,6-m+1)y = (0,6-n+1)y, then m = n. The theorem is a consequence
of (10).
Let us consider a non zero natural number n. Now we state the propositions:
(12) 2€(0,6-n+1)yNP.
(13) 3€(0,6-n+1)NNP.
(14) 5€(0,6-n+1)yNP.
(15) 7€(0,6-n+1)yNP.
Let n be a non zero natural number. Observe that (0,6 -n + 1)y NP is non
empty.
The functor max(0, 6-n+1)p yielding a prime number is defined by the term
(Def. 3) max((0,6 -n+ 1)y NP).
Now we state the propositions:
(16) Let us consider non zero natural numbers m, n. Suppose m < n. Then
max (0,6 - m + 1)p < max(0,6 - n + 1)p. The theorem is a consequence of
(9)-
(17) max(0,6-20 + 1)p = max(0,6 - 19 + 1)p.
PROOF: Set a = 20. Set b =19. Set X = (0,6-a+ 1)n. Set B = max(0,6 -
b+1)p. B<6-b+ 1. For every extended real = such that z € X NP holds
z< B. O
(18) (0,6-1+1)y={0,1,2,3,4,5,6,7}.
(19) max(0,6-1+ 1)p =7.
(20) If pr(m) = pr(n), then m = n.
Let p be a natural number. Assume p is prime. The functor primeindex(p)
yielding an element of N is defined by
(Def. 4) pr(it) = p.
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Now we state the propositions:

27
28
Let us consider a non zero natural number n. Now we state the propositions:

(29) pr(1+ primeindex(max(0,6-n+ 1)p)) > 6-n+ 5. The theorem is a con-
sequence of (28).

(30) pr(1 + primeindex(max(0,6 - n + 1)p)) — max(0,6 - n + 1)p > 4. The
theorem is a consequence of (7) and (29).

(31) max(0,6-n+1)p and pr(1+ primeindex(max(0,6-n+1)p)) are not twin.

The theorem is a consequence of (28), (30), and (6).

(32) Let us consider a non zero natural number m. Suppose 6-m -+ 1 is prime.
Then 6 -m + 1 = max(0,6 - m + 1)p. The theorem is a consequence of (7).

primeindex(13) = 5.

(21) If primeindex(p) = primeindex(q), then p = q.
(22) primeindex(2) = 0.

(23) primeindex(3) =1

(24) primeindex(5) = 2.

(25) primeindex(7) = 3

(26) primeindex(11) =

(27)

(28)

If n > 0, then p < pr(n + primeindex(p)).

Let us consider non zero natural numbers m, n. Now we state the proposi-
tions:
(33) If6-n+1is prime and m < n, then max(0,6-m+1)p < max(0,6-n+1)p.
The theorem is a consequence of (16), (32), and (7).
(34) Suppose 6-m+ 1 is prime and 6-n+ 1 is prime and max(0,6-m+ 1)p =
max (0,6 - n + 1)p. Then m = n. The theorem is a consequence of (33).
The functor {6n + 1 : n € N}p yielding a subset of N is defined by the term
(Def. 5) {6-n+ 1, where n is a natural number : 6 - n + 1 is prime}.
Note that {6n + 1 : n € N}p has non empty elements. Now we state the
proposition:
(35) {6n+1:neN}p CP.
One can check that {6n+1 : n € N}p is infinite. Now we state the proposition:
(36) {(p, q), where p, q are prime numbers : p and ¢ are not twin} is infinite.
PROOF: Set A = {{(p, q), where p, q are prime numbers : p and ¢ are not
twin}. Define S(non zero natural number) = max(0,6 - $; + 1)p. Define
F(non zero natural number) = (S($1), pr(1 + primeindex(S($1)))).
Define P[natural number, object] = there exists a non zero natural
number n such that n = $; and $2 = F(n). Set P = {6n+1: n € N}p.
Define C(element of P) = ($; —1div 6)(€ N). Consider C being a function
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from P into N such that for every element p of P, C(p) = C(p). C' is one-
to-one. Reconsider D = rng C' as an infinite subset of N. For every element
dof D, 6-d+1 is prime. For every element i of D, there exists an object
j such that P[i, j]. Consider f being a many sorted set indexed by D such
that for every element d of D, P[d, f(d)]. rng f C A. f is one-to-one. OJ

3. PROBLEM 94

Let ¢ be a complex number. We say that ¢ is a product of three different
primes if and only if

(Def. 6) there exist prime numbers p, g, r such that p, ¢, r are mutually different
andc=p-q-r.
Now we state the propositions:

(37) If n > 4, then there exists a natural number k such that n = 2 -k and
k>2orn=2-k+1and k> 1.

(38) If n > 4, then there exists a natural number m such that n <m <2-n
and m is a product of two different primes. The theorem is a consequence
of (37) and (3).

(39) If n > 15, then there exists a natural number m such that n <m < 2-n
and m is a product of three different primes. The theorem is a consequence

of (3).
4. PROBLEM 99

Now we state the proposition:
(40) 5247 +2 4+ 1.
Let us consider n. Note that £ - (2*"2 + 1) is natural. Now we state the
proposition:

(41) If n > 1, then % -(247*2 4 1) is composite. The theorem is a consequence
of (40) and (3).

5. PROBLEM 170

Now we state the proposition:
(42) {(z,y, ), where z,y, z are integers :  +y + 2z = 3 and 2> + 3 + 2% =
3} = {<17 17 1)7 (_57 4a 4)7 (4a _53 4>a <47 47 _5>}
PROOF: Set A = {(x, y, z), where z,y, z are integers : x + y + z = 3 and
23+ %+ 23 = 3}. Set B = {(1, 1, 1), (=5, 4, 4), (4, =5, 4), (4, 4, —5)}.
ACBby[8 (2). 0O
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6. PROBLEM 173

Now we state the proposition:

(43) Let us consider positive natural numbers m, n. Then there exist integers
a, b, ¢ such that {(x, y), where z,y are natural numbers : a -z +b-y =
¢y = {{m, n)}.
ProOF: Consider a being a prime number such that a > m + n. Consider
b being a prime number such that b > a. Set A = {(x, y), where z,y are
natural numbers: a-x +b-y =c}. Set B={(m, n)}. AC B. O

7. PROBLEM 174

Let us consider a positive natural number m. Now we state the propositions:

(44) {(z, y), where z,y are positive natural numbers : z +y = m + 1} = m.
PROOF: Set A = {(z, y), where z,y are positive natural numbers : x+y =
m+1}. Segm ~ A. O

(45) There exist positive natural numbers a, b, ¢ such that

{{x, y), where x,y are positive natural numbers : a-x +b-y =c} = m.
The theorem is a consequence of (44).

8. PROBLEM 175

Now we state the proposition:

(46) Let us consider a positive natural number m. Then {(z, y), where z,y

are positive natural numbers : 22 +y2+2-2-y—m-x—m-y—m — 1

=0} = m. The theorem is a consequence of (44).

9. PROBLEM 177

Let b, e be real numbers and n be a natural number. The functor powersFS(b,
e,n) yielding a finite sequence of elements of R is defined by
(Def. 7) lenit = n and for every natural number ¢ such that 1 < ¢ < n holds
it(1) = (b+1)°.
Now we state the propositions:
(47) powersFS(—(k+1),r,2- (k+ 1)) = (((=k)") ~ powersFS(—k,r,2 - k)) ~
(E+1)").
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(48) Let us consider a positive natural number k. Then powersFS(—(k + 1), 7, 2-
(k+1)—1)= (((—k)") ~ powersFS(—k,r,2 -k — 1)) ~ (k").

(49) 3 powersFS(—k,3,2- k) = k3.
PROOF: Define P[natural number] = 3 powersFS(—$1,3,2 - $1) = $;°.
P[0]. For every natural number n such that P[n| holds P[n+ 1]. For every
natural number n, Pln]. O

(50) Let us consider a positive natural number k. Then Y powersFS(—k, 3,2-
k—1)=0.
PROOF: Define P[non zero natural number] = Y powersFS(—$;,3,2-$; —
1) = 0. P[1]. For every non zero natural number n such that P[n] holds
P[n + 1]. For every non zero natural number n, P[n|. O

(51) Let us consider a positive natural number n. Then there exists an integer
x and there exists a natural number y such that 3 powersFS(x, 3,n) = y3.
The theorem is a consequence of (49) and (50).

10. PROBLEM 179

Now we state the proposition:

(52) Let us consider a real number . Then (z 4 1)* + (2 + 2)* + (z + 3)* +
(z +4)* = (z +10)® if and only if 2 = 10.
ProorF: If (z41)* + (x+2)> + (2 +3)° + (z +4)° = (x4 10)*, then
x =10. O

11. PROBLEM 186

Now we state the proposition:

(563) {{=, y), where x,y are positive natural numbers : 2% + 1 = y2} = {(3,

3)}.
PRrOOF: Set A = {(z, y), where z,y are positive natural numbers : 2% 4
1=y*} AC{(3,3)} by [1T} (36)]. O

12. PROBLEM 187

Now we state the proposition:

(54) {(=, y), where x,y are positive natural numbers : 2% — 1 = y2} = {(1,
1)}
PRrROOF: Set A = {(z, y), where z,y are positive natural numbers : 2% —
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13. PROBLEM 189

Now we state the propositions:

(55) {{(x, y), where z, y are positive natural numbers : (2-x+1)2—2-y2+1 = 0}
is infinite.
PROOF: Define R(complex number, complex number) = (2-$;+1)2—2-$2+

1. Set A = {(z, y), where z,y are positive natural numbers : R(z,y) =
0}. Set f = recSeqCart(3,5,3,2,1,4,3,2). Define N[natural number] =
f($1) € A. If Na], then Na+1]. Na]. mg f C A. O

(56) {(=, y), where z, y are positive natural numbers : 22 + (z + 1)2 = y2}
is infinite. The theorem is a consequence of (55).

14. PROBLEM 190

Now we state the propositions:

(57) {{(x, y), where x, y are positive natural numbers : 3-22+3-2—y2+1 = 0}
is infinite.
PROOF: Define R (complex number, complex number) = 3-$243-$; —$2 +

1. Set A = {(x, y), where x,y are positive natural numbers : R(z,y) =
0}. Set f =recSeqCart(7,13,7,4,3,12,7,6). Define N [natural number| =
f($1) € A. If Na], then N{a+1]. Na]. mg f C A. O

(58) {{x, y), where z, y are positive natural numbers : (z +1)> — 23 = y2}
is infinite. The theorem is a consequence of (57).

15. PROBLEM 193

Now we state the propositions:
(59) If i is even, then i2 mod 8 = 0 or i2 mod 8 = 4.
(60) If i is odd, then 72 mod 8 = 1.
(61) (i) 42 mod 8 =0, or
(ii) 2 mod 8 =1, or
(iii) 42 mod 8 = 4.
(62) Ifp=4-k+3andp|i®+ 42 thenp|iandp]j.
(63) 22 —y3 # 7. The theorem is a consequence of (59) and (60).
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16. PROBLEM 194

Now we state the proposition:

(64) Let us consider an odd natural number ¢. Then 22 — 33 # (2-¢)® — 1.
The theorem is a consequence of (60) and (59).

17. PROBLEM 197

Let f, g be positive yielding finite sequences. Let us note that f g is positive
yielding. Let x be a positive real number. Let us note that (x) is positive yielding.
Let z, y be positive real numbers. Let us note that (x,y) is positive yielding.
Now we state the proposition:

(65) Ifn > 0, then there exists a positive yielding finite sequence f of elements
of N such that len f =n and Y f=]][f.

18. PROBLEM 199

Now we state the propositions:

(66) Let us consider positive natural numbers x, y. Suppose y - (3-y — 1) =
x - (x +1). Then Polygon(3,x) = Polygon(5,y).

(67) Let us consider positive natural numbers m, n, and a natural number s.
If Polygon(s, m) = Polygon(s,n) and s > 2, then m = n.

(68) {(z, y), where z, y are positive natural numbers : y-(3-y—1)—z-(z+1) =
0} is infinite.
PROOF: Define R(complex number, complex number) = $2 - (3-8 — 1) —
$1- (%1 +1). Set A = {{z, y), where x,y are positive natural numbers :
R(xz,y) = 0}. Set f = recSeqCart(1,1,7,12,1,4,7,1). Define N [natural
number] = f($;1) € A. If Na], then Na + 1]. Na]. rmg f C A. O

(69) {n, where n is a 3-gonal natural number : n is 5-gonal} is infinite.
PROOF: Set A = {n, where n is a 3-gonal natural number : n is 5-gonal}.
Set B = {(x, y), where x,y are positive natural numbers: y-(3-y—1) —
x - (x+ 1) = 0}. Define Pobject, object] = there exists a positive natural
number n such that n = ($1); and $2 = Polygon(3,n). For every object
e such that e € B there exists an object u such that Ple,u]. Consider f
being a function such that dom f = B and for every object e such that
e € B holds Ple, f(e)]. f is one-to-one. rng f C A. [
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INTRODUCTION

In this paper, using the Mizar system [I], [I1], we introduce multidimensional
measure spaces and the integration ([I4], [2]) of functions on these spaces (for
interesting survey of formalizations of real analysis in another proof-assistants
like ACL2 [10], Isabelle/HOL [9], Coq [3], see [4]). It is the continuation of the
mechanisation of this topic as developed in [5] and [8]. In constructing measures
on multidimensional spaces [12], we constructed a finite sequence of Cartesian
product spaces of sets in Section 1. In Section 2, using Fubini’s Theorem [6], we
have constructed measures on general multidimensional spaces by introducing
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measures one by one into the finite sequence of direct product spaces obtained
in Section 1. In Section 3, integrals on the m-dimensional Cartesian product
measure space obtained in Section 2 are presented, and the concept of sequen-
tially integrable, which is useful in considering integrability [7] for functions on
multidimensional spaces, is introduced and its effectiveness is shown.

1. PRELIMINARIES

Let m, n be non zero natural numbers and X be a non-empty, m-elements
finite sequence. Assume n < m. The functor EImFin(X, n) yielding a non empty
set is defined by the term

(Def. 1) X (n).

Let m be a natural number. A family of o-fields of X is an m-elements finite

sequence defined by

(Def. 2) for every natural number ¢ such that i € Segm holds it(¢) is a o-field of
subsets of X (7).

Now we state the proposition:

(1) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family of o-fields S of X. If n < m, then S(n) is
a o-field of subsets of ElImFin(X,n).

Let m be a non zero natural number and X be a non-empty, m-elements
finite sequence. The functor [[p;,q X yielding a non-empty, m-elements finite
sequence is defined by

(Def. 3) it(1) = X (1) and for every non zero natural number i such that i < m
holds (i + 1) = it(i) x X (i + 1).
The functor [[pg X yielding a set is defined by the term
(Def. 4)  (Tlpins X)(m).

Observe that [[pg X is non empty. Now we state the proposition:

(2) Let us consider a non zero natural number m, a natural number k, and
a non-empty, m-elements finite sequence X. If k < m, then X [k is a non-
empty, k-elements finite sequence.

Let m, n be non zero natural numbers and X be a non-empty, m-elements
finite sequence. Assume n < m. The functor SubFin(X, n) yielding a non-empty,
n-elements finite sequence is defined by the term

(Def. 5) X n.

Let S be a family of o-fields of X. Assume n < m. The functor SubFin(S,n)

yielding a family of o-fields of SubFin(X,n) is defined by the term
(Def. 6) Sn.
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Assume n < m. The functor ElmFin(S,n) yielding a o-field of subsets of
ElmFin(X,n) is defined by the term
(Def. 7)  S(n).
Let m be a non zero natural number. Note that a family of o-fields of X is
a family of semialgebras of X. Let S be a family of o-fields of X.
A family of g-measures of S is an m-elements finite sequence defined by
(Def. 8) for every natural number ¢ such that i € Segm there exists a o-field S3
of subsets of X (¢) such that S3 = S(i) and it(i) is a o-measure on Ss.
Let m, n be non zero natural numbers and M be a family of o-measures of
S. Assume n < m. The functor SubFin(M,n) yielding a family of o-measures
of SubFin(S,n) is defined by the term
(Def. 9) Min.
Assume n < m. The functor EImFin(M, n) yielding a o-measure on ElmFin(S,
n) is defined by the term
(Def. 10) M(n).
Now we state the proposition:
(3) Let us consider non zero natural numbers m, i, j, k, and a non-empty,
m-elements finite sequence X. Suppose i < j < k < m.
Then (]pins SubFin(X;, j))(i) = (Ilins SubFin(X, k))(2).
PROOF: Define P[natural number| = if 1 < $; < j, then (J]p;,g SubFin(X,
7))($1) = (ITping SubFin(X, k))(3$1). For every natural number n such that
P[n] holds P[n + 1]. For every natural number n, P[n]. O
Let us consider non zero natural numbers m, n and a non-empty, m-elements
finite sequence X. Now we state the propositions:
(4) If n < m, then ([[ping X)) = (IIgins SubFin(X,n))(n). The theorem
is a consequence of (3).
(5) Ifn < m,then ([[piug X)(n+1) = ([Iping SubFin(X, n))(n) x ElImFin(X,
n + 1). The theorem is a consequence of (4).
(6) Let us consider a non zero natural number n, and a non-empty, (n+ 1)-
elements finite sequence X. Then [Jpg X = [[pg SubFin(X, n)xElmFin(X,
n 4+ 1). The theorem is a consequence of (4).
Let us consider non zero natural numbers m, n, k£ and a non-empty, m-
elements finite sequence X. Now we state the propositions:
(7) If k <n < m,then SubFin(X, k) = SubFin(SubFin(X,n), k).
(8) If k < n < m, then ElmFin(X, k) = ElmFin(SubFin(X,n), k).
Let us consider non zero natural numbers m, n and a non-empty, m-elements
finite sequence X. Now we state the propositions:



184 NOBORU ENDOU AND YASUNARI SHIDAMA

(9) Ifn < m,then [[pg SubFin(X,n+1) = [[pg SubFin(X, n) xElmFin(X, n+
1). The theorem is a consequence of (8), (6), and (7).
(10) Ifn < m, then (J]gi,g SubFin(X, n+1))(n+1) = (IIpius SubFin(X, n))(n)
x ElmFin(X,n + 1). The theorem is a consequence of (9).

(11) Let us consider non zero natural numbers n, i, a non-empty, (n + 1)-
elements finite sequence X, and a family of o-fields S of X. Suppose i < n.
Then []pg SubFin(X,i) = [[pg SubFin(SubFin(X,n),7). The theorem is
a consequence of (7).

(12) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, and a family of o-fields S of X. Suppose
kE < n < m. Then ElmFin(S, k) = ElmFin(SubFin(S, n), k).

(13) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, a non-empty, n-elements finite sequence Y,
and a family of o-fields S of X. Suppose n < m and Y = X [n. Then
SubFin(S,n) is a family of o-fields of Y.

PROOF: For every natural number 4 such that ¢ € Segn holds
(SubFin(S,n))(i) is a o-field of subsets of Y (7). O

(14) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, and a family of o-fields S of X. Suppose
k <n < m. Then SubFin(S, k) = SubFin(SubFin(S, n), k).

(15) Let us consider a non zero natural number m, and a non-empty, m-

elements finite sequence X. Then there exists a function F' from []pg X
into [] X such that F' is one-to-one and onto.
PROOF: Define P[non zero natural number| = for every non-empty, $1-
elements finite sequence X, there exists a function F' from []pg X into
[ X such that F' is one-to-one and onto. P[1] by [13] (2)]. For every non
zero natural number n such that P[n] holds P[n + 1]. For every non zero
natural number n, P[n|. O

(16) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family P of semialgebras of [[p;,q X. Suppose
n < m. Then P(n) is a semialgebra of sets of [[pg SubFin(X,n). The
theorem is a consequence of (4).

Let us consider non zero natural numbers m, n, k, a non-empty, m-elements
finite sequence X, a family of o-fields S of X, and a family of o-measures M of
S. Now we state the propositions:

(17) If k < n < m, then ElmFin(M, k) = ElmFin(SubFin(M,n), k).
(18) If k < n < m, then SubFin(M, k) = SubFin(SubFin(M,n), k).
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2. CONSTRUCTION OF m-DIMENSIONAL MEASURE SPACE

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, and S be a family of o-fields of X. The functor cFIdFSp,0q(.S) yielding
a family of o-fields of [[py,g X is defined by

(Def. 11) it(1) = S(1) and for every non zero natural number i such that i < m
there exists a o-field S5 of subsets of [ [pg SubFin (X, 7) such that S3 = it(7)
and it(i + 1) = o(MeasRect(Ss, EImFin(S,i + 1))).
Now we state the proposition:

(19) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family of o-fields S of X. Suppose n < m. Then
(0F1dFSpr0a(S))(n) is a o-field of subsets of ([[ping X)(n).

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, and S be a family of o-fields of X. The functor [[p;uq S yielding
a o-field of subsets of [[pg X is defined by the term

(Def. 12)  (oF1dFSproq(S))(m).

Now we state the propositions:

(20) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, and a family of o-fields S of X. Suppose
kE <n < m. Then (6FldFSp,0a(S))(k) = (0F1dFSpoq(SubFin(S,n)))(k).
PROOF: Define P[natural number] = if 1 < $; < n, then (6F1dFSp,0q(S))
(31) = (0F1dFSpyoa(SubFin(S,n)))($1). For every natural number i such
that P[i] holds P[i + 1]. For every natural number i, P[i]. U

(21) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family of o-fields S of X. Suppose n < m. Then
[IFiela SubFin(S, n+1) = o(MeasRect([[pjeq SubFin(S, n), ElmFin(S, n +
1))). The theorem is a consequence of (8), (12), (7), and (20).

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, S be a family of o-fields of X, and M be a family of o-measures of S.
The functor cMesFSp,oq(M) yielding a family of o-measures of cF1dFSp;q(S)
is defined by

(Def. 13) it(1) = M (1) and for every non zero natural number ¢ such that ¢ < m
there exists a o-measure M3 on [[p;q SubFin(S,4) such that Ms = it(i)
and it(i + 1) = Prod o -Meas(Ms, ElmFin(M, i + 1)).

Now we state the proposition:

(22) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, a family of o-fields S of X, and a family of o-measures
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M of S. Suppose n < m. Then (cMesFSp,oq(M))(n) is a o-measure on

[IField SubFin (S, n).

PROOF: Set P; = oMesFSpyoq(M). Define L[natural number] = if 1 <

$1 < m, then there exists a non zero natural number % such that k = $; and

Py ($1) is a o-measure on [[pieq SubFin(S, k). For every natural number 4

such that L[] holds L[i + 1]. For every natural number n, £[n]. O

Let m be a non zero natural number, X be a non-empty, m-elements finite

sequence, S be a family of o-fields of X, and M be a family of o-measures of
S. The functor Measurep,oq(M) yielding a o-measure on [[pieq S is defined by
the term

(Def. 14)  (ocMesFSpyoa(M))(m).
We say that M is o-finite if and only if

(Def. 15) for every natural number ¢ such that i € Segm there exists a non empty
set Xy and there exists a o-field S3 of subsets of X5 and there exists a o-
measure Mz on S3 such that Xo = X (¢) and S5 = S(7) and Mz = M (i)
and M3 is o-finite.
Now we state the propositions:

(23) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, a family of o-fields S of X, and a family of o-
measures M of S. Suppose k < n < m. Then (cMesFSp;oq(SubFin(M, n)))
(k) = (cMesFSproq(SubFin(M, k)))(k). The theorem is a consequence of
(7), (14), (8), (12), and (17).

(24) Let us consider non zero natural numbers m, n, a non-empty, m-elements

finite sequence X, a family of o-fields S of X, and a family of o-measures
M of S. Suppose n < m. Then (cMesFSpyod(M))(n) =
Measurep;oq(SubFin(M, n)).
PROOF: Define P[natural number| = if 1 < $; < m, then there exists a non
zero natural number k such that & = $; and (cMesFSpoq(M))($1) =
Measurepyoq(SubFin(M, k)). For every natural number ¢ such that P[i]
holds P[i + 1]. For every natural number ¢, P[i]. O

(25) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, and a family of o-
measures M of S. Then Measurep;,q(M) = Prod o -Meas(Measurep;qq(Sub
Fin(M,n)), ElmFin(M,n + 1)). The theorem is a consequence of (24).

(26) Let us consider a non empty set X, a field S of subsets of X, a set
sequence F of S, and a natural number . Then (the partial unions of
E)(i) € S.

PROOF: Define P[natural number|] = (the partial unions of E)($;) € S.
For every natural number n such that P[n| holds P[n + 1]. For every
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natural number n, P[n]. O

(27) Let us consider non empty sets X, Y, a o-field S; of subsets of X, a o-

field Sy of subsets of Y, a o-measure M; on S, and a o-measure Ms on
Sy. Suppose M is o-finite and My is o-finite. Then ProdMeas(M;, Ma) is
o-finite.
PROOF: Set M = ProdMeas(My, Ms). Consider E; being a set sequence of
S1 such that for every natural number n, M;(E;(n)) < oo and J By = X.
Consider E5 being a set sequence of S5 such that for every natural number
n, My(Fa(n)) < +oo and |JE2 = Y. Set F; = the partial unions of Fj.
Set Fy = the partial unions of Fs. Define G(natural number) = (F;($;) x
F5($1))(€ o(MeasRect(S1,.52))). Consider E being a function from N into
o(MeasRect(S1, S2)) such that for every element i of N, E(i) = G(i).

For every natural number i, E(i) = Fi(i) x F»(i). For every natural
number i, E(i) € o(MeasRect(S1,52)). For every object z, z € JE iff
z € X x Y. Define Q[natural number| = M; (Fy($1)), M2(F»($1)) € R. For
every natural number i such that QJi] holds Q[i + 1]. For every natural
number 4, Q[i]. For every natural number i, M (E(i)) < +o0. O

(28) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, and a family of o-
measures M of S.Then Measurep,oq(M ) =ProdMeas(Measurep;oq(SubFin
(M, n)), ElmFin(M,n + 1)). The theorem is a consequence of (25).

(29) Let us consider a non zero natural number m, a non-empty, m-elements
finite sequence X, a family of o-fields S of X, and a family of o-measures
M of S. Suppose M is o-finite. Then Measurep,oq(M) is o-finite.
PROOF: Define P[natural number] = for every non zero natural number
n for every non-empty, n-elements finite sequence X for every family of
o-fields S of X for every family of o-measures M of S such that M is
o-finite and $; = n holds Measurep,oq(M) is o-finite. P[1]. For every non
zero natural number ¢ such that P[i] holds P[i + 1]. For every non zero
natural number k, P[k]. O

Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, a family of o-fields S of X, and a family of o-measures M of
S. Now we state the propositions:

(30) If n < m and M is o-finite, then SubFin(M,n) is o-finite.
PROOF: Set Xg = SubFin(X,n). Set S¢ = SubFin(S,n). Set Mg = SubFin
(M, n). For every natural number j such that j € Segn there exists a non
empty set X3 and there exists a o-field Sy of subsets of X3 and there

exists a o-measure My on Sy such that X3 = Xg(j) and Sy = Sg(j) and
My = Mg(j) and My is o-finite. O
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(31) If n <m and M is o-finite, then ElmFin(M, n) is o-finite.

3. INTEGRABILITY OF FUNCTIONS ON (7 + 1)-DIMENSIONAL SPACE

Now we state the propositions:

(32) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, a family of o-
measures M of S, and a partial function f from [[pg X to R. Suppose f
is integrable on Measurep,oq(M). Then there exists a partial function g
from [[pg SubFin(X,n) x ElmFin(X,n + 1) to R such that

(i) f=g, and
(ii) g isintegrable on ProdMeas(Measurepyoq(SubFin(M,n)), ElImFin(M,
n+1)), and
(iii) [ fdMeasurepoq(M) = [ gd ProdMeas(Measurep,oq(SubFin(M,n)),
ElmFin(M,n + 1)).
The theorem is a consequence of (28), (6), and (21).

(33) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, a family of o-
measures M of S, a partial function f from [[pg X to R, and a partial

function g from [Jpg SubFin(X,n) x ElmFin(X,n + 1) to R.
Suppose M is o-finite and f is integrable on Measurep,oq(M) and f = g
and for every element y of EImFin(X, n+1), (Integrall(Measurepyoq (SubFin

(M, 1)), lgl))(y) < +oc. Then
(i) for every element y of ElmFin(X, n+1), ProjPMap2(g, y) is integrable
on Measurep,oq(SubFin(M,n)), and
(ii) for every element V of EImFin(S, n+1), Integrall(Measurep,oq(SubFin
(M,n)), g) is V-measurable, and
(iii) Integrall(Measurepyoq(SubFin(M,n)), g) is integrable on ElmFin(M,
n+ 1), and
(iv) [ gdProdMeas(Measurepyoq(SubFin(M,n)), ElmFin(M,n + 1)) =
J Integrall(Measurepyoq (SubFin(M, n)), g) d ElmFin(M,n 4 1), and
(v) Integrall(Measurep,oq(SubFin(M,n)),g) € the L functionsof ElmFin
(M,n+1).
PROOF: There exists a partial function go from [[pg SubFin(X, n) x ElmFin

(X,n+1) to Rsuch that f = g9 and go is integrable on ProdMeas(Measu-
reprod (SubFin(M, n)), ElmFin(M, n+1)) and | f d Measurepyoa(M) = [ go
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d ProdMeas(Measurep;oq (SubFin(M, n)), ElmFin(M, n+1)). For every na-
tural number j such that j € Segn there exists a non empty set X3 and
there exists a o-field Sy of subsets of X3 and there exists a o-measure m;
on Sy such that X3 = (SubFin(X,n))(y) and Sy = (SubFin(S,n))(j) and
m1 = (SubFin(M,n))(j) and m; is o-finite. Measurepyoq(SubFin(M, n))
is o-finite. [J
Let n be a non zero natural number, X be a non-empty, (n + 1)-elements
finite sequence, f be a partial function from [[pg X to R, and x be an element
of [[pg SubFin(X,n). The functor ProjPMapl(f,z) yielding a partial function
from ElmFin(X,n + 1) to R is defined by
(Def. 16) there exists a partial function ¢ from [[pg SubFin(X, n) x EImFin(X, n+
1) to R such that f = g and it = ProjPMapl(g, z).
Now we state the propositions:

(34) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, and a family of o-
measures M of S. Then [[pieq S = 0(MeasRect(]pieq SubFin(S, n), Elm—
Fin(S,n +1))). The theorem is a consequence of (21).

(35) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, a family of o-
measures M of S, a partial function f from [[pg X to R, and a partial
function f3 from [[pg SubFin(X,n) x ElmFin(X,n + 1) to R.

Suppose M is o-finite and f = f3 and f is integrable on Measurep,oq(M)
and for every element = of [[pg SubFin(X,n), (Integral2(ElmFin(M,n +

1),]f3]))(z) < +o0. Then

(i) [ fdMeasurepyoa(M) = [ f3d ProdMeas(Measurepyoq(SubFin(M,n)),
ElmFin(M,n + 1)), and

(ii) for every element z of [[pg SubFin(X,n), ProjPMapl(fs,z) is inte-
grable on ElmFin(M,n + 1), and

(iii) for every element U of [[p;eq SubFin(S, n), Integral2(ElmFin(M, n +
1), f3) is U-measurable, and

(iv) Integral2(ElmFin(M,n+1), f3) is integrable on Measurep,oq(SubFin
(M, n)), and

(v) [ f3 dProdMeas(Measurep,oq(SubFin(M,n)), ElmFin(M,n + 1)) =
J Integral2(ElmFin(M,n + 1), f3) d Measurep;oq (SubFin(M, n)), and

(vi) Integral2(ElmFin(M,n+1), f3) € theL! functions of Measurep,oq(Sub-
Fin(M,n)).
The theorem is a consequence of (6), (28), (29), (30), (31), and (21).
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(36) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, a family of o-
measures M of S, a partial function f from [[pg X to R, a partial function
f1 from [[pg SubFin(X, n) x ElmFin(X,n+1) to R, and a partial function
f2 from [Jpg SubFin(X,n+1) to R. Suppose M is o-finite and f = f; and
f = f2 and f is integrable on Measurep;oq(M) and for every element
x of [[pgSubFin(X,n), (Integral2(ElmFin(M,n + 1),|f1]))(z) < +oo.
Then [ fod Measurepyod(SubFin(M,n+ 1)) = [ Integral2(ElmFin(M,n +
1), f1) d Measurep;oq(SubFin(M, n)). The theorem is a consequence of (35).

(37) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, a family of o-
measures M of S, a partial function f from [[pg X to R, an element E of
[IFiela S, and a partial function g from [[rg SubFin(X, n) x ElmFin(X,n+
1) to R.

Suppose M is o-finite and ' = dom f and f is E-measurable and f =
g. Then g is integrable on ProdMeas(Measurep,oq(SubFin(M, n)), ElmFin
(M,n+1)) iff [Integral2(ElmFin(M,n+1),|g|) d Measurep;oq(SubFin(M,
n)) < 4+o00. The theorem is a consequence of (6), (34), (30), (29), and (31).

Let n be a non zero natural number, X be a non-empty, (n + 1)-elements
finite sequence, S be a family of o-fields of X, M be a family of o-measures of
S, and f be a partial function from [[pg X to R. The functor Integralps(M, f)
yielding an (n + 1)-elements finite sequence is defined by

(Def. 17) it(1) = f and for every natural number i such that 1 <1 < n + 1 there
exists a non zero natural number k and there exists a partial function g
from [[pg SubFin(X, k) x EImFin(X, k + 1) to R such that k =n +1—1
and g = it(i) and it(i + 1) = Integral2(ElmFin(M, k + 1), g).

We say that f is sequentially integrable on M if and only if

(Def. 18) for every non zero natural number k such that & < n + 1 there exi-
sts a partial function G from [[pg SubFin(X,k + 1) to R and there exi-
sts a partial function H from [[pg SubFin(X,k) to R such that G =
(Integralps (M, f))(n+1—k)and H = (Integralps(SubFin(M, k+1),|G|))(2)
and for every element x of [[pg SubFin(X, k), H(z) < +o0.

Now we state the propositions:

(38) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, a family of o-
measures M of S, and a partial function f from [[pg X to R.

Suppose M is o-finite and f is sequentially integrable on M and f is
integrable on Measurep,oq(M ). Let us consider a non zero natural num-
ber k. Suppose k < n 4+ 1. Then there exists a partial function g from
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[Irs SubFin(X, k + 1) to R such that
(i) g = (Integralps(M, f))(n+1—k), and
(ii) g is integrable on Measurep,oq(SubFin(M, k + 1)).

PROOF: Define P[natural number] = if 1 < $; < n + 1, then there exi-
sts a non zero natural number j and there exists a partial function g
from [[pg SubFin(X,j + 1) to R such that j = n+ 1 —$; and g =
(Integralps(M, f))($1) and g is integrable on Measurep,oq(SubFin(M, j +
1)). P[1]. For every non zero natural number k such that P[k] holds
P[k + 1]. For every non zero natural number k, P[k]. O

(39) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, a family of o-
measures M of S, a partial function f from [[pg X to R, and a partial
function g from [[rg SubFin(X, n)x ElmFin(X,n+1) to R. Suppose f = g.
Then

(i) (Integralps (M, £))(1) = f, and
(ii) (Integralps(M, f))(2) = Integral2(ElmFin(M,n + 1), g).

(40) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of o-fields S of X, a family of o-
measures M of S, and a partial function f from [[pg X to R. Suppose M
is o-finite and f is sequentially integrable on M and f is integrable on
Measurep;oq(M). Let us consider a non zero natural number k.

Suppose k < n.Then there exists a partial function F5 from | [pg SubFin
(X, k) x ElmFin(X,k + 1) to R and there exists a partial function Gy
from [[pg SubFin(X,k + 1) to R and there exists a function Fy from
[Ips SubFin(X, k) into R such that Go = F5 and Gy = (Integralps(M, f))(n
+1—k) and F; = (Integralps(M, f))(n+1—(k—1)) and F; = Integral2(Elm-
Fin(M, k + 1), F5) and G2 is integrable on Measurep;oq(SubFin(M, k + 1))
and [ G2 d Measurepyoq(SubFin(M, k+1)) = [ F5 d ProdMeas(Measurep;oq
(SubFin(M, k)), ElImFin(M, k+1)) and for every element x of [[pg SubFin
(X, k), ProjPMapl(F5, z) is integrable on ElmFin(M, k 4 1).

For every element U of [pieq SubFin(S, k), Fy is U-measurable and Fy
is integrable on Measurep;oq(SubFin(M, k)) and [ F5 d ProdMeas(Measu-
reprod (SubFin(M, k)), ElmFin(M, k+1)) = [ Fy d Measurepyoq(SubFin(M,
k)) and Fy € the L! functions of Measurep,oq(SubFin(M,k)) and
J G2 d Measurepyoq(SubFin(M, k+1))=/ Fy d Measurepyoq(SubFin(M, k)).

The theorem is a consequence of (7), (8), (14), (12), (18), (17), (30),
(38), (9), (6), (39), (35), and (36).
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Summary. Surreal numbers, a fascinating mathematical concept intro-
duced by John Conway, have attracted considerable interest due to their unique
properties. In this article, we formalize the basic concept of surreal numbers close
to the original Conway’s convention in the field of combinatorial game theory.
We define surreal numbers with the pre-order in the Mizar system which satisfy
the following condition: z < y iff L, < {y} A {z} < R,.
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INTRODUCTION

The surreal numbers have been discovered by J. Conway and they are de-
scribed in the Oth part of his book [I]. Using a remarkably simple set of rules,
he showed that a rich algebraic structure, as totally ordered proper class that
form an ordered field could be constructed. However, his construction combi-
nes transfinite induction recursion [2] with properties of proper classes, and has
been challenged from a formal point of view. We have chosen to construct surre-
al numbers based on transfinite induction (for recent quite sophisticated use of
these second order statements, see [10] and [I1]), in contrast to the formalisation
in other systems [7], [9].

Imitating the induction recursion in the Mizar system, and, at the same time,
to come as close as possible to the Conway convention with a non anti-symmetric

pre-order we have extracted an additional fundamental step. We introduce the
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194 KAROL PAK

functor of Dayra for a given ordinal o and relation R as well as the properties
of the pre-order on a set D which will play the role of the Daycq, independently.
Then we extract the crucial dependencies between Daya and the pre-order to
remove parameters and finally define the concept of surreal numbers in the
Mizar system [6].

The formalization follows [1], [3], [4], [5] and is an independent approach to
that introduced by R. Nittka [§].

1. CONSTRUCTION OF GAMES ON a-DAY

From now on «, a1, ao, 8, B1, B2, v, 6 denote ordinal numbers, R, .S denote
binary relations, and a, b, ¢, o, [, r denote objects. Let x be an object. We
introduce the notation I, as a synonym of (x); and R, as a synonym of (x)s.

Note that the functor [, yields a set. Let us observe that the functor R,
yields a set. Let us consider a and b. Let 6 be a set. We say that a <y b if and
only if

(Def. 1) {a, b) € 6.
We introduce the notation b=ga as a synonym of a <y b.
Let L, R be sets. We say that L>>¢R if and only if
(Def. 2) ifl € L and r € R, then I>=¢7.
We say that L<yR if and only if
(Def. 3) ifl € L and r € R, then not [-gyr.
Let us consider a. The functor Games(«) yielding a set is defined by
(Def. 4) there exists a transfinite sequence L such that it = L(a) and dom L =
succ o and for every 6 such that # € succa holds L(f) = 2Urms(L10)
2U rg(L[0)

Let us note that Games(«) is non empty and relation-like. Now we state the

propositions:
(1) If a C B, then Games(a) C Games(f3).

PRrOOF: Consider L; being a transfinite sequence such that Games(a) =
Li(a) and dom L; = succ v and for every ordinal number 6 such that 6 €
succ o holds Ly (0) = oUrme(L110)  olUms(L11) Consider Ly being a trans-
finite sequence such that Games(3) = L2(8) and dom Ly = succ 3 and for
every ordinal number 6 such that 6 € succ 8 holds La(0) = oUrme(L210)
olJrng(L219)

Define Plordinal number] = if $; C «, then L;($1) = L2($;1). For every
ordinal number § such that for every ordinal number = such that v € §
holds P[y] holds PId]. For every ordinal number ¢, P[d]. rng(Lila) C

rng(Le[3). O
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(2) Games(0) = {(0, 0)}.
(3) Let us consider a transfinite sequence L, and 6. Suppose dom L = succ 6
and for every a such that o € succf holds L(«a) = 2Urng(Lle)  olUrng(Lle)
If « € succh, then L(a) = Games(a).
ProOF: Consider Ly being a transfinite sequence such that Games(f) =
Ly(#) and dom Ly = succf and for every ordinal number « such that
a € succf holds Ly(a) = 2Umelola)  olJme(lole)  Define Plordinal
number| = if §; C 0, then Lo($1) = L($1).
For every ordinal number « such that for every ordinal number v such
that v € « holds P[y] holds P[a]. For every ordinal number «, P[a]. O
(4) o € Games(6) if and only if o is pair and for every a such that a € L, UR,
there exists a such that « € 6 and a € Games(a).
ProOF: Consider L being a transfinite sequence such that Games(f) =
L(#) and dom L = succh and for every « such that a € succf holds
L(a) = 2UmsLia) 5 oUmsa(Lla) 1f 5 ¢ Games(6), then o is pair and for
every object x such that x € L,UR, there exists an ordinal number 3
such that 5 € 0 and = € Games(3). L, UR, C Jrng(L[0). O
Let us consider . The functor BeforeGames(«a) yielding a subset of Games(a)
is defined by

(Def. 5) a € it iff there exists 6 such that 6 € o and a € Games(0).
Now we state the proposition:
(5) If a« C 3, then BeforeGames(a) C BeforeGames(f3).
Let us consider § and R. The functor Dayr# yielding a subset of Games(6)
is defined by
(Def. 6) there exists a transfinite sequence L such that it = L(f) and dom L =
succ § and for every « such that a € succé holds L(«) = {x, where x is
an element of Games(a) : Ly € Urng(Lla) and R, € Urng(Lla) and
Ls <rRa}-

2. CONSTRUCTION OF PREORDER ON THE a-DAY

Let us consider R. We say that R is almost No order if and only if
(Def. 7) there exists 6 such that R C Daygf x Dayg§.
Now we state the propositions:

(6) Let us consider a transfinite sequence L. Suppose dom L = succ 6 and
for every a such that o € succ6 holds L(«) = {z, where z is an element
of Games(«) : Ly C Urng(L|a) and R, € Urng(Lf«a) and L, <gRaz}-
If o € succh, then L(a) = Dayga.
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PrOOF: Consider Ly being a transfinite sequence such that Daypd =
Lo(0) and dom Ly = succd and for every ordinal number « such that
a € succd holds Ly(a) = {x, where z is an element of Games(a) : L, C
Urng(Lola) and R, C Jrng(Lola) and L, <z Ra}-

Define Plordinal number| = if $; C 4, then Lo($1) = L($1). For every
ordinal number « such that for every ordinal number v such that v € «
holds P[] holds P|a]. For every «, Pla]. O

(7) Let us consider an element x of Games(#). Then x € Dayr# if and only
if L, < g R and for every o such that o € [, UR, there exists « such that
a € ¢ and o € Dayga.
PRrOOF: Consider L being a transfinite sequence such that Dayr0 = L(0)
and dom L = succf and for every « such that o € succ@ holds L(«a) =
{z, where z is an element of Games(a) : L, C Urng(Lla) and R,y C
Urng(Lla) and L, <grRgz}- If a € Daypf, then Lo <z Ra and for every
object x such that x € L, UR, there exists an ordinal number 3 such that
B € 0 and = € Daypf3. La URa € Urng(L[0). O

(8) Dayr0 = Games(0). The theorem is a consequence of (2) and (7).

(9) If @ C 3, then Daypa C Dayp(3. The theorem is a consequence of (7)
and (1).

Let us consider R and «. Let us note that Daypa is non empty. Now we
state the proposition:

(10) Suppose § C a and R N (BeforeGames(a) x BeforeGames(a))) = S N
(BeforeGames(a) x BeforeGames(«)). Then Dayyp 8 = Dayg/3. The theorem
is a consequence of (5).
Let us consider R and o. Assume there exists 6 such that o € Daygpf. The
functor borngo yielding an ordinal number is defined by
(Def. 8) o € Daygit and for every 6 such that o € Dayr# holds it C 6.
Now we state the propositions:
(11) Suppose RN(BeforeGames(a) x BeforeGames(«)) = SN (BeforeGames(a)
x BeforeGames(a)). If a € Dayga, then bornga = bornga. The theorem
is a consequence of (10).
(12) If o € Games() and o ¢ Dayr#, then o ¢ Dayga.
PROOF: Define Pordinal number| = for every object x for every ordinal
number 0 such that € (Games(0))\ (Dayp) holds « ¢ Dayp$;. For every
ordinal number § such that for every ordinal number ~ such that v € §
holds P[] holds P[d]. For every ordinal number §, P[d]. O
Let us consider R, a, and 3. The functor OpenPrody(«, () yielding a binary
relation on Daygpa is defined by
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(Def. 9) for every elements x, y of Daypa, (x, y) € it iff borngx, borngy € « or
borngr = a and borngy € [ or borngr € # and borngy = «.
The functor ClosedProdg(«, 3) yielding a binary relation on Daypa is defi-
ned by
(Def. 10) for every elements z, y of Daygpa, (x, y) € it iff borngz, borngy € a or
borngr = a and borngy C B or borngx C § and borngy = a.
Now we state the propositions:
(13) Suppose a1 € ag or a1 = ay and 1 C fB2. Then OpenProdg(a, f1) C
OpenProdp(as, B2). The theorem is a consequence of (9).
(14) Suppose RN(BeforeGames(a) x BeforeGames(«)) = SN(BeforeGames(«)
x BeforeGames(«)). Then OpenProdg(«, 3) = OpenProdg(a, 3).
PRrOOF: Daypa = Dayga. If (x, y) € OpenProdg(a, ), then (z, y) €
OpenProdg(a, B). borngr = borngx and borngy = borngy. O
(15) Suppose RN(BeforeGames(«) x BeforeGames(«)) = SN(BeforeGames(«)
x BeforeGames(«)). Then ClosedProdg(«, 5) = ClosedProdg(a, 3).
PRrROOF: Dayrar = Dayga. If (x, y) € ClosedProdg(a, ), then (z, y) €
ClosedProdg(a, 3). borngx = borngz and borngy = borngy. [
(16) OpenProdg(a, B) C ClosedProdg(a, 3).

(17) Suppose a1 € ag or ag = ag and 31 C [. Then ClosedProdg(ay, 1) C
ClosedProdg(aw, #2). The theorem is a consequence of (9).

(18) If B € =, then ClosedProdg(a, 3) C OpenProdg(a, ).
(19) If o € B, then ClosedProdg(a, 3) C OpenProdg(«, 3).
Let X, R be sets. We say that R preserves No comparison on X if and only
if
(Def. 11) for every objects a, b such that (a, b) € X holds a <g b iff L, <r{b}
and {a}< g Rs.
Now we state the propositions:

(20) Suppose R is almost No order and S is almost No order and R N

OpenProdp(a, #) = S N OpenProdg(a, #). Then RN (BeforeGames(a) x
BeforeGames(a))) = S N (BeforeGames(a) x BeforeGames(a)).
Proor: Consider Ry being an ordinal number such that R C Dayz Ry X
DaypRo. Consider Sy being an ordinal number such that S C DaygSy X
DaygSp. If (y, z) € RN (BeforeGames(a) x BeforeGames(«)), then (y,
z) € SN (BeforeGames(a) x BeforeGames(a)).

Consider A4 being an ordinal number such that A4 € « and y €
Games(Ay). Consider As being an ordinal number such that A5 € « and
z € Games(As). DaygAs C Dayga and DaygAs C Dayga. y € DaygAy
and z € DaygAs. O
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(21) Suppose R is almost No order and S is almost No order and R N
OpenProdp(a, 8) = SNOpenProdg(«, 3) and R preserves No comparison
on ClosedProdg(a, #) and S preserves No comparison on ClosedProdg(c,
B). Then R N ClosedProdg(a, 3) = S N ClosedProdg(a, 3). The theorem
is a consequence of (16) and (19).

(22) Suppose R is almost No order and S is almost No order and R N

OpenProdp(a,0) = SNOpenProdg(a, 0) and R preserves No comparison
on ClosedProdg(«, 3) and S preserves No comparison on ClosedProdg(«,
B). Then R N ClosedProdg(ca, 8) = S N ClosedProdg(c, ().
PROOF: Define P[ordinal number] = if $; C 3, then RNClosedProdg(«, $1)
= S N ClosedProdg(c, $1). R N (BeforeGames(«) x BeforeGames(a)) =
SN (BeforeGames(a) x BeforeGames(«)). For every ordinal number ¢ such
that for every ordinal number v such that v € § holds P[v] holds P]é]. For
every ordinal number §, P[d]. O

(23) Suppose R is almost No order and S is almost No order and R preserves
No comparison on ClosedProdg(«, 3) and S preserves No comparison on
ClosedProdg(c, 3). Then RNClosedProdg(«, 3) = SNClosedProdgs(a, 3).
PROOF: Define P[ordinal number] =if $; € «, then RNClosedProd($1, $1)
= 5N ClosedProdg($1, $1). For every ordinal number ¢ such that for eve-
ry ordinal number v such that v € ¢ holds P[y| holds P[d]. For every
ordinal number §, P[]. R N OpenProdg(c,0) € S N OpenProdg(«,0).
S N OpenProdg(a,0) € RN OpenProdg(«,0). O

(24) Let us consider transfinite sequences L3, Ly. Suppose dom Lz = dom Ly
and for every « such that o € dom L3 holds there exist ordinal numbers a,
b and there exists a binary relation R such that R = L4(a) and L3(a) =
ClosedProdg(a,b) and L4(c) is a binary relation and for every binary
relation R such that R = L4(«) holds R preserves No comparison on
Ls(a) and R C Ls(a). Then

(i) Urng Ly is a binary relation, and

(ii) for every R such that R = (Jrng L4 holds R preserves No comparison
on [Jrng Ls and R C |Jrng L3 and for every ordinal numbers «, a, b
and for every S such that o € dom L3 and S = L4(«) and L3(a) =
ClosedProdg(a,b) holds R N (BeforeGames(a) x BeforeGames(a)) =
S N (BeforeGames(a) x BeforeGames(a)).

PrOOF: Urng Ly is relation-like. R C |Jrng Ls. R preserves No com-
parison on |Jrng Ls. R N (BeforeGames(a) x BeforeGames(a)) € S N
(BeforeGames(a) x BeforeGames(a)). SN (BeforeGames(a) x BeforeGames
(a)) € RN (BeforeGames(a) x BeforeGames(a)). O
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(25) (a, b) € (ClosedProdg(a, 3)) \ (OpenProdp(a, 3)) if and only if a, b €
Daypa and (bornga = o and borngb = 3 or bornga = (3 and borngb = «).
PRrROOF: If {a, b) € (ClosedProdg(«, 3)) \ (OpenPrody(«, 3)), then a, b €
Dayra and (bornga = « and borngb = 3 or bornga = 3 and borngb = ).
(a, b) ¢ OpenProdg(a, 3). O

(26) Suppose R preserves No comparison on OpenProdp(a, ) and R C
OpenProdp(a, #). Then there exists S such that

(i) RC S, and
(ii) S preserves No comparison on ClosedProdg(«, (3), and
(iii) S C ClosedProdg(a, ).

PrOOF: Set C = {(z, y), where z,y are elements of Daypa : (borngz =
B and borngy = « or borngzr = « and borngy = () and L, <r{y} and
{z}<RrRy}. C is relation-like. Reconsider Ry = RU (] as a binary rela-
tion. Ry N (BeforeGames(a) x BeforeGames(a)) C RN (BeforeGames(a) x
BeforeGames(«)). R; C ClosedProdg(«, 3). Ry preserves No comparison
on ClosedProdg(«a, 5). O

(27) Suppose there exists R such that R preserves No comparison on OpenPr-
odg(a,0) and R C OpenProdg(a, (). Then there exists S such that

(i) S preserves No comparison on ClosedProdg(a, 3), and
(ii) S C ClosedProdg(a, ).

PRrROOF: Define Plordinal number| = there exists a binary relation R
such that R preserves No comparison on ClosedProdg(c,$;) and R C
ClosedProdg(a, $1). For every ordinal number § such that for every or-
dinal number v such that v € ¢ holds P[y] holds P[d]. For every ordinal
number 4§, P[6]. O

(28) There exists R such that
(i) R preserves No comparison on ClosedProdg(a, 3), and
(ii) R C ClosedProdg(«, ).

PROOF: Define Plordinal number| = for every ordinal number (3, the-
re exists a binary relation R such that R preserves No comparison on
ClosedProdg($1, 3) and R C ClosedProdg($1, 3). For every ordinal num-
ber ¢ such that for every ordinal number v such that v € § holds P[v]
holds P[d]. For every ordinal number §, P[d]. O
(29) If o € B, then ClosedProdg(a, a) = OpenPrody(a, 3).

ProoFr: ClosedProdg(a, ) C ClosedProdg(a, 3). ClosedProdg(«, ) C
ClosedProdg(a, ar). ClosedProdg(a, 3) € OpenProdp(a, 3). OpenProdp
(a, B) C ClosedProdg(«a, 3). O



200 KAROL PAK

(30) If « C 3, then ClosedProdg(a, ) C ClosedProdg(3, 3). The theorem is
a consequence of (17).

3. THE PREORDER ON THE a-DAY

Let us consider a. The functor Nog,qa yielding a binary relation is defined
by
(Def. 12) it preserves No comparison on Day;,« x Day;, v and it C Day;,« x Day;, ax.
Note that Nog,qa is almost No order. The functor Daya yielding a non
empty subset of Games(«) is defined by the term

(Def. 13)  Daynoq, 40

4. SURREAL NUMBER AS A SPECIAL TYPE OF ABSTRACT GAME

Let us consider 0. We say that o is surreal if and only if

(Def. 14) there exists a such that o € Daya.

Let us note that (@, @) is surreal and there exists a set which is surreal. Let
« be an ordinal number. Note that every element of Daya is surreal. A surreal

number is a surreal set. In the sequel z, y, z, ¢, r, [ denote surreal numbers and
X, Y, Z denote sets.

The functor Ono yielding a surreal number is defined by the term

(Def. 15) (0, 0).

Note that every surreal number is pair and every set which is surreal is also
non empty.

Let X be a set. We say that X is surreal-membered if and only if
(Def. 16) if 0 € X, then o is surreal.

One can check that there exists a set which is surreal-membered. Let us
consider z. Observe that {z} is surreal-membered and L, is surreal-membered
as a set and R, is surreal-membered as a set. Let X, Y be surreal-membered sets.
One can check that X UY is surreal-membered and X \ Y is surreal-membered
and X NY is surreal-membered and there exists a set which is non empty and
surreal-membered.
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5. THE PREORDER OF SURREAL NUMBERS

Let us consider x and y. We say that x < y if and only if
(Def. 17) there exists a such that 2 <Nog,qa Y-
Now we state the propositions:

(31) Let us consider ordinal numbers «, 3, X. Suppose X C a and X C
B. Then Nogqa N (BeforeGames(X) x BeforeGames(X)) = Nogqf3 N
(BeforeGames(X ) x BeforeGames(X)). The theorem is a consequence of
(17), (23), (29), and (20).

(32) Suppose a C 3. Then ClosedProdnog, a (@, @) = ClosedProdno, (e, @).
The theorem is a consequence of (31) and (15).

(33) (a, b) € ClosedProdnog,4a(@, ) if and only if a, b € Daya.

(34) Suppose o C . Then Noprgor = NoprgfNClosedProdne,, (e, ). The
theorem is a consequence of (30) and (23).

(35) If @ C B, then Daya C Dayf3. The theorem is a consequence of (31),
(10), and (9).
(36) 1If 0 € Daynog, 403 and 8 C a, then o € Day3. The theorem is a conse-
quence of (31) and (10).
Let us consider z. The functor born x yielding an ordinal number is defined
by
(Def. 18) x € Dayit and for every 6 such that x € Day6 holds it C 6.
Now we state the propositions:
(37) bornz = 0 if and only if z = Ono. The theorem is a consequence of (2)
and (8).
(38) If x € Daya, then bornx = bornNoe, . The theorem is a consequence
of (36), (31), and (11).
(39) If a <Nog,qa b and a, b € Dayf, then a <woq,,8 b The theorem is
a consequence of (33), (32), (34), (30), and (23).

(40) =« < yif and only if for every « such that x, y € Daya holds  <Noq,qa Y-
The theorem is a consequence of (39) and (35).

Let L, R be sets. We say that L > R if and only if
(Def. 19) for every | and r such that [ € L and r € R holds r < [.

Let R, L be sets. We introduce the notation L < R as a synonym of R = L.
Let L, R be sets. We say that L < R if and only if

(Def. 20) for every ! and r such that | € L and r € R holds r £ [.

We introduce the notation R > L as a synonym of L < R. Now we state
the propositions:
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(41) Let us consider sets X7, Xo, Y. If X7 < Y and Xy < Y, then X7 U Xy <
Y.

(42) Let us consider sets X, Y7, Y5. If X < Y] and X < Y3, then X <« Y1UY5.

(43) z <y ifand only if L, < {y} and {z} < Ry.
ProoOF: Consider A3 being an ordinal number such that z € DayAs.
Consider A4 being an ordinal number such that y € DayA4. Set a =
A3z U Ay. DayAs C Daya and DayAy4 C Daya. Set S = Noogqa. If z < y,
then L, < {y} and {z} < Ry. (z, y) € ClosedProdg(o,a). L. <s{y}.
{z}<sRy. O

(44) Let us consider sets X1, X9, Y7, Ya. Suppose for every z such that z € X;
there exists y such that y € X9 and < y and for every « such that « € Ys
there exists y such that y € Y] and y < z and z = (X, Y1) and y = (X»,
Y5). Then x < y. The theorem is a consequence of (43).

(45) Lsz < Ry The theorem is a consequence of (7), (35), (36), and (40).

(46) Let us consider sets X, Y, and a. Then (X, Y) € Daya« if and only if
X < Y and for every object o such that o € X UY there exists 6 such
that § € a and o € Day#. The theorem is a consequence of (45), (7), (36),
(4), (33), (31), and (10).

(47) Suppose X is surreal-membered. Then there exists an ordinal number
M such that for every o such that o € X there exists an ordinal number
« such that o € M and o € Daya.

PRrOOF: Define Plobject, object] = $; is a surreal number and for every
surreal number z such that z = $; holds $5 = born z. For every objects
x, y, z such that Plz,y] and P[z, z] holds y = z. Consider Os being a set
such that for every object z, z € Oy iff there exists an object y such that
y € X and Ply, z]. For every set x such that € Oz holds z is ordinal. (J
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INTRODUCTION

We present a formal analysis of the contents of Chapter 1, Properties of
Order and Equality of John Conway’s seminal book. This section focuses on the
pre-order structure of Conway numbers.

Then, using the developed concept of Conway numbers, we thoroughly ana-
lyse the properties of surreal birthday arithmetic. We prove the The Simplicity
Theorem (see Theorem 11 on p. 23 [3]) which can be expressed informally as
follows when x is given as a number, it is always the simplest number lying
between the L, and the R,, where simplest means earliest created. It also makes
it easier to manipulate birthday numbers in the context of pre-ordering surreal

numbers.
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In the final part, we select the representatives of the equivalence classes that
are defined by the relation equivalence relation = on surreal numbers such that
r =~y iff x <y and y < z. Representatives have a minimum-birthday as well as
minimal-birthday as well as the left and right components of each representative
having the smallest cardinality and such representatives as members.

The formalisation is mainly based on [3| 4, [} 6], but also uses selected ideas
proposed in [T}, 2, 10].

1. PREORDER OF SURREAL NUMBERS

From now on «, 3, 7, 6 denote ordinal numbers, X denotes a set, o denotes
an object, and x, y, 2, t, r, [ denote surreal numbers.
The functor 1N, yielding a surreal number is defined by the term

(Def. 1) ({Ono}, 0).
Now we state the propositions:
(1) Ify € Ly URg, then borny € bornx.
(2) Lz # {2} # Ra. The theorem is a consequence of (1).

(3) PREORDER OF SURREAL NUMBERS — REFLEXIVITY, CONWAY CH. 1
TH. 0(111):
T <.
PROOF: Define Plordinal number] = for every surreal number z such that
x € Day$; holds x < x. For every ordinal number ¢ such that for every
ordinal number v such that v € § holds P[v] holds P[d]. For every ordinal
number ¢, P[6]. O

(4) PREORDER OF SURREAL NUMBERS — TRANSITIVITY, CONWAY CH. 1
TH. 1:
If x <y<z then x < z.
PROOF: Define Plordinal number| = for every surreal numbers z, y, z such
that © < y < z and (bornz @ borny) @ born z C $; holds z < z. For every
ordinal number § such that for every ordinal number + such that v € §
holds P[y] holds P[d]. For every ordinal number §, P[6]. O

(5) Lz ={7} 2 Ra-
PROOF: Define Plordinal number| = for every surreal number z such that
bornz C $; holds L, < {z} < Rs. For every ordinal number § such that
for every ordinal number 7 such that v € § holds P[y] holds P[d]. For
every ordinal number 4, P[6]. O

(6) PREORDER OF SURREAL NUMBERS — TOoTAL, CONWAY CH. 1 TH. 2(11):
If y € x, then = < y. The theorem is a consequence of (5) and (4).
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(7) If « is finite, then Daya is finite.
PROOF: Define Plnatural number] = Day$; is finite. For every natural
number n such that P[n| holds P[n + 1]. For every natural number n,
Pln]. O

(8) 1If bornz is finite, then [, is finite and R, is finite.
PROOF: Dayborn z is finite. L, UR; C Daybornz. [J

Let us consider x and y. Let us note that the predicate x < y is reflexive
and connected. We introduce the notation y > x as a synonym of x < y.

2. EQUIVALENCE RELATION OF PREORDER

Let us consider x and y. We say that z =~ y if and only if
(Def. 2) z<y<ax.
Note that the predicate is reflexive and symmetric. Now we state the proposi-
tions:
(9) Ifz<y<z thenz <z
(10) Ifx=~yand y = z, then = ~ 2.
(11) ConwAy CH. 1 TH. 2(1):
L: € {2} < Ra-
PROOF: L, < {z}. O
(12) Let us consider a non empty, surreal-membered set S. Suppose S is finite.
Then there exist surreal numbers M3, Ms such that
(i) Ms, My € S, and
(ii) for every x such that z € S holds M3 < x < Ma.

PROOF: Define P[natural number| = for every non empty, surreal-membe-
red set S such that $; = S there exist surreal numbers Ms, M such that
Ms, My € S and for every = such that z € S holds M3 < x < M. For
every natural number n such that P[n] holds P[n + 1] by [8, (55)]. For
every natural number n, P[n|. O
(13) Suppose x < y. Then
(i) there exists a surreal number zo such that xo € R, and z < x2 < y,
or

(ii) there exists a surreal number y3 such that y3 € Ly and < y3 < y.

The theorem is a consequence of (11).

(14) Suppose Ly < {z} < Ry. Then (L, ULy, Rz URy ) is a surreal number.
PRroOOF: Consider a being an ordinal number such that € Daya. Consider
B being an ordinal number such that y € Day(. Set X = L,UL,. Set
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Y = Rz URy. X K<Y. For every object z such that x € X UY there exists
an ordinal number 6 such that § € a U 8 and = € Day6. [

(15) Suppose Ly < {z} < Ry and z = (L; ULy, Rz URy ). Then = ~ z. The
theorem is a consequence of (11).

Now we state the propositions:

(16) THE SIMPLICITY THEOREM FOR SURREAL NUMBERS:
Suppose Ly < {z} < Ry and for every z such that L, < {z} < Ry holds
bornz C born z. Then z ~ y.
PROOF: Set X = L,ULy. Set Y = Ry URy. Reconsider z = (X, Y) as
a surreal number. L, < {2} < Re. Ly < {y} < Ry. Lz < {2z} < R..
L < {z}. {} < R Ly < {z}. 2 = 2. {y} < R». {2} < Ry L. < {y}.
g

(17) If X < {z} and = < y, then X < {y}. The theorem is a consequence of
(4).

(18) If {z} < X and y < z, then {y} < X. The theorem is a consequence of
(4).

(19) If z =y, then (Ly ULy, Re URy) is a surreal number. The theorem is
a consequence of (11), (17), (18), and (14).

(20) If x = y and z = (LyULy, Rt URy ), then  ~ z. The theorem is
a consequence of (11), (17), (18), and (15).

(21) {z} < {y} if and only if z < y.

(22) ({z}, {y}) is a surreal number if and only if z < y. The theorem is
a consequence of (21).

(23) Let us consider a surreal number Ms. Suppose for every y such that
y € Ly holds y < My and My € 1,. Then

(i) ({Ma}, Ry ) is a surreal number, and

(ii) for every y such that y = ({Ma}, Rz ) holds y ~ z and borny C
born x.

PRrROOF: {Ms} < R,. For every object o such that o € {Ms} U R, there
exists 6 such that § € bornx and o € Dayf. For every surreal number
x1 such that z1 € L, there exists a surreal number y; such that y; € Ly
and 1 < y;. For every surreal number z; such that z1 € L, there exists
a surreal number y; such that y; € L, and 21 < y;. U

(24) Let us consider a surreal number Ms. Suppose for every y such that
y € Ry holds M3 < y and M3 € R;. Then

(i) (Lz, {M3}) is a surreal number, and
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(ii) for every y such that y = (L., {M3}) holds y ~ = and borny C
bornz.
PROOF: [, < {Ms}. For every object o such that o € I, U{M3} there
exists 6 such that § € bornx and o € Day#f. For every surreal number 1z
such that z1 € R, there exists a surreal number y; such that y; € Ra
and y; < x1. For every surreal number z; such that x; € R, there exists
a surreal number y; such that y; € Ry and 11 < 1. U
(25) Ifz<yandz= ({z,y}, X)andt= ({y}, X), then z =~ ¢t. The theorem
is a consequence of (23).
(26) If z = ({z,y}, X), then ({z}, X) is a surreal number.
PROOF: Set b = born z. {z} < X. For every object o such that o € {z}UX
there exists 6 such that 6 € b and o € Dayf. O
(27) Ifz<yand z= (X, {z,y}) and t = (X, {x}), then z ~ t. The theorem
is a consequence of (24).
(28) If z = (X, {z,y}), then (X, {z}) is a surreal number.
PROOF: Set b = born z. X < {x}. For every object o such that o € XU{z}
there exists 6 such that 6 € b and o € Dayf.
Let X, Y be sets. We say that X <Y if and only if
(Def. 3) for every surreal number x such that = € X there exist surreal numbers
Y1, Y2 such that y1, yo € Y and y1 <z < y2.
One can verify that the predicate is reflexive.
We say that X < Y if and only if
(Def. 4) X <Y and Y < X.
One can verify that the predicate is reflexive and symmetric.
Now we state the propositions:
(29) Let us consider sets X1, X», Y1, Y2. Suppose X; < X5 and Y7 < Y, and
= (X1, Y1) and y = (X2, Y2). Then z ~ y.
(30) Let us consider sets X, Y. If X CY, then X <Y.
(31) Let us consider sets X7, Xo, Y7, Ya. If X1 < Xy and Y7 < Y3, then X; U
Y1 < XoUYs.
(32) If x =y, then {z} < {y}.
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3. REPRESENTATIVE OF EQUIVALENCE CLASS WITH A UNIQUE SET OF
PROPERTIES

Let = be a surreal number. The functor bornyz yielding an ordinal number
is defined by

(Def. 5) there exists a surreal number y such that borny = it and y ~ z and for
every surreal number y such that y =~ x holds it C born y.
The functor Born,x yielding a surreal-membered set is defined by
(Def. 6) y € it iff y =z and y € Daybornaz.
One can check that Bornyz is non empty. Let o be a non empty, surreal-
membered set. We say that x is a-smallest if and only if
(Def. 7) x € a and for every y such that y € o« and y ~ z holds L. PRy C
L, ©Ry-
Observe that there exists a surreal number which is a-smallest. Now we state
the propositions:
(33) If x = y, then bornyx = bornyy. The theorem is a consequence of (4).
(34) If x =~ y, then Bornyz = Bornay.
(35) If y € Bornex, then borny = borngy = bornyxz. The theorem is a con-
sequence of (33).
(36) (0, Daya), (Daya, 0) € (Daysucca) \ (Daya). The theorem is a conse-
quence of (11).
From now on n denotes a natural number. Let « be a set. The functor made
of a yielding a surreal-membered set is defined by
(Def. 8) o € it iff 0 is surreal and L, UR, C a.
Let o be an ordinal number. The functor uniquepn,op(a) yielding a transfi-

nite sequence is defined by

(Def. 9) dom it = succa and for every ordinal number 3 such that 5 € succa
holds #(8) C DayfB and for every z, x € it(83) iff x € Urng(it[5) or
[ = borngz and there exists a non empty, surreal-membered set Y such
that Y = Borngx N made of |Jrng(it[F) and z = the Y-smallest surreal
number.

Let us consider o. One can verify that (uniquen,0p())(0) is surreal-membe-
red. Now we state the propositions:

(37) Suppose a C (. Then uniquen,0p(B)|[ succ a = uniquen,op(a).
PROOF: Define P[transfinite sequence, ordinal number, surreal number| =
$3 € Urng$; or $5 = born~$3 and there exists a non empty, surreal-
membered set Y such that Y = Borng$3 N made of (Jrng$; and $3 =
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the Y-smallest surreal number. Define H (transfinite sequence) = {e, whe-
re e is an element of Daydom$; : for every x such that x = e holds
P[$1,dom $1,x]}. Set S; = uniquen,0p(a). Set S = uniquen,0p(3). Set
So = S[succa. dom S; = succa and for every ordinal number § and for
every transfinite sequence L such that § € succa and L; = S7[0 holds
S1(8) = H(L1). dom Sy = succ v and for every ordinal number ~ and for
every transfinite sequence Lo such that v € succa and Ly = Ss[v holds
52(’7) = H(Lg) Sl = SQ. [l
(38) Suppose = € (uniquep,0p(a))(3). Then
(i) bornrz = bornzx C 3, and
(ii) = € (uniqueno,op())(bornx), and
(iii) = ¢ Urng(uniquen,op(a)bornx).
PROOF: Set M = uniquen,0p(«). Define M[ordinal number| =z € M ($;)
and $; € succa. Consider ¢ being an ordinal number such that M[d] and
for every ordinal number E such that M[E] holds § C E. z ¢ Jrng(M [9).
Consider Y being a non empty, surreal-membered set such that Y =
PBornyz N made of |Jrng(M[0) and z = the Y-smallest surreal number.
O
(39) If ¢ C a C 3, then (uniquen,op())(f) = (uniquenoop(B))(#). The
theorem is a consequence of (37).
(40) Suppose a C fand § € succy. Then (uniquep,0p(7)) () C (uniquen,op
(7)(B)-
Let  be a surreal number. The functor Uniqueyn,(z) yielding a surreal
number is defined by
(Def. 10) it ~ x and it € (uniquen,0p(bornyx))(bornyx).
Now we state the propositions:
(41) If x = y, then Uniquen, () = Uniquen,(y). The theorem is a consequ-
ence of (33) and (4).
(42) Ono = Uniquen,(Ono). The theorem is a consequence of (38).
Let = be a surreal number. We say that z is unique surreal if and only if
(Def. 11) 2 = Uniquep, ().
One can verify that Oy, is unique surreal and there exists a surreal number
which is unique surreal. Now we state the propositions:
(43) If z is an unique surreal number and o € L, UR,, then o is an unique
surreal number. The theorem is a consequence of (38), (1), and (39).

(44) If L, is non empty and finite and = is an unique surreal number, then
T = 1. The theorem is a consequence of (12), (38), and (23).
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(45) If Ry is non empty and finite and z is an unique surreal number, then
Rz = 1. The theorem is a consequence of (12), (38), and (24).

(46) Ts @ Ry = 0 if and only if 2 = Ono.
(47) Tz ® Rz = 1 if and only if there exists a surreal number y such that
z = (0, {y}) or z = ({y}, ).
PROOF: If T, @ R: = 1, then there exists a surreal number y such that
x = (0, {y}) or x = ({y}, 0) by [7, (86),(76)]. O
Let X be a set. We say that X is unique surreal-membered if and only if

(Def. 12) if 0 € X, then o is an unique surreal number.

Note that every set which is empty is also unique surreal-membered. Let =
be an unique surreal number. One can verify that I, UR; is unique surreal-
membered and {z} is unique surreal-membered. Let X, Y be unique surreal-
membered sets. One can check that X UY is unique surreal-membered. Let z
be a surreal number. One can check that Uniquepn,(x) is unique surreal. Now
we state the propositions:

(48) If x is an unique surreal number, then born x = bornyz. The theorem is
a consequence of (38).

(49) Suppose for every z such that z € Bornyz and L, UR, is unique surreal-
membered and z # z holds L:x @ R:ac S L:z @ R:z and x € Born.x and
Lz URg is unique surreal-membered. Then x is an unique surreal number.
PROOF: Set ¢ = Uniquepn, (). Set § = bornyz. bornyc = § and Bornac =
PBornyz. bornyc = borne. ¢ ¢ |Jrng(uniquen,op(5)[3). Consider Y being
a non empty, surreal-membered set such that ¥ = Bornsc N made of
Urng(uniquenoop(B)[5) and ¢ = the Y-smallest surreal number. z €
Bornyc. Ly UR, C Jrng(uniquen,op(5)[4). O

(50) If z is an unique surreal number and y is an unique surreal number and
x =~ y, then © = y. The theorem is a consequence of (41).

(51) Let us consider a surreal number c¢. Suppose bornc = bornxc and L. <
{z} < Re¢. Then bornec C born z.
PROOF: Define Plordinal number] = there exists y such that L. < {y} <
R¢ and borny = $;. Consider « such that P[a] and for every [ such that
P[A] holds a C (3. Consider y such that L. < {y} < Re and borny = .
bornyc = bornyy. U

(52) Let us consider unique surreal numbers ¢, z. Suppose L. < {z} < Re
and z # ¢. Then bornc € bornxz. The theorem is a consequence of (48),
(51), (50), (13), (1), (11), (17), (18), and (3).

(53) Suppose bornz = bornyz and bornz is not limit ordinal. Then there
exist surreal numbers y, z such that
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(i) x =~ z, and

(ii) z = (LyU{y}, Ry) or z = (Ly, Ry U{y}).

Proor: Consider § being an ordinal number such that bornxz = succ .
Define L[object] = for every z such that z = $; holds bornz € § and
z < x. Consider L being a set such that o € L iff o € Dayg and L][o].
Define R[object] = for every z such that z = $; holds bornz € 3 and
x < z. Consider R being a set such that o € R iff o € Dayf and R|o].
L < R. For every object o such that o € L U R there exists 6 such that
0 € 8 and o € Dayf. Reconsider Ly = (L, R) as a surreal number. L3 % x.
O
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Summary. Conway’s introduction to algebraic operations on surreal num-
bers with a rather simple definition. However, he combines recursion with Con-
way’s induction on surreal numbers, more formally he combines transfinite induc-
tion-recursion with the properties of proper classes, which is difficult to introduce
formally.

This article represents a further step in our ongoing efforts to investigate the
possibilities offered by Mizar with Tarski-Grothendieck set theory [4] to introduce
the algebraic structure of Conway numbers and to prove their ring character.
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INTRODUCTION

We present a formal analysis of the contents of Chapter 1, The Class No is
a Field of John Conway’s seminal book [5]. We formalised four sections, namely
Properties of Addition, Properties of Negation, Properties of Addition and Or-
der and Properties of Multiplication. We begin our exploration by formulating
and proving two schemes (i.e., second-order theorems) for defining arithmetic
operations on surreal numbers using a technique that mimics induction-infinite
recursion. Then, we examine the applicability of this solution by defining the
opposite surreal number but also the sum and product of surreal numbers. We
prove for each such operator simultaneously its correctness and crucial proper-

ties, in particular the preservation of pre-order under the operator. For this
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purpose, we use transfinite induction with respect to successive generations of
surreal numbers. Notice that we express the Conway induction using the trans-
finite induction with the Heisenberg sum of two ordinals [3] [6], formalised in
[7].

The most important result is the formalisation of the following properties of
the surreal numbers

T4+ ONno=2
r+y=y+zx

The formalisation is mainly based on [11 2} [5 [10].

1. PRELIMINARIES

From now on «, 8, v denote ordinal numbers, o denotes an object, x, y, z,
t, r, [ denote surreal numbers, and X, Y denote sets.

Let f be a function. One can check that f is function yielding if and only if
the condition (Def. 1) is satisfied.

(Def. 1) rng f is functional.

One can check that there exists a transfinite sequence which is C-monotone
and function yielding. Let f be a C-monotone function and X be a set. Let
us observe that f[X is C-monotone. Let f be a C-monotone, function yielding
transfinite sequence. Let us note that Jrng f is function-like and relation-like.
Now we state the propositions:

(1) Let us consider a C-monotone, function yielding transfinite sequence f,
and an object o. Suppose 0 € dom(|Jrng f). Then there exists o such that

(i) a € dom f, and
(ii)) o € dom(f(«)).

(2) Let us consider a C-monotone, function yielding transfinite sequence f,
and «. Suppose a € dom f. Then

(i) dom(f(«)) € dom(Jrng f), and
(ii) for every o such that o € dom(f(«)) holds f(«a)(o) = (Urng f)(o).
PROOF: Set U = [Jrng f. dom(f(«)) € domU. O
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(3) Let us consider a C-monotone, function yielding transfinite sequence f,
an ordinal number «, and a set X. Suppose for every o such that o € X
there exists an ordinal number § such that o € dom(f(3)) and § € a.
Then (Jrng(fla))°X = (Urng f)°X. The theorem is a consequence of

(2).

2. SURREAL NUMBER OPERATORS — SCHEMES

The scheme MonoFvSFExists deals with an ordinal number 6 and a unary
functor J yielding a set and a binary functor H yielding an object and states
that

(Sch. 1) There exists a C-monotone, function yielding transfinite sequence S such
that dom S = succf and for every ordinal number « such that a € succ
there exists a many sorted set S3 indexed by d(«) such that S(a) = S3
and for every o such that o € d(«) holds S3(0) = H(o, S|a)

provided

e for every C-monotone, function yielding transfinite sequence S such that
for every ordinal number « such that o € dom S holds dom(S(«)) = d(«v)
for every ordinal number « for every o such that o € dom(S(«)) holds
H(o, STar) = H(o, S) and

e for every ordinal numbers «, (3 such that a C 3 holds §(«) C 6(03).

The scheme MonoFvSUniq deals with an ordinal number 6 and a unary
functor § yielding a set and C-monotone, function yielding transfinite sequences
S1, S2 and a binary functor H yielding an object and states that

(Sch. 2) S1]0 = S210
provided

e § C domS; and 6 C dom Sy and

e for every ordinal number « such that a € 6 there exists a many sorted
set S3 indexed by d(«) such that Si(a) = S3 and for every o such that
o € d(a) holds S3(0) = H(o, S1[a) and

e for every ordinal number « such that a € 6 there exists a many sorted
set S3 indexed by d(«) such that Sa(a) = S3 and for every o such that
o0 € d(a) holds S3(0) = H(o, Sala).
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3. THE OPPOSITE SURREAL NUMBER

Let us consider a. The functor oppositen, (@) yielding a many sorted set
indexed by Daya« is defined by
(Def. 2) there exists a C-monotone, function yielding transfinite sequence S such
that dom S = succa and it = S(«) and for every 3 such that § € succa
there exists a many sorted set S5 indexed by Day/3 such that S(8) = S5
and for every o such that o € Dayf holds S5(0) = ((Urng(S[5))°(Ro),
(Umg(S18))°(Lo))-
Now we state the propositions:

(4) Let us consider a C-monotone, function yielding transfinite sequence S.
Suppose for every (3 such that 3 € dom S there exists a many sorted set Ss
indexed by Day/3 such that S(3) = S5 and for every o such that o € Day(3
holds S5(0) = ((Urng(S[5))°(Ro), (Urng(S15))°(Lo)). If « € dom S, then
oppositeyn, () = S(a).

PROOF: Define §(ordinal number) = Day$;. Define H(object, C-monotone,
function yielding transfinite sequence) = ((Urng$2)°(Rs,), (Urng $2)°
(Lg,)). Consider Ss being a C-monotone, function yielding transfinite se-
quence such that dom Sy = succa and Sa(a) = oppositen,(a) and for
every ordinal number ( such that § € succ « there exists a many sorted
set S5 indexed by () such that S3(3) = S5 and for every object z such
that o € §(83) holds Ss(z) = H(z, S2[3). S1]succa = Sy succa. O

(5) Let us consider a C-monotone, function yielding transfinite sequence f.
Suppose o € dom(f(3)) and 3 € . Then

(i) o € dom(Jrng(fl«)), and
(i) (Urng(fla))(o) = (Urng f)(0).
The theorem is a consequence of (2).

(6) Let us consider a C-monotone, function yielding transfinite sequence f,
and ordinal numbers «, (. Suppose o € dom(f(3)) and 8 € «. Then
(Urng(fla))(o) = (Urng f)(0). The theorem is a consequence of (2).

Let us consider x. The functor —z yielding a set is defined by the term
(Def. 3) (oppositene(bornz))(x).
Let X be a set. The functor X yielding a set is defined by
(Def. 4) o € it iff there exists a surreal number z such that x € X and 0 = —z.
Now we state the proposition:
(7) —z=(SRas, OLa)-
PROOF: Set a = born z. Consider S being a C-monotone, function yielding
transfinite sequence such that dom S = succ o and oppositen, () = S(a)
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and for every ordinal number 3 such that § € succa there exists a ma-
ny sorted set S; indexed by Dayf( such that S(3) = S5 and for eve-
ry object x such that x € Dayf holds Ss(z) = ((Urmng(ST8))°(Re),
(Urng(S[5))°(Ly))- Consider S being a many sorted set indexed by Daya
such that S(«) = S3 and for every object x such that z € Daya holds
S3(z) = ((Urng(STa))°(Ra), (Urng(STa))®(Le)). Set U = Urng(STa).
©Rs CU°(Ra)- U°(Re) € ©Re ©Ls CU°(Ly). U°(La) € © L, O
Let us consider z. One can check that —z is surreal. Let X be a set. Let us
note that ©X is surreal-membered. Now we state the propositions:
(8) (i) L(—z) = ©Ra, and
(ii) R(=z) = © La-
The theorem is a consequence of (7).
(9) ConNway CH. 1 TH. 4(11):
——z =z
Let us consider z. Let us observe that ——x reduces to . Now we state the
propositions:

(10) =z <y if and only if —y < —=z.

(11) Let us consider a surreal number z, and an ordinal number 4. If € Day?d,
then —x € Dayd.

(12) bornz = born (—x).

(13) bornyz = borny(—z). The theorem is a consequence of (10) and (12).

(14) If = € Bornyy, then —x € Borne(—y). The theorem is a consequence
of (10), (13), and (12).

(15) Let us consider a surreal-membered set X. Then © 6 X = X.

(16) ©X C X.
PROOF: Define P[object, object] = for every z such that x = $; holds
$2 = —x. If 0 € ©X, then there exists an object u such that Plo,u].

Consider f being a function such that dom f = ©X and for every object
o such that o € 6X holds PJo, f(0)]. rng f € X. f is one-to-one. [J

(17) Let us consider a surreal-membered set X. Then X = ©X . The theorem
is a consequence of (15) and (16).

Let us consider surreal-membered sets X, Y. Now we state the propositions:
(18) X <Y if and only if 8Y < ©6X. The theorem is a consequence of (15).
(19) X <Y if and only if 6Y < ©X. The theorem is a consequence of (15).

Now we state the propositions:

(20) Let us consider sets X7, X5. Then ©(X; U X2) = 6X; USXo.
(1) {-v} = ofa}.

219
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(22) ©b=0.
(23) —OnNo = ONo. The theorem is a consequence of (7) and (22).
One can verify that —On, reduces to Ono. Now we state the proposition:
(24) z =~ ONpo if and only if —z ~ ONo.
Let « be an ordinal number. The functor Triangle o yielding a subset of
Daya x Daya is defined by

(Def. 5) for every surreal numbers z, y, (z, y) € it iff bornz @ borny C a.
Observe that Triangle o is non empty. Now we state the proposition:

(25) Let us consider ordinal numbers «, 3. Suppose o C 3. Then Triangle o C
Triangle 5.

4. THE SUM OF SURREAL NUMBERS

Let a be an ordinal number. The functor sump, () yielding a many sorted
set indexed by Triangle « is defined by

(Def. 6) there exists a C-monotone, function yielding transfinite sequence S such
that dom S = succa and it = S(«) and for every ordinal number 3 such
that § € succa there exists a many sorted set Ss indexed by Triangle 3
such that S(3) = S5 and for every object  such that x € Triangle # holds
S5(w) = ((Urng(S18))°(Le,, x{Ra} U{La} X Li, ), (Umng(S18))° Ry, ¥
{Re} U{Lz} X Rr,))-
Now we state the proposition:

(26) Let us consider a C-monotone, function yielding transfinite sequence S.
Suppose for every ordinal number 3 such that 8 € dom S there exists a ma-
ny sorted set S5 indexed by Triangle 3 such that S(5) = S5 and for every
object x such that x € Triangle 8 holds Ss(z) = ((Urng(S15))°(Ly,, X
{Ra} U {Le} % Lg,), (Urng(S18))°(RL, *{Raz} U {La} X RRg,)). Let us
consider an ordinal number «. If @ € dom S, then sumno(a) = S(a).
PROOF: Define §(ordinal number) = Triangle $;. Define H(object, C-mono-
tone, function yielding transfinite sequence) = ((Urng $2)°(Lrs, X{Rs, tU
{Ls, } XLrg, ), (Urng$2)°(Res, X{Rs, }U{Ls, } XRg, ))- Consider 51 being
a C-monotone, function yielding transfinite sequence such that dom S; =
succ o and sumpe () = S1(a) and for every ordinal number 3 such that
B € succa there exists a many sorted set S5 indexed by d((3) such that
S1(B) = S5 and for every object x such that z € 6(3) holds S5(x) =
H(z,S1[8). STsucca = Sy succa. O

Let z, y be surreal numbers. The functor = + y yielding a set is defined by
the term
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(Def. 7)  (sumno(bornz @ borny))({x, y)).
Let X, Y be sets. The functor X @Y yielding a set is defined by
(Def. 8) o € it iff there exist surreal numbers x, y such that z € X and y € Y
and o=x+y.
Now we state the propositions:
(27) Let us consider a set X. Then X & () = 0.

(28) Let us consider surreal numbers x, y. Then z +vy = (L. ®{y}) U {z} &
Ly), (Re &{y}) U ({z} ® Ry)).
PROOF: Set By = bornz. Set B; = borny. Set a = B3 @ Bs. Consi-
der S being a C-monotone, function yielding transfinite sequence such
that dom S = succa and sumpne(a) = S(a) and for every ordinal num-
ber B such that 8 € succa there exists a many sorted set Ss indexed
by Triangle 8 such that S(8) = S5 and for every object z such that
x € Triangle 8 holds S5(x) = (Urng(S18))°(Ly, x{Re} U {Lo} X Ln.),
(Urng(S16))°(Rr, x{Rz}U{Lz} X Rr,)). Consider S3 being a many sor-
ted set indexed by Trianglea such that S(a) = S3 and for every ob-
ject = such that » € Trianglea holds S3(x) = ((Urng(Sla))®(L), X
{Ra} U{Le} X Lg,), (Urng(S1@))°(Re, X{Ra} U{Le} X Rr,)). Set U =
Umng(Sla). U°(Le x{y}) S Lo ®{y} Lo &{y} S U°(Le x{y}). U°(Ra X
{v}) € Re®{y}. Re®{y} € U°(Rax{y}). U°({z} X Ly) C {2} & Ly
{r}oL, CU°({z} xLy). U({z} xRy) C {x} ®Ry. {z} BRy C U° ({2} x
Ry). O

(29) COMMUTATIVITY OF ADDITION FOR SURREAL NUMBER, CONWAY CH. 1
TH. 3(11):
r+y=y+z
PROOF: Define P[ordinal number| = for every surreal numbers z, y such
that bornz @ borny C $; holds « + y = y + . For every ordinal number
d such that for every ordinal number « such that v € § holds P[] holds
P[4]. For every ordinal number ¢, P[6]. O

Let z, y be surreal numbers. Let us note that the functor z 4+ y is commu-
tative. Now we state the proposition:

(30) Let us consider sets X, Y. Then X @Y =Y ¢ X.

Let X, Y be sets. One can verify that the functor X & Y is commutative.
Let us consider « and y. Let us note that « +y is surreal. Let x, y be surreal
numbers. The functor x — y yielding a surreal number is defined by the term

(Def. 9) =+ —vy.
Now we state the proposition:

(31) born(z+y) C bornx @ borny.
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Let X, Y be sets. Let us note that X @Y is surreal-membered. Now we state
the propositions:

(32) TRANSITIVE LAW OF ADDITION FOR SURREAL NUMBER, CONWAY
CH. 1 TH. 5:
r<yifandonlyifz + 2z < y+ z.
(33) Let us consider sets X1, X9, Y. Then (X;UX2)®Y = (X;0Y)U(X20Y).
(34) Let us consider sets X, Y7, Y5. Then X @ (Y1UYs) = (X @Y;)U(X BY3).

(35) Let us consider sets X1, X2, Y1, Y2. Suppose X7 < X5 and Y] < Ys. Then
X1 @Y1 < Xy @Y;. The theorem is a consequence of (32).

(36) {z}e{y} ={z+y}.

(37) ASSOCIATIVITY OF ADDITION FOR SURREAL NUMBER, CONWAY CH. 1
TH. 3(111):
(x+y)+z=z+ (y+2).
PROOF: Define Plordinal number| = for every surreal numbers z, y, z such
that (bornz @ borny) @ bornz C $; holds (z +y) + 2z =x + (y + 2). For
every ordinal number ¢ such that for every ordinal number + such that
v € ¢ holds P[] holds P[d]. For every ordinal number §, P[d]. O

(38) ADDITIVE IDENTITY FOR SURREAL NUMBER, CONWAY CH. 1 TH. 3(1):
T+ Ono = .
PROOF: Set y = ONo. Define Plordinal number| = for every surreal number
x such that bornz = $; holds x + y = z. For every ordinal number ¢ such
that for every ordinal number «y such that v € ¢ holds P[] holds P[d]. For
every ordinal number ¢, P[6]. O

Let us consider x. Let us note that x + Ono reduces to z. Now we state the
proposition:
(39) PROPERTY OF THE ADITIVE INVERSE FOR SURREAL NUMBER, CON-
WAY CH. 1 TH. 4(111):
T —z ~ 0Nno-
PROOF: Set y = ONyo. Define Plordinal number] = for every surreal number
x such that bornz = $; holds x + —z ~ y. For every ordinal number ¢
such that for every ordinal number + such that v € ¢ holds P[y] holds
P[d] by (7), (28), [8, (43)], [9} (1)]. For every ordinal number §, P[6]. O
(40) ConNwAay CH. 1 TH. 4(1):
—(z+y)=—z+—y.
PROOF: Define Plordinal number] = for every surreal numbers x, y such
that bornz @ borny C $; holds —(x +y) = —z + —y. For every ordinal

number § such that for every ordinal number 7 such that v € ¢ holds P[]
holds P[d]. For every ordinal number §, P[d]. O
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(41) z+y<zifandonlyifz <z —y.
ProOOF: If z+y < z,thenz < z—y. 4y < z+—y+y. z+y < 2+ (—-y+y).
Yy—yY~ONo. 2+ (—y+y) <2+ 0no =2. O

(42) z+y<zifandonlyif z < z —y.
ProoF: If z +y < z,thenz < z—y. 2+ —y< z+y+ —y. 2+ —y <
T+ (yY+-y). Y-y~ ONo. T+ (y+ —y) <z +0Nno = 2. [

(43) If z <y and z <t, then z + z < y + t. The theorem is a consequence of
(32).

(44) Ifx <yand z <t, then z + 2z < y +¢. The theorem is a consequence of
(42), (39), (32), and (37).

(45) x <y if and only if Ono < y — . The theorem is a consequence of (42).

(46) x < y if and only if x — y < ONno. The theorem is a consequence of (41).

(47) If x — y =~ ONo, then = ~ y. The theorem is a consequence of (39), (37),
and (43).

Let z be an object. Assume z is surreal. The functor —'z yielding a surreal
number is defined by

(Def. 10) for every surreal number z; such that x; = x holds it = —x7.

Let a be a surreal number. We identify —'z with —a. Let x, y be objects.
Assume 7 is surreal and y is surreal. The functor z+'y yielding a surreal number
is defined by

(Def. 11) for every surreal numbers z1, y; such that z; = x and y; = y holds
it =11+ y1.

Let a, b be surreal numbers. We identify x +' y with a + b.

5. THE PRODUCT OF SUPERREAL NUMBERS

Let a be an ordinal number. The functor multne () yielding a many sorted
set indexed by Triangle « is defined by

(Def. 12) there exists a C-monotone, function yielding transfinite sequence S such
that dom S = succa and it = S(«) and for every ordinal number 3 such

that § € succa there exists a many sorted set Ss indexed by Triangle 3

such that S(8) = S5 and for every object = such that z € Triangle 3
holds S5(z) = ({((Umg(S18))({ze, Re)) + (Urng(S18)( L, 1)) +
—"(Urng(S18))({xe, ya)), where x¢ is an element of Ly,_,y4 is an element
of Ly, : % € Ly, and yy € Ly, JU{((Urng(S18)) ((z7, Re )+ (Urng(S15))
((La, y5))) + =" (Urng(S18))({x7, ys)),where z7 is an element of Ry, ys

is an element of Ry, : @7 € Ry, and y5 € Rg,}, {((Urng(S18))({zs,

Rz )+ (Urng(S18))((Le, y5))) +' =" (Urng(S18))({ws, ys)), where zg is
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an element of Ly ,ys is an element of Ry, : #¢ € Ly, and y5 € Ry, } U

{((Urng(S18))({z7, Ra )+ (Urng(S18))(( La, y4)))+' =" (Urng(S18)) ({27,
y4)), where x7 is an element of Ry, ,y4 is an element of Ly, : #7 € Ry, and
Y4 € LR, })-
Let z, y be surreal numbers. The functor x - y yielding a set is defined by
the term

(Def. 13) (multno(borna @ borny))((x, v)).
Now we state the proposition:

(48) Let us consider a C-monotone, function yielding transfinite sequence S.
Suppose for every ordinal number [ such that 3 € dom S there exists a ma-
ny sorted set S5 indexed by Triangle 3 such that S(3) = S5 and for every
object x such that x € Triangle 5 holds S5(z) = ({((Urng(S18))({zs,
Rz )+ (Urng(S18))((La, ya))) + = (Urmng(S16)) ({6, ya)), where z¢ is
an element of Ly, ,v4 is an element of Ly, : @¢ € Ly, and y4s € Ly, } U
{((Urng(S18))((z7, Ra )+ (Urmng(S18))(( Le, y5)))+ =" (Urng(518)) (=7,
ys)), where x7 is an element of Ry, y5 is an element of Ry, : 7 € Ry, and
ys € Rr, }, {((Urmg(S18))({zs, Ra )+ (Urng(S16))({ La;, y5)))+' =" (Urng
(S18))({zs, y5)), where x¢ is an element of Ly, _,ys is an element of Ry, :
76 € Ly, and g5 € Ry, }U{((Urng(S18)) (27, Re )+ (Urng(S18))(( L,
ya))) + =" (Urng(S18))({x7, y4)), where x7 is an element of Ry, ,y4 is an
element of Ly, : 7 € Ry, and y4 € Lg,}). Let us consider an ordinal
number «a. If & € dom S, then multno(a) = S(a).

PROOF: Define §(ordinal number) = Triangle $;. Define H(object, C-mono-
tone, function yielding transfinite sequence) = ({((Urng $2)({zs, Rs, })+’
(Urng$2)((Ls,, v4)))+ —'(Urng $2)({xe, ya)), where x¢ is an element of
Ly, Y4 is an element of Lry : @6 € Lrg, and ys € Lrg, JU{((Urng $2)((z7,
Re, )+ (Urng $2)((Ls,, ys))+/— (Urng $2) (w7, ys)), where a7 is an ele-
ment of RL$1 , Y5 is an element of RRrg, @ 7 € Rig and y5 € RR$1 1,
{(Urmng$2)({zs, Rs, )+ (Urng $2)((Ls,, y))) + (U $2) (s, 5)).
where xg is an element of Lrg, > ¥s 1s an element of RRg, * 6 € Lig, and
s € Re, JU{((Urng $2) ({7, Rs, )+ (Urng $2)((Ls,, y2)))+'—'(Urng 82)
({7, y4)), where z7 is an element of Ry ,y4 is an element of Lry : 27 €
Rig, and ys € Ly, }). Consider S; being a C-monotone, function yielding
transfinite sequence such that dom.S; = succa and multne(a) = S1(a)
and for every ordinal number § such that § € succ « there exists a many
sorted set S5 indexed by (/) such that Si(3) = S5 and for every object
x such that z € §(3) holds S5(z) = H(z, S1[3). S|succa = Sp[succa. O

Let x, y be surreal numbers and X, Y be sets. The functor comp(X, z,y,Y)
yielding a set is defined by
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(Def. 14) o € it iff there exist surreal numbers x1, y; such that o = (1 -y +' x -
y1)+ —'z1-y1 and 21 € X and y; € Y.
Now we state the propositions:

(49) Let us consider a set X. Then comp(X,z,y, ) = .

(50) Let us consider surreal numbers x, y. Then x - y = ( comp(La, 2, y, Ly)
Ucomp(Ra, %, ¥, Ry), comp(Lz, Z, Yy, Ry) U comp(Ra, &, Y, Ly))-
PROOF: Set By = bornz. Set Bs; = borny. Set @ = B3 @ Bs. Define
H(object, C-monotone, function yielding transfinite sequence) =
({((Urmng$2) ({6, Rs, )+ (Urng $2)((Ls,. y20)+'—'(Urng $2) (w6, 1)),
where xg is an element of Lis, ¥4 is an element of LRrs,  T6 € Lig, and
Y1 € Lig JUL((Urng $2) (@7, Rs, )+ (Urng $2)((Ls, » ys))+'~'(Urng $2)
({x7, y5)), where z7 is an element of Ry ,ys is an element of Rgg, @ 27 €
Rio, and gs € Ry, b {((Urng$2)((z6, Rs, ) + (Urng$2)((Ls,. 45))) +
—'(Urng $2)({ws, ys)), where x¢ is an element of Ly ,¥ys is an element
of Rps, : @ € Ly, and ys € Rpg, }U{((Urng $2)({a7, Rs, )+ (Urng$s)
({Ls,» ya)))+'="(Urng $2)({z7, y4)), where 27 is an element of Ry ,ya is
an element of Lry : 27 € Rrg, and ys € Lgy ). Consider S being a C-
monotone, function yielding transfinite sequence such that dom .S = succ «
and multne(a) = S(«) and for every ordinal number § such that § €
succ a there exists a many sorted set Ss indexed by Triangle 8 such that
S(B) = S5 and for every object = such that = € Triangle 8 holds S5(z) =
H(z, S[F). Consider S3 being a many sorted set indexed by Triangle «
such that S(«) = S3 and for every object = such that = € Triangle a holds
S3(x) = H(x, Sla). Set U = Jrng(STa). For every surreal-membered sets
X, Y such that X C L, UR; and Y C L, UR, holds {(U ({zs, y))+ U ({z,
ya))) + —'U({xe, ysa)), where x4 is an element of X,y is an element of
Y:zg€ X and ys € Y} = comp(X,z,y,Y). O

(51) (i) for every z and y, = -y is a surreal number, and
(ii) for every z and y, x -y =y - z, and

(iii) for every surreal numbers x1, 2, y, T4, x5 such that x; ~ x9 and
x4 =1 -y and x5 = x2 - y holds x4 = x5, and

(iv) for every surreal numbers x1, x2, y1, Y2, T12, T21, T11, 22 such that
x11 = x1-y1 and x19 = z1 - y2 and x21 = T2 - Y1 and x22 = X2 - Y2 and
r1 < 22 and y; < y2 holds x12 + 221 < T11 + T20.

PRrROOF: Define Plordinal number, surreal number, surreal number| = if

born $o@born $3 C $;, then $3-$3 = $3-$2. Define S[ordinal number, surreal

number, surreal number| = if born $2 @ born $3 C $1, then $5-$3 is a surreal
number. Define 7 [ordinal number, surreal number, surreal number, surreal
number| = for every surreal numbers x4, x5 such that born $2®born $4 C $;
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and born$s @ born$s C $; and $2 ~ %3 and z4 = $5 - $4 and x5 =
$3 - 84 holds z4 ~ 5. Define V[ordinal number, surreal number, surreal
number, surreal number, surreal number| = for every surreal numbers 12,
Z91, 11, To2 such that born$s @ born$, C $; and born $3 @ born$4 C $;
and born$y @ born$5 C $; and born $3 @ born$s C $; and 11 = $2 - 4
and z12 = $9 - 85 and 291 = $3- %4 and x99 = $3 - $5 and $5 < $3 < $5
holds 12 +x21 < x11 +x92. Define Flordinal number| = for every x and y,
P[$1, x, y]. Define Glordinal number| = for every x and y, S[$1, x, y]. Define
H]ordinal number| = for every surreal numbers 1, x2, y, 7 [$1, 21, z2, y].
Define Z[ordinal number] = for every surreal numbers z1, z2, y1, Y2,
V[$1, 11,72, y1, y2]. Define flordinal number| = F[$;] and G[$;] and H[$]
and Z[$;]. For every ordinal number ¢ such that for every ordinal num-
ber v such that v € § holds €[] holds 0[0]. For every ordinal number E,
O[E]. For every surreal numbers 1, x2, y, x4, x5 such that x; ~ zo and
g =x1-y and x5 = xo -y holds x4 ~ x5. O
Let a, b be surreal numbers. Observe that a - b is surreal. Let a, b be surreal
numbers. One can check that the functor a-b is commutative. Let x, y be surreal
numbers and X, Y be sets. Observe that comp(X, z,y,Y") is surreal-membered.
Let us observe that the functor comp(X, z,y,Y") is defined by

(Def. 15) o € it iff there exist surreal numbers x1, y; such that o = z1-y+x-y; —
x1-y; and 1 € X and y; €Y.

Now we state the propositions:

(52) comp({z},z,y,{t}) ={z-y+ax-t—2z-t}.
(53) Let us consider sets X, Y. Then comp(X,z,y,Y) = comp(Y,y, z, X).
(54) Conway CH. 1 TH. 8(1):
Let us consider surreal numbers 1, xo, y. If 1 = x9, then z1 -y = z9 - .
(55) ConNwAy Cu. 1 TH. 8(111):
Let us consider surreal numbers xy, x3, y1, y2. Suppose x1 < x2 and
y1 <y2. Then z1 - y2 + 22 - y1 < 1 - Y1 + T2 - V2.
(56) ConNwAy CH. 1 TH. 7(1):
z - (ONo) = ONo. The theorem is a consequence of (49) and (50).
(57) MULTIPLICATIVE IDENTITY FOR SURREAL NUMBER, CONWAY CH. 1
TH. 7(11):
z - (INno) = .
PROOF: Define P[ordinal number] = for every z such that bornz C $;
holds z- (1Nno) = . For every ordinal number ¢ such that for every ordinal

number 7y such that v € § holds P[] holds P[d]. For every ordinal number
9, Plo]. O
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Let us consider z. Observe that x- (0N, ) reduces to Ono and z-(1no) reduces
to x. Now we state the proposition:

(58) ConNwAy CH. 1 TH. 7(1v):

(i) o (~y) = —o -y, and
(ii) (—x)-y=—z -y, and
(ili) (=z)-(-y)==z-y.
Let us consider sets X, Y7, Y2. Now we state the propositions:
(59) If Y7 C Y5, then comp(X,z,y,Y7) C comp(X, z,y, Y2).
(60) comp(X,x,y,Y1 UYs) = comp(X,z,y,Y1)Ucomp(X,z,y,Ys). The the-
orem is a consequence of (59).

(61) Let us consider sets X, Y. Suppose for every x such that x € X there
exists y such that y € Y and ¢ =~ y. Then X < Y.

Let us consider sets X1, X5. Now we state the propositions:
62) If X; < Xy, then 6X; < ©X5. The theorem is a consequence of (10).
63) o(X1 @ X2) = 6X; & oXs. The theorem is a consequence of (40).
4) Let us consider a surreal-membered set X. Then X @ {Ono} = X.

)

)

(@)

65
66

(
(
(
( If x ~y, then —z =~ —y.

( Let us consider surreal numbers x1, x2, y1, y2. If x1 &~ x2 and y; =~ yo,
then z1 + y1 = x2 + Y.

(67) DISTRIBUTIVITY OF MULTIPLICATION OVER ADDITION FOR SURREAL
NUMBERS, CONWAY CH. 1 TH. 7(v):

r-(y+2)~zx-y+x- -z

PROOF: Define Plordinal number| = for every surreal numbers z, y, z such
that (bornz @ borny) @ bornz C $; holds - (y+2) =~ ¢ -y + = - z. For
every ordinal number ¢ such that for every ordinal number + such that
v € ¢ holds P[y] holds P[d]. For every ordinal number ¢, P[d]. O

(68) Let us consider sets X1, X5, Y. Then comp(X; U Xo,z,y,Y) =
comp(X1,z,y,Y) U comp(Xa,z,y,Y). The theorem is a consequence of
(53) and (60).

(69) ASSOCIATIVITY OF MULTIPLICATION FOR SURREAL NUMBERS, CON-
WAY CH. 1 TH. 7(VI):

(z-y) z~z-(y-2)

PROOF: Define Plordinal number| = for every surreal numbers z, y, z such
that (bornx @ borny) @ bornz C $; holds (z-y) -z~ x - (y - z). For every
ordinal number § such that for every ordinal number + such that v € §
holds P[y] holds P[d]. For every ordinal number §, P[6]. O
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(70) If Ono < z and y < z, then y - 2 < z - z. The theorem is a consequence
of (51).

(71) If x < ONno and y < z, then z -z < y - z. The theorem is a consequence
of (51).

(72) ConNwAay CH. 1 TH. 9:
Ono < -y if and only if £ < Ono and y < Ono Or ONo < x and Ono < ¥.
The theorem is a consequence of (51), (10), (58), and (23).

(73) If Ono < z and x -z < y - 2, then & < y. The theorem is a consequence
of (51) and (70).

(74) x -y < ONpo if and only if x < Ono < y Oor ONo < = and y < ONo. The
theorem is a consequence of (23), (10), (58), and (72).

(75) If Ono < z and y < z, then y -z < z - z. The theorem is a consequence
of (51) and (70).

(76) (z+vy)-(x+y) ~z-z+y-y+(z-y+y-x). The theorem is a consequence
of (67), (43), and (37).

(77) z-y =~ ONo if and only if x ~ Ono Or ¥ = ONo.-
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INTRODUCTION

This article demonstrates the solution to the 36th problem from W. Sierpin-
ski’s book “250 Problems in Elementary Number Theory” [10, B]. To that end,
for every positive integer s < 25 and for s = 100 we provide the least positive
integer with the sum of its digits (in decimal system) equal to s, which is divi-
sible by s. We make an extensive use of the general notion of natural number
representations previously developed in [8] according to [9].

The preliminary part of this article contains a few auxiliary lemmas relating
numbers and sequences of digits in a given numeric system. Most notably, we
prove here the basic property that allows to determine the order between two
numbers based on the digits representing them.
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The formalization of the main problem, using the Mizar system [1], [2], is
split into theorems corresponding to every positive integer s < 25 and a specific
one for s = 100. The first ten cases for s < 10 are obviously justified by taking
the numbers s themselves. Other cases require studying successive multiples of
s and the sums of digits of their decimal representations. The last case calls for
a number with decimal digits composed of a leading 1, followed by a sequence of
eleven 9s, and two trailing 0s. With such a large number evaluating all successive
multiples of 100 would be impractical. Therefore, the final proof is of a general
nature taking into account the properties of sequences of digits.

The work presented in this article is intended to extend the original dataset
of Mizar elementary number theory formalizations presented in [6] and based
on the Mizar article [7]. Other similar elementary facts concerning number di-
visibility can also be found, e.g., in articles [5] [4].

1. PRELIMINARIES

Let n be a natural number. One can check that (n) is N-valued. Let n, no
be natural numbers. One can verify that (nj,ng) is N-valued. Let ny, ng, ns
be natural numbers. Note that (ni,ng,n3) is N-valued. Let ni, na, ns, ng be
natural numbers. One can check that (ni,ng,ng, n4) is N-valued. Now we state
the proposition:

(1) Let us consider a natural number b, and a finite 0-sequence E of N. If
E = (), then value(E,b) = 0.

Let us consider natural numbers n, b. Now we state the propositions:

(2) wvalue((n),b) =n.

(3) If n < b > 1, then digits(n,b) = (n). The theorem is a consequence of
(2).

(4) Let us consider a natural number b. If b > 1, then digits(value((0),b),b) =
(0). The theorem is a consequence of (2).

(5) Let us consider a natural number b. Suppose b > 1. Let us consider
a N-valued finite 0-sequence s. Suppose lens > 0 and s(lens — 1) # 0
and for every natural number ¢ such that ¢ € doms holds s(i) < b. Then
digits(value(s,b),b) = s.

Let us consider natural numbers n, b. Now we state the propositions:

(6) If n < b > 1, then ) digits(n,b) = n. The theorem is a consequence of
(3)-
(7) If b> 1, then value(n — b—"1,0) =b" — 1.
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PROOF: Set d = n+—— b—"1.Set g = (b —"1) - (b")sen. Set d' = g[n.
For every natural number i such that i € domd' holds d'(i) = d(i) - b'.
mgd CN. O

(8) Let us consider a natural number b. Suppose b > 1. Let us consider
a N-valued finite 0-sequence s. Suppose lens > 0 and for every natural
number 4 such that i € dom s holds s(7) < b. Then s(lens — 1) - plens~'1 <
value(s, b) < b'"*. The theorem is a consequence of (7).

(9) Let us consider natural numbers n, b. If b > 1, then n < plendigits(n.b),
The theorem is a consequence of (8).

(10) Let us consider natural numbers n, m, b. If n # 0 and b > 1 and
m < lendigits(n,b), then n > b™. The theorem is a consequence of (8).

(11) Let us consider finite 0-sequences dj, d2 of N, and a natural number b.
Suppose b > 1 and dom d; = dom ds and for every natural number n such
that n € domd; holds di(n) < da(n). Then value(dy, b) < value(ds,b).

(12) Let us consider natural numbers m, n, b. Suppose b > 1. Then m <
n if and only if lendigits(m,b) < lendigits(n,b) or lendigits(m,b) =
len digits(n, b) and there exists a natural number i such that ¢ < len digits
(m, b) and (digits(m, b))(i) < (digits(n, b))(7) and for every natural number
j such that j < lendigits(m,b) and (digits(m,b))(j) # (digits(n,b))(5)

holds ¢ > j.
PROOF: Set d3 = digits(m,b). Set dy = digits(n,b). Consider v; be-
ing a finite 0-sequence of N such that domwv; = domds; and for eve-

ry natural number i such that i € domw; holds vy(i) = ds(i) - b* and
value(digits(m, b),b) = > v;. Consider vy being a finite 0-sequence of N
such that domwvg = domd, and for every natural number i such that
i € domwy holds vy (i) = d4(i) - b* and value(digits(n, b),b) = 3 vo.
If m < n, then lends < lendy or lends = lendy and there exists

a natural number i such that ¢ < lends and ds3(i) < d4(¢) and for every
natural number j such that j < lends and d3(j) # d4(j) holds 7 > j. If
lends < lendy or lends = lendy and there exists a natural number ¢ such
that i < lends and d3(i) < d4(i) and for every natural number j such that
j <lends and d3(j) # d4(j) holds i > j, then m < n. O

(13) Let us consider a natural number n.
Then 100 | n if and only if (digits(n, 10))(0) = 0 and (digits(n, 10))(1) = 0.
ProOOF: If 100 | n, then (digits(n, 10))(0) = 0 and (digits(n, 10))(1) = 0.
Consider d’' being a finite 0-sequence of N such that dom d’ = dom(digits(n,
10)) and for every natural number ¢ such that ¢ € domd’ holds d'(i) =
(digits(n, 10))(i) - 10° and value(digits(n, 10),10) = > d’. O

(14) Let us consider a finite 0-sequence f. Iflen f > 2, then f[2 = (f(0), f(1)).
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2. PROBLEM 36 FOR s < 10

Let n, s be natural numbers. We say that n is the solution to Sierpinski’s
problem 36 for s if and only if
(Def. 1) > digits(n,10) = s and s | n and for every natural number m such that
> digits(m, 10) = s and s | m holds n < m.
Now we state the proposition:

(15) Let us consider a natural number n. If n < 10, then n is the solution to
Sierpinski’s problem 36 for n. The theorem is a consequence of (3).

3. PROBLEM 36 FOR s = 10

Now we state the propositions:

digits(10, 10) = (0,1).

> digits(10,10) = 1. The theorem is a consequence of (16).
digits(20, 10) = (0, 2).

> digits(20, 10) = 2. The theorem is a consequence of (18).
digits(30, 10) = (0, 3).

>~ digits(30,10) = 3. The theorem is a consequence of (20).
digits(40, 10) = (0, 4).

> digits(40, 10) = 4. The theorem is a consequence of (22).
digits(50, 10) = (0, 5).

> digits(50,10) = 5. The theorem is a consequence of (24).
digits(60, 10) = (0, 6).

> digits(60,10) = 6. The theorem is a consequence of (26).
digits(70, 10) = (0, 7).

> digits(70,10) = 7. The theorem is a consequence of (28).
digits(80, 10) = (0, 8).

> digits(80, 10) = 8. The theorem is a consequence of (30).
digits(90, 10) = (0, 9).

>~ digits(90,10) = 9. The theorem is a consequence of (32).
digits(100, 10) = (0,0, 1).

>~ digits(100,10) = 1. The theorem is a consequence of (34).
digits(110, 10) = (0,1, 1).

>~ digits(110,10) = 2. The theorem is a consequence of (36).
digits(120, 10) = (0,2, 1).
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>~ digits(120, 10) = 3. The theorem is a consequence of (38).
digits(130, 10) = (0, 3, 1).

> digits(130, 10) = 4. The theorem is a consequence of (40).
digits(140, 10) = (0,4, 1).

> digits(140, 10) = 5. The theorem is a consequence of (42).
digits(150, 10) = (0, 5, 1).

> digits(150,10) = 6. The theorem is a consequence of (44).
digits(160, 10) = (0, 6, 1).

> digits(160,10) = 7. The theorem is a consequence of (46).
digits(170, 10) = (0,7, 1).

> digits(170,10) = 8. The theorem is a consequence of (48).
digits(180, 10) = (0, 8, 1).

> digits(180,10) = 9. The theorem is a consequence of (50).
digits(190, 10) = (0,9, 1).

> digits(190, 10) = 10. The theorem is a consequence of (52).

190 is the solution to Sierpinski’s problem 36 for 10. The theorem is
a consequence of (53), (6), (17), (19), (21), (23), (25), (27), (29), (31),
(33), (35), (37), (39), (41), (43), (45), (47), (49), and (51).
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4. PROBLEM 36 FOR s = 11

Now we state the propositions:

digits(11,10) = (1,1).

> digits(11,10) = 2. The theorem is a consequence of (55).
digits(22,10) = (2,2).

> digits(22,10) = 4. The theorem is a consequence of (57).
digits(33,10) = (3, 3).

> digits(33,10) = 6. The theorem is a consequence of (59).
digits(44, 10) = (4, 4).

> digits(44,10) = 8. The theorem is a consequence of (61).
digits(55, 10) = (5,5).

> digits(55,10) = 10. The theorem is a consequence of (63).
digits(66, 10) = (6, 6).

> digits(66, 10) = 12. The theorem is a consequence of (65).
digits(77,10) = (7,7).
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>~ digits(77,10) = 14. The theorem is a consequence of (67).
digits(88,10) = (8, 8).

> digits(88,10) = 16. The theorem is a consequence of (69).
digits(99, 10) = (9,9).

> digits(99, 10) = 18. The theorem is a consequence of (71).
digits(121,10) = (1,2, 1).

> digits(121,10) = 4. The theorem is a consequence of (73).
digits(132,10) = (2,3, 1).

> digits(132,10) = 6. The theorem is a consequence of (75).
digits(143,10) = (3,4, 1).

> digits(143,10) = 8. The theorem is a consequence of (77).
digits(154, 10) = (4,5, 1).

>~ digits(154,10) = 10. The theorem is a consequence of (79).
digits(165, 10) = (5,6, 1).

>~ digits(165,10) = 12. The theorem is a consequence of (81).
digits(176,10) = (6,7, 1).

>~ digits(176,10) = 14. The theorem is a consequence of (83).
digits(187,10) = (7,8, 1).

> digits(187,10) = 16. The theorem is a consequence of (85).
digits(198,10) = (8,9, 1).

> digits(198,10) = 18. The theorem is a consequence of (87).
digits(209, 10) = (9,0, 2).

> digits(209, 10) = 11. The theorem is a consequence of (89).

209 is the solution to Sierpinski’s problem 36 for 11. The theorem is
a consequence of (90), (6), (56), (58), (60), (62), (64), (66), (68), (70),
(72), (37), (74), (76), (78), (80), (82), (84), (86), and (88).
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5. PROBLEM 36 FOR s = 12

Now we state the propositions:
92) digits(12,10) = (2,1).
93) > digits(12,10) = 3. The theorem is a consequence of (92).
4)  digits(24, 10) = (4,2).
)
)

Ne)

95) 3 digits(24,10) = 6. The theorem is a consequence of (94).

(
(
(
(
(96) digits(36,10) = (6, 3).
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(97) > digits(36,10) = 9. The theorem is a consequence of (96).
(98) digits(48, 10) = (8, 4).
(99) > digits(48,10) = 12. The theorem is a consequence of (98).
(100) 48 is the solution to Sierpinski’s problem 36 for 12. The theorem is

a consequence of (99), (6), (93), (95), and (97).

6. PROBLEM 36 FOR s = 13

Now we state the propositions:

digits(13,10) = (3, 1).

> digits(13,10) = 4. The theorem is a consequence of (101).
digits(26, 10) = (6, 2).

> digits(26, 10) = 8. The theorem is a consequence of (103).
digits(39, 10) = (9, 3).

> digits(39, 10) = 12. The theorem is a consequence of (105).
digits(52, 10) = (2,5).

> digits(52,10) = 7. The theorem is a consequence of (107).
digits(65, 10) = (5, 6).

> digits(65,10) = 11. The theorem is a consequence of (109).
digits(78,10) = (8, 7).

>~ digits(78,10) = 15. The theorem is a consequence of (111).
digits(91,10) = (1,9).

> digits(91,10) = 10. The theorem is a consequence of (113).
digits(104, 10) = (4,0, 1).

> digits(104, 10) = 5. The theorem is a consequence of (115).
digits(117,10) = (7,1, 1).

> digits(117,10) = 9. The theorem is a consequence of (117).
digits(156, 10) = (6,5, 1).

> digits(156,10) = 12. The theorem is a consequence of (119).
digits(169, 10) = (9,6, 1).

> digits(169, 10) = 16. The theorem is a consequence of (121).
digits(182,10) = (2,8, 1).

> digits(182,10) = 11. The theorem is a consequence of (123).
digits(195, 10) = (5,9, 1).

> digits(195,10) = 15. The theorem is a consequence of (125).
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(127)  digits(208, 10) = (8,0, 2).

(128) 3" digits(208,10) = 10. The theorem is a consequence of (127).
(129) digits(221, 10) = (1,2,2).

(130) > digits(221,10) = 5. The theorem is a consequence of (129).
(131) digits(234, 10) = (4,3,2).

(132) 3" digits(234,10) = 9. The theorem is a consequence of (131).
(133)  digits(247,10) = (7,4,2).

(134) >"digits(247,10) = 13. The theorem is a consequence of (133).
(135)

247 is the solution to Sierpinski’s problem 36 for 13. The theorem is
a consequence of (134), (6), (102), (104), (106), (108), (110), (112), (114),
(116), (118), (41), (78), (120), (122), (124), (126), (128), (130), and (132).

7. PROBLEM 36 FOR s = 14

Now we state the propositions:
(136) digits(14,10) = (4,1).

(137) 3" digits(14,10) = 5. The theorem is a consequence of (136).
(138) digits(28,10) = (8,2).

(139) 3 digits(28,10) = 10. The theorem is a consequence of (138).
(140)  digits(42,10) = (2, 4).

(141) > digits(42,10) = 6. The theorem is a consequence of (140).
(142) digits(56,10) = (6, 5).

(143) > digits(56,10) = 11. The theorem is a consequence of (142).
(144) digits(84,10) = (4, 8).

(145) " digits(84,10) = 12. The theorem is a consequence of (144).
(146) digits(98,10) = (8, 9).

(147) 3" digits(98,10) = 17. The theorem is a consequence of (146).
(148) digits(112,10) = (2,1,1).

(149) 3" digits(112,10) = 4. The theorem is a consequence of (148).
(150) digits(126,10) = (6,2, 1).

(151) > digits(126,10) = 9. The theorem is a consequence of (150).
(152) digits(168, 10) = (8,6, 1).

(153) 3" digits(168,10) = 15. The theorem is a consequence of (152).
(154) digits(196,10) = (6,9,1).

(155) 3" digits(196, 10) = 16. The theorem is a consequence of (154).
(156) digits(210,10) = (0,1, 2).
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(157) > digits(210,10) = 3. The theorem is a consequence of (156).

(158)  digits(224, 10) = (4,2, 2).

(159) > digits(224,10) = 8. The theorem is a consequence of (158).

(160)  digits(238, 10) = (8,3, 2).

(161) 3 digits(238,10) = 13. The theorem is a consequence of (160).

(162) digits(252,10) = (2,5,2).

(163) > digits(252,10) = 9. The theorem is a consequence of (162).

(164) digits(266, 10) = (6,6, 2).

(165) 3 digits(266,10) = 14. The theorem is a consequence of (164).

(166) 266 is the solution to Sierpinski’s problem 36 for 14. The theorem is

a consequence of (165), (6), (137), (139), (141), (143), (29), (145), (147),
(149), (151), (43), (80), (153), (124), (155), (157), (159), (161), and (163).

8. PROBLEM 36 FOR s = 15

Now we state the propositions:

(167) digits(15,10) = (5, 1).

(168) > digits(15,10) = 6. The theorem is a consequence of (167).
(169) digits(45, 10) = (5, 4).

(170) > digits(45,10) = 9. The theorem is a consequence of (169).
(171)  digits(75,10) = (5, 7).

(172) 3" digits(75,10) = 12. The theorem is a consequence of (171).
(173)  digits(105, 10) = (5,0, 1).

(174) 3" digits(105,10) = 6. The theorem is a consequence of (173).
(175) digits(135, 10) = (5,3, 1).

(176) > digits(135,10) = 9. The theorem is a consequence of (175).
(177)

195 is the solution to Sierpinski’s problem 36 for 15. The theorem is
a consequence of (126), (6), (168), (21), (170), (27), (172), (33), (174),
(39), (176), (45), (82), and (51).

9. PROBLEM 36 FOR s = 16

Now we state the propositions:
(178) digits(16, 10) = (6, 1).
(179) 3" digits(16,10) = 7. The theorem is a consequence of (178).
(180) digits(32,10) = (2, 3).
(181) 3" digits(32,10) = 5. The theorem is a consequence of (180).
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digits(64, 10) = (4,6).

>~ digits(64,10) = 10. The theorem is a consequence of (182).
digits(96, 10) = (6, 9).

> digits(96,10) = 15. The theorem is a consequence of (184).
digits(128, 10) = (8,2, 1).

> digits(128,10) = 11. The theorem is a consequence of (186).
digits(144, 10) = (4,4, 1).

> digits(144,10) = 9. The theorem is a consequence of (188).
digits(192,10) = (2,9, 1).

> digits(192,10) = 12. The theorem is a consequence of (190).
digits(240, 10) = (0, 4, 2).

>~ digits(240, 10) = 6. The theorem is a consequence of (192).
digits(256,10) = (6,5, 2).

> digits(256, 10) = 13. The theorem is a consequence of (194).
digits(272,10) = (2,7,2).

> digits(272,10) = 11. The theorem is a consequence of (196).
digits(288, 10) = (8,8, 2).

> digits(288,10) = 18. The theorem is a consequence of (198).
digits(304, 10) = (4,0, 3).

> digits(304,10) = 7. The theorem is a consequence of (200).
digits(320, 10) = (0,2, 3).

> digits(320, 10) = 5. The theorem is a consequence of (202).
digits(336, 10) = (6, 3, 3).

> digits(336,10) = 12. The theorem is a consequence of (204).
digits(352, 10) = (2,5, 3).

> digits(352,10) = 10. The theorem is a consequence of (206).
digits(368, 10) = (8,6, 3).

>~ digits(368,10) = 17. The theorem is a consequence of (208).
digits(384, 10) = (4,8, 3).

> digits(384,10) = 15. The theorem is a consequence of (210).
digits(400, 10) = (0,0, 4).

> digits(400, 10) = 4. The theorem is a consequence of (212).
digits(416, 10) = (6,1, 4).

> digits(416,10) = 11. The theorem is a consequence of (214).
digits(432,10) = (2,3, 4).
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(217) " digits(432,10) = 9. The theorem is a consequence of (216).

(218)  digits(448, 10) = (8,4, 4).

(219) 3" digits(448,10) = 16. The theorem is a consequence of (218).

(220) 448 is the solution to Sierpinski’s problem 36 for 16. The theorem is

a consequence of (219), (6), (179), (181), (99), (183), (31), (185), (149),
(187), (189), (47), (84), (191), (128), (159), (193), (195), (197), (199),
(201), (203), (205), (207), (209), (211), (213), (215), and (217).

10. PROBLEM 36 FOR s = 17

Now we state the propositions:
(221) digits(17,10) = (7,1).

(222) > digits(17,10) = 8. The theorem is a consequence of (221).
(223) digits(34,10) = (4, 3).

(224) 3" digits(34,10) = 7. The theorem is a consequence of (223).
(225) digits(51,10) = (1,5).

(226) " digits(51,10) = 6. The theorem is a consequence of (225).
(227) digits(68,10) = (8, 6).

(228) > digits(68,10) = 14. The theorem is a consequence of (227).
(229) digits(85,10) = (5,8).

(230) > digits(85,10) = 13. The theorem is a consequence of (229).
(231) digits(102,10) = (2,0, 1).

(232) " digits(102,10) = 3. The theorem is a consequence of (231).
(233)  digits(119,10) = (9, 1,1).

(234) > digits(119,10) = 11. The theorem is a consequence of (233).
(235)  digits(136,10) = (6,3, 1).

(236) 3 digits(136,10) = 10. The theorem is a consequence of (235).
(237)  digits(153,10) = (3,5, 1).

(238) " digits(153,10) = 9. The theorem is a consequence of (237).
(239)  digits(204, 10) = (4,0, 2).

(240) 3" digits(204,10) = 6. The theorem is a consequence of (239).
(241)  digits(255, 10) = (5,5, 2).

(242) 3" digits(255,10) = 12. The theorem is a consequence of (241).
(243) digits(289,10) = (9,8, 2).

(244) 3" digits(289,10) = 19. The theorem is a consequence of (243).
(245)  digits(306,10) = (6,0, 3).
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(246) > digits(306,10) = 9. The theorem is a consequence of (245).
(247)  digits(323, 10) = (3,2, 3).

(248) 3" digits(323,10) = 8. The theorem is a consequence of (247).
(249)  digits(340, 10) = (0, 4, 3).

(250) >" digits(340,10) = 7. The theorem is a consequence of (249).
(251) digits(357,10) = (7,5, 3).

(252) > digits(357,10) = 15. The theorem is a consequence of (251).
(253)  digits(374, 10) = (4,7, 3).

(254) 3" digits(374,10) = 14. The theorem is a consequence of (253).
(255)  digits(391,10) = (1,9, 3).

(256) > digits(391,10) = 13. The theorem is a consequence of (255).
(257)  digits(408, 10) = (8,0, 4).

(258) 3 digits(408,10) = 12. The theorem is a consequence of (257).
(259)  digits(425,10) = (5,2, 4).

(260) 3 digits(425,10) = 11. The theorem is a consequence of (259).
(261)  digits(442, 10) = (2, 4, 4).

(262) Y digits(442,10) = 10. The theorem is a consequence of (261).
(263)  digits(459, 10) = (9, 5, 4).

(264) Y digits(459,10) = 18. The theorem is a consequence of (263).
(265) digits(476,10) = (6,7, 4).

(266) 3 digits(476,10) = 17. The theorem is a consequence of (265).
(267)

476 is the solution to Sierpinski’s problem 36 for 17. The theorem is
a consequence of (266), (6), (222), (224), (226), (228), (230), (232), (234),
(236), (238), (49), (86), (240), (130), (161), (242), (197), (244), (246),
(248), (250), (252), (254), (256), (258), (260), (262), and (264).

11. PROBLEM 36 FOR s = 18

Now we state the propositions:

(268) digits(18, 10) = (8, 1).

(269) > digits(18,10) = 9. The theorem is a consequence of (268).
(270) digits(54,10) = (4,5).

(271) 3" digits(54,10) = 9. The theorem is a consequence of (270).
(272) digits(72,10) = (2, 7).

(273) " digits(72,10) = 9. The theorem is a consequence of (272).
(274) digits(108, 10) = (8,0, 1).
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(275) > digits(108,10) = 9. The theorem is a consequence of (274).
(276)  digits(162,10) = (2,6, 1).

(277) " digits(162,10) = 9. The theorem is a consequence of (276).
(278)

198 is the solution to Sierpinski’s problem 36 for 18. The theorem is
a consequence of (88), (6), (269), (97), (271), (273), (33), (275), (151),
(189), (277), and (51).

12. PROBLEM 36 FOR s = 19

Now we state the propositions:
) digits(19, 10) = (9, 1).
) > digits(19,10) = 10. The theorem is a consequence of (279).
) digits(38, 10) = (8, 3).
) > digits(38,10) = 11. The theorem is a consequence of (281).
) digits(57,10) = (7,5).
) > digits(57,10) = 12. The theorem is a consequence of (283).
) digits(76, 10) = (6,7).
) > digits(76,10) = 13. The theorem is a consequence of (285).
) digits(95,10) = (5,9).
) > digits(95,10) = 14. The theorem is a consequence of (287).
) digits(114,10) = (4,1,1).
) >_digits(114,10) = 6. The theorem is a consequence of (289).
201) digits(133,10) = (3,3, 1).
) > digits(133,10) = 7. The theorem is a consequence of (291).
) digits(152, 10) = (2,5,1).
) > digits(152,10) = 8. The theorem is a consequence of (293).
) digits(171,10) = (1,7, 1).
) > digits(171,10) = 9. The theorem is a consequence of (295).
) digits(228,10) = (8,2, 2).
) > digits(228,10) = 12. The theorem is a consequence of (297).
) digits(285,10) = (5,8, 2).
) > digits(285,10) = 15. The theorem is a consequence of (299).
) digits(342, 10) = (2,4, 3).
) > digits(342,10) = 9. The theorem is a consequence of (301).
) digits(361, 10) = (1,6, 3).
) > digits(361,10) = 10. The theorem is a consequence of (303).
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digits(380, 10) = (0, 8, 3).

>~ digits(380,10) = 11. The theorem is a consequence of (305).
digits(399, 10) = (9,9, 3).

> digits(399, 10) = 21. The theorem is a consequence of (307).
digits(418, 10) = (8,1, 4).

> digits(418,10) = 13. The theorem is a consequence of (309).
digits(437,10) = (7,3, 4).

> digits(437,10) = 14. The theorem is a consequence of (311).
digits(456, 10) = (6,5, 4).

> digits(456, 10) = 15. The theorem is a consequence of (313).
digits(475, 10) = (5,7, 4).

>~ digits(475,10) = 16. The theorem is a consequence of (315).
digits(494, 10) = (4,9, 4).

> digits(494, 10) = 17. The theorem is a consequence of (317).
digits(513,10) = (3,1, 5).

> digits(513,10) = 9. The theorem is a consequence of (319).
digits(532, 10) = (2,3, 5).

> digits(532,10) = 10. The theorem is a consequence of (321).
digits(551, 10) = (1,5, 5).

> digits(551,10) = 11. The theorem is a consequence of (323).
digits(570, 10) = (0,7, 5).

> digits(570,10) = 12. The theorem is a consequence of (325).
digits(589, 10) = (9, 8, 5).

> digits(589, 10) = 22. The theorem is a consequence of (327).
digits(608, 10) = (8,0, 6).

> digits(608, 10) = 14. The theorem is a consequence of (329).
digits(627, 10) = (7, 2, 6).

>~ digits(627,10) = 15. The theorem is a consequence of (331).
digits(646, 10) = (6, 4, 6).

> digits(646, 10) = 16. The theorem is a consequence of (333).
digits(665, 10) = (5, 6, 6).

> digits(665, 10) = 17. The theorem is a consequence of (335).
digits(684, 10) = (4, 8, 6).

> digits(684, 10) = 18. The theorem is a consequence of (337).
digits(703, 10) = (3,0, 7).
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(340) 3" digits(703,10) = 10. The theorem is a consequence of (339).
(341) digits(722,10) = (2,2, 7).

(342) 3" digits(722,10) = 11. The theorem is a consequence of (341).
(343) digits(741,10) = (1,4,7).

(344) 3" digits(741,10) = 12. The theorem is a consequence of (343).
(345) digits(760,10) = (0,6, 7).

(346) > digits(760,10) = 13. The theorem is a consequence of (345).
(347)  digits(779, 10) = (9,7, 7).

(348) 3" digits(779,10) = 23. The theorem is a consequence of (347).
(349) digits(798, 10) = (8,9, 7).

(350) " digits(798,10) = 24. The theorem is a consequence of (349).
(351) digits(817,10) = (7,1, 8).

(352) > digits(817,10) = 16. The theorem is a consequence of (351).
(353)  digits(836, 10) = (6,3, 8).

(354) 3" digits(836,10) = 17. The theorem is a consequence of (353).
(355)  digits(855, 10) = (5,5, 8).

(356) Y digits(855,10) = 18. The theorem is a consequence of (355).
(357)  digits(874, 10) = (4,7, 8).

(358) 3 digits(874,10) = 19. The theorem is a consequence of (357).
(359)

874 is the solution to Sierpinski’s problem 36 for 19. The theorem is
a consequence of (358), (6), (280), (282), (284), (286), (288), (290), (292),
(294), (296), (53), (90), (298), (134), (165), (300), (201), (248), (302),
(304), (306), (308), (310), (312), (314), (316), (318), (320), (322), (324),
(326), (328), (330), (332), (334), (336), (338), (340), (342), (344), (346),
(348), (350), (352), (354), and (356).

13. PROBLEM 36 FOR s = 20

Now we state the propositions:

(360) digits(200,10) = (0,0, 2).

(361) > digits(200,10) = 2. The theorem is a consequence of (360).
(362) digits(220, 10) = (0,2, 2).

(363) > digits(220,10) = 4. The theorem is a consequence of (362).
(364)  digits(260, 10) = (0,6, 2).

(365) 3 digits(260,10) = 8. The theorem is a consequence of (364).
(366) digits(280, 10) = (0, 8, 2).

243
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> digits(280, 10) = 10. The theorem is a consequence of (366).
digits(300,10) = (0,0, 3).

>~ digits(300, 10) = 3. The theorem is a consequence of (368).
digits(360, 10) = (0,6, 3).

> digits(360, 10) = 9. The theorem is a consequence of (370).
digits(420, 10) = (0, 2, 4).

> digits(420, 10) = 6. The theorem is a consequence of (372).
digits(440, 10) = (0,4, 4).

> digits(440, 10) = 8. The theorem is a consequence of (374).
digits(460, 10) = (0,6, 4).

> digits(460, 10) = 10. The theorem is a consequence of (376).
digits(480, 10) = (0,8, 4).

> digits(480,10) = 12. The theorem is a consequence of (378).
digits(500, 10) = (0,0, 5).

> digits(500, 10) = 5. The theorem is a consequence of (380).
digits(520, 10) = (0, 2,5).

> digits(520, 10) = 7. The theorem is a consequence of (382).
digits(540, 10) = (0,4, 5).

> digits(540,10) = 9. The theorem is a consequence of (384).
digits(560, 10) = (0, 6,5).

>~ digits(560,10) = 11. The theorem is a consequence of (386).
digits(580, 10) = (0, 8, 5).

> digits(580, 10) = 13. The theorem is a consequence of (388).
digits(600, 10) = (0, 0, 6).

>~ digits(600, 10) = 6. The theorem is a consequence of (390).
digits(620, 10) = (0, 2, 6).

>~ digits(620, 10) = 8. The theorem is a consequence of (392).
digits(640, 10) = (0,4, 6).

> digits(640, 10) = 10. The theorem is a consequence of (394).
digits(660, 10) = (0, 6, 6).

> digits(660, 10) = 12. The theorem is a consequence of (396).
digits(680, 10) = (0, 8, 6).

> digits(680, 10) = 14. The theorem is a consequence of (398).
digits(700,10) = (0,0, 7).

> digits(700, 10) = 7. The theorem is a consequence of (400).
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digits(720, 10) = (0, 2, 7).

> digits(720,10) = 9. The theorem is a consequence of (402).
digits(740, 10) = (0,4, 7).

> digits(740,10) = 11. The theorem is a consequence of (404).
digits(780, 10) = (0,8, 7).

> digits(780,10) = 15. The theorem is a consequence of (406).
digits(800, 10) = (0, 0, 8).

> digits(800, 10) = 8. The theorem is a consequence of (408).
digits(820, 10) = (0, 2, 8).

> digits(820, 10) = 10. The theorem is a consequence of (410).
digits(840, 10) = (0, 4, 8).

>~ digits(840,10) = 12. The theorem is a consequence of (412).
digits(860, 10) = (0, 6, 8).

> digits(860, 10) = 14. The theorem is a consequence of (414).
digits(880, 10) = (0, 8, 8).

> digits(880, 10) = 16. The theorem is a consequence of (416).
digits(900, 10) = (0,0, 9).

> digits(900, 10) = 9. The theorem is a consequence of (418).
digits(920, 10) = (0, 2, 9).

> digits(920,10) = 11. The theorem is a consequence of (420).
digits(940, 10) = (0,4, 9).

> digits(940, 10) = 13. The theorem is a consequence of (422).
digits(960, 10) = (0, 6,9).

> digits(960, 10) = 15. The theorem is a consequence of (424).
digits(980, 10) = (0,8, 9).

> digits(980, 10) = 17. The theorem is a consequence of (426).
digits(1000, 10) = (0,0,0,1).

>~ digits(1000,10) = 1. The theorem is a consequence of (428).
digits(1020, 10) = (0,2,0,1).

>~ digits(1020, 10) = 3. The theorem is a consequence of (430).
digits(1040, 10) = (0,4, 0, 1).

> digits(1040,10) = 5. The theorem is a consequence of (432).
digits(1060, 10) = (0, 6,0, 1).

>~ digits(1060, 10) = 7. The theorem is a consequence of (434).
digits(1080, 10) = (0,8, 0,1).
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> digits(1080,10) = 9. The theorem is a consequence of (436).
digits(1100, 10) = (0,0,1,1).

> digits(1100, 10) = 2. The theorem is a consequence of (438).
digits(1120,10) = (0, 2,1, 1).

> digits(1120,10) = 4. The theorem is a consequence of (440).
digits(1140, 10) = (0,4, 1,1).

>~ digits(1140,10) = 6. The theorem is a consequence of (442).
digits(1160, 10) = (0,6,1,1).

> digits(1160, 10) = 8. The theorem is a consequence of (444).
digits(1180, 10) = (0,8, 1, 1).

>~ digits(1180,10) = 10. The theorem is a consequence of (446).
digits(1200, 10) = (0,0, 2, 1).

> digits(1200, 10) = 3. The theorem is a consequence of (448).
digits(1220, 10) = (0,2,2,1).

> digits(1220,10) = 5. The theorem is a consequence of (450).
digits(1240,10) = (0, 4,2, 1).

> digits(1240,10) = 7. The theorem is a consequence of (452).
digits(1260, 10) = (0,6, 2, 1).

> digits(1260,10) = 9. The theorem is a consequence of (454).
digits(1280, 10) = (0,8, 2, 1).

> digits(1280,10) = 11. The theorem is a consequence of (456).
digits(1300, 10) = (0,0, 3, 1).

>~ digits(1300, 10) = 4. The theorem is a consequence of (458).
digits(1320, 10) = (0,2,3,1).

> digits(1320,10) = 6. The theorem is a consequence of (460).
digits(1340, 10) = (0,4, 3, 1).

>~ digits(1340,10) = 8. The theorem is a consequence of (462).
digits(1360, 10) = (0,6,3,1).

>~ digits(1360,10) = 10. The theorem is a consequence of (464).
digits(1380, 10) = (0,8, 3, 1).

> digits(1380,10) = 12. The theorem is a consequence of (466).
digits(1400, 10) = (0,0, 4, 1).

> digits(1400, 10) = 5. The theorem is a consequence of (468).
digits(1420,10) = (0,2, 4, 1).

> digits(1420,10) = 7. The theorem is a consequence of (470).
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digits(1440, 10) = (0,4, 4, 1).

> digits(1440,10) = 9. The theorem is a consequence of (472).
digits(1460, 10) = (0,6, 4, 1).

> digits(1460, 10) = 11. The theorem is a consequence of (474).
digits(1480, 10) = (0,8, 4,1).

> digits(1480, 10) = 13. The theorem is a consequence of (476).
digits(1500, 10) = (0,0, 5, 1).

> digits(1500, 10) = 6. The theorem is a consequence of (478).
digits(1520, 10) = (0,2, 5, 1).

> digits(1520,10) = 8. The theorem is a consequence of (480).
digits(1540, 10) = (0,4, 5, 1).

>~ digits(1540,10) = 10. The theorem is a consequence of (482).
digits(1560, 10) = (0,6, 5, 1).

> digits(1560,10) = 12. The theorem is a consequence of (484).
digits(1580, 10) = (0,8, 5, 1).

> digits(1580,10) = 14. The theorem is a consequence of (486).
digits(1600, 10) = (0,0, 6, 1).

>~ digits(1600, 10) = 7. The theorem is a consequence of (488).
digits(1620, 10) = (0,2, 6, 1).

> digits(1620,10) = 9. The theorem is a consequence of (490).
digits(1640, 10) = (0,4, 6,1).

> digits(1640,10) = 11. The theorem is a consequence of (492).
digits(1660, 10) = (0, 6,6, 1).

> digits(1660, 10) = 13. The theorem is a consequence of (494).
digits(1680, 10) = (0,8, 6, 1).

> digits(1680,10) = 15. The theorem is a consequence of (496).
digits(1700, 10) = (0,0,7,1).

>~ digits(1700,10) = 8. The theorem is a consequence of (498).
digits(1720,10) = (0, 2,7, 1).

>~ digits(1720,10) = 10. The theorem is a consequence of (500).
digits(1740, 10) = (0,4, 7,1).

> digits(1740,10) = 12. The theorem is a consequence of (502).
digits(1760, 10) = (0, 6,7, 1).

>~ digits(1760,10) = 14. The theorem is a consequence of (504).
digits(1780, 10) = (0,8,7,1).
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> digits(1780,10) = 16. The theorem is a consequence of (506).
digits(1800, 10) = (0,0,8,1).

>~ digits(1800,10) = 9. The theorem is a consequence of (508).
digits(1820,10) = (0, 2,8, 1).

> digits(1820,10) = 11. The theorem is a consequence of (510).
digits(1840, 10) = (0,4, 8, 1).

> digits(1840,10) = 13. The theorem is a consequence of (512).
digits(1860, 10) = (0,6,8, 1).

> digits(1860, 10) = 15. The theorem is a consequence of (514).
digits(1880, 10) = (0,8, 8, 1).

>~ digits(1880,10) = 17. The theorem is a consequence of (516).
digits(1900, 10) = (0,0, 9, 1).

> digits(1900, 10) = 10. The theorem is a consequence of (518).
digits(1920, 10) = (0,2, 9, 1).

> digits(1920,10) = 12. The theorem is a consequence of (520).
digits(1940,10) = (0,4,9,1).

> digits(1940,10) = 14. The theorem is a consequence of (522).
digits(1960, 10) = (0,6,9,1).

> digits(1960, 10) = 16. The theorem is a consequence of (524).
digits(1980, 10) = (0,8,9,1).

> digits(1980,10) = 18. The theorem is a consequence of (526).
digits(2000, 10) = (0,0,0,2).

> digits(2000, 10) = 2. The theorem is a consequence of (528).
digits(2020, 10) = (0,2, 0,2).

> digits(2020, 10) = 4. The theorem is a consequence of (530).
digits(2040, 10) = (0,4, 0, 2).

>~ digits(2040, 10) = 6. The theorem is a consequence of (532).
digits(2060, 10) = (0,6, 0,2).

> digits(2060, 10) = 8. The theorem is a consequence of (534).
digits(2080, 10) = (0,8, 0, 2).

> digits(2080, 10) = 10. The theorem is a consequence of (536).
digits(2100,10) = (0,0, 1,2).

> digits(2100,10) = 3. The theorem is a consequence of (538).
digits(2120,10) = (0,2, 1,2).

> digits(2120,10) = 5. The theorem is a consequence of (540).
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digits(2140, 10) = (0,4, 1, 2).

> digits(2140,10) = 7. The theorem is a consequence of (542).
digits(2160, 10) = (0,6, 1, 2).

> digits(2160,10) = 9. The theorem is a consequence of (544).
digits(2180, 10) = (0,8, 1,2).

> digits(2180,10) = 11. The theorem is a consequence of (546).
digits(2200,10) = (0,0, 2,2).

> digits(2200, 10) = 4. The theorem is a consequence of (548).
digits(2220,10) = (0,2,2,2).

> digits(2220,10) = 6. The theorem is a consequence of (550).
digits(2240, 10) = (0,4, 2,2).

>~ digits(2240,10) = 8. The theorem is a consequence of (552).
digits(2260, 10) = (0,6, 2,2).

> digits(2260, 10) = 10. The theorem is a consequence of (554).
digits(2280, 10) = (0,8, 2, 2).

> digits(2280,10) = 12. The theorem is a consequence of (556).
digits(2300, 10) = (0,0, 3,2).

> digits(2300,10) = 5. The theorem is a consequence of (558).
digits(2320,10) = (0,2, 3,2).

> digits(2320,10) = 7. The theorem is a consequence of (560).
digits(2340, 10) = (0,4, 3, 2).

> digits(2340,10) = 9. The theorem is a consequence of (562).
digits(2360, 10) = (0,6, 3,2).

> digits(2360, 10) = 11. The theorem is a consequence of (564).
digits(2380,10) = (0,8, 3,2).

> digits(2380,10) = 13. The theorem is a consequence of (566).
digits(2400, 10) = (0,0, 4, 2).

>~ digits(2400,10) = 6. The theorem is a consequence of (568).
digits(2420, 10) = (0,2, 4,2).

> digits(2420, 10) = 8. The theorem is a consequence of (570).
digits(2440, 10) = (0,4, 4,2).

> digits(2440,10) = 10. The theorem is a consequence of (572).
digits(2460, 10) = (0, 6,4, 2).

> digits(2460, 10) = 12. The theorem is a consequence of (574).
digits(2480, 10) = (0,8, 4, 2).
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> digits(2480,10) = 14. The theorem is a consequence of (576).
digits(2500, 10) = (0,0, 5, 2).

>~ digits(2500,10) = 7. The theorem is a consequence of (578).
digits(2520,10) = (0,2, 5,2).

> digits(2520,10) = 9. The theorem is a consequence of (580).
digits(2540, 10) = (0,4, 5,2).

> digits(2540,10) = 11. The theorem is a consequence of (582).
digits(2560, 10) = (0,6, 5, 2).

> digits(2560, 10) = 13. The theorem is a consequence of (584).
digits(2580, 10) = (0,8, 5, 2).

>~ digits(2580,10) = 15. The theorem is a consequence of (586).
digits(2600, 10) = (0,0, 6,2).

> digits(2600, 10) = 8. The theorem is a consequence of (588).
digits(2620, 10) = (0,2, 6, 2).

> digits(2620, 10) = 10. The theorem is a consequence of (590).
digits(2640, 10) = (0,4, 6,2).

> digits(2640,10) = 12. The theorem is a consequence of (592).
digits(2660, 10) = (0, 6,6, 2).

> digits(2660, 10) = 14. The theorem is a consequence of (594).
digits(2680, 10) = (0,8, 6, 2).

> digits(2680,10) = 16. The theorem is a consequence of (596).
digits(2700, 10) = (0,0,7,2).

> digits(2700,10) = 9. The theorem is a consequence of (598).
digits(2720,10) = (0,2,7,2).

>~ digits(2720,10) = 11. The theorem is a consequence of (600).
digits(2740, 10) = (0,4,7,2).

> digits(2740,10) = 13. The theorem is a consequence of (602).
digits(2760, 10) = (0,6, 7, 2).

> digits(2760,10) = 15. The theorem is a consequence of (604).
digits(2780, 10) = (0,8, 7, 2).

> digits(2780,10) = 17. The theorem is a consequence of (606).
digits(2800, 10) = (0,0, 8, 2).

> digits(2800, 10) = 10. The theorem is a consequence of (608).
digits(2820,10) = (0,2, 8, 2).

> digits(2820,10) = 12. The theorem is a consequence of (610).
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digits(2840, 10) = (0,4, 8, 2).

> digits(2840,10) = 14. The theorem is a consequence of (612).
digits(2860, 10) = (0, 6,8, 2).

> digits(2860, 10) = 16. The theorem is a consequence of (614).
digits(2880, 10) = (0,8, 8, 2).

> digits(2880,10) = 18. The theorem is a consequence of (616).
digits(2900,10) = (0,0, 9,2).

> digits(2900, 10) = 11. The theorem is a consequence of (618).
digits(2920, 10) = (0,2,9,2).

> digits(2920, 10) = 13. The theorem is a consequence of (620).
digits(2940, 10) = (0, 4,9, 2).

>~ digits(2940,10) = 15. The theorem is a consequence of (622).
digits(2960, 10) = (0,6, 9, 2).

> digits(2960, 10) = 17. The theorem is a consequence of (624).
digits(2980, 10) = (0,8, 9,2).

> digits(2980,10) = 19. The theorem is a consequence of (626).
digits(3000, 10) = (0,0, 0, 3).

>~ digits(3000, 10) = 3. The theorem is a consequence of (628).
digits(3020, 10) = (0, 2,0,3).

> digits(3020, 10) = 5. The theorem is a consequence of (630).
digits(3040, 10) = (0,4, 0, 3).

> digits(3040,10) = 7. The theorem is a consequence of (632).
digits(3060, 10) = (0, 6,0, 3).

> digits(3060, 10) = 9. The theorem is a consequence of (634).
digits(3080, 10) = (0,8,0, 3).

> digits(3080,10) = 11. The theorem is a consequence of (636).
digits(3100, 10) = (0,0,1, 3).

>~ digits(3100,10) = 4. The theorem is a consequence of (638).
digits(3120,10) = (0,2, 1,3).

> digits(3120,10) = 6. The theorem is a consequence of (640).
digits(3140,10) = (0,4,1,3).

> digits(3140,10) = 8. The theorem is a consequence of (642).
digits(3160, 10) = (0,6, 1, 3).

>~ digits(3160,10) = 10. The theorem is a consequence of (644).
digits(3180, 10) = (0,8, 1, 3).
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> digits(3180,10) = 12. The theorem is a consequence of (646).
digits(3200, 10) = (0,0, 2, 3).

> digits(3200, 10) = 5. The theorem is a consequence of (648).
digits(3220,10) = (0, 2,2, 3).

> digits(3220,10) = 7. The theorem is a consequence of (650).
digits(3240, 10) = (0,4, 2, 3).

> digits(3240,10) = 9. The theorem is a consequence of (652).
digits(3260, 10) = (0,6, 2, 3).

> digits(3260,10) = 11. The theorem is a consequence of (654).
digits(3280, 10) = (0,8, 2, 3).

> digits(3280,10) = 13. The theorem is a consequence of (656).
digits(3300, 10) = (0,0, 3, 3).

> digits(3300, 10) = 6. The theorem is a consequence of (658).
digits(3320, 10) = (0,2, 3,3).

> digits(3320, 10) = 8. The theorem is a consequence of (660).
digits(3340, 10) = (0,4, 3, 3).

> digits(3340,10) = 10. The theorem is a consequence of (662).
digits(3360, 10) = (0,6, 3, 3).

> digits(3360, 10) = 12. The theorem is a consequence of (664).
digits(3380, 10) = (0,8, 3, 3).

> digits(3380,10) = 14. The theorem is a consequence of (666).
digits(3400, 10) = (0,0, 4, 3).

> digits(3400, 10) = 7. The theorem is a consequence of (668).
digits(3420,10) = (0,2, 4, 3).

> digits(3420,10) = 9. The theorem is a consequence of (670).
digits(3440, 10) = (0,4, 4, 3).

> digits(3440,10) = 11. The theorem is a consequence of (672).
digits(3460, 10) = (0,6, 4, 3).

> digits(3460, 10) = 13. The theorem is a consequence of (674).
digits(3480, 10) = (0,8, 4, 3).

> digits(3480, 10) = 15. The theorem is a consequence of (676).
digits(3500, 10) = (0,0, 5, 3).

> digits(3500,10) = 8. The theorem is a consequence of (678).
digits(3520, 10) = (0,2, 5,3).

> digits(3520,10) = 10. The theorem is a consequence of (680).
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digits(3540, 10) = (0,4, 5, 3).

> digits(3540, 10) = 12. The theorem is a consequence of (682).
digits(3560, 10) = (0,6, 5, 3).

> digits(3560, 10) = 14. The theorem is a consequence of (684).
digits(3580, 10) = (0,8, 5, 3).

> digits(3580, 10) = 16. The theorem is a consequence of (686).
digits(3600, 10) = (0,0, 6, 3).

> digits(3600, 10) = 9. The theorem is a consequence of (688).
digits(3620, 10) = (0, 2,6, 3).

> digits(3620,10) = 11. The theorem is a consequence of (690).
digits(3640, 10) = (0,4, 6, 3).

>~ digits(3640,10) = 13. The theorem is a consequence of (692).
digits(3660, 10) = (0,6, 6, 3).

> digits(3660, 10) = 15. The theorem is a consequence of (694).
digits(3680, 10) = (0,8, 6, 3).

> digits(3680,10) = 17. The theorem is a consequence of (696).
digits(3700, 10) = (0,0, 7, 3).

> digits(3700,10) = 10. The theorem is a consequence of (698).
digits(3720, 10) = (0, 2,7, 3).

>~ digits(3720,10) = 12. The theorem is a consequence of (700).
digits(3740, 10) = (0,4, 7, 3).

> digits(3740,10) = 14. The theorem is a consequence of (702).
digits(3760, 10) = (0, 6,7, 3).

> digits(3760, 10) = 16. The theorem is a consequence of (704).
digits(3780, 10) = (0,8, 7, 3).

> digits(3780,10) = 18. The theorem is a consequence of (706).
digits(3800, 10) = (0,0, 8, 3).

>~ digits(3800,10) = 11. The theorem is a consequence of (708).
digits(3820,10) = (0,2, 8, 3).

> digits(3820,10) = 13. The theorem is a consequence of (710).
digits(3840, 10) = (0,4, 8, 3).

> digits(3840,10) = 15. The theorem is a consequence of (712).
digits(3860, 10) = (0, 6,8, 3).

> digits(3860,10) = 17. The theorem is a consequence of (714).
digits(3880, 10) = (0,8, 8, 3).
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> digits(3880,10) = 19. The theorem is a consequence of (716).
digits(3900, 10) = (0,0,9, 3).

>~ digits(3900,10) = 12. The theorem is a consequence of (718).
digits(3920,10) = (0, 2,9, 3).

> digits(3920, 10) = 14. The theorem is a consequence of (720).
digits(3940, 10) = (0,4, 9, 3).

> digits(3940, 10) = 16. The theorem is a consequence of (722).
digits(3960, 10) = (0, 6,9, 3).

> digits(3960, 10) = 18. The theorem is a consequence of (724).
digits(3980, 10) = (0,8, 9, 3).

> digits(3980, 10) = 20. The theorem is a consequence of (726).
3980 is the solution to Sierpinski’s problem 36 for 20. The theorem is

a consequence of (727), (6), (19), (23), (27), (31), (35), (39), (43), (47),
(51), (361), (363), (193), (365), (367), (369), (203), (250), (371), (306),
(213), (373), (375), (377), (379), (381), (383), (385), (387), (389), (391),
(393), (395), (397), (399), (401), (403), (405), (346), (407), (409), (411),
(413), (415), (417), (419), (421), (423), (425), (427), (429), (431), (433),
(435), (437), (439), (441), (443), (445), (447), (449), (451), (453), (455),
(457), (459), (461), (463), (465), (467), (469), (471), (473), (475), (477),
(479), (481), (483), (485), (487), (489), (491), (493), (495), (497), (499),
(501), (503), (505), (507), (509), (511), (513), (515), (517), (519), (521),
(523), (525), (527), (529), (531), (533), (535), (537), (539), (541), (543),
(545), (547), (549), (551), (553), (555), (557), (559), (561), (563), (565),
(567), (569), (571), (573), (575), (577), (579), (581), (583), (585), (587),
(589), (591), (593), (595), (597), (599), (601), (603), (605), (607), (609),
(611), (613), (615), (617), (619), (621), (623), (625), (627), (629), (631),
(633), (635), (637), (639), (641), (643), (645), (647), (649), (651), (653),
(655), (657), (659), (661), (663), (665), (667), (669), (671), (673), (675),
(677), (679), (681), (683), (685), (687), (689), (691), (693), (695), (697),
(699), (701), (703), (705), (707), (709), (711), (713), (715), (717), (719),
(721), (723), and (725).
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14. PROBLEM 36 FOR s = 21

Now we state the propositions:

(729) digits(21,10) = (1,2).

(730) " digits(21,10) = 3. The theorem is a consequence of (729).
(731) digits(63,10) = (3,6).

(732) > digits(63,10) = 9. The theorem is a consequence of (731).
(733)  digits(147,10) = (7,4, 1).

(734) > digits(147,10) = 12. The theorem is a consequence of (733).
(735) digits(189,10) = (9,8, 1).

(736) 3 digits(189,10) = 18. The theorem is a consequence of (735).
(737)  digits(231,10) = (1,3, 2).

(738) > digits(231,10) = 6. The theorem is a consequence of (737).
(739)  digits(273,10) = (3,7, 2).

(740) " digits(273,10) = 12. The theorem is a consequence of (739).
(741) digits(294, 10) = (4,9, 2).

(742) " digits(294,10) = 15. The theorem is a consequence of (741).
(743)  digits(315,10) = (5,1, 3).

(744) > digits(315,10) = 9. The theorem is a consequence of (743).
(745)  digits(378,10) = (8,7, 3).

(746) > digits(378,10) = 18. The theorem is a consequence of (745).
(747)

399 is the solution to Sierpinski’s problem 36 for 21. The theorem is
a consequence of (308), (6), (730), (141), (732), (145), (174), (151), (734),
(153), (736), (157), (738), (163), (740), (742), (744), (205), (252), and
(746).

15. PROBLEM 36 FOR s = 22

Now we state the propositions:

(748)  digits(242, 10) = (2,4, 2).

(749) > digits(242,10) = 8. The theorem is a consequence of (748).
(750)  digits(264, 10) = (4,6, 2).

(751) 3 digits(264,10) = 12. The theorem is a consequence of (750).
(752)  digits(286, 10) = (6,8, 2).

(753) 3 digits(286,10) = 16. The theorem is a consequence of (752).
(754)  digits(308, 10) = (8,0, 3).
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> digits(308,10) = 11. The theorem is a consequence of (754).
digits(330,10) = (0,3, 3).

>~ digits(330,10) = 6. The theorem is a consequence of (756).
digits(396,10) = (6,9, 3).

> digits(396, 10) = 18. The theorem is a consequence of (758).
digits(462, 10) = (2,6, 4).

>~ digits(462,10) = 12. The theorem is a consequence of (760).
digits(484,10) = (4, 8,4).

> digits(484,10) = 16. The theorem is a consequence of (762).
digits(506, 10) = (6,0, 5).

> digits(506, 10) = 11. The theorem is a consequence of (764).
digits(528, 10) = (8,2, 5).

> digits(528,10) = 15. The theorem is a consequence of (766).
digits(550, 10) = (0, 5, 5).

> digits(550, 10) = 10. The theorem is a consequence of (768).
digits(572, 10) = (2,7,5).

> digits(572,10) = 14. The theorem is a consequence of (770).
digits(594, 10) = (4,9,5).

> digits(594, 10) = 18. The theorem is a consequence of (772).
digits(616,10) = (6,1, 6).

>~ digits(616,10) = 13. The theorem is a consequence of (774).
digits(638, 10) = (8, 3, 6).

> digits(638,10) = 17. The theorem is a consequence of (776).
digits(682, 10) = (2,8, 6).

> digits(682,10) = 16. The theorem is a consequence of (778).
digits(704, 10) = (4,0, 7).

>~ digits(704,10) = 11. The theorem is a consequence of (780).
digits(726, 10) = (6,2, 7).

> digits(726,10) = 15. The theorem is a consequence of (782).
digits(748,10) = (8,4, 7).

> digits(748,10) = 19. The theorem is a consequence of (784).
digits(770,10) = (0,7, 7).

> digits(770,10) = 14. The theorem is a consequence of (786).
digits(792, 10) = (2,9, 7).

> digits(792,10) = 18. The theorem is a consequence of (788).
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digits(814, 10) = (4,1, 8).

> digits(814,10) = 13. The theorem is a consequence of (790).
digits(858, 10) = (8,5, 8).

> digits(858,10) = 21. The theorem is a consequence of (792).
digits(902, 10) = (2,0, 9).

> digits(902,10) = 11. The theorem is a consequence of (794).
digits(924, 10) = (4,2, 9).

> digits(924,10) = 15. The theorem is a consequence of (796).
digits(946, 10) = (6,4, 9).

> digits(946, 10) = 19. The theorem is a consequence of (798).
digits(968, 10) = (8,6,9).

>~ digits(968, 10) = 23. The theorem is a consequence of (800).
digits(990, 10) = (0,9, 9).

> digits(990, 10) = 18. The theorem is a consequence of (802).
digits(1012,10) = (2,1,0,1).

> digits(1012,10) = 4. The theorem is a consequence of (804).
digits(1034, 10) = (4,3,0,1).

> digits(1034, 10) = 8. The theorem is a consequence of (806).
digits(1056, 10) = (6,5,0,1).

>~ digits(1056,10) = 12. The theorem is a consequence of (808).
digits(1078, 10) = (8,7,0,1).

> digits(1078,10) = 16. The theorem is a consequence of (810).
digits(1122, 10) = (2,2, 1,1).

> digits(1122,10) = 6. The theorem is a consequence of (812).
digits(1144,10) = (4,4,1,1).

> digits(1144,10) = 10. The theorem is a consequence of (814).
digits(1166, 10) = (6,6,1,1).

>~ digits(1166,10) = 14. The theorem is a consequence of (816).
digits(1188,10) = (8,8, 1, 1).

> digits(1188,10) = 18. The theorem is a consequence of (818).
digits(1210,10) = (0,1,2,1).

> digits(1210,10) = 4. The theorem is a consequence of (820).
digits(1232,10) = (2,3,2,1).

> digits(1232,10) = 8. The theorem is a consequence of (822).
digits(1254, 10) = (4,5,2,1).
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> digits(1254,10) = 12. The theorem is a consequence of (824).
digits(1276,10) = (6,7,2,1).

> digits(1276,10) = 16. The theorem is a consequence of (826).
digits(1298,10) = (8,9,2,1).

> digits(1298,10) = 20. The theorem is a consequence of (828).
digits(1342,10) = (2,4,3,1).

> digits(1342,10) = 10. The theorem is a consequence of (830).
digits(1364, 10) = (4,6,3,1).

> digits(1364,10) = 14. The theorem is a consequence of (832).
digits(1386, 10) = (6,8, 3, 1).

>~ digits(1386,10) = 18. The theorem is a consequence of (834).
digits(1408, 10) = (8,0, 4, 1).

> digits(1408, 10) = 13. The theorem is a consequence of (836).
digits(1430, 10) = (0,3, 4, 1).

> digits(1430,10) = 8. The theorem is a consequence of (838).
digits(1452,10) = (2,5,4,1).

> digits(1452,10) = 12. The theorem is a consequence of (840).
digits(1474,10) = (4,7,4,1).

> digits(1474,10) = 16. The theorem is a consequence of (842).
digits(1496, 10) = (6,9, 4, 1).

> digits(1496, 10) = 20. The theorem is a consequence of (844).
digits(1518,10) = (8,1, 5, 1).

> digits(1518,10) = 15. The theorem is a consequence of (846).
digits(1562, 10) = (2,6, 5, 1).

> digits(1562,10) = 14. The theorem is a consequence of (848).
digits(1584, 10) = (4,8, 5,1).

> digits(1584,10) = 18. The theorem is a consequence of (850).
digits(1606, 10) = (6,0, 6, 1).

> digits(1606, 10) = 13. The theorem is a consequence of (852).
digits(1628, 10) = (8,2, 6, 1).

> digits(1628,10) = 17. The theorem is a consequence of (854).
digits(1650, 10) = (0,5, 6, 1).

> digits(1650, 10) = 12. The theorem is a consequence of (856).
digits(1672,10) = (2,7,6,1).

> digits(1672,10) = 16. The theorem is a consequence of (858).
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digits(1694, 10) = (4,9,6,1).

> digits(1694, 10) = 20. The theorem is a consequence of (860).
digits(1716,10) = (6,1,7, 1).

> digits(1716,10) = 15. The theorem is a consequence of (862).
digits(1738, 10) = (8,3,7, 1).

> digits(1738,10) = 19. The theorem is a consequence of (864).
digits(1782,10) = (2,8,7, 1).

> digits(1782,10) = 18. The theorem is a consequence of (866).
digits(1804, 10) = (4,0,8, 1).

> digits(1804, 10) = 13. The theorem is a consequence of (868).
digits(1826,10) = (6,2, 8, 1).

>~ digits(1826,10) = 17. The theorem is a consequence of (870).
digits(1848, 10) = (8, 4,8, 1).

> digits(1848,10) = 21. The theorem is a consequence of (872).
digits(1870,10) = (0, 7,8, 1).

> digits(1870,10) = 16. The theorem is a consequence of (874).
digits(1892,10) = (2,9,8, 1).

> digits(1892,10) = 20. The theorem is a consequence of (876).
digits(1914,10) = (4,1,9,1).

> digits(1914,10) = 15. The theorem is a consequence of (878).
digits(1936, 10) = (6, 3,9, 1).

> digits(1936,10) = 19. The theorem is a consequence of (880).
digits(1958, 10) = (8,5,9,1).

> digits(1958,10) = 23. The theorem is a consequence of (882).
digits(2002, 10) = (2,0,0,2).

> digits(2002, 10) = 4. The theorem is a consequence of (884).
digits(2024, 10) = (4,2,0,2).

>~ digits(2024,10) = 8. The theorem is a consequence of (886).
digits(2046, 10) = (6,4, 0,2).

> digits(2046, 10) = 12. The theorem is a consequence of (888).
digits(2068, 10) = (8,6,0,2).

> digits(2068,10) = 16. The theorem is a consequence of (890).
digits(2090, 10) = (0,9,0,2).

> digits(2090,10) = 11. The theorem is a consequence of (892).
digits(2112,10) = (2,1, 1,2).
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> digits(2112,10) = 6. The theorem is a consequence of (894).
digits(2134,10) = (4,3, 1,2).

> digits(2134,10) = 10. The theorem is a consequence of (896).
digits(2156,10) = (6,5, 1,2).

> digits(2156, 10) = 14. The theorem is a consequence of (898).
digits(2178,10) = (8,7,1,2).

> digits(2178,10) = 18. The theorem is a consequence of (900).
digits(2222,10) = (2,2,2,2).

> digits(2222,10) = 8. The theorem is a consequence of (902).
digits(2244,10) = (4,4,2,2).

> digits(2244,10) = 12. The theorem is a consequence of (904).
digits(2266, 10) = (6, 6,2, 2).

> digits(2266,10) = 16. The theorem is a consequence of (906).
digits(2288,10) = (8,8, 2,2).

> digits(2288,10) = 20. The theorem is a consequence of (908).
digits(2310, 10) = (0,1, 3,2).

> digits(2310,10) = 6. The theorem is a consequence of (910).
digits(2332,10) = (2,3,3,2).

> digits(2332,10) = 10. The theorem is a consequence of (912).
digits(2354, 10) = (4,5,3,2).

> digits(2354,10) = 14. The theorem is a consequence of (914).
digits(2376, 10) = (6,7,3,2).

> digits(2376,10) = 18. The theorem is a consequence of (916).
digits(2398,10) = (8,9,3,2).

> digits(2398, 10) = 22. The theorem is a consequence of (918).

2398 is the solution to Sierpinski’s problem 36 for 22. The theorem is
a consequence of (919), (6), (58), (62), (66), (70), (37), (76), (80), (84),

(88), (363), (749), (751), (753), (755), (757), (207), (254), (759), (310),
(375), (761), (763), (765), (767), (769), (771), (773), (775), (T77), (397),
(779), (781), (783), (785), (787), (789), (791), (354), (793), (417), (795),
(797), (799), (801), (803), (805), (807), (809), (811), (439), (813), (815),
(817), (819), (821), (823), (825), (827), (829), (461), (831), (833), (835),
(837), (839), (841), (843), (845), (847), (483), (849), (851), (853), (855),
(857), (859), (861), (863), (865), (505), (867), (869), (871), (873), (875),
(877), (879), (881), (883), (527), (885), (887), (889), (891), (893), (895),
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(897), (899), (901), (549), (903), (905), (907), (909), (911), (913), (915),
and (917).

16. PROBLEM 36 FOR s = 23

Now we state the propositions:
) digits(23,10) = (3,2).
) > digits(23,10) = 5. The theorem is a consequence of (921).
) digits(46,10) = (6,4).
) > digits(46,10) = 10. The theorem is a consequence of (923).
) digits(69, 10) = (9, 6).
) > digits(69,10) = 15. The theorem is a consequence of (925).
) digits(92,10) = (2,9).
) > digits(92,10) = 11. The theorem is a consequence of (927).
) digits(115,10) = (5,1, 1).
) > digits(115,10) = 7. The theorem is a consequence of (929).
) digits(138,10) = (8,3,1).
) > digits(138,10) = 12. The theorem is a consequence of (931).
) digits(161,10) = (1,6, 1).
) > digits(161,10) = 8. The theorem is a consequence of (933).
5) digits(184,10) = (4,8, 1).
) > digits(184,10) = 13. The theorem is a consequence of (935).
) digits(207, 10) = (7,0, 2).
) > digits(207,10) = 9. The theorem is a consequence of (937).
) digits(230,10) = (0,3, 2).
) > digits(230,10) = 5. The theorem is a consequence of (939).
) digits(253, 10) = (3,5, 2).
) > digits(253,10) = 10. The theorem is a consequence of (941).
) digits(276,10) = (6,7, 2).
) > digits(276,10) = 15. The theorem is a consequence of (943).
) digits(299, 10) = (9,9, 2).
) > digits(299,10) = 20. The theorem is a consequence of (945).
) digits(322,10) = (2,2, 3).
) > digits(322,10) = 7. The theorem is a consequence of (947).
) digits(345, 10) = (5,4, 3).
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> digits(345,10) = 12. The theorem is a consequence of (949).
digits(414, 10) = (4,1, 4).

>~ digits(414,10) = 9. The theorem is a consequence of (951).
digits(483,10) = (3,8, 4).

>~ digits(483,10) = 15. The theorem is a consequence of (953).
digits(529, 10) = (9, 2, 5).

> digits(529,10) = 16. The theorem is a consequence of (955).
digits(552, 10) = (2,5, 5).

> digits(552,10) = 12. The theorem is a consequence of (957).
digits(575, 10) = (5,7, 5).

> digits(575,10) = 17. The theorem is a consequence of (959).
digits(598, 10) = (8,9, 5).

> digits(598, 10) = 22. The theorem is a consequence of (961).
digits(621, 10) = (1,2, 6).

> digits(621,10) = 9. The theorem is a consequence of (963).
digits(644, 10) = (4,4, 6).

> digits(644, 10) = 14. The theorem is a consequence of (965).
digits(667,10) = (7,6, 6).

>~ digits(667,10) = 19. The theorem is a consequence of (967).
digits(690, 10) = (0,9, 6.

>~ digits(690, 10) = 15. The theorem is a consequence of (969).
digits(713,10) = (3,1,7).

> digits(713,10) = 11. The theorem is a consequence of (971).
digits(736,10) = (6,3, 7).

> digits(736,10) = 16. The theorem is a consequence of (973).
digits(759, 10) = (9,5, 7).

> digits(759,10) = 21. The theorem is a consequence of (975).
digits(782, 10) = (2,8, 7).

> digits(782,10) = 17. The theorem is a consequence of (977).
digits(805, 10) = (5,0, 8).

> digits(805,10) = 13. The theorem is a consequence of (979).
digits(828, 10) = (8, 2, 8).

> digits(828,10) = 18. The theorem is a consequence of (981).
digits(851, 10) = (1,5,8).

> digits(851,10) = 14. The theorem is a consequence of (983).
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digits(897, 10) = (7,9, 8).

>~ digits(897,10) = 24. The theorem is a consequence of (985).
digits(943, 10) = (3,4, 9).

> digits(943,10) = 16. The theorem is a consequence of (987).
digits(966, 10) = (6,6, 9).

> digits(966, 10) = 21. The theorem is a consequence of (989).
digits(989, 10) = (9, 8, 9).

> digits(989, 10) = 26. The theorem is a consequence of (991).
digits(1035, 10) = (5,3,0,1).

> digits(1035,10) = 9. The theorem is a consequence of (993).
digits(1058, 10) = (8,5,0,1).

>~ digits(1058,10) = 14. The theorem is a consequence of (995).
digits(1081, 10) = (1,8,0,1).

> digits(1081,10) = 10. The theorem is a consequence of (997).
digits(1104,10) = (4,0, 1,1).

> digits(1104,10) = 6. The theorem is a consequence of (999).
digits(1127,10) = (7,2,1,1).

> digits(1127,10) = 11. The theorem is a consequence of (1001).
digits(1150, 10) = (0,5, 1, 1).

>~ digits(1150,10) = 7. The theorem is a consequence of (1003).
digits(1173,10) = (3,7,1,1).

> digits(1173,10) = 12. The theorem is a consequence of (1005).
digits(1196, 10) = (6,9,1,1).

> digits(1196,10) = 17. The theorem is a consequence of (1007).
digits(1219,10) = (9,1,2, 1.

> digits(1219,10) = 13. The theorem is a consequence of (1009).
digits(1242,10) = (2,4,2,1).

>~ digits(1242,10) = 9. The theorem is a consequence of (1011).
digits(1265,10) = (5,6,2,1).

> digits(1265,10) = 14. The theorem is a consequence of (1013).
digits(1288, 10) = (8,8,2,1).

> digits(1288,10) = 19. The theorem is a consequence of (1015).
digits(1311,10) = (1,1,3,1).

> digits(1311,10) = 6. The theorem is a consequence of (1017).
digits(1334, 10) = (4,3,3,1).
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> digits(1334,10) = 11. The theorem is a consequence of (1019).
digits(1357,10) = (7,5,3,1).
>~ digits(1357,10) = 16. The theorem is a consequence of (1021).
digits(1403, 10) = (3,0, 4, 1).
>~ digits(1403,10) = 8. The theorem is a consequence of (1023).
digits(1426, 10) = (6,2,4,1).
> digits(1426,10) = 13. The theorem is a consequence of (1025).
digits(1449, 10) = (9,4,4,1).
> digits(1449,10) = 18. The theorem is a consequence of (1027).
digits(1472,10) = (2,7,4,1).
> digits(1472,10) = 14. The theorem is a consequence of (1029).
digits(1495,10) = (5,9,4,1).
> digits(1495,10) = 19. The theorem is a consequence of (1031).
digits(1541,10) = (1,4, 5,1).
>~ digits(1541,10) = 11. The theorem is a consequence of (1033).
digits(1564, 10) = (4,6,5,1).
>~ digits(1564,10) = 16. The theorem is a consequence of (1035).
digits(1587,10) = (7,8, 5,1).
> digits(1587,10) = 21. The theorem is a consequence of (1037).
digits(1610, 10) = (0,1,6,1).
> digits(1610,10) = 8. The theorem is a consequence of (1039).
digits(1633,10) = (3,3, 6, 1).
> digits(1633,10) = 13. The theorem is a consequence of (1041).
digits(1656, 10) = (6,5, 6, 1).
> digits(1656,10) = 18. The theorem is a consequence of (1043).
digits(1679, 10) = (9,7,6,1).
> digits(1679,10) = 23. The theorem is a consequence of (1045).

1679 is the solution to Sierpinski’s problem 36 for 23. The theorem
is a consequence of (1046), (6), (922), (924), (926), (928), (930), (932),
(934), (936), (938), (940), (942), (944), (946), (948), (950), (209), (256),
(952), (312), (377), (954), (765), (956), (958), (960), (962), (964), (966),
(968), (970), (972), (974), (976), (978), (980), (982), (984), (358), (986),
(421), (988), (990), (992), (805), (994), (996), (998), (1000), (1002), (1004),
(1006), (1008), (1010), (1012), (1014), (1016), (1018), (1020), (1022), (467),
(1024), (1026), (1028), (1030), (1032), (847), (1034), (1036), (1038), (1040),
(

1042), and (1044).
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17. PROBLEM 36 FOR s = 24

Now we state the propositions:
) digits(216,10) = (6, 1,2).
) > digits(216,10) = 9. The theorem is a consequence of (1048).
) digits(312,10) = (2, 1,3).
) > digits(312,10) = 6. The theorem is a consequence of (1050).
) digits(504, 10) = (4,0, 5).
) > digits(504,10) = 9. The theorem is a consequence of (1052).
) digits(576,10) = (6,7, 5).
) > digits(576,10) = 18. The theorem is a consequence of (1054).
) digits(624, 10) = (4,2, 6).
) > digits(624,10) = 12. The theorem is a consequence of (1056).
) digits(648, 10) = (8, 4, 6).
) > digits(648,10) = 18. The theorem is a consequence of (1058).
) digits(672, 10) = (2,7, 6).
1) " digits(672,10) = 15. The theorem is a consequence of (1060).

)

)

)

)

)

)

)

)

)

)

)

)

)

~J

digits(696, 10) = (6,9, 6).
>~ digits(696, 10) = 21. The theorem is a consequence of (1062).
digits(744, 10) = (4,4, 7).
> digits(744,10) = 15. The theorem is a consequence of (1064).
digits(768, 10) = (8,6, 7).
> digits(768,10) = 21. The theorem is a consequence of (1066).
digits(816,10) = (6,1, 8).
> digits(816,10) = 15. The theorem is a consequence of (1068).
digits(864, 10) = (4,6, 8).
>~ digits(864, 10) = 18. The theorem is a consequence of (1070).
digits(888,10) = (8,8, 8).
> digits(888,10) = 24. The theorem is a consequence of (1072).

888 is the solution to Sierpinski’s problem 36 for 24. The theorem is
a consequence of (1073), (6), (95), (99), (273), (185), (39), (189), (153),
(191), (1049), (193), (751), (199), (1051), (205), (371), (211), (258), (217),
(314), (379), (1053), (767), (958), (1055), (391), (1057), (1059), (1061),
(1063), (403), (1065), (1067), (789), (1069), (413), and (1071).

3
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18. PROBLEM 36 FOR s = 25

Now we state the propositions:
) digits(25, 10) = (5,2).
) > digits(25,10) = 7. The theorem is a consequence of (1075).
) digits(125,10) = (5,2, 1).
) > digits(125,10) = 8. The theorem is a consequence of (1077).
) digits(175, 10) = (5,7, 1).
) > digits(175,10) = 13. The theorem is a consequence of (1079).
) digits(225,10) = (5,2, 2).
) > digits(225,10) = 9. The theorem is a consequence of (1081).
) digits(250, 10) = (0,5, 2).
) > digits(250,10) = 7. The theorem is a consequence of (1083).
) digits(275, 10) = (5,7, 2).
) > digits(275,10) = 14. The theorem is a consequence of (1085).
) digits(325, 10) = (5,2, 3).
) > digits(325,10) = 10. The theorem is a consequence of (1087).
) digits(350, 10) = (0,5, 3).
) > digits(350,10) = 8. The theorem is a consequence of (1089).
1091) digits(375,10) = (5,7, 3).
) > digits(375,10) = 15. The theorem is a consequence of (1091).
) digits(450,10) = (0, 5,4).
) > digits(450,10) = 9. The theorem is a consequence of (1093).
) digits(525,10) = (5, 2, 5).
) > digits(525,10) = 12. The theorem is a consequence of (1095).
) digits(625, 10) = (5, 2, 6).
) > digits(625,10) = 13. The theorem is a consequence of (1097).
) digits(650, 10) = (0, 5, 6).
) > digits(650,10) = 11. The theorem is a consequence of (1099).
) digits(675,10) = (5,7, 6).
) > digits(675,10) = 18. The theorem is a consequence of (1101).
) digits(725,10) = (5,2, 7).
) > digits(725,10) = 14. The theorem is a consequence of (1103).
) digits(750,10) = (0,5, 7).
) > digits(750,10) = 12. The theorem is a consequence of (1105).
) digits(775,10) = (5,7, 7).
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> digits(775,10) = 19. The theorem is a consequence of (1107).
digits(825, 10) = (5, 2, 8).

> digits(825,10) = 15. The theorem is a consequence of (1109).
digits(850, 10) = (0, 5, 8).

> digits(850,10) = 13. The theorem is a consequence of (1111).
digits(875,10) = (5,7, 8).

> digits(875,10) = 20. The theorem is a consequence of (1113).
digits(925, 10) = (5, 2, 9).

> digits(925,10) = 16. The theorem is a consequence of (1115).
digits(950, 10) = (0,5, 9).

> digits(950, 10) = 14. The theorem is a consequence of (1117).
digits(975, 10) = (5,7, 9).

> digits(975,10) = 21. The theorem is a consequence of (1119).
digits(1025, 10) = (5,2, 0, 1).

> digits(1025,10) = 8. The theorem is a consequence of (1121).
digits(1050, 10) = (0,5,0,1).

> digits(1050,10) = 6. The theorem is a consequence of (1123).
digits(1075,10) = (5,7,0,1).

> digits(1075,10) = 13. The theorem is a consequence of (1125).
digits(1125,10) = (5, 2,1, 1).

> digits(1125,10) = 9. The theorem is a consequence of (1127).
digits(1175,10) = (5,7,1,1).

>~ digits(1175,10) = 14. The theorem is a consequence of (1129).
digits(1225,10) = (5,2,2,1).

> digits(1225,10) = 10. The theorem is a consequence of (1131).
digits(1250, 10) = (0,5, 2, 1).

> digits(1250,10) = 8. The theorem is a consequence of (1133).
digits(1275,10) = (5,7,2,1).

>~ digits(1275,10) = 15. The theorem is a consequence of (1135).
digits(1325, 10) = (5,2, 3, 1).

> digits(1325,10) = 11. The theorem is a consequence of (1137).
digits(1350, 10) = (0,5,3,1).

> digits(1350,10) = 9. The theorem is a consequence of (1139).
digits(1375,10) = (5,7,3,1).

> digits(1375,10) = 16. The theorem is a consequence of (1141).
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digits(1425,10) = (5,2,4,1).
> digits(1425,10) = 12. The theorem is a consequence of (1143).
digits(1450, 10) = (0,5, 4, 1).
> digits(1450,10) = 10. The theorem is a consequence of (1145).
digits(1475,10) = (5,7,4,1).
> digits(1475,10) = 17. The theorem is a consequence of (1147).
digits(1525,10) = (5,2, 5,1).
> digits(1525,10) = 13. The theorem is a consequence of (1149).
digits(1550, 10) = (0,5, 5, 1).
> digits(1550,10) = 11. The theorem is a consequence of (1151).
digits(1575,10) = (5, 7,5, 1).
>~ digits(1575,10) = 18. The theorem is a consequence of (1153).
digits(1625,10) = (5,2, 6,1).
> digits(1625,10) = 14. The theorem is a consequence of (1155).
digits(1675,10) = (5, 7,6, 1).
> digits(1675,10) = 19. The theorem is a consequence of (1157).
digits(1725,10) = (5, 2,7, 1).
> digits(1725,10) = 15. The theorem is a consequence of (1159).
digits(1750, 10) = (0,5,7, 1).
> digits(1750,10) = 13. The theorem is a consequence of (1161).
digits(1775,10) = (5,7,7,1).
> digits(1775,10) = 20. The theorem is a consequence of (1163).
digits(1825,10) = (5,2, 8,1).
> digits(1825,10) = 16. The theorem is a consequence of (1165).
digits(1850, 10) = (0,5,8, 1).
> digits(1850,10) = 14. The theorem is a consequence of (1167).
digits(1875,10) = (5, 7,8, 1).
>~ digits(1875,10) = 21. The theorem is a consequence of (1169).
digits(1925,10) = (5,2,9,1).
> digits(1925,10) = 17. The theorem is a consequence of (1171).
digits(1950, 10) = (0,5,9,1).
> digits(1950,10) = 15. The theorem is a consequence of (1173).
digits(1975,10) = (5, 7,9, 1).
> digits(1975,10) = 22. The theorem is a consequence of (1175).
digits(2025, 10) = (5,2, 0,2).
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> digits(2025,10) = 9. The theorem is a consequence of (1177).
digits(2050, 10) = (0,5, 0,2).

> digits(2050,10) = 7. The theorem is a consequence of (1179).
digits(2075,10) = (5,7,0,2).

> digits(2075,10) = 14. The theorem is a consequence of (1181).
digits(2125,10) = (5,2, 1,2).

> digits(2125,10) = 10. The theorem is a consequence of (1183).
digits(2150, 10) = (0, 5,1, 2).

> digits(2150,10) = 8. The theorem is a consequence of (1185).
digits(2175,10) = (5,7,1,2).

> digits(2175,10) = 15. The theorem is a consequence of (1187).
digits(2225,10) = (5,2,2,2).

>~ digits(2225,10) = 11. The theorem is a consequence of (1189).
digits(2250, 10) = (0,5, 2, 2).

> digits(2250,10) = 9. The theorem is a consequence of (1191).
digits(2275, 10) = (5,7, 2, 2).

> digits(2275,10) = 16. The theorem is a consequence of (1193).
digits(2325, 10) = (5,2,3,2).

> digits(2325,10) = 12. The theorem is a consequence of (1195).
digits(2350, 10) = (0,5, 3,2).

> digits(2350,10) = 10. The theorem is a consequence of (1197).
digits(2375,10) = (5,7,3,2).

> digits(2375,10) = 17. The theorem is a consequence of (1199).
digits(2425,10) = (5,2, 4,2).

> digits(2425,10) = 13. The theorem is a consequence of (1201).
digits(2450, 10) = (0,5, 4, 2).

> digits(2450,10) = 11. The theorem is a consequence of (1203).
digits(2475, 10) = (5,7, 4,2).

>~ digits(2475,10) = 18. The theorem is a consequence of (1205).
digits(2525,10) = (5,2, 5,2).

> digits(2525,10) = 14. The theorem is a consequence of (1207).
digits(2550, 10) = (0,5, 5, 2).

> digits(2550,10) = 12. The theorem is a consequence of (1209).
digits(2575,10) = (5,7,5,2).

> digits(2575,10) = 19. The theorem is a consequence of (1211).
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digits(2625, 10) = (5,2, 6,2).

> digits(2625,10) = 15. The theorem is a consequence of (1213).
digits(2650, 10) = (0,5, 6, 2).

> digits(2650,10) = 13. The theorem is a consequence of (1215).
digits(2675, 10) = (5,7, 6, 2).

> digits(2675,10) = 20. The theorem is a consequence of (1217).
digits(2725,10) = (5,2,7,2).

> digits(2725,10) = 16. The theorem is a consequence of (1219).
digits(2750, 10) = (0,5, 7, 2).

> digits(2750,10) = 14. The theorem is a consequence of (1221).
digits(2775,10) = (5,7,7,2).

>~ digits(2775,10) = 21. The theorem is a consequence of (1223).
digits(2825,10) = (5,2,8,2).

> digits(2825,10) = 17. The theorem is a consequence of (1225).
digits(2850, 10) = (05,8, 2).

> digits(2850,10) = 15. The theorem is a consequence of (1227).
digits(2875,10) = (5,7,8,2).

> digits(2875,10) = 22. The theorem is a consequence of (1229).
digits(2925, 10) = (5,2,9,2).

> digits(2925,10) = 18. The theorem is a consequence of (1231).
digits(2950, 10) = (0,5, 9, 2).

> digits(2950, 10) = 16. The theorem is a consequence of (1233).
digits(2975,10) = (5,7,9,2).

> digits(2975,10) = 23. The theorem is a consequence of (1235).
digits(3025, 10) = (5,2,0,3).

> digits(3025,10) = 10. The theorem is a consequence of (1237).
digits(3050, 10) = (0, 5,0, 3).

>~ digits(3050,10) = 8. The theorem is a consequence of (1239).
digits(3075,10) = (5,7,0,3).

> digits(3075,10) = 15. The theorem is a consequence of (1241).
digits(3125,10) = (5,2,1,3).

> digits(3125,10) = 11. The theorem is a consequence of (1243).
digits(3150, 10) = (0,5, 1, 3).

> digits(3150,10) = 9. The theorem is a consequence of (1245).
digits(3175,10) = (5,7,1,3).
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> digits(3175,10) = 16. The theorem is a consequence of (1247).
digits(3225, 10) = (5,2,2,3).
> digits(3225,10) = 12. The theorem is a consequence of (1249).
digits(3250, 10) = (0,5, 2, 3).
> digits(3250,10) = 10. The theorem is a consequence of (1251).
digits(3275,10) = (5,7,2,3).
> digits(3275,10) = 17. The theorem is a consequence of (1253).
digits (3325, 10) = (5,2, 3,3).
> digits(3325,10) = 13. The theorem is a consequence of (1255).
digits(3350, 10) = (0,5, 3, 3).
> digits(3350,10) = 11. The theorem is a consequence of (1257).
digits(3375,10) = (5,7,3,3).
>~ digits(3375,10) = 18. The theorem is a consequence of (1259).
digits(3425,10) = (5,2, 4,3).
> digits(3425,10) = 14. The theorem is a consequence of (1261).
digits(3450, 10) = (0,5, 4, 3).
> digits(3450,10) = 12. The theorem is a consequence of (1263).
digits(3475, 10) = (5,7, 4,3).
> digits(3475,10) = 19. The theorem is a consequence of (1265).
digits(3525, 10) = (5,2, 5,3).
> digits(3525,10) = 15. The theorem is a consequence of (1267).
digits(3550, 10) = (0,5, 5, 3).
> digits(3550,10) = 13. The theorem is a consequence of (1269).
digits(3575, 10) = (5,7, 5,3).
> digits(3575,10) = 20. The theorem is a consequence of (1271).
digits(3625, 10) = (5,2, 6,3).
> digits(3625,10) = 16. The theorem is a consequence of (1273).
digits(3650, 10) = (0,5, 6, 3).
>~ digits(3650,10) = 14. The theorem is a consequence of (1275).
digits(3675, 10) = (5,7,6,3).
> digits(3675,10) = 21. The theorem is a consequence of (1277).
digits(3725,10) = (5,2,7,3).
> digits(3725,10) = 17. The theorem is a consequence of (1279).
digits(3750, 10) = (0, 5,7, 3).
> digits(3750,10) = 15. The theorem is a consequence of (1281).
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digits(3775,10) = (5,7,7,3).

> digits(3775,10) = 22. The theorem is a consequence of (1283).
digits(3825, 10) = (5,2, 8, 3).

> digits(3825,10) = 18. The theorem is a consequence of (1285).
digits(3850, 10) = (0,5, 8, 3).

> digits(3850,10) = 16. The theorem is a consequence of (1287).
digits(3875,10) = (5,7,8,3).

> digits(3875,10) = 23. The theorem is a consequence of (1289).
digits(3925,10) = (5,2,9,3).

> digits(3925,10) = 19. The theorem is a consequence of (1291).
digits(3950, 10) = (0, 5,9, 3).

>~ digits(3950,10) = 17. The theorem is a consequence of (1293).
digits(3975,10) = (5, 7,9, 3).

> digits(3975,10) = 24. The theorem is a consequence of (1295).
digits(4000, 10) = (0,0, 0,4).

> digits(4000, 10) = 4. The theorem is a consequence of (1297).
digits(4025, 10) = (5,2, 0,4).

> digits(4025,10) = 11. The theorem is a consequence of (1299).
digits(4050, 10) = (0,5, 0,4).

> digits(4050,10) = 9. The theorem is a consequence of (1301).
digits(4075,10) = (5,7,0,4).

> digits(4075,10) = 16. The theorem is a consequence of (1303).
digits(4100, 10) = (0,0, 1, 4).

> digits(4100, 10) = 5. The theorem is a consequence of (1305).
digits(4125,10) = (5,2, 1, 4).

> digits(4125,10) = 12. The theorem is a consequence of (1307).
digits(4150,10) = (0,5, 1, 4).

>~ digits(4150,10) = 10. The theorem is a consequence of (1309).
digits(4175,10) = (5,7,1,4).

> digits(4175,10) = 17. The theorem is a consequence of (1311).
digits(4200, 10) = (0,0, 2, 4).

> digits(4200,10) = 6. The theorem is a consequence of (1313).
digits(4225,10) = (5,2,2,4).

> digits(4225,10) = 13. The theorem is a consequence of (1315).
digits(4250, 10) = (0,5, 2, 4).
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> digits(4250,10) = 11. The theorem is a consequence of (1317).
digits(4275,10) = (5, 7,2, 4).

> digits(4275,10) = 18. The theorem is a consequence of (1319).
digits(4300, 10) = (0,0, 3, 4).

> digits(4300,10) = 7. The theorem is a consequence of (1321).
digits(4325,10) = (5,2, 3,4).

> digits(4325,10) = 14. The theorem is a consequence of (1323).
digits(4350, 10) = (0,5, 3, 4).

> digits(4350,10) = 12. The theorem is a consequence of (1325).
digits(4375,10) = (5, 7,3,4).

> digits(4375,10) = 19. The theorem is a consequence of (1327).
digits(4400, 10) = (0,0, 4, 4).

> digits(4400, 10) = 8. The theorem is a consequence of (1329).
digits(4425,10) = (5,2, 4, 4).

> digits(4425,10) = 15. The theorem is a consequence of (1331).
digits(4450,10) = (0,5, 4, 4).

> digits(4450,10) = 13. The theorem is a consequence of (1333).
digits(4475,10) = (5,7, 4,4).

> digits(4475,10) = 20. The theorem is a consequence of (1335).
digits(4500, 10) = (0,0, 5, 4).

> digits(4500,10) = 9. The theorem is a consequence of (1337).
digits(4525, 10) = (5,2, 5, 4).

> digits(4525,10) = 16. The theorem is a consequence of (1339).
digits(4550, 10) = (0,5, 5, 4).

> digits(4550,10) = 14. The theorem is a consequence of (1341).
digits(4575,10) = (5,7, 5,4).

> digits(4575,10) = 21. The theorem is a consequence of (1343).
digits(4600, 10) = (0,0, 6,4).

>~ digits(4600,10) = 10. The theorem is a consequence of (1345).
digits(4625, 10) = (5,2, 6, 4).

> digits(4625,10) = 17. The theorem is a consequence of (1347).
digits(4650, 10) = (0,5, 6, 4).

> digits(4650,10) = 15. The theorem is a consequence of (1349).
digits(4675,10) = (5, 7,6,4).

> digits(4675,10) = 22. The theorem is a consequence of (1351).
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digits(4700, 10) = (0,0, 7, 4).
> digits(4700,10) = 11. The theorem is a consequence of (1353).
digits(4725,10) = (5, 2,7, 4).
> digits(4725,10) = 18. The theorem is a consequence of (1355).
digits(4750, 10) = (0,5, 7, 4).
> digits(4750,10) = 16. The theorem is a consequence of (1357).
digits(4775,10) = (5,7,7,4).
> digits(4775,10) = 23. The theorem is a consequence of (1359).
digits(4800, 10) = (0,0, 8, 4).
> digits(4800,10) = 12. The theorem is a consequence of (1361).
digits(4825, 10) = (5,2, 8, 4).
>~ digits(4825,10) = 19. The theorem is a consequence of (1363).
digits (4850, 10) = (0, 5,8, 4).
> digits(4850,10) = 17. The theorem is a consequence of (1365).
digits(4875,10) = (5,7,8,4).
> digits(4875,10) = 24. The theorem is a consequence of (1367).
digits(4900, 10) = (0,0, 9, 4).
> digits(4900, 10) = 13. The theorem is a consequence of (1369).
digits(4925,10) = (5,2,9,4).
> digits(4925,10) = 20. The theorem is a consequence of (1371).
digits(4950, 10) = (0,5, 9, 4).
> digits(4950,10) = 18. The theorem is a consequence of (1373).
digits(4975,10) = (5,7,9,4).
> digits(4975,10) = 25. The theorem is a consequence of (1375).

4975 is the solution to Sierpinski’s problem 36 for 25. The theorem is
a consequence of (1376), (6), (1076), (25), (172), (35), (1078), (45), (1080),

(361), (1082), (1084), (1086), (369), (1088), (1090), (1092), (213), (260),
(1094), (316), (381), (1096), (769), (960), (391), (1098), (1100), (1102),
(401), (1104), (1106), (1108), (409), (1110), (1112), (1114), (419), (1116),
(1118), (1120), (429), (1122), (1124), (1126), (439), (1128), (1004), (1130),
(449), (1132), (1134), (1136), (459), (1138), (1140), (1142), (469), (1144),
(1146), (1148), (479), (1150), (1152), (1154), (489), (1156), (857), (1158),
(499), (1160), (1162), (1164), (509), (1166), (1168), (1170), (519), (1172),
(1174), (1176), (529), (1178), (1180), (1182), (539), (1184), (1186), (1188),
(549), (1190), (1192), (1194), (559), (1196), (1198), (1200), (569), (1202),
(1204), (1206), (579), (1208), (1210), (1212), (589), (1214), (1216), (1218),
(599), (1220), (1222), (1224), (609), (1226), (1228), (1230), (619), (1232),
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(1234), (1236), (629), (1238), (1240), (1242), (639), (1244), (1246), (1248),
(649), (1250), (1252), (1254), (659), (1256), (1258), (1260), (669), (1262),
(1264), (1266), (679), (1268), (1270), (1272), (689), (1274), (1276), (1278),
(699), (1280), (1282), (1284), (709), (1286), (1288), (1290), (719), (1292),
(1294), (1296), (1298), (1300), (1302), (1304), (1306), (1308), (1310), (1312),
(1314), (1316), (1318), (1320), (1322), (1324), (1326), (1328), (1330), (1332),
(1334), (1336), (1338), (1340), (1342), (1344), (1346), (1348), (1350), (1352),
(1354), (1356), (1358), (1360), (1362), (1364), (1366), (1368), (1370), (1372),
and (1374)

19. PROBLEM 36 FOR s = 100

Now we state the proposition:
(1378) value(((0,0) (11 — 9))~(1), 10) is the solution to Sierpinski’s problem
36 for 100. The theorem is a consequence of (5), (13), (12), and (14).
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Part XII — Primes in Arithmetic
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Summary. In this paper another twelve problems from W. Sierpinski’s
book “250 Problems in Elementary Number Theory” are formalized, using the
Mizar formalism, namely: 42, 43, 51, 5la, 57, 59, 72, 135, 136, and 153-155.
Significant amount of the work is devoted to arithmetic progressions.
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INTRODUCTION

This article contains solutions of selected problems from W. Sierpinski’s
book “250 Problems in Elementary Number Theory” [12] — the work outlined
in [8]. We make an extensive use of the general notion of arithmetic progression
developed previously in [2] and results on prime and composite numbers [7].

The preliminary part of the article contains the proof of Theorem 5 from
[11], p. 121 (credited to Cantor) stating that if n and r are natural numbers,
n > 1 and if n terms of the arithmetical progression m, m+r, ..., m+ (n—1)r
are odd prime numbers, then the difference r is divisible by every prime less
than n (see [1], vol. I, p. 425). It is used to solve Problem 72, that an increasing
arithmetic progression with ten terms, formed of primes, with the least possible
last term is the one with the first term 199 and difference 210.
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Problems 42, 43, 51, and 51a are taken from Section II (“Relatively prime
numbers” ), Problems 57, 59, and 72 are from Section III (“Arithmetic progres-
sions” ), the rest, i.e. Problems 135, 136 — from Section IV (“Prime and composite
numbers”).

Problem 42 is closely connected to polygonal numbers formalized in [3].

Problems 153-155, taken from Section V (“Diophantine equations”) deal
with the solution of the equation

y 2z
in positive integers x, y, and z, where k is equal to one, two, and three, respec-
tively. More general idea of the problem (open in [12]), about positive integer
solution of this equation with arbitrary natural k is discussed quite recently in
[13].

Proofs of other problems are straightforward formalizations of solutions gi-
ven in the book, by means of available development of number theory in Mizar
[], [5], using ellipsis [6] extensively, looking forward for more advanced auto-
matization of arithmetical calculations [9].

1. PRELIMINARIES

Now we state the proposition:

(1) Let us consider objects x1, x2, T3, T4, T5, Tg, T7, T8, L9, T10-
Then {.1‘1, T2y, X3,L4,T5, L6, L7, L8, LY, .21?10} =
{xl, T9,x3,T4, 1‘5} U {.%'6, T7,T8,T9, 3310}.

Let m be a composite natural number and n be a non zero natural number.
Let us observe that m-n is composite. Let m, n be non zero, non trivial natural
numbers. Observe that m-n is composite. Let r be a real number. Let us observe
that 72 is non negative.

Let k£ be a natural number and n be a non zero, non trivial natural number.
Let us observe that k + n is non trivial and non zero and k + 1 is non zero and
k + 2 is non trivial and non zero and k + 3 is non trivial and non zero. Now we
state the propositions:

(2) Let us consider a natural number n. Suppose n mod 11 = 1 and n mod
2 =1. Then n mod 22 = 1.

(3) Let us consider natural numbers m, n, r. Suppose n > 1 and for every
natural number ¢ such that 0 < ¢ < n holds (ArProg(m,r))(i) is odd and
prime. Let us consider a prime number p. If p < n, then p | r.
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2. PROBLEM 42

Now we state the proposition:

(4) Let us consider natural numbers a, m, n. If a and m are relatively prime
and n | a, then n and m are relatively prime.

Let us consider a natural number a. Now we state the propositions:

(5) aand 2-a+ 1 are relatively prime.
(6) aand 6-a+ 1 are relatively prime.
(7) aand 3-a+ 1 are relatively prime.
(8) Let us consider an increasing finite sequence f of elements of N, and

a natural number x. Suppose for every natural number ¢ such that ¢ €
dom f holds f(i) < z. Then f ™ () is increasing.

ProOOF: Consider k being a natural number such that dom f = Seg k. Set
fa = f~ (x). For every natural numbers m, n such that m, n € dom fy
and m < n holds fa(m) < fa(n). O

Let us consider a natural number n. Now we state the propositions:

(9) Segl+—— n is an increasing finite sequence of elements of N.
PRrROOF: Set f = Seg1 —— n. For every natural numbers m, n such that
m, n € dom f and m < n holds f(m) < f(n). O

(10) There exists an increasing, non-empty finite sequence f of elements of N
such that

(i) dom f = Seg(n + 1), and

(ii) for every natural number i such that ¢ € dom f holds f() is triangu-
lar, and

(iii) f is with all coprime terms.

PROOF: Define P[natural number| = there exists an increasing, non-empty
finite sequence f of elements of N such that dom f = Seg($; + 1) and for
every natural number ¢ such that ¢ € dom f holds f(i) is triangular and
f is with all coprime terms. P[0]. For every natural number k such that
P[k] holds P[k + 1]. For every natural number n, P[n].

Consider f being an increasing, non-empty finite sequence of elements
of N such that dom f = Seg(n + 1) and for every natural number i such
that i € dom f holds f(4) is triangular and f is with all coprime terms. [J



280 ADAM GRABOWSKI
3. PROBLEM 43

Let n be a natural number. The functor Tetrahedron(n) yielding a natural
number is defined by the term

(Def. 1) mlndl)(nt2)
We say that n is tetrahedral if and only if
(Def. 2) there exists a natural number k such that n = Tetrahedron(k).
Now we state the proposition:
(11) Let us consider a natural number n. Then there exists an increasing,
non-empty finite sequence f of elements of N such that
(i) dom 