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Summary. The article concerns about formalizing multivariable formal
power series and polynomials [3] in one variable in terms of “bag” (as described
in detail in [9]), the same notion as multiset over a finite set, in the Mizar system
[1], [2]. Polynomial rings and ring of formal power series, both in one variable,
have been formalized in [6], [5] respectively, and elements of these rings are re-
presented by infinite sequences of scalars. On the other hand, formalization of
a multivariate polynomial requires extra techniques of using “bag” to represent
monomials of variables, and polynomials are formalized as a function from bags
of variables to the scalar ring. This means the way of construction of the rings
are different between single variable and multi variables case (which implies some
tedious constructions, e.g. in the case of ten variables in [8], or generally in the
problem of prime representing polynomial [7]). Introducing bag-based construc-
tion to one variable polynomial ring provides straight way to apply mathematical
induction to polynomial rings with respect to the number of variables. Another
consequence from the article, a polynomial ring is a subring of an algebra [4] over
the same scalar ring, namely a corresponding formal power series. A sketch of
actual formalization of the article is consists of the following four steps:

1. translation between Bags 1 (the set of all bags of a singleton) and N;

2. formalization of a bag-based formal power series in multivariable case over
a commutative ring denoted by Formal-Series(n,R);

3. formalization of a polynomial ring in one variable by restricting one variable
case denoted by Polynom-Ring(1, R). A formal proof of the fact that
polynomial rings are a subring of Formal-Series(n,R), that is R-Algebra,
is included as well;

4. formalization of a ring isomorphism to the existing polynomial ring in one
variable given by sequence: Polynom-Ring(1, R)

∼−→ Polynom-Ring R.
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1. Preliminaries

From now on o, o1, o2 denote objects, n denotes an ordinal number, R, L
denote non degenerated commutative rings, and b denotes a bag of 1.

Let us consider a sequence f of R. Now we state the propositions:

(1) Support f = ∅ if and only if f = 0.R.

(2) If Support f is finite, then f is a finite-Support sequence of R. The
theorem is a consequence of (1).

(3) If f is a finite-Support sequence of R, then Support f is finite.

Let us consider a bag b of 1. Now we state the propositions:

(4) Translation Bags 1 notation to NAT:

(i) dom b = {0}, and

(ii) rng b = {b(0)}.
(5) b = 1 7−→ b(0).
Proof: For every o such that o ∈ dom b holds b(o) = (1 7−→ b(0))(o). �

Let us consider bags b1, b2 of 1. Now we state the propositions:

(6) b1 + b2 = 1 7−→ b1(0) + b2(0).
Proof: dom(b1 +b2) = {0}. For every object x such that x ∈ dom(b1 +b2)
holds (b1 + b2)(x) = (1 7−→ b1(0) + b2(0))(x). �

(7) b1 −′ b2 = 1 7−→ b1(0)−′ b2(0).
Proof: dom(b1−′b2) = {0}. For every object x such that x ∈ dom(b1−′b2)
holds (b1 −′ b2)(x) = (1 7−→ b1(0)−′ b2(0))(x). �

(8) b1(0) ¬ b2(0) if and only if b1 | b2.
Proof: If b1(0) ¬ b2(0), then b1 | b2. �

(9) Let us consider an ordinal number n. Then BagOrdern linearly orders
Bagsn.

The functor NBag1 yielding a function from N into Bags 1 is defined by

(Def. 1) for every element m of N, it(m) = 1 7−→ m.

The functor BagN1 yielding a function from Bags 1 into N is defined by

(Def. 2) for every element b of Bags 1, it(b) = b(0).

Now we state the propositions:

(10) (BagN1) · (NBag1) = idN.
Proof: For every o such that o ∈ dom((BagN1)·(NBag1)) holds ((BagN1)·
(NBag1))(o) = (idN)(o). �

(11) (NBag1) · (BagN1) = idBags 1.
Proof: For every o such that o ∈ dom((NBag1)·(BagN1)) holds ((NBag1)·
(BagN1))(o) = (idBags 1)(o). �
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One can check that NBag1 is one-to-one and onto and BagN1 is one-to-one
and onto. Now we state the proposition:

(12) Let us consider bags b1, b2 of 1. Then

(i) b2 ∈ rng divisors b1 iff b2(0) ¬ b1(0), and

(ii) b2 ∈ rng divisors b1 iff b2 | b1.

The theorem is a consequence of (9) and (8).

Let us consider a bag b of 1. Now we state the propositions:

(13) rng divisors b = {x, where x is a bag of 1 : x(0) ¬ b(0)}. The theorem is
a consequence of (12).

(14) rng(NBag1 �Zb(0)+1) = {x, where x is a bag of 1 : x(0) ¬ b(0)}.
Proof: For every o such that o ∈ rng(NBag1 �Zb(0)+1) holds o ∈ {x, where
x is a bag of 1 : x(0) ¬ b(0)}. For every o such that o ∈ {x, where x is
a bag of 1 : x(0) ¬ b(0)} holds o ∈ rng(NBag1 �Zb(0)+1). �

(15) len divisors b = b(0) + 1. The theorem is a consequence of (14) and (13).

2. Natural Number vs. Bag of Singleton

Let n be an ordinal number. Let us consider L. The functor Formal-Series(n,
L) yielding a strict, non empty algebra structure over L is defined by

(Def. 3) for every set x, x ∈ the carrier of it iff x is a series of n, L and for every
elements x, y of it and for every series p, q of n, L such that x = p and
y = q holds x + y = p + q and for every elements x, y of it and for every
series p, q of n, L such that x = p and y = q holds x · y = p ∗ q and for
every element a of L and for every element x of it and for every series p of
n, L such that x = p holds a · x = a · p and 0it = 0nL and 1it = 1 (n,L).

Let us observe that Formal-Series(n,L) is Abelian, add-associative, right ze-
roed, right complementable, commutative, and associative and Formal-Series(n,
L) is well unital and right distributive.

Now we state the proposition:

(16) Let us consider an ordinal number n, L, an element a of L, and series p,
q of n, L. Then a · (p+ q) = a · p+ a · q.
Proof: For every element i of Bagsn, (a · (p+ q))(i) = (a · p+ a · q)(i). �

Let us consider an ordinal number n, L, elements a, b of L, and a series p of
n, L. Now we state the propositions:

(17) (a+ b) · p = a · p+ b · p.
Proof: For every element i of Bagsn, ((a+ b) · p)(i) = (a · p+ b · p)(i). �

(18) (a · b) · p = a · (b · p).
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(19) Let us consider an ordinal number n, L, and a series p of n, L. Then
1L · p = p.

Let n be an ordinal number. Let us consider L. One can verify that Formal-Ser-
ies(n,L) is vector distributive, scalar distributive, scalar associative, and scalar
unital. Now we state the proposition:

(20) Let us consider an ordinal number n, and L. Then Formal-Series(n,L)
is mix-associative.
Proof: For every element a of L and for every elements x, y of Formal-Ser-
ies(n,L), a · (x · y) = (a · x) · y. �

Let n be an ordinal number. Let us consider L. Let us observe that Formal-Ser-
ies(n,L) is mix-associative.

3. Constructing R-Algebra of Multivariate Formal Power Series

Now we state the proposition:

(21) Polynom-Ring(n,R) is a subring of Formal-Series(n,R).
Proof: Set P2 = Polynom-Ring(n,R). Set F2 = Formal-Series(n,R).
If o ∈ the carrier of P2, then o ∈ the carrier of F2. The addition of
P2 = (the addition of F2) � (the carrier of P2). The multiplication of
P2 = (the multiplication of F2) � (the carrier of P2). �

Let us consider R. Now we state the propositions:

(22) (01R) · (NBag1) = 0.R.
Proof: For every o such that o ∈ dom((01R) · (NBag1)) holds ((01R) ·
(NBag1))(o) = (0.R)(o). �

(23) (01R+· (EmptyBag 1, 1R)) · (NBag1) = 0.R+· (0, 1R).
Proof: For every o such that o ∈ dom(0.R +· (0, 1R)) holds ((01R +·
(EmptyBag 1, 1R)) · (NBag1))(o) = (0.R+· (0, 1R))(o). �

(24) (01R+· (1 7−→ 1, 1R)) · (NBag1) = 0.R+· (1, 1R).
Proof: For every o such that o ∈ dom(0.R+·(1, 1R)) holds ((01R+·(1 7−→
1, 1R)) · (NBag1))(o) = (0.R+· (1, 1R))(o). �

(25) Let us consider a bag b of 1. Then

(i) SgmX(BagOrder 1, rng divisors b) = XFS2FS(NBag1 �Zb(0)+1), and

(ii) divisors b = XFS2FS(NBag1 �Zb(0)+1).

Proof: Set F = NBag1 �Zb(0)+1. For every natural numbers n, m such
that n, m ∈ dom(XFS2FS(F )) and n < m holds (XFS2FS(F ))/n 6=
(XFS2FS(F ))/m and 〈〈(XFS2FS(F ))/n, (XFS2FS(F ))/m〉〉 ∈ BagOrder 1.
Reconsider S = rng divisors b as a non empty, finite subset of Bags 1. For
every bag p of 1, p ∈ S iff p | b. �
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4. Constructing Isomorphism from Formal-Series(1, R) to
Formal-Series R

Let us considerR. The functor BSFSeries(R) yielding a function from Formal-
Series(1, R) into Formal-SeriesR is defined by

(Def. 4) for every object x such that x ∈ the carrier of Formal-Series(1, R) there
exists a series x1 of 1, R such that x1 = x and it(x) = x1 · (NBag1).

Let us observe that BSFSeries(R) is one-to-one and onto. Now we state the
propositions:

(26) Let us consider a ring R, and series f , g of 1, R. Then (f+g) ·(NBag1) =
f · (NBag1) + g · (NBag1).
Proof: For every o such that o ∈ N holds ((f + g) · (NBag1))(o) =
(f · (NBag1) + g · (NBag1))(o). �

(27) Let us consider elements f , g of Formal-Series(1, R). Then (BSFSeries(R))
(f + g) = (BSFSeries(R))(f) + (BSFSeries(R))(g). The theorem is a con-
sequence of (26).

(28) Let us consider series f , g of 1, R. Then (f ∗g) · (NBag1) = f · (NBag1)∗
g · (NBag1).
Proof: For every o such that o ∈ N holds ((f ∗ g) · (NBag1))(o) = (f ·
(NBag1) ∗ g · (NBag1))(o). �

(29) Let us consider elements f , g of Formal-Series(1, R). Then (BSFSeries(R))
(f · g) = (BSFSeries(R))(f) · (BSFSeries(R))(g). The theorem is a conse-
quence of (28).

(30) (BSFSeries(R))(1Formal-Series(1,R)) = 1Formal-SeriesR. The theorem is a con-
sequence of (23).

Let us consider R. Let us note that BSFSeries(R) is additive, multiplicative,
and unity-preserving. Now we state the proposition:

(31) (i) BSFSeries(R) inherits ring isomorphism, and

(ii) Formal-SeriesR is (Formal-Series(1, R))-isomorphic.

Let us consider R. One can verify that Formal-SeriesR is (Formal-Series(1,
R))-homomorphic, (Formal-Series(1, R))-monomorphic, and (Formal-Series(1,
R))-isomorphic.

The functor SBFSeries(R) yielding a function from Formal-SeriesR into
Formal-Series(1, R) is defined by

(Def. 5) for every object x such that x ∈ the carrier of Formal-SeriesR there
exists a sequence x1 of R such that x1 = x and it(x) = x1 · (BagN1).

Now we state the proposition:
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(32) (BSFSeries(R))−1 = SBFSeries(R).
Proof: For every o such that o ∈ dom((SBFSeries(R)) · (BSFSeries(R)))
holds ((SBFSeries(R)) · (BSFSeries(R)))(o) = (iddom(BSFSeries(R)))(o). �

Let us consider R. One can check that SBFSeries(R) is one-to-one and onto.
Now we state the proposition:

(33) SBFSeries(R) inherits ring homomorphism.
Proof: Set P = BSFSeries(R). Set F1 = Formal-Series(1, R). Set F2 =
Formal-SeriesR. For every elements x, y of F2, (P−1)(x+y) = (P−1)(x)+
(P−1)(y) and (P−1)(x · y) = (P−1)(x) · (P−1)(y) and (P−1)(1F2) = 1F1 .
�

Let us consider R. One can check that SBFSeries(R) is additive, multiplica-
tive, and unity-preserving. Now we state the proposition:

(34) (i) SBFSeries(R) inherits ring isomorphism, and

(ii) Formal-Series(1, R) is (Formal-SeriesR)-isomorphic.

Let us considerR. Let us observe that Formal-Series(1, R) is (Formal-SeriesR)-
homomorphic, (Formal-SeriesR)-monomorphic, and (Formal-SeriesR)-isomorphic.

5. Constructing Isomorphism from Polynom-Ring(1, R) to
Polynom-Ring R

Now we state the propositions:

(35) Polynom-RingR is a subring of Formal-SeriesR.

(36) Let us consider sequences f1, g1 of R. Then (f1 + g1) · (BagN1) = f1 ·
(BagN1) + g1 · (BagN1).
Proof: For every o such that o ∈ dom((f1 + g1) · (BagN1)) holds ((f1 +
g1) · (BagN1))(o) = (f1 · (BagN1) + g1 · (BagN1))(o). �

(37) Let us consider a sequence f of the carrier of R. Then f = f · (BagN1) ·
(NBag1). The theorem is a consequence of (10).

(38) Let us consider a series f of 1, R. Then f = f · (NBag1) · (BagN1). The
theorem is a consequence of (11).

(39) Let us consider a sequence f of R.
Then (NBag1)◦(Support f) = Support f · (BagN1).
Proof: For every o, o ∈ (NBag1)◦(Support f) iff o ∈ Support f · (BagN1).
�

(40) Let us consider a subset B of N. Then B = (NBag1)◦B .

(41) Let us consider a sequence f ofR. Then Support f = Support f · (BagN1).
The theorem is a consequence of (40) and (39).
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(42) Let us consider a series f of 1,R. Then (BagN1)◦(Support f) = Support f ·
(NBag1).
Proof: For every o, o ∈ (BagN1)◦(Support f) iff o ∈ Support f · (NBag1).
�

(43) Let us consider a subset B of Bags 1. Then B = (BagN1)◦B .

(44) Let us consider a series f of 1,R. Then Support f = Support f · (NBag1).
The theorem is a consequence of (43) and (42).

Let us consider R. The functor BSPoly(R) yielding a function from Polynom-
Ring(1, R) into Polynom-RingR is defined by the term

(Def. 6) BSFSeries(R)�ΩPolynom-Ring(1,R).

Now we state the proposition:

(45) BSPoly(R) is one-to-one and onto.
Proof: BSPoly(R) is onto. �

Let us consider R. Let us observe that BSPoly(R) is one-to-one and onto.
Let us consider elements p, q of Polynom-Ring(1, R) and elements f , g of

Formal-Series(1, R). Now we state the propositions:

(46) If p = f and q = g, then p+ q = f + g.

(47) If p = f and q = g, then p · q = f · g.

Let us consider elements f , g of Polynom-Ring(1, R). Now we state the
propositions:

(48) (BSPoly(R))(f + g) = (BSPoly(R))(f) + (BSPoly(R))(g). The theorem
is a consequence of (35), (27), and (46).

(49) (BSPoly(R))(f · g) = (BSPoly(R))(f) · (BSPoly(R))(g). The theorem is
a consequence of (35), (29), and (47).

(50) (BSPoly(R))(1Polynom-Ring(1,R)) = 1Polynom-RingR. The theorem is a con-
sequence of (35) and (30).

Let us consider R. Note that BSPoly(R) is additive, multiplicative, and
unity-preserving. Now we state the proposition:

(51) (i) BSPoly(R) inherits ring isomorphism, and

(ii) Polynom-RingR is (Polynom-Ring(1, R))-isomorphic.

Let us consider R. Let us observe that Polynom-RingR is (Polynom-Ring(1,
R))-homomorphic, (Polynom-Ring(1, R))-monomorphic, and (Polynom-Ring(1,
R))-isomorphic.
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2236-2 Kamimakuwa, Motosu, Gifu, Japan

Summary. This article generalizes the differential method on intervals,
using the Mizar system [2], [3], [12]. Differentiation of real one-variable functions
is introduced in Mizar [13], along standard lines (for interesting survey of forma-
lizations of real analysis in various proof-assistants like ACL2 [11], Isabelle/HOL
[10], Coq [4], see [5]), but the differentiable interval is restricted to open intervals.
However, when considering the relationship with integration [9], since integration
is an operation on a closed interval, it would be convenient for differentiation to
be able to handle derivates on a closed interval as well. Regarding differentia-
bility on a closed interval, the right and left differentiability have already been
formalized [6], but they are the derivatives at the endpoints of an interval and
not demonstrated as a differentiation over intervals.

Therefore, in this paper, based on these results, although it is limited to real
one-variable functions, we formalize the differentiation on arbitrary intervals and
summarize them as various basic propositions. In particular, the chain rule [1]
is an important formula in relation to differentiation and integration, extending
recent formalized results [7], [8] in the latter field of research.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider open subsets A, B of R, and partial functions f , g from
R to R. Suppose f is differentiable on A and rng(f�A) ⊆ B and g is
differentiable on B. Then
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(i) g · f is differentiable on A, and

(ii) (g · f)′�A = g′�B · f · f ′�A.

(2) Let us consider an interval I. Then

(i) ]inf I, sup I[ is an open subset of R, and

(ii) ]inf I, sup I[ ⊆ I.

(3) Let us consider an interval I, and a real number x. Suppose x ∈ I and
x 6= inf I and x 6= sup I. Then x ∈ ]inf I, sup I[.

Let us consider a partial function f from R to R, an interval I, and a real
number x. Now we state the propositions:

(4) If f is right differentiable in x and x ∈ I and x 6= sup I, then f�I is right
differentiable in x.
Proof: Consider r being a real number such that r > 0 and [x, x+ r] ⊆
dom f . For every 0-convergent, non-zero sequence h of real numbers and
for every constant sequence c of real numbers such that rng c = {x} and
rng(h + c) ⊆ dom(f�I) and for every natural number n, h(n) > 0 holds
h−1 · ((f�I∗(h+ c))− (f�I∗c)) is convergent. �

(5) If f is left differentiable in x and x ∈ I and x 6= inf I, then f�I is left
differentiable in x.
Proof: Consider r being a real number such that r > 0 and [x − r, x] ⊆
dom f . For every 0-convergent, non-zero sequence h of real numbers and
for every constant sequence c of real numbers such that rng c = {x} and
rng(h + c) ⊆ dom(f�I) and for every natural number n, h(n) < 0 holds
h−1 · ((f�I∗(h+ c))− (f�I∗c)) is convergent. �

(6) Let us consider a setX, and partial functions f1, f2 fromX to R. Suppose
dom f1 = dom f2. Then

(i) f1 + f2 − f2 = f1, and

(ii) f1 − f2 + f2 = f1.

2. Differentiation on Intervals

Let f be a partial function from R to R and I be a non empty interval. We
say that f is differentiable on interval I if and only if

(Def. 1) I ⊆ dom f and inf I < sup I and if inf I ∈ I, then f is right differentiable
in inf I and if sup I ∈ I, then f is left differentiable in sup I and f is
differentiable on ]inf I, sup I[.

Let I be an interval, non empty subset of R. Assume f is differentiable on
interval I. The functor f ′I yielding a partial function from R to R is defined by
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(Def. 2) dom it = I and for every real number x such that x ∈ I holds if x = inf I,
then it(x) = f ′+(x) and if x = sup I, then it(x) = f ′−(x) and if x 6= inf I
and x 6= sup I, then it(x) = f ′(x).

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(7) If a < b and f is differentiable on interval [a, b], then f is differentiable
on ]a, b[.

(8) Suppose a ¬ b and f is differentiable on interval [a, b]. Then

(i) f ′[a,b](a) = f ′+(a), and

(ii) f ′[a,b](b) = f ′−(b), and

(iii) for every real number x such that x ∈ ]a, b[ holds f ′[a,b](x) = f ′(x).

Let us consider a partial function f from R to R, an interval I, and a real
number x. Now we state the propositions:

(9) If f�I is right differentiable in x, then f is right differentiable in x and
(f�I)′+(x) = f ′+(x).
Proof: Consider r being a real number such that r > 0 and [x, x+ r] ⊆
dom(f�I). For every 0-convergent, non-zero sequence h of real numbers
and for every constant sequence c of real numbers such that rng c = {x}
and rng(h + c) ⊆ dom f and for every natural number n, h(n) > 0 holds
h−1 ·((f∗(h+c))−(f∗c)) is convergent and lim(h−1 ·((f∗(h+c))−(f∗c))) =
(f�I)′+(x). �

(10) If f�I is left differentiable in x, then f is left differentiable in x and
(f�I)′−(x) = f ′−(x).
Proof: Consider r being a real number such that r > 0 and [x − r, x] ⊆
dom(f�I). For every 0-convergent, non-zero sequence h of real numbers
and for every constant sequence c of real numbers such that rng c = {x}
and rng(h + c) ⊆ dom f and for every natural number n, h(n) < 0 holds
h−1 ·((f∗(h+c))−(f∗c)) is convergent and lim(h−1 ·((f∗(h+c))−(f∗c))) =
(f�I)′−(x). �

Let us consider a partial function f from R to R and a non empty interval
I. Now we state the propositions:

(11) f is differentiable on interval I if and only if I ⊆ dom f and for every real
number x such that x ∈ I holds if x = inf I, then f�I is right differentiable
in x and if x = sup I, then f�I is left differentiable in x and if x ∈
]inf I, sup I[, then f is differentiable in x.
Proof: If inf I ∈ I, then f is right differentiable in inf I. If sup I ∈ I, then
f is left differentiable in sup I. ]inf I, sup I[ ⊆ I. For every real number x
such that x ∈ ]inf I, sup I[ holds f�]inf I, sup I[ is differentiable in x. �
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(12) If I is open interval, then f is differentiable on I iff f is differentiable on
interval I.

Let us consider a partial function f from R to R and real numbers x0, r.
Now we state the propositions:

(13) If f is right differentiable in x0 and rng f = {r}, then f ′+(x0) = 0.
Proof: For every non-zero, 0-convergent sequence h of real numbers and
for every constant sequence c of real numbers such that rng c = {x0}
and rng(h + c) ⊆ dom f and for every natural number n, h(n) > 0 holds
h−1 ·((f∗(h+c))−(f∗c)) is convergent and lim(h−1 ·((f∗(h+c))−(f∗c))) =
0. �

(14) If f is left differentiable in x0 and rng f = {r}, then f ′−(x0) = 0.
Proof: For every non-zero, 0-convergent sequence h of real numbers and
for every constant sequence c of real numbers such that rng c = {x0}
and rng(h + c) ⊆ dom f and for every natural number n, h(n) < 0 holds
h−1 ·((f∗(h+c))−(f∗c)) is convergent and lim(h−1 ·((f∗(h+c))−(f∗c))) =
0. �

(15) Let us consider a partial function f from R to R, and a non empty
interval I. Suppose I ⊆ dom f and inf I < sup I and there exists a real
number r such that rng f = {r}. Then

(i) f is differentiable on interval I, and

(ii) for every real number x such that x ∈ I holds f ′I(x) = 0.

Proof: Consider r being a real number such that rng f = {r}. Set
J = ]inf I, sup I[. For every real number x such that x ∈ J holds f�J
is differentiable in x. For every real number x such that x ∈ I holds
f ′I(x) = 0. �

Let us consider a partial function f from R to R and a real number x0. Now
we state the propositions:

(16) If dom f ⊆ ]−∞, x0[ and f is left continuous in x0, then f is continuous
in x0.

(17) If dom f ⊆ ]x0,+∞[ and f is right continuous in x0, then f is continuous
in x0.

3. Fundamental Properties

Now we state the proposition:

(18) Let us consider a partial function f from R to R, and a non empty
interval I. Suppose I ⊆ dom f and inf I < sup I and f�I = idI . Then

(i) f is differentiable on interval I, and
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(ii) for every real number x such that x ∈ I holds f ′I(x) = 1.

Proof: For every set x such that x ∈ I holds f(x) = x. Set J =
]inf I, sup I[. For every set x such that x ∈ J holds (f�J)(x) = x. For
every real number x such that x ∈ J holds f�J is differentiable in x. For
every real number x such that x ∈ I holds f ′I(x) = 1. �

Let us consider partial functions f , g from R to R and a non empty interval
I. Now we state the propositions:

(19) Suppose I ⊆ dom(f + g) and f is differentiable on interval I and g is
differentiable on interval I. Then

(i) f + g is differentiable on interval I, and

(ii) (f + g)′I = f ′I + g′I , and

(iii) for every real number x such that x ∈ I holds (f + g)′I(x) = f ′I(x) +
g′I(x).

Proof: Set J = ]inf I, sup I[. For every real number x such that x ∈ J
holds (f + g)�J is differentiable in x. For every element x of R such that
x ∈ dom(f + g)′I holds (f + g)′I(x) = (f ′I + g′I)(x). �

(20) Suppose I ⊆ dom(f − g) and f is differentiable on interval I and g is
differentiable on interval I. Then

(i) f − g is differentiable on interval I, and

(ii) (f − g)′I = f ′I − g′I , and

(iii) for every real number x such that x ∈ I holds (f − g)′I(x) = f ′I(x)−
g′I(x).

Proof: Reconsider J = ]inf I, sup I[ as an open subset of R. J ⊆ I. For
every real number x such that x ∈ J holds (f − g)�J is differentiable in x.
For every element x of R such that x ∈ dom(f − g)′I holds (f − g)′I(x) =
(f ′I − g′I)(x). �

Let us consider a partial function f from R to R and real numbers x0, r.
Now we state the propositions:

(21) If f is right differentiable in x0, then r ·f is right differentiable in x0 and
(r · f)′+(x0) = r · f ′+(x0).

(22) If f is left differentiable in x0, then r · f is left differentiable in x0 and
(r · f)′−(x0) = r · f ′−(x0).

(23) Let us consider a partial function f from R to R, a non empty interval
I, and a real number r. Suppose f is differentiable on interval I. Then

(i) r · f is differentiable on interval I, and

(ii) (r · f)′I = r · f ′I , and
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(iii) for every real number x such that x ∈ I holds (r · f)′I(x) = r · f ′I(x).

Proof: For every real number x such that x ∈ ]inf I, sup I[ holds (r ·
f)�]inf I, sup I[ is differentiable in x. For every element x of R such that
x ∈ dom(r · f)′I holds (r · f)′I(x) = (r · f ′I)(x). �

Let us consider partial functions f , g from R to R and a non empty interval
I. Now we state the propositions:

(24) Suppose f is differentiable on interval I and g is differentiable on interval
I. Then

(i) f · g is differentiable on interval I, and

(ii) (f · g)′I = g · f ′I + f · g′I , and

(iii) for every real number x such that x ∈ I holds (f · g)′I(x) = g(x) ·
f ′I(x) + f(x) · g′I(x).

Proof: Reconsider J = ]inf I, sup I[ as an open subset of R. J ⊆ I.
For every element x of R such that x ∈ dom(f · g)′I holds (f · g)′I(x) =
(g · f ′I + f · g′I)(x). �

(25) Suppose I ⊆ dom(fg ) and f is differentiable on interval I and g is diffe-
rentiable on interval I. Then

(i) f
g is differentiable on interval I, and

(ii) (fg )′I = f ′I ·g−g
′
I ·f

g2
, and

(iii) for every real number x such that x ∈ I holds (fg )′I(x) =
f ′I(x)·g(x)−g′I(x)·f(x)

g(x)2 .

Proof: Reconsider J = ]inf I, sup I[ as an open subset of R. J ⊆ I. For
every set x such that x ∈ I holds g(x) 6= 0. For every element x of R such

that x ∈ dom(fg )′I holds (fg )′I(x) = (f
′
I ·g−g

′
I ·f

g2
)(x). �

4. One-Sided Continuity

Now we state the proposition:

(26) Let us consider a partial function f from R to R, and a real number x0.
Suppose x0 ∈ dom f and f is continuous in x0. Then f is left continuous
in x0 and right continuous in x0.

Let us consider a real number x0 and a partial function f from R to R. Now
we state the propositions:
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(27) f is left continuous in x0 if and only if x0 ∈ dom f and for every real
number e such that 0 < e there exists a real number d such that 0 < d

and for every real number x such that x ∈ dom f and x0 − d < x < x0

holds |f(x)− f(x0)| < e.

(28) f is right continuous in x0 if and only if x0 ∈ dom f and for every real
number e such that 0 < e there exists a real number d such that 0 < d

and for every real number x such that x ∈ dom f and x0 < x < x0 + d

holds |f(x)− f(x0)| < e.

(29) Let us consider a partial function f from R to R, and a real number x0.
Suppose f is left continuous in x0 and right continuous in x0. Then f is
continuous in x0.
Proof: For every real number e such that 0 < e there exists a real number
d such that 0 < d and for every real number x such that x ∈ dom f and
|x− x0| < d holds |f(x)− f(x0)| < e. �

Let us consider a real number x0 and a partial function f from R to R. Now
we state the propositions:

(30) Suppose f is left continuous in x0 and for every real number r such that
r < x0 there exists a real number g such that r < g < x0 and g ∈ dom f .
Then

(i) f is left convergent in x0, and

(ii) limx0− f = f(x0).

(31) Suppose f is right continuous in x0 and for every real number r such
that x0 < r there exists a real number g such that g < r and x0 < g and
g ∈ dom f . Then

(i) f is right convergent in x0, and

(ii) limx0+ f = f(x0).

(32) Let us consider a partial function f from R to R, and a real number x0.
Suppose x0 ∈ dom f and f is right convergent in x0 and limx0+ f = f(x0).
Then f is right continuous in x0.

(33) Let us consider a real number x0, and a partial function f from R to R.
Suppose x0 ∈ dom f and f is left convergent in x0 and limx0− f = f(x0).
Then f is left continuous in x0.

(34) Let us consider a partial function f from R to R, and a real number x0.
Suppose f is convergent in x0 and limx0f = f(x0). Then f is continuous
in x0.
Proof: For every real number e such that 0 < e there exists a real number
d such that 0 < d and for every real number x such that x ∈ dom f and
|x− x0| < d holds |f(x)− f(x0)| < e. �
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From now on h denotes a non-zero, 0-convergent sequence of real numbers
and c denotes a constant sequence of real numbers.

Let us consider a partial function f from R to R and a real number x0. Now
we state the propositions:

(35) If f is right continuous in x0, then f�[x0,+∞[ is continuous in x0.
Proof: x0 ∈ dom f and for every real number e such that 0 < e there
exists a real number d such that 0 < d and for every real number x such
that x ∈ dom f and x0 < x < x0 + d holds |f(x) − f(x0)| < e. Set
f1 = f�[x0,+∞[. For every real number e such that 0 < e there exists
a real number d such that 0 < d and for every real number x such that
x ∈ dom f1 and |x− x0| < d holds |f1(x)− f1(x0)| < e. �

(36) If f is left continuous in x0, then f�]−∞, x0] is continuous in x0.
Proof: x0 ∈ dom f and for every real number e such that 0 < e there
exists a real number d such that 0 < d and for every real number x such
that x ∈ dom f and x0 − d < x < x0 holds |f(x) − f(x0)| < e. Set
f1 = f�]−∞, x0]. For every real number e such that 0 < e there exists
a real number d such that 0 < d and for every real number x such that
x ∈ dom f1 and |x− x0| < d holds |f1(x)− f1(x0)| < e. �

(37) Let us consider a partial function f from R to R, and a non empty
interval I. If f is differentiable on interval I, then f�I is continuous.
Proof: For every real number x such that x ∈ dom(f�I) holds f�I is
continuous in x. �

(38) Let us consider a partial function f from R to R, and non empty intervals
I, J . Suppose f is differentiable on interval I and J ⊆ I and inf J < sup J .
Then

(i) f is differentiable on interval J , and

(ii) for every real number x such that x ∈ J holds f ′I(x) = f ′J(x).

Proof: For every real number x such that x ∈ J holds if x = inf J ,
then f�J is right differentiable in x and if x = sup J , then f�J is left
differentiable in x and if x ∈ ]inf J, sup J [, then f is differentiable in x. For
every real number x such that x ∈ J holds f ′I(x) = f ′J(x). �

(39) Let us consider a partial function f from R to R, an open subset Z of
R, and a non empty interval I. Suppose I ⊆ Z and inf I < sup I and f is
differentiable on Z. Then f is differentiable on interval I.
Proof: For every real number x such that x ∈ I holds if x = inf I,
then f�I is right differentiable in x and if x = sup I, then f�I is left
differentiable in x and if x ∈ ]inf I, sup I[, then f is differentiable in x. �
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5. Chain Rule

From now on R, R1, R2 denote rests and L, L1, L2 denote linear functions.
Let us consider a real number x0 and partial functions f , g from R to R.

Now we state the propositions:

(40) Suppose f is right differentiable in x0 and g is differentiable in f(x0).
Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′(f(x0)) · f ′+(x0).

Proof: Consider r being a real number such that r > 0 and [x0, x0 + r] ⊆
dom(g · f). For every h and c such that rng c = {x0} and rng(h + c) ⊆
dom(g ·f) and for every natural number n, h(n) > 0 holds h−1 ·((g ·f∗(h+
c)) − (g · f∗c)) is convergent and lim(h−1 · ((g · f∗(h + c)) − (g · f∗c))) =
g′(f(x0)) · f ′+(x0). �

(41) Suppose f is left differentiable in x0 and g is differentiable in f(x0). Then

(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′(f(x0)) · f ′−(x0).

Proof: Consider r being a real number such that r > 0 and [x0− r, x0] ⊆
dom(g · f). For every h and c such that rng c = {x0} and rng(h + c) ⊆
dom(g ·f) and for every natural number n, h(n) < 0 holds h−1 ·((g ·f∗(h+
c)) − (g · f∗c)) is convergent and lim(h−1 · ((g · f∗(h + c)) − (g · f∗c))) =
g′(f(x0)) · f ′−(x0). �

(42) Suppose f is right differentiable in x0 and g is right differentiable in
f(x0) and for every real number r1 such that r1 > 0 there exists a real
number r0 such that r0 > 0 and [x0, x0 + r0] ⊆ dom([f(x0), f(x0) + r1]�f).
Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′+(f(x0)) · f ′+(x0).

Proof: Consider r1 being a real number such that r1 > 0 and [f(x0), f(x0)
+r1] ⊆ dom g. Consider r0 being a real number such that r0 > 0 and
[x0, x0 + r0] ⊆ dom([f(x0), f(x0) + r1]�f). For every h and c such that
rng c = {x0} and rng(h + c) ⊆ dom(g · f) and for every natural number
n, h(n) > 0 holds h−1 · ((g · f∗(h + c)) − (g · f∗c)) is convergent and
lim(h−1 · ((g · f∗(h+ c))− (g · f∗c))) = g′+(f(x0)) · f ′+(x0). �

(43) Suppose f is left differentiable in x0 and g is right differentiable in f(x0)
and for every real number r1 such that r1 > 0 there exists a real number
r0 such that r0 > 0 and [x0 − r0, x0] ⊆ dom([f(x0), f(x0) + r1]�f). Then
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(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′+(f(x0)) · f ′−(x0).

Proof: Consider r1 being a real number such that r1 > 0 and [f(x0), f(x0)
+r1] ⊆ dom g. Consider r0 being a real number such that r0 > 0 and
[x0 − r0, x0] ⊆ dom([f(x0), f(x0) + r1]�f). For every h and c such that
rng c = {x0} and rng(h + c) ⊆ dom(g · f) and for every natural number
n, h(n) < 0 holds h−1 · ((g · f∗(h + c)) − (g · f∗c)) is convergent and
lim(h−1 · ((g · f∗(h+ c))− (g · f∗c))) = g′+(f(x0)) · f ′−(x0). �

(44) Suppose f is differentiable in x0 and g is right differentiable in f(x0) and
for every real number r1 such that r1 > 0 there exists a real number r0

such that r0 > 0 and [x0− r0, x0 + r0] ⊆ dom([f(x0), f(x0) + r1]�f). Then

(i) g · f is differentiable in x0, and

(ii) (g · f)′(x0) = g′+(f(x0)) · f ′(x0).

The theorem is a consequence of (42) and (43).

(45) Suppose f is right differentiable in x0 and g is left differentiable in f(x0)
and for every real number r1 such that r1 > 0 there exists a real number
r0 such that r0 > 0 and [x0, x0 + r0] ⊆ dom([f(x0)− r1, f(x0)]�f). Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′−(f(x0)) · f ′+(x0).

Proof: Consider r1 being a real number such that r1 > 0 and [f(x0) −
r1, f(x0)] ⊆ dom g. Consider r0 being a real number such that r0 > 0 and
[x0, x0 + r0] ⊆ dom([f(x0) − r1, f(x0)]�f). For every h and c such that
rng c = {x0} and rng(h + c) ⊆ dom(g · f) and for every natural number
n, h(n) > 0 holds h−1 · ((g · f∗(h + c)) − (g · f∗c)) is convergent and
lim(h−1 · ((g · f∗(h+ c))− (g · f∗c))) = g′−(f(x0)) · f ′+(x0). �

(46) Suppose f is left differentiable in x0 and g is left differentiable in f(x0)
and for every real number r1 such that r1 > 0 there exists a real number
r0 such that r0 > 0 and [x0 − r0, x0] ⊆ dom([f(x0)− r1, f(x0)]�f). Then

(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′−(f(x0)) · f ′−(x0).

Proof: Consider r1 being a real number such that r1 > 0 and [f(x0) −
r1, f(x0)] ⊆ dom g. Consider r0 being a real number such that r0 > 0 and
[x0 − r0, x0] ⊆ dom([f(x0) − r1, f(x0)]�f). For every h and c such that
rng c = {x0} and rng(h + c) ⊆ dom(g · f) and for every natural number
n, h(n) < 0 holds h−1 · ((g · f∗(h + c)) − (g · f∗c)) is convergent and
lim(h−1 · ((g · f∗(h+ c))− (g · f∗c))) = g′−(f(x0)) · f ′−(x0). �
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(47) Suppose f is differentiable in x0 and g is left differentiable in f(x0) and
for every real number r1 such that r1 > 0 there exists a real number r0

such that r0 > 0 and [x0− r0, x0 + r0] ⊆ dom([f(x0)− r1, f(x0)]�f). Then

(i) g · f is differentiable in x0, and

(ii) (g · f)′(x0) = g′−(f(x0)) · f ′(x0).

The theorem is a consequence of (45) and (46).

(48) Suppose f is right differentiable in x0 and g is right differentiable in
f(x0) and there exists a real number r such that r > 0 and f�[x0, x0 + r]
is non-decreasing. Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′+(f(x0)) · f ′+(x0).

Proof: Consider R being a real number such that R > 0 and f�[x0, x0+R]
is non-decreasing. x0 ∈ dom f . For every real number r1 such that r1 >

0 there exists a real number r0 such that r0 > 0 and [x0, x0 + r0] ⊆
dom([f(x0), f(x0) + r1]�f). �

(49) Suppose f is left differentiable in x0 and g is right differentiable in f(x0)
and there exists a real number r such that r > 0 and f�[x0 − r, x0] is
non-increasing. Then

(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′+(f(x0)) · f ′−(x0).

Proof: Consider R being a real number such that R > 0 and f�[x0−R, x0]
is non-increasing. x0 ∈ dom f . For every real number r1 such that r1 >

0 there exists a real number r0 such that r0 > 0 and [x0 − r0, x0] ⊆
dom([f(x0), f(x0) + r1]�f). �

(50) Suppose f is right differentiable in x0 and g is left differentiable in f(x0)
and there exists a real number r such that r > 0 and f�[x0, x0 + r] is
non-increasing. Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′−(f(x0)) · f ′+(x0).

Proof: Consider R being a real number such that R > 0 and f�[x0, x0+R]
is non-increasing. x0 ∈ dom f . For every real number r1 such that r1 >

0 there exists a real number r0 such that r0 > 0 and [x0, x0 + r0] ⊆
dom([f(x0)− r1, f(x0)]�f). �

(51) Suppose f is left differentiable in x0 and g is left differentiable in f(x0)
and there exists a real number r such that r > 0 and f�[x0 − r, x0] is
non-decreasing. Then
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(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′−(f(x0)) · f ′−(x0).

Proof: Consider R being a real number such that R > 0 and f�[x0−R, x0]
is non-decreasing. x0 ∈ dom f . For every real number r1 such that r1 >

0 there exists a real number r0 such that r0 > 0 and [x0 − r0, x0] ⊆
dom([f(x0)− r1, f(x0)]�f). �

(52) Chain rule:
Let us consider partial functions f , g from R to R, and non empty intervals
I, J . Suppose f is differentiable on interval I and g is differentiable on
interval J and f◦I ⊆ J . Then

(i) g · f is differentiable on interval I, and

(ii) (g · f)′I = g′J · f · f ′I .

The theorem is a consequence of (4), (5), (11), and (3).
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Summary. In this paper problems 48, 80, 87, 89, and 124 from [7] are for-
malized, using the Mizar formalism [1], [2], [4]. The work is natural continuation
of [5] and [3] as suggested in [6].

MSC: 11A41 03B35 68V20

Keywords: number theory; divisibility; primes

MML identifier: NUMBER07, version: 8.1.12 5.74.1441

1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i, j
denote integers, r denotes a real number, and p, p1, p2 denote prime numbers.

Now we state the propositions:

(1) gcd(m,m · n) = m.

(2) If m 6= 1, then m and m · n are not relatively prime.

(3) If i 6= −1 and i 6= 1 and i | j, then i - j + 1.

(4) If i 6= −1 and i 6= 1 and i | j, then i - j − 1.

(5) If i | j, then i and j + 1 are relatively prime.
Proof: For every integer m such that m | i and m | j + 1 holds m | 1 by
[8, (1)]. �

(6) If i | j, then i and j − 1 are relatively prime.
Proof: For every integer m such that m | i and m | j − 1 holds m | 1. �
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(7) If a+ b+ c is odd and a, b, c are mutually coprime, then a is odd and b
is odd and c is odd.

(8) (i) 4 · n mod 8 = 0, or

(ii) 4 · n mod 8 = 4.

(9) If n | 2, then n = 1 or n = 2.

(10) If n | 6, then n = 1 or n = 2 or n = 3 or n = 6.

(11) If n | 9, then n = 1 or n = 3 or n = 9.

(12) If n | 10, then n = 1 or n = 2 or n = 5 or n = 10.

(13) If n | 25, then n = 1 or n = 5 or n = 25.

(14) If n | 26, then n = 1 or n = 2 or n = 13 or n = 26.

(15) If n | 36, then n = 1 or n = 2 or n = 3 or n = 4 or n = 6 or n = 9
or n = 12 or n = 18 or n = 36.

(16) If n | 50, then n = 1 or n = 2 or n = 5 or n = 10 or n = 25 or n = 50.

(17) If n | 65, then n = 1 or n = 5 or n = 13 or n = 65.

(18) If n | 82, then n = 1 or n = 2 or n = 41 or n = 82.

(19) If n | 122, then n = 1 or n = 2 or n = 61 or n = 122.

(20) If n | 145, then n = 1 or n = 5 or n = 29 or n = 145.

(21) If n | 226, then n = 1 or n = 2 or n = 113 or n = 226.

(22) If n | 325, then n = 1 or n = 5 or n = 13 or n = 25 or n = 65 or n = 325.

(23) If n | 362, then n = 1 or n = 2 or n = 181 or n = 362.

(24) If n | 485, then n = 1 or n = 5 or n = 97 or n = 485.

(25) If n | 626, then n = 1 or n = 2 or n = 313 or n = 626.

(26) If m · n = p, then m = 1 and n = p or m = p and n = 1.

(27) If m · n = 10, then m = 1 and n = 10 or m = 2 and n = 5 or m = 5 and
n = 2 or m = 10 and n = 1. The theorem is a consequence of (12).

(28) If m · n = 25, then m = 1 and n = 25 or m = 5 and n = 5 or m = 25
and n = 1. The theorem is a consequence of (13).

(29) If m · n = 26, then m = 1 and n = 26 or m = 2 and n = 13 or m = 13
and n = 2 or m = 26 and n = 1. The theorem is a consequence of (14).

(30) If m · n = 50, then m = 1 and n = 50 or m = 2 and n = 25 or m = 5
and n = 10 or m = 10 and n = 5 or m = 25 and n = 2 or m = 50 and
n = 1. The theorem is a consequence of (16).

(31) If m · n = 65, then m = 1 and n = 65 or m = 5 and n = 13 or m = 13
and n = 5 or m = 65 and n = 1. The theorem is a consequence of (17).

(32) If m · n = 82, then m = 1 and n = 82 or m = 2 and n = 41 or m = 41
and n = 2 or m = 82 and n = 1. The theorem is a consequence of (18).
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(33) If m · n = 122, then m = 1 and n = 122 or m = 2 and n = 61 or m = 61
and n = 2 or m = 122 and n = 1. The theorem is a consequence of (19).

(34) If m · n = 145, then m = 1 and n = 145 or m = 5 and n = 29 or m = 29
and n = 5 or m = 145 and n = 1. The theorem is a consequence of (20).

(35) If m · n = 226, then m = 1 and n = 226 or m = 2 and n = 113 or
m = 113 and n = 2 or m = 226 and n = 1. The theorem is a consequence
of (21).

(36) If m · n = 325, then m = 1 and n = 325 or m = 5 and n = 65 or m = 13
and n = 25 or m = 25 and n = 13 or m = 65 and n = 5 or m = 325 and
n = 1. The theorem is a consequence of (22).

(37) If m · n = 362, then m = 1 and n = 362 or m = 2 and n = 181 or
m = 181 and n = 2 or m = 362 and n = 1. The theorem is a consequence
of (23).

(38) If m · n = 485, then m = 1 and n = 485 or m = 5 and n = 97 or m = 97
and n = 5 or m = 485 and n = 1. The theorem is a consequence of (24).

(39) If m · n = 626, then m = 1 and n = 626 or m = 2 and n = 313 or
m = 313 and n = 2 or m = 626 and n = 1. The theorem is a consequence
of (25).

(40) If p1 6= p2, then 2 ¬ p1 and 3 ¬ p2 or 3 ¬ p1 and 2 ¬ p2.

2. Problem 48

Let n be a natural number. We say that n satisfies Sierpiński Problem 48 if
and only if

(Def. 1) there exist natural numbers a, b, c such that n = a + b + c and a > 1
and b > 1 and c > 1 and a, b, c are mutually coprime.

Now we state the propositions:

(41) If n is even and n > 8, then n satisfies Sierpiński Problem 48. The
theorem is a consequence of (5) and (6).

(42) If n > 17, then n satisfies Sierpiński Problem 48. The theorem is a con-
sequence of (41), (10), (4), (11), (9), (6), (5), and (3).

(43) 17 doesn’t satisfy Sierpiński Problem 48. The theorem is a consequence
of (7) and (1).
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3. Problem 80

Now we state the propositions:

(44) Let us consider prime numbers p, q, and a natural number n. Suppose
p · (p+ 1) + q · (q + 1) = n · (n+ 1). Then

(i) p = 2 and q = 2 and n = 3, or

(ii) p = 5 and q = 3 and n = 6, or

(iii) p = 3 and q = 5 and n = 6.

The theorem is a consequence of (26).

(45) Let us consider prime numbers p, q, r. If p ·(p+1)+q ·(q+1) = r ·(r+1),
then p = q = 2 and r = 3. The theorem is a consequence of (44).

4. Problem 87

Let n be a natural number. We say that n satisfies Sierpiński Problem 87a
if and only if

(Def. 2) there exist prime numbers a, b, c such that a, b, c are mutually different
and n2 + 1 = a · b · c.

We say that n satisfies Sierpiński Problem 87b if and only if

(Def. 3) there exist odd prime numbers a, b, c such that a, b, c are mutually
different and n2 + 1 = a · b · c.

Now we state the propositions:

(46) 132 + 1 = 2 · 5 · 17.

(47) 13 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(46).

(48) 172 + 1 = 2 · 5 · 29.

(49) 17 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(48).

(50) 212 + 1 = 2 · 13 · 17.

(51) 21 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(50).

(52) 232 + 1 = 2 · 5 · 53.

(53) 23 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(52).

(54) 272 + 1 = 2 · 5 · 73.
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(55) 27 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(54).

(56) If n satisfies Sierpiński Problem 87a and n ¬ 27,
then n ∈ {13, 17, 21, 23, 27}.

(57) 1122 + 1 = 5 · 13 · 193.

(58) 112 satisfies Sierpiński Problem 87b. The theorem is a consequence of
(57).

5. Problem 89

Let us consider n. We say that n has exactly two different prime divisors if
and only if

(Def. 4) there exist prime numbers p, q such that p 6= q and p | n and q | n and
for every prime number r such that r 6= p and r 6= q holds r - n.

Let n be a complex number. We say that n is a product of two different
primes if and only if

(Def. 5) there exist prime numbers p, q such that p 6= q and n = p · q.
Now we state the propositions:

(59) Let us consider prime numbers p, q, and natural numbers a, b. Suppose
a 6= 1 and b 6= 1 and p · q = a · b. Then

(i) p = a and q = b, or

(ii) p = b and q = a.

(60) If n is a product of two different primes, then for every a and b such that
a 6= 1 and b 6= 1 and n = a · b holds a is prime and b is prime.

(61) p is not a product of two different primes.

(62) If p1 6= p2, then p1 · p2 is a product of two different primes.

(63) If a 6= 1 and a 6= n and a is not prime and a | n, then n is not a product
of two different primes.

(64) p · p is not a product of two different primes.

(65) If n is a product of two different primes, then n  6. The theorem is
a consequence of (40).

Let us consider n. We say that n satisfies Sierpiński Problem 89 if and only
if

(Def. 6) n is a product of two different primes and n + 1 is a product of two
different primes and n+ 2 is a product of two different primes.

Now we state the propositions:
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(66) 33 satisfies Sierpiński Problem 89.

(67) 85 satisfies Sierpiński Problem 89.

(68) 93 satisfies Sierpiński Problem 89.

(69) 141 satisfies Sierpiński Problem 89.

(70) 201 satisfies Sierpiński Problem 89.

(71) If n satisfies Sierpiński Problem 89 and n ¬ 201,
then n ∈ {33, 85, 93, 141, 201}.

(72) There exists no n such that n satisfies Sierpiński Problem 89 and n+ 1
satisfies Sierpiński Problem 89 and n + 2 satisfies Sierpiński Problem 89
and n+ 3 satisfies Sierpiński Problem 89.

(73) (i) 33 = 3 · 11, and

(ii) 33 has exactly two different prime divisors.

(74) (i) 34 = 2 · 17, and

(ii) 34 has exactly two different prime divisors.

(75) (i) 35 = 5 · 7, and

(ii) 35 has exactly two different prime divisors.

(76) (i) 36 = 2 · 2 · 3 · 3, and

(ii) 36 has exactly two different prime divisors.
The theorem is a consequence of (15).

6. Problem 124

Now we state the propositions:

(77) If n = 28 · k + 1, then 29 | (22·n + 1)2 + 22.

(78) If k > 0 and n = 28 · k + 1, then (22·n + 1)2 + 22 is composite. The
theorem is a consequence of (77).

(79) {(22·n + 1)2 + 22, where n is a natural number : (22·n + 1)2 + 22 is com-
posite} is infinite.
Proof: SetX = {(22·n + 1)2+22, where n is a natural number :(22·n + 1)2

+22 is composite}. Set n = 28 · 1 + 1. (22·n + 1)2 + 22 is composite. X is
natural-membered. For every a such that a ∈ X there exists b such that
b > a and b ∈ X. �
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Introduction

Subsets of the set of all subgraphs of a graphs are rather rarely addressed
directly (cf. [13], [4], [3]), but used as a tool in a wide variety of graph theory to-
pics; e.g. they are needed for graph factorisation, graph reconstruction, random
graphs, counting a special type of subgraphs and proving that every connected
graph has a spanning subgraph (cf. [2], [14], [5]). The latter is proven in Section
7 of this article, together with the sharper result that we can even guarantee
a spanning graph containing an arbitrary edge of the connected graph. As a
necessity for that the set of all subtrees of a graph was introduced, as Jessica
Enright and Piotr Rudnicki wished for in [6]. This article lays the groundwork
for further formalization of any of these topics, in some sense extending and reu-
sing [8] and [10]. It is noteworthy that the attribute plain from [9] was utilized
here.
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1. Subgraph Set and Subgraph Relation

From now on G, G1, G2 denote graphs and H denotes a subgraph of G.
Let us consider G. The functor G.allSubgraphs() yielding a graph-membered

set is defined by the term

(Def. 1) {the plain subgraph of G induced by V and E, where V is a non
empty subset of the vertices of G, E is a subset of the edges of G :
E ⊆ G.edgesBetween(V )}.

We introduce the notation G.allSG() as a synonym of G.allSubgraphs(). Let
G be a finite graph. One can check that G.allSG() is finite. Now we state the
propositions:

(1) G2 ∈ G1.allSG() if and only if G2 is a plain subgraph of G1.

(2) H�(the graph selectors) ∈ G.allSG(). The theorem is a consequence of
(1).

(3) G�(the graph selectors) ∈ G.allSG(). The theorem is a consequence of
(2).

Let us consider G. Let V be a non empty subset of the vertices of G. The
functor createGraph(V ) yielding a plain subgraph of G is defined by the term

(Def. 2) createGraph(V, ∅, the function from ∅ into V, the function from ∅ into
V ).

Let us note that createGraph(V ) is edgeless. Now we state the propositions:

(4) Let us consider a non empty subset V of the vertices of G.
Then createGraph(V ) ∈ G.allSG().

(5) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V and ∅. Then H ≈ createGraph(V ).

(6) Let us consider a subgraph H of G with edges the edges of G removed.
Then H ≈ createGraph(Ωα), where α is the vertices of G. The theorem is
a consequence of (5).

(7) G is edgeless if and only if G ≈ createGraph(Ωα), where α is the vertices
of G. The theorem is a consequence of (6).

(8) Let us consider a non empty subset V of the vertices of G1. Suppose
V ⊆ the vertices of G2. Then createGraph(V ) is a subgraph of G2.

(9) G is edgeless if and only if G.allSG() = the set of all createGraph(V )
where V is a non empty subset of the vertices of G. The theorem is a con-

sequence of (1), (7), (4), and (3).

Let us consider G. Let v be a vertex of G. The functor createGraph(v)
yielding a plain subgraph of G is defined by the term

(Def. 3) createGraph({v}).
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Let us note that createGraph(v) is trivial and edgeless. Now we state the
propositions:

(10) Let us consider a vertex v of G. Then createGraph(v) ∈ G.allSG().

(11) Let us consider a vertex v of G, and a subgraph H of G induced by {v}
and ∅. Then H ≈ createGraph(v).

(12) Let us consider a vertex v of G1. Suppose v ∈ the vertices of G2. Then
createGraph(v) is a subgraph of G2.

Let G be a non edgeless graph and e be an edge of G.
The functor createGraph(e) yielding a plain subgraph of G is defined by

(Def. 4) there exists a non empty subset V of the vertices of G and there exist
functions S, T from {e} into V such that it = createGraph(V, {e}, S, T )
and {(the source of G)(e), (the target of G)(e)} = V and
S = e7−→. (the source of G)(e) and T = e 7−→. (the target of G)(e).

Let us consider a non edgeless graph G and an edge e of G. Now we state
the propositions:

(13) (i) the edges of createGraph(e) = {e}, and

(ii) the vertices of createGraph(e) = {(the source of G)(e), (the target
of G)(e)}.

(14) e joins (the source of G)(e) to (the target of G)(e) in createGraph(e).
The theorem is a consequence of (13).

Let us consider a non edgeless graph G, an edge e of G, and objects e0, v,
w. Now we state the propositions:

(15) Suppose e0 joins v to w in createGraph(e). Then

(i) e0 = e, and

(ii) v = (the source of G)(e), and

(iii) w = (the target of G)(e).

The theorem is a consequence of (13).

(16) If e0 joins v and w in createGraph(e), then e0 = e. The theorem is
a consequence of (15).

Let G be a non edgeless graph and e be an edge of G. One can check that
createGraph(e) is non edgeless, non-multi, connected, and finite. Let us consider
a non edgeless graph G and an edge e of G. Now we state the propositions:

(17) createGraph(e) is loopless if and only if e /∈ G.loops(). The theorem is
a consequence of (14) and (15).

(18) createGraph(e) is acyclic if and only if e /∈ G.loops(). The theorem is
a consequence of (17), (13), and (16).

(19) createGraph(e) ∈ G.allSG().
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(20) Let us consider a non edgeless graph G, an edge e of G, and a subgraph
H of G induced by {(the source of G)(e), (the target of G)(e)} and {e}.
Then H ≈ createGraph(e). The theorem is a consequence of (13).

(21) Let us consider a non edgeless graph G, an edge e of G, and a subset V
of the vertices of G. Then every supergraph of createGraph(e) extended
by the vertices from V is a subgraph of G.

(22) Let us consider an edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, there exists an element
H ′ of S such that v ∈ the vertices of H ′. Then G is a subgraph of G′.

(23) Let us consider a non edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, there exists an element
H ′ of S such that v ∈ the vertices of H ′ and for every edge e of G, there
exists an element H ′ of S such that createGraph(e) is a subgraph of H ′.
Then G is a subgraph of G′. The theorem is a consequence of (13).

(24) Let us consider an edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, createGraph(v) ∈ S. Then
G is a subgraph of G′. The theorem is a consequence of (22).

(25) Let us consider a non edgeless graph G, a graph union set S, and a graph
union G′ of S. Suppose for every vertex v of G, createGraph(v) ∈ S and
for every edge e of G, createGraph(e) ∈ S. Then G is a subgraph of G′.
The theorem is a consequence of (23).

(26) Let us consider a non edgeless graph G, a set E, an edge e of G, and
a subgraph H of G with edges E removed. If e /∈ E, then createGraph(e)
is a subgraph of H. The theorem is a consequence of (13).

Let us consider a non edgeless graph G, a subgraph H of G with loops
removed, a graph union set S, and a graph union G′ of S. Now we state the
propositions:

(27) Suppose for every vertex v of G, there exists an element H ′ of S such that
v ∈ the vertices of H ′ and for every edge e of G such that e /∈ G.loops()
there exists an element H ′ of S such that createGraph(e) is a subgraph
of H ′. Then H is a subgraph of G′. The theorem is a consequence of (13)
and (26).

(28) Suppose for every vertex v of G, createGraph(v) ∈ S and for every edge
e of G such that e /∈ G.loops() holds createGraph(e) ∈ S. Then H is
a subgraph of G′. The theorem is a consequence of (27).

Let us consider G. Let us observe that G.allSG() is non empty, ∪-tolerating,
and plain. Let S be a non empty subset of G.allSG(). Let us observe that
an element of S is a subgraph of G. Now we state the propositions:
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(29) G2.allSG() ⊆ G1.allSG() if and only if G2 is a subgraph of G1. The
theorem is a consequence of (3) and (1).

(30) G1 ≈ G2 if and only if G1.allSG() = G2.allSG(). The theorem is a con-
sequence of (29).

Let us consider G1 and G2. Let F be a partial graph mapping from G1 to G2.
The functor SG2SGFunc(F ) yielding a function from G1.allSG() into G2.allSG()
is defined by

(Def. 5) for every plain subgraph H of G1, it(H) = rng(F �H).

One can verify that SG2SGFunc(F ) is non empty and graph-yielding and
dom(SG2SGFunc(F )) is graph-membered and dom(SG2SGFunc(F )) is plain.

Now we state the proposition:

(31) Let us consider a partial graph mapping F from G1 to G2. If F is weak
subgraph embedding, then SG2SGFunc(F ) is one-to-one. The theorem is
a consequence of (1).

Let G1 be a graph, G2 be a G1-isomorphic graph, and F be an isomorphism
between G1 and G2. Let us observe that SG2SGFunc(F ) is one-to-one. Now we
state the propositions:

(32) Let us consider a partial graph mapping F from G1 to G2. Suppose F
is onto. Then rng SG2SGFunc(F ) = G2.allSG(). The theorem is a conse-
quence of (1).

(33) If G2 is G1-directed-isomorphic, then G1.allSG() and G2.allSG() are
directed-isomorphic. The theorem is a consequence of (32), (31), and (1).

(34) If G2 is G1-isomorphic, then G1.allSG() and G2.allSG() are isomorphic.
The theorem is a consequence of (32), (31), and (1).

(35) G is a graph union of G.allSG(). The theorem is a consequence of (3)
and (1).

(36) (i) G is loopless iff G.allSG() is loopless, and

(ii) G is non-multi iff G.allSG() is non-multi, and

(iii) G is non-directed-multi iff G.allSG() is non-directed-multi, and

(iv) G is simple iff G.allSG() is simple, and

(v) G is directed-simple iff G.allSG() is directed-simple, and

(vi) G is acyclic iff G.allSG() is acyclic, and

(vii) G is edgeless iff G.allSG() is edgeless.

Let G be a loopless graph. Observe that G.allSG() is loopless. Let G be
a non-multi graph. Let us observe that G.allSG() is non-multi. Let G be a non-
directed-multi graph. One can verify that G.allSG() is non-directed-multi. Let
G be a simple graph. One can check that G.allSG() is simple.
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Let G be a directed-simple graph. Let us note that G.allSG() is directed-
simple. Let G be an acyclic graph. Let us observe that G.allSG() is acyclic. Let
G be an edgeless graph. One can verify that G.allSG() is edgeless. Now we state
the propositions:

(37) The vertices of G.allSG() = 2α \ {∅}, where α is the vertices of G. The
theorem is a consequence of (1).

(38) The edges of G.allSG() = 2α, where α is the edges of G. The theorem is
a consequence of (1).

Let us consider G. The functor SubgraphRel(G) yielding a binary relation
on G.allSG() is defined by

(Def. 6) for every elements H1, H2 of G.allSG(), 〈〈H1, H2〉〉 ∈ it iff H1 is a sub-
graph of H2.

Now we state the propositions:

(39) 〈〈H�(the graph selectors), G�(the graph selectors)〉〉 ∈ SubgraphRel(G).
The theorem is a consequence of (2) and (3).

(40) field SubgraphRel(G) = G.allSG().
Proof: G.allSG() ⊆ field SubgraphRel(G). �

(41) SubgraphRel(G) partially orders G.allSG().

Let us consider G. One can verify that SubgraphRel(G) is reflexive, anti-
symmetric, transitive, and partial-order. Now we state the propositions:

(42) G�(the graph selectors) is maximal in SubgraphRel(G). The theorem is
a consequence of (3), (40), (1), and (39).

(43) SubgraphRel(H) = SubgraphRel(G) |2H.allSG(). The theorem is a con-
sequence of (29) and (40).

(44) Let us consider a non empty subset S of G.allSG(), and a graph union
G′ of S. Suppose SubgraphRel(G) |2 S is a linear order. Let us consider
a walk W of G′. Then there exists an element H of S such that W is
a walk of H.
Proof: Define P[walk of G′] ≡ there exists an element H of S such that
$1 is a walk of H. For every trivial walk W of G′, P[W ]. For every walk
W of G′ and for every object e such that e ∈ W.last().edgesInOut() and
P[W ] holds P[W.addEdge(e)]. For every walk W of G′, P[W ]. �
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2. Induced Subgraph Set

Let us consider G. The functor G.allInducedSG() yielding a subset
of G.allSG() is defined by the term

(Def. 7) the set of all the plain subgraph of G induced by V where V is a non
empty subset of the vertices of G.

Now we state the proposition:

(45) G2 ∈ G1.allInducedSG() if and only if there exists a non empty subset
V of the vertices of G1 such that G2 is a plain subgraph of G1 induced by
V .

Let G be a vertex-finite graph. Observe that G.allInducedSG() is finite. Now
we state the propositions:

(46) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V . Then H�(the graph selectors) ∈ G.allInducedSG().
The theorem is a consequence of (45).

(47) G�(the graph selectors) ∈ G.allInducedSG(). The theorem is a consequ-
ence of (46).

Let us considerG. Observe thatG.allInducedSG() is non empty, ∪-tolerating,
and plain. Now we state the propositions:

(48) G2.allInducedSG() ⊆ G1.allInducedSG() if and only if there exists a non
empty subset V of the vertices of G1 such that G2 is a subgraph of G1

induced by V . The theorem is a consequence of (47) and (45).

(49) G1 ≈ G2 if and only if G1.allInducedSG() = G2.allInducedSG(). The
theorem is a consequence of (48).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(50) If F is total and onto, then G2.allInducedSG() ⊆ rng(SG2SGFunc(F )
�G1.allInducedSG()). The theorem is a consequence of (49).

(51) If F is total and continuous, then rng(SG2SGFunc(F )�G1.allInducedSG())
⊆ G2.allInducedSG(). The theorem is a consequence of (45).

(52) If F is isomorphism, then rng(SG2SGFunc(F )�G1.allInducedSG()) =
G2.allInducedSG(). The theorem is a consequence of (50) and (51).

(53) If G2 is G1-directed-isomorphic, then G1.allInducedSG() and
G2.allInducedSG() are directed-isomorphic. The theorem is a consequence
of (52), (31), and (45).

(54) If G2 is G1-isomorphic, then G1.allInducedSG() and G2.allInducedSG()
are isomorphic. The theorem is a consequence of (52), (31), and (45).
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(55) G is a graph union of G.allInducedSG(). The theorem is a consequence
of (47).

(56) (i) G is loopless iff G.allInducedSG() is loopless, and

(ii) G is non-multi iff G.allInducedSG() is non-multi, and

(iii) G is non-directed-multi iff G.allInducedSG() is non-directed-multi,
and

(iv) G is simple iff G.allInducedSG() is simple, and

(v) G is directed-simple iff G.allInducedSG() is directed-simple, and

(vi) G is acyclic iff G.allInducedSG() is acyclic, and

(vii) G is edgeless iff G.allInducedSG() is edgeless, and

(viii) G is chordal iff G.allInducedSG() is chordal, and

(ix) G is loopfull iff G.allInducedSG() is loopfull.

Let G be a loopless graph. One can verify that G.allInducedSG() is lo-
opless. Let G be a non-multi graph. Note that G.allInducedSG() is non-multi.
Let G be a non-directed-multi graph. Observe that G.allInducedSG() is non-
directed-multi. Let G be a simple graph. One can verify that G.allInducedSG()
is simple. Let G be a directed-simple graph. Note that G.allInducedSG() is
directed-simple. Let G be an acyclic graph. Observe that G.allInducedSG() is
acyclic. Let G be an edgeless graph. One can verify that G.allInducedSG() is
edgeless. Let G be a chordal graph. Note that G.allInducedSG() is chordal. Let
G be a loopfull graph. Let us note that G.allInducedSG() is loopfull. Now we
state the propositions:

(57) G is edgeless if and only ifG.allInducedSG() = the set of all createGraph
(V ) where V is a non empty subset of the vertices of G. The theorem is
a consequence of (9), (45), and (47).

(58) G is edgeless if and only if G.allSG() = G.allInducedSG(). The theorem
is a consequence of (9), (57), and (45).

(59) The vertices of G.allInducedSG() = 2α \ {∅}, where α is the vertices of
G. The theorem is a consequence of (37).

3. Spanning Subgraph Set

Let us consider G. The functor G.allSpanningSG() yielding a subset of
G.allSG() is defined by the term

(Def. 8) {H, where H is an element of ΩG.allSG() : H is spanning}.

We introduce the notationG.allFactors() as a synonym ofG.allSpanningSG().
Now we state the propositions:
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(60) G2 ∈ G1.allSpanningSG() if and only if G2 is a plain, spanning subgraph
of G1. The theorem is a consequence of (1).

(61) Let us consider a spanning subgraph H of G. Then H�(the graph
selectors) ∈ G.allSpanningSG(). The theorem is a consequence of (60).

(62) G�(the graph selectors) ∈ G.allSpanningSG(). The theorem is a conse-
quence of (61).

(63) createGraph(Ωα) ∈ G.allSpanningSG(), where α is the vertices of G.
The theorem is a consequence of (60).

(64) Let us consider a non edgeless graph G, an edge e of G, and a plain
supergraph H of createGraph(e) extended by the vertices from the vertices
of G. Then H ∈ G.allSpanningSG(). The theorem is a consequence of (21)
and (60).

Let G be a graph. Let us note that G.allSpanningSG() is non empty, ∪-
tolerating, and plain. Now we state the propositions:

(65) G2.allSpanningSG() ⊆ G1.allSpanningSG() if and only if G2 is a span-
ning subgraph of G1. The theorem is a consequence of (62) and (60).

(66) G1 ≈ G2 if and only if G1.allSpanningSG() = G2.allSpanningSG(). The
theorem is a consequence of (65).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(67) Suppose rngFV = the vertices of G2.
Then rng(SG2SGFunc(F )�G1.allSpanningSG()) ⊆ G2.allSpanningSG().

(68) Suppose F is onto and FV is one-to-one and total.
Then rng(SG2SGFunc(F )�G1.allSpanningSG()) = G2.allSpanningSG().
The theorem is a consequence of (67), (32), (1), and (60).

(69) If F is isomorphism, then rng(SG2SGFunc(F )�G1.allSpanningSG()) =
G2.allSpanningSG(). The theorem is a consequence of (68).

(70) If G2 is G1-directed-isomorphic, then G1.allSpanningSG() and
G2.allSpanningSG() are directed-isomorphic. The theorem is a consequ-
ence of (69), (31), and (60).

(71) IfG2 isG1-isomorphic, thenG1.allSpanningSG() andG2.allSpanningSG()
are isomorphic. The theorem is a consequence of (69), (31), and (60).

(72) G is a graph union of G.allSpanningSG(). The theorem is a consequence
of (62).

(73) (i) G is loopless iff G.allSpanningSG() is loopless, and

(ii) G is non-multi iff G.allSpanningSG() is non-multi, and

(iii) G is non-directed-multi iff G.allSpanningSG() is non-directed-multi,
and
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(iv) G is simple iff G.allSpanningSG() is simple, and

(v) G is directed-simple iff G.allSpanningSG() is directed-simple, and

(vi) G is acyclic iff G.allSpanningSG() is acyclic, and

(vii) G is edgeless iff G.allSpanningSG() is edgeless.

Let G be a loopless graph. Note that G.allSpanningSG() is loopless. Let
G be a non-multi graph. Observe that G.allSpanningSG() is non-multi. Let G
be a non-directed-multi graph. One can verify that G.allSpanningSG() is non-
directed-multi. Let G be a simple graph. Note that G.allSpanningSG() is simple.

LetG be a directed-simple graph. Observe thatG.allSpanningSG() is directed-
simple. Let G be an acyclic graph. One can verify that G.allSpanningSG() is
acyclic. Let G be an edgeless graph. Note that G.allSpanningSG() is edgeless.
Now we state the propositions:

(74) G is edgeless if and only ifG.allSpanningSG() = {G�(the graph selectors)}.
The theorem is a consequence of (60) and (62).

(75) The vertices of G.allSpanningSG() = {the vertices of G}. The theorem
is a consequence of (60).

(76) The edges of G.allSpanningSG() = 2α, where α is the edges of G. The
theorem is a consequence of (38) and (60).

(77) G.allInducedSG()∩G.allSpanningSG() = {G�(the graph selectors)}. The
theorem is a consequence of (45), (60), (47), and (62).

4. Forest Subgraph Set

Let us consider G. The functor G.allForests() yielding a subset of G.allSG()
is defined by the term

(Def. 9) {H, where H is an element of ΩG.allSG() : H is acyclic}.

Now we state the propositions:

(78) G2 ∈ G1.allForests() if and only if G2 is a plain, acyclic subgraph of G1.
The theorem is a consequence of (1).

(79) Let us consider an acyclic subgraphH ofG. ThenH�(the graph selectors)
∈ G.allForests(). The theorem is a consequence of (78).

(80) G is acyclic if and only if G�(the graph selectors) ∈ G.allForests(). The
theorem is a consequence of (79) and (78).

(81) Let us consider a non empty subset V of the vertices of G.
Then createGraph(V ) ∈ G.allForests().

(82) Let us consider a vertex v of G. Then createGraph(v) ∈ G.allForests().
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(83) Let us consider a non edgeless graph G, and an edge e of G. Suppose
e /∈ G.loops(). Then createGraph(e) ∈ G.allForests(). The theorem is
a consequence of (18) and (78).

(84) Let us consider a non edgeless graph G, an edge e of G, a subset V of
the vertices of G, and a plain supergraph H of createGraph(e) extended
by the vertices from V . If e /∈ G.loops(), then H ∈ G.allForests(). The
theorem is a consequence of (18), (21), and (78).

Let us consider G. Let us note that G.allForests() is non empty, ∪-tolerating,
plain, acyclic, and simple. Now we state the propositions:

(85) H.allForests() ⊆ G.allForests(). The theorem is a consequence of (78).

(86) Let us consider a loopless graph G2.
Suppose G2.allForests() ⊆ G1.allForests(). Then G2 is a subgraph of G1.
Proof: The edges of G2 ⊆ the edges of G1. �

(87) Let us consider a subgraph H of G with loops removed.
Then G.allForests() = H.allForests(). The theorem is a consequence of
(85) and (78).

(88) Let us consider loopless graphs G1, G2. Then G1 ≈ G2 if and only if
G1.allForests() = G2.allForests(). The theorem is a consequence of (87)
and (86).

(89) Let us consider a subgraph G3 of G1 with loops removed, and a subgraph
G4 ofG2 with loops removed. ThenG3 ≈ G4 if and only ifG1.allForests() =
G2.allForests(). The theorem is a consequence of (87) and (88).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(90) If F is weak subgraph embedding,
then rng(SG2SGFunc(F )�G1.allForests()) ⊆ G2.allForests(). The theorem
is a consequence of (78) and (1).

(91) If F is one-to-one and onto, then G2.allForests() ⊆ rng(SG2SGFunc(F )
�G1.allForests()). The theorem is a consequence of (78).

(92) If F is isomorphism, then G2.allForests() = rng(SG2SGFunc(F )
�G1.allForests()). The theorem is a consequence of (90) and (91).

(93) If G2 is G1-directed-isomorphic, then G1.allForests() and G2.allForests()
are directed-isomorphic. The theorem is a consequence of (92), (31), and
(78).

(94) If G2 is G1-isomorphic, then G1.allForests() and G2.allForests() are iso-
morphic. The theorem is a consequence of (92), (31), and (78).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4

of G2 with loops removed. Now we state the propositions:
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(95) If G4 is G3-directed-isomorphic, then G1.allForests() and G2.allForests()
are directed-isomorphic. The theorem is a consequence of (87) and (93).

(96) If G4 is G3-isomorphic, then G1.allForests() and G2.allForests() are iso-
morphic. The theorem is a consequence of (87) and (94).

(97) Every subgraph ofG with loops removed is a graph union ofG.allForests().
The theorem is a consequence of (35), (82), (83), (13), (87), and (78).

(98) G is loopless if and only if G is a graph union of G.allForests(). The
theorem is a consequence of (97).

(99) The edges of G = G.loops() if and only if G.allForests() is edgeless. The
theorem is a consequence of (78) and (83).

(100) The edges of G = G.loops() if and only if G.allForests() = the set of all
createGraph(V ) where V is a non empty subset of the vertices of G. The
theorem is a consequence of (99), (78), and (81).

(101) The vertices of G.allForests() = 2α \ {∅}, where α is the vertices of G.
The theorem is a consequence of (37) and (81).

5. Spanning Forest Subgraph Set

Let us consider G. The functor G.allSpanningForests() yielding a subset of
G.allSG() is defined by the term

(Def. 10) {H, where H is an element of ΩG.allSG() : H is spanning and acyclic}.

Now we state the propositions:

(102) G2 ∈ G1.allSpanningForests() if and only if G2 is a plain, spanning,
acyclic subgraph of G1. The theorem is a consequence of (1).

(103) G.allSpanningForests() = G.allSpanningSG()∩G.allForests(). The the-
orem is a consequence of (102), (60), and (78).

(104) Let us consider a spanning, acyclic subgraphH ofG. ThenH�(the graph
selectors) ∈ G.allSpanningForests(). The theorem is a consequence of
(102).

(105) G is acyclic if and only ifG�(the graph selectors) ∈ G.allSpanningForests().
The theorem is a consequence of (103), (80), and (62).

(106) createGraph(Ωα) ∈ G.allSpanningForests(), where α is the vertices of G.
The theorem is a consequence of (81), (63), and (103).

(107) Let us consider a non edgeless graph G, an edge e of G, and a plain
supergraph H of createGraph(e) extended by the vertices from the vertices
of G. If e /∈ G.loops(), then H ∈ G.allSpanningForests(). The theorem is
a consequence of (64), (84), and (103).
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Let us consider G. One can check that G.allSpanningForests() is non empty,
∪-tolerating, plain, acyclic, and simple. Now we state the propositions:

(108) Let us consider a spanning subgraphH ofG. ThenH.allSpanningForests() ⊆
G.allSpanningForests(). The theorem is a consequence of (102).

(109) Let us consider a loopless graph G2. Suppose G2.allSpanningForests() ⊆
G1.allSpanningForests(). Then G2 is a spanning subgraph of G1. The the-
orem is a consequence of (102), (107), and (13).

(110) Let us consider a subgraph H of G with loops removed.
Then G.allSpanningForests() = H.allSpanningForests(). The theorem is
a consequence of (108) and (102).

(111) Let us consider loopless graphs G1, G2. Then G1 ≈ G2 if and only if
G1.allSpanningForests() = G2.allSpanningForests(). The theorem is a con-
sequence of (110) and (109).

(112) Let us consider a subgraph G3 of G1 with loops removed, and a subgraph
G4 of G2 with loops removed. Then G3 ≈ G4 if and only if
G1.allSpanningForests() = G2.allSpanningForests(). The theorem is a con-
sequence of (110) and (111).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(113) Suppose F is weak subgraph embedding and rngFV = the vertices of G2.
Then rng(SG2SGFunc(F )�G1.allSpanningForests()) ⊆ G2.allSpanning
Forests(). The theorem is a consequence of (67), (90), and (103).

(114) Suppose F is weak subgraph embedding and onto.
Then G2.allSpanningForests() = rng(SG2SGFunc(F )�G1.allSpanning
Forests()). The theorem is a consequence of (113), (68), (91), (103), and
(31).

Let us consider graphs G1, G2. Now we state the propositions:

(115) If G2 is G1-directed-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are directed-isomorphic. The theorem is a conse-
quence of (114), (31), and (102).

(116) If G2 is G1-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are isomorphic. The theorem is a consequence of
(114), (31), and (102).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4

of G2 with loops removed. Now we state the propositions:

(117) If G4 is G3-directed-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are directed-isomorphic. The theorem is a conse-
quence of (110) and (115).
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(118) If G4 is G3-isomorphic, then G1.allSpanningForests() and
G2.allSpanningForests() are isomorphic. The theorem is a consequence of
(110) and (116).

(119) Every subgraph of G with loops removed is a graph union
of G.allSpanningForests(). The theorem is a consequence of (35), (106),
(107), (13), (110), and (102).

(120) G is loopless if and only if G is a graph union of G.allSpanningForests().
The theorem is a consequence of (119).

(121) The edges of G = G.loops() if and only if G.allSpanningForests() is edge-
less. The theorem is a consequence of (99), (103), and (107).

(122) The edges of G = G.loops() if and only if for every subgraph H of G
with loops removed, G.allSpanningForests() = {H�(the graph selectors)}.
The theorem is a consequence of (102) and (104).

(123) The vertices of G.allSpanningForests() = {the vertices of G}. The the-
orem is a consequence of (103) and (75).

6. Connected Subgraph Set

Let us consider G. The functor G.allConnectedSG() yielding a subset of
G.allSG() is defined by the term

(Def. 11) {H, where H is an element of ΩG.allSG() : H is connected}.

Now we state the propositions:

(124) G2 ∈ G1.allConnectedSG() if and only if G2 is a plain, connected sub-
graph of G1. The theorem is a consequence of (1).

(125) Let us consider a connected subgraph H of G. Then H�(the graph
selectors) ∈ G.allConnectedSG(). The theorem is a consequence of (124).

(126) G is connected if and only if G�(the graph selectors) ∈
G.allConnectedSG(). The theorem is a consequence of (125) and (124).

(127) Let us consider a vertex v of G.
Then createGraph(v) ∈ G.allConnectedSG().

(128) Let us consider a non edgeless graph G, and an edge e of G. Then
createGraph(e) ∈ G.allConnectedSG().

Let us consider G. One can check that G.allConnectedSG() is non empty,
∪-tolerating, plain, and connected. Now we state the propositions:

(129) H.allConnectedSG() ⊆ G.allConnectedSG(). The theorem is a consequ-
ence of (124).
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(130) If G2.allConnectedSG() ⊆ G1.allConnectedSG(), then G2 is a subgraph
of G1.
Proof: The edges of G2 ⊆ the edges of G1. �

(131) G1 ≈ G2 if and only if G1.allConnectedSG() = G2.allConnectedSG().
The theorem is a consequence of (129) and (130).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(132) If F is total, then rng(SG2SGFunc(F )�G1.allConnectedSG()) ⊆
G2.allConnectedSG(). The theorem is a consequence of (124) and (1).

(133) If F is one-to-one and onto, then G2.allConnectedSG() ⊆
rng(SG2SGFunc(F )�G1.allConnectedSG()). The theorem is a consequence
of (124).

(134) If F is isomorphism, then G2.allConnectedSG() = rng(SG2SGFunc(F )
�G1.allConnectedSG()). The theorem is a consequence of (132) and (133).

(135) If G2 is G1-directed-isomorphic, then G1.allConnectedSG() and
G2.allConnectedSG() are directed-isomorphic. The theorem is a consequ-
ence of (134), (31), and (124).

(136) If G2 is G1-isomorphic, then G1.allConnectedSG() and
G2.allConnectedSG() are isomorphic. The theorem is a consequence of
(134), (31), and (124).

(137) G is a graph union of G.allConnectedSG(). The theorem is a consequence
of (35), (127), (24), (128), and (25).

7. Tree Subgraph Set and Subtree Relation

Let us consider G. The functor G.allTrees() yielding a subset of G.allSG()
is defined by the term

(Def. 12) {H, where H is an element of ΩG.allSG() : H is tree-like}.

Now we state the propositions:

(138) G2 ∈ G1.allTrees() if and only if G2 is a plain, tree-like subgraph of G1.
The theorem is a consequence of (1).

(139) G.allTrees() = G.allForests()∩G.allConnectedSG(). The theorem is a con-
sequence of (138), (78), and (124).

(140) Let us consider a tree-like subgraphH ofG. ThenH�(the graph selectors)
∈ G.allTrees(). The theorem is a consequence of (138).

(141) G is tree-like if and only if G�(the graph selectors) ∈ G.allTrees(). The
theorem is a consequence of (140) and (138).
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(142) Let us consider a vertex v of G. Then createGraph(v) ∈ G.allTrees().

(143) Let us consider a non edgeless graph G, and an edge e of G. Suppo-
se e /∈ G.loops(). Then createGraph(e) ∈ G.allTrees(). The theorem is
a consequence of (18) and (138).

Let us consider G. Observe that G.allTrees() is non empty, ∪-tolerating,
plain, tree-like, and simple. Now we state the propositions:

(144) H.allTrees() ⊆ G.allTrees(). The theorem is a consequence of (138).

(145) Let us consider a loopless graph G2.
Suppose G2.allTrees() ⊆ G1.allTrees(). Then G2 is a subgraph of G1. The
theorem is a consequence of (142), (138), (143), and (13).

(146) Let us consider a subgraphH ofG with loops removed. ThenG.allTrees()
= H.allTrees(). The theorem is a consequence of (144) and (138).

(147) Let us consider loopless graphs G1, G2. Then G1 ≈ G2 if and only if
G1.allTrees() = G2.allTrees(). The theorem is a consequence of (146) and
(145).

(148) Let us consider a subgraph G3 of G1 with loops removed, and a subgraph
G4 of G2 with loops removed. Then G3 ≈ G4 if and only if G1.allTrees() =
G2.allTrees(). The theorem is a consequence of (146) and (147).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(149) If F is weak subgraph embedding,
then rng(SG2SGFunc(F )�G1.allTrees()) ⊆ G2.allTrees(). The theorem is
a consequence of (139), (90), and (132).

(150) If F is weak subgraph embedding and onto, then G2.allTrees() =
rng(SG2SGFunc(F )�G1.allTrees()). The theorem is a consequence of (91),
(133), (139), (149), and (31).

Let us consider graphs G1, G2. Now we state the propositions:

(151) If G2 is G1-directed-isomorphic, then G1.allTrees() and G2.allTrees()
are directed-isomorphic. The theorem is a consequence of (150), (31), and
(138).

(152) If G2 is G1-isomorphic, then G1.allTrees() and G2.allTrees() are isomor-
phic. The theorem is a consequence of (150), (31), and (138).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4

of G2 with loops removed. Now we state the propositions:

(153) If G4 is G3-directed-isomorphic, then G1.allTrees() and G2.allTrees() are
directed-isomorphic. The theorem is a consequence of (146) and (151).

(154) If G4 is G3-isomorphic, then G1.allTrees() and G2.allTrees() are isomor-
phic. The theorem is a consequence of (146) and (152).
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(155) Every subgraph of G with loops removed is a graph union of G.allTrees().
The theorem is a consequence of (35), (142), (143), (13), (146), and (138).

(156) G is loopless if and only if G is a graph union of G.allTrees(). The
theorem is a consequence of (155).

(157) The edges of G = G.loops() if and only if G.allTrees() is edgeless. The
theorem is a consequence of (138) and (143).

(158) The edges of G = G.loops() if and only if G.allTrees() = the set of all
createGraph(v) where v is a vertex of G. The theorem is a consequence of
(157), (138), and (142).

Let us consider G. The functor SubtreeRel(G) yielding a binary relation on
G.allTrees() is defined by the term

(Def. 13) SubgraphRel(G) |2 G.allTrees().

Now we state the propositions:

(159) Let us consider plain, tree-like subgraphs H1, H2 of G. Then 〈〈H1, H2〉〉 ∈
SubtreeRel(G) if and only if H1 is a subgraph of H2. The theorem is
a consequence of (1) and (138).

(160) field SubtreeRel(G) = G.allTrees(). The theorem is a consequence of
(40).

(161) SubtreeRel(G) partially orders G.allTrees(). The theorem is a consequ-
ence of (41) and (160).

Let us consider G. Let us observe that SubtreeRel(G) is reflexive, antisym-
metric, transitive, and partial-order. Now we state the propositions:

(162) SubtreeRel(H) = SubtreeRel(G) |2 H.allTrees(). The theorem is a con-
sequence of (43) and (144).

(163) Let us consider a loopless graph G. Then G is edgeless if and only if
SubtreeRel(G) = idG.allTrees(). The theorem is a consequence of (160),
(138), (159), (143), and (13).

(164) Let us consider a subgraph H of G with loops removed.
Then SubtreeRel(G) = SubtreeRel(H). The theorem is a consequence of
(146) and (162).

(165) The edges of G = G.loops() if and only if SubtreeRel(G) = idG.allTrees().
The theorem is a consequence of (164), (163), and (146).

(166) G.allTrees() has the upper Zorn property w.r.t. SubtreeRel(G). The the-
orem is a consequence of (160), (159), (44), (35), and (138).

Let G be a connected graph.
Every connected graph has a spanning tree: there exists a subgraph

of G which is plain, spanning, and tree-like.
Now we state the proposition:
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(167) Let us consider a connected graph G, and an object e. Suppose e ∈
(the edges of G) \ (G.loops()). Then there exists a plain, spanning, tree-
like subgraph T of G such that e ∈ the edges of T .

8. Spanning Tree Subgraph Set

Let us consider G. The functor G.allSpanningTrees() yielding a subset of
G.allSG() is defined by the term

(Def. 14) {H, where H is an element of ΩG.allSG() : H is spanning and tree-like}.

Now we state the propositions:

(168) G2 ∈ G1.allSpanningTrees() if and only if G2 is plain, spanning, acyclic
subgraph of G1 and connected. The theorem is a consequence of (1).

(169) G.allSpanningTrees() = G.allSpanningSG()∩G.allTrees(). The theorem
is a consequence of (168), (60), and (138).

(170) G.allSpanningTrees() = G.allConnectedSG()∩G.allSpanningForests().
The theorem is a consequence of (168), (102), and (124).

(171) Let us consider a spanning, acyclic subgraph H of G. Suppose H is con-
nected. Then H�(the graph selectors) ∈ G.allSpanningTrees(). The the-
orem is a consequence of (168).

(172) G is tree-like if and only ifG�(the graph selectors) ∈ G.allSpanningTrees().
The theorem is a consequence of (169), (141), and (62).

(173) G is connected if and only if G.allSpanningTrees() 6= ∅. The theorem is
a consequence of (168).

Let G be a non connected graph. Let us note that G.allSpanningTrees() is
empty. Let G be a connected graph. Observe that G.allSpanningTrees() is non
empty, tree-like, and simple. Now we state the propositions:

(174) Let us consider a connected graph G, and a connected, spanning sub-
graph H of G. Then H.allSpanningTrees() ⊆ G.allSpanningTrees(). The
theorem is a consequence of (168).

(175) Let us consider a loopless, connected graph G2. Suppose G2.allSpanning
Trees() ⊆ G1.allSpanningTrees(). Then G2 is a spanning subgraph of G1.
The theorem is a consequence of (168) and (167).

(176) Let us consider a subgraph H of G with loops removed.
ThenG.allSpanningTrees() = H.allSpanningTrees(). The theorem is a con-
sequence of (174) and (168).

(177) Let us consider loopless, connected graphs G1, G2. Then G1 ≈ G2 if
and only if G1.allSpanningTrees() = G2.allSpanningTrees(). The theorem
is a consequence of (176) and (175).
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(178) Let us consider connected graphs G1, G2, a subgraph G3 of G1 with loops
removed, and a subgraph G4 of G2 with loops removed. Then G3 ≈ G4 if
and only if G1.allSpanningTrees() = G2.allSpanningTrees(). The theorem
is a consequence of (176) and (177).

Let us consider a partial graph mapping F from G1 to G2. Now we state the
propositions:

(179) Suppose F is weak subgraph embedding and rngFV = the vertices of
G2. Then rng(SG2SGFunc(F )�G1.allSpanningTrees()) ⊆ G2.allSpanning
Trees(). The theorem is a consequence of (132), (113), and (170).

(180) Suppose F is weak subgraph embedding and onto. Then G2.allSpanning
Trees() = rng(SG2SGFunc(F )�G1.allSpanningTrees()). The theorem is
a consequence of (179), (133), (114), (170), and (31).

(181) If G2 is G1-directed-isomorphic, then G1.allSpanningTrees() and
G2.allSpanningTrees() are directed-isomorphic. The theorem is a consequ-
ence of (180), (31), and (168).

(182) If G2 is G1-isomorphic, then G1.allSpanningTrees() and
G2.allSpanningTrees() are isomorphic. The theorem is a consequence of
(180), (31), and (168).

Let us consider a subgraph G3 of G1 with loops removed and a subgraph G4

of G2 with loops removed. Now we state the propositions:

(183) If G4 is G3-directed-isomorphic, then G1.allSpanningTrees() and
G2.allSpanningTrees() are directed-isomorphic. The theorem is a consequ-
ence of (176) and (181).

(184) If G4 is G3-isomorphic, then G1.allSpanningTrees() and G2.allSpanning
Trees() are isomorphic. The theorem is a consequence of (176) and (182).

(185) Let us consider a connected graph G. Then every subgraph of G with
loops removed is a graph union of G.allSpanningTrees(). The theorem is
a consequence of (35), (168), (167), and (176).

(186) Every loopless, connected graph is a graph union ofG.allSpanningTrees().
The theorem is a consequence of (185).

(187) G is tree-like if and only if G.allSpanningTrees() = {G�(the graph
selectors)}. The theorem is a consequence of (168) and (172).

(188) G is connected if and only if the vertices of G.allSpanningTrees() =
{the vertices of G}. The theorem is a consequence of (123) and (170).
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9. Component Subgraph Set

Let us consider G. The functor G.allComponents() yielding a subset of
G.allSG() is defined by the term

(Def. 15) {H, where H is an element of ΩG.allSG() : H is component-like}.

Now we state the propositions:

(189) G2 ∈ G1.allComponents() if and only if G2 is a plain component of G1.
The theorem is a consequence of (1).

(190) G.allComponents() ⊆ G.allInducedSG()∩G.allConnectedSG(). The the-
orem is a consequence of (189) and (124).

(191) Let us consider a component H of G. Then H�(the graph selectors) ∈
G.allComponents(). The theorem is a consequence of (189).

(192) G is connected if and only ifG�(the graph selectors) ∈ G.allComponents().
The theorem is a consequence of (191) and (189).

Let us consider G. Let us observe that G.allComponents() is non empty,
vertex-disjoint, edge-disjoint, ∪-tolerating, plain, and connected. Now we state
the propositions:

(193) If G2.allComponents() ⊆ G1.allComponents(), then G2 is a subgraph of
G1. The theorem is a consequence of (189).

(194) G1 ≈ G2 if and only if G1.allComponents() = G2.allComponents(). The
theorem is a consequence of (189) and (193).

(195) Let us consider a non empty, one-to-one partial graph mapping F from
G1 to G2. Suppose F is isomorphism. Then G2.allComponents() =
rng(SG2SGFunc(F )�G1.allComponents()). The theorem is a consequence
of (189).

(196) If G2 is G1-directed-isomorphic, then G1.allComponents() and
G2.allComponents() are directed-isomorphic. The theorem is a consequ-
ence of (195), (31), and (189).

(197) IfG2 isG1-isomorphic, thenG1.allComponents() andG2.allComponents()
are isomorphic. The theorem is a consequence of (195), (31), and (189).

(198) G is a graph union of G.allComponents(). The theorem is a consequence
of (35), (189), (22), (14), (13), and (23).

(199) (i) G is loopless iff G.allComponents() is loopless, and

(ii) G is non-multi iff G.allComponents() is non-multi, and

(iii) G is non-directed-multi iff G.allComponents() is non-directed-multi,
and

(iv) G is simple iff G.allComponents() is simple, and
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(v) G is directed-simple iff G.allComponents() is directed-simple, and

(vi) G is acyclic iff G.allComponents() is acyclic, and

(vii) G is edgeless iff G.allComponents() is edgeless, and

(viii) G is chordal iff G.allComponents() is chordal, and

(ix) G is loopfull iff G.allComponents() is loopfull.
The theorem is a consequence of (198).

Let G be a loopless graph. Observe thatG.allComponents() is loopless. LetG
be a non-multi graph. One can verify that G.allComponents() is non-multi. Let
G be a non-directed-multi graph. Note that G.allComponents() is non-directed-
multi. Let G be a simple graph. Observe that G.allComponents() is simple.
Let G be a directed-simple graph. One can verify that G.allComponents() is
directed-simple.

Let G be an acyclic graph. Note that G.allComponents() is acyclic. Let G
be an edgeless graph. Observe that G.allComponents() is edgeless. Let G be
a chordal graph. One can verify that G.allComponents() is chordal. Let G be
a loopfull graph. One can check that G.allComponents() is loopfull. Now we
state the propositions:

(200) G is connected if and only if G.allComponents() = {G�(the graph
selectors)}. The theorem is a consequence of (192) and (189).

(201) The vertices of G.allComponents() = G.componentSet().

(202) G.numComponents() = G.allComponents().
Proof: Define P[object, object] ≡ there exists a plain component H of
G such that $1 = H and $2 = the vertices of H. For every object x such
that x ∈ G.allComponents() there exists an object y such that P[x, y].
Consider f being a function such that dom f = G.allComponents() and
for every object x such that x ∈ G.allComponents() holds P[x, f(x)]. �
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the field of computer science, e.g., error correcting codes or cryptology [8]. First,
we prove some preliminary theorems about real unitary space. Next, we formali-
ze the definition of the Gram-Schmidt process that finds orthonormal basis. We
followed [5] in the formalization, continuing work developed in [7], [6].
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1. Preliminaries

Let V be a non empty RLS structure, r be a finite sequence of elements of
R, and x be a finite sequence of elements of V . The functor r◦x yielding a finite
sequence of elements of V is defined by

(Def. 1) len it = lenx and for every natural number i such that 1 ¬ i ¬ lenx
holds it(i) = r/i · (x/i).

Now we state the proposition:
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(1) Let us consider a real linear space V , a subset A of V , a finite sequence
x of elements of V , and a finite sequence r of elements of R. Suppose
rng x ⊆ A and lenx = len r. Then

∑
(r ◦ x) ∈ Lin(A).

Proof: Define P[natural number] ≡ for every finite sequence x of elements
of V for every finite sequence r of elements of R such that $1 = lenx and
rng x ⊆ A and lenx = len r holds

∑
(r ◦ x) ∈ Lin(A). P[0]. For every

natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �

Let us consider a real linear space V and subsets A, B of V . Now we state
the propositions:

(2) If A ⊆ the carrier of Lin(B), then Lin(A) is a subspace of Lin(B).

(3) Suppose A ⊆ the carrier of Lin(B) and B ⊆ the carrier of Lin(A). Then
Lin(A) = Lin(B). The theorem is a consequence of (2).

Let V be a non empty unitary space structure, u be a point of V , and x be
a finite sequence of elements of V . The functor (u|x) yielding a finite sequence
of elements of R is defined by

(Def. 2) len it = lenx and for every natural number i such that 1 ¬ i ¬ lenx
holds it(i) = (u|x/i).

Now we state the propositions:

(4) Let us consider a non empty unitary space structure V , a point u of V ,
a finite sequence x of elements of V , and a natural number i. Suppose
1 ¬ i ¬ lenx. Then ((u|x) ◦ x)(i) = (u|x/i) · (x/i).

(5) Let us consider a real unitary space V , a point u of V , and a finite
sequence x of elements of V . Then (u|

∑
x) =

∑
(u|x).

Proof: Define P[natural number] ≡ for every finite sequence x of elements
of V such that $1 = lenx holds (u|

∑
x) =

∑
(u|x). P[0]. For every natural

number k such that P[k] holds P[k+1]. For every natural number k, P[k].
�

(6) Let us consider a real unitary space V , a point u of V , a natural number
n, and a finite sequence x of elements of V . Suppose 1 ¬ n ¬ lenx and for
every natural number i such that 1 ¬ i ¬ lenx and n 6= i holds (u|x/i) = 0.
Then (u|

∑
x) = (u|x/n).

Proof: Define P[natural number] ≡ for every finite sequence x of elements
of V such that $1 = lenx and 1 ¬ n ¬ lenx and for every natural number
i such that 1 ¬ i ¬ lenx and n 6= i holds (u|x/i) = 0 holds (u|

∑
x) =

(u|x/n). For every natural number k such that P[k] holds P[k + 1]. For
every natural number k, P[k]. �

Let us consider a real unitary space H. Now we state the propositions:
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(7) There exists a function F from (the carrier of H) × (the carrier of H)∗

into (the carrier of H)∗ such that for every point x of H for every finite
sequence e of elements of H, there exists a finite sequence F2 of elements
of H such that F2 = F (x, e) and F2 = (x|e) ◦ e.
Proof: Set C = the carrier of H. Define R[object, object, object] ≡ there
exists a point x of H and there exists a finite sequence e of elements of
C such that $1 = x and $2 = e and there exists a finite sequence F2 of
elements of C such that F2 = $3 and F2 = (x|e) ◦ e. For every objects x, y
such that x ∈ C and y ∈ C∗ there exists an object z such that z ∈ C∗ and
R[x, y, z]. Consider F being a function from C ×C∗ into C∗ such that for
every objects z, y such that z ∈ C and y ∈ C∗ holds R[z, y, F (z, y)]. �

(8) Every orthonormal family of H is linearly independent.
Proof: For every linear combination l of G such that

∑
l = 0H holds

the support of l = ∅. �

2. Gram-Schmidt Process

Let H be a real unitary space. The functor SeqProj(H) yielding a function
from (the carrier of H)× (the carrier of H)∗ into (the carrier of H)∗ is defined
by

(Def. 3) for every point x of H and for every finite sequence e of elements of H,
there exists a finite sequence F2 of elements of H such that F2 = it(x, e)
and F2 = (x|e) ◦ e.

Now we state the proposition:

(9) Let us consider a real unitary spaceH, and a finite sequence x of elements
of H. Suppose x is one-to-one and rng x is linearly independent and 1 ¬
lenx. Then there exists a finite sequence e of elements of H such that

(i) lenx = len e, and

(ii) rng e is an orthonormal family of H, and

(iii) e is one-to-one, and

(iv) Lin(rng x) = Lin(rng e), and

(v) e/1 = 1
‖x/1‖

· (x/1), and

(vi) for every natural number k such that 1 ¬ k < lenx there exists a fi-
nite sequence g of elements of H such that g = (SeqProj(H))(〈〈x/1+k,

e�k〉〉) and e/k+1 = 1
‖x/1+k−

∑
g‖ · (x/1+k −

∑
g), and

(vii) for every natural number k such that k ¬ lenx holds rng(e�k) is an or-
thonormal family of H and e�k is one-to-one and Lin(rng(x�k)) =
Lin(rng(e�k)).
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Proof: Set C = the carrier of H. Reconsider F1 =
⋃
{Ci, where i is

a natural number : i ¬ lenx} as a non empty set. Set F = SeqProj(H).
Define R[object, object, object] ≡ there exists a C-valued finite sequence
e and there exists a natural number n such that e = $2 and n = $1 and
if len e < lenx, then there exists a C-valued finite sequence g such that
g = F (〈〈x/1+len e, e〉〉) and $3 = e a 〈 1

‖x/1+len e−
∑

g‖ · (x/1+len e −
∑
g)〉. For

every natural number n such that 1 ¬ n < lenx for every element e of F1,
there exists an element f of F1 such thatR[n, e, f ]. Set E0 = 〈 1

‖x/1‖
·(x/1)〉.

Consider E being a finite sequence of elements of F1 such that lenE =
lenx and E(1) = E0 or lenx = 0 and for every natural number n such
that 1 ¬ n < lenx holds R[n,E(n), E(n + 1)]. For every natural number
k such that k < lenx there exists a finite sequence e of elements of C
such that len e = k + 1 and E(k + 1) = e. For every natural number k
such that 1 ¬ k < lenx there exist finite sequences f , g of elements of C
such that E(k) = f and len f = k and g = F (〈〈x/1+k, f〉〉) and E(k + 1) =
fa〈 1

‖x/1+k−
∑

g‖ ·(x/1+k−
∑
g)〉. DefineQ[natural number, object, object] ≡

there exist finite sequences f , g of elements of C and there exists a point e1

of H such that E($1) = f and len f = $1 and e1 = $3 and g = F (〈〈x/1+$1 ,

f〉〉) and E($1 + 1) = f a 〈e1〉 and e1 = 1
‖x/1+$1−

∑
g‖ · (x/1+$1 −

∑
g). For

every natural number k such that 1 ¬ k < lenx for every element e of H,
there exists an element h of H such that Q[k, e, h]. Set e0 = 1

‖x/1‖
· (x/1).

Consider e being a finite sequence of elements of H such that len e =
lenx and e(1) = e0 or lenx = 0 and for every natural number n such
that 1 ¬ n < lenx holds Q[n, e(n), e(n + 1)]. For every natural number
n such that 1 ¬ n < lenx there exist finite sequences f , g of elements
of C such that E(n) = f and len f = n and g = F (〈〈x/1+n, f〉〉) and
E(n + 1) = f a 〈e/n+1〉 and e/n+1 = 1

‖x/1+n−
∑

g‖ · (x/1+n −
∑
g). For

every natural number n such that 1 ¬ n ¬ lenx holds E(n) = e�n. For
every natural number k such that 1 ¬ k < lenx there exists a finite
sequence g of elements of C such that g = F (〈〈x/1+k, e�k〉〉) and e/k+1 =

1
‖x/1+k−

∑
g‖ · (x/1+k −

∑
g). Define S[natural number] ≡ if $1 ¬ lenx,

then rng(e�$1) is an orthonormal family of H and e�$1 is one-to-one and
Lin(rng(x�$1)) = Lin(rng(e�$1)). S[0]. For every natural number k such
that S[k] holds S[k + 1]. For every natural number k, S[k]. �

Let H be a real unitary space and x be a finite sequence of elements of H.
Assume x is one-to-one and rng x is linearly independent and 1 ¬ lenx. The
functor PROCESSGramSchmidt(x) yielding a finite sequence of elements of H is
defined by
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(Def. 4) lenx = len it and rng it is an orthonormal family of H and it is one-
to-one and Lin(rng x) = Lin(rng it) and it/1 = 1

‖x/1‖
· (x/1) and for every

natural number k such that 1 ¬ k < lenx there exists a finite sequence g
of elements of H such that g = (SeqProj(H))(〈〈x/1+k, it�k〉〉) and it/k+1 =

1
‖x/1+k−

∑
g‖ · (x/1+k −

∑
g) and for every natural number k such that

k ¬ lenx holds rng(it�k) is an orthonormal family of H and it�k is one-
to-one and Lin(rng(x�k)) = Lin(rng(it�k)).

Now we state the proposition:

(10) Let us consider a real unitary space H, and a finite sequence x of ele-
ments of H. Suppose x is one-to-one and rng x is linearly independent and
1 ¬ lenx. Then rng PROCESSGramSchmidt(x) is linearly independent. The
theorem is a consequence of (8).
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Summary. Since isosceles triangular and trapezoidal membership func-
tions [4] are easy to manage, they were applied to various fuzzy approximate
reasoning [10], [13], [14]. The centroids of isosceles triangular and trapezoidal
membership functions are mentioned in this article [16], [9] and formalized in
[11] and [12]. Some propositions of the composition mapping (f +· g, or f +* g
using Mizar formalism, where f , g are affine mappings), are proved following [3],
[15]. Then different notations for the same isosceles triangular and trapezoidal
membership function are formalized.

We proved the agreement of the same function expressed with different pa-
rameters and formalized those centroids with parameters. In addition, various
properties of membership functions on intervals where the endpoints of the do-
main are fixed and on general intervals are formalized in Mizar [1], [2]. Our formal
development contains also some numerical results which can be potentially useful
to encode either fuzzy numbers [7], or even fuzzy implications [5], [6] and extends
the possibility of building hybrid rough-fuzzy approach in the future [8].
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1. Preliminaries

Let us consider real numbers a, b, c, d. Now we state the propositions:

(1) [a, d] \ [b, c] ⊆ [a, b[ ∪ ]c, d].

(2) If a < b < c < d, then [a, d] \ [b, c] ⊆ [a, b] ∪ [c, d].
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(3) Let us consider real numbers p, q, r, s. If p < r ¬ s < q, then [r, s] ⊂
[p, q].

2. Continuous Functions

Let us consider functions f , g from R into R. Now we state the propositions:

(4) If f is continuous and g is continuous, then max(f, g) is continuous.

(5) If f is continuous and g is continuous, then min(f, g) is continuous.

Let us consider non empty, closed interval subsets A, B of R. Now we state
the propositions:

(6) If B ⊂ A, then inf A < inf B or supB < supA.

(7) If B ⊆ A, then inf A ¬ inf B and supB ¬ supA.

(8) Let us consider a real number r, and functions f , g from R into R. Then
r · (f+·g) = r · f+·r · g.
Proof: Set F1 = r · (f+·g). Set F2 = r · f+·r · g. For every object x such
that x ∈ domF1 holds F1(x) = F2(x). �

From now on A denotes a non empty subset of R. Now we state the propo-
sitions:

(9) Let us consider a real number r, and a function f from R into R. Then
(r · f)�A = r · (f�A).
Proof: Set F = (r · f)�A. Set g = r · (f�A). For every object x such that
x ∈ domF holds F (x) = g(x). �

(10) Let us consider a real number r, and a partial function f from R to R.
Suppose A ⊆ dom f . Then (r · f)�A = r · (f�A).
Proof: Set F = (r · f)�A. Set g = r · (f�A). For every object x such that
x ∈ domF holds F (x) = g(x). �

(11) Let us consider a real number s, and functions f , g from R into R. Then
f�]−∞, s]+·g�[s,+∞[ is a function from R into R.

(12) Let us consider real numbers a, b, r.
Then r · (AffineMap(a, b)) = AffineMap(r · a, r · b).

(13) Let us consider a real number s, and functions f , g from R into R. Then

(i) dom(f�]−∞, s]+·g�[s,+∞[) = R, and

(ii) dom(f�]−∞, s[+·g�[s,+∞[) = R.

(14) Let us consider real numbers a, b, c. Suppose b > 0 and c > 0. Let us con-
sider a real number x. Then ((AffineMap( bc , b−

a·b
c ))�]−∞, a]+·(AffineMap

(− b
c , b+ a·b

c ))�[a,+∞[)(x) = b− | b·(x−a)
c |.

Proof: For every real number x, ((AffineMap( bc , b−
a·b
c ))�]−∞, a]+·(Affine

Map(− b
c , b+ a·b

c ))�[a,+∞[)(x) = b− | b·(x−a)
c |. �
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(15) Let us consider real numbers a, b, c, and a function f from R into R.
Suppose b > 0 and c > 0 and for every real number x, f(x) = b −
| b·(x−a)

c |. Then f = (AffineMap( bc , b −
a·b
c ))�]−∞, a]+·(AffineMap(− b

c , b +
a·b
c ))�[a,+∞[. The theorem is a consequence of (14).

Let us consider real numbers a, b. Now we state the propositions:

(16) Suppose a > 0. Then |AffineMap(a, b)| = −(AffineMap(a, b))�]−∞, −ba [+
·(AffineMap(a, b))�[−ba ,+∞[.
Proof: For every object x such that x ∈ dom |AffineMap(a, b)| holds
|AffineMap(a, b)|(x) = (−(AffineMap(a, b))�]−∞, −ba [+·(AffineMap(a, b))
�[−ba ,+∞[)(x). �

(17) Suppose a < 0. Then |AffineMap(a, b)| = (AffineMap(a, b))�]−∞, −ba [+·
−(AffineMap(a, b))�[−ba ,+∞[.
Proof: Set f = (AffineMap(a, b))�]−∞, −ba [+·−(AffineMap(a, b))�[−ba ,
+∞[. For every object x such that x ∈ dom((−(AffineMap(a, b)))�[−ba ,
+∞[) holds (−(AffineMap(a, b))�[−ba ,+∞[)(x) = ((−(AffineMap(a, b)))
�[−ba ,+∞[)(x). For every element x of R, f(x) = |AffineMap(a, b)|(x). �

(18) Let us consider real numbers a, b, c, and a function f from R into R.
Suppose b > 0 and c > 0 and for every real number x, f(x) = max(0, b−
| b·(x−a)

c |). Let us consider a real number x. If x /∈ [a − c, a + c], then
f(x) = 0.

(19) Let us consider real numbers a, b, c, and functions f , g from R into R.
Suppose a < b < c. Then (f�]−∞, b]+·g�[b,+∞[)�[a, c] = f�[a, b]+·g�[b, c].
Proof: For every object x such that x ∈ dom((f�]−∞, b]+·g�[b,+∞[)�[a,
c]) holds ((f�]−∞, b]+·g�[b,+∞[)�[a, c])(x) = (f�[a, b]+·g�[b, c])(x). �

Let us consider real numbers a, b, c and a function f from R into R. Now
we state the propositions:

(20) Suppose b > 0 and c > 0. Then ((AffineMap( bc , b−
a·b
c ))�]−∞, a]+·(Affine

Map(− b
c , b + a·b

c ))�[a,+∞[)�[a − c, a + c] = (AffineMap( bc , b −
a·b
c ))�[a −

c, a]+·(AffineMap(− b
c , b+ a·b

c ))�[a, a+ c]. The theorem is a consequence of
(19).

(21) Suppose a < b < c and f is integrable on [a, c] and f�[a, c] is bounded.
Then

(i) f is integrable on [a, b], and

(ii) f is integrable on [b, c], and

(iii) f�[a, b] is bounded, and

(iv) [a, b] ⊆ dom f , and



62 takashi mitsuishi

(v)
c∫
a

f(x)dx =
b∫
a

f(x)dx+
c∫
b

f(x)dx.

(22) Let us consider real numbers a, b, c, d, and a function f from R into R.
Suppose a < b < c < d and f is integrable on [a, d] and f�[a, d] is bounded
and for every real number x such that x ∈ [a, b] ∪ [c, d] holds f(x) = 0.
Then centroid(f, [a, d]) = centroid(f, [b, c]).

(23) Let us consider non empty, closed interval subsets A, B of R, and a func-
tion f from R into R. Suppose inf B 6= supB and B ⊆ A and f is inte-
grable on A and f�A is bounded and for every real number x such that
x ∈ A \ B holds f(x) = 0 and f(inf B) = 0 and f(supB) = 0. Then
centroid(f,A) = centroid(f,B).
Proof: inf A ¬ inf B and supB ¬ supA. For every real number x such
that x ∈ [inf A, inf B] ∪ [supB, supA] holds f(x) = 0. �

3. Triangular and Trapezoidal Membership Functions

Now we state the proposition:

(24) Let us consider real numbers a, c, and a function f from R into R.
Suppose c > 0 and for every real number x, f(x) = max(0, 1 − |x−ac |).
Then f is a triangular fuzzy set of R.
Proof: Define H(element of R) = (1 − |$1−ac |)(∈ R). Consider h being
a function from R into R such that for every element x of R, h(x) = H(x).
For every real number x, f(x) = max(0,min(1, h(x))). �

Let us consider real numbers a, b, c and a function f from R into R. Now
we state the propositions:

(25) Suppose b > 1 and c > 0 and for every real number x, f(x) =
min(1,max(0, b − | b·(x−a)

c |)). Then f is trapezoidal fuzzy set of R and
normalized fuzzy set of R.

(26) If b > 0 and c > 0 and for every real number x, f(x) = max(0, b −
| b·(x−a)

c |), then f = b · TriangularFS((a− c), a, (a+ c)).
Proof: Set g = b · TriangularFS((a − c), a, (a + c)). For every object x
such that x ∈ dom f holds f(x) = g(x). �

(27) If b > 0 and c > 0 and for every real number x, f(x) = max(0, b −
| b·(x−a)

c |), then f is Lipschitzian.
Proof: For every real number x, f(x) = max(0,min(b, b · (1− |x−ac |))). �

(28) Suppose b > 0 and c > 0 and f�[a − c, a + c] = (AffineMap( bc , b −
a·b
c ))�[inf[a−c, a+c],

b+a·b
c
−(b−a·b

c
)

b
c
−− b

c

]+·(AffineMap(− b
c , b+

a·b
c ))�[

b+a·b
c
−(b−a·b

c
)

b
c
−− b

c

,
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sup[a− c, a+ c]]. Then centroid(f, [a− c, a+ c]) = a.

(29) Suppose b > 0 and c > 0 and for every real number x, f(x) = max(0, b−
| b·(x−a)

c |). Then f�[a − c, a + c] = (AffineMap( bc , b −
a·b
c ))�[inf[a − c, a +

c],
b+a·b

c
−(b−a·b

c
)

b
c
−− b

c

]+·(AffineMap(− b
c , b+ a·b

c ))�[
b+a·b

c
−(b−a·b

c
)

b
c
−− b

c

, sup[a−c, a+c]].

Proof: Set g = (AffineMap( bc , b−
a·b
c ))�[inf[a− c, a+ c],

b+a·b
c
−(b−a·b

c
)

b
c
−− b

c

]+·

(AffineMap(− b
c , b+ a·b

c ))�[
b+a·b

c
−(b−a·b

c
)

b
c
−− b

c

, sup[a− c, a+ c]]. For every object

x such that x ∈ dom(f�[a− c, a+ c]) holds (f�[a− c, a+ c])(x) = g(x). �

(30) If b > 0 and c > 0 and for every real number x, f(x) = max(0, b −
| b·(x−a)

c |), then centroid(f, [a−c, a+c]) = a. The theorem is a consequence
of (29) and (28).

In the sequel A denotes a non empty, closed interval subset of R. Let us
consider real numbers a, b, c and a function f from R into R. Now we state the
propositions:

(31) If b > 0 and c > 0 and for every real number x, f(x) = max(0, b −
| b·(x−a)

c |), then f is integrable on A and f�A is bounded. The theorem is
a consequence of (27).

(32) Suppose b > 0 and c > 0 and for every real number x, f(x) = max(0, b−
| b·(x−a)

c |). Then

(i) f(inf[a− c, a+ c]) = 0, and

(ii) f(a− c) = 0, and

(iii) f(sup[a− c, a+ c]) = 0, and

(iv) f(a+ c) = 0.

(33) If b > 0 and c > 0 and [a − c, a + c] ⊆ A and for every real number
x, f(x) = max(0, b − | b·(x−a)

c |), then centroid(f,A) = a. The theorem is
a consequence of (18), (32), (31), (23), and (30).

Let us consider real numbers a, b, c. Now we state the propositions:

(34) If a < b < c and b−a = c−b, then centroid(TriangularFS(a, b, c), [a, c]) =
b.
Proof: For every real number x, (TriangularFS(a, b, c))(x) = max(0, 1−
|1·(x−b)b−a |). centroid(TriangularFS(a, b, c), [b− (b− a), b+ (b− a)]) = b. �

(35) If a < b < c, then TriangularFS(a, b, c) is integrable on A and
TriangularFS(a, b, c)�A is bounded.

Let us consider real numbers a, b, c, d. Now we state the propositions:

(36) If a < b < c and b−a = c−b and d 6= 0, then centroid(d·TriangularFS(a, b,
c), [a, c]) = b. The theorem is a consequence of (35) and (34).
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(37) If a < b < c < d, then TrapezoidalFS(a, b, c, d) is integrable on A and
TrapezoidalFS(a, b, c, d)�A is bounded.

(38) Let us consider real numbers a, b, c, d, r. If a < b < c < d, then
r·TrapezoidalFS(a, b, c, d) is integrable on A. The theorem is a consequence
of (37).

(39) Let us consider real numbers a1, c, a2, d, and a function f from R into
R. Suppose c > 0 and d > 0 and a1 < a2 and f = (d ·TrapezoidalFS((a1−
c), a1, a2, (a2 + c)))�[a1− c, a2 + c]. Then f is integrable on [a1− c, a2 + c].
The theorem is a consequence of (38).

(40) Let us consider real numbers a, b, c, functions f , g from R into R, and
a partial function h from R to R. Suppose a ¬ b ¬ c and f is continuous
and g is continuous and h�[a, c] = f�[a, b]+·g�[b, c] and f(b) = g(b) and
[a, c] ⊆ domh. Then h�[a, c] is continuous.
Proof: For every real numbers x0, r such that x0 ∈ [a, c] and 0 < r there
exists a real number s such that 0 < s and for every real number x1 such
that x1 ∈ [a, c] and |x1 − x0| < s holds |h(x1)− h(x0)| < r. �

(41) Let us consider real numbers a, b, p, q, and a function f from R into R.
Suppose a 6= p and f = (AffineMap(a, b))�]−∞, q−ba−p ]+·(AffineMap(p, q))

�[ q−ba−p ,+∞[. Then f is Lipschitzian.

(42) Let us consider real numbers a, b, c, and functions f , g, h from R in-
to R. Suppose a ¬ b ¬ c and f is continuous and g is continuous and

h�[a, c] = f�[a, b]+·g�[b, c] and f(b) = g(b). Then
∫

[a,c]

(idR · h)(x)dx =

∫
[a,b]

(idR · f)(x)dx+
∫

[b,c]

(idR · g)(x)dx.

Proof: Set G = (idR · f)�[a, b]+·(idR · g)�[b, c]. [a, c] = R∩ [a, c]. For every
object x such that x ∈ dom((idR · h)�[a, c]) holds (idR · (h�[a, c]))(x) =
((idR · h)�[a, c])(x). For every object x such that x ∈ domG holds G(x) =
(idR · (h�[a, c]))(x). Reconsider h1 = h as a partial function from R to R.
h1�[a, c] is continuous. �

Let us consider real numbers a, b, c, d, r. Now we state the propositions:

(43) Suppose a < b < c < d. Then ((AffineMap( 1
b−a ,−

a
b−a))�[a, b]+·(Affine

Map(0, 1))�[b, c])+·(AffineMap(− 1
d−c ,

d
d−c))�[c, d] = TrapezoidalFS(a, b,

c, d)�[a, d].
Proof: For every object x such that x ∈ dom(TrapezoidalFS(a, b, c, d)�[a,
d]) holds (((AffineMap( 1

b−a ,−
a
b−a))�[a, b]+·(AffineMap(0, 1))�[b, c])+·

(AffineMap(− 1
d−c ,

d
d−c))�[c, d])(x) = (TrapezoidalFS(a, b, c, d)�[a, d])(x). �

(44) Suppose a < b < c < d. Then TrapezoidalFS(a, b, c, d) = (AffineMap(0,
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0))�R \ ]a, d[+·TrapezoidalFS(a, b, c, d)�[a, d]. The theorem is a consequ-
ence of (43).

(45) Suppose a < b < c < d. Then ((r · (AffineMap( 1
b−a ,−

a
b−a)))�[a, b]+·(r ·

(AffineMap(0, 1)))�[b, c])+·(r · (AffineMap(− 1
d−c ,

d
d−c)))�[c, d] =

(r · TrapezoidalFS(a, b, c, d))�[a, d].

Proof: Set f1 = (AffineMap( 1
b−a ,−

a
b−a))�[a, b]. Set f2 = (AffineMap(0,

1))�[b, c]. Set f3 = (AffineMap(− 1
d−c ,

d
d−c))�[c, d]. Set F1 = AffineMap( 1

b−a ,

− a
b−a). Set F2 = AffineMap(0, 1). Set F3 = AffineMap(− 1

d−c ,
d
d−c). For

every object x such that x ∈ dom(r·((f1+·f2)+·f3)) holds (((r·F1)�[a, b]+·
(r · F2)�[b, c])+·(r · F3)�[c, d])(x) = (r · ((f1+·f2)+·f3))(x). �

Let us consider real numbers a1, c, a2, d. Now we state the propositions:

(46) Suppose c > 0 and d > 0 and a1 < a2.

Then ((AffineMap(dc ,−
d
c · (a1 − c)))�[a1−c, a1]+·(AffineMap(0, d))�[a1, a2])

+·(AffineMap(−d
c ,

d
c · (a2 + c)))�[a2, a2 + c] = (d · TrapezoidalFS((a1 −

c), a1, a2, (a2 + c)))�[a1 − c, a2 + c]. The theorem is a consequence of (12)
and (45).

(47) Suppose c > 0 and d > 0 and a1 < a2. Then
∫

[a1−c,a1]

(AffineMap(
d

c
,−d

c

·(a1 − c)))(x)dx+
∫

[a1,a2]

(AffineMap(0, d))(x)dx+
∫

[a2,a2+c]

(AffineMap(−d
c
,
d

c

·(a2 + c)))(x)dx = d · (a2 − a1 + c).

(48) Let us consider real numbers a1, c, a2, d, and a function f from R
into R. Suppose c > 0 and d > 0 and a1 < a2 and f�[a1 − c, a2 + c] =
((AffineMap(dc ,−

d
c · (a1 − c)))�[a1 − c, a1]+·(AffineMap(0, d))�[a1, a2])+·

(AffineMap(−d
c ,

d
c · (a2 + c)))�[a2, a2 + c]. Then

∫
[a1−c,a2+c]

f(x)dx =

∫
[a1−c,a1]

(AffineMap(
d

c
,−d

c
· (a1 − c)))(x)dx+

∫
[a1,a2]

(AffineMap(0, d))(x)dx+

∫
[a2,a2+c]

(AffineMap(−d
c
,
d

c
· (a2 + c)))(x)dx. The theorem is a consequence

of (46).

(49) Let us consider real numbers a1, c, a2, d. Suppose c > 0 and d > 0 and
a1 < a2. Then centroid(d · TrapezoidalFS((a1 − c), a1, a2, (a2 + c)), [a1 −
c, a2 + c]) = a1+a2

2 . The theorem is a consequence of (46), (48), and (47).
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Summary. A classical algebraic geometry is study of zero points of system
of multivariate polynomials [3], [7] and those zero points would be corresponding
to points, lines, curves, surfaces in an affine space. In this article we give some
basic definition of the area of affine algebraic geometry such as algebraic set,
ideal of set of points, and those properties according to [4] in the Mizar system
[5], [2].

We treat an affine space as the n-fold Cartesian product kn as the same
manner appeared in [4]. Points in this space are identified as n-tuples of elements
from the set k. The formalization of points, which are n-tuples of numbers, is
described in terms of a mapping from n to k, where the domain n corresponds
to the set n = {0, 1, . . . , n − 1}, and the target domain k is the same as the
scalar ring or field of polynomials. The same approach has been applied when
evaluating multivariate polynomials using n-tuples of numbers [10].

This formalization aims at providing basic notions of the field which enable to
formalize geometric objects such as algebraic curves which is used e.g. in coding
theory [11] as well as further formalization of the fields [8] in the Mizar system,
including the theory of polynomials [6].
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1. Evaluation Functions Revisited

From now on A denotes a non degenerated commutative ring, R denotes
a non degenerated integral domain, n denotes a non empty ordinal number, o,
o1, o2 denote objects, X, Y denote subsets of (ΩR)n, S, T denote subsets of
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Polynom-Ring(n,R), F , G denote finite sequences of elements of the carrier of
Polynom-Ring(n,R), and x denotes a function from n into R.

Let n be an ordinal number, L be a right zeroed, add-associative, right
complementable, well unital, distributive, non trivial double loop structu-
re, and p be a polynomial of n,L. Note that the functor {p} yields a subset
of Polynom-Ring(n,L). Let f be an element of Polynom-Ring(n,L) and x be
a function from n into L. The functor Eval(f, x) yielding an element of L is
defined by

(Def. 1) there exists a polynomial p of n,L such that p = f and it = eval(p, x).

Let F be a finite sequence of elements of the carrier of Polynom-Ring(n,L).
The functor Eval(F, x) yielding a finite sequence of elements of the carrier of L
is defined by

(Def. 2) dom it = domF and for every natural number i such that i ∈ domF

holds it(i) = Eval(F/i, x).

Now we state the propositions:

(1) Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, and an or-
dinal number n. Then Support 0nL = ∅.

(2) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial do-
uble loop structure L, elements f , g of Polynom-Ring(n,L), and a function
x from n into L. Then Eval(f + g, x) = Eval(f, x) + Eval(g, x).

(3) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial,
commutative, associative, non empty double loop structure L, elements
f , g of Polynom-Ring(n,L), and a function x from n into L. Then Eval(f ·
g, x) = (Eval(f, x)) · (Eval(g, x)).

(4) Let us consider a natural number N0, an ordinal number n, a right
zeroed, add-associative, right complementable, Abelian, well unital,
distributive, non trivial, commutative, associative, non empty do-
uble loop structure L, a finite sequence F of elements of the carrier of
Polynom-Ring(n,L), and a function x from n into L. Suppose lenF =
N0 + 1. Then Eval(F, x) = Eval(F �N0, x) a 〈Eval(F/ lenF , x)〉.
Proof: For every natural number k such that 1 ¬ k ¬ len Eval(F, x)
holds (Eval(F, x))(k) = (Eval(F �N0, x) a 〈Eval(F/ lenF , x)〉)(k). �

(5) Let us consider an ordinal number n, a right zeroed, add-associative,
right complementable, Abelian, well unital, distributive, non trivial,
commutative, associative, non empty double loop structure L, a finite
sequence F of elements of the carrier of Polynom-Ring(n,L), and a func-
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tion x from n into L. Then Eval(
∑
F, x) =

∑
Eval(F, x). The theorem is

a consequence of (2) and (4).

2. Monic Multivariate Polynomials with Degree 1

Let us consider n and R. Let a be a function from n into R and i be an ele-
ment of n. The functor deg1Poly(a, i) yielding a polynomial of n,R is defined
by the term

(Def. 3) 1 1(i, R)− (a(i)�(n,R)).

Let us consider an element a of R and an element i of n. Now we state the
propositions:

(6) (i) (1 1(i, R))(UnitBag i) = 1R, and

(ii) (a�(n,R))(EmptyBag n) = a, and

(iii) (1 1(i, R))(EmptyBag n) = 0R, and

(iv) (a�(n,R))(UnitBag i) = 0R.
Proof: Set U = UnitBag i. U 6= EmptyBag n. �

(7) (i) 1 1(i, R) is a polynomial of n,R, and

(ii) a�(n,R) is a polynomial of n,R.

(8) Let us consider a non zero element a of R, an element b of R, and
an element i of n. Then (a�(n,R)) ∗ 1 1(i, R) + (b�(n,R)) is a polynomial
of n,R.

(9) Let us consider an element a of R, and an element i of n.
Then Support(1 1(i, R) + (a�(n,R))) ⊆ {UnitBag i} ∪ {EmptyBag n}.

(10) degree(EmptyBag n) = 0.

(11) Let us consider an element x of n. Then degree(UnitBag x) = 1.

(12) Let us consider an element a of R, and an element i of n.
Then degree(1 1(i, R) + (a�(n,R))) = 1. The theorem is a consequence of
(9), (6), (1), (10), and (11).

3. Affine Space and Algebraic Sets from Ideal

Let us consider R and n. Let f be a polynomial of n,R. The functor Roots(f)
yielding a subset of (ΩR)n is defined by the term

(Def. 4) {x, where x is a function from n into R : eval(f, x) = 0R}.

Now we state the propositions:
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(13) Roots(0nR) = (ΩR)n.
Proof: If o ∈ (ΩR)n, then o ∈ Roots(0nR). �

(14) Roots(1 (n,R)) = ∅(ΩR)n .

Let us consider R, n, and S. The functor Roots(S) yielding a subset of (ΩR)n

is defined by the term

(Def. 5)


{x, where x is a function from n into R : for every polynomial p of
n,R such that p ∈ S holds eval(p, x) = 0R}, if S 6= ∅,
∅,otherwise.

Now we state the proposition:

(15) Let us consider a polynomial p of n,R. Then Roots({p}) = Roots(p).

Let us consider R and n. Let I be a subset of (ΩR)n. We say that I is
algebraic set from ideal if and only if

(Def. 6) there exists an ideal J of Polynom-Ring(n,R) such that I = Roots(J).

Let us note that there exists a non empty subset of (ΩR)n which is algebraic
set from ideal.

4. Algebraic Sets

Let us consider n and R. An algebraic set of n and R is an algebraic set
from ideal subset of (ΩR)n. Now we state the propositions:

(16) Let us consider non empty subsets S, T of Polynom-Ring(n,R). If S ⊆ T ,
then Roots(T ) ⊆ Roots(S).

(17) Let us consider a non empty subset S of Polynom-Ring(n,R). Then
Roots(S) = Roots(S–ideal).
Proof: Roots(S) ⊆ Roots(S–ideal). �

(18) Let us consider ideals I, J of Polynom-Ring(n,R). Then Roots(I ∪J) =
Roots(I) ∩ Roots(J). The theorem is a consequence of (16).

(19) Let us consider algebraic sets S, T of n and R. Then S∩T is an algebraic
set of n and R. The theorem is a consequence of (18) and (17).

Let us consider A. Let F be a non empty subset of IdealsA. One can ve-
rify that the functor

⋃
F yields a non empty subset of A. Now we state the

propositions:

(20) Let us consider a non empty subset F of Ideals Polynom-Ring(n,R).
Then Roots(

⋃
F ) =

⋂
{Roots(I), where I is an ideal of Polynom-Ring(n,

R) : I ∈ F}.
Proof: Set P1 = Polynom-Ring(n,R). Set M = {Roots(I), where I is
an ideal of P1 : I ∈ F}. Consider I being an object such that I ∈ F .
Consider I1 being an ideal of P1 such that I = I1. For every o such that
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o ∈ Roots(
⋃
F ) holds o ∈

⋂
M . For every o such that o ∈

⋂
M holds

o ∈ Roots(
⋃
F ). �

(21) Let us consider polynomials f , g of n,R.
Then Roots({f ∗ g}) = Roots({f}) ∪ Roots({g}).
Proof: If o ∈ Roots({f ∗ g}), then o ∈ Roots({f}) ∪ Roots({g}). If o ∈
Roots({f}) ∪ Roots({g}), then o ∈ Roots({f ∗ g}). �

Let us consider ideals I, J of Polynom-Ring(n,R). Now we state the propo-
sitions:

(22) Roots(I ∩ J) = Roots(I) ∪ Roots(J).
Proof: Roots(I) ⊆ Roots(I ∩J) and Roots(J) ⊆ Roots(I ∩J). For every
o such that o ∈ Roots(I ∩ J) holds o ∈ Roots(I) ∪ Roots(J). �

(23) Roots(I ∗ J) = Roots(I) ∪ Roots(J).
Proof: Roots(I∩J) ⊆ Roots(I∗J). For every o such that o ∈ Roots(I∗J)
holds o ∈ Roots(I) ∪ Roots(J). �

5. The Collection of Algebraic Sets

Let us consider n and R. The functor AlgSets(n,R) yielding a set is defined
by the term

(Def. 7) {S, where S is a subset of (ΩR)n : S is an algebraic set of n and R}.

Now we state the proposition:

(24) Let us consider a non zero natural numberm, and a subset F of AlgSets(n,
R). Suppose F = m. Then

⋃
F is an algebraic set of n and R.

Proof: Define P[natural number] ≡ for every subset G of AlgSets(n,R)
such that G = $1 holds

⋃
G is an algebraic set of n and R. For every non

zero natural number m such that P[m] holds P[m + 1] by [9, (1)]. P[1].
For every non zero natural number n, P[n]. �

Let us consider n and R. Let a be a function from n into R. The functor
polyset(a) yielding a non empty subset of Polynom-Ring(n,R) is defined by the
term

(Def. 8) {f , where f is a polynomial of n,R : there exists an element i of n such
that f = deg1Poly(a, i)}.

Now we state the propositions:

(25) Let us consider a function a from n into R. Then Roots(polyset(a)) =
{a}.
Proof: If o ∈ Roots(polyset(a)), then o ∈ {a} by [10, (24)], [1, (1)]. If
o ∈ {a}, then o ∈ Roots(polyset(a)) by [10, (24)], [1, (1)]. �
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(26) Let us consider an element x of (ΩR)n. Then {x} is an algebraic set of
n and R. The theorem is a consequence of (25) and (17).

(27) Let us consider a non zero natural number m, and a subset P of S((ΩR)n).

Suppose P = m. Then
⋃
P is an algebraic set of n and R.

Proof: S((ΩR)n) ⊆ AlgSets(n,R). �

6. The Ideal of a Set of Points

Let us consider R, n, and X. The functor Ideal(X) yielding a non empty
subset of Polynom-Ring(n,R) is defined by the term

(Def. 9) {f , where f is a polynomial of n,R : X ⊆ Roots(f)}.

Now we state the proposition:

(28) Ideal(X) is an ideal of Polynom-Ring(n,R).

Let us consider R, n, and X. One can check that Ideal(X) is closed un-
der addition as a subset of Polynom-Ring(n,R) and Ideal(X) is right ideal as
a subset of Polynom-Ring(n,R). Now we state the propositions:

(29) If X ⊆ Y, then Ideal(Y ) ⊆ Ideal(X).

(30) X = ∅ if and only if Ideal(X) = ΩPolynom-Ring(n,R).
Proof: If X = ∅, then Ideal(X) = ΩPolynom-Ring(n,R). If Ideal(X) =
ΩPolynom-Ring(n,R), then X = ∅(ΩR)n . �

(31) {0Polynom-Ring(n,R)} ⊆ Ideal(Ω(ΩR)n). The theorem is a consequence of
(13).

(32) S ⊆ Ideal(Roots(S)).

(33) X ⊆ Roots(Ideal(X)).
Proof: For every o such that o ∈ X holds o ∈ Roots(Ideal(X)). �

(34) Roots(Ideal(Roots(S))) = Roots(S). The theorem is a consequence of
(33), (16), (32), and (30).

(35) Ideal(Roots(Ideal(X))) = Ideal(X).

(36) Let us consider an algebraic setX of n andR. ThenX = Roots(Ideal(X)).
The theorem is a consequence of (34).

(37) Let us consider algebraic sets V , W of n and R. Then V = W if and
only if Ideal(V ) = Ideal(W ). The theorem is a consequence of (36).

(38) Let us consider algebraic setsX, Y of n and R. IfX ⊂ Y, then Ideal(Y ) ⊂
Ideal(X). The theorem is a consequence of (36) and (29).

(39)
√

Ideal(X) = Ideal(X). The theorem is a consequence of (30) and (15).
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7. Reducible Algebraic Sets

Let us consider R and n. Let I be an algebraic set of n and R. We say that
I is reducible if and only if

(Def. 10) there exist algebraic sets V1, V2 of n and R such that I = V1 ∪ V2 and
V1 ⊂ I and V2 ⊂ I.

Let V be an algebraic set of n and R. We introduce the notation V is
irreducible as an antonym for V is reducible. Now we state the proposition:

(40) Let us consider a non empty algebraic set V of n and R. Then V is
irreducible if and only if Ideal(V ) is a prime ideal of Polynom-Ring(n,R).
Proof: If Ideal(V ) is a prime ideal of Polynom-Ring(n,R), then V is irre-
ducible. If V is irreducible, then Ideal(V ) is a prime ideal of Polynom-Ring
(n,R). �
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1. Directed-complete Graphs

Let G be a graph. We say that G is directed-complete if and only if

(Def. 1) for every vertices v, w of G such that v 6= w there exists an object e such
that e joins v to w in G.

Let c be a non empty cardinal number. The functors: canCompleteGraph(c)
and canDCompleteGraph(c) yielding graphs are defined by terms

(Def. 2) createGraph(c,⊆c \ (idc)),

(Def. 3) createGraph(c, (c× c) \ (idc)),

respectively. Observe that the vertices of canCompleteGraph(c) reduces to c and
the vertices of canDCompleteGraph(c) reduces to c.

Observe that every vertex of canCompleteGraph(c) is ordinal and every ver-
tex of canDCompleteGraph(c) is ordinal and every vertex of canCompleteGraph
(ω) is natural and every vertex of canDCompleteGraph(ω) is natural.

Let n be a non zero natural number. Observe that canCompleteGraph(n) is
finite and canDCompleteGraph(n) is finite and every vertex of canCompleteGra-
ph(n) is natural and every vertex of canDCompleteGraph(n) is natural.

Let c be a non empty cardinal number. One can verify that canCompleteGra-
ph(c) is plain, c-vertex, simple, and complete and canDCompleteGraph(c) is
plain, c-vertex, directed-simple, and directed-complete. Now we state the pro-
positions:

(1) Let us consider a non empty cardinal number c, and a vertex v of
canCompleteGraph(c). Then

(i) v.inNeighbors() = v, and

(ii) v.outNeighbors() = c \ (succ v).

(2) Let us consider a vertex v of canCompleteGraph(ω). Then

(i) v.inDegree() = v, and

(ii) v.outDegree() = ω.

The theorem is a consequence of (1).

(3) Let us consider a non zero natural number n,
and a vertex v of canCompleteGraph(n). Then

(i) v.inDegree() = v, and

(ii) v.outDegree() = n− v − 1.

The theorem is a consequence of (1).

Let c be a non empty cardinal number. Let us observe that there exists
a graph which is simple, c-vertex, and complete and there exists a graph which



About regular graphs 77

is directed-simple, c-vertex, and directed-complete and every graph which is
directed-complete is also complete and every graph which is trivial is also
directed-complete and every graph which is non trivial and directed-complete
is also non non-multi and non edgeless and there exists a graph which is non
directed-complete. Now we state the propositions:

(4) Let us consider graphs G1, G2. Suppose G1 ≈ G2 and G1 is directed-
complete. Then G2 is directed-complete.

(5) Let us consider a graph G1, and a subgraph G2 of G1 with loops removed.
Then G1 is directed-complete if and only if G2 is directed-complete.

(6) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then G1 is directed-complete if and only if G2 is
directed-complete.

(7) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
G1 is directed-complete if and only if G2 is directed-complete. The theorem
is a consequence of (6) and (5).

(8) Let us consider a graph G1, and a graph G2 given by reversing directions
of the edges of G1. Then G1 is directed-complete if and only if G2 is
directed-complete.

Let G be a directed-complete graph. Let us note that every subgraph of G
with loops removed is directed-complete and every subgraph of G with directed-
parallel edges removed is directed-complete and every directed-simple graph of
G is directed-complete and every graph given by reversing directions of the edges
of G is directed-complete.

Let V be a set. Observe that every subgraph of G induced by V is directed-
complete and every graph by adding a loop to each vertex of G in V is directed-
complete. Let v, e, w be objects. Note that every supergraph of G extended by
e between vertices v and w is directed-complete.

Let G be a non directed-complete graph. One can verify that every subgraph
of G with loops removed is non directed-complete and every subgraph of G with
directed-parallel edges removed is non directed-complete and every directed-
simple graph of G is non directed-complete and every graph given by reversing
directions of the edges of G is non directed-complete and every subgraph of G
which is spanning is also non directed-complete.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(9) If F is directed-continuous and strong subgraph embedding, then if G2

is directed-complete, then G1 is directed-complete.

(10) If F is directed-isomorphism, then G1 is directed-complete iff G2 is
directed-complete. The theorem is a consequence of (9).
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Let G be a directed-complete graph. Observe that every graph which is
G-directed-isomorphic is also directed-complete. Now we state the propositions:

(11) Let us consider a directed-complete graph G, and a vertex v of G. Then

(i) (the vertices of G) \ {v} ⊆ v.inNeighbors(), and

(ii) (the vertices of G) \ {v} ⊆ v.outNeighbors(), and

(iii) (the vertices of G) \ {v} ⊆ v.allNeighbors().

(12) Let us consider a loopless, directed-complete graph G, and a vertex v of
G. Then

(i) v.inNeighbors() = (the vertices of G) \ {v}, and

(ii) v.outNeighbors() = (the vertices of G) \ {v}, and

(iii) v.allNeighbors() = (the vertices of G) \ {v}.

The theorem is a consequence of (11).

(13) Let us consider a directed-simple, directed-complete graph G, and a ver-
tex v of G. Then

(i) v.inDegree() + 1 = G.order(), and

(ii) v.outDegree() + 1 = G.order().

The theorem is a consequence of (12).

(14) Let us consider a graph G1, and a directed graph complement G2 of
G1 with loops. Then the edges of G1 = G1.loops() if and only if G2 is
directed-complete.

Let G be an edgeless graph. Let us observe that every directed graph com-
plement of G with loops is directed-complete. Now we state the proposition:

(15) Let us consider a graph G1, and a directed graph complement G2 of
G1 with loops. Then G1 is directed-complete if and only if the edges of
G2 = G2.loops().

One can verify that there exists a graph which is loopfull and directed-
complete.

Let G be a loopfull, directed-complete graph. Let us observe that every direc-
ted graph complement of G with loops is edgeless. Now we state the proposition:

(16) Let us consider a graph G1, and a directed graph complement G2 of G1.
Then the edges of G1 = G1.loops() if and only if G2 is directed-complete.
The theorem is a consequence of (14).

Let G be an edgeless graph. Note that every directed graph complement of
G is directed-complete. Now we state the proposition:
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(17) Let us consider a graph G1, and a directed graph complement G2 of G1.
Then G1 is directed-complete if and only if G2 is edgeless. The theorem
is a consequence of (15).

Let G be a directed-complete graph. One can verify that every directed graph
complement of G is edgeless. Let G be a non directed-complete graph. One can
check that every directed graph complement of G is non edgeless.

Let G1 be a graph and G2 be a directed graph complement of G1 with loops.
One can verify that every graph union of G1 and G2 is directed-complete. Let
G2 be a directed graph complement of G1. Note that every graph union of G1

and G2 is directed-complete. Now we state the propositions:

(18) Let us consider a graph G. Then G is directed-complete if and only if
((the vertices of G)× (the vertices of G))\ (idα) ⊆ VertDomRel(G), where
α is the vertices of G.

(19) Let us consider a non empty set V , and a binary relation E on V . Then
createGraph(V,E) is directed-complete if and only if (V ×V )\ (idV ) ⊆ E.

2. Regular Graphs

From now on c, c1, c2 denote cardinal numbers, G, G1, G2 denote graphs,
and v denotes a vertex of G.

Let us consider c and G. We say that G is c-regular if and only if

(Def. 4) for every v, v.degree() = c.

One can check that every graph which is c-regular is also with max degree
and every graph which is (c+1)-vertex, simple, and complete is also c-regular and
there exists a graph which is simple and c-regular. Now we state the propositions:

(20) Degree of regularity is unique:
If G is c1-regular and c2-regular, then c1 = c2.

(21) G is c-regular if and only if every component of G is c-regular.

Let us consider c. Let us observe that there exists a graph which is non c-
regular. Let G be a c-regular graph. Note that every component of G is c-regular.
Now we state the propositions:

(22) Let us consider a c-regular graph G. Then

(i) δ(G) = c, and

(ii) ∆(G) = c.

(23) If δ(G) = c and ∆̄(G) = c, then G is c-regular.

Let n be a natural number. Observe that every graph which is n-regular is
also locally-finite and there exists a graph which is simple, vertex-finite, and
n-regular. Now we state the proposition:
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(24) G is edgeless if and only if G is 0-regular.

One can verify that every graph which is edgeless is also 0-regular and every
graph which is 0-regular is also edgeless. Let c be a non empty cardinal number.
Let us observe that every graph which is c-regular is also non edgeless. Now we
state the propositions:

(25) Let us consider a simple, c-regular graph G. Then c ⊆ G.order().

(26) Let us consider a natural number n, and a simple, vertex-finite, n-regular
graph G1. Then every graph complement of G1 is (G1.order()−′ (n+ 1))-
regular.

(27) If there exists v such that v is isolated and G is c-regular, then c = 0.

(28) If there exists v such that v is endvertex and G is c-regular, then c = 1.

Let G be a 1-regular graph. Observe that every vertex of G is endvertex.
Now we state the proposition:

(29) Let us consider a 1-regular graph G, and a trail T of G. Suppose T is
not trivial. Then there exists an object e such that

(i) e joins T .first() and T .last() in G, and

(ii) T = G.walkOf(T .first(), e, T .last()).

One can verify that every graph which is 1-regular and connected is also
2-vertex, 1-edge, and complete and every graph which is simple, 2-vertex, and
connected is also 1-regular. Now we state the propositions:

(30) Let us consider a partial graph mapping F from G1 to G2. Suppose F
is isomorphism. Then G1 is c-regular if and only if G2 is c-regular.

(31) If G1 ≈ G2 and G1 is c-regular, then G2 is c-regular.

(32) Let us consider a set E, and a graph G2 given by reversing directions of
the edges E of G1. Then G1 is c-regular if and only if G2 is c-regular. The
theorem is a consequence of (30).

Let G be a graph. We say that G is cubic if and only if

(Def. 5) G is 3-regular.

One can verify that every graph which is cubic is also 3-regular and every
graph which is 3-regular is also cubic. Now we state the propositions:

(33) G is cubic if and only if for every v, v.degree() = 3.

(34) Let us consider a partial graph mapping F from G1 to G2. If F is iso-
morphism, then G1 is cubic iff G2 is cubic.

(35) If G1 ≈ G2 and G1 is cubic, then G2 is cubic.

(36) Let us consider a set E, and a graph G2 given by reversing directions of
the edges E of G1. Then G1 is cubic if and only if G2 is cubic.

Let G be a graph. We say that G is regular if and only if



About regular graphs 81

(Def. 6) there exists a cardinal number c such that G is c-regular.

Now we state the proposition:

(37) G is regular if and only if δ(G) = ∆̄(G). The theorem is a consequence
of (22) and (23).

Let G be a locally-finite graph. One can check that G is regular if and only
if the condition (Def. 7) is satisfied.

(Def. 7) there exists a natural number n such that G is n-regular.

Let c be a cardinal number. Let us note that every graph which is c-regular
is also regular and every graph which is cubic is also regular and every graph
which is regular is also with max degree and there exists a graph which is simple,
non edgeless, finite, and regular.

Let G be a regular graph. Note that every component of G is regular. Let G
be a simple, finite, regular graph. One can verify that every graph complement
of G is regular. Now we state the propositions:

(38) If there exists v such that v is isolated and G is regular, then G is
edgeless. The theorem is a consequence of (27).

(39) If there exists v such that v is endvertex and G is regular, then G is
1-regular. The theorem is a consequence of (28).

(40) Let us consider a partial graph mapping F from G1 to G2. If F is isomor-
phism, then G1 is regular iff G2 is regular. The theorem is a consequence
of (30).

(41) If G1 ≈ G2 and G1 is regular, then G2 is regular. The theorem is a con-
sequence of (40).

(42) Let us consider a set E, and a graph G2 given by reversing directions of
the edges E of G1. Then G1 is regular if and only if G2 is regular. The
theorem is a consequence of (40).

3. Directed-regular Graphs

Let us consider c and G. We say that G is c-directed-regular if and only if

(Def. 8) for every v, v.inDegree() = c and v.outDegree() = c.

Let us note that every graph which is c-directed-regular is also with max in-
degree and with max outdegree and every graph which is (c+1)-vertex, directed-
simple, and directed-complete is also c-directed-regular and there exists a graph
which is directed-simple and c-directed-regular. Now we state the proposition:

(43) Degree of directed regularity is unique:
If G is c1-directed-regular and c2-directed-regular, then c1 = c2.
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Let us consider c. One can check that there exists a graph which is non c-
directed-regular. Let G be a c-directed-regular graph. Observe that every com-
ponent of G is c-directed-regular. Now we state the propositions:

(44) Let us consider a c-directed-regular graph G. Then

(i) δ−(G) = c, and

(ii) δ+(G) = c, and

(iii) ∆−(G) = c, and

(iv) ∆+(G) = c.

(45) If δ−(G) = c and δ+(G) = c and ∆̄−(G) = c and ∆̄+(G) = c, then G is
c-directed-regular.

(46) Let us consider a natural number n. If G is n-directed-regular, then G

is (2 · n)-regular.

Let n be a natural number. One can check that every graph which is n-
directed-regular is also (2 ·n)-regular and locally-finite and there exists a graph
which is directed-simple, finite, and n-directed-regular.

Let c be an infinite cardinal number. Let us note that every graph which is
c-directed-regular is also c-regular. Now we state the proposition:

(47) G is edgeless if and only if G is 0-directed-regular. The theorem is a con-
sequence of (46).

One can verify that every graph which is edgeless is also 0-directed-regular
and every graph which is 0-directed-regular is also edgeless.

Let c be a non empty cardinal number. Let us observe that every graph
which is c-directed-regular is also non edgeless. Now we state the propositions:

(48) Let us consider a directed-simple, c-directed-regular graph G. Then c ⊆
G.order().

(49) Let us consider a natural number n, and a directed-simple, vertex-finite,
n-directed-regular graph G1. Then every directed graph complement of
G1 is (G1.order()−′ (n+ 1))-directed-regular.

(50) If there exists v such that v is isolated and G is c-directed-regular, then
c = 0.

Let us consider c. Let G be a c-directed-regular graph. Let us note that every
vertex of G is non endvertex and every graph which is 2-edge, 2-vertex, and
directed-simple is also 1-directed-regular and complete and every graph which
is trivial and 1-edge is also 1-directed-regular. Now we state the propositions:

(51) Let us consider a partial graph mapping F from G1 to G2. Suppose F
is directed-isomorphism. Then G1 is c-directed-regular if and only if G2 is
c-directed-regular.
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(52) If G1 ≈ G2 and G1 is c-directed-regular, then G2 is c-directed-regular.

Let G be a graph. We say that G is directed-regular if and only if

(Def. 9) there exists a cardinal number c such that G is c-directed-regular.

Now we state the proposition:

(53) G is directed-regular if and only if δ−(G) = ∆̄−(G) and δ+(G) = ∆̄+(G)
and δ−(G) = δ+(G). The theorem is a consequence of (44) and (45).

Let G be a locally-finite graph. One can verify that G is directed-regular if
and only if the condition (Def. 10) is satisfied.

(Def. 10) there exists a natural number n such that G is n-directed-regular.

Let c be a cardinal number. Note that every graph which is c-directed-regular
is also directed-regular and every graph which is directed-regular is also with
max degree and there exists a graph which is directed-simple, non edgeless,
finite, and directed-regular.

Let G be a directed-regular graph. Observe that every component of G
is directed-regular. Let G be a directed-simple, finite, directed-regular graph.
Note that every directed graph complement of G is directed-regular. Let G be
a directed-regular graph. Note that every vertex of G is non endvertex. Now we
state the propositions:

(54) Let us consider a partial graph mapping F from G1 to G2. Suppose F
is directed-isomorphism. Then G1 is directed-regular if and only if G2 is
directed-regular. The theorem is a consequence of (51).

(55) If G1 ≈ G2 and G1 is directed-regular, then G2 is directed-regular. The
theorem is a consequence of (54).

4. Counting the Edges

Now we state the propositions:

(56) Let us consider a set P , and a cardinal number c. Suppose P is mutually-
disjoint and for every set A such that A ∈ P holds A = c. Then

⋃
P =

c · P .

(57) Let us consider a non empty set X, a partition P of X, and a cardinal

number c. Suppose for every element x of X, EqClass(x, P ) = c. Then
X = c · P . The theorem is a consequence of (56).

Let f be a function and X be a set. One can verify that 〈f, idX〉 is one-to-one.
Let f be a one-to-one function. One can verify that f` is one-to-one and

xf is one-to-one.
Let X be a set and f be a function. Let us observe that 〈idX , f〉 is one-to-one.
Now we state the proposition:
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(58) Let us consider a c-regular graph G. Then 2 · G.size() = c · G.order().
The theorem is a consequence of (56).

5. The Degree Map and Degree Sequence

Let G be a graph. The functors: G.degreeMap(), G.inDegreeMap(), and
G.outDegreeMap() yielding many sorted sets indexed by the vertices of G are
defined by conditions

(Def. 11) for every vertex v of G, G.degreeMap()(v) = v.degree(),

(Def. 12) for every vertex v of G, G.inDegreeMap()(v) = v.inDegree(),

(Def. 13) for every vertex v of G, G.outDegreeMap()(v) = v.outDegree(),

respectively. Let us observe that G.degreeMap() is cardinal yielding and G.inDe-
greeMap() is cardinal yielding and G.outDegreeMap() is cardinal yielding. Now
we state the propositions:

(59) Let us consider a graph G. Then

(i) G.degreeMap() = G.order(), and

(ii) G.inDegreeMap() = G.order(), and

(iii) G.outDegreeMap() = G.order().

(60) Let us consider a graph G, and a vertex v of G. Then (G.degreeMap())(v)
= (G.inDegreeMap())(v) + (G.outDegreeMap())(v).

Let G be a locally-finite graph. Note that G.degreeMap() is natural-valued
andG.inDegreeMap() is natural-valued andG.outDegreeMap() is natural-valued.

The functors:G.degreeMap(),G.inDegreeMap(), andG.outDegreeMap() yield
functions from the vertices of G into N. Let G be a vertex-finite graph. Note that
G.degreeMap() is finite and G.inDegreeMap() is finite and G.outDegreeMap()
is finite. Now we state the proposition:

(61) Let us consider a cardinal number c, a trivial, c-edge graph G, and
a vertex v of G. Then

(i) G.inDegreeMap() = v 7−→. c, and

(ii) G.outDegreeMap() = v 7−→. c, and

(iii) G.degreeMap() = v 7−→. 2 · c.
Let G be a trivial graph. Let us note that G.degreeMap() is trivial and

G.inDegreeMap() is trivial and G.outDegreeMap() is trivial. Now we state the
propositions:

(62) Let us consider a graph G2, a set V , and a supergraph G1 of G2 extended
by the vertices from V . Then
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(i) G1.degreeMap() = G2.degreeMap() +·(V \ (the vertices of G2)

7−→ 0), and

(ii) G1.inDegreeMap() = G2.inDegreeMap() +·(V \ (the vertices of G2)

7−→ 0), and

(iii) G1.outDegreeMap() = G2.outDegreeMap() +·(V \ (the vertices of
G2) 7−→ 0).

(63) Let us consider a graph G, and a component C of G. Then

(i) C.degreeMap() = G.degreeMap() �(the vertices of C), and

(ii) C.inDegreeMap() = G.inDegreeMap() �(the vertices of C), and

(iii) C.outDegreeMap() = G.outDegreeMap() �(the vertices of C).

Let G be a graph and v be a denumeration of the vertices of G. Let us observe
that (G.degreeMap()) · v is transfinite sequence-like and (G.order())-elements
and (G.inDegreeMap()) · v is transfinite sequence-like and (G.order())-elements
and (G.outDegreeMap())·v is transfinite sequence-like and (G.order())-elements.

Let us consider a finite graph G and a denumeration v of the vertices of G.
Now we state the propositions:

(64) (G.degreeMap()) · v = (G.inDegreeMap()) · v + (G.outDegreeMap()) · v.
The theorem is a consequence of (60).

(65) (i) G.size() =
∑

(G.inDegreeMap()) · v, and

(ii) G.size() =
∑

(G.outDegreeMap()) · v.

(66) 2 · (G.size()) =
∑

(G.degreeMap()) · v. The theorem is a consequence of
(65) and (64).

(67) Handshaking Lemma:
Let us consider a finite graph G, and a natural number k. Suppose k =
{w, where w is a vertex of G : w.degree() is not even } . Then k is even.
Proof: Set v = the denumeration of the vertices of G. DefineM(natural
number) = ((G.degreeMap()) · v)($1) mod 2. Consider m being a finite 0-
sequence of N such that lenm = len(G.degreeMap()) · v and for every
natural number k such that k ∈ len(G.degreeMap()) · v holds m(k) =
M(k). �
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1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i,
j denote integers, r, s denote real numbers, and p, p1, p2, p3, q denote prime
numbers.

Let us consider n and r. Let us observe that n−r+r is natural and n+r−r
is natural. Now we state the propositions:

(1) Let us consider natural numbers m, n. If m < n < m+2, then n = m+1.

(2) N+ = N \ {0}.
Let us note that N+ is infinite. Now we state the propositions:

(3) Let us consider finite sequences f , g. Suppose f a g is X-valued. Then

(i) f is X-valued, and
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(ii) g is X-valued.

(4) Let us consider complex-valued many sorted sets f1, f2, f3 indexed by
X. Suppose for every object x such that x ∈ X holds f1(x) = f2(x) ·f3(x).
Then f1 = f2 · f3.

(5) If b 6= 0 and c 6= 0, then r·b+c
b > r.

(6) If m ¬ n, then m! | n!.
Proof: Define P[natural number] ≡ if m ¬ $1, then m! | $1!. If P[k], then
P[k + 1]. P[k]. �

(7) If p1 | p2, then p1 = p2.

(8) If m and n are relatively prime, then a ·n+m and n are relatively prime.

(9) If n | 27, then n = 1 or n = 3 or n = 9 or n = 27.

2. Problem 25

Now we state the proposition:

(10) Let us consider a function f . Then support(EmptyBagX+·f) = support f .

Let X be a set and f be a finite-support function.
Observe that EmptyBagX+·f is finite-support.
Let p be a prime number and n be a non zero natural number. Observe that

p-count(pn) is non zero. Now we state the propositions:

(11) Let us consider a finite-support function b.
Then dom(b · (CFS(support b))) = dom(CFS(support b)).

(12) Let us consider complex-valued functions f , g. Then support(f · g) ⊆
support f .

Let f , g be finite-support, complex-valued functions. One can verify that
f · g is finite-support. Now we state the propositions:

(13) Let us consider complex-valued functions f , g. Suppose support f =
support g. Then support(f · g) = support f . The theorem is a consequence
of (12).

(14) Let us consider finite-support, complex-valued many sorted sets b1, b2
indexed by X. Suppose support b1 = support b2. Then

∏
(b1 · b2) = (

∏
b1) ·

(
∏
b2).

Proof: Set b0 = b1 · b2. support b0 = support b1. support b0 = support b2.
Consider f0 being a finite sequence of elements of C such that

∏
b0 =

∏
f0

and f0 = b0 · (CFS(support b0)). Consider f1 being a finite sequence of ele-
ments of C such that

∏
b1 =

∏
f1 and f1 = b1·(CFS(support b1)). Consider

f2 being a finite sequence of elements of C such that
∏
b2 =

∏
f2 and f2 =
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b2·(CFS(support b2)). dom(b0·(CFS(support b0))) = dom(CFS(support b0)).
dom f0 = dom f1. dom f0 = dom f2. For every object c such that c ∈
dom f0 holds f0(c) = f1(c) · f2(c). �

Let n be a non zero natural number. The functor EulerFactorization(n)
yielding a function is defined by

(Def. 1) dom it = support PPF(n) and for every natural number p such that p ∈
dom it there exists a non zero natural number c such that c = p-count(n)
and it(p) = pc − pc−1.

Observe that dom(EulerFactorization(n)) is finite and EulerFactorization(n)
is P-defined. Now we state the propositions:

(15) Let us consider a non zero natural number n, and an object p. Suppose
p ∈ dom(EulerFactorization(n)). Then p is a prime number.

(16) Let us consider a non zero natural number n, and a natural number p.
Suppose p ∈ dom(EulerFactorization(n)). Then there exists a non zero
natural number c such that

(i) c = p-count(n), and

(ii) (EulerFactorization(n))(p) = pc−1 · (p− 1).

Let n be a non zero natural number. Let us observe that EulerFactorization(n)
is natural-valued and EulerFactorization(n) is finite-support and EulerFactoriza-
tion(1) is empty. Now we state the propositions:

(17) Let us consider a non zero natural number n.
Then EulerFactorization(pn) = p 7−→. (pn − pn−1).

(18) EulerFactorization(p) = p7−→. (p − 1). The theorem is a consequence of
(17).

Let us consider a non zero natural number n. Now we state the propositions:

(19) support EulerFactorization(n) = dom(EulerFactorization(n)). The the-
orem is a consequence of (15).

(20) If n > 1, then support EulerFactorization(n) is not empty.

(21) If n > 1, then EulerFactorization(n) is not empty. The theorem is a con-
sequence of (20).

Let us consider non zero natural numbers s, t. Now we state the propositions:

(22) If s and t are relatively prime, then dom(EulerFactorization(s)) misses
dom(EulerFactorization(t)).

(23) Suppose s and t are relatively prime. Then EmptyBag P+·EulerFactoriza-
tion(s·t) = (EmptyBag P+·EulerFactorization(s))+(EmptyBag P+·Euler-
Factorization(t)).
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Proof: Set n = s·t. SetN = EulerFactorization(n). Set S = EulerFactori-
zation(s). Set T = EulerFactorization(t). For every object x such that
x ∈ P holds (B+·N)(x) = (B+·S)(x) + (B+·T )(x) by [7, (25), (58)], (22).
�

(24) Let us consider a non zero natural number n.
Then Eulern =

∏
(EmptyBag P+·EulerFactorization(n)).

Proof: Set N = EulerFactorization(n). Define P[natural number] ≡ for
every non zero natural number n such that support(B+·EulerFactorizatio-
n(n)) ⊆ Seg $1 holds

∏
(B+·EulerFactorization(n)) = Eulern. P[0]. For

every natural number k such that P[k] holds P[k + 1]. For every natural
number k, P[k]. Set G = B+·N . supportG = supportN . �

Let n be a non zero natural number. The functor EulerFactorization1(n)
yielding a function is defined by

(Def. 2) dom it = support PPF(n) and for every natural number p such that p ∈
dom it there exists a non zero natural number c such that c = p-count(n)
and it(p) = pc−1.

Let us observe that dom(EulerFactorization1(n)) is finite and EulerFactoriza-
tion1(n) is P-defined. Now we state the proposition:

(25) Let us consider a non zero natural number n, and an object p. Suppose
p ∈ dom(EulerFactorization1(n)). Then p is a prime number.

Let n be a non zero natural number. Note that EulerFactorization1(n) is
natural-valued and EulerFactorization1(n) is finite-support. Now we state the
proposition:

(26) Let us consider a non zero natural number n. Then support EulerFactori-
zation1(n) = dom(EulerFactorization1(n)). The theorem is a consequence
of (25).

Let n be a non zero natural number. The functor EulerFactorization2(n)
yielding a function is defined by

(Def. 3) dom it = support PPF(n) and for every natural number p such that
p ∈ dom it holds it(p) = p− 1.

One can verify that dom(EulerFactorization2(n)) is finite and EulerFactoriza-
tion2(n) is P-defined. Now we state the proposition:

(27) Let us consider a non zero natural number n, and an object p. Suppose
p ∈ dom(EulerFactorization2(n)). Then p is a prime number.

Let n be a non zero natural number. Let us note that EulerFactorization2(n)
is natural-valued and EulerFactorization2(n) is finite-support.

Let us consider a non zero natural number n. Now we state the propositions:
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(28) support EulerFactorization2(n) = dom(EulerFactorization2(n)). The the-
orem is a consequence of (27).

(29) EmptyBag P+·EulerFactorization(n) = (EmptyBag P+·EulerFactoriza-
tion1(n)) · (EmptyBag P+·EulerFactorization2(n)).
Proof: Set N = EulerFactorization(n). Set S = EulerFactorization1(n).
Set T = EulerFactorization2(n). For every object x such that x ∈ P holds
(B+·N)(x) = (B+·S)(x) · (B+·T )(x). �

(30) Let us consider integer-valued finite sequences f1, f2. Suppose len f1 =
len f2 and for every n such that 1 ¬ n ¬ len f1 holds f1(n) | f2(n). Then∏
f1 |

∏
f2.

(31) Let us consider a non zero natural number n.
Then

∏
(EmptyBag P+·EulerFactorization1(n)) | n.

Proof: Set b0 = PPF(n). Set F1 = EulerFactorization1(n). Set b1 =
B+·F1. Consider f0 being a finite sequence of elements of C such that∏
b0 =

∏
f0 and f0 = b0 · (CFS(support b0)). Consider f1 being a fi-

nite sequence of elements of C such that
∏
b1 =

∏
f1 and f1 = b1 ·

(CFS(support b1)). support b1 = supportF1. supportF1 = domF1. dom f0

= dom(CFS(support b0)). dom f1 = dom(CFS(support b1)). For every na-
tural number x such that 1 ¬ x ¬ len f1 holds f1(x) | f0(x).

∏
f1 |

∏
f0.

�

Let f be a real-valued function and r be a real number. We say that f ¬ r

if and only if

(Def. 4) for every object x such that x ∈ dom f holds f(x) ¬ r.
Now we state the propositions:

(32) Let us consider a real-valued function f , and real numbers r1, r2. If
f ¬ r1 ¬ r2, then f ¬ r2.

(33) Let us consider real-valued functions f , g. If rng g ⊆ rng f and f ¬ n,
then g ¬ n.

Let us consider extended real-valued finite sequences f , g. Now we state the
propositions:

(34) If f a g is increasing, then f is increasing and g is increasing.

(35) If f a g is positive yielding, then f is positive yielding and g is positive
yielding.

(36) Let us consider a natural-valued finite sequence f . If f ¬ n and f is in-
creasing and positive yielding, then

∏
f | n!. The theorem is a consequence

of (3), (34), (35), and (6).

Let f be a natural-valued finite sequence. Note that sorta f is natural-valued
and sortd f is natural-valued. Let f be an integer-valued finite sequence. One
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can check that sorta f is integer-valued and sortd f is integer-valued. Let f be
a rational-valued finite sequence. One can verify that sorta f is rational-valued
and sortd f is rational-valued. Now we state the proposition:

(37) Let us consider binary relations P , R. Suppose rngR ⊆ rngP and P is
positive yielding. Then R is positive yielding.

Let f be a positive yielding, real-valued finite sequence. Let us observe
that sorta f is positive yielding and every function which is P-defined is also
N-defined. Now we state the propositions:

(38) Let us consider a real-valued, finite-support function f . Suppose f ¬ n.
Let us consider a real-valued finite sequence F . Suppose F = (EmptyBag P
+·f) · (CFS(support(EmptyBag P+·f))). Then F ¬ n.

(39) Let us consider a natural-valued, finite-support function f , and a real-
valued finite sequence F .
Suppose F = (EmptyBag P+·f) · (CFS(support(EmptyBag P+·f))). Then
F is positive yielding. The theorem is a consequence of (11).

Let us consider a natural-valued, finite-support, P-defined function f and
a real-valued finite sequence F . Now we state the propositions:

(40) Suppose f is increasing. Then suppose F = (EmptyBag P+·f)·(CFS(sup-
port(EmptyBag P+·f))). Then sorta F is one-to-one. The theorem is a con-
sequence of (10) and (11).

(41) Suppose f is increasing. Then suppose F = (EmptyBag P+·f)·(CFS(sup-
port(EmptyBag P+·f))). Then sorta F is increasing. The theorem is a con-
sequence of (11) and (10).

(42) Let us consider a natural-valued, finite-support, P-defined function f .
Suppose f ¬ n and f is increasing. Then

∏
(EmptyBag P+·f) | n!. The

theorem is a consequence of (38), (39), (41), (33), and (36).

(43) Let us consider a non zero natural number n. Then EulerFactorization2(n)
¬ n− 1. The theorem is a consequence of (27).

Let n be a non zero natural number. Let us note that EulerFactorization2(n)
is increasing and EulerFactorization2(n) is positive yielding.

Let us consider a non zero natural number n. Now we state the propositions:

(44)
∏

(EmptyBag P+·EulerFactorization2(n)) | (n− 1)!.

(45) Eulern | n!. The theorem is a consequence of (24), (31), (43), (42), (10),
(26), (28), (29), and (14).

(46) Let us consider an odd natural number n. Then n | 2n!−1. The theorem
is a consequence of (45).
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3. Problem 86

Now we state the proposition:

(47) Suppose p1, p2, p3 are mutually different. Then

(i) p1  2 and p2  3 and p3  5, or

(ii) p1  2 and p2  5 and p3  3, or

(iii) p1  3 and p2  2 and p3  5, or

(iv) p1  3 and p2  5 and p3  2, or

(v) p1  5 and p2  2 and p3  3, or

(vi) p1  5 and p2  3 and p3  2.

Let n be a natural number. We say that n satisfies Sierpiński Problem 86 if
and only if

(Def. 5) there exist prime numbers p1, p2, p3 such that p1, p2, p3 are mutually
different and n2 − 1 = p1 · p2 · p3.

Now we state the propositions:

(48) If n satisfies Sierpiński Problem 86, then n  6. The theorem is a con-
sequence of (47).

(49) Let us consider prime numbers a, b, c. If n2 − 1 = a · b · c, then n− 1 is
prime or n+ 1 is prime.

(50) Suppose n satisfies Sierpiński Problem 86. Then

(i) n − 1 is prime and there exist prime numbers x, y such that x 6= y

and n+ 1 = x · y, or

(ii) n + 1 is prime and there exist prime numbers x, y such that x 6= y

and n− 1 = x · y.

The theorem is a consequence of (49).

(51) If n satisfies Sierpiński Problem 86, then n is even. The theorem is a con-
sequence of (50) and (48).

(52) 142 − 1 = 3 · 5 · 13.

(53) 162 − 1 = 3 · 5 · 17.

(54) 202 − 1 = 3 · 7 · 19.

(55) 222 − 1 = 3 · 7 · 23.

(56) 322 − 1 = 3 · 11 · 31.

(57) 14 satisfies Sierpiński Problem 86. The theorem is a consequence of (52).

(58) 16 satisfies Sierpiński Problem 86. The theorem is a consequence of (53).

(59) 20 satisfies Sierpiński Problem 86. The theorem is a consequence of (54).
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(60) 22 satisfies Sierpiński Problem 86. The theorem is a consequence of (55).

(61) 32 satisfies Sierpiński Problem 86. The theorem is a consequence of (56).

(62) If n satisfies Sierpiński Problem 86 and n ¬ 32,
then n ∈ {14, 16, 20, 22, 32}. The theorem is a consequence of (48).

4. Problem 184

Now we state the propositions:

(63) 32·k ≡ 1 (mod 8).

(64) 8 - 3n + 1. The theorem is a consequence of (63).

(65) If n 6= 0 and 2m − 3n = 1, then m = 2 and n = 1. The theorem is
a consequence of (64).

5. Problem 185

Now we state the propositions:

(66) 32·k ≡ 1 (mod 4).

(67) If 2n mod 4 = 2, then n = 1.

(68) If 2m − 2n = 2, then m = 2 and n = 1.

(69) If n is odd and 3n − 2m = 1, then n = m = 1. The theorem is a conse-
quence of (66) and (67).

(70) If n is even and 3n − 2m = 1, then n = 2 and m = 3. The theorem is
a consequence of (68).

(71) If 3n − 2m = 1, then n = m = 1 or n = 2 and m = 3. The theorem is
a consequence of (69) and (70).

6. Problem 88

Let us consider n. We say that n has unique prime divisor if and only if

(Def. 6) there exists a prime number p such that p | n and for every prime number
r such that r 6= p holds r - n.

Assume n has unique prime divisor. The only divisor of n yielding a prime
number is defined by

(Def. 7) it | n and for every prime number r such that r 6= it holds r - n.

Now we state the proposition:

(72) If n has unique prime divisor and p | n, then the only divisor of n = p.
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Let us observe that every natural number which is prime has unique prime
divisor. Now we state the proposition:

(73) The only divisor of p = p.

One can check that every natural number which is zero does not have unique
prime divisor. Now we state the proposition:

(74) 1 does not have unique prime divisor.

Let p be a prime number. Let us observe that p0 does not have unique prime
divisor. Let k be a non zero natural number. One can verify that pk has unique
prime divisor. Now we state the propositions:

(75) If p1 6= p2, then p1 · p2 does not have unique prime divisor.

(76) If n has unique prime divisor, then there exists a non zero natural number
k such that n = (the only divisor of n)k.

(77) If n > 7, then there exists a natural number m and there exist prime
numbers p, q such that p 6= q and (m = n or m = n + 1 or m = n + 2)
and p | m and q | m.
Proof: Consider k such that n = 6 · k or n = 6 · k + 1 or n = 6 · k + 2 or
n = 6 · k + 3 or n = 6 · k + 4 or n = 6 · k + 5. n has unique prime divisor.
n+ 1 has unique prime divisor. n+ 2 has unique prime divisor. �

7. Problem 105

Let us consider n. We say that n has more than two different prime divisors
if and only if

(Def. 8) there exist prime numbers q1, q2, q3 such that q1, q2, q3 are mutually
different and q1 | n and q2 | n and q3 | n.

Let n be a non zero natural number. We say that n satisfies Sierpiński
Problem 105 if and only if

(Def. 9) n − 1 has more than two different prime divisors and n + 1 has more
than two different prime divisors.

Now we state the proposition:

(78) If n has unique prime divisor, then n has no more than two different
prime divisors.

Note that every natural number which is zero has more than two different
prime divisors. Now we state the proposition:

(79) If n > 0 and n has more than two different prime divisors, then n  30.
The theorem is a consequence of (47).
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Let us note that every natural number which is prime does not have more
than two different prime divisors. Let us consider p1 and p2. Observe that p1 ·p2

does not have more than two different prime divisors.
Let us consider p and n. Let us note that pn does not have more than two

different prime divisors. Let us consider p, q, m and n. Note that pm · qn does
not have more than two different prime divisors. Now we state the propositions:

(80) 131 satisfies Sierpiński Problem 105.

(81) There exists no prime number p such that p ¬ 130 and p satisfies Sier-
piński Problem 105. The theorem is a consequence of (79).

8. Problem 111

Now we state the propositions:

(82) 1 + 3 + 32 + 33 + 34 = 112.

(83) m | p4 if and only if m ∈ {1, p, p2, p3, p4}.
(84) 1 + p+ p2 + p3 + p4 is a square if and only if p = 3.

(85) The set of positive divisors of p4 = {1, p, p2, p3, p4}. The theorem is a con-
sequence of (83).

(86) {p, where p is a prime number : 1 + p+ p2 + p3 + p4 is a square} = {3}.
The theorem is a consequence of (84).

9. Problem 137

Let D be a non empty set. Let us observe that every sequence of D is total.
Let f be a (C × D)-valued many sorted set indexed by N and n be a natural
number. Note that (f(n))1 is complex. Let f be a (D ×C)-valued many sorted
set indexed by N. Note that (f(n))2 is complex.

Let f be an (R×D)-valued many sorted set indexed by N. Note that (f(n))1
is real. Let f be a (D × R)-valued many sorted set indexed by N. Note that
(f(n))2 is real. Let f be a (Q×D)-valued many sorted set indexed by N. Note
that (f(n))1 is rational. Let f be a (D×Q)-valued many sorted set indexed by
N. Note that (f(n))2 is rational.

Let f be a (Z×D)-valued many sorted set indexed by N. Note that (f(n))1
is integer. Let f be a (D × Z)-valued many sorted set indexed by N. Note that
(f(n))2 is integer. Let f be an (N ×D)-valued many sorted set indexed by N.
Note that (f(n))1 is natural. Let f be a (D×N)-valued many sorted set indexed
by N. Note that (f(n))2 is natural.
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Let a, b, x1, x2, x3, y1, y2, y3 be complex numbers. The functor recSeqCart(a,
b, x1, x2, x3, y1, y2, y3) yielding a (C × C)-valued many sorted set indexed by N
is defined by

(Def. 10) it(0) = 〈〈a, b〉〉 and for every natural number n, it(n+1) = 〈〈x1·((it(n))1)+
x2 · ((it(n))2) + x3, y1 · ((it(n))1) + y2 · ((it(n))2) + y3〉〉.

Let a, b, x1, x2, x3, y1, y2, y3 be real numbers. Let us observe that recSeqCart
(a, b, x1, x2, x3, y1, y2, y3) is (R×R)-valued. Let a, b, x1, x2, x3, y1, y2, y3 be ra-
tional numbers. Let us observe that recSeqCart(a, b, x1, x2, x3, y1, y2, y3) is (Q×
Q)-valued.

Let a, b, x1, x2, x3, y1, y2, y3 be integers. Let us observe that recSeqCart(a, b,
x1, x2, x3, y1, y2, y3) is (Z× Z)-valued. Let a, b, x1, x2, x3, y1, y2, y3 be natural
numbers. Let us observe that recSeqCart(a, b, x1, x2, x3, y1, y2, y3) is (N × N)-
valued. Let us consider real numbers a, b, a1, a2, a3, b1, b2, b3 and a natural
number n. Now we state the propositions:

(87) Suppose a > 0 and b > 0 and a3  0 and b3  0 and (a1 > 0 and a2  0
or a1  0 and a2 > 0) and (b1 > 0 and b2  0 or b1  0 and b2 > 0). Then

(i) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(n))1 > 0, and

(ii) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(n))2 > 0.

Proof: Set f = recSeqCart(a, b, a1, a2, a3, b1, b2, b3). Define P[natural
number] ≡ (f($1))1 > 0 and (f($1))2 > 0. P[0]. If P[k], then P[k + 1].
P[k]. �

(88) Suppose a  0 and b  0 and a1  0 and a2  0 and a3  0 and b1  0
and b2  0 and b3  0. Then

(i) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(n))1  0, and

(ii) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(n))2  0.

Proof: Set f = recSeqCart(a, b, a1, a2, a3, b1, b2, b3). Define P[natural
number] ≡ (f($1))1  0 and (f($1))2  0. P[0]. If P[k], then P[k + 1].
P[k]. �

(89) Let us consider real numbers a, b, a1, a2, a3, b1, b2, b3. Suppose a > 0
and b > 0 and a1  1 and a2 > 0 and a3  0 and b1 > 0 and b2  1 and
b3  0. Let us consider natural numbers m, n. Suppose m > n. Then

(i) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(m))1 > ((recSeqCart(a, b, a1,

a2, a3, b1, b2, b3))(n))1, and

(ii) ((recSeqCart(a, b, a1, a2, a3, b1, b2, b3))(m))2 > ((recSeqCart(a, b, a1,

a2, a3, b1, b2, b3))(n))2.
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Proof: Set f = recSeqCart(a, b, a1, a2, a3, b1, b2, b3). Define P[natural
number] ≡ if $1 > n, then (f($1))1 > (f(n))1 and (f($1))2 > (f(n))2. If
P[k], then P[k + 1]. P[k]. �

(90) Let us consider real numbers a, b, a1, a2, a3, b1, b2, b3. Suppose a > 0
and b > 0 and a1  1 and a2 > 0 and a3  0 and b1 > 0 and b2  1
and b3  0. Then recSeqCart(a, b, a1, a2, a3, b1, b2, b3) is one-to-one. The
theorem is a consequence of (89).

(91) {〈〈x, y〉〉, where x, y are positive natural numbers : 3 ·x2− 7 · y2+ 1 = 0}
is infinite.
Proof: Define R(complex number, complex number) = 3 · $21 − 7 · $22 + 1.
Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : R(x, y) = 0}.
Define G(real number, real number) = 55 · $1 + 84 · $2 + 0. Define H(real
number, real number) = 36 · $1 + 55 · $2 + 0. Define P[object, element
of N × N, element of N × N] ≡ $3 = 〈〈G(($2)1, ($2)2), H(($2)1, ($2)2)〉〉.
Set f = recSeqCart(3, 2, 55, 84, 0, 36, 55, 0). Define N [natural number] ≡
f($1) ∈ A. If N [a], then N [a+ 1]. N [a]. rng f ⊆ A. f is one-to-one. �

10. Problem 138

One can check that there exists a set which is infinite and natural-membered.
Now we state the propositions:

(92) If i | p, then i = 1 or i = −1 or i = p or i = −p.
(93) {〈〈x, y〉〉, where x, y are integers : 2 · x3 + x · y − 7 = 0} = {〈〈1, 5〉〉, 〈〈7,
−97〉〉, 〈〈−1, −9〉〉, 〈〈−7, −99〉〉}.
Proof: Set A = {〈〈x, y〉〉, where x, y are integers : 2 · x3 + x · y − 7 = 0}.
Set B = {〈〈1, 5〉〉, 〈〈7, −97〉〉, 〈〈−1, −9〉〉, 〈〈−7, −99〉〉}. A ⊆ B by [10, (2)], (92).
�

(94) Let us consider a complex number r. If r 6= 0, then 2·(7
r )3+7

r ·(r−
98
r2

)−7 =
0.

(95) If n3 ¬ 98, then n ¬ 4.

(96) {〈〈x, y〉〉, where x, y are positive rational numbers : 2 · x3 + x · y− 7 = 0}
is infinite.
Proof: Define R(rational number, rational number) = 2 · $1

3 + $1 · $2− 7.
Set A = {〈〈x, y〉〉, where x, y are positive rational numbers : R(x, y) = 0}.
Define G(natural number) = 7

$1
. Define H(natural number) = $1 − 98

$21
.

Define F(natural number) = 〈〈G($1), H($1)〉〉. Set D = N \ {0, 1, 2, 3, 4}.
Consider f being a many sorted set indexed by D such that for every
element d of D, f(d) = F(d). rng f ⊆ A. f is one-to-one. �
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11. Problem 139

Now we state the proposition:

(97) {〈〈x, y〉〉, where x, y are positive natural numbers : (x− 1)2 + (x+ 1)2 =
y2 + 1} is infinite.
Proof: Define R(natural number,natural number) = ($1 − 1)2 + ($1 +
1)2 − ($22 + 1). Set A = {〈〈x, y〉〉, where x, y are positive natural numbers :
R(x, y) = 0}. Define G(natural number, natural number) = 3·$1+2·$2+0.
Define H(natural number,natural number) = 4 · $1 + 3 · $2 + 0. Define
P[object, element of N × N, element of N × N] ≡ $3 = 〈〈G(($2)1, ($2)2),
H(($2)1, ($2)2)〉〉. Set f = recSeqCart(2, 3, 3, 2, 0, 4, 3, 0). Define N [natural
number] ≡ f($1) ∈ A. If N [a], then N [a+1]. N [a]. rng f ⊆ A. f is one-to-
one. Define R[natural number,natural number] ≡ ($1 − 1)2 + ($1 + 1)2 =
$22 +1. Set B = {〈〈x, y〉〉, where x, y are positive natural numbers : R[x, y]}.
A = B. �

12. Problem 140

Let a be a rational number and n be a natural number. Let us observe that
an is rational. Let i be an integer. One can verify that ai is rational. Now we
state the propositions:

(98) If n > 1, then 3n − 31−n − 2 > 0.

(99) If n > 1, then 3n + 31−n − 4 > 0.

(100) Let us consider complex numbers x, y. Suppose x = 3n−31−n−2
4 and

y = 3n+31−n−4
8 . Then x · (x+ 1) = 4 · y · (y + 1).

(101) If m < n, then 3m − 31−m < 3n − 31−n.

(102) There exist no positive natural numbers x, y such that x · (x + 1) =
4 · y · (y + 1).

(103) {〈〈x, y〉〉, where x, y are positive rational numbers : x·(x+1) = 4·y·(y+1)}
is infinite.
Proof: Define R(complex number, complex number) = $1 · ($1 + 1)− 4 ·
$2 · ($2 + 1). Set A = {〈〈x, y〉〉, where x, y are positive rational numbers :
R(x, y) = 0}. Define G(natural number) = 3$1−31−$1−2

4 . Define H(natural

number) = 3$1+31−$1−4
8 . Define F(natural number) = 〈〈G($1), H($1)〉〉. Set

D = N\{0, 1}. Consider f being a many sorted set indexed by D such that
for every element d of D, f(d) = F(d). rng f ⊆ A. f is one-to-one. Define
R[complex number, complex number] ≡ $1 · ($1 + 1) = 4 · $2 · ($2 + 1). Set
B = {〈〈x, y〉〉, where x, y are positive rational numbers : R[x, y]}. A = B.
�
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13. Problem 141

Now we state the propositions:

(104) If m 6= 0 and pm | a · b, then p | a or p | b.
(105) If a and b are relatively prime and pn | a · b, then pn | a or pn | b.
(106) If n 6= 0, then there exist no positive natural numbers x, y such that

x · (x+ 1) = p2·n · y · (y + 1). The theorem is a consequence of (105).

14. Problem 142

Now we state the proposition:

(107) Let us consider natural numbers k, x, y. Suppose x2 − 2 · y2 = k. Let
us consider natural numbers t, u. If t = x − 2 · y and u = x − y, then
t2 − 2 · u2 = −k.
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Summary. This is a “quality of life” article concerning product groups,
using the Mizar system [2], [4]. Like a Sonata, this article consists of three mo-
vements.

The first act, the slowest of the three, builds the infrastructure necessary
for the rest of the article. We prove group homomorphisms map arbitrary finite
products to arbitrary finite products, introduce a notion of “group yielding”
families, as well as families of homomorphisms. We close the first act with defining
the inclusion morphism of a subgroup into its parent group, and the projection
morphism of a product group onto one of its factors.

The second act introduces the universal property of products and its conse-
quences as found in, e.g., Kurosh [7]. Specifically, for the product of an arbitrary
family of groups, we prove the center of a product group is the product of centers.
More exciting, we prove for a product of a finite family groups, the commutator
subgroup of the product is the product of commutator subgroups, but this is
because in general: the direct sum of commutator subgroups is the subgroup of
the commutator subgroup of the product group, and the commutator subgroup
of the product is a subgroup of the product of derived subgroups. We conclude
this act by proving a few theorems concerning the image and kernel of morphi-
sms between product groups, as found in Hungerford [5], as well as quotients of
product groups.

The third act introduces the notion of an internal direct product. Isaacs [6]
points out (paraphrasing with Mizar terminology) that the internal direct pro-
duct is a predicate but the external direct product is a [Mizar] functor. To our
delight, we find the bulk of the “recognition theorem” (as stated by Dummit and
Foote [3], Aschbacher [1], and Robinson [11]) are already formalized in the heroic
work of Nakasho, Okazaki, Yamazaki, and Shidama [9], [8]. We generalize the
notion of an internal product to a set of subgroups, proving it is equivalent to
the internal product of a family of subgroups [10].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider sets X, Y, Z, W . Suppose Z 6= ∅ and W 6= ∅. Let us
consider a function f from X×Y into Z, and a function g from X×Y into
W . If for every element a of X for every element b of Y, f(a, b) = g(a, b),
then f = g.

(2) Let us consider a finite set A. Then CFS(A) is a many sorted set indexed
by Seg A .

(3) Let us consider non empty sets X, Y, and a function f from X into Y.
Suppose f is onto. Then there exists a function g from Y into X such that
f · g = idY .
Proof: Define P[object, object] ≡ $1 = f($2). For every object y such
that y ∈ Y there exists an object x such that x ∈ X and P[y, x]. Consider
g being a function from Y into X such that for every object y such that
y ∈ Y holds P[y, g(y)]. For every element y of Y, (f · g)(y) = y. �

Let I be a non empty set, A, B be many sorted sets indexed by I, f be
a many sorted function from A into B, and i be an element of I. Let us observe
that the functor f(i) yields a function from A(i) into B(i). Let F1, F2 be 1-sorted
yielding many sorted sets indexed by I.

A many sorted function from F1 into F2 is a many sorted function from
the support of F1 into the support of F2. Let ϕ be a many sorted function from
F1 into F2 and i be an element of I. Note that the functor ϕ(i) yields a function
from F1(i) into F2(i). Now we state the proposition:

(4) Let us consider a non empty set I, many sorted sets A, B indexed by I,
and a many sorted set f indexed by I. Then f is a many sorted function
from A into B if and only if for every element i of I, f(i) is a function
from A(i) into B(i).

Let I, X be sets. Observe that there exists a many sorted set indexed by I
which is (2X)-valued.

Let M be a (2X)-valued many sorted set indexed by I. One can check that
the functor

⋃
M yields a subset of X. Let I be a set, J be a subset of I, and

F be a many sorted set indexed by I. One can check that F �J is J-defined and
total.

http://fm.mizar.org/miz/group_23.miz
http://ftp.mizar.org/
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Let F be a 1-sorted yielding many sorted set indexed by I. Observe that
F �J is 1-sorted yielding, J-defined, and total. Now we state the proposition:

(5) Let us consider a non empty set I, a many sorted set M indexed by I,
and an object y. Then y ∈ rngM if and only if there exists an element i
of I such that y = M(i).

2. Sequences of Group Elements under Homomorphisms

Now we state the propositions:

(6) Let us consider groups G1, G2, a homomorphism ϕ from G1 to G2,
a finite sequence F1 of elements of the carrier of G1, and a finite sequence
F2 of elements of the carrier of G2. If F2 = ϕ · F1, then

∏
F2 = ϕ(

∏
F1).

Proof: Define P[finite sequence of elements of the carrier ofG1] ≡ ϕ(
∏

$1)
=
∏
ϕ · $1. P[εα], where α is the carrier of G1. For every finite sequence

p0 of elements of the carrier of G1 and for every element x of the carrier
of G1 such that P[p0] holds P[p0

a 〈x〉]. For every finite sequence p0 of
elements of the carrier of G1, P[p0]. �

(7) Let us consider groups G1, G2, a homomorphism ϕ from G1 to G2, and
a finite sequence F1 of elements of the carrier of G1. Then there exists
a finite sequence F2 of elements of the carrier of G2 such that

(i) lenF1 = lenF2, and

(ii) F2 = ϕ · F1, and

(iii)
∏
F2 = ϕ(

∏
F1).

Proof: Set n1 = lenF1. Define P[object, object] ≡ there exists a natural
number k such that k = $1 and $2 = ϕ(F1(k)). For every natural number
k such that k ∈ Seg n1 there exists an object x such that P[k, x]. Consider
p being a finite sequence such that dom p = Seg n1 and for every natural
number k such that k ∈ Seg n1 holds P[k, p(k)]. p = ϕ · F1. �

(8) Let us consider groups G1, G2, a homomorphism ϕ from G1 to G2,
a finite sequence F1 of elements of the carrier of G1, and a finite sequence
k1 of elements of Z. Then there exists a finite sequence F2 of elements of
the carrier of G2 such that

(i) lenF1 = lenF2, and

(ii) F2 = ϕ · F1, and

(iii)
∏
F2

k1 = ϕ(
∏
F1

k1).

Proof: Consider F2 being a finite sequence of elements of the carrier of G2

such that lenF1 = lenF2 and F2 = ϕ · F1 and
∏
F2 = ϕ(

∏
F1). For every

natural number k such that k ∈ domF2
k1 holds (ϕ ·F1

k1)(k) = F2
k1(k). �
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3. Preliminary Work about Group-families and Group-yielding
Many Sorted Sets

Let I2 be a binary relation. We say that I2 is group yielding if and only if

(Def. 1) for every object G such that G ∈ rng I2 holds G is a group.

One can check that every function which is group yielding is also 1-sorted
yielding and every function which is group yielding is also multiplicative magma
yielding. Now we state the proposition:

(9) Let us consider a set I. Then every associative, group-like multiplicative
magma family of I is group yielding.

Let I be a set. One can check that there exists a many sorted set indexed
by I which is group yielding and every multiplicative magma family of I which
is associative and group-like is also group yielding and there exists a function
which is group yielding. Now we state the proposition:

(10) Let us consider a non empty set I, a group yielding many sorted set F
indexed by I, and an element i of I. Then F (i) is a group.

Let I be a non empty set, i be an element of I, and F be a group yielding
many sorted set indexed by I. Note that F (i) is group-like, associative, unital,
and non empty as a multiplicative magma. Now we state the proposition:

(11) Let us consider a set I, and a many sorted set F indexed by I. Then
F is group yielding if and only if for every object i such that i ∈ I holds
F (i) is a group.

Let I be a set. Let us observe that every multiplicative magma family of I
which is group yielding is also group-like and associative and every group-like,
associative multiplicative magma family of I is group yielding and every group
yielding many sorted set indexed by I is group-like, associative, and multiplica-
tive magma yielding.

From now on I denotes a non empty set, i denotes an element of I, F denotes
a group family of I, and G denotes a group. Now we state the propositions:

(12) ∅ 7−→ G is a group family of ∅.
(13) Let us consider a natural number n. Then Seg n 7−→ G is a group family

of Seg n. The theorem is a consequence of (12).

LetG be a group and n be a natural number. One can verify that Seg n 7−→ G

is group yielding. Now we state the proposition:

(14) (The support of F )(i) = the carrier of F (i).

The scheme GrFamSch deals with a non empty set I1 and a unary functor
A yielding a group and states that
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(Sch. 1) There exists a group family F of I1 such that for every element i of I1,
F(i) = A(i).

4. Subgroup-family of a Family of Groups

Let I be a set and F , I2 be group families of I. We say that I2 is F -subgroup
yielding if and only if

(Def. 2) for every element i of I and for every group G such that G = F (i) holds
I2(i) is a subgroup of G.

Now we state the propositions:

(15) Let us consider a group family S of I. Then S is F -subgroup yielding if
and only if for every element i of I, S(i) is a subgroup of F (i).

(16) Let us consider a set I. Then every group family of I is F -subgroup
yielding.

Let I be a set and F be a group family of I. Let us observe that there exists
a group family of I which is F -subgroup yielding.

A subgroup family of F is an F -subgroup yielding group family of I. Let I
be a non empty set, S be a subgroup family of F , and i be an element of I.
Let us observe that the functor S(i) yields a subgroup of F (i). From now on S

denotes a subgroup family of F . Now we state the proposition:

(17) Let us consider a group family S of I. Then S is a subgroup family of F
if and only if for every element i of I, S(i) is a subgroup of F (i).

The scheme SubFamSch deals with a non empty set I1 and a group family
F of I1 and a unary functor S yielding a group and states that

(Sch. 2) There exists a subgroup family S of F such that for every element i of
I1, S(i) = S(F(i))

provided

• for every group G, S(G) is a subgroup of G.

Let I be a non empty set and I2 be a group family of I. We say that I2 is
componentwise strict if and only if

(Def. 3) for every element i of I, I2(i) is strict.

One can check that there exists a group family of I which is componentwise
strict. Now we state the proposition:

(18) Let us consider a non empty set I, a group family F of I, and a subgroup
family I2 of F . Then I2 is componentwise strict if and only if for every
element i of I, I2(i) is a strict subgroup of F (i).



106 alexander m. nelson

Let I be a non empty set and F be a group family of I. One can verify that
there exists a subgroup family of F which is componentwise strict. Let S be
a componentwise strict subgroup family of F and i be an element of I. Note
that S(i) is strict as a subgroup of F (i).

The scheme StrSubFamSch deals with a non empty set I1 and a group family
F of I1 and a unary functor S yielding a group and states that

(Sch. 3) There exists a componentwise strict subgroup family S of F such that
for every element i of I1, S(i) = S(F(i))

provided

• for every group G, S(G) is a strict subgroup of G.

Now we state the proposition:

(19) Let us consider subgroup families A, B of F . If for every element i of I,
A(i) = B(i), then A = B.

Let I be a non empty set and F be a group family of I. The functor {1}F
yielding a componentwise strict subgroup family of F is defined by

(Def. 4) for every element i of I, it(i) = {1}F (i).

The functor ΩF yielding a componentwise strict subgroup family of F is
defined by

(Def. 5) for every element i of I, it(i) = ΩF (i).

Let I2 be a subgroup family of F . We say that I2 is normal if and only if

(Def. 6) for every element i of I, I2(i) is a normal subgroup of F (i).

Let us note that there exists a subgroup family of F which is componentwise
strict and normal. Let S be a normal subgroup family of F and i be an element
of I. One can check that S(i) is normal as a subgroup of F (i).

Let S be a componentwise strict subgroup family of F . Note that S(i) is
strict as a subgroup of F (i) and {1}F is normal and ΩF is normal. Let N be
a normal subgroup family of F . The functor F /N yielding a group family of I
is defined by

(Def. 7) for every element i of I, it(i) = F (i)/N(i).

Observe that F /N is componentwise strict. Now we state the propositions:

(20) There exists a componentwise strict, normal subgroup family S of F
such that for every element i of I, S(i) = F (i)c.
Proof: Define A(group) = $1

c. Consider S being a componentwise strict
subgroup family of F such that for every element i of I, S(i) = A(F (i)).
For every element i of I, S(i) is a normal subgroup of F (i). �
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(21) Let us consider a strict multiplicative magma M . Suppose there exists
an object x such that the carrier of M = {x}. Then there exists a strict,
trivial group G such that M = G.

(22) Let us consider an empty set I, and a multiplicative magma family F of
I. Then

∏
F is a trivial group. The theorem is a consequence of (21).

5. Inclusion Morphism

Let G, H be groups. Assume H is a subgroup of G. The functor incl(H,G)
yielding a homomorphism from H to G is defined by the term

(Def. 8) idα, where α is the carrier of H.

Let G be a group and H be a subgroup of G. The functor H
↪→ yielding

a homomorphism from H to G is defined by the term

(Def. 9) incl(H,G).

Now we state the propositions:

(23) Let us consider a group H, and an element h of H. If H is a subgroup
of G, then (incl(H,G))(h) = h.

(24) Let us consider a subgroup H of G. Then

(i) incl(H,G) is one-to-one, and

(ii) Im incl(H,G) = the multiplicative magma of H.

Proof: Set f = incl(H,G). Ker f = {1}H . �

Let G be a group and H be a subgroup of G. Let us observe that incl(H,G)
is one-to-one. Now we state the propositions:

(25) Let us consider groups H, K. Suppose H is a subgroup of G. Let us
consider a homomorphism ϕ from G to K. Then ϕ�(the carrier of H) =
ϕ · (incl(H,G)).
Proof: dom(ϕ�(the carrier of H)) = the carrier of H. For every object x
such that x ∈ dom(ϕ�(the carrier of H)) holds (ϕ�(the carrier of H))(x) =
(ϕ · (incl(H,G)))(x). �

(26) Let us consider a group K, a subgroup H of G, and a homomorphism ϕ

from G to K. Then ϕ�H = ϕ · ( H↪→).

Proof: For every element h of H, (ϕ�H)(h) = (ϕ · ( H↪→))(h). �

(27) Let us consider a group G, and a strict subgroup H of G. Then Im( H↪→) =
H.
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6. Families of Homomorphisms

Let G be a group, I be a non empty set, and F be a group family of I.
A homomorphism family of G and F is a many sorted function indexed by

I defined by

(Def. 10) for every element i of I, it(i) is a homomorphism from G to F (i).

Let f be a homomorphism family of G and F and i be an element of I.
One can check that the functor f(i) yields a homomorphism from G to F (i).
In the sequel f denotes a homomorphism family of G and F . Now we state the
proposition:

(28) 〈〈i, f(i)〉〉 ∈ f .

Let I be a non empty set and F1, F2 be group families of I.
A homomorphism family of F1 and F2 is a many sorted function from F1

into F2 defined by

(Def. 11) for every element i of I, it(i) is a homomorphism from F1(i) to F2(i).

Let i be an element of I and ϕ be a homomorphism family of F1 and F2.
Note that ϕ(i) is multiplicative as a function from F1(i) into F2(i). Now we
state the proposition:

(29) Let us consider a non empty set I, group families A, B of I, and a many
sorted set f indexed by I. Then f is a homomorphism family of A and B
if and only if for every element i of I, f(i) is a homomorphism from A(i)
to B(i). The theorem is a consequence of (14).

The scheme HomFamSch deals with a non empty set I1 and a group family
D1 of I1 and a group family C of I1 and a unary functor A yielding a function
and states that

(Sch. 4) There exists a homomorphism family H of D1 and C such that for every
element i of I1, H(i) = A(i)

provided

• for every element i of I1, A(i) is a homomorphism from D1(i) to C(i).

Now we state the proposition:

(30) Let us consider a group G, a non empty set I, a group family F of I,
and a many sorted set f indexed by I. Then f is a homomorphism family
of G and F if and only if for every element i of I, f(i) is a homomorphism
from G to F (i).

The scheme RHomFamSch deals with a non empty set I1 and a group D1

and a group family C of I1 and a unary functor A yielding a function and states
that
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(Sch. 5) There exists a homomorphism family H of D1 and C such that for every
element i of I1, H(i) = A(i)

provided

• for every element i of I1, A(i) is a homomorphism from D1 to C(i).

Now we state the proposition:

(31) Let us consider a non empty set I, group families A, B of I, and a many
sorted set f indexed by I. Then f is a homomorphism family of A and B
if and only if for every element i of I, f(i) is a homomorphism from A(i)
to B(i). The theorem is a consequence of (14).

7. Projection Morphisms from Product Group to Direct Factors

Now we state the proposition:

(32) Let us consider an element g of
∏
F . Then g(i) is an element of F (i).

Let I be a non empty set, F be a group family of I, g be an element of
∏
F ,

and i be an element of I. The functor g/i yielding an element of F (i) is defined
by the term

(Def. 12) g(i).

We identify g(i) with g/i. The functor proj(F, i) yielding a homomorphism
from

∏
F to F (i) is defined by

(Def. 13) for every element h of
∏
F , it(h) = h(i).

Now we state the proposition:

(33) proj(F, i) is onto.
Proof: For every object y such that y ∈ the carrier of F (i) there exists
an object x such that x ∈ the carrier of

∏
F and y = (proj(F, i))(x). �

Let I be a non empty set, F be a group family of I, and i be an element of
I. Let us observe that proj(F, i) is onto. Now we state the propositions:

(34) proj(the support of F, i) is a function from
∏

(the support of F ) into
the carrier of F (i).

(35) Let us consider an element g of
∏
F .

Then (proj(F, i))(g) = (proj(the support of F, i))(g).

(36) proj(F, i) = proj(the support of F, i). The theorem is a consequence of
(34) and (35).

(37) Let us consider an element g of
∏
F , and an element h of F (i). Then

g +· (i, h) ∈
∏
F .

(38) Let us consider an element i of I, and an element g of
∏
F . Then g +·

(i,1F (i)) ∈ Ker proj(F, i). The theorem is a consequence of (37).
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(39) Let us consider groups G1, G2, and a homomorphism f from G1 to G2.
If for every element g of G1, f(g) = g, then G1 is a subgroup of G2.
Proof: The carrier of G1 ⊆ the carrier of G2. Set U1 = the carrier of G1.
For every element a of U1 and for every element b of U1, (the multiplication
of G1)(a, b) = ((the multiplication of G2) � U1)(a, b). (The multiplication
of G2) � U1 is a binary operation on U1. �

(40) Let us consider elements i, j of I. Suppose i 6= j. Then (proj(F, j)) ·
(1ProdHom(F, i)) = F (i)→ {1}F (j).
Proof: Set U = the carrier of F (i). dom(F (i) → {1}F (j)) = U and
dom((proj(F, j)) · (1ProdHom(F, i))) = U . For every element x of U ,
((proj(F, j)) · (1ProdHom(F, i)))(x) = (F (i)→ {1}F (j))(x). �

(41) (proj(F, i)) · (1ProdHom(F, i)) = idα, where α is the carrier of F (i).
Proof: Set U = the carrier of F (i). For every element x of U , ((proj(F, i))·
(1ProdHom(F, i)))(x) = x. �

8. Universal Property of Direct Products of Groups

Let us consider a homomorphism family f of G and F . Now we state the
propositions:

(42) There exists a homomorphism ϕ from G to
∏
F such that for every

element g of G for every element j of I, (f(j))(g) = (proj(F, j))(ϕ(g)).
Proof: Define P[object, object] ≡ there exists an element g0 of

∏
F such

that $2 = g0 and for every element j of I, f(j)($1) = g0(j). Define F =
the carrier of G. For every object x such that x ∈ F there exists an object
y such that y ∈ the carrier of

∏
F and P[x, y]. Consider ϕ being a function

from F into the carrier of
∏
F such that for every object x such that x ∈ F

holds P[x, ϕ(x)]. For every element g of G and for every element j of I,
ϕ(g)(j) = f(j)(g). For every elements a, b of G, ϕ(a · b) = ϕ(a) ·ϕ(b). For
every element j of I, (f(j))(g) = (proj(F, j))(ϕ(g)). �

(43) There exists a homomorphism ϕ from G to
∏
F such that for every

element i of I, f(i) = (proj(F, i)) · ϕ.
Proof: Consider ϕ being a homomorphism from G to

∏
F such that for

every element g of G and for every element j of I, (f(j))(g) = (proj(F, j))
(ϕ(g)). For every element g of G, ((proj(F, i)) · ϕ)(g) = f(i)(g). �

(44) Let us consider a homomorphism family f of G and F , and homo-
morphisms ϕ1, ϕ2 from G to

∏
F . Suppose for every element i of I,

f(i) = (proj(F, i)) ·ϕ1 and for every element i of I, f(i) = (proj(F, i)) ·ϕ2.
Then ϕ1 = ϕ2.
Proof: For every element g of G, ϕ1(g) = ϕ2(g). �
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Let G be a group, I be a non empty set, F be a group family of I, and f be
a homomorphism family of G and F . The functor

∏
f yielding a homomorphism

from G to
∏
F is defined by

(Def. 14) for every element g of G and for every element i of I, f(i)(g) = it(g)(i).

Let us consider an element g of G. Now we state the propositions:

(45) for every element i of I, (
∏
f)(g)(i) = 1F (i) if and only if (

∏
f)(g) =

1∏F .

Proof: If for every element i of I, (
∏
f)(g)(i) = 1F (i), then (

∏
f)(g) =

1∏F . �

(46) g ∈ Ker
∏
f if and only if for every element i of I, g ∈ Ker f(i).

Proof: If g ∈ Ker
∏
f , then for every element i of I, g ∈ Ker f(i). If for

every element i of I, g ∈ Ker f(i), then g ∈ Ker
∏
f . �

(47) Let us consider groups G1, G2, G3, a homomorphism f1 from G1 to
G2, a homomorphism f2 from G2 to G3, and an element g of G1. Then
g ∈ Ker f2 · f1 if and only if f1(g) ∈ Ker f2.
Proof: If g ∈ Ker f2 · f1, then f1(g) ∈ Ker f2. If f1(g) ∈ Ker f2, then
g ∈ Ker f2 · f1. �

(48) Let us consider groups G1, G2, G3, a homomorphism f1 from G1 to G2,
and a homomorphism f2 from G2 to G3. Then the carrier of Ker f2 · f1 =
f1
−1((the carrier of Ker f2)).
Proof: For every element g of G1 such that g ∈ the carrier of Ker f2 · f1

holds g ∈ f1
−1((the carrier of Ker f2)). For every element g of G1 such

that g ∈ f1
−1((the carrier of Ker f2)) holds g ∈ the carrier of Ker f2 · f1.

�

(49) The carrier of Ker
∏
f =

⋂
the set of all the carrier of Ker f(i) where

i is an element of I.
Proof: Set F = the set of all the carrier of Ker f(i) where i is an element
of I. F 6= ∅. For every object g, g ∈ Ker

∏
f iff for every set A such that

A ∈ F holds g ∈ A. For every object g, g ∈ Ker
∏
f iff g ∈

⋂
F . For every

object g, g ∈ the carrier of Ker
∏
f iff g ∈

⋂
F . �

(50) Let us consider a function f , a non empty set I, and a group family F

of I. Suppose dom f = I and for every element i of I, f(i) ∈ F (i). Then
f ∈

∏
F . The theorem is a consequence of (14).

(51) Let us consider a group family S of I, and an element g of
∏
F . Then

g ∈
∏
S if and only if for every element i of I, (proj(F, i))(g) ∈ S(i). The

theorem is a consequence of (50).

(52) Let us consider group families F1, F2 of I. Suppose for every element i
of I, F1(i) is a subgroup of F2(i). Then

∏
F1 is a subgroup of

∏
F2.
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Proof: Define A(element of I) = (incl(F1($1), F2($1))) · (proj(F1, $1)).
Consider f being a homomorphism family of

∏
F1 and F2 such that for

every element i of I, f(i) = A(i). For every element g of
∏
F1 and for

every element i of I, f(i)(g) = g(i). Consider ϕ being a homomorphism
from

∏
F1 to

∏
F2 such that for every element g of

∏
F1 and for every

element i of I, (f(i))(g) = (proj(F2, i))(ϕ(g)). For every element g of
∏
F1,

ϕ(g) = g. �

Let I be a non empty set, F be a group family of I, and S be a subgroup
family of F . The functor

∏
S yielding a strict subgroup of

∏
F is defined by the

term

(Def. 15)
∏
S.

Now we state the propositions:

(53) Im proj(F, i) = the multiplicative magma of F (i).
Proof: For every object g such that g ∈ the carrier of F (i) holds g ∈
the carrier of Im proj(F, i). �

(54) Let us consider componentwise strict subgroup families F1, F2 of F . Sup-
pose for every element i of I, Im proj(F1, i) is a subgroup of Im proj(F2, i).
Then

∏
F1 is a strict subgroup of

∏
F2. The theorem is a consequence of

(53) and (52).

(55) Let us consider a strict subgroup G of
∏
F , and S. Suppose for eve-

ry element i of I, S(i) = Im(proj(F, i)) · ( G↪→). Let us consider a ho-
momorphism family f of G and S. Suppose for every element i of I,
f(i) = (proj(F, i)) · ( G↪→). Then

∏
f = idα, where α is the carrier of G.

Proof: For every element g of G and for every element i of I, ((proj(F, i))·
( G↪→))(g) = ((proj(F, i)) · (

∏
f))(g). For every element g of

∏
F such that

g ∈ G holds (
∏
f)(g) = g. For every object x such that x ∈ the carrier of

G holds (
∏
f)(x) = x. �

(56) Let us consider groups G1, G2, a homomorphism ϕ from G1 to G2, and
an element x of G1. Suppose x ∈ the commutators of G1. Then ϕ(x) ∈
the commutators of G2.

(57) Let us consider groups G1, G2, G3, a homomorphism f1 from G1 to
G2, a homomorphism f2 from G2 to G3, and an element g of G1. Then
(f2 · f1)(g) = f2(f1(g)).

(58) Let us consider groups G1, G2, a subgroup H of G2, a homomorphism
f1 from G1 to G2, and a homomorphism f2 from G1 to H. If f1 = f2, then
Im f1 = Im f2.
Proof: For every element g of G2, g ∈ Im f1 iff g ∈ Im f2. �

(59) Let us consider elements a, b of
∏
F , and i. Then [a, b](i) = [a/i, b/i].
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The scheme SubFamEx deals with a non empty set I1 and a group family F
of I1 and a binary predicate P and states that

(Sch. 6) There exists a subgroup family S of F such that for every element i of
I1, P[i, S(i)]

provided

• for every element i of I1, there exists a subgroup j of F(i) such that P[i, j].

Now we state the propositions:

(60) Let us consider a many sorted set A indexed by I. Suppose for every
element i of I, A(i) is a subset of F (i). Then

∏
A is a subset of

∏
F .

Proof: For every object x such that x ∈
∏
A holds x ∈ the carrier of∏

F . �

(61) Let us consider a normal subgroup family S of F . Then
∏
S is a normal

subgroup of
∏
F .

Proof: For every element g of
∏
F , (

∏
S)g is a subgroup of

∏
S. �

Let I be a non empty set, F be a group family of I, and S be a normal
subgroup family of F . Note that

∏
S is normal as a subgroup of

∏
F .

9. Commutator Subgroup and Center of Product Groups

Now we state the proposition:

(62) Let us consider a group family Z of I. If for every element i of I, Z(i) =
Z(F (i)), then Z(

∏
F ) =

∏
Z.

Proof: For every element a of
∏
F , a ∈

∏
Z iff for every element b of∏

F , a · b = b · a. For every element a of
∏
F , a ∈

∏
Z iff a ∈ Z(

∏
F ). For

every element i of I, Z(i) is a subgroup of F (i). �

Let us consider a subgroup family D of F . Now we state the propositions:

(63) If for every element i of I, D(i) = F (i)c, then (
∏
F )c is a strict subgroup

of
∏
D.

Proof: For every elements a, b of
∏
F , [a, b] ∈

∏
D. �

(64) If for every element i of I, D(i) = F (i)c, then sumD is a strict subgroup
of (

∏
F )c.

Proof: For every element g of
∏
F such that g ∈ sumD holds g ∈ (

∏
F )c.

�

(65) Let us consider a finite, non empty set I, a group family F of I, and
a subgroup family D of F . Suppose for every element i of I, D(i) = F (i)c.
Then (

∏
F )c =

∏
D. The theorem is a consequence of (64) and (63).
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10. Quotients of Product Groups

Let I be a non empty set, F1, F2 be group families of I, and f be a homo-
morphism family of F1 and F2. The functor

∏
f yielding a homomorphism from∏

F1 to
∏
F2 is defined by

(Def. 16) for every element i of I, (proj(F2, i)) · it = f(i) · (proj(F1, i)).

The functor Ker f yielding a componentwise strict, normal subgroup family
of F1 is defined by

(Def. 17) for every element i of I, it(i) = Ker(f(i) qua homomorphism from F1(i)
to F2(i)).

The functor Im f yielding a componentwise strict subgroup family of F2 is
defined by

(Def. 18) for every element i of I, it(i) = Im(f(i) qua homomorphism from F1(i)
to F2(i)).

Let us consider group families F1, F2 of I and a homomorphism family f of
F1 and F2. Now we state the propositions:

(66) Ker
∏
f =

∏
Ker f .

Proof: For every element g of
∏
F1, g ∈ Ker

∏
f iff g ∈

∏
Ker f . �

(67) Im
∏
f =

∏
Im f .

Proof: For every element g of
∏
F2, g ∈ Im

∏
f iff g ∈

∏
Im f . �

(68) Let us consider a componentwise strict, normal subgroup family S of F .
Then

∏
F /∏S and

∏
(F /S) are isomorphic.

Proof: Define A(element of I) = the canonical homomorphism onto co-
sets of S($1). For every element i of I, A(i) is a homomorphism from F (i)
to (F /S)(i). Consider f being a homomorphism family of F and F /S such
that for every element i of I, f(i) = A(i). Ker f = S. Ker

∏
f =

∏
S.

Im f = F /S . Im
∏
f =

∏
Im f . �

11. Internal Direct Products

Let I be a set, G be a group, and I2 be a homomorphism family of I and
G. We say that I2 is normal if and only if

(Def. 19) for every object i such that i ∈ I holds I2(i) is a normal subgroup of G.

We say that I2 is componentwise strict if and only if

(Def. 20) for every object i such that i ∈ I holds I2(i) is a strict subgroup of G.

Let us consider a non empty set I, a group G, and a homomorphism family
F of I and G. Now we state the propositions:
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(69) F is normal if and only if for every element i of I, F (i) is a normal
subgroup of G.

(70) F is componentwise strict if and only if for every element i of I, F (i) is
a strict subgroup of G.

Let I be a set and G be a group. Note that there exists a homomorphism
family of I and G which is componentwise strict and normal.

Let I be a non empty set, F be a homomorphism family of I and G, and i

be an element of I. Note that the functor F (i) yields a subgroup of G. Let F be
a normal homomorphism family of I and G. One can check that F (i) is normal
as a subgroup of G. Now we state the propositions:

(71) Let us consider subgroups H1, H2 of G. Suppose [H1, H2] = {1}G. Let
us consider elements a, b of G. If a ∈ H1 and b ∈ H2, then a · b = b · a.

(72) Let us consider a normal subgroup N of G, and elements a, b of G. If
a ∈ N , then ab ∈ N .

(73) Let us consider normal subgroups H, K of G. Suppose H ∩K = {1}G.
Let us consider elements h, k of G. If h ∈ H and k ∈ K, then h · k = k ·h.
Proof: [h, k] ∈ H ∩K. �

(74) Let us consider a normal homomorphism family F of I and G, and
a subsetA ofG. SupposeA =

⋃
{the carrier of F (i), where i is an element

of I}. Then there exists a strict, normal subgroup N of G such that N =
gr(A).
Proof: ReconsiderN = gr(A) as a strict subgroup ofG. For every element
i of I, the carrier of F (i) ⊆ the carrier of N . For every element a of G,
Na is a subgroup of N . �

Let I be a set, J be a subset of I, and F be a group yielding many sorted set
indexed by I. One can verify that F �J is group yielding, J-defined, and total.

Now we state the proposition:

(75) Let us consider a set I, a homomorphism family F of I and G, and a set
J . If J ⊆ I, then F �J is a homomorphism family of J and G.
Proof: For every object j such that j ∈ J holds (F �J)(j) is a subgroup
of G. �

Let I be a set, G be a group, F be a homomorphism family of I and G,
and J be a subset of I. Note that the functor F �J yields a homomorphism
family of J and G. One can check that F �J is group yielding. Now we state the
propositions:

(76) Let us consider a normal homomorphism family F of I and G, a subset
A of G, and an element i of I. Suppose A =

⋃
{the carrier of F (j), where

j is an element of I : i 6= j}. Then there exists a strict, normal subgroup
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N of G such that N = gr(A). The theorem is a consequence of (75), (69),
and (74).

(77) Let us consider a non empty subset J of I, and a normal homomorphism
family F of I and G. Then F �J is a normal homomorphism family of J
and G.
Proof: For every element j of J , (F �J)(j) is a normal subgroup of G. �

(78) Let us consider a set I, a subset J of I, and a normal homomorphism
family F of I and G. Then F �J is a normal homomorphism family of J
and G.
Proof: For every object i such that i ∈ J holds (F �J)(i) is a normal
subgroup of G. �

Let I be a set, J be a subset of I, G be a group, and F be a normal homomor-
phism family of I and G. Let us note that F �J is normal as a homomorphism
family of J and G. Now we state the proposition:

(79) Let us consider a set I, a subset J of I, and a componentwise strict
homomorphism family F of I and G. Then F �J is a componentwise strict
homomorphism family of J and G.
Proof: For every object i such that i ∈ J holds (F �J)(i) is a strict
subgroup of G. �

Let I be a set, J be a subset of I, G be a group, and F be a componentwise
strict homomorphism family of I and G. Let us note that F �J is componentwise
strict as a homomorphism family of J and G. Now we state the propositions:

(80) Let us consider a set I, and a subset J of I. Suppose J is empty. Let us
consider a normal homomorphism family F of I and G. Then the support
of F �J = ∅ 7−→ 2α, where α is the carrier of G.

(81) Let us consider a set I, a subset J of I, a normal homomorphism family
F of I and G, and a subset A of G. Suppose A =

⋃
(the support of F �J).

Then there exists a strict, normal subgroup N of G such that N = gr(A).

(82) Let us consider a set I, a normal homomorphism family F of I and G,
and a subset A of G. Suppose A =

⋃
(the support of F ). Then there exists

a strict, normal subgroup N of G such that N = gr(A). The theorem is
a consequence of (81).

(83) Every componentwise strict homomorphism family of I and G is
(SubGrG)-valued. The theorem is a consequence of (5) and (70).

Let I be a non empty set and G be a group. Let us observe that every
componentwise strict homomorphism family of I and G is (SubGrG)-valued.
Let I be a set and F be a 1-sorted yielding many sorted set indexed by I.
An element of F is an element of the support of F . Now we state the proposition:
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(84) Let us consider a group family F of I, an element g of F , and an element
i of I. Then g(i) is an element of F (i). The theorem is a consequence of
(14).

Let I be a non empty set, G be a group, and F be a homomorphism family
of I and G. Observe that every element of F is (the carrier of G)-valued and
every element of

∏
F is I-defined, relation-like, and function-like and every

element of
∏
F is I-defined, (the carrier of G)-valued, and total. Now we state

the proposition:

(85) Let us consider a set I, a group G, and a homomorphism family F of I
and G. Then the support of F is (2α)-valued, where α is the carrier of G.
The theorem is a consequence of (14).

Let I be a set, G be a group, and F be a homomorphism family of I and
G. Observe that the support of F is (2(the carrier of G))-valued. Now we state the
propositions:

(86) Let us consider a group G, a finite subset S of SubGrG, and a natural
number n. Suppose n = S . Then CFS(S) is a homomorphism family of
Seg n and G.
Proof: For every object y such that y ∈ rng CFS(S) holds y is a subgroup
of G. CFS(S) is a group family of Seg n. For every object i such that
i ∈ Seg n holds (CFS(S))(i) is a subgroup of G. �

(87) Let us consider a group G, a finite subset N of the normal subgroups of
G, and a natural number n. Suppose n = N . Then CFS(N) is a normal
homomorphism family of Seg n and G.
Proof: For every object i such that i ∈ Seg n holds (CFS(N))(i) is a nor-
mal subgroup of G. �

(88) Let us consider a group G, an empty set I, and a homomorphism family
F of I and G. Then gr(

⋃
(the support of F )) = {1}G.

Let G be a group, I be a set, F be a homomorphism family of I and G,
and i be an object. Assume i ∈ I. The functor F/i yielding a subgroup of G is
defined by the term

(Def. 21) F (i).

We say that G is an internal product of F if and only if

(Def. 22) for every object i such that i ∈ I holds F (i) is a normal subgroup of
G and the multiplicative magma of G = gr(

⋃
(the support of F )) and for

every object i such that i ∈ I for every strict, normal subgroup N of G
such that N = gr(

⋃
(the support of F �I \ {j, where j is an element of

I : F (i) = F (j)})) holds F/i ∩N = {1}G.

Now we state the propositions:
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(89) Let us consider a group G, an empty set I, and a homomorphism family
F of I and G. Then G is an internal product of F if and only if G is trivial.
The theorem is a consequence of (88).

(90) Let us consider a group G, a non empty set I, and a homomorphism
family F of I and G. Then G is an internal product of F if and only if for
every element i of I, F (i) is a normal subgroup of G and the multiplicative
magma of G = gr(

⋃
(the support of F )) and for every element i of I and

for every subset J of I such that J = I \ {j, where j is an element of
I : F (i) = F (j)} for every strict, normal subgroup N of G such that
N = gr(

⋃
(the support of F �J)) holds F (i) ∩N = {1}G.

Let G be a group, I be a set, and F be a normal homomorphism family of
I and G. One can check that G is an internal product of F if and only if the
condition (Def. 23) is satisfied.

(Def. 23) the multiplicative magma of G = gr(
⋃

(the support of F )) and for every
object i such that i ∈ I for every strict, normal subgroup N of G such
that N = gr(

⋃
(the support of F �I\{j, where j is an element of I : F (i) =

F (j)})) holds F/i ∩N = {1}G.

Let us consider a group G, a non empty set I, and a normal homomorphism
family F of I and G. Now we state the propositions:

(91) G is an internal product of F if and only if the multiplicative magma of
G = gr(

⋃
(the support of F )) and for every element i of I and for every sub-

set J of I such that J = I \ {j, where j is an element of I : F (i) = F (j)}
for every strict, normal subgroup N of G such that N = gr(

⋃
(the support

of F �J)) holds F (i) ∩N = {1}G. The theorem is a consequence of (90).

(92) Suppose F is one-to-one. Then G is an internal product of F if and only
if the multiplicative magma of G = gr(

⋃
(the support of F )) and for every

element i of I and for every subset J of I such that J = I \ {i} for every
strict, normal subgroup N of G such that N = gr(

⋃
(the support of F �J))

holds F (i) ∩N = {1}G. The theorem is a consequence of (91).

(93) The celebrated “Recognition Theorem”, see Aschbacher [1,
(1.9)], Hungerford [5, (1.8.6)], Robinson [11, (1.4.7.ii)]:
Let us consider a strict group G, a non empty set I, and a normal homo-
morphism family F of I and G. Suppose F is one-to-one. Then G is an
internal product of F if and only if F is an internal direct sum components
of G and I.
Proof: For every element i of I and for every subset J of I, the support
of F �J = (the support of F )�J . If G is an internal product of F , then F

is an internal direct sum components of G and I. If F is an internal direct
sum components of G and I, then G is an internal product of F . �
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Let G be a group and F be a subset of SubGrG. We say that G is an internal
product of F if and only if

(Def. 24) for every strict subgroup H of G such that H ∈ F holds H is a nor-
mal subgroup of G and there exists a subset A of G such that A =⋃
{U3, where U3 is a subset of G : there exists a strict subgroup H of

G such that H ∈ F and U3 = the carrier of H} and the multiplicative
magma of G = gr(A) and for every strict subgroup H of G such that
H ∈ F for every subset A of G such that A =

⋃
{U4, where U4 is a subset

of G : there exists a strict subgroup K of G such that K ∈ F and U4 =
the carrier of K and K 6= H} holds H ∩ gr(A) = {1}G.

Let H be a strict subgroup of G. We say that H is an internal product of F
if and only if

(Def. 25) for every strict subgroup H1 of G such that H1 ∈ F holds H1 is a nor-
mal subgroup of H and there exists a subset A of G such that A =⋃
{U3, where U3 is a subset of G : there exists a strict subgroup H of

G such that H ∈ F and U3 = the carrier of H} and H = gr(A) and
for every strict subgroup H1 of G such that H1 ∈ F for every subset
A of G such that A =

⋃
{U4, where U4 is a subset of G : there exists

a strict subgroupK ofG such that K ∈ F and U4 = the carrier ofK and
K 6= H1} holds H1 ∩ gr(A) = {1}G.

Now we state the propositions:

(94) G is a subgroup of ΩG.

(95) Let us consider a groupG, and a subgroupH ofG. SupposeH is a normal
subgroup of ΩG. Then H is a normal subgroup of G. The theorem is
a consequence of (94).

(96) Let us consider a group G, and a subset F of SubGrG. Then G is an
internal product of F if and only if ΩG is an internal product of F . The
theorem is a consequence of (95).

(97) Let us consider a group G, a non empty set I, a componentwise strict
homomorphism family F of I and G, and a subset F of SubGrG. Sup-
pose F = rngF . Then

⋃
{A, where A is a subset of G : there exists

a strict subgroup H of G such that H ∈ F and A = the carrier of H} =⋃
(the support of F ). The theorem is a consequence of (5) and (14).

(98) Let us consider a group G, a non empty set I, a componentwise strict
homomorphism family F of I and G, and a subset F of SubGrG. Suppose
F = rngF . Let us consider a strict subgroup H of G, and an element
i of I. Suppose H = F (i). Let us consider a subset J of I. Suppose
J = I \ {j, where j is an element of I : F (i) = F (j)}. Then

⋃
{A, where

A is a subset of G : there exists a strict subgroup K of G such that K ∈
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F and A = the carrier of K and K 6= H} =
⋃

(the support of F �J).
Proof: Set X = {A, where A is a subset of G : there exists a strict sub-
group K of G such that K ∈ F and A = the carrier of K and K 6= H}.
For every object x, x ∈ X iff x ∈ rng(the support of F �J). �

(99) Let us consider a group G, a non empty set I, a componentwise strict
homomorphism family F of I and G, and a subset F of SubGrG. Suppose
F = rngF . Then G is an internal product of F if and only if G is an
internal product of F . The theorem is a consequence of (5), (97), (69),
(81), (98), and (70).

Acknowledgement: Dedicated in loving memory of Paul Sirri. “Each man
is a spark in the darkness. Would that we all burn as bright.”
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Summary. In this article we continue the formalization of field theory in
Mizar [1], [2], [4], [3]. We introduce normal extensions: an (algebraic) extension E
of F is normal if every polynomial of F that has a root in E already splits in E.
We proved characterizations (for finite extensions) by minimal polynomials [7],
splitting fields, and fixing monomorphisms [6], [5]. This required extending results
from [11] and [12], in particular that F [T ] = {p(a1, . . . an) | p ∈ F [X], ai ∈ T}
and F (T ) = F [T ] for finite algebraic T ⊆ E. We also provided the counterexam-
ple that Q( 3

√
2) is not normal over Q (compare [13]).
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1. Preliminaries

Let Y be a non empty set and y1, y2, y3 be elements of Y. Note that the
functor {y1, y2, y3} yields a subset of Y. Let R be an integral domain and p, q
be constant polynomials over R. Note that p ∗ q is constant. Let R be a ring.
Note that every ring extension of R is R-homomorphic and R-monomorphic.

Let F be a field, p be a non constant element of the carrier of Polynom-RingF ,
and E be a splitting field of p. Let us observe that Roots(E, p) is non empty.
Let R be a ring, S be a ring extension of R, and T be a ring extension of S.
One can check that there exists a homomorphism from S to T which is R-fixing
and there exists a monomorphism of S and T which is R-fixing. Now we state
the propositions:
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(1) Let us consider a ring R, a subring S of R, a non empty finite sequence
F of elements of the carrier of R, and a non empty finite sequence G of
elements of the carrier of S. If F = G, then

∏
F =

∏
G.

Proof: Define P[natural number] ≡ for every non empty finite sequence
F of elements of the carrier of R for every non empty finite sequence G
of elements of the carrier of S such that lenF = $1 and F = G holds∏
F =

∏
G. For every natural number k, P[k]. Consider n being a natural

number such that n = lenF . �

(2) Let us consider a field F , and a non empty finite sequence G of elements
of the carrier of Polynom-RingF . Then

∏
G = 0.F if and only if there

exists an element i of domG such that G(i) = 0.F .
Proof: Define P[natural number] ≡ for every non empty finite sequence
G of elements of the carrier of Polynom-RingF such that lenG = $1 and
for every element i of domG, G(i) 6= 0.F holds

∏
G 6= 0.F . P[1]. For

every natural number k such that k  1 holds P[k]. �

(3) Let us consider a field F , and a non empty finite sequence G of elements
of the carrier of Polynom-RingF . Suppose for every element i of domG,
G(i) 6= 0.F . Let us consider a polynomial q over F . Suppose q =

∏
G. Let

us consider an element i of domG, and a polynomial p over F . If p = G(i),
then deg(p) ¬ deg(q). The theorem is a consequence of (2).

(4) Let us consider a field F , an extension E of F , a non empty finite se-
quence G of elements of the carrier of Polynom-RingF , and a polynomial
q over F . Suppose q =

∏
G. Let us consider an element a of E. Suppose

there exists an element i of domG and there exists a polynomial p over F
such that p = G(i) and ExtEval(p, a) = 0E . Then ExtEval(q, a) = 0E .

(5) Let us consider a field F , a non empty finite sequence G of elements of
the carrier of Polynom-RingF , and a non constant polynomial q over F .
Suppose q =

∏
G. Then q splits in F if and only if for every element i of

domG and for every polynomial p over F such that p = G(i) holds p is
constant or p splits in F .

(6) Let us consider a field F , an extension E of F , a non empty finite sequ-
ence G of elements of the carrier of Polynom-RingF , and a non constant
polynomial q over F . Suppose q =

∏
G. Then q splits in E if and only if

for every element i of domG and for every polynomial p over F such that
p = G(i) holds p is constant or p splits in E. The theorem is a consequence
of (1) and (5).

(7) Let us consider a field F , an extension E of F , a non constant polynomial
p over F , and a non zero polynomial q over F . If p ∗ q splits in E, then p

splits in E.
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(8) Let us consider a natural number n, a field F , an extension E of F , a po-
lynomial p of n,F , and a polynomial q of n,E. If p = q, then Support q =
Support p.

(9) Let us consider a natural number n, a field F , an extension E of F ,
a polynomial p of n,F , a polynomial q of n,E, and a function x from n

into E. If p = q, then ExtEval(p, x) = eval(q, x).
Proof: Consider F3 being a finite sequence of elements of the carrier of S
such that ExtEval(p, x) =

∑
F3 and lenF3 = len SgmX(BagOrdern, Sup-

port p) and for every element i of N such that 1 ¬ i ¬ lenF3 holds F3(i) =
(p·(SgmX(BagOrdern, Support p)))i)(∈ S)·(eval((SgmX(BagOrdern,Sup-
port p))/i, x)). Consider F4 being a finite sequence of elements of the carrier
of S such that lenF4 = len SgmX(BagOrdern, Support q) and eval(q, x) =∑
F4 and for every element i of N such that 1 ¬ i ¬ lenF4 holds F4/i = q ·

(SgmX(BagOrdern,Support q))/i·(eval((SgmX(BagOrdern, Support q))/i,
x)). For every natural number i such that i ∈ domF3 holds F4(i) = F3(i).
�

(10) Let us consider a natural number n, a field F , an extension E of F ,
an element a of F , and an element b of E. If a = b, then a�(n, F ) =
b�(n,E).

(11) Let us consider a field F , an extension E1 of F , and a field E2. If E1 ≈ E2,
then E2 is an extension of F .

(12) Let us consider fields F1, F2, and a product of linear polynomials p of
F1. If F1 ≈ F2, then p is a product of linear polynomials of F2.

(13) Let us consider a field F , an extension E of F , a polynomial p over F ,
a polynomial q over E, an element a of F , and an element b of E. If p = q

and a = b, then a · p = b · q.
(14) Let us consider fields F1, F2, a polynomial p over F1, an element a of F1,

a polynomial q over F2, and an element b of F2. If F1 ≈ F2, then if p = q

and a = b, then a · p = b · q. The theorem is a consequence of (13).

(15) Let us consider a field F , extensions E1, E2 of F , and a polynomial p
over F . If E1 ≈ E2, then if p splits in E1, then p splits in E2. The theorem
is a consequence of (12) and (14).

(16) Let us consider a field F , extensions E1, E2 of F , and a non constant
element p of the carrier of Polynom-RingF . Suppose E1 ≈ E2. If E1 is
a splitting field of p, then E2 is a splitting field of p. The theorem is
a consequence of (11) and (15).

(17) Let us consider a field F , and a linear element p of the carrier of Polynom-
RingF . Then F is a splitting field of p.

Let F be a field and E be an extension of F . Let us observe that there exists
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a subset of E which is non empty, finite, and F-algebraic. Let a be an F-algebraic
element of E. Let us observe that {a} is F-algebraic as a subset of E.

Let T1, T2 be F-algebraic subsets of E. One can verify that T1 ∪ T2 is F-
algebraic as a subset of E. Let T1 be an F-algebraic subset of E and T2 be
a subset of E. Let us observe that T1 ∩ T2 is F-algebraic as a subset of E and
T1 \T2 is F-algebraic as a subset of E. Let T be a non empty, F-algebraic subset
of E.

Note that an element of T is an element of E. Let us note that every element
of T is F-algebraic. Let E1, E2 be extensions of F , h be a function from E1 into
E2, and T be a subset of E1. Observe that the functor h◦T yields a subset of
E2. Now we state the propositions:

(18) Let us consider a field F , an extension E of F , a subset T1 of E, a subset
T2 of E, an extension E1 of FAdj(F, T2), and a subset T3 of E1. Suppose
E1 = E and T1 = T3. Then FAdj(F, T1 ∪ T2) = FAdj(FAdj(F, T2), T3).
Proof: T1 ∪ T2 ⊆ the carrier of FAdj(FAdj(F, T2), T3). �

(19) Let us consider a field F , an extension E of F , an E-extending extension
K of F , a finite, F-algebraic subset T1 of E, and a subset T2 of K. If
T1 = T2, then FAdj(F, T1) = FAdj(F, T2).
Proof: Define P[natural number] ≡ for every finite, F-algebraic subset
T1 of E for every subset T2 of K such that T1 = $1 and T1 = T2 holds
FAdj(F, T1) = FAdj(F, T2). P[0] by [14, (3)]. For every natural number k,
P[k]. Consider n being a natural number such that T1 = n. �

(20) Let us consider fields F1, F2, an element p1 of the carrier of Polynom-Ring
F1, an element p2 of the carrier of Polynom-RingF2, an extension E1 of
F1, and an extension E2 of F2. Suppose E1 = E2 and p1 = p2. Then
Roots(E1, p1) = Roots(E2, p2).

(21) Let us consider a field F , extensions E, K of F , an extension U1 of E,
an extension U2 of K, a subset T1 of U1, and a subset T2 of U2. Suppose
U1 = U2 and T1 = T2 and E ≈ K. Then FAdj(E, T1) = FAdj(K,T2).
Proof: FAdj(E, T1) is a subfield of FAdj(K,T2). FAdj(K,T2) is a subfield
of FAdj(E, T1) by [9, (37)], [10, (7)], [11, (35),(37)]. �

(22) Let us consider a field F , an extension E of F , an E-extending extension
K of F , a subset T1 of K, and a finite subset T2 of K. Suppose T1 ⊆ T2

and E ≈ FAdj(F, T1). Then FAdj(E, T2) = FAdj(F, T2). The theorem is
a consequence of (21) and (18).

(23) Let us consider a field F1, a non constant element p1 of the carrier
of Polynom-RingF1, an extension F2 of F1, a non constant element p2

of the carrier of Polynom-RingF2, a splitting field E of p2, and an F1-
algebraic subset T of F2. Suppose T ⊆ Roots(E, p2) and F2 ≈ FAdj(F1, T ).
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If p1 = p2, then E is a splitting field of p1. The theorem is a consequence
of (19).

(24) Let us consider a field F , an extension E of F , an F -extending extension
K of E, and a non constant element p of the carrier of Polynom-RingF .
If p splits in E, then Roots(K, p) = Roots(E, p).

(25) Let us consider a field F1, an F1-homomorphic field F2, a homomorphism
h from F1 to F2, and an element a of F1. Then (PolyHom(h))(X− a) =
X−h(a).

(26) Let us consider a field F1, an F1-isomorphic, F1-homomorphic field F2,
an isomorphism h between F1 and F2, an extension E1 of F1, an extension
E2 of F2, an element a of E1, an element b of E2, and an irreducible
element p of the carrier of Polynom-RingF1. Suppose ExtEval(p, a) = 0E1
and ExtEval((PolyHom(h))(p), b) = 0E2 . Then (Ψ(a, b, h, p))(a) = b. The
theorem is a consequence of (25).

2. Preliminaries about Ring Adjunctions

Let R1, R2 be rings. One can check that R1 ≈ R2 if and only if the condition
(Def. 1) is satisfied.

(Def. 1) R1 is a subring of R2 and R2 is a subring of R1.

Now we state the propositions:

(27) Let us consider a ring R. Then R ≈ R.

(28) Let us consider rings R1, R2. If R1 ≈ R2, then R2 ≈ R1.

(29) Let us consider rings R1, R2, R3. If R1 ≈ R2 and R2 ≈ R3, then R1 ≈ R3.

(30) Let us consider a ring R, a ring extension S of R, and subsets T1, T2 of
S. Suppose T1 ⊆ T2. Then RAdj(R, T1) is a subring of RAdj(R, T2).

(31) Let us consider a ring R, a ring extension S of R, subsets T1, T2 of S,
a ring extension S1 of RAdj(R, T2), and a subset T3 of S1. Suppose S1 = S

and T1 = T3. Then RAdj(R, T1 ∪ T2) = RAdj(RAdj(R, T2), T3).
Proof: T1 ∪ T2 ⊆ the carrier of RAdj(RAdj(F, T2), T3). RAdj(F, T2) is
a subring of RAdj(F, T1 ∪ T2). �

(32) Let us consider a ring R, a ring extension S of R, and a subset T of S.
Then RAdj(R, T ) ≈ R if and only if T is a subset of R.

Let n be a natural number, R, S be non degenerated commutative rings,
and x be a function from n into S. The functor HomExtEval(x,R) yielding
a function from Polynom-Ring(n,R) into S is defined by

(Def. 2) for every polynomial p of n,R, it(p) = ExtEval(p, x).
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Let R be a non degenerated commutative ring and S be a commutative ring
extension ofR. Let us observe that HomExtEval(x,R) is additive, multiplicative,
and unity-preserving. Now we state the proposition:

(33) Let us consider a natural number n, and a field F . Then every extension
of F is (Polynom-Ring(n, F ))-homomorphic.

Let n be a natural number and F be a field. One can check that there exists
an extension of F which is (Polynom-Ring(n, F ))-homomorphic. Now we state
the proposition:

(34) Let us consider a natural number n, fields F , E, and a function x from n

into E. Then rng HomExtEval(x, F ) = the set of all ExtEval(p, x) where
p is a polynomial of n,F .

Let n be a natural number, F be a field, E be an extension of F , and x be
a function from n into E. The functor ImageHomExtEval(x, F ) yielding a strict
double loop structure is defined by

(Def. 3) the carrier of it = rng HomExtEval(x, F ) and the addition of it = (the
addition of E) � rng HomExtEval(x, F ) and the multiplication of it =
(the multiplication of E) � rng HomExtEval(x, F ) and the one of it = 1E
and the zero of it = 0E .

One can check that ImageHomExtEval(x, F ) is non degenerated and Image-
HomExtEval(x, F ) is Abelian, add-associative, right zeroed, and right comple-
mentable and ImageHomExtEval(x, F ) is commutative, associative, well unital,
and distributive. Now we state the proposition:

(35) Let us consider a natural number n, a field F , an extension E of F , and
a function x from n into E. Then F is a subring of ImageHomExtEval(x, F ).
The theorem is a consequence of (10), (9), and (34).

Let F be a field, T be a finite subset of F , and x be a function from T into
F . We say that x is T -evaluating if and only if

(Def. 4) x is one-to-one and rng x = T .

Let us note that there exists a function from T into F which is T -evaluating
and every function from T into F which is T -evaluating is also T -valued and
one-to-one. Now we state the propositions:

(36) Let us consider a field F , an extension E of F , a non empty, finite subset
T of E, a bag b of T , and a T -evaluating function x from T into E. Then
eval(b, x) ∈ the carrier of RAdj(F, T ).
Proof: Define P[natural number] ≡ for every bag b of T such that
support b = $1 for every T -evaluating function x from T into E, eval(b, x) ∈
the carrier of RAdj(F, T ). Set n = T . P[0]. For every natural number k,
P[k]. Consider n being a natural number such that support b = n. �
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(37) Let us consider a field F , an extension E of F , a non empty, finite subset
T of E, a polynomial p of T ,F , and a T -evaluating function x from T

into E. Then ExtEval(p, x) ∈ the carrier of RAdj(F, T ).
Proof: Define P[natural number] ≡ for every polynomial p of T ,F such
that Support p = $1 holds ExtEval(p, x) ∈ the carrier of RAdj(F, T ). For
every natural number k such that P[k] holds P[k + 1]. P[0]. For every
natural number k, P[k]. �

Let us consider a field F , an extension E of F , a non empty, finite subset T of
E, and a T -evaluating function x from T into E. Now we state the propositions:

(38) RAdj(F, T ) = ImageHomExtEval(x, F ). The theorem is a consequence
of (35).

(39) The carrier of RAdj(F, T ) = the set of all ExtEval(p, x) where p is a po -
lynomial of T ,F . The theorem is a consequence of (38) and (34).

(40) Let us consider a field F , an extension E of F , and a finite subset T of
E. If T is F-algebraic, then FAdj(F, T ) = RAdj(F, T ).
Proof: Define P[natural number] ≡ for every field F for every extension
E of F for every finite subset T of E such that T = $1 holds if T is F-
algebraic, then FAdj(F, T ) = RAdj(F, T ). P[0]. For every natural number
k, P[k]. Consider n being a natural number such that T = n. �

3. On Fixing Monomorphisms

Let R be a ring and S be a ring extension of R. Note that there exists
a homomorphism of S which is R-fixing and there exists a monomorphism of S
which is R-fixing and there exists an automorphism of S which is R-fixing. Now
we state the propositions:

(41) Let us consider a field F , an extension E of F , an extension K of E,
an element p of the carrier of Polynom-RingF , and an F -fixing homomor-
phism h from E to K. Then (PolyHom(h))(p) = p.

(42) Let us consider a field F , an extension E of F , an extension K of E,
an element p of the carrier of Polynom-RingF , an element a of E, and
an F -fixing homomorphism h from E to K. Then h(ExtEval(p, a)) =
ExtEval(p, h(a)). The theorem is a consequence of (41).

(43) Let us consider a field F , an extension E of F , an F -fixing monomor-
phism h of E, and a non zero element p of the carrier of Polynom-RingF .
Then h◦(Roots(E, p)) = Roots(E, p).

(44) Let us consider a field F , an F-algebraic extension E of F , and an F -
fixing monomorphism h of E. Then the carrier of E ⊆ rng h. The theorem
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is a consequence of (43).

(45) Let us consider a field F , and an F-algebraic extension E of F . Then
every F -fixing monomorphism of E is an automorphism of E. The theorem
is a consequence of (44).

Let F be a field and E be an F-algebraic extension of F . Let us observe
that every F -fixing monomorphism of E is isomorphism. Now we state the
propositions:

(46) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, and an F-algebraic
subset T of E. Then h◦T is F-algebraic. The theorem is a consequence of
(42).

(47) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, a non empty, finite
subset T of E, a bag b of T , and a T -evaluating function x from T into
E. Then h(eval(b, x)) ∈ the carrier of RAdj(F, h◦T ).

Proof: Define P[natural number] ≡ for every bag b of T such that
support b = $1 for every T -evaluating function x from T into E, h(eval(b,

x)) ∈ the carrier of RAdj(F, h◦T ). Set n = T . P[0]. For every natural
number k, P[k]. Consider n being a natural number such that support b =
n. �

(48) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, a non empty, finite
subset T of E, a polynomial p of T ,F , and a T -evaluating function x from
T into E. Then h(ExtEval(p, x)) ∈ the carrier of RAdj(F, h◦T ).

Proof: Define P[natural number] ≡ for every polynomial p of T ,F such
that Support p = $1 holds h(ExtEval(p, x)) ∈ the carrier of RAdj(F, h◦T ).
For every natural number k such that P[k] holds P[k+ 1]. P[0] by [8, (5),
(16)]. For every natural number k, P[k]. �

(49) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, and a non empty,
finite, F-algebraic subset T of E. Then h◦(the carrier of FAdj(F, T )) ⊆
the carrier of FAdj(F, h◦T ). The theorem is a consequence of (46), (40),
and (48).

(50) Let us consider a field F , an extension E of F , an E-extending extension
K of F , and a finite, F-algebraic subset T of K. Suppose T ⊆ the carrier
of E. Then FAdj(F, T ) is a subfield of E. The theorem is a consequence
of (19).

(51) Let us consider a field F , an extension E of F , an E-extending extension
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K of F , an F -fixing homomorphism h from E to (K qua extension of E),
and a finite, F-algebraic subset T of E. Suppose h◦T ⊆ the carrier of E.
Then FAdj(F, h◦T ) is a subfield of E. The theorem is a consequence of
(42) and (19).

(52) Let us consider a field F , an extension E of F , an F -extending exten-
sion K of E, an F -fixing monomorphism h of E and K, and a non empty,
finite, F-algebraic subset T of E. Suppose h◦T ⊆ the carrier of E. Then
h◦(the carrier of FAdj(F, T )) ⊆ the carrier of E. The theorem is a conse-
quence of (51) and (49).

(53) Let us consider a field F , an extension E of F , an F -extending extension
K of E, an F -fixing monomorphism h of E and K, and a non constant
element p of the carrier of Polynom-RingF . Suppose p splits in E. Then
h◦(Roots(E, p)) ⊆ the carrier of E. The theorem is a consequence of (42)
and (24).

4. Normal Extensions

Let F be a field and E be an extension of F . We say that E is F -normal if
and only if

(Def. 5) E is F-algebraic and for every irreducible element p of the carrier of
Polynom-RingF such that p has a root in E holds p splits in E.

Let us observe that every extension of F which is F -normal is also F-algebraic
and every extension of F which is F -quadratic is also F -normal and every al-
gebraic closure of F is F -normal and there exists an extension of F which is
F-algebraic and F -normal and FAdj(FQ, { 3

√
2}) is non (FQ)-normal. Now we

state the proposition:

(54) Let us consider a field F , and an F-algebraic extension E of F . Then E
is F -normal if and only if for every element a of E, MinPoly(a, F ) splits
in E.

Let us consider a field F and an F -finite extension E of F . Now we state
the propositions:

(55) E is F -normal if and only if there exists a non constant element p of
the carrier of Polynom-RingF such that E is a splitting field of p.

(56) E is F -normal if and only if for every extension K of E, every F -fixing
monomorphism of E and K is an automorphism of E.

Let F be a field and p be a non constant element of the carrier of Polynom-Ring
F . One can verify that every splitting field of p is F -normal. Now we state the
propositions:
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(57) Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Then FAdj(F, {a}) is F -normal if and only if MinPoly(a, F ) splits
in FAdj(F, {a}).

(58) Let us consider a field F , an extension E of F , and a non empty, finite,
F-algebraic subset T of E. Then FAdj(F, T ) is F -normal if and only if for
every element a of T , MinPoly(a, F ) splits in FAdj(F, T ). The theorem is
a consequence of (3), (6), and (4).
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Summary. In this paper, we introduce indefinite integrals [8] (antideri-
vatives) and proof integration by substitution in the Mizar system [2], [3]. In
our previous article [15], we have introduced an indefinite-like integral, but it is
inadequate because it must be an integral over the whole set of real numbers and
in some sense it causes some duplication in the Mizar Mathematical Library [13].
For this reason, to define the antiderivative for a function, we use the derivative
of an arbitrary interval as defined recently in [7]. Furthermore, antiderivatives
are also used to modify the integration by substitution and integration by parts.

In the first section, we summarize the basic theorems on continuity and
derivativity (for interesting survey of formalizations of real analysis in another
proof-assistants like ACL2 [12], Isabelle/HOL [11], Coq [4], see [5]). In the second
section, we generalize some theorems that were noticed during the formalization
process. In the last section, we define the antiderivatives and formalize the inte-
gration by substitution and the integration by parts. We referred to [1] and [6]
in our development.
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1. Basic Theorems on Continuity and Derivativity

From now on h, h1 denote 0-convergent, non-zero sequences of real numbers
and c, c1 denote constant sequences of real numbers. Let us observe that every
subset of R which is open interval is also open. Now we state the propositions:
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(1) Let us consider an interval I. If inf I ∈ I, then inf I = inf I.

(2) Let us consider an interval subset I of R. If sup I ∈ I, then sup I = sup I.

(3) Let us consider real numbers a, b, and an interval I. If a, b ∈ I, then
[a, b] ⊆ I.

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(4) Suppose a < b and [a, b[ ⊆ dom f and f�[a, b[ is continuous and f is
differentiable on ]a, b[ and f ′�]a,b[ is right convergent in a. Then

(i) f is right differentiable in a, and

(ii) f ′+(a) = lima+ f
′
�]a,b[.

Proof: Consider e being a real number such that a < e < b. For every h
and c such that rng c = {a} and rng(h+ c) ⊆ dom f and for every natural
number n, h(n) > 0 holds h−1 · ((f∗(h + c)) − (f∗c)) is convergent and
lim(h−1 · ((f∗(h+ c))− (f∗c))) = lima+ f

′
�]a,b[. �

(5) Suppose a < b and ]a, b] ⊆ dom f and f�]a, b] is continuous and f is
differentiable on ]a, b[ and f ′�]a,b[ is left convergent in b. Then

(i) f is left differentiable in b, and

(ii) f ′−(b) = limb− f
′
�]a,b[.

Proof: Consider e being a real number such that a < e < b. For every h
and c such that rng c = {b} and rng(h+ c) ⊆ dom f and for every natural
number n, h(n) < 0 holds h−1 · ((f∗(h + c)) − (f∗c)) is convergent and
lim(h−1 · ((f∗(h+ c))− (f∗c))) = limb− f

′
�]a,b[. �

(6) Let us consider real numbers a, b, x, a partial function f from R to R,
and an interval I. Suppose inf I ¬ a and b ¬ sup I and I ⊆ dom f and
f�I is continuous and x ∈ ]a, b[. Then f is continuous in x.

(7) Let us consider an open subset X of R, and partial functions f , F from
R to R. Suppose X ⊆ dom f and f�X is continuous. Let us consider a real
number x. If x ∈ X, then f is continuous in x.

Let us consider real numbers a, b, x and a partial function f from R to R.
Now we state the propositions:

(8) Suppose a ¬ x < b and ]a, b[ ⊆ dom f and f is right convergent in x.
Then

(i) f�]a, b[ is right convergent in x, and

(ii) limx+(f�]a, b[) = limx+ f .

Proof: For every real number r such that x < r there exists a real number
g such that g < r and x < g and g ∈ dom(f�]a, b[). For every real number
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r such that 0 < r there exists a real number d such that x < d and for
every real number x1 such that x1 < d and x < x1 and x1 ∈ dom(f�]a, b[)
holds |(f�]a, b[)(x1)− limx+ f | < r. �

(9) Suppose a < x ¬ b and ]a, b[ ⊆ dom f and f is left convergent in x. Then

(i) f�]a, b[ is left convergent in x, and

(ii) limx−(f�]a, b[) = limx− f .

Proof: For every real number r such that r < x there exists a real number
g such that r < g < x and g ∈ dom(f�]a, b[). For every real number r
such that 0 < r there exists a real number d such that d < x and for
every real number x1 such that d < x1 < x and x1 ∈ dom(f�]a, b[) holds
|(f�]a, b[)(x1)− limx− f | < r. �

(10) Suppose [a, b] ⊆ dom f and f�[a, b] is continuous and x ∈ [a, b[. Then

(i) f is right convergent in x, and

(ii) limx+(f�]a, b[) = f(x).

Proof: For every real number r such that x < r there exists a real number
g such that g < r and x < g and g ∈ dom f . For every real number r such
that 0 < r there exists a real number s such that x < s and for every
real number x1 such that x1 < s and x < x1 and x1 ∈ dom f holds
|f(x1) − f(x)| < r. For every real number r such that 0 < r there exists
a real number s such that x < s and for every real number x1 such that
x1 < s and x < x1 and x1 ∈ dom(f�]a, b[) holds |(f�]a, b[)(x1)−f(x)| < r.
f�]a, b[ is right convergent in x and limx+(f�]a, b[) = limx+ f . �

(11) Suppose [a, b] ⊆ dom f and f�[a, b] is continuous and x ∈ ]a, b]. Then

(i) f is left convergent in x, and

(ii) limx−(f�]a, b[) = f(x).

Proof: For every real number r such that r < x there exists a real number
g such that r < g < x and g ∈ dom f . For every real number r such that
0 < r there exists a real number s such that s < x and for every real
number x1 such that s < x1 < x and x1 ∈ dom f holds |f(x1)− f(x)| < r.
For every real number r such that 0 < r there exists a real number s
such that s < x and for every real number x1 such that s < x1 < x

and x1 ∈ dom(f�]a, b[) holds |(f�]a, b[)(x1) − f(x)| < r. f�]a, b[ is left
convergent in x and limx−(f�]a, b[) = limx− f . �

Let us consider a real number x, a partial function f from R to R, a non
empty interval I, and a subset X of R. Now we state the propositions:

(12) If I ⊆ X and x ∈ I and x 6= sup I, then f is right differentiable in x iff
f�X is right differentiable in x.
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(13) If I ⊆ X and x ∈ I and x 6= inf I, then f is left differentiable in x iff
f�X is left differentiable in x.

(14) Let us consider a partial function f from R to R, an open subset I of R,
and a subset X of R. Suppose I ⊆ X. Then f is differentiable on I if and
only if f�X is differentiable on I.

Let us consider a partial function f from R to R, a non empty interval I,
and a subset X of R. Now we state the propositions:

(15) If I ⊆ X, then f is differentiable on interval I iff f�X is differentiable on
interval I. The theorem is a consequence of (1), (12), (2), (13), and (14).

(16) If I ⊆ X and f is differentiable on interval I, then f ′I = (f�X)′I . The
theorem is a consequence of (15), (1), and (2).

(17) Let us consider a partial function f from R to R, and non empty intervals
I, J . Suppose f is differentiable on interval I and J ⊆ I and inf J < sup J .
Then f ′I�J = f ′J .
Proof: For every element x of R such that x ∈ dom(f ′I�J) holds
(f ′I�J)(x) = f ′J(x). �

2. Generalization of Previous Theorems

Now we state the propositions:

(18) Let us consider extended real numbers a, b. If a < b, then there exists
a real number c such that a < c < b.

(19) Let us consider extended real numbers p, q, and a partial function f from
R to R. Suppose f is differentiable on ]p, q[ and for every real number x
such that x ∈ ]p, q[ holds f ′(x) = 0. Then f�]p, q[ is constant.

(20) Let us consider extended real numbers p, q, and partial functions f1, f2

from R to R. Suppose f1 is differentiable on ]p, q[ and f2 is differentiable on
]p, q[ and for every real number x such that x ∈ ]p, q[ holds f1

′(x) = f2
′(x).

Then

(i) (f1 − f2)�]p, q[ is constant, and

(ii) there exists a real number r such that for every real number x such
that x ∈ ]p, q[ holds f1(x) = f2(x) + r.

The theorem is a consequence of (19).

Let us consider extended real numbers p, q and a partial function f from R
to R. Now we state the propositions:

(21) Suppose f is differentiable on ]p, q[ and for every real number x such
that x ∈ ]p, q[ holds 0 < f ′(x). Then f�]p, q[ is increasing.
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(22) Suppose f is differentiable on ]p, q[ and for every real number x such
that x ∈ ]p, q[ holds f ′(x) < 0. Then f�]p, q[ is decreasing.

(23) Suppose f is differentiable on ]p, q[ and for every real number x such
that x ∈ ]p, q[ holds 0 ¬ f ′(x). Then f�]p, q[ is non-decreasing.

(24) Suppose f is differentiable on ]p, q[ and for every real number x such
that x ∈ ]p, q[ holds f ′(x) ¬ 0. Then f�]p, q[ is non-increasing.

(25) Let us consider an open subset X of R, a real number x0, and a partial
function f from R to R. Suppose x0 ∈ X and f is differentiable on X.
Then f ′(x0) = (f�X)′(x0).
Proof: ConsiderN being a neighbourhood of x0 such thatN ⊆ dom(f�X)
and there exists a linear function L and there exists a rest R such that
(f�X)′(x0) = L(1) and for every real number x such that x ∈ N holds
(f�X)(x)− (f�X)(x0) = L(x−x0) +R(x−x0). Consider L being a linear
function, R being a rest such that (f�X)′(x0) = L(1) and for every real
number x such that x ∈ N holds (f�X)(x) − (f�X)(x0) = L(x − x0) +
R(x−x0). For every real number x such that x ∈ N holds f(x)− f(x0) =
L(x− x0) +R(x− x0). �

(26) Let us consider real numbers a, b, and a partial function f from R to R.
Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous. Then there
exists a partial function F from R to R such that

(i) ]a, b[ ⊆ domF , and

(ii) for every real number x such that x ∈ ]a, b[ holds F (x) =
x∫
a

f(x)dx,

and

(iii) F is differentiable on ]a, b[, and

(iv) F ′�]a,b[ = f�]a, b[.

Proof: Consider x0 being a real number such that a < x0 < b. Consider
F being a partial function from R to R such that ]a, b[ ⊆ domF and for

every real number x such that x ∈ ]a, b[ holds F (x) =
x∫
a

f(x)dx and F

is differentiable in x0 and F ′(x0) = f(x0). For every real number x such
that x ∈ ]a, b[ holds F �]a, b[ is differentiable in x. For every element x of
R such that x ∈ domF ′�]a,b[ holds F ′�]a,b[(x) = (f�]a, b[)(x). �

(27) Let us consider real numbers a, b, and partial functions f , F from R
to R. Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and
]a, b[ ⊆ domF and for every real number x such that x ∈ ]a, b[ holds
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F (x) =
x∫
a

f(x)dx. Then

(i) F is differentiable on ]a, b[, and

(ii) F ′�]a,b[ = f�]a, b[.

Proof: Consider G being a partial function from R to R such that ]a, b[ ⊆
domG and for every real number x such that x ∈ ]a, b[ holds G(x) =
x∫
a

f(x)dx and G is differentiable on ]a, b[ and G′�]a,b[ = f�]a, b[. For eve-

ry element x of R such that x ∈ dom(F �]a, b[) holds (F �]a, b[)(x) =
(G�]a, b[)(x). �

3. Antiderivatives and Related Theorems

Let f , F be partial functions from R to R and I be a non empty interval.
We say that F is antiderivative of f on I if and only if

(Def. 1) F is differentiable on interval I and F ′I = f�I.

Now we state the propositions:

(28) Let us consider partial functions f , F , g, G from R to R, and a non empty
interval I. Suppose F is antiderivative of f on I and G is antiderivative
of g on I. Then

(i) F +G is antiderivative of f + g on I, and

(ii) F −G is antiderivative of f − g on I.

(29) Let us consider partial functions f , F from R to R, a non empty interval
I, and a real number r. If F is antiderivative of f on I, then r · F is
antiderivative of r · f on I.

Let us consider partial functions f , g, F , G from R to R and a non empty
interval I. Now we state the propositions:

(30) If F is antiderivative of f on I and G is antiderivative of g on I, then
F ·G is antiderivative of f ·G+ F · g on I.

(31) Suppose F is antiderivative of f on I and G is antiderivative of g on I and
for every set x such that x ∈ I holds G(x) 6= 0. Then F

G is antiderivative
of f ·G−F ·g

G·G on I.

(32) Let us consider real numbers a, b, and partial functions f , F from R
to R. Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is continuous and
[a, b] ⊆ domF and for every real number x such that x ∈ [a, b] holds
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F (x) =
x∫
a

f(x)dx. Let us consider a real number x. Suppose x ∈ ]a, b[.

Then

(i) F is differentiable in x, and

(ii) F ′(x) = f(x).

Proof: Set O = ]a, b[. Define G0(real number) = (

$1∫
a

f(x)dx)(∈ R). Con-

sider G1 being a function from R into R such that for every element h of
R, G1(h) = G0(h). Reconsider G = G1�O as a partial function from R to
R. For every real number x such that x ∈ O holds G is differentiable in x
and G′(x) = f(x) by (6), [9, (10),(11)]. For every real number x such that
x ∈ ]a, b[ holds F is differentiable in x and F ′(x) = f(x) by [14, (2)]. �

Let us consider real numbers a, b and partial functions f , F from R to R.
Now we state the propositions:

(33) Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is bounded and f is
integrable on [a, b] and [a, b] = domF and for every real number x such

that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then F is Lipschitzian.

Proof: Consider r0 being a real number such that for every object x such
that x ∈ [a, b]∩dom f holds |f(x)| ¬ r0. Reconsider r = max(r0, 1) as a real
number. For every real numbers p, q such that p, q ∈ [a, b] and p ¬ q holds
f is integrable on [p, q] and f�[p, q] is bounded. For every real numbers x1,
x2 such that x1, x2 ∈ domF holds |F (x1)− F (x2)| ¬ r · |x1 − x2| by [10,
(20),(23)]. �

(34) Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and [a, b] ⊆
domF and for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then F ′�]a,b[ is right convergent in a and left convergent in b.

Proof: For every real number x such that x ∈ ]a, b[ holds F �]a, b[ is
differentiable in x. For every element x of R such that x ∈ domF ′�]a,b[
holds F ′�]a,b[(x) = (f�]a, b[)(x). For every real number r such that a < r

there exists a real number g such that g < r and a < g and g ∈ domF ′�]a,b[.
For every real number g1 such that 0 < g1 there exists a real number r
such that a < r and for every real number r1 such that r1 < r and a < r1

and r1 ∈ domF ′�]a,b[ holds |F ′�]a,b[(r1) − f(a)| < g1. For every real number
r such that r < b there exists a real number g such that r < g < b and
g ∈ domF ′�]a,b[. For every real number g1 such that 0 < g1 there exists
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a real number r such that r < b and for every real number r1 such that
r < r1 < b and r1 ∈ domF ′�]a,b[ holds |F ′�]a,b[(r1)− f(b)| < g1. �

(35) Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and [a, b] ⊆
domF and for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then

(i) F is right differentiable in a, and

(ii) F ′+(a) = lima+ F
′
�]a,b[.

Proof: For every real number x such that x ∈ ]a, b[ holds F �]a, b[ is
differentiable in x. F ′�]a,b[ is right convergent in a. For every real number x

such that x ∈ [a, b] holds (F �[a, b])(x) =
x∫
a

f(x)dx. F �[a, b[ is Lipschitzian.

�

(36) Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and [a, b] ⊆
domF and for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then

(i) F is left differentiable in b, and

(ii) F ′−(b) = limb− F
′
�]a,b[.

Proof: For every real number x such that x ∈ ]a, b[ holds F �]a, b[ is
differentiable in x. F ′�]a,b[ is left convergent in b. For every real number x

such that x ∈ [a, b] holds (F �[a, b])(x) =
x∫
a

f(x)dx. F �]a, b] is Lipschitzian.

�

(37) Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and [a, b] ⊆
domF and for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then

(i) F is differentiable on interval [a, b], and

(ii) F ′[a,b] = f�[a, b].

Proof: Reconsider I = [a, b] as a non empty interval. If inf I ∈ I, then
F is right differentiable in inf I. If sup I ∈ I, then F is left differentiable
in sup I. For every real number x such that x ∈ ]a, b[ holds F �]a, b[ is
differentiable in x. F ′�]a,b[ = f�]a, b[. For every element x of R such that
x ∈ domF ′[a,b] holds F ′[a,b](x) = (f�[a, b])(x). �
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(38) Let us consider a partial function f from R to R, and real numbers a, b.

Then
a∫
b

f(x)dx = −
b∫
a

f(x)dx.

(39) Let us consider real numbers a, b, and partial functions f , F from R
to R. Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and
[a, b] ⊆ domF and for every real number x such that x ∈ [a, b] holds

F (x) =
x∫
a

f(x)dx. Let us consider a real number x. Suppose x ∈ ]a, b[.

Then

(i) F is differentiable in x, and

(ii) F ′(x) = f(x).

The theorem is a consequence of (37).

(40) Let us consider real numbers a, b, and a partial function f from R to R.
Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous. Then there
exists a partial function F from R to R such that

(i) F is antiderivative of f on [a, b], and

(ii) for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx.

The theorem is a consequence of (37).

(41) Let us consider a real number c, partial functions f , F , G from R to R,
and a non empty interval I. Suppose I ⊆ dom f and F is antiderivative of
f on I and I ⊆ domG and for every real number x such that x ∈ I holds
G(x) = F (x) + c. Then G is antiderivative of f on I.
Proof: Reconsider c0 = c as an element of R. Define F(element of R) =
c0. Consider F0 being a function from R into R such that for every element
x of R, F0(x) = F(x). F �I is differentiable on interval I. G is differentiable
on interval I. �

(42) Let us consider partial functions f , F from R to R, and non empty
intervals I, J . Suppose inf I < sup I and I ⊆ J and F is antiderivative of
f on J . Then F is antiderivative of f on I.

(43) Let us consider real numbers a, b, a partial function f from R to R, and
a partition D of [a, b]. Suppose a < b and f is differentiable on interval [a, b]
and f ′[a,b] is bounded. Then lower sum(f ′[a,b] � [a, b], D) ¬ f(b) − f(a) ¬
upper sum(f ′[a,b] � [a, b], D).

(44) Let us consider a partial function f from R to R, real numbers a, b, and
a non empty interval I. Suppose a, b ∈ I and a < b and f is differentiable
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on interval I and f ′I is integrable on [a, b] and f ′I is bounded. Then

(i)
b∫
a

f ′[a,b](x)dx = f(b)− f(a), and

(ii)
b∫
a

f ′I(x)dx = f(b)− f(a).

The theorem is a consequence of (3) and (17).

(45) Let us consider a partial function f from R to R, a real number a, and
a non empty interval I. Suppose f is differentiable on interval I and a ∈ I.

Then
a∫
a

f ′I(x)dx = 0. The theorem is a consequence of (3).

(46) Let us consider partial functions f , F , G from R to R, and a non empty
interval I. Suppose F is antiderivative of f on I and G is antiderivative of
f on I. Then there exists a real number c such that for every real number
x such that x ∈ I holds F (x) = G(x) + c. The theorem is a consequence
of (42), (1), (2), and (18).

(47) Integration by substitution:
Let us consider real numbers a, b, p, q, and partial functions f , g from R to
R. Suppose a < b and p < q and [a, b] ⊆ dom f and f�[a, b] is continuous
and g is differentiable on interval [p, q] and g′[p,q] is integrable on [p, q] and
g′[p,q] is bounded and rng(g�[p, q]) ⊆ [a, b] and g(p) = a and g(q) = b. Then
b∫
a

f(x)dx =

q∫
p

(f · g · g′[p,q])(x)dx. The theorem is a consequence of (37).

(48) Let us consider real numbers a, b, and partial functions f , g from R
to R. Suppose a < b and f is differentiable on interval [a, b] and g is
differentiable on interval [a, b] and f ′[a,b] is integrable on [a, b] and f ′[a,b]
is bounded and g′[a,b] is integrable on [a, b] and g′[a,b] is bounded. Then
b∫
a

(f ′[a,b] · g)(x)dx = f(b) · g(b)− f(a) · g(a)−
b∫
a

(f · g′[a,b])(x)dx.
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Summary. The article concerns about formalizing a certain lemma on
embedding of algebraic structures in the Mizar system, claiming that if a ring A
is embedded in a ring B then there exists a ring C which is isomorphic to B and
includes A as a subring. This construction applies to algebraic structures such as
Abelian groups and rings.
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Introduction

The article concerns about formalizing a certain lemma on embedding of
algebraic structures in the Mizar system [2], [3], along with the lemma appeared
in the book [12] at §13 of Chapter 1. The lemma claims that if a ring A is
embedded in a ring B then there exists a ring C which is isomorphic to B and
includes A as a subring [11]. A basic idea to prove the lemma is that for given
monomorphism ϕ from A to B, one can obtain such ring C by introducing the
addition and multiplication on the set (B \ ϕ(A)) ∪ A, while B does not meet
A. The same argument has already been discussed and formalized in [9] in line
with field extensions [10] (recently reused to formalize algebraic closures, see
e.g. [8]).

We treat here a general case, namely the case of B meets A, it is enough to
create a set X which does not meet A and X ∼= B \ ϕ(A) and construct a new
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ring C from the set (X ∼= B \ ϕ(A))∪A. The formalized lemma can be applied
to another algebraic structures such as Abelian groups as shown in the article
as well with the same formulation of rings [6].

We need the following 3 steps required for precise arguments and formaliza-
tion to construct the target object C:

Step 1. Prepare a set X which does not meet A and isomorphic to B \ϕ(A) as
set-theoretical. The step is coded in Theorem 1 and 2;

Step 2. Make a X \ S a ring as C, corresponds to Theorem 7 and 12 for rings
and for Abelian groups, respectively;

Step 3. Construct an isomorphism G : A ∼−→ C such that ι = G ◦ ϕ is an
identity mapping. Corresponding formal counterparts are Theorem 9 and
14 for rings and for Abelian groups, respectively.

As a consequence of the principle, taking Polynom-Ring(A) as B, we have a
polynomial ring over A with indeterminate X and includes A as a subring, say
A[X] = C. Here Polynom-Ring(A) is existing formalized ring of polynomials
[4], which is constructed by sequences. An indeterminate X is defined by the
image of (0, 1, 0, 0, · · · ) ∈ Polynom-Ring(A) by the map G of Step 3. Some of the
Mizar functors had to be defined additionally as we used the groups not in their
multiplicative version [1], [7], which is more common in the Mizar Mathematical
Library, but in the additive setting [5].

1. Preliminaries from Set Theory

From now on a denotes a non empty set and b, x, o denote objects.
Now we state the propositions:

(1) There exists an object b such that for every set x, 〈〈x, b〉〉 /∈ a.

(2) Let us consider non empty sets a, b. Then there exists a non empty set
c such that

(i) a ∩ c = ∅, and

(ii) there exists a function f such that f is one-to-one and dom f = b

and rng f = c.

Proof: Consider d being an object such that for every set x, 〈〈x, d〉〉 /∈ a.
Set C = b × {d}. Consider f being a function such that f is one-to-one
and dom f = b and rng f = C. a ∩ C = ∅. �
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2. Embedding Principle Applied to Rings

Now we state the proposition:

(3) Let us consider a ring A, a non empty set X, a function f from A into
X, and elements a, b of X. Suppose f is bijective. Then f((the addition
of A)((f−1)(a), (f−1)(b))) is an element of X.

Let A be a ring, X be a non empty set, f be a function from A into X,
and a, b be elements of X. Assume f is bijective. The functor addemb(f, a, b)
yielding an element of X is defined by the term

(Def. 1) f((the addition of A)((f−1)(a), (f−1)(b))).

Now we state the proposition:

(4) Let us consider a ring A, a non empty set X, a function f from A into X,
and elements a, b, c ofX. Suppose f is bijective. Then addemb(f, a, addemb
(f, b, c)) = addemb(f, addemb(f, a, b), c).

Let A be a ring, X be a non empty set, and f be a function from A into X.
The functor addemb(f) yielding a binary operation on X is defined by

(Def. 2) for every elements a, b of X, it(a, b) = addemb(f, a, b).

Now we state the proposition:

(5) Let us consider a ring A, a non empty set X, a function f from A into X,
and elements a, b of X. Suppose f is bijective. Then f((the multiplication
of A)((f−1)(a), (f−1)(b))) is an element of X.

Let A be a ring, X be a non empty set, f be a function from A into X,
and a, b be elements of X. Assume f is bijective. The functor multemb(f, a, b)
yielding an element of X is defined by the term

(Def. 3) f((the multiplication of A)((f−1)(a), (f−1)(b))).

The functor multemb(f) yielding a binary operation on X is defined by

(Def. 4) for every elements a, b of X, it(a, b) = multemb(f, a, b).

The functor embRing(f) yielding a strict, non empty double loop structure
is defined by the term

(Def. 5) 〈X, addemb(f),multemb(f), f(1A), f(0A)〉.
Now we state the propositions:

(6) Let us consider a ring A, a non empty set X, and a function f from A

into X. If f is bijective, then embRing(f) is a ring.
Proof: Reconsider Z1 = 〈X, addemb(f),multemb(f), f(1A), f(0A)〉 as
a non empty double loop structure. For every elements v, w of Z1, v+w =
w+v. For every elements u, v, w of Z1, u+(v+w) = (u+v)+w. For every
element v of Z1, v+0Z1 = v. Every element of Z1 is right complementable.
For every elements a, b, v of Z1, (a+ b) ·v = a ·v+ b ·v. For every elements



146 yasushige watase

a, b, v of Z1, v · (a + b) = v · a + v · b and (a + b) · v = a · v + b · v. For
every elements a, b, v of Z1, (a · b) · v = a · (b · v). For every element v of
Z1, v · (1Z1) = v and 1Z1 · v = v. �

(7) Let us consider a commutative ring A, a non empty set X, and a function
f from A into X. If f is bijective, then embRing(f) is a commutative ring.
Proof: embRing(f) is commutative. �

(8) Let us consider rings A, B, and a function i from A into B. Suppose i
inherits ring homomorphism and i = idA. Then A is a subring of B.
Proof: For every object o such that o ∈ the carrier of A holds o ∈
the carrier of B. The addition of A = (the addition of B) � (the carrier
of A). The multiplication of A = (the multiplication of B) � (the carrier
of A). �

(9) Let us consider rings A, B, and a function f from A into B. Suppose f is
monomorphic and ΩB \ (rng f) 6= ∅. Then there exists a ring C and there
exists a set X and there exists a function h and there exists a function G
from B into C such that X ∩ ΩA = ∅ and h is one-to-one and domh =
ΩB \ (rng f) and rng h = X and ΩC = X ∪ ΩA and A is a subring of C
and G inherits ring isomorphism and idA = G · f .
Proof: Consider X being a non empty set such that ΩA∩X = ∅ and there
exists a function h such that h is one-to-one and domh = ΩB \ (rng f)
and rng h = X. Consider h being a function such that h is one-to-one and
domh = ΩB \ (rng f) and rng h = X and ΩA ∩X = ∅.

Define P[element ofB, element of ΩA∪X] ≡ $1 ∈ rng f and (f−1)($1) =
$2 or $1 /∈ rng f and $2 = h($1). Set C1 = ΩA ∪ X. Consider g being
a function from the carrier of B into C1 such that for every element x of
B, P[x, g(x)]. g is bijective. Reconsider C = embRing(g) as a non empty
ring. Reconsider G = g as a function from B into C. G is linear. For every
o such that o ∈ ΩA holds (G · f)(o) = o. A is a subring of C. �

3. Embedding Principle Applied to Abelian Groups

Let G be an Abelian group. A subgroup of G is an Abelian group defined by

(Def. 6) the carrier of it ⊆ the carrier of G and the addition of it = (the addition
of G) � (the carrier of it) and 0it = 0G.

Let G, H be Abelian groups and f be a homomorphism from G to H. The
functor Im f yielding a strict additive loop structure is defined by

(Def. 7) the carrier of it = rng f and the addition of it = (the addition of H) �
rng f and the zero of it = 0H .

Now we state the proposition:
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(10) Let us consider an Abelian group A, a non empty set X, a function
f from A into X, and elements a, b of X. Suppose f is bijective. Then
f((the addition of A)((f−1)(a), (f−1)(b))) is an element of X.

Let A be an Abelian group,X be a non empty set, f be a function fromA into
X, and a, b be elements of X. Assume f is bijective. The functor addemb(f, a, b)
yielding an element of X is defined by the term

(Def. 8) f((the addition of A)((f−1)(a), (f−1)(b))).

Now we state the proposition:

(11) Let us consider an Abelian group A, a non empty set X, a function f

from A into X, and elements a, b, c of X. Suppose f is bijective. Then
addemb(f, a, addemb(f, b, c)) = addemb(f, addemb(f, a, b), c).

Let A be an Abelian group, X be a non empty set, and f be a function from
A into X. The functor addemb(f) yielding a binary operation on X is defined
by

(Def. 9) for every elements a, b of X, it(a, b) = addemb(f, a, b).

The functor embAbGr(f) yielding a strict, non empty additive loop structure
is defined by the term

(Def. 10) 〈X, addemb(f), f(0A)〉.
Now we state the propositions:

(12) Let us consider an Abelian group A, a non empty set X, and a function
f from A into X. If f is bijective, then embAbGr(f) is an Abelian group.
Proof: Reconsider Z1 = 〈X, addemb(f), f(0A)〉 as a non empty additive
loop structure. For every elements v, w of Z1, v + w = w + v. For every
elements u, v, w of Z1, u+ (v +w) = (u+ v) +w. For every element v of
Z1, v + 0Z1 = v. Every element of Z1 is right complementable. �

(13) Let us consider Abelian groups A, B, and a homomorphism i from A to
B. If i = idA, then A is a subgroup of B.
Proof: For every object o such that o ∈ the carrier of A holds o ∈
the carrier of B. The addition of A = (the addition of B) � (the carrier
of A). �

(14) Let us consider Abelian groups A, B, and a homomorphism f from A

to B. Suppose f is one-to-one and ΩB \ (rng f) 6= ∅. Then there exists
an Abelian group C and there exists a set X and there exists a function h
and there exists a function G from B into C such that X ∩ΩA = ∅ and h
is one-to-one and domh = ΩB \ (rng f) and rng h = X and ΩC = X ∪ΩA

and A is a subgroup of C and G is a homomorphism from B to C and
idA = G · f .
Proof: Consider X being a non empty set such that ΩA∩X = ∅ and there
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exists a function h such that h is one-to-one and domh = ΩB \ (rng f)
and rng h = X. Consider h being a function such that h is one-to-one and
domh = ΩB \ (rng f) and rng h = X and ΩA ∩X = ∅. Define P[element
of B, element of ΩA ∪X] ≡ $1 ∈ rng f and (f−1)($1) = $2 or $1 /∈ rng f
and $2 = h($1). Set C1 = ΩA ∪X.

Consider g being a function from the carrier of B into C1 such that for
every element x ofB, P[x, g(x)]. g is bijective. Reconsider C = embAbGr(g)
as a non empty Abelian group. Reconsider G = g as a function from B

into C. G is additive. For every o such that o ∈ ΩA holds (G · f)(o) = o.
A is a subgroup of C. �

4. Relation with Polynomial Rings

Now we state the proposition:

(15) Let us consider a bag b of 0. Then

(i) dom b = ∅, and

(ii) b = EmptyBag ∅, and

(iii) rng b = 0, and

(iv) EmptyBag ∅ = ∅ 7−→ 0, and

(v) Bags ∅ = {EmptyBag ∅}.

From now on R denotes a right zeroed, add-associative, right complemen-
table, Abelian, well unital, distributive, associative, non trivial, non trivial
double loop structure. Now we state the propositions:

(16) Let us consider a polynomial f of 0,R. Then

(i) dom f = Bags 0, and

(ii) Bags 0 = {∅}, and

(iii) rng f = {f(EmptyBag 0)}.

The theorem is a consequence of (15).

(17) Every polynomial of 0,R is constant.

(18) Let us consider a polynomial f of 0,R. Then there exists an element a
of R such that f = a�(0, R). The theorem is a consequence of (17).

Let us consider R. The functor 1 1(R) yielding a sequence of R is defined
by the term

(Def. 11) 0.R+· (1, 1R).

Now we state the proposition:
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(19) Let us consider a non degenerated commutative ring R.
Then Support 1 1(R) = {1}.
Proof: For every o such that o ∈ Support 1 1(R) holds o ∈ {1}. For every
o such that o ∈ {1} holds o ∈ Support 1 1(R). �

Let us consider R. One can verify that 1 1(R) is finite-Support. Now we
state the propositions:

(20) Leading-Monomial 1 1(R) = 1 1(R).

(21) Let us consider an element m of R. Then eval(1 1(R),m) = m. The
theorem is a consequence of (20).

In the sequel R denotes a non degenerated commutative ring. Now we state
the propositions:

(22) Let us consider an element p0 of Polynom-Ring(0, R). Then p0 is not
a polynomial over Polynom-Ring(0, R).

(23) Let us consider a non degenerated commutative ring R.
Then Polynom-Ring Polynom-Ring(0, R) and Polynom-Ring(1, R) are iso-
morphic.

Let us consider a non degenerated ring R. Now we state the propositions:

(24) ΩPolynom-RingR \ (rng(R
canHom
↪→ Polynom-Ring R)) 6= ∅.

(25) There exists a non degenerated ring P1 and there exists a set X and there
exists a function h and there exists a function G from Polynom-RingR
into P1 such that R is a subring of P1.

AndG inherits ring isomorphism and idR = G·(R canHom
↪→ Polynom-Ring R)

and X ∩ ΩR = ∅ and h is one-to-one and domh = ΩPolynom-RingR \
(rng(R

canHom
↪→ Polynom-Ring R)) and rng h = X and ΩP1 = X ∪ ΩR. The

theorem is a consequence of (24) and (9).

(26) ΩPolynom-Ring(0,R) ∩ ΩPolynom-Ring Polynom-Ring(0,R) = ∅. The theorem is
a consequence of (22).

(27) Let us consider a non degenerated ring R. Then there exists a non dege-
nerated ring P1 and there exists a set X and there exists a function h and
there exists a function G from Polynom-Ring Polynom-Ring(0, R) into P1

such that Polynom-Ring(0, R) is a subring of P1.
And G inherits ring isomorphism and idPolynom-Ring(0,R) = G·(Polynom-

Ring(0, R)
canHom
↪→ Polynom-Ring Polynom-Ring(0, R)) and

X ∩ ΩPolynom-Ring(0,R) = ∅ and h is one-to-one and domh =

ΩPolynom-Ring Polynom-Ring(0,R) \ (rng(Polynom-Ring(0, R)
canHom
↪→ Polynom-

Ring Polynom-Ring(0, R))) and rngh =X and ΩP1=X∪ΩPolynom-Ring(0,R).

Let us consider R. Let A be an R-monomorphic commutative ring and x be
an element of A. We say that x is indeterminate if and only if
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(Def. 12) there exists a function g from Polynom-RingR into A such that g is
isomorphism and x = g(1 1(R)).

Now we state the proposition:

(28) Let us consider a non degenerated commutative ring R. Then there exists
an element X of Polynom-RingR such that

(i) X is indeterminate, and

(ii) X = 1 1(R).
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Summary. This the next article in the series formalizing the book of Ba-
czyński and Jayaram “Fuzzy Implications”. We define the laws of contraposition
connected with various fuzzy negations, and in order to make the cluster registra-
tion mechanism fully working, we construct some more non-classical examples of
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Introduction

The main aim of this Mizar article was to implement a formal counterpart
of the handbook of fuzzy implications [1]. This is the next submission in the
series formalizing this volume, following, among others, [5]. We define the laws
of contraposition with the connection to various fuzzy negations [6]. Developing
the approach proposed in [7], we deal with the part of Chapter 1.5, pp. 20–23
[1].

In the first section we introduce Mizar attributes [2] which define contrapo-
sitive symmetry (also in its weaker, left- and right-side form) with respect to
the given fuzzy negation, in Section 2 we recall the notion of fuzzy negation,

c© 2023 The Author(s) / AMU
(Association of Mizar Users)
under CC BY-SA 3.0 license151

https://sciendo.com/journal/forma
https://orcid.org/0000-0001-5026-3990
http://zbmath.org/classification/?q=cc:03B52
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/fuzimpl4.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


152 adam grabowski

taking into account the fact that if its converse is just the function (denoted in
the Mizar formalism by R`) implies their surjectivity or injectivity.

Section 3, 4, and 5 formalize complete proofs of lemmas and corollaries 1.5.3–
1.5.9 from Chapter 1.5 [1]. The sixth section introduces two fuzzy implications
introduced by Drewniak [3], which were not formalized in Mizar before: II3

and II4, needed to formulate Example 1.5.10. Section 7 shows how nine basic
fuzzy implications are connected with contrapositive symmetry. Most of these
properties, once proven formally, can be obtained by the Mizar checker without
any additional references, only by virtue of cluster registrations mechanism.
These registrations in the Mizar code can be treated as the formal counterpart
of Table 1.9, p. 29 from Baczyński and Jayaram book, quoted below.

Fuzzy implication I (CP) (L-CP) (R-CP)
ILK NC NC NC

IGD × × ND1

IRC NC NC NC

IKD NC NC NC

IGG × × ND1

IRS NC NC NC

IYG × × ND1

IWB × × ND2

IFD NC NC NC

Additionally, in the final section we introduce the lattice of all fuzzy nega-
tions and show its basic properties [9], partially formulating and proving The-
orem 1.4.3, p. 14. We wanted to avoid duplication of lattice-theoretical notions
(ordering vs. lattice suprema and infima) [11], and the availability of min and
max operations for various (formally distinct) classes of functions was an issue
we had to cope with [12].

Our work makes a step towards the formalization of fuzzy sets and fuzzy
numbers [4], [15] in the computerized proof assistant [8], [10]; see [13] and [14]
for another interesting effort in this direction.

1. Laws of Contraposition

Let L be a non empty 1-sorted structure and a, b be elements of L. Let us
note that the functor {a, b} yields a subset of L. One can verify that there exists
a fuzzy negation which is decreasing.

Let N be a fuzzy negation and I be a binary operation on [0, 1]. We say that
I satisfies contraposition property w.r.t. N if and only if
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(Def. 1) for every elements x, y of [0, 1], I(x, y) = I(N(y), N(x)).

We say that I satisfies left contraposition property w.r.t. N if and only if

(Def. 2) for every elements x, y of [0, 1], I(N(x), y) = I(N(y), x).

We say that I satisfies right contraposition property w.r.t. N if and only if

(Def. 3) for every elements x, y of [0, 1], I(x,N(y)) = I(y,N(x)).

2. Fuzzy Negations Revisited

Now we state the proposition:

(1) NC = (AffineMap(−1, 1))�[0, 1].
Proof: Set N = NC . Set f = (AffineMap(−1, 1))�[0, 1]. For every object
x such that x ∈ domN holds f(x) = N(x). �

Note that NC is continuous and NC is strong and there exists a fuzzy ne-
gation which is strict and there exists a fuzzy negation which is strong. Every
fuzzy negation which is satisfying (N3) is also decreasing and every fuzzy nega-
tion which is decreasing is also satisfying (N3).

Observe that every unary operation on [0, 1] is R-defined and real-valued and
every real-valued function which is R-defined and decreasing is also one-to-one.
Every unary operation on [0, 1] which is decreasing is also one-to-one and every
fuzzy negation is non-increasing and every fuzzy negation which is strict is also
one-to-one. Now we state the proposition:

(2) Let us consider a function R. If R` is a function, then R is one-to-one.

Let us consider fuzzy negations N1, N2. Now we state the propositions:

(3) If N1
` = N2, then N1 is one-to-one.

(4) If N1
` = N2, then N1 is onto.

Proof: N2 is one-to-one. For every object y such that y ∈ [0, 1] there
exists an object x such that x ∈ [0, 1] and y = N1(x). �

(5) Let us consider a binary operation I on [0, 1], a strict fuzzy negation N ,
and a fuzzy negation N1. Suppose N` = N1. Then I satisfies left con-
traposition property w.r.t. N if and only if I satisfies right contraposition
property w.r.t. N1.
Proof: N is onto. If I satisfies left contraposition property w.r.t. N , then
I satisfies right contraposition property w.r.t. N1. For every elements x, y
of [0, 1], I(N(x), y) = I(N(y), x). �
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3. Proposition 1.5.3

Let us consider a binary operation I on [0, 1] and a strong fuzzy negation
N . Now we state the propositions:

(6) If I satisfies contraposition property w.r.t. N , then I satisfies left con-
traposition property w.r.t. N .

(7) If I satisfies left contraposition property w.r.t. N , then I satisfies right
contraposition property w.r.t. N .

(8) If I satisfies right contraposition property w.r.t. N , then I satisfies con-
traposition property w.r.t. N .

(9) I satisfies contraposition property w.r.t. N if and only if I satisfies left
contraposition property w.r.t. N .

(10) I satisfies contraposition property w.r.t. N if and only if I satisfies right
contraposition property w.r.t. N .

4. Lemma 1.5.4

Let us consider a binary operation I on [0, 1] and a fuzzy negation N . Now
we state the propositions:

(11) If I satisfies (I1) and contraposition property w.r.t. N , then I satisfies
(I2).
Proof: For every elements x, y, z of [0, 1] such that y ¬ z holds I(x, y) ¬
I(x, z). �

(12) If I satisfies (I2) and contraposition property w.r.t. N , then I satisfies
(I1).
Proof: For every elements x, y, z of [0, 1] such that x ¬ y holds I(x, z) 
I(y, z). �

(13) If I satisfies (LB) and contraposition property w.r.t. N , then I satisfies
(RB).

(14) If I satisfies (RB) and contraposition property w.r.t. N , then I satisfies
(LB).

(15) If I satisfies (NP) and contraposition property w.r.t. N , then N = NI

and NI is strong.

(16) If I satisfies (NP) and contraposition property w.r.t. N , then I satisfies
(I3), (I4), and (I5). The theorem is a consequence of (15).

(17) Let us consider a binary operation I on [0, 1]. Suppose I satisfies (NP).
If NI is not strong, then for every fuzzy negation N , I does not satisfy
contraposition property w.r.t. N .
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5. Lemma 1.5.6 and Corollaries

Let us consider a binary operation I on [0, 1] and a strong fuzzy negation
N . Now we state the propositions:

(18) If N = NI , then if I satisfies contraposition property w.r.t. N , then I

satisfies (NP).

(19) If N = NI , then if I satisfies (EP), then I satisfies (I3), (I4), (I5), (NP),
and contraposition property w.r.t. N . The theorem is a consequence of
(18) and (16).

Let us consider a binary operation I on [0, 1] and a fuzzy negation N . Now
we state the propositions:

(20) If I satisfies contraposition property w.r.t. N , then I satisfies (I1) iff I

satisfies (I2).

(21) If I satisfies contraposition property w.r.t. N , then I satisfies (LB) iff I

satisfies (RB).

(22) If I satisfies contraposition property w.r.t. N , then if N is strong, then
I satisfies (NP) iff N = NI .

(23) If I satisfies contraposition property w.r.t. N , (I1), and (NP), then I ∈
FI and NI = N and N is strong. The theorem is a consequence of (20),
(16), and (15).

(24) Let us consider fuzzy implication I satisfying (NP) and (EP). Then NI

is strong if and only if I satisfies contraposition property w.r.t. (NI).

6. Some Further Examples of Fuzzy Implications

The functor II3 yielding a binary operation on [0, 1] is defined by

(Def. 4) for every elements x, y of [0, 1], if x = 0 or y 6= 0, then it(x, y) = 1 and
if x 6= 0 and y = 0, then it(x, y) = 0.

One can verify that II3 is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd
coordinate, 00-dominant, 11-dominant, and 10-weak. Now we state the propo-
sition:

(25) NII3 = ND1.

Let us note that II3 satisfies (EP) but does not satisfy (NP) and II3 satisfies
contraposition property w.r.t. (NII3).

The functor II4 yielding a binary operation on [0, 1] is defined by

(Def. 5) for every elements x, y of [0, 1], if x 6= 1 or y = 1, then it(x, y) = 1 and
if x = 1 and y 6= 1, then it(x, y) = 0.



156 adam grabowski

One can verify that II4 is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd
coordinate, 00-dominant, 11-dominant, and 10-weak. Now we state the propo-
sition:

(26) NII4 = ND2.

Let us note that II4 satisfies (EP) but does not satisfy (NP) and II4 satisfies
contraposition property w.r.t. (NII4).

7. Contrapositive Symmetry w.r.t. the Natural Negation

Let I be a fuzzy implication. We say that I satisfies contraposition property
if and only if

(Def. 6) I satisfies contraposition property w.r.t. (NI).

We say that I satisfies left contraposition property if and only if

(Def. 7) I satisfies left contraposition property w.r.t. (NI).

We say that I satisfies right contraposition property if and only if

(Def. 8) I satisfies right contraposition property w.r.t. (NI).

Observe that ILK satisfies left contraposition property w.r.t. (NC), right
contraposition property w.r.t. (NC), and contraposition property w.r.t. (NC)
and ILK satisfies left contraposition property, right contraposition property, and
contraposition property. IGD satisfies right contraposition property w.r.t. (ND1)
and IGD satisfies right contraposition property.

Note that IRC satisfies contraposition property w.r.t. (NC), left contrapo-
sition property w.r.t. (NC), and right contraposition property w.r.t. (NC) and
IRC satisfies contraposition property, left contraposition property, and right con-
traposition property. IKD satisfies contraposition property w.r.t. (NC) and IKD

satisfies left contraposition property w.r.t. (NC) and IKD satisfies right con-
traposition property w.r.t. (NC) and IKD satisfies contraposition property, left
contraposition property, and right contraposition property.

Let us observe IGG satisfies right contraposition property w.r.t. (ND1) and
IGG satisfies right contraposition property. Now we state the proposition:

(27) IRS satisfies left contraposition property w.r.t. (NC).

One can check that IRS satisfies contraposition property w.r.t. (NC), left
contraposition property w.r.t. (NC), and right contraposition property w.r.t.
(NC). Now we state the proposition:

(28) Let us consider a decreasing fuzzy negation N . Then IRS satisfies con-
traposition property w.r.t. N .
Proof: Set I = IRS.
For every elements x, y of [0, 1], I(x, y) = I(N(y), N(x)). �
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Let us observe that IYG satisfies right contraposition property w.r.t. (ND1)
and IYG satisfies right contraposition property. IWB satisfies right contraposition
property w.r.t. (ND2) and IWB satisfies right contraposition property.

Note that IFD satisfies contraposition property w.r.t. (NC), left contrapo-
sition property w.r.t. (NC), and right contraposition property w.r.t. (NC) and
IFD satisfies contraposition property, left contraposition property, and right con-
traposition property.

8. Fuzzy Lattice Revisited

Now we state the propositions:

(29) FuzzyLattice [0, 1] is a complete, Heyting, distributive lattice.

(30) the set of all f where f is a fuzzy negation ⊆ [0, 1][0,1].

Let N1, N2 be fuzzy negations. The functors: max(N1, N2) and min(N1, N2)
yielding fuzzy negations are defined by conditions

(Def. 9) there exist functions f , g from [0, 1] into R such that f = N1 and g = N2

and max(N1, N2) = max(f, g),

(Def. 10) there exist functions f , g from [0, 1] into R such that f = N1 and g = N2

and min(N1, N2) = min(f, g),

respectively. The functor FuzzyNegations yielding a strict, full relational sub-
structure of FuzzyLattice [0, 1] is defined by

(Def. 11) the carrier of it = the set of all N where N is a fuzzy negation.

Observe that FuzzyNegations is non empty, reflexive, transitive, and anti-
symmetric. Now we state the proposition:

(31) Let us consider fuzzy negations N1, N2.
Then max(N1, N2) = maxR[0,1](N1, N2).
Proof: Set A = [0, 1]. Set F = max(N1, N2). Set m = maxR[0,1](N1, N2).
Consider f1 being a function such that m = f1 and dom f1 = A and
rng f1 ⊆ R. For every object x such that x ∈ [0, 1] holds F(x) = m(x). �

Let us consider fuzzy negations N1, N2 and membership functions f2, g2 of
[0, 1]. Now we state the propositions:

(32) If N1 = f2 and N2 = g2, then max(N1, N2) = max(f2, g2).

(33) If N1 = f2 and N2 = g2, then min(N1, N2) = min(f2, g2).

(34) Let us consider fuzzy negations N1, N2.
Then min(N1, N2) = minR[0,1](N1, N2).
Proof: Set A = [0, 1]. Set F = min(N1, N2). Set m = minR[0,1](N1, N2).
Consider f1 being a function such that m = f1 and dom f1 = A and
rng f1 ⊆ R. For every object x such that x ∈ [0, 1] holds F(x) = m(x). �
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Note that FuzzyNegations is join-inheriting and FuzzyNegations is meet-
inheriting.

Let us consider elements N1, N2 of FuzzyNegations and fuzzy negations N1,
N2. Now we state the propositions:

(35) If N1 = N1 and N2 = N2, then N1 tN2 = max(N1, N2). The theorem is
a consequence of (32).

(36) If N1 = N1 and N2 = N2, then N1 uN2 = min(N1, N2). The theorem is
a consequence of (33).
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Introduction

In this paper, problems 62 from Section III, 91, 125 from Section IV, 143,
146, 147, 158, 166, 178, 180, and 181 from Section V of [10] are formalized, using
the Mizar formalism [1, 2, 4]. It contributes to the project for the formalization
of problems defined in [7].

In the preliminary section, we provide some very technical lemmas, mainly
about powers of complex numbers, which are helpful for this and future for-
malizations. To formulate the statement of Problem 62 the operation ArProg
introduced in [3] is used. Some useful theorems about primeness of products of
elements of finite sequences are proven.

Problem 91 is devoted to decomposing some Mersenne numbers [9] into
products of primes or arbitrary integers. For justification of the primeness of
Mersenne(17) and Mersenne(19) we formalized the lemma

∀p,q∈P p is odd ∧ q|Mersenne(p)⇒ ∃k∈N q = 2 · k · p+ 1.
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The proof of Problem 143 concerning solutions of the equation x2−Dy2 = z2

in positive integers x, y, z for arbitrary integer D presented in the book has been
split into three cases depending on the sign of the parameter D.

The proof of Problem 158 about infiniteness of the number of solutions of
the equation x

y + y
z + z

t + t
z = 1 in integers x, y, z, t relies on the infiniteness of

the range of an injective function with infinite domain, where as the function
we use f : A→ Z× Z× Z× Z, where A is the set of all integers greater than 1
and for every integer n > 1, f(n) = [−n2, n2 · (n2 − 1), (n2 − 1)2,−n · (n2 − 1)].

Problem 166 about representing number 1
2 as a sum of reciprocals of a finite

number of squares of positive integers is formulated as just one example of such
decomposition, as

1
2

=
1
22 +

1
32 +

1
42 +

1
62 +

1
72 +

1
92 +

1
122 +

1
142 +

1
212 +

1
362 +

1
452 +

1
602

and its proof is evident to the Mizar verifier due to built-in arithmetic processing.
Problem 180 about solutions (in positive integers) of the equation y ·(y+1) =

x · (x+ 1) · (x+ 2) is formulated as equations 2 · (2 + 1) = 1 · (1 + 1) · (1 + 2) and
14 · (14 + 1) = 5 · (5 + 1) · (5 + 2) with shapes which mimic the structure of the
problem. Its proof is also obvious to the Mizar verifier due to built-in arithmetic
processing [8].

The proof of Problem 181 about infiniteness of the number of solutions of
the equation 1 +x2 +y2 = z2 in positive integers x, y, z uses the same technique
as we used in the proof of Problem 158 where f : N+ → N+ × N+ × N+ such
that for every positive integer n, f(n) = [2 · n, 2 · n2, 2 · n2 + 1].

1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i, j
denote integers, r, s denote real numbers, p, p1, p2, p3 denote prime numbers,
and z denotes a complex number. Now we state the propositions:

(1) z11 = z · z · z · z · z · z · z · z · z · z · z.
(2) z12 = z · z · z · z · z · z · z · z · z · z · z · z. The theorem is a consequence of

(1).

(3) z13 = z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is a consequence
of (2).

(4) z14 = z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is a consequence
of (3).

(5) z15 = z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z ·z. The theorem is a consequence
of (4).
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(6) z16 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is
a consequence of (5).

(7) z17 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is
a consequence of (6).

(8) z18 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is
a consequence of (7).

(9) z19 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem is
a consequence of (8).

(10) z20 = z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z · z. The theorem
is a consequence of (9).

(11) If n  2, then there exists a positive natural number k such that 2n−1 =
4 · k − 1.
Proof: Define P[natural number] ≡ if $1  2, then there exists a positive
natural number k such that 2$1 − 1 = 4 · k − 1. P[2]. For every natural
number j such that 2 ¬ j holds if P[j], then P[j + 1]. For every natural
number i such that 2 ¬ i holds P[i]. �

2. Problem 62

Let X be a set. We say that X is included in a segment if and only if

(Def. 1) there exists a natural number k such that X ⊆ Seg k.

Note that every set which is empty is also included in a segment.
Let n be a non zero natural number. Let us note that {n} is included in

a segment and there exists a set which is non empty and included in a segment
and every set which is included in a segment is also finite and natural-membered
and every finite, natural-membered set which has non empty elements is also
included in a segment.

Let a, r be natural numbers. Observe that ArProg(a, r) is natural-valued.
Let us consider i. The functor Coprimes(i) yielding a subset of Z is defined

by the term

(Def. 2) {j, where j is an integer : i and j are relatively prime}.

Now we state the proposition:

(12) Let us consider an included in a segment set X. If X ⊆ P and p |∏
SgmX, then p ∈ X.

Let us consider natural numbers a, b and a non zero natural number m. Now
we state the propositions:
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(13) Suppose a and b are relatively prime. Then
∏

Sgm{p, where p is a prime
number : p | m and p | a} and

∏
Sgm{q, where q is a prime number : q |

m and q | b} are relatively prime. The theorem is a consequence of (12).

(14)
∏

Sgm{p, where p is a prime number : p | m and p | a} and
∏

Sgm{r
where r is a prime number : r | m and r - a and r - b} are relatively
prime. The theorem is a consequence of (12).

(15) Suppose a and b are relatively prime. Then
∏

Sgm{q, where q is a prime
number : q | m and q | b} and

∏
Sgm{r, where r is a prime number : r |

m and r - a and r - b} are relatively prime. The theorem is a consequence
of (14).

(16) Let us consider an included in a segment set X. If a ∈ X, then a |∏
SgmX.

(17) Let us consider non zero natural numbers a, m. Suppose a and b are
relatively prime. Then rng ArProg(b, a) ∩ Coprimes(m) is infinite.
Proof: Set P1 = {p, where p is a prime number : p | m and p | a}. Set
R1 = {r, where r is a prime number : r | m and r - a and r - b}. Set
P =

∏
SgmP1. Set R =

∏
SgmR1. a ·P ·R+b and m are relatively prime.

Set g = ArProg(b, a). Set X = rng g ∩ Coprimes(m). For every natural
number x such that x ∈ X there exists a natural number y such that
y > x and y ∈ X by [3, (7)], [5, (64)]. �

3. Problem 91

Let n be a complex number. We say that n is a product of two primes if and
only if

(Def. 3) there exist prime numbers p1, p2 such that n = p1 · p2.

We introduce the notation n is not a product of two primes as an antonym
for n is a product of two primes.

One can check that every prime number is not a product of two primes. Let
us consider p1 and p2. One can verify that p1 · p2 is a product of two primes.
Now we state the propositions:

(18) If a 6= 1 and a 6= n and a is not prime and a | n, then n is not a product
of two primes.

(19) If n is a product of two primes, then n  4.

(20) If c is a product of two different primes, then c is a product of two primes.

Let us consider p1, p2, and p3. One can check that p1 ·p2 ·p3 is not a product
of two primes. Now we state the propositions:
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(21) If n is a product of two primes, then for every a and b such that a 6= 1
and b 6= 1 and n = a · b holds a is prime and b is prime.

(22) If 2n − 1 is prime and 2n + 1 is prime, then n = 2.

Let n be a zero natural number. Note that Mn is zero. Let n be a non zero
natural number. Let us note that Mn is odd. Now we state the propositions:

(23) Let us consider prime numbers p, q. Suppose p is odd and q |Mp. Then
there exists a natural number k such that q = 2 · k · p+ 1.

(24) M17 is prime. The theorem is a consequence of (23).

(25) M19 is prime. The theorem is a consequence of (23).

(26) {2n−1, where n is a natural number : 2n−1 ¬ 106 and 2n−1 is a product
of two primes} = {24 − 1, 29 − 1, 211 − 1}.
Proof: Set A = {2n − 1 : 2n − 1 ¬ 106 and 2n − 1 is a product of two
primes}. Set B = {24 − 1, 29 − 1, 211 − 1}. A ⊆ B by [6, (7)], (9). B ⊆ A.
�

Let us consider n. We say that n has at least three different divisors if and
only if

(Def. 4) there exist natural numbers q1, q2, q3 such that q1, q2, q3 are mutually
different and q1 > 1 and q2 > 1 and q3 > 1 and q1 | n and q2 | n and q3 | n.

Observe that every natural number which has more than two different prime
divisors has also at least three different divisors and every natural number which
has more than two different prime divisors is also not a product of two primes.

Now we state the propositions:

(27) If n has more than two different prime divisors, then n is not a product
of two different primes.

(28) If n is even and n > 4, then 2n − 1 has at least three different divisors.
The theorem is a consequence of (22).

4. Problem 125

Now we state the propositions:

(29) If Fermatm = Fermatn, then m = n.

(30) If m < n, then Fermatm < Fermatn.

(31) If m ¬ n, then Fermatm ¬ Fermatn. The theorem is a consequence of
(30).

(32) If i ≡ j (mod j), then j | i.
(33) i · n ≡ n (modn).

(34) If a | mk + 1, then a | (a · n+m)k + 1.
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(35) 17 | (34 · k + 2)22 + 1. The theorem is a consequence of (34).

(36) 17 | (34 · k + 4)21 + 1. The theorem is a consequence of (34).

(37) 17 | (34 · k + 6)23 + 1. The theorem is a consequence of (34).

(38) 17 | (34 · k + 8)22 + 1. The theorem is a consequence of (34).

(39) 17 | (34 · k + 10)23 + 1. The theorem is a consequence of (34).

(40) 17 | (34 · k + 12)23 + 1. The theorem is a consequence of (34).

(41) 17 | (34 · k + 14)23 + 1. The theorem is a consequence of (34).

(42) 17 | (34 · k + 20)23 + 1. The theorem is a consequence of (34).

(43) 17 | (34 · k + 22)23 + 1. The theorem is a consequence of (34).

(44) 17 | (34 · k + 24)23 + 1. The theorem is a consequence of (34).

(45) 17 | (34 · k + 26)22 + 1. The theorem is a consequence of (34).

(46) 17 | (34 · k + 28)23 + 1. The theorem is a consequence of (34).

(47) 17 | (34 · k + 30)21 + 1. The theorem is a consequence of (34).

(48) 17 | (34 · k + 32)22 + 1. The theorem is a consequence of (34).

(49) If 1 < a ¬ 100, then there exists a positive natural number n such that
n ¬ 6 and a2n + 1 is composite. The theorem is a consequence of (37),
(38), (39), (40), (41), (42), (43), (44), (45), (46), (47), (48), (35), and (36).

5. Problem 143

Now we state the proposition:

(50) Let us consider an integer D. Then {〈〈x, y, z〉〉, where x, y, z are positive
natural numbers : x2 −D · y2 = z2} is infinite.

6. Problem 146

Now we state the propositions:

(51) (i) n2 mod 8 = 0, or

(ii) n2 mod 8 = 1, or

(iii) n2 mod 8 = 4.

(52) Let us consider natural numbers x, y, z. Then x2− 2 · y2+ 8 · z 6= 3. The
theorem is a consequence of (51).
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7. Problem 147

Now we state the proposition:

(53) {〈〈x, y〉〉, where x, y are natural numbers : y2−x·(x+1)·(x+2)·(x+3) =
1} = {〈〈x, y〉〉, where x, y are natural numbers : y = x2 + 3 · x+ 1}.
Proof: Set A = {〈〈x, y〉〉, where x, y are natural numbers : y2−x · (x+1) ·
(x + 2) · (x + 3) = 1}. Set B = {〈〈x, y〉〉, where x, y are natural numbers :
y = x2+ 3 ·x+ 1}. A ⊆ B. Consider x, y being natural numbers such that
a = 〈〈x, y〉〉 and y = x2 + 3 · x+ 1. �

8. Problem 158

Now we state the propositions:

(54) Let us consider positive real numbers a, b, c, d. If a
b < 1 and c

d < 1, then
a
b ·

c
d < 1.

(55) Let us consider positive natural numbers x, y, z, t. Then x
y+ y

z+ z
t+

t
x 6= 1.

The theorem is a consequence of (54).

Let n be a natural number. The functor 〈n,∞)N yielding a subset of N is
defined by the term

(Def. 5) N \ (Zn).

Let us consider n. One can check that 〈n,∞)N is infinite. Now we state the
propositions:

(56) k ∈ 〈n,∞)N if and only if n ¬ k.
Proof: If k ∈ 〈n,∞)N, then n ¬ k. �

(57) n+ k ∈ 〈n,∞)N.

(58) n ∈ 〈n,∞)N.

(59) If k > 0, then n /∈ 〈n+ k,∞)N. The theorem is a consequence of (56).

Let us consider n. Let us note that every element of 〈n,∞)N is n or greater
and there exists a natural number which is n or greater. Now we state the
proposition:

(60) Let us consider an n or greater natural number k. Then k ∈ 〈n,∞)N.

Let us consider n. Let k be a non zero natural number. Observe that k · n
is n or greater. Let k be an n or greater natural number. One can verify that
k − n is natural. Now we state the proposition:

(61) {〈〈x, y, z, t〉〉, where x, y, z, t are integers : x
y + y

z + z
t + t

x = 1} is infinite.
Proof: SetG2 = 〈2,∞)N. SetA = {〈〈x, y, z, t〉〉, where x, y, z, t are integers :
x
y + y

z + z
t + t

x = 1}. Define V(natural number) = −$21 . Define Y(natural
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number) = $21 · ($21 − 1). Define Z(natural number) = ($21 − 1)2. De-
fine T (natural number) = −$1 · ($21 − 1). Define F(element of G2) =
〈〈V($1),Y($1),Z($1), T ($1)〉〉. Consider f being a many sorted set inde-
xed by G2 such that for every element d of G2, f(d) = F(d). rng f ⊆ A.
f is one-to-one. �

9. Problem 166

Now we state the proposition:

(62) 1
2 = 1

22 + 1
32 + 1

42 + 1
62 + 1

72 + 1
92 + 1

122 + 1
142 + 1

212 + 1
362 + 1

452 + 1
602 .

10. Problem 178

Now we state the proposition:

(63) (n+ 1)3 + (n+ 2)3 + (n+ 3)3 + (n+ 4)3 6= (n+ 5)3.

11. Problem 180

Now we state the proposition:

(64) (i) 2 · (2 + 1) = 1 · (1 + 1) · (1 + 2), and

(ii) 14 · (14 + 1) = 5 · (5 + 1) · (5 + 2).

12. Problem 181

Now we state the proposition:

(65) {〈〈x, y, z〉〉, where x, y, z are positive natural numbers : 1+x2+y2 = z2}
is infinite.
Proof: Set A = {〈〈x, y, z〉〉, where x, y, z are positive natural numbers :
1 + x2 + y2 = z2}. Define V(natural number) = 2 · $1. Define Y(natural
number) = 2 ·$21 . Define Z(natural number) = 2 ·$21 +1. Define F(natural
number) = 〈〈V($1), Y($1), Z($1)〉〉. Consider f being a many sorted set
indexed by N+ such that for every element d of N+, f(d) = F(d). rng f ⊆
A. f is one-to-one. �
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Introduction

In this paper, Problems 84, 94, 99 from Section IV, 170, 173, 174, 175, 177,
179, 186, 187, 189, 190, 193, 194, 197, and 199 from Section V of [10] are for-
malized, using the Mizar formalism [1]. It contributes to the project announced
in [6].

Some of the problems in the book are formulated in terms of positive inte-
gers. To represent such numbers in the Mizar Mathematical Library [2], we use
notions either positive Integer or positive Nat or non zero Nat, which
are automatically understood as equivalent due to the built-in processing of
adjectives by the Mizar checker.

For proving the infiniteness of the set of pairs of consecutive primes that are
not twin primes (Problem 84), we implemented the operation max〈0, 6 ·n+ 1〉P,
which represents the largest prime ¬ 6n + 1 denoted as pkn in the book. We
noted a small misprint in the proof presented in the book in the equation (6n+
5) + (6n+ 1) = 4 – it should be (6n+ 5)− (6n+ 1) = 4.

Problem 179 asks about all rational solutions of the equation

(x+ 1)3 + (x+ 2)3 + (x+ 3)3 + (x+ 4)3 = (x+ 10)3.
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We generalized the problem to real numbers and presented the only solution
x = 10 in reals, which is also the only solution in rationals. Moreover, we
computed that the substitution x = t + 10 proposed in the book results in the
equation t(t2 + 30t+ 230) = 0.

The infiniteness of sets defined in Problems 189, 190, and 199 is proven using
function recSeqCart [4] with parameters adequate to given problems.

Problem 197 is devoted to the existence of solutions of the equation

x1 + x2 + · · ·+ xn = x1x2 · · ·xn

in positive integers. In the case of n > 2, the proof in the book proposes xn−1 =
1, but we computed that xn−1 must be equal to 2.

Proofs of other problems are straightforward formalizations of solutions given
in the book, by means of available development of number theory in Mizar [9],
using ellipsis [3] extensively, looking forward for more advanced automatization
of arithmetical calculations [7].

1. Preliminaries

From now on a, b, c, k, m, n denote natural numbers, i, j, x, y denote
integers, p, q denote prime numbers, and r, s denote real numbers. Now we
state the propositions:

(1) Let us consider natural numbers i, j. If i < j, then there exists a positive
natural number k such that j = i+ k.

(2) Let us consider a positive yielding, integer-valued finite sequence f . Then∏
f  1.
Proof: Define P[set] ≡ for every positive yielding, integer-valued finite
sequence F such that F = $1 holds

∏
F  1. For every finite sequence p of

elements of Z and for every element x of Z such that P[p] holds P[pa 〈x〉].
For every finite sequence p of elements of Z, P[p]. �

(3) If m  2 and n  2, then m · n is composite.

(4) If p - n, then n and p are relatively prime.

(5) −1 mod p = p− 1.

2. Problem 84

Let r, s be complex numbers. We say that r and s are twin if and only if

(Def. 1) |s− r| = 2.

One can verify that the predicate is irreflexive and symmetric. Now we state the
proposition:

(6) If r ¬ s, then r and s are twin iff s− r = 2.
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Let us consider n. The functor 〈0, 6 ·n+1〉N yielding a subset of N is defined
by the term

(Def. 2) {a, where a is a natural number : a ¬ 6 · n+ 1}.

Now we state the propositions:

(7) a ¬ 6 · n+ 1 if and only if a ∈ 〈0, 6 · n+ 1〉N.

(8) 〈0, 6 · n+ 1〉N ⊆ Z6·n+2.

Let us consider n. Observe that 〈0, 6 · n+ 1〉N is non empty and finite. Now
we state the propositions:

(9) Ifm ¬ n, then 〈0, 6·m+1〉N ⊆ 〈0, 6·n+1〉N. The theorem is a consequence
of (7).

(10) Ifm < n, then 〈0, 6·m+1〉N ⊂ 〈0, 6·n+1〉N. The theorem is a consequence
of (9) and (7).

(11) If 〈0, 6·m+1〉N = 〈0, 6·n+1〉N, thenm = n. The theorem is a consequence
of (10).

Let us consider a non zero natural number n. Now we state the propositions:

(12) 2 ∈ 〈0, 6 · n+ 1〉N ∩ P.

(13) 3 ∈ 〈0, 6 · n+ 1〉N ∩ P.

(14) 5 ∈ 〈0, 6 · n+ 1〉N ∩ P.

(15) 7 ∈ 〈0, 6 · n+ 1〉N ∩ P.

Let n be a non zero natural number. Observe that 〈0, 6 · n+ 1〉N ∩ P is non
empty.

The functor max〈0, 6 ·n+1〉P yielding a prime number is defined by the term

(Def. 3) max(〈0, 6 · n+ 1〉N ∩ P).

Now we state the propositions:

(16) Let us consider non zero natural numbers m, n. Suppose m ¬ n. Then
max〈0, 6 ·m + 1〉P ¬ max〈0, 6 · n + 1〉P. The theorem is a consequence of
(9).

(17) max〈0, 6 · 20 + 1〉P = max〈0, 6 · 19 + 1〉P.
Proof: Set a = 20. Set b = 19. Set X = 〈0, 6 · a+ 1〉N. Set B = max〈0, 6 ·
b+ 1〉P. B ¬ 6 · b+ 1. For every extended real x such that x ∈ X ∩P holds
x ¬ B. �

(18) 〈0, 6 · 1 + 1〉N = {0, 1, 2, 3, 4, 5, 6, 7}.
(19) max〈0, 6 · 1 + 1〉P = 7.

(20) If pr(m) = pr(n), then m = n.

Let p be a natural number. Assume p is prime. The functor primeindex(p)
yielding an element of N is defined by

(Def. 4) pr(it) = p.
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Now we state the propositions:

(21) If primeindex(p) = primeindex(q), then p = q.

(22) primeindex(2) = 0.

(23) primeindex(3) = 1.

(24) primeindex(5) = 2.

(25) primeindex(7) = 3.

(26) primeindex(11) = 4.

(27) primeindex(13) = 5.

(28) If n > 0, then p < pr(n+ primeindex(p)).

Let us consider a non zero natural number n. Now we state the propositions:

(29) pr(1 + primeindex(max〈0, 6 ·n+ 1〉P))  6 ·n+ 5. The theorem is a con-
sequence of (28).

(30) pr(1 + primeindex(max〈0, 6 · n + 1〉P)) − max〈0, 6 · n + 1〉P  4. The
theorem is a consequence of (7) and (29).

(31) max〈0, 6 ·n+1〉P and pr(1+primeindex(max〈0, 6 ·n+1〉P)) are not twin.
The theorem is a consequence of (28), (30), and (6).

(32) Let us consider a non zero natural number m. Suppose 6 ·m+1 is prime.
Then 6 ·m+ 1 = max〈0, 6 ·m+ 1〉P. The theorem is a consequence of (7).

Let us consider non zero natural numbers m, n. Now we state the proposi-
tions:

(33) If 6·n+1 is prime and m < n, then max〈0, 6·m+1〉P < max〈0, 6·n+1〉P.
The theorem is a consequence of (16), (32), and (7).

(34) Suppose 6 ·m+ 1 is prime and 6 ·n+ 1 is prime and max〈0, 6 ·m+ 1〉P =
max〈0, 6 · n+ 1〉P. Then m = n. The theorem is a consequence of (33).

The functor {6n+ 1 : n ∈ N}P yielding a subset of N is defined by the term

(Def. 5) {6 · n+ 1, where n is a natural number : 6 · n+ 1 is prime}.

Note that {6n + 1 : n ∈ N}P has non empty elements. Now we state the
proposition:

(35) {6n+ 1 : n ∈ N}P ⊆ P.

One can check that {6n+1 : n ∈ N}P is infinite. Now we state the proposition:

(36) {〈〈p, q〉〉, where p, q are prime numbers : p and q are not twin} is infinite.
Proof: Set A = {〈〈p, q〉〉, where p, q are prime numbers : p and q are not
twin}. Define S(non zero natural number) = max〈0, 6 · $1 + 1〉P. Define
F(non zero natural number) = 〈〈S($1), pr(1 + primeindex(S($1)))〉〉.

Define P[natural number, object] ≡ there exists a non zero natural
number n such that n = $1 and $2 = F(n). Set P = {6n + 1 : n ∈ N}P.
Define C(element of P ) = ($1−1 div 6)(∈ N). Consider C being a function
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from P into N such that for every element p of P , C(p) = C(p). C is one-
to-one. Reconsider D = rngC as an infinite subset of N. For every element
d of D, 6 · d+ 1 is prime. For every element i of D, there exists an object
j such that P[i, j]. Consider f being a many sorted set indexed by D such
that for every element d of D, P[d, f(d)]. rng f ⊆ A. f is one-to-one. �

3. Problem 94

Let c be a complex number. We say that c is a product of three different
primes if and only if

(Def. 6) there exist prime numbers p, q, r such that p, q, r are mutually different
and c = p · q · r.

Now we state the propositions:

(37) If n > 4, then there exists a natural number k such that n = 2 · k and
k > 2 or n = 2 · k + 1 and k > 1.

(38) If n > 4, then there exists a natural number m such that n < m < 2 · n
and m is a product of two different primes. The theorem is a consequence
of (37) and (3).

(39) If n > 15, then there exists a natural number m such that n < m < 2 ·n
and m is a product of three different primes. The theorem is a consequence
of (3).

4. Problem 99

Now we state the proposition:

(40) 5 | 24·n+2 + 1.

Let us consider n. Note that 1
5 · (2

4·n+2 + 1) is natural. Now we state the
proposition:

(41) If n > 1, then 1
5 · (2

4·n+2 +1) is composite. The theorem is a consequence
of (40) and (3).

5. Problem 170

Now we state the proposition:

(42) {〈〈x, y, z〉〉, where x, y, z are integers : x + y + z = 3 and x3 + y3 + z3 =
3} = {〈〈1, 1, 1〉〉, 〈〈−5, 4, 4〉〉, 〈〈4, −5, 4〉〉, 〈〈4, 4, −5〉〉}.
Proof: Set A = {〈〈x, y, z〉〉, where x, y, z are integers : x+ y + z = 3 and
x3 + y3 + z3 = 3}. Set B = {〈〈1, 1, 1〉〉, 〈〈−5, 4, 4〉〉, 〈〈4, −5, 4〉〉, 〈〈4, 4, −5〉〉}.
A ⊆ B by [8, (2)]. �
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6. Problem 173

Now we state the proposition:

(43) Let us consider positive natural numbers m, n. Then there exist integers
a, b, c such that {〈〈x, y〉〉, where x, y are natural numbers : a · x + b · y =
c} = {〈〈m, n〉〉}.
Proof: Consider a being a prime number such that a > m+ n. Consider
b being a prime number such that b > a. Set A = {〈〈x, y〉〉, where x, y are
natural numbers : a · x+ b · y = c}. Set B = {〈〈m, n〉〉}. A ⊆ B. �

7. Problem 174

Let us consider a positive natural number m. Now we state the propositions:

(44) {〈〈x, y〉〉, where x, y are positive natural numbers : x+ y = m+ 1} = m.
Proof: Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : x+y =
m+ 1}. Segm ≈ A. �

(45) There exist positive natural numbers a, b, c such that

{〈〈x, y〉〉, where x, y are positive natural numbers : a · x+ b · y = c} = m.
The theorem is a consequence of (44).

8. Problem 175

Now we state the proposition:

(46) Let us consider a positive natural number m. Then {〈〈x, y〉〉, where x, y

are positive natural numbers : x2 + y2 + 2 · x · y −m · x−m · y −m− 1
= 0} = m. The theorem is a consequence of (44).

9. Problem 177

Let b, e be real numbers and n be a natural number. The functor powersFS(b,
e, n) yielding a finite sequence of elements of R is defined by

(Def. 7) len it = n and for every natural number i such that 1 ¬ i ¬ n holds
it(i) = (b+ i)e.

Now we state the propositions:

(47) powersFS(−(k + 1), r, 2 · (k + 1)) = (〈(−k)r〉 a powersFS(−k, r, 2 · k)) a

〈(k + 1)r〉.
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(48) Let us consider a positive natural number k. Then powersFS(−(k + 1), r, 2·
(k + 1)− 1) = (〈(−k)r〉 a powersFS(−k, r, 2 · k − 1)) a 〈kr〉.

(49)
∑

powersFS(−k, 3, 2 · k) = k3.
Proof: Define P[natural number] ≡

∑
powersFS(−$1, 3, 2 · $1) = $1

3.
P[0]. For every natural number n such that P[n] holds P[n+ 1]. For every
natural number n, P[n]. �

(50) Let us consider a positive natural number k. Then
∑

powersFS(−k, 3, 2 ·
k − 1) = 0.
Proof: Define P[non zero natural number] ≡

∑
powersFS(−$1, 3, 2 · $1−

1) = 0. P[1]. For every non zero natural number n such that P[n] holds
P[n+ 1]. For every non zero natural number n, P[n]. �

(51) Let us consider a positive natural number n. Then there exists an integer
x and there exists a natural number y such that

∑
powersFS(x, 3, n) = y3.

The theorem is a consequence of (49) and (50).

10. Problem 179

Now we state the proposition:

(52) Let us consider a real number x. Then (x+ 1)3 + (x+ 2)3 + (x+ 3)3 +
(x+ 4)3 = (x+ 10)3 if and only if x = 10.
Proof: If (x+ 1)3 + (x+ 2)3 + (x+ 3)3 + (x+ 4)3 = (x+ 10)3, then
x = 10. �

11. Problem 186

Now we state the proposition:

(53) {〈〈x, y〉〉, where x, y are positive natural numbers : 2x + 1 = y2} = {〈〈3,
3〉〉}.
Proof: Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : 2x +
1 = y2}. A ⊆ {〈〈3, 3〉〉} by [11, (36)]. �

12. Problem 187

Now we state the proposition:

(54) {〈〈x, y〉〉, where x, y are positive natural numbers : 2x − 1 = y2} = {〈〈1,
1〉〉}.
Proof: Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : 2x −
1 = y2}. A ⊆ {〈〈1, 1〉〉} by [5, (11)]. �
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13. Problem 189

Now we state the propositions:

(55) {〈〈x, y〉〉, where x, y are positive natural numbers : (2·x+1)2−2·y2+1 = 0}
is infinite.
Proof: DefineR(complex number, complex number) = (2·$1+1)2−2·$22 +
1. Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : R(x, y) =
0}. Set f = recSeqCart(3, 5, 3, 2, 1, 4, 3, 2). Define N [natural number] ≡
f($1) ∈ A. If N [a], then N [a+ 1]. N [a]. rng f ⊆ A. �

(56) {〈〈x, y〉〉, where x, y are positive natural numbers : x2 + (x + 1)2 = y2}
is infinite. The theorem is a consequence of (55).

14. Problem 190

Now we state the propositions:

(57) {〈〈x, y〉〉, where x, y are positive natural numbers : 3·x2+3·x−y2+1 = 0}
is infinite.
Proof: Define R(complex number, complex number) = 3 ·$21 +3 ·$1−$22 +
1. Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : R(x, y) =
0}. Set f = recSeqCart(7, 13, 7, 4, 3, 12, 7, 6). Define N [natural number] ≡
f($1) ∈ A. If N [a], then N [a+ 1]. N [a]. rng f ⊆ A. �

(58) {〈〈x, y〉〉, where x, y are positive natural numbers : (x+ 1)3 − x3 = y2}
is infinite. The theorem is a consequence of (57).

15. Problem 193

Now we state the propositions:

(59) If i is even, then i2 mod 8 = 0 or i2 mod 8 = 4.

(60) If i is odd, then i2 mod 8 = 1.

(61) (i) i2 mod 8 = 0, or

(ii) i2 mod 8 = 1, or

(iii) i2 mod 8 = 4.

(62) If p = 4 · k + 3 and p | i2 + j2, then p | i and p | j.
(63) x2 − y3 6= 7. The theorem is a consequence of (59) and (60).
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16. Problem 194

Now we state the proposition:

(64) Let us consider an odd natural number c. Then x2 − y3 6= (2 · c)3 − 1.
The theorem is a consequence of (60) and (59).

17. Problem 197

Let f , g be positive yielding finite sequences. Let us note that fag is positive
yielding. Let x be a positive real number. Let us note that 〈x〉 is positive yielding.
Let x, y be positive real numbers. Let us note that 〈x, y〉 is positive yielding.
Now we state the proposition:

(65) If n > 0, then there exists a positive yielding finite sequence f of elements
of N such that len f = n and

∑
f =

∏
f .

18. Problem 199

Now we state the propositions:

(66) Let us consider positive natural numbers x, y. Suppose y · (3 · y − 1) =
x · (x+ 1). Then Polygon(3, x) = Polygon(5, y).

(67) Let us consider positive natural numbers m, n, and a natural number s.
If Polygon(s,m) = Polygon(s, n) and s  2, then m = n.

(68) {〈〈x, y〉〉, where x, y are positive natural numbers : y·(3·y−1)−x·(x+1) =
0} is infinite.
Proof: Define R(complex number, complex number) = $2 · (3 · $2 − 1)−
$1 · ($1 + 1). Set A = {〈〈x, y〉〉, where x, y are positive natural numbers :
R(x, y) = 0}. Set f = recSeqCart(1, 1, 7, 12, 1, 4, 7, 1). Define N [natural
number] ≡ f($1) ∈ A. If N [a], then N [a+ 1]. N [a]. rng f ⊆ A. �

(69) {n, where n is a 3-gonal natural number : n is 5-gonal} is infinite.
Proof: Set A = {n, where n is a 3-gonal natural number : n is 5-gonal}.
Set B = {〈〈x, y〉〉, where x, y are positive natural numbers : y · (3 · y − 1)−
x · (x+ 1) = 0}. Define P[object, object] ≡ there exists a positive natural
number n such that n = ($1)1 and $2 = Polygon(3, n). For every object
e such that e ∈ B there exists an object u such that P[e, u]. Consider f
being a function such that dom f = B and for every object e such that
e ∈ B holds P[e, f(e)]. f is one-to-one. rng f ⊆ A. �
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Introduction
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measures one by one into the finite sequence of direct product spaces obtained
in Section 1. In Section 3, integrals on the m-dimensional Cartesian product
measure space obtained in Section 2 are presented, and the concept of sequen-
tially integrable, which is useful in considering integrability [7] for functions on
multidimensional spaces, is introduced and its effectiveness is shown.

1. Preliminaries

Let m, n be non zero natural numbers and X be a non-empty, m-elements
finite sequence. Assume n ¬ m. The functor ElmFin(X,n) yielding a non empty
set is defined by the term

(Def. 1) X(n).

Let m be a natural number. A family of σ-fields of X is an m-elements finite
sequence defined by

(Def. 2) for every natural number i such that i ∈ Segm holds it(i) is a σ-field of
subsets of X(i).

Now we state the proposition:

(1) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family of σ-fields S of X. If n ¬ m, then S(n) is
a σ-field of subsets of ElmFin(X,n).

Let m be a non zero natural number and X be a non-empty, m-elements
finite sequence. The functor

∏
FinSX yielding a non-empty, m-elements finite

sequence is defined by

(Def. 3) it(1) = X(1) and for every non zero natural number i such that i < m

holds it(i+ 1) = it(i)×X(i+ 1).

The functor
∏

FSX yielding a set is defined by the term

(Def. 4) (
∏

FinSX)(m).

Observe that
∏

FSX is non empty. Now we state the proposition:

(2) Let us consider a non zero natural number m, a natural number k, and
a non-empty, m-elements finite sequence X. If k ¬ m, then X�k is a non-
empty, k-elements finite sequence.

Let m, n be non zero natural numbers and X be a non-empty, m-elements
finite sequence. Assume n ¬ m. The functor SubFin(X,n) yielding a non-empty,
n-elements finite sequence is defined by the term

(Def. 5) X�n.

Let S be a family of σ-fields of X. Assume n ¬ m. The functor SubFin(S, n)
yielding a family of σ-fields of SubFin(X,n) is defined by the term

(Def. 6) S�n.
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Assume n ¬ m. The functor ElmFin(S, n) yielding a σ-field of subsets of
ElmFin(X,n) is defined by the term

(Def. 7) S(n).

Let m be a non zero natural number. Note that a family of σ-fields of X is
a family of semialgebras of X. Let S be a family of σ-fields of X.

A family of σ-measures of S is an m-elements finite sequence defined by

(Def. 8) for every natural number i such that i ∈ Segm there exists a σ-field S3

of subsets of X(i) such that S3 = S(i) and it(i) is a σ-measure on S3.

Let m, n be non zero natural numbers and M be a family of σ-measures of
S. Assume n ¬ m. The functor SubFin(M,n) yielding a family of σ-measures
of SubFin(S, n) is defined by the term

(Def. 9) M�n.
Assume n ¬ m. The functor ElmFin(M,n) yielding a σ-measure on ElmFin(S,
n) is defined by the term

(Def. 10) M(n).

Now we state the proposition:

(3) Let us consider non zero natural numbers m, i, j, k, and a non-empty,
m-elements finite sequence X. Suppose i ¬ j ¬ k ¬ m.
Then (

∏
FinS SubFin(X, j))(i) = (

∏
FinS SubFin(X, k))(i).

Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ j, then (
∏

FinS SubFin(X,
j))($1) = (

∏
FinS SubFin(X, k))($1). For every natural number n such that

P[n] holds P[n+ 1]. For every natural number n, P[n]. �

Let us consider non zero natural numbers m, n and a non-empty, m-elements
finite sequence X. Now we state the propositions:

(4) If n ¬ m, then (
∏

FinSX)(n) = (
∏

FinS SubFin(X,n))(n). The theorem
is a consequence of (3).

(5) If n < m, then (
∏

FinSX)(n+1) = (
∏

FinS SubFin(X,n))(n)×ElmFin(X,
n+ 1). The theorem is a consequence of (4).

(6) Let us consider a non zero natural number n, and a non-empty, (n+ 1)-
elements finite sequenceX. Then

∏
FSX =

∏
FS SubFin(X,n)×ElmFin(X,

n+ 1). The theorem is a consequence of (4).

Let us consider non zero natural numbers m, n, k and a non-empty, m-
elements finite sequence X. Now we state the propositions:

(7) If k ¬ n ¬ m, then SubFin(X, k) = SubFin(SubFin(X,n), k).

(8) If k ¬ n ¬ m, then ElmFin(X, k) = ElmFin(SubFin(X,n), k).

Let us consider non zero natural numbers m, n and a non-empty, m-elements
finite sequence X. Now we state the propositions:
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(9) If n < m, then
∏

FS SubFin(X,n+1) =
∏

FS SubFin(X,n)×ElmFin(X,n+
1). The theorem is a consequence of (8), (6), and (7).

(10) If n < m, then (
∏

FinS SubFin(X,n+1))(n+1) = (
∏

FinS SubFin(X,n))(n)
×ElmFin(X,n+ 1). The theorem is a consequence of (9).

(11) Let us consider non zero natural numbers n, i, a non-empty, (n + 1)-
elements finite sequence X, and a family of σ-fields S of X. Suppose i ¬ n.
Then

∏
FS SubFin(X, i) =

∏
FS SubFin(SubFin(X,n), i). The theorem is

a consequence of (7).

(12) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, and a family of σ-fields S of X. Suppose
k ¬ n ¬ m. Then ElmFin(S, k) = ElmFin(SubFin(S, n), k).

(13) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, a non-empty, n-elements finite sequence Y,

and a family of σ-fields S of X. Suppose n ¬ m and Y = X�n. Then
SubFin(S, n) is a family of σ-fields of Y.
Proof: For every natural number i such that i ∈ Seg n holds
(SubFin(S, n))(i) is a σ-field of subsets of Y (i). �

(14) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, and a family of σ-fields S of X. Suppose
k ¬ n ¬ m. Then SubFin(S, k) = SubFin(SubFin(S, n), k).

(15) Let us consider a non zero natural number m, and a non-empty, m-
elements finite sequence X. Then there exists a function F from

∏
FSX

into
∏
X such that F is one-to-one and onto.

Proof: Define P[non zero natural number] ≡ for every non-empty, $1-
elements finite sequence X, there exists a function F from

∏
FSX into∏

X such that F is one-to-one and onto. P[1] by [13, (2)]. For every non
zero natural number n such that P[n] holds P[n+ 1]. For every non zero
natural number n, P[n]. �

(16) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family P of semialgebras of

∏
FinSX. Suppose

n ¬ m. Then P (n) is a semialgebra of sets of
∏

FS SubFin(X,n). The
theorem is a consequence of (4).

Let us consider non zero natural numbers m, n, k, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures M of
S. Now we state the propositions:

(17) If k ¬ n ¬ m, then ElmFin(M,k) = ElmFin(SubFin(M,n), k).

(18) If k ¬ n ¬ m, then SubFin(M,k) = SubFin(SubFin(M,n), k).
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2. Construction of m-dimensional Measure Space

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, and S be a family of σ-fields of X. The functor σFldFSProd(S) yielding
a family of σ-fields of

∏
FinSX is defined by

(Def. 11) it(1) = S(1) and for every non zero natural number i such that i < m

there exists a σ-field S3 of subsets of
∏

FS SubFin(X, i) such that S3 = it(i)
and it(i+ 1) = σ(MeasRect(S3,ElmFin(S, i+ 1))).

Now we state the proposition:

(19) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family of σ-fields S of X. Suppose n ¬ m. Then
(σFldFSProd(S))(n) is a σ-field of subsets of (

∏
FinSX)(n).

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, and S be a family of σ-fields of X. The functor

∏
Field S yielding

a σ-field of subsets of
∏

FSX is defined by the term

(Def. 12) (σFldFSProd(S))(m).

Now we state the propositions:

(20) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, and a family of σ-fields S of X. Suppose
k ¬ n ¬ m. Then (σFldFSProd(S))(k) = (σFldFSProd(SubFin(S, n)))(k).
Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ n, then (σFldFSProd(S))
($1) = (σFldFSProd(SubFin(S, n)))($1). For every natural number i such
that P[i] holds P[i+ 1]. For every natural number i, P[i]. �

(21) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, and a family of σ-fields S of X. Suppose n < m. Then∏

Field SubFin(S, n+ 1) = σ(MeasRect(
∏

Field SubFin(S, n),ElmFin(S, n+
1))). The theorem is a consequence of (8), (12), (7), and (20).

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, S be a family of σ-fields of X, and M be a family of σ-measures of S.
The functor σMesFSProd(M) yielding a family of σ-measures of σFldFSProd(S)
is defined by

(Def. 13) it(1) = M(1) and for every non zero natural number i such that i < m

there exists a σ-measure M3 on
∏

Field SubFin(S, i) such that M3 = it(i)
and it(i+ 1) = Prodσ -Meas(M3,ElmFin(M, i+ 1)).

Now we state the proposition:

(22) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures
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M of S. Suppose n ¬ m. Then (σMesFSProd(M))(n) is a σ-measure on∏
Field SubFin(S, n).
Proof: Set P1 = σMesFSProd(M). Define L[natural number] ≡ if 1 ¬
$1 ¬ m, then there exists a non zero natural number k such that k = $1 and
P1($1) is a σ-measure on

∏
Field SubFin(S, k). For every natural number i

such that L[i] holds L[i+ 1]. For every natural number n, L[n]. �

Let m be a non zero natural number, X be a non-empty, m-elements finite
sequence, S be a family of σ-fields of X, and M be a family of σ-measures of
S. The functor MeasureProd(M) yielding a σ-measure on

∏
Field S is defined by

the term

(Def. 14) (σMesFSProd(M))(m).

We say that M is σ-finite if and only if

(Def. 15) for every natural number i such that i ∈ Segm there exists a non empty
set X2 and there exists a σ-field S3 of subsets of X2 and there exists a σ-
measure M3 on S3 such that X2 = X(i) and S3 = S(i) and M3 = M(i)
and M3 is σ-finite.

Now we state the propositions:

(23) Let us consider non zero natural numbers m, n, k, a non-empty, m-
elements finite sequence X, a family of σ-fields S of X, and a family of σ-
measuresM of S. Suppose k ¬ n ¬ m. Then (σMesFSProd(SubFin(M,n)))
(k) = (σMesFSProd(SubFin(M,k)))(k). The theorem is a consequence of
(7), (14), (8), (12), and (17).

(24) Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures
M of S. Suppose n ¬ m. Then (σMesFSProd(M))(n) =
MeasureProd(SubFin(M,n)).
Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ m, then there exists a non
zero natural number k such that k = $1 and (σMesFSProd(M))($1) =
MeasureProd(SubFin(M,k)). For every natural number i such that P[i]
holds P[i+ 1]. For every natural number i, P[i]. �

(25) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, and a family of σ-
measuresM of S. Then MeasureProd(M) = Prodσ -Meas(MeasureProd(Sub
Fin(M,n)),ElmFin(M,n+ 1)). The theorem is a consequence of (24).

(26) Let us consider a non empty set X, a field S of subsets of X, a set
sequence E of S, and a natural number i. Then (the partial unions of
E)(i) ∈ S.
Proof: Define P[natural number] ≡ (the partial unions of E)($1) ∈ S.
For every natural number n such that P[n] holds P[n + 1]. For every
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natural number n, P[n]. �

(27) Let us consider non empty sets X, Y, a σ-field S1 of subsets of X, a σ-
field S2 of subsets of Y, a σ-measure M1 on S1, and a σ-measure M2 on
S2. Suppose M1 is σ-finite and M2 is σ-finite. Then ProdMeas(M1,M2) is
σ-finite.
Proof: Set M = ProdMeas(M1,M2). Consider E1 being a set sequence of
S1 such that for every natural number n,M1(E1(n)) < +∞ and

⋃
E1 = X.

Consider E2 being a set sequence of S2 such that for every natural number
n, M2(E2(n)) < +∞ and

⋃
E2 = Y. Set F1 = the partial unions of E1.

Set F2 = the partial unions of E2. Define G(natural number) = (F1($1)×
F2($1))(∈ σ(MeasRect(S1, S2))). Consider E being a function from N into
σ(MeasRect(S1, S2)) such that for every element i of N, E(i) = G(i).

For every natural number i, E(i) = F1(i) × F2(i). For every natural
number i, E(i) ∈ σ(MeasRect(S1, S2)). For every object z, z ∈

⋃
E iff

z ∈ X ×Y. Define Q[natural number] ≡ M1(F1($1)), M2(F2($1)) ∈ R. For
every natural number i such that Q[i] holds Q[i + 1]. For every natural
number i, Q[i]. For every natural number i, M(E(i)) < +∞. �

(28) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, and a family of σ-
measures M of S.Then MeasureProd(M)=ProdMeas(MeasureProd(SubFin
(M,n)),ElmFin(M,n+ 1)). The theorem is a consequence of (25).

(29) Let us consider a non zero natural number m, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures
M of S. Suppose M is σ-finite. Then MeasureProd(M) is σ-finite.
Proof: Define P[natural number] ≡ for every non zero natural number
n for every non-empty, n-elements finite sequence X for every family of
σ-fields S of X for every family of σ-measures M of S such that M is
σ-finite and $1 = n holds MeasureProd(M) is σ-finite. P[1]. For every non
zero natural number i such that P[i] holds P[i + 1]. For every non zero
natural number k, P[k]. �

Let us consider non zero natural numbers m, n, a non-empty, m-elements
finite sequence X, a family of σ-fields S of X, and a family of σ-measures M of
S. Now we state the propositions:

(30) If n ¬ m and M is σ-finite, then SubFin(M,n) is σ-finite.
Proof: Set X6 = SubFin(X,n). Set S6 = SubFin(S, n). Set M6 = SubFin
(M,n). For every natural number j such that j ∈ Seg n there exists a non
empty set X3 and there exists a σ-field S4 of subsets of X3 and there
exists a σ-measure M4 on S4 such that X3 = X6(j) and S4 = S6(j) and
M4 = M6(j) and M4 is σ-finite. �
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(31) If n ¬ m and M is σ-finite, then ElmFin(M,n) is σ-finite.

3. Integrability of Functions on (n+ 1)-dimensional Space

Now we state the propositions:

(32) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, and a partial function f from

∏
FSX to R. Suppose f

is integrable on MeasureProd(M). Then there exists a partial function g

from
∏

FS SubFin(X,n)× ElmFin(X,n+ 1) to R such that

(i) f = g, and

(ii) g is integrable on ProdMeas(MeasureProd(SubFin(M,n)),ElmFin(M,

n+ 1)), and

(iii)
∫
f d MeasureProd(M) =

∫
g d ProdMeas(MeasureProd(SubFin(M,n)),

ElmFin(M,n+ 1)).

The theorem is a consequence of (28), (6), and (21).

(33) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, and a partial

function g from
∏

FS SubFin(X,n)× ElmFin(X,n+ 1) to R.
SupposeM is σ-finite and f is integrable on MeasureProd(M) and f = g

and for every element y of ElmFin(X,n+1), (Integral1(MeasureProd(SubFin
(M,n)), |g|))(y) < +∞. Then

(i) for every element y of ElmFin(X,n+1), ProjPMap2(g, y) is integrable
on MeasureProd(SubFin(M,n)), and

(ii) for every element V of ElmFin(S, n+1), Integral1(MeasureProd(SubFin
(M,n)), g) is V -measurable, and

(iii) Integral1(MeasureProd(SubFin(M,n)), g) is integrable on ElmFin(M,

n+ 1), and

(iv)
∫
g d ProdMeas(MeasureProd(SubFin(M,n)),ElmFin(M,n+ 1)) =∫
Integral1(MeasureProd(SubFin(M,n)), g) d ElmFin(M,n+ 1), and

(v) Integral1(MeasureProd(SubFin(M,n)), g) ∈ theL1 functionsof ElmFin
(M,n+ 1).

Proof: There exists a partial function g0 from
∏

FS SubFin(X,n)×ElmFin
(X,n+1) to R such that f = g0 and g0 is integrable on ProdMeas(Measu-
reProd(SubFin(M,n)),ElmFin(M,n+1)) and

∫
f d MeasureProd(M) =

∫
g0
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d ProdMeas(MeasureProd(SubFin(M,n)),ElmFin(M,n+1)). For every na-
tural number j such that j ∈ Seg n there exists a non empty set X3 and
there exists a σ-field S4 of subsets of X3 and there exists a σ-measure m1

on S4 such that X3 = (SubFin(X,n))(j) and S4 = (SubFin(S, n))(j) and
m1 = (SubFin(M,n))(j) and m1 is σ-finite. MeasureProd(SubFin(M,n))
is σ-finite. �

Let n be a non zero natural number, X be a non-empty, (n + 1)-elements
finite sequence, f be a partial function from

∏
FSX to R, and x be an element

of
∏

FS SubFin(X,n). The functor ProjPMap1(f, x) yielding a partial function
from ElmFin(X,n+ 1) to R is defined by

(Def. 16) there exists a partial function g from
∏

FS SubFin(X,n)×ElmFin(X,n+
1) to R such that f = g and it = ProjPMap1(g, x).

Now we state the propositions:

(34) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, and a family of σ-
measuresM of S. Then

∏
Field S = σ(MeasRect(

∏
Field SubFin(S, n),Elm−

Fin(S, n+ 1))). The theorem is a consequence of (21).

(35) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, and a partial

function f3 from
∏

FS SubFin(X,n)× ElmFin(X,n+ 1) to R.
Suppose M is σ-finite and f = f3 and f is integrable on MeasureProd(M)

and for every element x of
∏

FS SubFin(X,n), (Integral2(ElmFin(M,n +
1), |f3|))(x) < +∞. Then

(i)
∫
fd MeasureProd(M) =

∫
f3 d ProdMeas(MeasureProd(SubFin(M,n)),

ElmFin(M,n+ 1)), and

(ii) for every element x of
∏

FS SubFin(X,n), ProjPMap1(f3, x) is inte-
grable on ElmFin(M,n+ 1), and

(iii) for every element U of
∏

Field SubFin(S, n), Integral2(ElmFin(M,n+
1), f3) is U -measurable, and

(iv) Integral2(ElmFin(M,n+1), f3) is integrable on MeasureProd(SubFin

(M,n)), and

(v)
∫
f3 d ProdMeas(MeasureProd(SubFin(M,n)),ElmFin(M,n + 1)) =∫
Integral2(ElmFin(M,n+ 1), f3) d MeasureProd(SubFin(M,n)), and

(vi) Integral2(ElmFin(M,n+1), f3) ∈ theL1 functions of MeasureProd(Sub-

Fin(M,n)).

The theorem is a consequence of (6), (28), (29), (30), (31), and (21).



190 noboru endou and yasunari shidama

(36) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, a partial function

f1 from
∏

FS SubFin(X,n)×ElmFin(X,n+1) to R, and a partial function
f2 from

∏
FS SubFin(X,n+1) to R. Suppose M is σ-finite and f = f1 and

f = f2 and f is integrable on MeasureProd(M) and for every element
x of

∏
FS SubFin(X,n), (Integral2(ElmFin(M,n + 1), |f1|))(x) < +∞.

Then
∫
f2 d MeasureProd(SubFin(M,n+ 1)) =

∫
Integral2(ElmFin(M,n+

1), f1) d MeasureProd(SubFin(M,n)). The theorem is a consequence of (35).

(37) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, an element E of∏

Field S, and a partial function g from
∏

FS SubFin(X,n)×ElmFin(X,n+
1) to R.

Suppose M is σ-finite and E = dom f and f is E-measurable and f =
g. Then g is integrable on ProdMeas(MeasureProd(SubFin(M,n)),ElmFin
(M,n+1)) iff

∫
Integral2(ElmFin(M,n+1), |g|) d MeasureProd(SubFin(M,

n)) < +∞. The theorem is a consequence of (6), (34), (30), (29), and (31).

Let n be a non zero natural number, X be a non-empty, (n + 1)-elements
finite sequence, S be a family of σ-fields of X, M be a family of σ-measures of
S, and f be a partial function from

∏
FSX to R. The functor IntegralFS(M,f)

yielding an (n+ 1)-elements finite sequence is defined by

(Def. 17) it(1) = f and for every natural number i such that 1 ¬ i < n+ 1 there
exists a non zero natural number k and there exists a partial function g

from
∏

FS SubFin(X, k)× ElmFin(X, k + 1) to R such that k = n+ 1− i
and g = it(i) and it(i+ 1) = Integral2(ElmFin(M,k + 1), g).

We say that f is sequentially integrable on M if and only if

(Def. 18) for every non zero natural number k such that k < n + 1 there exi-
sts a partial function G from

∏
FS SubFin(X, k + 1) to R and there exi-

sts a partial function H from
∏

FS SubFin(X, k) to R such that G =
(IntegralFS(M,f))(n+1−k)andH = (IntegralFS(SubFin(M,k+1), |G|))(2)
and for every element x of

∏
FS SubFin(X, k), H(x) < +∞.

Now we state the propositions:

(38) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, and a partial function f from

∏
FSX to R.

Suppose M is σ-finite and f is sequentially integrable on M and f is
integrable on MeasureProd(M). Let us consider a non zero natural num-
ber k. Suppose k < n + 1. Then there exists a partial function g from
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∏
FS SubFin(X, k + 1) to R such that

(i) g = (IntegralFS(M,f))(n+ 1− k), and

(ii) g is integrable on MeasureProd(SubFin(M,k + 1)).

Proof: Define P[natural number] ≡ if 1 ¬ $1 < n + 1, then there exi-
sts a non zero natural number j and there exists a partial function g

from
∏

FS SubFin(X, j + 1) to R such that j = n + 1 − $1 and g =
(IntegralFS(M,f))($1) and g is integrable on MeasureProd(SubFin(M, j +
1)). P[1]. For every non zero natural number k such that P[k] holds
P[k + 1]. For every non zero natural number k, P[k]. �

(39) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, a partial function f from

∏
FSX to R, and a partial

function g from
∏

FS SubFin(X,n)×ElmFin(X,n+1) to R. Suppose f = g.
Then

(i) (IntegralFS(M,f))(1) = f , and

(ii) (IntegralFS(M,f))(2) = Integral2(ElmFin(M,n+ 1), g).

(40) Let us consider a non zero natural number n, a non-empty, (n + 1)-
elements finite sequence X, a family of σ-fields S of X, a family of σ-
measures M of S, and a partial function f from

∏
FSX to R. Suppose M

is σ-finite and f is sequentially integrable on M and f is integrable on
MeasureProd(M). Let us consider a non zero natural number k.

Suppose k < n.Then there exists a partial function F5 from
∏

FS SubFin
(X, k) × ElmFin(X, k + 1) to R and there exists a partial function G2

from
∏

FS SubFin(X, k + 1) to R and there exists a function F4 from∏
FS SubFin(X, k) into R such thatG2 = F5 andG2 = (IntegralFS(M,f))(n

+1−k) and F4 = (IntegralFS(M,f))(n+1−(k−1)) and F4 = Integral2(Elm-
Fin(M,k+ 1), F5) and G2 is integrable on MeasureProd(SubFin(M,k+ 1))
and

∫
G2 d MeasureProd(SubFin(M,k+1)) =

∫
F5 d ProdMeas(MeasureProd

(SubFin(M,k)),ElmFin(M,k+1)) and for every element x of
∏

FS SubFin
(X, k), ProjPMap1(F5, x) is integrable on ElmFin(M,k + 1).

For every element U of
∏

Field SubFin(S, k), F4 is U -measurable and F4

is integrable on MeasureProd(SubFin(M,k)) and
∫
F5 d ProdMeas(Measu-

reProd(SubFin(M,k)),ElmFin(M,k+1)) =
∫
F4 d MeasureProd(SubFin(M,

k)) and F4 ∈ the L1 functions of MeasureProd(SubFin(M,k)) and∫
G2 d MeasureProd(SubFin(M,k+1))=

∫
F4 d MeasureProd(SubFin(M,k)).

The theorem is a consequence of (7), (8), (14), (12), (18), (17), (30),
(38), (9), (6), (39), (35), and (36).
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Summary. Surreal numbers, a fascinating mathematical concept intro-
duced by John Conway, have attracted considerable interest due to their unique
properties. In this article, we formalize the basic concept of surreal numbers close
to the original Conway’s convention in the field of combinatorial game theory.
We define surreal numbers with the pre-order in the Mizar system which satisfy
the following condition: x ¬ y iff Lx�{y} ∧ {x}�Ry.
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Introduction

The surreal numbers have been discovered by J. Conway and they are de-
scribed in the 0th part of his book [1]. Using a remarkably simple set of rules,
he showed that a rich algebraic structure, as totally ordered proper class that
form an ordered field could be constructed. However, his construction combi-
nes transfinite induction recursion [2] with properties of proper classes, and has
been challenged from a formal point of view. We have chosen to construct surre-
al numbers based on transfinite induction (for recent quite sophisticated use of
these second order statements, see [10] and [11]), in contrast to the formalisation
in other systems [7], [9].

Imitating the induction recursion in the Mizar system, and, at the same time,
to come as close as possible to the Conway convention with a non anti-symmetric
pre-order we have extracted an additional fundamental step. We introduce the
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functor of DayRα for a given ordinal α and relation R as well as the properties
of the pre-order on a set D which will play the role of the Dayα, independently.
Then we extract the crucial dependencies between Dayα and the pre-order to
remove parameters and finally define the concept of surreal numbers in the
Mizar system [6].

The formalization follows [1], [3], [4], [5] and is an independent approach to
that introduced by R. Nittka [8].

1. Construction of Games on α-Day

From now on α, α1, α2, β, β1, β2, γ, θ denote ordinal numbers, R, S denote
binary relations, and a, b, c, o, l, r denote objects. Let x be an object. We
introduce the notation Lx as a synonym of (x)1 and Rx as a synonym of (x)2.

Note that the functor Lx yields a set. Let us observe that the functor Rx

yields a set. Let us consider a and b. Let θ be a set. We say that a ¬θ b if and
only if

(Def. 1) 〈〈a, b〉〉 ∈ θ.
We introduce the notation b�θa as a synonym of a ¬θ b.
Let L, R be sets. We say that LθR if and only if

(Def. 2) if l ∈ L and r ∈ R, then l�θr.
We say that L�θR if and only if

(Def. 3) if l ∈ L and r ∈ R, then not l�θr.
Let us consider α. The functor Games(α) yielding a set is defined by

(Def. 4) there exists a transfinite sequence L such that it = L(α) and domL =
succα and for every θ such that θ ∈ succα holds L(θ) = 2

⋃
rng(L�θ) ×

2
⋃

rng(L�θ).

Let us note that Games(α) is non empty and relation-like. Now we state the
propositions:

(1) If α ⊆ β, then Games(α) ⊆ Games(β).
Proof: Consider L1 being a transfinite sequence such that Games(α) =
L1(α) and domL1 = succα and for every ordinal number θ such that θ ∈
succα holds L1(θ) = 2

⋃
rng(L1�θ)×2

⋃
rng(L1�θ). Consider L2 being a trans-

finite sequence such that Games(β) = L2(β) and domL2 = succβ and for
every ordinal number θ such that θ ∈ succβ holds L2(θ) = 2

⋃
rng(L2�θ) ×

2
⋃

rng(L2�θ).
Define P[ordinal number] ≡ if $1 ⊆ α, then L1($1) = L2($1). For every

ordinal number δ such that for every ordinal number γ such that γ ∈ δ
holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. rng(L1�α) ⊆
rng(L2�β). �
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(2) Games(0) = {〈〈∅, ∅〉〉}.
(3) Let us consider a transfinite sequence L, and θ. Suppose domL = succ θ

and for every α such that α ∈ succ θ holds L(α) = 2
⋃

rng(L�α)×2
⋃

rng(L�α).
If α ∈ succ θ, then L(α) = Games(α).
Proof: Consider L0 being a transfinite sequence such that Games(θ) =
L0(θ) and domL0 = succ θ and for every ordinal number α such that
α ∈ succ θ holds L0(α) = 2

⋃
rng(L0�α) × 2

⋃
rng(L0�α). Define P[ordinal

number] ≡ if $1 ⊆ θ, then L0($1) = L($1).
For every ordinal number α such that for every ordinal number γ such

that γ ∈ α holds P[γ] holds P[α]. For every ordinal number α, P[α]. �

(4) o ∈ Games(θ) if and only if o is pair and for every a such that a ∈ Lo ∪Ro

there exists α such that α ∈ θ and a ∈ Games(α).
Proof: Consider L being a transfinite sequence such that Games(θ) =
L(θ) and domL = succ θ and for every α such that α ∈ succ θ holds
L(α) = 2

⋃
rng(L�α) × 2

⋃
rng(L�α). If o ∈ Games(θ), then o is pair and for

every object x such that x ∈ Lo ∪Ro there exists an ordinal number β
such that β ∈ θ and x ∈ Games(β). Lo ∪Ro ⊆

⋃
rng(L�θ). �

Let us consider α. The functor BeforeGames(α) yielding a subset of Games(α)
is defined by

(Def. 5) a ∈ it iff there exists θ such that θ ∈ α and a ∈ Games(θ).

Now we state the proposition:

(5) If α ⊆ β, then BeforeGames(α) ⊆ BeforeGames(β).

Let us consider θ and R. The functor DayRθ yielding a subset of Games(θ)
is defined by

(Def. 6) there exists a transfinite sequence L such that it = L(θ) and domL =
succ θ and for every α such that α ∈ succ θ holds L(α) = {x, where x is
an element of Games(α) : Lx ⊆

⋃
rng(L�α) and Rx ⊆

⋃
rng(L�α) and

Lx�R Rx}.

2. Construction of Preorder on the α-Day

Let us consider R. We say that R is almost No order if and only if

(Def. 7) there exists θ such that R ⊆ DayRθ ×DayRθ.

Now we state the propositions:

(6) Let us consider a transfinite sequence L. Suppose domL = succ θ and
for every α such that α ∈ succ θ holds L(α) = {x, where x is an element
of Games(α) : Lx ⊆

⋃
rng(L�α) and Rx ⊆

⋃
rng(L�α) and Lx�R Rx}.

If α ∈ succ θ, then L(α) = DayRα.
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Proof: Consider L0 being a transfinite sequence such that DayRδ =
L0(δ) and domL0 = succ δ and for every ordinal number α such that
α ∈ succ δ holds L0(α) = {x, where x is an element of Games(α) : Lx ⊆⋃

rng(L0�α) and Rx ⊆
⋃

rng(L0�α) and Lx�R Rx}.
Define P[ordinal number] ≡ if $1 ⊆ δ, then L0($1) = L($1). For every

ordinal number α such that for every ordinal number γ such that γ ∈ α
holds P[γ] holds P[α]. For every α, P[α]. �

(7) Let us consider an element x of Games(θ). Then x ∈ DayRθ if and only
if Lx�R Rx and for every o such that o ∈ Lx ∪Rx there exists α such that
α ∈ θ and o ∈ DayRα.
Proof: Consider L being a transfinite sequence such that DayRθ = L(θ)
and domL = succ θ and for every α such that α ∈ succ θ holds L(α) =
{x, where x is an element of Games(α) : Lx ⊆

⋃
rng(L�α) and Rx ⊆⋃

rng(L�α) and Lx�R Rx}. If α ∈ DayRθ, then Lα�R Rα and for every
object x such that x ∈ Lα ∪Rα there exists an ordinal number β such that
β ∈ θ and x ∈ DayRβ. Lα ∪Rα ⊆

⋃
rng(L�θ). �

(8) DayR0 = Games(0). The theorem is a consequence of (2) and (7).

(9) If α ⊆ β, then DayRα ⊆ DayRβ. The theorem is a consequence of (7)
and (1).

Let us consider R and α. Let us note that DayRα is non empty. Now we
state the proposition:

(10) Suppose β ⊆ α and R ∩ (BeforeGames(α) × BeforeGames(α)) = S ∩
(BeforeGames(α)×BeforeGames(α)). Then DayRβ = DaySβ. The theorem
is a consequence of (5).

Let us consider R and o. Assume there exists θ such that o ∈ DayRθ. The
functor bornRo yielding an ordinal number is defined by

(Def. 8) o ∈ DayRit and for every θ such that o ∈ DayRθ holds it ⊆ θ.
Now we state the propositions:

(11) SupposeR∩(BeforeGames(α)×BeforeGames(α)) = S∩(BeforeGames(α)
×BeforeGames(α)). If a ∈ DayRα, then bornRa = bornSa. The theorem
is a consequence of (10).

(12) If o ∈ Games(θ) and o /∈ DayRθ, then o /∈ DayRα.
Proof: Define P[ordinal number] ≡ for every object x for every ordinal
number θ such that x ∈ (Games(θ))\(DayRθ) holds x /∈ DayR$1. For every
ordinal number δ such that for every ordinal number γ such that γ ∈ δ
holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. �

Let us consider R, α, and β. The functor OpenProdR(α, β) yielding a binary
relation on DayRα is defined by
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(Def. 9) for every elements x, y of DayRα, 〈〈x, y〉〉 ∈ it iff bornRx, bornRy ∈ α or
bornRx = α and bornRy ∈ β or bornRx ∈ β and bornRy = α.

The functor ClosedProdR(α, β) yielding a binary relation on DayRα is defi-
ned by

(Def. 10) for every elements x, y of DayRα, 〈〈x, y〉〉 ∈ it iff bornRx, bornRy ∈ α or
bornRx = α and bornRy ⊆ β or bornRx ⊆ β and bornRy = α.

Now we state the propositions:

(13) Suppose α1 ∈ α2 or α1 = α2 and β1 ⊆ β2. Then OpenProdR(α1, β1) ⊆
OpenProdR(α2, β2). The theorem is a consequence of (9).

(14) SupposeR∩(BeforeGames(α)×BeforeGames(α)) = S∩(BeforeGames(α)
×BeforeGames(α)). Then OpenProdR(α, β) = OpenProdS(α, β).
Proof: DayRα = DaySα. If 〈〈x, y〉〉 ∈ OpenProdR(α, β), then 〈〈x, y〉〉 ∈
OpenProdS(α, β). bornRx = bornSx and bornRy = bornSy. �

(15) SupposeR∩(BeforeGames(α)×BeforeGames(α)) = S∩(BeforeGames(α)
×BeforeGames(α)). Then ClosedProdR(α, β) = ClosedProdS(α, β).
Proof: DayRα = DaySα. If 〈〈x, y〉〉 ∈ ClosedProdR(α, β), then 〈〈x, y〉〉 ∈
ClosedProdS(α, β). bornRx = bornSx and bornRy = bornSy. �

(16) OpenProdR(α, β) ⊆ ClosedProdR(α, β).

(17) Suppose α1 ∈ α2 or α1 = α2 and β1 ⊆ β2. Then ClosedProdR(α1, β1) ⊆
ClosedProdR(α2, β2). The theorem is a consequence of (9).

(18) If β ∈ γ, then ClosedProdR(α, β) ⊆ OpenProdR(α, γ).

(19) If α ∈ β, then ClosedProdR(α, β) ⊆ OpenProdR(α, β).

Let X, R be sets. We say that R preserves No comparison on X if and only
if

(Def. 11) for every objects a, b such that 〈〈a, b〉〉 ∈ X holds a ¬R b iff La�R{b}
and {a}�R Rb.

Now we state the propositions:

(20) Suppose R is almost No order and S is almost No order and R ∩
OpenProdR(α, β) = S ∩OpenProdS(α, β). Then R ∩ (BeforeGames(α)×
BeforeGames(α)) = S ∩ (BeforeGames(α)× BeforeGames(α)).
Proof: Consider R0 being an ordinal number such that R ⊆ DayRR0 ×
DayRR0. Consider S0 being an ordinal number such that S ⊆ DaySS0 ×
DaySS0. If 〈〈y, z〉〉 ∈ R ∩ (BeforeGames(α) × BeforeGames(α)), then 〈〈y,
z〉〉 ∈ S ∩ (BeforeGames(α)× BeforeGames(α)).

Consider A4 being an ordinal number such that A4 ∈ α and y ∈
Games(A4). Consider A5 being an ordinal number such that A5 ∈ α and
z ∈ Games(A5). DaySA4 ⊆ DaySα and DaySA5 ⊆ DaySα. y ∈ DaySA4

and z ∈ DaySA5. �
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(21) Suppose R is almost No order and S is almost No order and R ∩
OpenProdR(α, β) = S∩OpenProdS(α, β) and R preserves No comparison
on ClosedProdR(α, β) and S preserves No comparison on ClosedProdS(α,
β). Then R ∩ ClosedProdR(α, β) = S ∩ ClosedProdS(α, β). The theorem
is a consequence of (16) and (19).

(22) Suppose R is almost No order and S is almost No order and R ∩
OpenProdR(α, 0) = S∩OpenProdS(α, 0) and R preserves No comparison
on ClosedProdR(α, β) and S preserves No comparison on ClosedProdS(α,
β). Then R ∩ ClosedProdR(α, β) = S ∩ ClosedProdS(α, β).
Proof: Define P[ordinal number] ≡ if $1 ⊆ β, thenR∩ClosedProdR(α, $1)
= S ∩ ClosedProdS(α, $1). R ∩ (BeforeGames(α) × BeforeGames(α)) =
S∩(BeforeGames(α)×BeforeGames(α)). For every ordinal number δ such
that for every ordinal number γ such that γ ∈ δ holds P[γ] holds P[δ]. For
every ordinal number δ, P[δ]. �

(23) Suppose R is almost No order and S is almost No order and R preserves
No comparison on ClosedProdR(α, β) and S preserves No comparison on
ClosedProdS(α, β). Then R∩ClosedProdR(α, β) = S∩ClosedProdS(α, β).
Proof: Define P[ordinal number] ≡ if $1 ∈ α, thenR∩ClosedProdR($1, $1)
= S ∩ClosedProdS($1, $1). For every ordinal number δ such that for eve-
ry ordinal number γ such that γ ∈ δ holds P[γ] holds P[δ]. For every
ordinal number δ, P[δ]. R ∩ OpenProdR(α, 0) ⊆ S ∩ OpenProdS(α, 0).
S ∩OpenProdS(α, 0) ⊆ R ∩OpenProdR(α, 0). �

(24) Let us consider transfinite sequences L3, L4. Suppose domL3 = domL4

and for every α such that α ∈ domL3 holds there exist ordinal numbers a,
b and there exists a binary relation R such that R = L4(α) and L3(α) =
ClosedProdR(a, b) and L4(α) is a binary relation and for every binary
relation R such that R = L4(α) holds R preserves No comparison on
L3(α) and R ⊆ L3(α). Then

(i)
⋃

rngL4 is a binary relation, and

(ii) for every R such that R =
⋃

rngL4 holds R preserves No comparison
on
⋃

rngL3 and R ⊆
⋃

rngL3 and for every ordinal numbers α, a, b
and for every S such that α ∈ domL3 and S = L4(α) and L3(α) =
ClosedProdS(a, b) holds R ∩ (BeforeGames(a)× BeforeGames(a)) =
S ∩ (BeforeGames(a)× BeforeGames(a)).

Proof:
⋃

rngL4 is relation-like. R ⊆
⋃

rngL3. R preserves No com-
parison on

⋃
rngL3. R ∩ (BeforeGames(a) × BeforeGames(a)) ⊆ S ∩

(BeforeGames(a)×BeforeGames(a)). S∩(BeforeGames(a)×BeforeGames
(a)) ⊆ R ∩ (BeforeGames(a)× BeforeGames(a)). �
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(25) 〈〈a, b〉〉 ∈ (ClosedProdR(α, β)) \ (OpenProdR(α, β)) if and only if a, b ∈
DayRα and (bornRa = α and bornRb = β or bornRa = β and bornRb = α).
Proof: If 〈〈a, b〉〉 ∈ (ClosedProdR(α, β)) \ (OpenProdR(α, β)), then a, b ∈
DayRα and (bornRa = α and bornRb = β or bornRa = β and bornRb = α).
〈〈a, b〉〉 /∈ OpenProdR(α, β). �

(26) Suppose R preserves No comparison on OpenProdR(α, β) and R ⊆
OpenProdR(α, β). Then there exists S such that

(i) R ⊆ S, and

(ii) S preserves No comparison on ClosedProdS(α, β), and

(iii) S ⊆ ClosedProdS(α, β).

Proof: Set C1 = {〈〈x, y〉〉, where x, y are elements of DayRα : (bornRx =
β and bornRy = α or bornRx = α and bornRy = β) and Lx�R{y} and
{x}�R Ry}. C1 is relation-like. Reconsider R1 = R ∪ C1 as a binary rela-
tion. R1∩ (BeforeGames(α)×BeforeGames(α)) ⊆ R∩ (BeforeGames(α)×
BeforeGames(α)). R1 ⊆ ClosedProdR(α, β). R1 preserves No comparison
on ClosedProdR(α, β). �

(27) Suppose there exists R such that R preserves No comparison on OpenPr-
odR(α, ∅) and R ⊆ OpenProdR(α, ∅). Then there exists S such that

(i) S preserves No comparison on ClosedProdS(α, β), and

(ii) S ⊆ ClosedProdS(α, β).

Proof: Define P[ordinal number] ≡ there exists a binary relation R

such that R preserves No comparison on ClosedProdR(α, $1) and R ⊆
ClosedProdR(α, $1). For every ordinal number δ such that for every or-
dinal number γ such that γ ∈ δ holds P[γ] holds P[δ]. For every ordinal
number δ, P[δ]. �

(28) There exists R such that

(i) R preserves No comparison on ClosedProdR(α, β), and

(ii) R ⊆ ClosedProdR(α, β).

Proof: Define P[ordinal number] ≡ for every ordinal number β, the-
re exists a binary relation R such that R preserves No comparison on
ClosedProdR($1, β) and R ⊆ ClosedProdR($1, β). For every ordinal num-
ber δ such that for every ordinal number γ such that γ ∈ δ holds P[γ]
holds P[δ]. For every ordinal number δ, P[δ]. �

(29) If α ∈ β, then ClosedProdR(α, α) = OpenProdR(α, β).
Proof: ClosedProdR(α, α) ⊆ ClosedProdR(α, β). ClosedProdR(α, β) ⊆
ClosedProdR(α, α). ClosedProdR(α, β) ⊆ OpenProdR(α, β). OpenProdR
(α, β) ⊆ ClosedProdR(α, β). �
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(30) If α ⊆ β, then ClosedProdR(α, α) ⊆ ClosedProdR(β, β). The theorem is
a consequence of (17).

3. The Preorder on the α-Day

Let us consider α. The functor NoOrdα yielding a binary relation is defined
by

(Def. 12) it preserves No comparison on Dayitα×Dayitα and it ⊆ Dayitα×Dayitα.

Note that NoOrdα is almost No order. The functor Dayα yielding a non
empty subset of Games(α) is defined by the term

(Def. 13) DayNoOrdαα.

4. Surreal Number as a Special Type of Abstract Game

Let us consider o. We say that o is surreal if and only if

(Def. 14) there exists α such that o ∈ Dayα.

Let us note that 〈〈∅, ∅〉〉 is surreal and there exists a set which is surreal. Let
α be an ordinal number. Note that every element of Dayα is surreal. A surreal
number is a surreal set. In the sequel x, y, z, t, r, l denote surreal numbers and
X, Y, Z denote sets.

The functor 0No yielding a surreal number is defined by the term

(Def. 15) 〈〈∅, ∅〉〉.
Note that every surreal number is pair and every set which is surreal is also

non empty.

Let X be a set. We say that X is surreal-membered if and only if

(Def. 16) if o ∈ X, then o is surreal.

One can check that there exists a set which is surreal-membered. Let us
consider x. Observe that {x} is surreal-membered and Lx is surreal-membered
as a set and Rx is surreal-membered as a set. Let X, Y be surreal-membered sets.
One can check that X ∪ Y is surreal-membered and X \ Y is surreal-membered
and X ∩ Y is surreal-membered and there exists a set which is non empty and
surreal-membered.
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5. The Preorder of Surreal Numbers

Let us consider x and y. We say that x ¬ y if and only if

(Def. 17) there exists α such that x ¬NoOrdα y.

Now we state the propositions:

(31) Let us consider ordinal numbers α, β, X. Suppose X ⊆ α and X ⊆
β. Then NoOrdα ∩ (BeforeGames(X) × BeforeGames(X)) = NoOrdβ ∩
(BeforeGames(X) × BeforeGames(X)). The theorem is a consequence of
(17), (23), (29), and (20).

(32) Suppose α ⊆ β.Then ClosedProdNoOrdα(α, α) = ClosedProdNoOrdβ(α, α).
The theorem is a consequence of (31) and (15).

(33) 〈〈a, b〉〉 ∈ ClosedProdNoOrdα(α, α) if and only if a, b ∈ Dayα.

(34) Suppose α ⊆ β. Then NoOrdα = NoOrdβ∩ClosedProdNoOrdβ(α, α). The
theorem is a consequence of (30) and (23).

(35) If α ⊆ β, then Dayα ⊆ Dayβ. The theorem is a consequence of (31),
(10), and (9).

(36) If o ∈ DayNoOrdαβ and β ⊆ α, then o ∈ Dayβ. The theorem is a conse-
quence of (31) and (10).

Let us consider x. The functor bornx yielding an ordinal number is defined
by

(Def. 18) x ∈ Dayit and for every θ such that x ∈ Dayθ holds it ⊆ θ.
Now we state the propositions:

(37) bornx = ∅ if and only if x = 0No. The theorem is a consequence of (2)
and (8).

(38) If x ∈ Dayα, then bornx = bornNoOrdαx. The theorem is a consequence
of (36), (31), and (11).

(39) If a ¬NoOrdα b and a, b ∈ Dayβ, then a ¬NoOrdβ b. The theorem is
a consequence of (33), (32), (34), (30), and (23).

(40) x ¬ y if and only if for every α such that x, y ∈ Dayα holds x ¬NoOrdα y.
The theorem is a consequence of (39) and (35).

Let L, R be sets. We say that L � R if and only if

(Def. 19) for every l and r such that l ∈ L and r ∈ R holds r ¬ l.
Let R, L be sets. We introduce the notation L � R as a synonym of R � L.
Let L, R be sets. We say that L� R if and only if

(Def. 20) for every l and r such that l ∈ L and r ∈ R holds r 6¬ l.
We introduce the notation R � L as a synonym of L � R. Now we state

the propositions:
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(41) Let us consider sets X1, X2, Y. If X1 � Y and X2 � Y, then X1∪X2 �
Y.

(42) Let us consider sets X, Y1, Y2. If X � Y1 and X � Y2, then X � Y1∪Y2.

(43) x ¬ y if and only if Lx � {y} and {x} � Ry.
Proof: Consider A3 being an ordinal number such that x ∈ DayA3.
Consider A4 being an ordinal number such that y ∈ DayA4. Set α =
A3 ∪A4. DayA3 ⊆ Dayα and DayA4 ⊆ Dayα. Set S = NoOrdα. If x ¬ y,
then Lx � {y} and {x} � Ry. 〈〈x, y〉〉 ∈ ClosedProdS(α, α). Lx�S{y}.
{x}�S Ry. �

(44) Let us consider sets X1, X2, Y1, Y2. Suppose for every x such that x ∈ X1

there exists y such that y ∈ X2 and x ¬ y and for every x such that x ∈ Y2

there exists y such that y ∈ Y1 and y ¬ x and x = 〈〈X1, Y1〉〉 and y = 〈〈X2,

Y2〉〉. Then x ¬ y. The theorem is a consequence of (43).

(45) Lx � Rx. The theorem is a consequence of (7), (35), (36), and (40).

(46) Let us consider sets X, Y, and α. Then 〈〈X, Y 〉〉 ∈ Dayα if and only if
X � Y and for every object o such that o ∈ X ∪ Y there exists θ such
that θ ∈ α and o ∈ Dayθ. The theorem is a consequence of (45), (7), (36),
(4), (33), (31), and (10).

(47) Suppose X is surreal-membered. Then there exists an ordinal number
M such that for every o such that o ∈ X there exists an ordinal number
α such that α ∈M and o ∈ Dayα.
Proof: Define P[object, object] ≡ $1 is a surreal number and for every
surreal number z such that z = $1 holds $2 = born z. For every objects
x, y, z such that P[x, y] and P[x, z] holds y = z. Consider O2 being a set
such that for every object z, z ∈ O2 iff there exists an object y such that
y ∈ X and P[y, z]. For every set x such that x ∈ O2 holds x is ordinal. �
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Summary. In this article, we develop our formalised concept of Conway
numbers as outlined in [9]. We focus mainly pre-order properties, birthday ari-
thmetic contained in the Chapter 1, Properties of Order and Equality of John
Conway’s seminal book. We also propose a method for the selection of class repre-
sentatives respecting the relation defined by the pre-ordering in order to facilitate
combining the results obtained for the original and tree-theoretic definitions of
Conway numbers.
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Introduction

We present a formal analysis of the contents of Chapter 1, Properties of
Order and Equality of John Conway’s seminal book. This section focuses on the
pre-order structure of Conway numbers.

Then, using the developed concept of Conway numbers, we thoroughly ana-
lyse the properties of surreal birthday arithmetic. We prove the The Simplicity
Theorem (see Theorem 11 on p. 23 [3]) which can be expressed informally as
follows when x is given as a number, it is always the simplest number lying
between the Lx and the Rx, where simplest means earliest created. It also makes
it easier to manipulate birthday numbers in the context of pre-ordering surreal
numbers.
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In the final part, we select the representatives of the equivalence classes that
are defined by the relation equivalence relation ≈ on surreal numbers such that
x ≈ y iff x ¬ y and y ¬ x. Representatives have a minimum-birthday as well as
minimal-birthday as well as the left and right components of each representative
having the smallest cardinality and such representatives as members.

The formalisation is mainly based on [3, 4, 5, 6], but also uses selected ideas
proposed in [1, 2, 10].

1. Preorder of Surreal Numbers

From now on α, β, γ, θ denote ordinal numbers, X denotes a set, o denotes
an object, and x, y, z, t, r, l denote surreal numbers.

The functor 1No yielding a surreal number is defined by the term

(Def. 1) 〈〈{0No}, ∅〉〉.
Now we state the propositions:

(1) If y ∈ Lx ∪Rx, then born y ∈ bornx.

(2) Lx 6= {x} 6= Rx. The theorem is a consequence of (1).

(3) Preorder of Surreal Numbers – Reflexivity, Conway Ch. 1
Th. 0(iii):
x ¬ x.
Proof: Define P[ordinal number] ≡ for every surreal number x such that
x ∈ Day$1 holds x ¬ x. For every ordinal number δ such that for every
ordinal number γ such that γ ∈ δ holds P[γ] holds P[δ]. For every ordinal
number δ, P[δ]. �

(4) Preorder of Surreal Numbers – Transitivity, Conway Ch. 1
Th. 1:
If x ¬ y ¬ z, then x ¬ z.
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y, z such
that x ¬ y ¬ z and (bornx⊕ born y)⊕ born z ⊆ $1 holds x ¬ z. For every
ordinal number δ such that for every ordinal number γ such that γ ∈ δ
holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. �

(5) Lx � {x} � Rx.
Proof: Define P[ordinal number] ≡ for every surreal number x such that
bornx ⊆ $1 holds Lx � {x} � Rx. For every ordinal number δ such that
for every ordinal number γ such that γ ∈ δ holds P[γ] holds P[δ]. For
every ordinal number δ, P[δ]. �

(6) Preorder of Surreal Numbers – Total, Conway Ch. 1 Th. 2(ii):
If y 6¬ x, then x ¬ y. The theorem is a consequence of (5) and (4).
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(7) If α is finite, then Dayα is finite.
Proof: Define P[natural number] ≡ Day$1 is finite. For every natural
number n such that P[n] holds P[n + 1]. For every natural number n,
P[n]. �

(8) If bornx is finite, then Lx is finite and Rx is finite.
Proof: Daybornx is finite. Lx ∪Rx ⊆ Daybornx. �

Let us consider x and y. Let us note that the predicate x ¬ y is reflexive
and connected. We introduce the notation y  x as a synonym of x ¬ y.

2. Equivalence Relation of Preorder

Let us consider x and y. We say that x ≈ y if and only if

(Def. 2) x ¬ y ¬ x.

Note that the predicate is reflexive and symmetric. Now we state the proposi-
tions:

(9) If x ¬ y < z, then x < z.

(10) If x ≈ y and y ≈ z, then x ≈ z.
(11) Conway Ch. 1 Th. 2(i):

Lx � {x} � Rx.
Proof: Lx � {x}. �

(12) Let us consider a non empty, surreal-membered set S. Suppose S is finite.
Then there exist surreal numbers M3, M2 such that

(i) M3, M2 ∈ S, and

(ii) for every x such that x ∈ S holds M3 ¬ x ¬M2.

Proof: Define P[natural number] ≡ for every non empty, surreal-membe-
red set S such that $1 = S there exist surreal numbers M3, M2 such that
M3, M2 ∈ S and for every x such that x ∈ S holds M3 ¬ x ¬ M2. For
every natural number n such that P[n] holds P[n + 1] by [8, (55)]. For
every natural number n, P[n]. �

(13) Suppose x < y. Then

(i) there exists a surreal number x2 such that x2 ∈ Rx and x < x2 ¬ y,
or

(ii) there exists a surreal number y3 such that y3 ∈ Ly and x ¬ y3 < y.

The theorem is a consequence of (11).

(14) Suppose Ly � {x} � Ry. Then 〈〈Lx ∪Ly, Rx ∪Ry 〉〉 is a surreal number.
Proof: Consider α being an ordinal number such that x ∈ Dayα. Consider
β being an ordinal number such that y ∈ Dayβ. Set X = Lx ∪Ly. Set
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Y = Rx ∪Ry. X � Y. For every object x such that x ∈ X ∪Y there exists
an ordinal number θ such that θ ∈ α ∪ β and x ∈ Dayθ. �

(15) Suppose Ly � {x} � Ry and z = 〈〈Lx ∪Ly, Rx ∪Ry 〉〉. Then x ≈ z. The
theorem is a consequence of (11).

Now we state the propositions:

(16) The Simplicity Theorem for Surreal Numbers:
Suppose Ly � {x} � Ry and for every z such that Ly � {z} � Ry holds
bornx ⊆ born z. Then x ≈ y.
Proof: Set X = Lx ∪Ly. Set Y = Rx ∪Ry. Reconsider z = 〈〈X, Y 〉〉 as
a surreal number. Lx � {x} � Rx. Ly � {y} � Ry. Lz � {z} � Rz.
Lx � {z}. {x} � Rz. Ly � {z}. x ≈ z. {y} � Rz. {z} � Ry. Lz � {y}.
�

(17) If X � {x} and x ¬ y, then X � {y}. The theorem is a consequence of
(4).

(18) If {x} � X and y ¬ x, then {y} � X. The theorem is a consequence of
(4).

(19) If x ≈ y, then 〈〈Lx ∪Ly, Rx ∪Ry 〉〉 is a surreal number. The theorem is
a consequence of (11), (17), (18), and (14).

(20) If x ≈ y and z = 〈〈Lx ∪Ly, Rx ∪Ry 〉〉, then x ≈ z. The theorem is
a consequence of (11), (17), (18), and (15).

(21) {x} � {y} if and only if x < y.

(22) 〈〈{x}, {y}〉〉 is a surreal number if and only if x < y. The theorem is
a consequence of (21).

(23) Let us consider a surreal number M2. Suppose for every y such that
y ∈ Lx holds y ¬M2 and M2 ∈ Lx. Then

(i) 〈〈{M2}, Rx 〉〉 is a surreal number, and

(ii) for every y such that y = 〈〈{M2}, Rx 〉〉 holds y ≈ x and born y ⊆
bornx.

Proof: {M2} � Rx. For every object o such that o ∈ {M2} ∪ Rx there
exists θ such that θ ∈ bornx and o ∈ Dayθ. For every surreal number
x1 such that x1 ∈ Lx there exists a surreal number y1 such that y1 ∈ Ly
and x1 ¬ y1. For every surreal number x1 such that x1 ∈ Ly there exists
a surreal number y1 such that y1 ∈ Lx and x1 ¬ y1. �

(24) Let us consider a surreal number M3. Suppose for every y such that
y ∈ Rx holds M3 ¬ y and M3 ∈ Rx. Then

(i) 〈〈Lx, {M3}〉〉 is a surreal number, and
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(ii) for every y such that y = 〈〈Lx, {M3}〉〉 holds y ≈ x and born y ⊆
bornx.

Proof: Lx � {M3}. For every object o such that o ∈ Lx ∪{M3} there
exists θ such that θ ∈ bornx and o ∈ Dayθ. For every surreal number x1

such that x1 ∈ Ry there exists a surreal number y1 such that y1 ∈ Rx

and y1 ¬ x1. For every surreal number x1 such that x1 ∈ Rx there exists
a surreal number y1 such that y1 ∈ Ry and y1 ¬ x1. �

(25) If x ¬ y and z = 〈〈{x, y}, X〉〉 and t = 〈〈{y}, X〉〉, then z ≈ t. The theorem
is a consequence of (23).

(26) If z = 〈〈{x, y}, X〉〉, then 〈〈{x}, X〉〉 is a surreal number.
Proof: Set b = born z. {x} � X. For every object o such that o ∈ {x}∪X
there exists θ such that θ ∈ b and o ∈ Dayθ. �

(27) If x ¬ y and z = 〈〈X, {x, y}〉〉 and t = 〈〈X, {x}〉〉, then z ≈ t. The theorem
is a consequence of (24).

(28) If z = 〈〈X, {x, y}〉〉, then 〈〈X, {x}〉〉 is a surreal number.
Proof: Set b = born z. X � {x}. For every object o such that o ∈ X∪{x}
there exists θ such that θ ∈ b and o ∈ Dayθ. �

Let X, Y be sets. We say that X l Y if and only if

(Def. 3) for every surreal number x such that x ∈ X there exist surreal numbers
y1, y2 such that y1, y2 ∈ Y and y1 ¬ x ¬ y2.

One can verify that the predicate is reflexive.
We say that X ↔ Y if and only if

(Def. 4) X l Y and Y lX.

One can verify that the predicate is reflexive and symmetric.
Now we state the propositions:

(29) Let us consider sets X1, X2, Y1, Y2. Suppose X1 ↔ X2 and Y1 ↔ Y2 and
x = 〈〈X1, Y1〉〉 and y = 〈〈X2, Y2〉〉. Then x ≈ y.

(30) Let us consider sets X, Y. If X ⊆ Y, then X l Y.

(31) Let us consider sets X1, X2, Y1, Y2. If X1 lX2 and Y1 l Y2, then X1 ∪
Y1 lX2 ∪ Y2.

(32) If x ≈ y, then {x}l {y}.
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3. Representative of Equivalence Class With a Unique Set of
Properties

Let x be a surreal number. The functor born≈x yielding an ordinal number
is defined by

(Def. 5) there exists a surreal number y such that born y = it and y ≈ x and for
every surreal number y such that y ≈ x holds it ⊆ born y.

The functor Born≈x yielding a surreal-membered set is defined by

(Def. 6) y ∈ it iff y ≈ x and y ∈ Dayborn≈x.

One can check that Born≈x is non empty. Let α be a non empty, surreal-
membered set. We say that x is α-smallest if and only if

(Def. 7) x ∈ α and for every y such that y ∈ α and y ≈ x holds Lx ⊕ Rx ⊆
Ly ⊕ Ry .

Observe that there exists a surreal number which is α-smallest. Now we state
the propositions:

(33) If x ≈ y, then born≈x = born≈y. The theorem is a consequence of (4).

(34) If x ≈ y, then Born≈x = Born≈y.

(35) If y ∈ Born≈x, then born y = born≈y = born≈x. The theorem is a con-
sequence of (33).

(36) 〈〈∅, Dayα〉〉, 〈〈Dayα, ∅〉〉 ∈ (Daysuccα) \ (Dayα). The theorem is a conse-
quence of (11).

From now on n denotes a natural number. Let α be a set. The functor made
of α yielding a surreal-membered set is defined by

(Def. 8) o ∈ it iff o is surreal and Lo ∪Ro ⊆ α.

Let α be an ordinal number. The functor uniqueNoop(α) yielding a transfi-
nite sequence is defined by

(Def. 9) dom it = succα and for every ordinal number β such that β ∈ succα
holds it(β) ⊆ Dayβ and for every x, x ∈ it(β) iff x ∈

⋃
rng(it�β) or

β = born≈x and there exists a non empty, surreal-membered set Y such
that Y = Born≈x ∩made of

⋃
rng(it�β) and x = the Y -smallest surreal

number.

Let us consider o. One can verify that (uniqueNoop(α))(o) is surreal-membe-
red. Now we state the propositions:

(37) Suppose α ⊆ β. Then uniqueNoop(β)� succα = uniqueNoop(α).
Proof: Define P[transfinite sequence, ordinal number, surreal number] ≡
$3 ∈

⋃
rng $1 or $2 = born≈$3 and there exists a non empty, surreal-

membered set Y such that Y = Born≈$3 ∩ made of
⋃

rng $1 and $3 =
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the Y -smallest surreal number. Define H(transfinite sequence) = {e, whe-
re e is an element of Daydom $1 : for every x such that x = e holds
P[$1, dom $1, x]}. Set S1 = uniqueNoop(α). Set S = uniqueNoop(β). Set
S2 = S� succα. domS1 = succα and for every ordinal number β and for
every transfinite sequence L1 such that β ∈ succα and L1 = S1�β holds
S1(β) = H(L1). domS2 = succα and for every ordinal number γ and for
every transfinite sequence L2 such that γ ∈ succα and L2 = S2�γ holds
S2(γ) = H(L2). S1 = S2. �

(38) Suppose x ∈ (uniqueNoop(α))(β). Then

(i) born≈x = bornx ⊆ β, and

(ii) x ∈ (uniqueNoop(α))(bornx), and

(iii) x /∈
⋃

rng(uniqueNoop(α)�bornx).

Proof: Set M = uniqueNoop(α). DefineM[ordinal number] ≡ x ∈M($1)
and $1 ∈ succα. Consider δ being an ordinal number such that M[δ] and
for every ordinal number E such thatM[E] holds δ ⊆ E. x /∈

⋃
rng(M�δ).

Consider Y being a non empty, surreal-membered set such that Y =
Born≈x ∩ made of

⋃
rng(M�δ) and x = the Y -smallest surreal number.

�

(39) If θ ⊆ α ⊆ β, then (uniqueNoop(α))(θ) = (uniqueNoop(β))(θ). The
theorem is a consequence of (37).

(40) Suppose α ⊆ β and β ∈ succ γ. Then (uniqueNoop(γ))(α) ⊆ (uniqueNoop
(γ))(β).

Let x be a surreal number. The functor UniqueNo(x) yielding a surreal
number is defined by

(Def. 10) it ≈ x and it ∈ (uniqueNoop(born≈x))(born≈x).

Now we state the propositions:

(41) If x ≈ y, then UniqueNo(x) = UniqueNo(y). The theorem is a consequ-
ence of (33) and (4).

(42) 0No = UniqueNo(0No). The theorem is a consequence of (38).

Let x be a surreal number. We say that x is unique surreal if and only if

(Def. 11) x = UniqueNo(x).

One can verify that 0No is unique surreal and there exists a surreal number
which is unique surreal. Now we state the propositions:

(43) If x is an unique surreal number and o ∈ Lx ∪Rx, then o is an unique
surreal number. The theorem is a consequence of (38), (1), and (39).

(44) If Lx is non empty and finite and x is an unique surreal number, then
Lx = 1. The theorem is a consequence of (12), (38), and (23).
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(45) If Rx is non empty and finite and x is an unique surreal number, then
Rx = 1. The theorem is a consequence of (12), (38), and (24).

(46) Lx ⊕ Rx = 0 if and only if x = 0No.

(47) Lx ⊕ Rx = 1 if and only if there exists a surreal number y such that
x = 〈〈∅, {y}〉〉 or x = 〈〈{y}, ∅〉〉.
Proof: If Lx ⊕ Rx = 1, then there exists a surreal number y such that
x = 〈〈∅, {y}〉〉 or x = 〈〈{y}, ∅〉〉 by [7, (86),(76)]. �

Let X be a set. We say that X is unique surreal-membered if and only if

(Def. 12) if o ∈ X, then o is an unique surreal number.

Note that every set which is empty is also unique surreal-membered. Let x
be an unique surreal number. One can verify that Lx ∪Rx is unique surreal-
membered and {x} is unique surreal-membered. Let X, Y be unique surreal-
membered sets. One can check that X ∪ Y is unique surreal-membered. Let x
be a surreal number. One can check that UniqueNo(x) is unique surreal. Now
we state the propositions:

(48) If x is an unique surreal number, then bornx = born≈x. The theorem is
a consequence of (38).

(49) Suppose for every z such that z ∈ Born≈x and Lz ∪Rz is unique surreal-
membered and x 6= z holds Lx ⊕ Rx ∈ Lz ⊕ Rz and x ∈ Born≈x and
Lx ∪Rx is unique surreal-membered. Then x is an unique surreal number.
Proof: Set c = UniqueNo(x). Set β = born≈x. born≈c = β and Born≈c =
Born≈x. born≈c = born c. c /∈

⋃
rng(uniqueNoop(β)�β). Consider Y being

a non empty, surreal-membered set such that Y = Born≈c ∩ made of⋃
rng(uniqueNoop(β)�β) and c = the Y -smallest surreal number. x ∈

Born≈c. Lx ∪Rx ⊆
⋃

rng(uniqueNoop(β)�β). �

(50) If x is an unique surreal number and y is an unique surreal number and
x ≈ y, then x = y. The theorem is a consequence of (41).

(51) Let us consider a surreal number c. Suppose born c = born≈c and Lc �
{x} � Rc. Then born c ⊆ bornx.
Proof: Define P[ordinal number] ≡ there exists y such that Lc � {y} �
Rc and born y = $1. Consider α such that P[α] and for every β such that
P[β] holds α ⊆ β. Consider y such that Lc � {y} � Rc and born y = α.
born≈c = born≈y. �

(52) Let us consider unique surreal numbers c, x. Suppose Lc � {x} � Rc

and x 6= c. Then born c ∈ bornx. The theorem is a consequence of (48),
(51), (50), (13), (1), (11), (17), (18), and (3).

(53) Suppose bornx = born≈x and bornx is not limit ordinal. Then there
exist surreal numbers y, z such that
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(i) x ≈ z, and

(ii) z = 〈〈Ly ∪{y}, Ry 〉〉 or z = 〈〈Ly, Ry ∪{y}〉〉.
Proof: Consider β being an ordinal number such that bornx = succβ.
Define L[object] ≡ for every z such that z = $1 holds born z ∈ β and
z < x. Consider L being a set such that o ∈ L iff o ∈ Dayβ and L[o].
Define R[object] ≡ for every z such that z = $1 holds born z ∈ β and
x < z. Consider R being a set such that o ∈ R iff o ∈ Dayβ and R[o].
L � R. For every object o such that o ∈ L ∪ R there exists θ such that
θ ∈ β and o ∈ Dayθ. Reconsider L3 = 〈〈L, R〉〉 as a surreal number. L3 6≈ x.
�
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Summary. Conway’s introduction to algebraic operations on surreal num-
bers with a rather simple definition. However, he combines recursion with Con-
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Introduction

We present a formal analysis of the contents of Chapter 1, The Class No is
a Field of John Conway’s seminal book [5]. We formalised four sections, namely
Properties of Addition, Properties of Negation, Properties of Addition and Or-
der and Properties of Multiplication. We begin our exploration by formulating
and proving two schemes (i.e., second-order theorems) for defining arithmetic
operations on surreal numbers using a technique that mimics induction-infinite
recursion. Then, we examine the applicability of this solution by defining the
opposite surreal number but also the sum and product of surreal numbers. We
prove for each such operator simultaneously its correctness and crucial proper-
ties, in particular the preservation of pre-order under the operator. For this
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purpose, we use transfinite induction with respect to successive generations of
surreal numbers. Notice that we express the Conway induction using the trans-
finite induction with the Heisenberg sum of two ordinals [3, 6], formalised in
[7].

The most important result is the formalisation of the following properties of
the surreal numbers

x+ 0No=x (38),
x+ y= y + x (29),

(x+ y) + z=x+ (y + z) (37),

−(x+y) =−x+−y (40),
−− x=x (9),
x+−x≈ 0No (39),

x · 0No≈ 0No (56),
x · 1No≈x (57),
x · y≈ y · x(51),

(−x) · y = −x · y = x · (−y) (58) (−x) · (−y) = x · y (58),
x · (y+z) ≈ x·y + x·z (67), (x·y) · z ≈ x · (y ·z) (69),

0No < x ∧ 0No < y ⇒ 0No < x · y (72), y ¬ z ⇔ x+ y ¬ x+ z (32).

The formalisation is mainly based on [1, 2, 5, 10].

1. Preliminaries

From now on α, β, γ denote ordinal numbers, o denotes an object, x, y, z,
t, r, l denote surreal numbers, and X, Y denote sets.

Let f be a function. One can check that f is function yielding if and only if
the condition (Def. 1) is satisfied.

(Def. 1) rng f is functional.

One can check that there exists a transfinite sequence which is ⊆-monotone
and function yielding. Let f be a ⊆-monotone function and X be a set. Let
us observe that f�X is ⊆-monotone. Let f be a ⊆-monotone, function yielding
transfinite sequence. Let us note that

⋃
rng f is function-like and relation-like.

Now we state the propositions:

(1) Let us consider a ⊆-monotone, function yielding transfinite sequence f ,
and an object o. Suppose o ∈ dom(

⋃
rng f). Then there exists α such that

(i) α ∈ dom f , and

(ii) o ∈ dom(f(α)).

(2) Let us consider a ⊆-monotone, function yielding transfinite sequence f ,
and α. Suppose α ∈ dom f . Then

(i) dom(f(α)) ⊆ dom(
⋃

rng f), and

(ii) for every o such that o ∈ dom(f(α)) holds f(α)(o) = (
⋃

rng f)(o).

Proof: Set U =
⋃

rng f . dom(f(α)) ⊆ domU . �
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(3) Let us consider a ⊆-monotone, function yielding transfinite sequence f ,
an ordinal number α, and a set X. Suppose for every o such that o ∈ X
there exists an ordinal number β such that o ∈ dom(f(β)) and β ∈ α.
Then (

⋃
rng(f�α))◦X = (

⋃
rng f)◦X. The theorem is a consequence of

(2).

2. Surreal Number Operators – Schemes

The scheme MonoFvSExists deals with an ordinal number θ and a unary
functor δ yielding a set and a binary functor H yielding an object and states
that

(Sch. 1) There exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succ θ and for every ordinal number α such that α ∈ succ θ
there exists a many sorted set S3 indexed by δ(α) such that S(α) = S3

and for every o such that o ∈ δ(α) holds S3(o) = H(o, S�α)

provided

• for every ⊆-monotone, function yielding transfinite sequence S such that
for every ordinal number α such that α ∈ domS holds dom(S(α)) = δ(α)
for every ordinal number α for every o such that o ∈ dom(S(α)) holds
H(o, S�α) = H(o, S) and

• for every ordinal numbers α, β such that α ⊆ β holds δ(α) ⊆ δ(β).

The scheme MonoFvSUniq deals with an ordinal number θ and a unary
functor δ yielding a set and ⊆-monotone, function yielding transfinite sequences
S1, S2 and a binary functor H yielding an object and states that

(Sch. 2) S1�θ = S2�θ

provided

• θ ⊆ domS1 and θ ⊆ domS2 and

• for every ordinal number α such that α ∈ θ there exists a many sorted
set S3 indexed by δ(α) such that S1(α) = S3 and for every o such that
o ∈ δ(α) holds S3(o) = H(o, S1�α) and

• for every ordinal number α such that α ∈ θ there exists a many sorted
set S3 indexed by δ(α) such that S2(α) = S3 and for every o such that
o ∈ δ(α) holds S3(o) = H(o, S2�α).
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3. The Opposite Surreal Number

Let us consider α. The functor oppositeNo(α) yielding a many sorted set
indexed by Dayα is defined by

(Def. 2) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succα and it = S(α) and for every β such that β ∈ succα
there exists a many sorted set S5 indexed by Dayβ such that S(β) = S5

and for every o such that o ∈ Dayβ holds S5(o) = 〈〈(
⋃

rng(S�β))◦(Ro),
(
⋃

rng(S�β))◦(Lo)〉〉.
Now we state the propositions:

(4) Let us consider a ⊆-monotone, function yielding transfinite sequence S.
Suppose for every β such that β ∈ domS there exists a many sorted set S5

indexed by Dayβ such that S(β) = S5 and for every o such that o ∈ Dayβ
holds S5(o) = 〈〈(

⋃
rng(S�β))◦(Ro), (

⋃
rng(S�β))◦(Lo)〉〉. If α ∈ domS, then

oppositeNo(α) = S(α).
Proof: Define δ(ordinal number) = Day$1. DefineH(object,⊆-monotone,
function yielding transfinite sequence) = 〈〈(

⋃
rng $2)◦(R$1), (

⋃
rng $2)◦

(L$1)〉〉. Consider S2 being a ⊆-monotone, function yielding transfinite se-
quence such that domS2 = succα and S2(α) = oppositeNo(α) and for
every ordinal number β such that β ∈ succα there exists a many sorted
set S5 indexed by δ(β) such that S2(β) = S5 and for every object x such
that x ∈ δ(β) holds S5(x) = H(x, S2�β). S1� succα = S2� succα. �

(5) Let us consider a ⊆-monotone, function yielding transfinite sequence f .
Suppose o ∈ dom(f(β)) and β ∈ α. Then

(i) o ∈ dom(
⋃

rng(f�α)), and

(ii) (
⋃

rng(f�α))(o) = (
⋃

rng f)(o).

The theorem is a consequence of (2).

(6) Let us consider a ⊆-monotone, function yielding transfinite sequence f ,
and ordinal numbers α, β. Suppose o ∈ dom(f(β)) and β ∈ α. Then
(
⋃

rng(f�α))(o) = (
⋃

rng f)(o). The theorem is a consequence of (2).

Let us consider x. The functor −x yielding a set is defined by the term

(Def. 3) (oppositeNo(bornx))(x).

Let X be a set. The functor 	X yielding a set is defined by

(Def. 4) o ∈ it iff there exists a surreal number x such that x ∈ X and o = −x.

Now we state the proposition:

(7) −x = 〈〈 	 Rx, 	Lx 〉〉.
Proof: Set α = bornx. Consider S being a ⊆-monotone, function yielding
transfinite sequence such that domS = succα and oppositeNo(α) = S(α)
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and for every ordinal number β such that β ∈ succα there exists a ma-
ny sorted set S5 indexed by Dayβ such that S(β) = S5 and for eve-
ry object x such that x ∈ Dayβ holds S5(x) = 〈〈(

⋃
rng(S�β))◦(Rx),

(
⋃

rng(S�β))◦(Lx)〉〉. Consider S3 being a many sorted set indexed by Dayα
such that S(α) = S3 and for every object x such that x ∈ Dayα holds
S3(x) = 〈〈(

⋃
rng(S�α))◦(Rx), (

⋃
rng(S�α))◦(Lx)〉〉. Set U =

⋃
rng(S�α).

	Rx ⊆ U◦(Rx). U◦(Rx) ⊆ 	Rx. 	Lx ⊆ U◦(Lx). U◦(Lx) ⊆ 	Lx. �

Let us consider x. One can check that −x is surreal. Let X be a set. Let us
note that 	X is surreal-membered. Now we state the propositions:

(8) (i) L(−x) = 	Rx, and

(ii) R(−x) = 	Lx.
The theorem is a consequence of (7).

(9) Conway Ch. 1 Th. 4(ii):
−−x = x.

Let us consider x. Let us observe that −−x reduces to x. Now we state the
propositions:

(10) x ¬ y if and only if −y ¬ −x.

(11) Let us consider a surreal number x, and an ordinal number δ. If x ∈ Dayδ,
then −x ∈ Dayδ.

(12) bornx = born (−x).

(13) born≈x = born≈(−x). The theorem is a consequence of (10) and (12).

(14) If x ∈ Born≈y, then −x ∈ Born≈(−y). The theorem is a consequence
of (10), (13), and (12).

(15) Let us consider a surreal-membered set X. Then 		X = X.

(16) 	X ⊆ X .
Proof: Define P[object, object] ≡ for every x such that x = $1 holds
$2 = −x. If o ∈ 	X, then there exists an object u such that P[o, u].
Consider f being a function such that dom f = 	X and for every object
o such that o ∈ 	X holds P[o, f(o)]. rng f ⊆ X. f is one-to-one. �

(17) Let us consider a surreal-membered set X. Then X = 	X . The theorem
is a consequence of (15) and (16).

Let us consider surreal-membered sets X, Y. Now we state the propositions:

(18) X � Y if and only if 	Y � 	X. The theorem is a consequence of (15).

(19) X � Y if and only if 	Y � 	X. The theorem is a consequence of (15).

Now we state the propositions:

(20) Let us consider sets X1, X2. Then 	(X1 ∪X2) = 	X1 ∪ 	X2.

(21) {−x} = 	{x}.
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(22) 	∅ = ∅.
(23) −0No = 0No. The theorem is a consequence of (7) and (22).

One can verify that −0No reduces to 0No. Now we state the proposition:

(24) x ≈ 0No if and only if −x ≈ 0No.

Let α be an ordinal number. The functor Triangleα yielding a subset of
Dayα×Dayα is defined by

(Def. 5) for every surreal numbers x, y, 〈〈x, y〉〉 ∈ it iff bornx⊕ born y ⊆ α.

Observe that Triangleα is non empty. Now we state the proposition:

(25) Let us consider ordinal numbers α, β. Suppose α ⊆ β. Then Triangleα ⊆
Triangleβ.

4. The Sum of Surreal Numbers

Let α be an ordinal number. The functor sumNo(α) yielding a many sorted
set indexed by Triangleα is defined by

(Def. 6) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succα and it = S(α) and for every ordinal number β such
that β ∈ succα there exists a many sorted set S5 indexed by Triangleβ
such that S(β) = S5 and for every object x such that x ∈ Triangleβ holds
S5(x) = 〈〈(

⋃
rng(S�β))◦(LLx ×{Rx} ∪ {Lx} × LRx), (

⋃
rng(S�β))◦(RLx ×

{Rx} ∪ {Lx} × RRx)〉〉.
Now we state the proposition:

(26) Let us consider a ⊆-monotone, function yielding transfinite sequence S.
Suppose for every ordinal number β such that β ∈ domS there exists a ma-
ny sorted set S5 indexed by Triangleβ such that S(β) = S5 and for every
object x such that x ∈ Triangleβ holds S5(x) = 〈〈(

⋃
rng(S�β))◦(LLx ×

{Rx} ∪ {Lx} × LRx), (
⋃

rng(S�β))◦(RLx ×{Rx} ∪ {Lx} × RRx)〉〉. Let us
consider an ordinal number α. If α ∈ domS, then sumNo(α) = S(α).
Proof: Define δ(ordinal number) = Triangle $1. DefineH(object,⊆-mono-
tone, function yielding transfinite sequence) = 〈〈(

⋃
rng $2)◦(LL$1

×{R$1}∪
{L$1}×LR$1

), (
⋃

rng $2)◦(RL$1
×{R$1}∪{L$1}×RR$1

)〉〉. Consider S1 being
a ⊆-monotone, function yielding transfinite sequence such that domS1 =
succα and sumNo(α) = S1(α) and for every ordinal number β such that
β ∈ succα there exists a many sorted set S5 indexed by δ(β) such that
S1(β) = S5 and for every object x such that x ∈ δ(β) holds S5(x) =
H(x, S1�β). S� succα = S1� succα. �

Let x, y be surreal numbers. The functor x + y yielding a set is defined by
the term
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(Def. 7) (sumNo(bornx⊕ born y))(〈〈x, y〉〉).
Let X, Y be sets. The functor X ⊕ Y yielding a set is defined by

(Def. 8) o ∈ it iff there exist surreal numbers x, y such that x ∈ X and y ∈ Y
and o = x+ y.

Now we state the propositions:

(27) Let us consider a set X. Then X ⊕ ∅ = ∅.
(28) Let us consider surreal numbers x, y. Then x+ y = 〈〈(Lx⊕{y})∪ ({x}⊕

Ly), (Rx⊕{y}) ∪ ({x} ⊕ Ry)〉〉.
Proof: Set B3 = bornx. Set B5 = born y. Set α = B3 ⊕ B5. Consi-
der S being a ⊆-monotone, function yielding transfinite sequence such
that domS = succα and sumNo(α) = S(α) and for every ordinal num-
ber β such that β ∈ succα there exists a many sorted set S5 indexed
by Triangleβ such that S(β) = S5 and for every object x such that
x ∈ Triangleβ holds S5(x) = 〈〈(

⋃
rng(S�β))◦(LLx ×{Rx} ∪ {Lx} × LRx),

(
⋃

rng(S�β))◦(RLx ×{Rx}∪ {Lx}×RRx)〉〉. Consider S3 being a many sor-
ted set indexed by Triangleα such that S(α) = S3 and for every ob-
ject x such that x ∈ Triangleα holds S3(x) = 〈〈(

⋃
rng(S�α))◦(L(x)1 ×

{Rx} ∪ {Lx} × LRx), (
⋃

rng(S�α))◦(RLx ×{Rx} ∪ {Lx} × RRx)〉〉. Set U =⋃
rng(S�α). U◦(Lx×{y}) ⊆ Lx⊕{y}. Lx⊕{y} ⊆ U◦(Lx×{y}). U◦(Rx×
{y}) ⊆ Rx⊕{y}. Rx⊕{y} ⊆ U◦(Rx×{y}). U◦({x} × Ly) ⊆ {x} ⊕ Ly.
{x}⊕Ly ⊆ U◦({x}×Ly). U◦({x}×Ry) ⊆ {x}⊕Ry. {x}⊕Ry ⊆ U◦({x}×
Ry). �

(29) Commutativity of Addition for Surreal Number, Conway Ch. 1
Th. 3(ii):
x+ y = y + x.
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y such
that bornx ⊕ born y ⊆ $1 holds x + y = y + x. For every ordinal number
δ such that for every ordinal number γ such that γ ∈ δ holds P[γ] holds
P[δ]. For every ordinal number δ, P[δ]. �

Let x, y be surreal numbers. Let us note that the functor x + y is commu-
tative. Now we state the proposition:

(30) Let us consider sets X, Y. Then X ⊕ Y = Y ⊕X.

Let X, Y be sets. One can verify that the functor X ⊕ Y is commutative.
Let us consider x and y. Let us note that x+y is surreal. Let x, y be surreal

numbers. The functor x− y yielding a surreal number is defined by the term

(Def. 9) x+−y.

Now we state the proposition:

(31) born (x+ y) ⊆ bornx⊕ born y.
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Let X, Y be sets. Let us note that X⊕Y is surreal-membered. Now we state
the propositions:

(32) Transitive Law of Addition for Surreal Number, Conway
Ch. 1 Th. 5:
x ¬ y if and only if x+ z ¬ y + z.

(33) Let us consider sets X1, X2, Y. Then (X1∪X2)⊕Y = (X1⊕Y )∪(X2⊕Y ).

(34) Let us consider sets X, Y1, Y2. Then X⊕(Y1∪Y2) = (X⊕Y1)∪(X⊕Y2).

(35) Let us consider sets X1, X2, Y1, Y2. Suppose X1 lX2 and Y1 lY2. Then
X1 ⊕ Y1 lX2 ⊕ Y2. The theorem is a consequence of (32).

(36) {x} ⊕ {y} = {x+ y}.
(37) Associativity of Addition for Surreal Number, Conway Ch. 1
Th. 3(iii):
(x+ y) + z = x+ (y + z).
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y, z such
that (bornx ⊕ born y) ⊕ born z ⊆ $1 holds (x + y) + z = x + (y + z). For
every ordinal number δ such that for every ordinal number γ such that
γ ∈ δ holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. �

(38) Additive Identity for Surreal Number, Conway Ch. 1 Th. 3(i):
x+ 0No = x.
Proof: Set y = 0No. Define P[ordinal number] ≡ for every surreal number
x such that bornx = $1 holds x+ y = x. For every ordinal number δ such
that for every ordinal number γ such that γ ∈ δ holds P[γ] holds P[δ]. For
every ordinal number δ, P[δ]. �

Let us consider x. Let us note that x+ 0No reduces to x. Now we state the
proposition:

(39) Property of The Aditive Inverse for Surreal Number, Con-
way Ch. 1 Th. 4(iii):
x− x ≈ 0No.
Proof: Set y = 0No. Define P[ordinal number] ≡ for every surreal number
x such that bornx = $1 holds x + −x ≈ y. For every ordinal number δ
such that for every ordinal number γ such that γ ∈ δ holds P[γ] holds
P[δ] by (7), (28), [8, (43)], [9, (1)]. For every ordinal number δ, P[δ]. �

(40) Conway Ch. 1 Th. 4(i):
−(x+ y) = −x+−y.
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y such
that bornx ⊕ born y ⊆ $1 holds −(x+ y) = −x + −y. For every ordinal
number δ such that for every ordinal number γ such that γ ∈ δ holds P[γ]
holds P[δ]. For every ordinal number δ, P[δ]. �
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(41) x+ y ¬ z if and only if x ¬ z − y.
Proof: If x+y ¬ z, then x ¬ z−y. x+y ¬ z+−y+y. x+y ¬ z+(−y+y).
y − y ≈ 0No. z + (−y + y) ¬ z + 0No = z. �

(42) x+ y < z if and only if x < z − y.
Proof: If x + y < z, then x < z − y. z + −y ¬ x + y + −y. z + −y ¬
x+ (y +−y). y − y ≈ 0No. x+ (y +−y) ¬ x+ 0No = x. �

(43) If x ¬ y and z ¬ t, then x+ z ¬ y + t. The theorem is a consequence of
(32).

(44) If x ¬ y and z < t, then x+ z < y + t. The theorem is a consequence of
(42), (39), (32), and (37).

(45) x < y if and only if 0No < y − x. The theorem is a consequence of (42).

(46) x < y if and only if x− y < 0No. The theorem is a consequence of (41).

(47) If x− y ≈ 0No, then x ≈ y. The theorem is a consequence of (39), (37),
and (43).

Let x be an object. Assume x is surreal. The functor −′x yielding a surreal
number is defined by

(Def. 10) for every surreal number x1 such that x1 = x holds it = −x1.

Let a be a surreal number. We identify −′x with −a. Let x, y be objects.
Assume x is surreal and y is surreal. The functor x+′y yielding a surreal number
is defined by

(Def. 11) for every surreal numbers x1, y1 such that x1 = x and y1 = y holds
it = x1 + y1.

Let a, b be surreal numbers. We identify x+′ y with a+ b.

5. The Product of Superreal Numbers

Let α be an ordinal number. The functor multNo(α) yielding a many sorted
set indexed by Triangleα is defined by

(Def. 12) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succα and it = S(α) and for every ordinal number β such
that β ∈ succα there exists a many sorted set S5 indexed by Triangleβ
such that S(β) = S5 and for every object x such that x ∈ Triangleβ
holds S5(x) = 〈〈{((

⋃
rng(S�β))(〈〈x6, Rx 〉〉) +′ (

⋃
rng(S�β))(〈〈Lx, y4〉〉)) +′

−′(
⋃

rng(S�β))(〈〈x6, y4〉〉), where x6 is an element of LLx , y4 is an element
of LRx : x6 ∈ LLx and y4 ∈ LRx}∪{((

⋃
rng(S�β))(〈〈x7, Rx 〉〉)+′(

⋃
rng(S�β))

(〈〈Lx, y5〉〉)) +′−′(
⋃

rng(S�β))(〈〈x7, y5〉〉),where x7 is an element of RLx , y5

is an element of RRx : x7 ∈ RLx and y5 ∈ RRx}, {((
⋃

rng(S�β))(〈〈x6,

Rx 〉〉)+′ (
⋃

rng(S�β))(〈〈Lx, y5〉〉))+′−′(
⋃

rng(S�β))(〈〈x6, y5〉〉), where x6 is
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an element of LLx , y5 is an element of RRx : x6 ∈ LLx and y5 ∈ RRx} ∪
{((
⋃

rng(S�β))(〈〈x7, Rx 〉〉)+′(
⋃

rng(S�β))(〈〈Lx, y4〉〉))+′−′(
⋃

rng(S�β))(〈〈x7,

y4〉〉), where x7 is an element of RLx , y4 is an element of LRx : x7 ∈ RLx and
y4 ∈ LRx}〉〉.

Let x, y be surreal numbers. The functor x · y yielding a set is defined by
the term

(Def. 13) (multNo(bornx⊕ born y))(〈〈x, y〉〉).
Now we state the proposition:

(48) Let us consider a ⊆-monotone, function yielding transfinite sequence S.
Suppose for every ordinal number β such that β ∈ domS there exists a ma-
ny sorted set S5 indexed by Triangleβ such that S(β) = S5 and for every
object x such that x ∈ Triangleβ holds S5(x) = 〈〈{((

⋃
rng(S�β))(〈〈x6,

Rx 〉〉)+′ (
⋃

rng(S�β))(〈〈Lx, y4〉〉))+′−′(
⋃

rng(S�β))(〈〈x6, y4〉〉), where x6 is
an element of LLx , y4 is an element of LRx : x6 ∈ LLx and y4 ∈ LRx} ∪
{((
⋃

rng(S�β))(〈〈x7, Rx 〉〉)+′(
⋃

rng(S�β))(〈〈Lx, y5〉〉))+′−′(
⋃

rng(S�β))(〈〈x7,

y5〉〉), where x7 is an element of RLx , y5 is an element of RRx : x7 ∈ RLx and
y5 ∈ RRx}, {((

⋃
rng(S�β))(〈〈x6, Rx 〉〉)+′(

⋃
rng(S�β))(〈〈Lx, y5〉〉))+′−′(

⋃
rng

(S�β))(〈〈x6, y5〉〉), where x6 is an element of LLx , y5 is an element of RRx :
x6 ∈ LLx and y5 ∈ RRx}∪{((

⋃
rng(S�β))(〈〈x7, Rx 〉〉)+′ (

⋃
rng(S�β))(〈〈Lx,

y4〉〉)) +′−′(
⋃

rng(S�β))(〈〈x7, y4〉〉), where x7 is an element of RLx , y4 is an
element of LRx : x7 ∈ RLx and y4 ∈ LRx}〉〉. Let us consider an ordinal
number α. If α ∈ domS, then multNo(α) = S(α).
Proof: Define δ(ordinal number) = Triangle $1. DefineH(object,⊆-mono-
tone, function yielding transfinite sequence) = 〈〈{((

⋃
rng $2)(〈〈x6, R$1 〉〉)+′

(
⋃

rng $2)(〈〈L$1 , y4〉〉))+′−′(
⋃

rng $2)(〈〈x6, y4〉〉), where x6 is an element of
LL$1

, y4 is an element of LR$1
: x6 ∈ LL$1

and y4 ∈ LR$1
}∪{((

⋃
rng $2)(〈〈x7,

R$1 〉〉)+′(
⋃

rng $2)(〈〈L$1 , y5〉〉))+′−′(
⋃

rng $2)(〈〈x7, y5〉〉), where x7 is an ele-
ment of RL$1

, y5 is an element of RR$1
: x7 ∈ RL$1

and y5 ∈ RR$1
},

{((
⋃

rng $2)(〈〈x6, R$1 〉〉) +′ (
⋃

rng $2)(〈〈L$1 , y5〉〉)) +′−′(
⋃

rng $2)(〈〈x6, y5〉〉),
where x6 is an element of LL$1

, y5 is an element of RR$1
: x6 ∈ LL$1

and
y5 ∈ RR$1

}∪{((
⋃

rng $2)(〈〈x7, R$1 〉〉)+′(
⋃

rng $2)(〈〈L$1 , y4〉〉))+′−′(
⋃

rng $2)
(〈〈x7, y4〉〉), where x7 is an element of RL$1

, y4 is an element of LR$1
: x7 ∈

RL$1
and y4 ∈ LR$1

}〉〉. Consider S1 being a ⊆-monotone, function yielding
transfinite sequence such that domS1 = succα and multNo(α) = S1(α)
and for every ordinal number β such that β ∈ succα there exists a many
sorted set S5 indexed by δ(β) such that S1(β) = S5 and for every object
x such that x ∈ δ(β) holds S5(x) = H(x, S1�β). S� succα = S1� succα. �

Let x, y be surreal numbers and X, Y be sets. The functor comp(X,x, y, Y )
yielding a set is defined by
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(Def. 14) o ∈ it iff there exist surreal numbers x1, y1 such that o = (x1 · y +′ x ·
y1) +′ −′x1 · y1 and x1 ∈ X and y1 ∈ Y.

Now we state the propositions:

(49) Let us consider a set X. Then comp(X,x, y, ∅) = ∅.
(50) Let us consider surreal numbers x, y. Then x · y = 〈〈 comp(Lx, x, y,Ly)
∪ comp(Rx, x, y,Ry), comp(Lx, x, y,Ry) ∪ comp(Rx, x, y,Ly)〉〉.
Proof: Set B3 = bornx. Set B5 = born y. Set α = B3 ⊕ B5. Define
H(object,⊆-monotone, function yielding transfinite sequence) =
〈〈{((

⋃
rng $2)(〈〈x6, R$1 〉〉)+′(

⋃
rng $2)(〈〈L$1 , y4〉〉))+′−′(

⋃
rng $2)(〈〈x6, y4〉〉),

where x6 is an element of LL$1
, y4 is an element of LR$1

: x6 ∈ LL$1
and

y4 ∈ LR$1
}∪{((

⋃
rng $2)(〈〈x7, R$1 〉〉)+′(

⋃
rng $2)(〈〈L$1 , y5〉〉))+′−′(

⋃
rng $2)

(〈〈x7, y5〉〉), where x7 is an element of RL$1
, y5 is an element of RR$1

: x7 ∈
RL$1

and y5 ∈ RR$1
}, {((

⋃
rng $2)(〈〈x6, R$1 〉〉) +′ (

⋃
rng $2)(〈〈L$1 , y5〉〉)) +′

−′(
⋃

rng $2)(〈〈x6, y5〉〉), where x6 is an element of LL$1
, y5 is an element

of RR$1
: x6 ∈ LL$1

and y5 ∈ RR$1
}∪{((

⋃
rng $2)(〈〈x7, R$1 〉〉)+′ (

⋃
rng $2)

(〈〈L$1 , y4〉〉))+′−′(
⋃

rng $2)(〈〈x7, y4〉〉), where x7 is an element of RL$1
, y4 is

an element of LR$1
: x7 ∈ RL$1

and y4 ∈ LR$1
}〉〉. Consider S being a ⊆-

monotone, function yielding transfinite sequence such that domS = succα
and multNo(α) = S(α) and for every ordinal number β such that β ∈
succα there exists a many sorted set S5 indexed by Triangleβ such that
S(β) = S5 and for every object x such that x ∈ Triangleβ holds S5(x) =
H(x, S�β). Consider S3 being a many sorted set indexed by Triangleα
such that S(α) = S3 and for every object x such that x ∈ Triangleα holds
S3(x) = H(x, S�α). Set U =

⋃
rng(S�α). For every surreal-membered sets

X, Y such that X ⊆ Lx ∪Rx and Y ⊆ Ly ∪Ry holds {(U(〈〈x6, y〉〉)+′U(〈〈x,
y4〉〉)) +′ −′U(〈〈x6, y4〉〉), where x6 is an element of X, y4 is an element of
Y : x6 ∈ X and y4 ∈ Y } = comp(X,x, y, Y ). �

(51) (i) for every x and y, x · y is a surreal number, and

(ii) for every x and y, x · y = y · x, and

(iii) for every surreal numbers x1, x2, y, x4, x5 such that x1 ≈ x2 and
x4 = x1 · y and x5 = x2 · y holds x4 ≈ x5, and

(iv) for every surreal numbers x1, x2, y1, y2, x12, x21, x11, x22 such that
x11 = x1 · y1 and x12 = x1 · y2 and x21 = x2 · y1 and x22 = x2 · y2 and
x1 < x2 and y1 < y2 holds x12 + x21 < x11 + x22.

Proof: Define P[ordinal number, surreal number, surreal number] ≡ if
born $2⊕born $3 ⊆ $1, then $2·$3 = $3·$2. Define S[ordinal number, surreal
number, surreal number] ≡ if born $2⊕born $3 ⊆ $1, then $2 ·$3 is a surreal
number. Define T [ordinal number, surreal number, surreal number, surreal
number] ≡ for every surreal numbers x4, x5 such that born $2⊕born $4 ⊆ $1
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and born $3 ⊕ born $4 ⊆ $1 and $2 ≈ $3 and x4 = $2 · $4 and x5 =
$3 · $4 holds x4 ≈ x5. Define V[ordinal number, surreal number, surreal
number, surreal number, surreal number] ≡ for every surreal numbers x12,
x21, x11, x22 such that born $2 ⊕ born $4 ⊆ $1 and born $3 ⊕ born $4 ⊆ $1

and born $2 ⊕ born $5 ⊆ $1 and born $3 ⊕ born $5 ⊆ $1 and x11 = $2 · $4

and x12 = $2 · $5 and x21 = $3 · $4 and x22 = $3 · $5 and $2 < $3 < $5

holds x12 +x21 < x11 +x22. Define F [ordinal number] ≡ for every x and y,
P[$1, x, y]. Define G[ordinal number] ≡ for every x and y, S[$1, x, y]. Define
H[ordinal number] ≡ for every surreal numbers x1, x2, y, T [$1, x1, x2, y].
Define I[ordinal number] ≡ for every surreal numbers x1, x2, y1, y2,
V[$1, x1, x2, y1, y2]. Define θ[ordinal number] ≡ F [$1] and G[$1] and H[$1]
and I[$1]. For every ordinal number δ such that for every ordinal num-
ber γ such that γ ∈ δ holds θ[γ] holds θ[δ]. For every ordinal number E,
θ[E]. For every surreal numbers x1, x2, y, x4, x5 such that x1 ≈ x2 and
x4 = x1 · y and x5 = x2 · y holds x4 ≈ x5. �

Let a, b be surreal numbers. Observe that a · b is surreal. Let a, b be surreal
numbers. One can check that the functor a ·b is commutative. Let x, y be surreal
numbers and X, Y be sets. Observe that comp(X,x, y, Y ) is surreal-membered.
Let us observe that the functor comp(X,x, y, Y ) is defined by

(Def. 15) o ∈ it iff there exist surreal numbers x1, y1 such that o = x1 · y+x · y1−
x1 · y1 and x1 ∈ X and y1 ∈ Y.

Now we state the propositions:

(52) comp({z}, x, y, {t}) = {z · y + x · t− z · t}.
(53) Let us consider sets X, Y. Then comp(X,x, y, Y ) = comp(Y, y, x,X).

(54) Conway Ch. 1 Th. 8(i):
Let us consider surreal numbers x1, x2, y. If x1 ≈ x2, then x1 · y ≈ x2 · y.

(55) Conway Ch. 1 Th. 8(iii):
Let us consider surreal numbers x1, x2, y1, y2. Suppose x1 < x2 and
y1 < y2. Then x1 · y2 + x2 · y1 < x1 · y1 + x2 · y2.

(56) Conway Ch. 1 Th. 7(i):
x · (0No) = 0No. The theorem is a consequence of (49) and (50).

(57) Multiplicative Identity for Surreal Number, Conway Ch. 1
Th. 7(ii):
x · (1No) = x.
Proof: Define P[ordinal number] ≡ for every x such that bornx ⊆ $1

holds x ·(1No) = x. For every ordinal number δ such that for every ordinal
number γ such that γ ∈ δ holds P[γ] holds P[δ]. For every ordinal number
δ, P[δ]. �
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Let us consider x. Observe that x·(0No) reduces to 0No and x·(1No) reduces
to x. Now we state the proposition:

(58) Conway Ch. 1 Th. 7(iv):

(i) x · (−y) = −x · y, and

(ii) (−x) · y = −x · y, and

(iii) (−x) · (−y) = x · y.

Let us consider sets X, Y1, Y2. Now we state the propositions:

(59) If Y1 ⊆ Y2, then comp(X,x, y, Y1) ⊆ comp(X,x, y, Y2).

(60) comp(X,x, y, Y1 ∪ Y2) = comp(X,x, y, Y1) ∪ comp(X,x, y, Y2). The the-
orem is a consequence of (59).

(61) Let us consider sets X, Y. Suppose for every x such that x ∈ X there
exists y such that y ∈ Y and x ≈ y. Then X l Y.

Let us consider sets X1, X2. Now we state the propositions:

(62) If X1 lX2, then 	X1 l	X2. The theorem is a consequence of (10).

(63) 	(X1 ⊕X2) = 	X1 ⊕	X2. The theorem is a consequence of (40).

(64) Let us consider a surreal-membered set X. Then X ⊕ {0No} = X.

(65) If x ≈ y, then −x ≈ −y.

(66) Let us consider surreal numbers x1, x2, y1, y2. If x1 ≈ x2 and y1 ≈ y2,
then x1 + y1 ≈ x2 + y2.

(67) Distributivity of Multiplication Over Addition for Surreal
Numbers, Conway Ch. 1 Th. 7(v):
x · (y + z) ≈ x · y + x · z.
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y, z such
that (bornx ⊕ born y) ⊕ born z ⊆ $1 holds x · (y + z) ≈ x · y + x · z. For
every ordinal number δ such that for every ordinal number γ such that
γ ∈ δ holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. �

(68) Let us consider sets X1, X2, Y. Then comp(X1 ∪X2, x, y, Y ) =
comp(X1, x, y, Y ) ∪ comp(X2, x, y, Y ). The theorem is a consequence of
(53) and (60).

(69) Associativity of Multiplication for Surreal Numbers, Con-
way Ch. 1 Th. 7(vi):
(x · y) · z ≈ x · (y · z).
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y, z such
that (bornx⊕ born y)⊕ born z ⊆ $1 holds (x · y) · z ≈ x · (y · z). For every
ordinal number δ such that for every ordinal number γ such that γ ∈ δ
holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. �
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(70) If 0No < x and y < z, then y · x < z · x. The theorem is a consequence
of (51).

(71) If x < 0No and y < z, then z · x < y · x. The theorem is a consequence
of (51).

(72) Conway Ch. 1 Th. 9:
0No < x · y if and only if x < 0No and y < 0No or 0No < x and 0No < y.
The theorem is a consequence of (51), (10), (58), and (23).

(73) If 0No < z and x · z < y · z, then x < y. The theorem is a consequence
of (51) and (70).

(74) x · y < 0No if and only if x < 0No < y or 0No < x and y < 0No. The
theorem is a consequence of (23), (10), (58), and (72).

(75) If 0No ¬ x and y ¬ z, then y · x ¬ z · x. The theorem is a consequence
of (51) and (70).

(76) (x+y) ·(x+y) ≈ x ·x+y ·y+(x ·y+y ·x). The theorem is a consequence
of (67), (43), and (37).

(77) x · y ≈ 0No if and only if x ≈ 0No or y ≈ 0No.
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The formalization of the main problem, using the Mizar system [1], [2], is
split into theorems corresponding to every positive integer s ¬ 25 and a specific
one for s = 100. The first ten cases for s < 10 are obviously justified by taking
the numbers s themselves. Other cases require studying successive multiples of
s and the sums of digits of their decimal representations. The last case calls for
a number with decimal digits composed of a leading 1, followed by a sequence of
eleven 9s, and two trailing 0s. With such a large number evaluating all successive
multiples of 100 would be impractical. Therefore, the final proof is of a general
nature taking into account the properties of sequences of digits.

The work presented in this article is intended to extend the original dataset
of Mizar elementary number theory formalizations presented in [6] and based
on the Mizar article [7]. Other similar elementary facts concerning number di-
visibility can also be found, e.g., in articles [5, 4].

1. Preliminaries

Let n be a natural number. One can check that 〈n〉 is N-valued. Let n1, n2

be natural numbers. One can verify that 〈n1, n2〉 is N-valued. Let n1, n2, n3

be natural numbers. Note that 〈n1, n2, n3〉 is N-valued. Let n1, n2, n3, n4 be
natural numbers. One can check that 〈n1, n2, n3, n4〉 is N-valued. Now we state
the proposition:

(1) Let us consider a natural number b, and a finite 0-sequence E of N. If
E = ∅, then value(E, b) = 0.

Let us consider natural numbers n, b. Now we state the propositions:

(2) value(〈n〉, b) = n.

(3) If n < b > 1, then digits(n, b) = 〈n〉. The theorem is a consequence of
(2).

(4) Let us consider a natural number b. If b > 1, then digits(value(〈0〉, b), b) =
〈0〉. The theorem is a consequence of (2).

(5) Let us consider a natural number b. Suppose b > 1. Let us consider
a N-valued finite 0-sequence s. Suppose len s > 0 and s(len s − 1) 6= 0
and for every natural number i such that i ∈ dom s holds s(i) < b. Then
digits(value(s, b), b) = s.

Let us consider natural numbers n, b. Now we state the propositions:

(6) If n < b > 1, then
∑

digits(n, b) = n. The theorem is a consequence of
(3).

(7) If b > 1, then value(n 7−→ b−′ 1, b) = bn − 1.
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Proof: Set d = n 7−→ b −′ 1. Set g = (b −′ 1) · (bκ)κ∈N. Set d′ = g�n.
For every natural number i such that i ∈ dom d′ holds d′(i) = d(i) · bi.
rng d′ ⊆ N. �

(8) Let us consider a natural number b. Suppose b > 1. Let us consider
a N-valued finite 0-sequence s. Suppose len s > 0 and for every natural
number i such that i ∈ dom s holds s(i) < b. Then s(len s− 1) · blen s−′1 ¬
value(s, b) < blen s. The theorem is a consequence of (7).

(9) Let us consider natural numbers n, b. If b > 1, then n < blen digits(n,b).
The theorem is a consequence of (8).

(10) Let us consider natural numbers n, m, b. If n 6= 0 and b > 1 and
m < len digits(n, b), then n  bm. The theorem is a consequence of (8).

(11) Let us consider finite 0-sequences d1, d2 of N, and a natural number b.
Suppose b > 1 and dom d1 = dom d2 and for every natural number n such
that n ∈ dom d1 holds d1(n) ¬ d2(n). Then value(d1, b) ¬ value(d2, b).

(12) Let us consider natural numbers m, n, b. Suppose b > 1. Then m <

n if and only if len digits(m, b) < len digits(n, b) or len digits(m, b) =
len digits(n, b) and there exists a natural number i such that i < len digits
(m, b) and (digits(m, b))(i) < (digits(n, b))(i) and for every natural number
j such that j < len digits(m, b) and (digits(m, b))(j) 6= (digits(n, b))(j)
holds i  j.
Proof: Set d3 = digits(m, b). Set d4 = digits(n, b). Consider v1 be-
ing a finite 0-sequence of N such that dom v1 = dom d3 and for eve-
ry natural number i such that i ∈ dom v1 holds v1(i) = d3(i) · bi and
value(digits(m, b), b) =

∑
v1. Consider v0 being a finite 0-sequence of N

such that dom v0 = dom d4 and for every natural number i such that
i ∈ dom v0 holds v0(i) = d4(i) · bi and value(digits(n, b), b) =

∑
v0.

If m < n, then len d3 < len d4 or len d3 = len d4 and there exists
a natural number i such that i < len d3 and d3(i) < d4(i) and for every
natural number j such that j < len d3 and d3(j) 6= d4(j) holds i  j. If
len d3 < len d4 or len d3 = len d4 and there exists a natural number i such
that i < len d3 and d3(i) < d4(i) and for every natural number j such that
j < len d3 and d3(j) 6= d4(j) holds i  j, then m < n. �

(13) Let us consider a natural number n.
Then 100 | n if and only if (digits(n, 10))(0) = 0 and (digits(n, 10))(1) = 0.
Proof: If 100 | n, then (digits(n, 10))(0) = 0 and (digits(n, 10))(1) = 0.
Consider d′ being a finite 0-sequence of N such that dom d′ = dom(digits(n,
10)) and for every natural number i such that i ∈ dom d′ holds d′(i) =
(digits(n, 10))(i) · 10i and value(digits(n, 10), 10) =

∑
d′. �

(14) Let us consider a finite 0-sequence f . If len f  2, then f�2 = 〈f(0), f(1)〉.
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2. Problem 36 for s < 10

Let n, s be natural numbers. We say that n is the solution to Sierpiński’s
problem 36 for s if and only if

(Def. 1)
∑

digits(n, 10) = s and s | n and for every natural number m such that∑
digits(m, 10) = s and s | m holds n ¬ m.

Now we state the proposition:

(15) Let us consider a natural number n. If n < 10, then n is the solution to
Sierpiński’s problem 36 for n. The theorem is a consequence of (3).

3. Problem 36 for s = 10

Now we state the propositions:

(16) digits(10, 10) = 〈0, 1〉.
(17)

∑
digits(10, 10) = 1. The theorem is a consequence of (16).

(18) digits(20, 10) = 〈0, 2〉.
(19)

∑
digits(20, 10) = 2. The theorem is a consequence of (18).

(20) digits(30, 10) = 〈0, 3〉.
(21)

∑
digits(30, 10) = 3. The theorem is a consequence of (20).

(22) digits(40, 10) = 〈0, 4〉.
(23)

∑
digits(40, 10) = 4. The theorem is a consequence of (22).

(24) digits(50, 10) = 〈0, 5〉.
(25)

∑
digits(50, 10) = 5. The theorem is a consequence of (24).

(26) digits(60, 10) = 〈0, 6〉.
(27)

∑
digits(60, 10) = 6. The theorem is a consequence of (26).

(28) digits(70, 10) = 〈0, 7〉.
(29)

∑
digits(70, 10) = 7. The theorem is a consequence of (28).

(30) digits(80, 10) = 〈0, 8〉.
(31)

∑
digits(80, 10) = 8. The theorem is a consequence of (30).

(32) digits(90, 10) = 〈0, 9〉.
(33)

∑
digits(90, 10) = 9. The theorem is a consequence of (32).

(34) digits(100, 10) = 〈0, 0, 1〉.
(35)

∑
digits(100, 10) = 1. The theorem is a consequence of (34).

(36) digits(110, 10) = 〈0, 1, 1〉.
(37)

∑
digits(110, 10) = 2. The theorem is a consequence of (36).

(38) digits(120, 10) = 〈0, 2, 1〉.
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(39)
∑

digits(120, 10) = 3. The theorem is a consequence of (38).

(40) digits(130, 10) = 〈0, 3, 1〉.
(41)

∑
digits(130, 10) = 4. The theorem is a consequence of (40).

(42) digits(140, 10) = 〈0, 4, 1〉.
(43)

∑
digits(140, 10) = 5. The theorem is a consequence of (42).

(44) digits(150, 10) = 〈0, 5, 1〉.
(45)

∑
digits(150, 10) = 6. The theorem is a consequence of (44).

(46) digits(160, 10) = 〈0, 6, 1〉.
(47)

∑
digits(160, 10) = 7. The theorem is a consequence of (46).

(48) digits(170, 10) = 〈0, 7, 1〉.
(49)

∑
digits(170, 10) = 8. The theorem is a consequence of (48).

(50) digits(180, 10) = 〈0, 8, 1〉.
(51)

∑
digits(180, 10) = 9. The theorem is a consequence of (50).

(52) digits(190, 10) = 〈0, 9, 1〉.
(53)

∑
digits(190, 10) = 10. The theorem is a consequence of (52).

(54) 190 is the solution to Sierpiński’s problem 36 for 10. The theorem is
a consequence of (53), (6), (17), (19), (21), (23), (25), (27), (29), (31),
(33), (35), (37), (39), (41), (43), (45), (47), (49), and (51).

4. Problem 36 for s = 11

Now we state the propositions:

(55) digits(11, 10) = 〈1, 1〉.
(56)

∑
digits(11, 10) = 2. The theorem is a consequence of (55).

(57) digits(22, 10) = 〈2, 2〉.
(58)

∑
digits(22, 10) = 4. The theorem is a consequence of (57).

(59) digits(33, 10) = 〈3, 3〉.
(60)

∑
digits(33, 10) = 6. The theorem is a consequence of (59).

(61) digits(44, 10) = 〈4, 4〉.
(62)

∑
digits(44, 10) = 8. The theorem is a consequence of (61).

(63) digits(55, 10) = 〈5, 5〉.
(64)

∑
digits(55, 10) = 10. The theorem is a consequence of (63).

(65) digits(66, 10) = 〈6, 6〉.
(66)

∑
digits(66, 10) = 12. The theorem is a consequence of (65).

(67) digits(77, 10) = 〈7, 7〉.



234 adam naumowicz

(68)
∑

digits(77, 10) = 14. The theorem is a consequence of (67).

(69) digits(88, 10) = 〈8, 8〉.
(70)

∑
digits(88, 10) = 16. The theorem is a consequence of (69).

(71) digits(99, 10) = 〈9, 9〉.
(72)

∑
digits(99, 10) = 18. The theorem is a consequence of (71).

(73) digits(121, 10) = 〈1, 2, 1〉.
(74)

∑
digits(121, 10) = 4. The theorem is a consequence of (73).

(75) digits(132, 10) = 〈2, 3, 1〉.
(76)

∑
digits(132, 10) = 6. The theorem is a consequence of (75).

(77) digits(143, 10) = 〈3, 4, 1〉.
(78)

∑
digits(143, 10) = 8. The theorem is a consequence of (77).

(79) digits(154, 10) = 〈4, 5, 1〉.
(80)

∑
digits(154, 10) = 10. The theorem is a consequence of (79).

(81) digits(165, 10) = 〈5, 6, 1〉.
(82)

∑
digits(165, 10) = 12. The theorem is a consequence of (81).

(83) digits(176, 10) = 〈6, 7, 1〉.
(84)

∑
digits(176, 10) = 14. The theorem is a consequence of (83).

(85) digits(187, 10) = 〈7, 8, 1〉.
(86)

∑
digits(187, 10) = 16. The theorem is a consequence of (85).

(87) digits(198, 10) = 〈8, 9, 1〉.
(88)

∑
digits(198, 10) = 18. The theorem is a consequence of (87).

(89) digits(209, 10) = 〈9, 0, 2〉.
(90)

∑
digits(209, 10) = 11. The theorem is a consequence of (89).

(91) 209 is the solution to Sierpiński’s problem 36 for 11. The theorem is
a consequence of (90), (6), (56), (58), (60), (62), (64), (66), (68), (70),
(72), (37), (74), (76), (78), (80), (82), (84), (86), and (88).

5. Problem 36 for s = 12

Now we state the propositions:

(92) digits(12, 10) = 〈2, 1〉.
(93)

∑
digits(12, 10) = 3. The theorem is a consequence of (92).

(94) digits(24, 10) = 〈4, 2〉.
(95)

∑
digits(24, 10) = 6. The theorem is a consequence of (94).

(96) digits(36, 10) = 〈6, 3〉.
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(97)
∑

digits(36, 10) = 9. The theorem is a consequence of (96).

(98) digits(48, 10) = 〈8, 4〉.
(99)

∑
digits(48, 10) = 12. The theorem is a consequence of (98).

(100) 48 is the solution to Sierpiński’s problem 36 for 12. The theorem is
a consequence of (99), (6), (93), (95), and (97).

6. Problem 36 for s = 13

Now we state the propositions:

(101) digits(13, 10) = 〈3, 1〉.
(102)

∑
digits(13, 10) = 4. The theorem is a consequence of (101).

(103) digits(26, 10) = 〈6, 2〉.
(104)

∑
digits(26, 10) = 8. The theorem is a consequence of (103).

(105) digits(39, 10) = 〈9, 3〉.
(106)

∑
digits(39, 10) = 12. The theorem is a consequence of (105).

(107) digits(52, 10) = 〈2, 5〉.
(108)

∑
digits(52, 10) = 7. The theorem is a consequence of (107).

(109) digits(65, 10) = 〈5, 6〉.
(110)

∑
digits(65, 10) = 11. The theorem is a consequence of (109).

(111) digits(78, 10) = 〈8, 7〉.
(112)

∑
digits(78, 10) = 15. The theorem is a consequence of (111).

(113) digits(91, 10) = 〈1, 9〉.
(114)

∑
digits(91, 10) = 10. The theorem is a consequence of (113).

(115) digits(104, 10) = 〈4, 0, 1〉.
(116)

∑
digits(104, 10) = 5. The theorem is a consequence of (115).

(117) digits(117, 10) = 〈7, 1, 1〉.
(118)

∑
digits(117, 10) = 9. The theorem is a consequence of (117).

(119) digits(156, 10) = 〈6, 5, 1〉.
(120)

∑
digits(156, 10) = 12. The theorem is a consequence of (119).

(121) digits(169, 10) = 〈9, 6, 1〉.
(122)

∑
digits(169, 10) = 16. The theorem is a consequence of (121).

(123) digits(182, 10) = 〈2, 8, 1〉.
(124)

∑
digits(182, 10) = 11. The theorem is a consequence of (123).

(125) digits(195, 10) = 〈5, 9, 1〉.
(126)

∑
digits(195, 10) = 15. The theorem is a consequence of (125).
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(127) digits(208, 10) = 〈8, 0, 2〉.
(128)

∑
digits(208, 10) = 10. The theorem is a consequence of (127).

(129) digits(221, 10) = 〈1, 2, 2〉.
(130)

∑
digits(221, 10) = 5. The theorem is a consequence of (129).

(131) digits(234, 10) = 〈4, 3, 2〉.
(132)

∑
digits(234, 10) = 9. The theorem is a consequence of (131).

(133) digits(247, 10) = 〈7, 4, 2〉.
(134)

∑
digits(247, 10) = 13. The theorem is a consequence of (133).

(135) 247 is the solution to Sierpiński’s problem 36 for 13. The theorem is
a consequence of (134), (6), (102), (104), (106), (108), (110), (112), (114),
(116), (118), (41), (78), (120), (122), (124), (126), (128), (130), and (132).

7. Problem 36 for s = 14

Now we state the propositions:

(136) digits(14, 10) = 〈4, 1〉.
(137)

∑
digits(14, 10) = 5. The theorem is a consequence of (136).

(138) digits(28, 10) = 〈8, 2〉.
(139)

∑
digits(28, 10) = 10. The theorem is a consequence of (138).

(140) digits(42, 10) = 〈2, 4〉.
(141)

∑
digits(42, 10) = 6. The theorem is a consequence of (140).

(142) digits(56, 10) = 〈6, 5〉.
(143)

∑
digits(56, 10) = 11. The theorem is a consequence of (142).

(144) digits(84, 10) = 〈4, 8〉.
(145)

∑
digits(84, 10) = 12. The theorem is a consequence of (144).

(146) digits(98, 10) = 〈8, 9〉.
(147)

∑
digits(98, 10) = 17. The theorem is a consequence of (146).

(148) digits(112, 10) = 〈2, 1, 1〉.
(149)

∑
digits(112, 10) = 4. The theorem is a consequence of (148).

(150) digits(126, 10) = 〈6, 2, 1〉.
(151)

∑
digits(126, 10) = 9. The theorem is a consequence of (150).

(152) digits(168, 10) = 〈8, 6, 1〉.
(153)

∑
digits(168, 10) = 15. The theorem is a consequence of (152).

(154) digits(196, 10) = 〈6, 9, 1〉.
(155)

∑
digits(196, 10) = 16. The theorem is a consequence of (154).

(156) digits(210, 10) = 〈0, 1, 2〉.



Elementary number theory problems. Part XI 237

(157)
∑

digits(210, 10) = 3. The theorem is a consequence of (156).

(158) digits(224, 10) = 〈4, 2, 2〉.
(159)

∑
digits(224, 10) = 8. The theorem is a consequence of (158).

(160) digits(238, 10) = 〈8, 3, 2〉.
(161)

∑
digits(238, 10) = 13. The theorem is a consequence of (160).

(162) digits(252, 10) = 〈2, 5, 2〉.
(163)

∑
digits(252, 10) = 9. The theorem is a consequence of (162).

(164) digits(266, 10) = 〈6, 6, 2〉.
(165)

∑
digits(266, 10) = 14. The theorem is a consequence of (164).

(166) 266 is the solution to Sierpiński’s problem 36 for 14. The theorem is
a consequence of (165), (6), (137), (139), (141), (143), (29), (145), (147),
(149), (151), (43), (80), (153), (124), (155), (157), (159), (161), and (163).

8. Problem 36 for s = 15

Now we state the propositions:

(167) digits(15, 10) = 〈5, 1〉.
(168)

∑
digits(15, 10) = 6. The theorem is a consequence of (167).

(169) digits(45, 10) = 〈5, 4〉.
(170)

∑
digits(45, 10) = 9. The theorem is a consequence of (169).

(171) digits(75, 10) = 〈5, 7〉.
(172)

∑
digits(75, 10) = 12. The theorem is a consequence of (171).

(173) digits(105, 10) = 〈5, 0, 1〉.
(174)

∑
digits(105, 10) = 6. The theorem is a consequence of (173).

(175) digits(135, 10) = 〈5, 3, 1〉.
(176)

∑
digits(135, 10) = 9. The theorem is a consequence of (175).

(177) 195 is the solution to Sierpiński’s problem 36 for 15. The theorem is
a consequence of (126), (6), (168), (21), (170), (27), (172), (33), (174),
(39), (176), (45), (82), and (51).

9. Problem 36 for s = 16

Now we state the propositions:

(178) digits(16, 10) = 〈6, 1〉.
(179)

∑
digits(16, 10) = 7. The theorem is a consequence of (178).

(180) digits(32, 10) = 〈2, 3〉.
(181)

∑
digits(32, 10) = 5. The theorem is a consequence of (180).
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(182) digits(64, 10) = 〈4, 6〉.
(183)

∑
digits(64, 10) = 10. The theorem is a consequence of (182).

(184) digits(96, 10) = 〈6, 9〉.
(185)

∑
digits(96, 10) = 15. The theorem is a consequence of (184).

(186) digits(128, 10) = 〈8, 2, 1〉.
(187)

∑
digits(128, 10) = 11. The theorem is a consequence of (186).

(188) digits(144, 10) = 〈4, 4, 1〉.
(189)

∑
digits(144, 10) = 9. The theorem is a consequence of (188).

(190) digits(192, 10) = 〈2, 9, 1〉.
(191)

∑
digits(192, 10) = 12. The theorem is a consequence of (190).

(192) digits(240, 10) = 〈0, 4, 2〉.
(193)

∑
digits(240, 10) = 6. The theorem is a consequence of (192).

(194) digits(256, 10) = 〈6, 5, 2〉.
(195)

∑
digits(256, 10) = 13. The theorem is a consequence of (194).

(196) digits(272, 10) = 〈2, 7, 2〉.
(197)

∑
digits(272, 10) = 11. The theorem is a consequence of (196).

(198) digits(288, 10) = 〈8, 8, 2〉.
(199)

∑
digits(288, 10) = 18. The theorem is a consequence of (198).

(200) digits(304, 10) = 〈4, 0, 3〉.
(201)

∑
digits(304, 10) = 7. The theorem is a consequence of (200).

(202) digits(320, 10) = 〈0, 2, 3〉.
(203)

∑
digits(320, 10) = 5. The theorem is a consequence of (202).

(204) digits(336, 10) = 〈6, 3, 3〉.
(205)

∑
digits(336, 10) = 12. The theorem is a consequence of (204).

(206) digits(352, 10) = 〈2, 5, 3〉.
(207)

∑
digits(352, 10) = 10. The theorem is a consequence of (206).

(208) digits(368, 10) = 〈8, 6, 3〉.
(209)

∑
digits(368, 10) = 17. The theorem is a consequence of (208).

(210) digits(384, 10) = 〈4, 8, 3〉.
(211)

∑
digits(384, 10) = 15. The theorem is a consequence of (210).

(212) digits(400, 10) = 〈0, 0, 4〉.
(213)

∑
digits(400, 10) = 4. The theorem is a consequence of (212).

(214) digits(416, 10) = 〈6, 1, 4〉.
(215)

∑
digits(416, 10) = 11. The theorem is a consequence of (214).

(216) digits(432, 10) = 〈2, 3, 4〉.
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(217)
∑

digits(432, 10) = 9. The theorem is a consequence of (216).

(218) digits(448, 10) = 〈8, 4, 4〉.
(219)

∑
digits(448, 10) = 16. The theorem is a consequence of (218).

(220) 448 is the solution to Sierpiński’s problem 36 for 16. The theorem is
a consequence of (219), (6), (179), (181), (99), (183), (31), (185), (149),
(187), (189), (47), (84), (191), (128), (159), (193), (195), (197), (199),
(201), (203), (205), (207), (209), (211), (213), (215), and (217).

10. Problem 36 for s = 17

Now we state the propositions:

(221) digits(17, 10) = 〈7, 1〉.
(222)

∑
digits(17, 10) = 8. The theorem is a consequence of (221).

(223) digits(34, 10) = 〈4, 3〉.
(224)

∑
digits(34, 10) = 7. The theorem is a consequence of (223).

(225) digits(51, 10) = 〈1, 5〉.
(226)

∑
digits(51, 10) = 6. The theorem is a consequence of (225).

(227) digits(68, 10) = 〈8, 6〉.
(228)

∑
digits(68, 10) = 14. The theorem is a consequence of (227).

(229) digits(85, 10) = 〈5, 8〉.
(230)

∑
digits(85, 10) = 13. The theorem is a consequence of (229).

(231) digits(102, 10) = 〈2, 0, 1〉.
(232)

∑
digits(102, 10) = 3. The theorem is a consequence of (231).

(233) digits(119, 10) = 〈9, 1, 1〉.
(234)

∑
digits(119, 10) = 11. The theorem is a consequence of (233).

(235) digits(136, 10) = 〈6, 3, 1〉.
(236)

∑
digits(136, 10) = 10. The theorem is a consequence of (235).

(237) digits(153, 10) = 〈3, 5, 1〉.
(238)

∑
digits(153, 10) = 9. The theorem is a consequence of (237).

(239) digits(204, 10) = 〈4, 0, 2〉.
(240)

∑
digits(204, 10) = 6. The theorem is a consequence of (239).

(241) digits(255, 10) = 〈5, 5, 2〉.
(242)

∑
digits(255, 10) = 12. The theorem is a consequence of (241).

(243) digits(289, 10) = 〈9, 8, 2〉.
(244)

∑
digits(289, 10) = 19. The theorem is a consequence of (243).

(245) digits(306, 10) = 〈6, 0, 3〉.
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(246)
∑

digits(306, 10) = 9. The theorem is a consequence of (245).

(247) digits(323, 10) = 〈3, 2, 3〉.
(248)

∑
digits(323, 10) = 8. The theorem is a consequence of (247).

(249) digits(340, 10) = 〈0, 4, 3〉.
(250)

∑
digits(340, 10) = 7. The theorem is a consequence of (249).

(251) digits(357, 10) = 〈7, 5, 3〉.
(252)

∑
digits(357, 10) = 15. The theorem is a consequence of (251).

(253) digits(374, 10) = 〈4, 7, 3〉.
(254)

∑
digits(374, 10) = 14. The theorem is a consequence of (253).

(255) digits(391, 10) = 〈1, 9, 3〉.
(256)

∑
digits(391, 10) = 13. The theorem is a consequence of (255).

(257) digits(408, 10) = 〈8, 0, 4〉.
(258)

∑
digits(408, 10) = 12. The theorem is a consequence of (257).

(259) digits(425, 10) = 〈5, 2, 4〉.
(260)

∑
digits(425, 10) = 11. The theorem is a consequence of (259).

(261) digits(442, 10) = 〈2, 4, 4〉.
(262)

∑
digits(442, 10) = 10. The theorem is a consequence of (261).

(263) digits(459, 10) = 〈9, 5, 4〉.
(264)

∑
digits(459, 10) = 18. The theorem is a consequence of (263).

(265) digits(476, 10) = 〈6, 7, 4〉.
(266)

∑
digits(476, 10) = 17. The theorem is a consequence of (265).

(267) 476 is the solution to Sierpiński’s problem 36 for 17. The theorem is
a consequence of (266), (6), (222), (224), (226), (228), (230), (232), (234),
(236), (238), (49), (86), (240), (130), (161), (242), (197), (244), (246),
(248), (250), (252), (254), (256), (258), (260), (262), and (264).

11. Problem 36 for s = 18

Now we state the propositions:

(268) digits(18, 10) = 〈8, 1〉.
(269)

∑
digits(18, 10) = 9. The theorem is a consequence of (268).

(270) digits(54, 10) = 〈4, 5〉.
(271)

∑
digits(54, 10) = 9. The theorem is a consequence of (270).

(272) digits(72, 10) = 〈2, 7〉.
(273)

∑
digits(72, 10) = 9. The theorem is a consequence of (272).

(274) digits(108, 10) = 〈8, 0, 1〉.
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(275)
∑

digits(108, 10) = 9. The theorem is a consequence of (274).

(276) digits(162, 10) = 〈2, 6, 1〉.
(277)

∑
digits(162, 10) = 9. The theorem is a consequence of (276).

(278) 198 is the solution to Sierpiński’s problem 36 for 18. The theorem is
a consequence of (88), (6), (269), (97), (271), (273), (33), (275), (151),
(189), (277), and (51).

12. Problem 36 for s = 19

Now we state the propositions:

(279) digits(19, 10) = 〈9, 1〉.
(280)

∑
digits(19, 10) = 10. The theorem is a consequence of (279).

(281) digits(38, 10) = 〈8, 3〉.
(282)

∑
digits(38, 10) = 11. The theorem is a consequence of (281).

(283) digits(57, 10) = 〈7, 5〉.
(284)

∑
digits(57, 10) = 12. The theorem is a consequence of (283).

(285) digits(76, 10) = 〈6, 7〉.
(286)

∑
digits(76, 10) = 13. The theorem is a consequence of (285).

(287) digits(95, 10) = 〈5, 9〉.
(288)

∑
digits(95, 10) = 14. The theorem is a consequence of (287).

(289) digits(114, 10) = 〈4, 1, 1〉.
(290)

∑
digits(114, 10) = 6. The theorem is a consequence of (289).

(291) digits(133, 10) = 〈3, 3, 1〉.
(292)

∑
digits(133, 10) = 7. The theorem is a consequence of (291).

(293) digits(152, 10) = 〈2, 5, 1〉.
(294)

∑
digits(152, 10) = 8. The theorem is a consequence of (293).

(295) digits(171, 10) = 〈1, 7, 1〉.
(296)

∑
digits(171, 10) = 9. The theorem is a consequence of (295).

(297) digits(228, 10) = 〈8, 2, 2〉.
(298)

∑
digits(228, 10) = 12. The theorem is a consequence of (297).

(299) digits(285, 10) = 〈5, 8, 2〉.
(300)

∑
digits(285, 10) = 15. The theorem is a consequence of (299).

(301) digits(342, 10) = 〈2, 4, 3〉.
(302)

∑
digits(342, 10) = 9. The theorem is a consequence of (301).

(303) digits(361, 10) = 〈1, 6, 3〉.
(304)

∑
digits(361, 10) = 10. The theorem is a consequence of (303).
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(305) digits(380, 10) = 〈0, 8, 3〉.
(306)

∑
digits(380, 10) = 11. The theorem is a consequence of (305).

(307) digits(399, 10) = 〈9, 9, 3〉.
(308)

∑
digits(399, 10) = 21. The theorem is a consequence of (307).

(309) digits(418, 10) = 〈8, 1, 4〉.
(310)

∑
digits(418, 10) = 13. The theorem is a consequence of (309).

(311) digits(437, 10) = 〈7, 3, 4〉.
(312)

∑
digits(437, 10) = 14. The theorem is a consequence of (311).

(313) digits(456, 10) = 〈6, 5, 4〉.
(314)

∑
digits(456, 10) = 15. The theorem is a consequence of (313).

(315) digits(475, 10) = 〈5, 7, 4〉.
(316)

∑
digits(475, 10) = 16. The theorem is a consequence of (315).

(317) digits(494, 10) = 〈4, 9, 4〉.
(318)

∑
digits(494, 10) = 17. The theorem is a consequence of (317).

(319) digits(513, 10) = 〈3, 1, 5〉.
(320)

∑
digits(513, 10) = 9. The theorem is a consequence of (319).

(321) digits(532, 10) = 〈2, 3, 5〉.
(322)

∑
digits(532, 10) = 10. The theorem is a consequence of (321).

(323) digits(551, 10) = 〈1, 5, 5〉.
(324)

∑
digits(551, 10) = 11. The theorem is a consequence of (323).

(325) digits(570, 10) = 〈0, 7, 5〉.
(326)

∑
digits(570, 10) = 12. The theorem is a consequence of (325).

(327) digits(589, 10) = 〈9, 8, 5〉.
(328)

∑
digits(589, 10) = 22. The theorem is a consequence of (327).

(329) digits(608, 10) = 〈8, 0, 6〉.
(330)

∑
digits(608, 10) = 14. The theorem is a consequence of (329).

(331) digits(627, 10) = 〈7, 2, 6〉.
(332)

∑
digits(627, 10) = 15. The theorem is a consequence of (331).

(333) digits(646, 10) = 〈6, 4, 6〉.
(334)

∑
digits(646, 10) = 16. The theorem is a consequence of (333).

(335) digits(665, 10) = 〈5, 6, 6〉.
(336)

∑
digits(665, 10) = 17. The theorem is a consequence of (335).

(337) digits(684, 10) = 〈4, 8, 6〉.
(338)

∑
digits(684, 10) = 18. The theorem is a consequence of (337).

(339) digits(703, 10) = 〈3, 0, 7〉.
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(340)
∑

digits(703, 10) = 10. The theorem is a consequence of (339).

(341) digits(722, 10) = 〈2, 2, 7〉.
(342)

∑
digits(722, 10) = 11. The theorem is a consequence of (341).

(343) digits(741, 10) = 〈1, 4, 7〉.
(344)

∑
digits(741, 10) = 12. The theorem is a consequence of (343).

(345) digits(760, 10) = 〈0, 6, 7〉.
(346)

∑
digits(760, 10) = 13. The theorem is a consequence of (345).

(347) digits(779, 10) = 〈9, 7, 7〉.
(348)

∑
digits(779, 10) = 23. The theorem is a consequence of (347).

(349) digits(798, 10) = 〈8, 9, 7〉.
(350)

∑
digits(798, 10) = 24. The theorem is a consequence of (349).

(351) digits(817, 10) = 〈7, 1, 8〉.
(352)

∑
digits(817, 10) = 16. The theorem is a consequence of (351).

(353) digits(836, 10) = 〈6, 3, 8〉.
(354)

∑
digits(836, 10) = 17. The theorem is a consequence of (353).

(355) digits(855, 10) = 〈5, 5, 8〉.
(356)

∑
digits(855, 10) = 18. The theorem is a consequence of (355).

(357) digits(874, 10) = 〈4, 7, 8〉.
(358)

∑
digits(874, 10) = 19. The theorem is a consequence of (357).

(359) 874 is the solution to Sierpiński’s problem 36 for 19. The theorem is
a consequence of (358), (6), (280), (282), (284), (286), (288), (290), (292),
(294), (296), (53), (90), (298), (134), (165), (300), (201), (248), (302),
(304), (306), (308), (310), (312), (314), (316), (318), (320), (322), (324),
(326), (328), (330), (332), (334), (336), (338), (340), (342), (344), (346),
(348), (350), (352), (354), and (356).

13. Problem 36 for s = 20

Now we state the propositions:

(360) digits(200, 10) = 〈0, 0, 2〉.
(361)

∑
digits(200, 10) = 2. The theorem is a consequence of (360).

(362) digits(220, 10) = 〈0, 2, 2〉.
(363)

∑
digits(220, 10) = 4. The theorem is a consequence of (362).

(364) digits(260, 10) = 〈0, 6, 2〉.
(365)

∑
digits(260, 10) = 8. The theorem is a consequence of (364).

(366) digits(280, 10) = 〈0, 8, 2〉.
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(367)
∑

digits(280, 10) = 10. The theorem is a consequence of (366).

(368) digits(300, 10) = 〈0, 0, 3〉.
(369)

∑
digits(300, 10) = 3. The theorem is a consequence of (368).

(370) digits(360, 10) = 〈0, 6, 3〉.
(371)

∑
digits(360, 10) = 9. The theorem is a consequence of (370).

(372) digits(420, 10) = 〈0, 2, 4〉.
(373)

∑
digits(420, 10) = 6. The theorem is a consequence of (372).

(374) digits(440, 10) = 〈0, 4, 4〉.
(375)

∑
digits(440, 10) = 8. The theorem is a consequence of (374).

(376) digits(460, 10) = 〈0, 6, 4〉.
(377)

∑
digits(460, 10) = 10. The theorem is a consequence of (376).

(378) digits(480, 10) = 〈0, 8, 4〉.
(379)

∑
digits(480, 10) = 12. The theorem is a consequence of (378).

(380) digits(500, 10) = 〈0, 0, 5〉.
(381)

∑
digits(500, 10) = 5. The theorem is a consequence of (380).

(382) digits(520, 10) = 〈0, 2, 5〉.
(383)

∑
digits(520, 10) = 7. The theorem is a consequence of (382).

(384) digits(540, 10) = 〈0, 4, 5〉.
(385)

∑
digits(540, 10) = 9. The theorem is a consequence of (384).

(386) digits(560, 10) = 〈0, 6, 5〉.
(387)

∑
digits(560, 10) = 11. The theorem is a consequence of (386).

(388) digits(580, 10) = 〈0, 8, 5〉.
(389)

∑
digits(580, 10) = 13. The theorem is a consequence of (388).

(390) digits(600, 10) = 〈0, 0, 6〉.
(391)

∑
digits(600, 10) = 6. The theorem is a consequence of (390).

(392) digits(620, 10) = 〈0, 2, 6〉.
(393)

∑
digits(620, 10) = 8. The theorem is a consequence of (392).

(394) digits(640, 10) = 〈0, 4, 6〉.
(395)

∑
digits(640, 10) = 10. The theorem is a consequence of (394).

(396) digits(660, 10) = 〈0, 6, 6〉.
(397)

∑
digits(660, 10) = 12. The theorem is a consequence of (396).

(398) digits(680, 10) = 〈0, 8, 6〉.
(399)

∑
digits(680, 10) = 14. The theorem is a consequence of (398).

(400) digits(700, 10) = 〈0, 0, 7〉.
(401)

∑
digits(700, 10) = 7. The theorem is a consequence of (400).
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(402) digits(720, 10) = 〈0, 2, 7〉.
(403)

∑
digits(720, 10) = 9. The theorem is a consequence of (402).

(404) digits(740, 10) = 〈0, 4, 7〉.
(405)

∑
digits(740, 10) = 11. The theorem is a consequence of (404).

(406) digits(780, 10) = 〈0, 8, 7〉.
(407)

∑
digits(780, 10) = 15. The theorem is a consequence of (406).

(408) digits(800, 10) = 〈0, 0, 8〉.
(409)

∑
digits(800, 10) = 8. The theorem is a consequence of (408).

(410) digits(820, 10) = 〈0, 2, 8〉.
(411)

∑
digits(820, 10) = 10. The theorem is a consequence of (410).

(412) digits(840, 10) = 〈0, 4, 8〉.
(413)

∑
digits(840, 10) = 12. The theorem is a consequence of (412).

(414) digits(860, 10) = 〈0, 6, 8〉.
(415)

∑
digits(860, 10) = 14. The theorem is a consequence of (414).

(416) digits(880, 10) = 〈0, 8, 8〉.
(417)

∑
digits(880, 10) = 16. The theorem is a consequence of (416).

(418) digits(900, 10) = 〈0, 0, 9〉.
(419)

∑
digits(900, 10) = 9. The theorem is a consequence of (418).

(420) digits(920, 10) = 〈0, 2, 9〉.
(421)

∑
digits(920, 10) = 11. The theorem is a consequence of (420).

(422) digits(940, 10) = 〈0, 4, 9〉.
(423)

∑
digits(940, 10) = 13. The theorem is a consequence of (422).

(424) digits(960, 10) = 〈0, 6, 9〉.
(425)

∑
digits(960, 10) = 15. The theorem is a consequence of (424).

(426) digits(980, 10) = 〈0, 8, 9〉.
(427)

∑
digits(980, 10) = 17. The theorem is a consequence of (426).

(428) digits(1000, 10) = 〈0, 0, 0, 1〉.
(429)

∑
digits(1000, 10) = 1. The theorem is a consequence of (428).

(430) digits(1020, 10) = 〈0, 2, 0, 1〉.
(431)

∑
digits(1020, 10) = 3. The theorem is a consequence of (430).

(432) digits(1040, 10) = 〈0, 4, 0, 1〉.
(433)

∑
digits(1040, 10) = 5. The theorem is a consequence of (432).

(434) digits(1060, 10) = 〈0, 6, 0, 1〉.
(435)

∑
digits(1060, 10) = 7. The theorem is a consequence of (434).

(436) digits(1080, 10) = 〈0, 8, 0, 1〉.
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(437)
∑

digits(1080, 10) = 9. The theorem is a consequence of (436).

(438) digits(1100, 10) = 〈0, 0, 1, 1〉.
(439)

∑
digits(1100, 10) = 2. The theorem is a consequence of (438).

(440) digits(1120, 10) = 〈0, 2, 1, 1〉.
(441)

∑
digits(1120, 10) = 4. The theorem is a consequence of (440).

(442) digits(1140, 10) = 〈0, 4, 1, 1〉.
(443)

∑
digits(1140, 10) = 6. The theorem is a consequence of (442).

(444) digits(1160, 10) = 〈0, 6, 1, 1〉.
(445)

∑
digits(1160, 10) = 8. The theorem is a consequence of (444).

(446) digits(1180, 10) = 〈0, 8, 1, 1〉.
(447)

∑
digits(1180, 10) = 10. The theorem is a consequence of (446).

(448) digits(1200, 10) = 〈0, 0, 2, 1〉.
(449)

∑
digits(1200, 10) = 3. The theorem is a consequence of (448).

(450) digits(1220, 10) = 〈0, 2, 2, 1〉.
(451)

∑
digits(1220, 10) = 5. The theorem is a consequence of (450).

(452) digits(1240, 10) = 〈0, 4, 2, 1〉.
(453)

∑
digits(1240, 10) = 7. The theorem is a consequence of (452).

(454) digits(1260, 10) = 〈0, 6, 2, 1〉.
(455)

∑
digits(1260, 10) = 9. The theorem is a consequence of (454).

(456) digits(1280, 10) = 〈0, 8, 2, 1〉.
(457)

∑
digits(1280, 10) = 11. The theorem is a consequence of (456).

(458) digits(1300, 10) = 〈0, 0, 3, 1〉.
(459)

∑
digits(1300, 10) = 4. The theorem is a consequence of (458).

(460) digits(1320, 10) = 〈0, 2, 3, 1〉.
(461)

∑
digits(1320, 10) = 6. The theorem is a consequence of (460).

(462) digits(1340, 10) = 〈0, 4, 3, 1〉.
(463)

∑
digits(1340, 10) = 8. The theorem is a consequence of (462).

(464) digits(1360, 10) = 〈0, 6, 3, 1〉.
(465)

∑
digits(1360, 10) = 10. The theorem is a consequence of (464).

(466) digits(1380, 10) = 〈0, 8, 3, 1〉.
(467)

∑
digits(1380, 10) = 12. The theorem is a consequence of (466).

(468) digits(1400, 10) = 〈0, 0, 4, 1〉.
(469)

∑
digits(1400, 10) = 5. The theorem is a consequence of (468).

(470) digits(1420, 10) = 〈0, 2, 4, 1〉.
(471)

∑
digits(1420, 10) = 7. The theorem is a consequence of (470).
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(472) digits(1440, 10) = 〈0, 4, 4, 1〉.
(473)

∑
digits(1440, 10) = 9. The theorem is a consequence of (472).

(474) digits(1460, 10) = 〈0, 6, 4, 1〉.
(475)

∑
digits(1460, 10) = 11. The theorem is a consequence of (474).

(476) digits(1480, 10) = 〈0, 8, 4, 1〉.
(477)

∑
digits(1480, 10) = 13. The theorem is a consequence of (476).

(478) digits(1500, 10) = 〈0, 0, 5, 1〉.
(479)

∑
digits(1500, 10) = 6. The theorem is a consequence of (478).

(480) digits(1520, 10) = 〈0, 2, 5, 1〉.
(481)

∑
digits(1520, 10) = 8. The theorem is a consequence of (480).

(482) digits(1540, 10) = 〈0, 4, 5, 1〉.
(483)

∑
digits(1540, 10) = 10. The theorem is a consequence of (482).

(484) digits(1560, 10) = 〈0, 6, 5, 1〉.
(485)

∑
digits(1560, 10) = 12. The theorem is a consequence of (484).

(486) digits(1580, 10) = 〈0, 8, 5, 1〉.
(487)

∑
digits(1580, 10) = 14. The theorem is a consequence of (486).

(488) digits(1600, 10) = 〈0, 0, 6, 1〉.
(489)

∑
digits(1600, 10) = 7. The theorem is a consequence of (488).

(490) digits(1620, 10) = 〈0, 2, 6, 1〉.
(491)

∑
digits(1620, 10) = 9. The theorem is a consequence of (490).

(492) digits(1640, 10) = 〈0, 4, 6, 1〉.
(493)

∑
digits(1640, 10) = 11. The theorem is a consequence of (492).

(494) digits(1660, 10) = 〈0, 6, 6, 1〉.
(495)

∑
digits(1660, 10) = 13. The theorem is a consequence of (494).

(496) digits(1680, 10) = 〈0, 8, 6, 1〉.
(497)

∑
digits(1680, 10) = 15. The theorem is a consequence of (496).

(498) digits(1700, 10) = 〈0, 0, 7, 1〉.
(499)

∑
digits(1700, 10) = 8. The theorem is a consequence of (498).

(500) digits(1720, 10) = 〈0, 2, 7, 1〉.
(501)

∑
digits(1720, 10) = 10. The theorem is a consequence of (500).

(502) digits(1740, 10) = 〈0, 4, 7, 1〉.
(503)

∑
digits(1740, 10) = 12. The theorem is a consequence of (502).

(504) digits(1760, 10) = 〈0, 6, 7, 1〉.
(505)

∑
digits(1760, 10) = 14. The theorem is a consequence of (504).

(506) digits(1780, 10) = 〈0, 8, 7, 1〉.
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(507)
∑

digits(1780, 10) = 16. The theorem is a consequence of (506).

(508) digits(1800, 10) = 〈0, 0, 8, 1〉.
(509)

∑
digits(1800, 10) = 9. The theorem is a consequence of (508).

(510) digits(1820, 10) = 〈0, 2, 8, 1〉.
(511)

∑
digits(1820, 10) = 11. The theorem is a consequence of (510).

(512) digits(1840, 10) = 〈0, 4, 8, 1〉.
(513)

∑
digits(1840, 10) = 13. The theorem is a consequence of (512).

(514) digits(1860, 10) = 〈0, 6, 8, 1〉.
(515)

∑
digits(1860, 10) = 15. The theorem is a consequence of (514).

(516) digits(1880, 10) = 〈0, 8, 8, 1〉.
(517)

∑
digits(1880, 10) = 17. The theorem is a consequence of (516).

(518) digits(1900, 10) = 〈0, 0, 9, 1〉.
(519)

∑
digits(1900, 10) = 10. The theorem is a consequence of (518).

(520) digits(1920, 10) = 〈0, 2, 9, 1〉.
(521)

∑
digits(1920, 10) = 12. The theorem is a consequence of (520).

(522) digits(1940, 10) = 〈0, 4, 9, 1〉.
(523)

∑
digits(1940, 10) = 14. The theorem is a consequence of (522).

(524) digits(1960, 10) = 〈0, 6, 9, 1〉.
(525)

∑
digits(1960, 10) = 16. The theorem is a consequence of (524).

(526) digits(1980, 10) = 〈0, 8, 9, 1〉.
(527)

∑
digits(1980, 10) = 18. The theorem is a consequence of (526).

(528) digits(2000, 10) = 〈0, 0, 0, 2〉.
(529)

∑
digits(2000, 10) = 2. The theorem is a consequence of (528).

(530) digits(2020, 10) = 〈0, 2, 0, 2〉.
(531)

∑
digits(2020, 10) = 4. The theorem is a consequence of (530).

(532) digits(2040, 10) = 〈0, 4, 0, 2〉.
(533)

∑
digits(2040, 10) = 6. The theorem is a consequence of (532).

(534) digits(2060, 10) = 〈0, 6, 0, 2〉.
(535)

∑
digits(2060, 10) = 8. The theorem is a consequence of (534).

(536) digits(2080, 10) = 〈0, 8, 0, 2〉.
(537)

∑
digits(2080, 10) = 10. The theorem is a consequence of (536).

(538) digits(2100, 10) = 〈0, 0, 1, 2〉.
(539)

∑
digits(2100, 10) = 3. The theorem is a consequence of (538).

(540) digits(2120, 10) = 〈0, 2, 1, 2〉.
(541)

∑
digits(2120, 10) = 5. The theorem is a consequence of (540).



Elementary number theory problems. Part XI 249

(542) digits(2140, 10) = 〈0, 4, 1, 2〉.
(543)

∑
digits(2140, 10) = 7. The theorem is a consequence of (542).

(544) digits(2160, 10) = 〈0, 6, 1, 2〉.
(545)

∑
digits(2160, 10) = 9. The theorem is a consequence of (544).

(546) digits(2180, 10) = 〈0, 8, 1, 2〉.
(547)

∑
digits(2180, 10) = 11. The theorem is a consequence of (546).

(548) digits(2200, 10) = 〈0, 0, 2, 2〉.
(549)

∑
digits(2200, 10) = 4. The theorem is a consequence of (548).

(550) digits(2220, 10) = 〈0, 2, 2, 2〉.
(551)

∑
digits(2220, 10) = 6. The theorem is a consequence of (550).

(552) digits(2240, 10) = 〈0, 4, 2, 2〉.
(553)

∑
digits(2240, 10) = 8. The theorem is a consequence of (552).

(554) digits(2260, 10) = 〈0, 6, 2, 2〉.
(555)

∑
digits(2260, 10) = 10. The theorem is a consequence of (554).

(556) digits(2280, 10) = 〈0, 8, 2, 2〉.
(557)

∑
digits(2280, 10) = 12. The theorem is a consequence of (556).

(558) digits(2300, 10) = 〈0, 0, 3, 2〉.
(559)

∑
digits(2300, 10) = 5. The theorem is a consequence of (558).

(560) digits(2320, 10) = 〈0, 2, 3, 2〉.
(561)

∑
digits(2320, 10) = 7. The theorem is a consequence of (560).

(562) digits(2340, 10) = 〈0, 4, 3, 2〉.
(563)

∑
digits(2340, 10) = 9. The theorem is a consequence of (562).

(564) digits(2360, 10) = 〈0, 6, 3, 2〉.
(565)

∑
digits(2360, 10) = 11. The theorem is a consequence of (564).

(566) digits(2380, 10) = 〈0, 8, 3, 2〉.
(567)

∑
digits(2380, 10) = 13. The theorem is a consequence of (566).

(568) digits(2400, 10) = 〈0, 0, 4, 2〉.
(569)

∑
digits(2400, 10) = 6. The theorem is a consequence of (568).

(570) digits(2420, 10) = 〈0, 2, 4, 2〉.
(571)

∑
digits(2420, 10) = 8. The theorem is a consequence of (570).

(572) digits(2440, 10) = 〈0, 4, 4, 2〉.
(573)

∑
digits(2440, 10) = 10. The theorem is a consequence of (572).

(574) digits(2460, 10) = 〈0, 6, 4, 2〉.
(575)

∑
digits(2460, 10) = 12. The theorem is a consequence of (574).

(576) digits(2480, 10) = 〈0, 8, 4, 2〉.
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(577)
∑

digits(2480, 10) = 14. The theorem is a consequence of (576).

(578) digits(2500, 10) = 〈0, 0, 5, 2〉.
(579)

∑
digits(2500, 10) = 7. The theorem is a consequence of (578).

(580) digits(2520, 10) = 〈0, 2, 5, 2〉.
(581)

∑
digits(2520, 10) = 9. The theorem is a consequence of (580).

(582) digits(2540, 10) = 〈0, 4, 5, 2〉.
(583)

∑
digits(2540, 10) = 11. The theorem is a consequence of (582).

(584) digits(2560, 10) = 〈0, 6, 5, 2〉.
(585)

∑
digits(2560, 10) = 13. The theorem is a consequence of (584).

(586) digits(2580, 10) = 〈0, 8, 5, 2〉.
(587)

∑
digits(2580, 10) = 15. The theorem is a consequence of (586).

(588) digits(2600, 10) = 〈0, 0, 6, 2〉.
(589)

∑
digits(2600, 10) = 8. The theorem is a consequence of (588).

(590) digits(2620, 10) = 〈0, 2, 6, 2〉.
(591)

∑
digits(2620, 10) = 10. The theorem is a consequence of (590).

(592) digits(2640, 10) = 〈0, 4, 6, 2〉.
(593)

∑
digits(2640, 10) = 12. The theorem is a consequence of (592).

(594) digits(2660, 10) = 〈0, 6, 6, 2〉.
(595)

∑
digits(2660, 10) = 14. The theorem is a consequence of (594).

(596) digits(2680, 10) = 〈0, 8, 6, 2〉.
(597)

∑
digits(2680, 10) = 16. The theorem is a consequence of (596).

(598) digits(2700, 10) = 〈0, 0, 7, 2〉.
(599)

∑
digits(2700, 10) = 9. The theorem is a consequence of (598).

(600) digits(2720, 10) = 〈0, 2, 7, 2〉.
(601)

∑
digits(2720, 10) = 11. The theorem is a consequence of (600).

(602) digits(2740, 10) = 〈0, 4, 7, 2〉.
(603)

∑
digits(2740, 10) = 13. The theorem is a consequence of (602).

(604) digits(2760, 10) = 〈0, 6, 7, 2〉.
(605)

∑
digits(2760, 10) = 15. The theorem is a consequence of (604).

(606) digits(2780, 10) = 〈0, 8, 7, 2〉.
(607)

∑
digits(2780, 10) = 17. The theorem is a consequence of (606).

(608) digits(2800, 10) = 〈0, 0, 8, 2〉.
(609)

∑
digits(2800, 10) = 10. The theorem is a consequence of (608).

(610) digits(2820, 10) = 〈0, 2, 8, 2〉.
(611)

∑
digits(2820, 10) = 12. The theorem is a consequence of (610).



Elementary number theory problems. Part XI 251

(612) digits(2840, 10) = 〈0, 4, 8, 2〉.
(613)

∑
digits(2840, 10) = 14. The theorem is a consequence of (612).

(614) digits(2860, 10) = 〈0, 6, 8, 2〉.
(615)

∑
digits(2860, 10) = 16. The theorem is a consequence of (614).

(616) digits(2880, 10) = 〈0, 8, 8, 2〉.
(617)

∑
digits(2880, 10) = 18. The theorem is a consequence of (616).

(618) digits(2900, 10) = 〈0, 0, 9, 2〉.
(619)

∑
digits(2900, 10) = 11. The theorem is a consequence of (618).

(620) digits(2920, 10) = 〈0, 2, 9, 2〉.
(621)

∑
digits(2920, 10) = 13. The theorem is a consequence of (620).

(622) digits(2940, 10) = 〈0, 4, 9, 2〉.
(623)

∑
digits(2940, 10) = 15. The theorem is a consequence of (622).

(624) digits(2960, 10) = 〈0, 6, 9, 2〉.
(625)

∑
digits(2960, 10) = 17. The theorem is a consequence of (624).

(626) digits(2980, 10) = 〈0, 8, 9, 2〉.
(627)

∑
digits(2980, 10) = 19. The theorem is a consequence of (626).

(628) digits(3000, 10) = 〈0, 0, 0, 3〉.
(629)

∑
digits(3000, 10) = 3. The theorem is a consequence of (628).

(630) digits(3020, 10) = 〈0, 2, 0, 3〉.
(631)

∑
digits(3020, 10) = 5. The theorem is a consequence of (630).

(632) digits(3040, 10) = 〈0, 4, 0, 3〉.
(633)

∑
digits(3040, 10) = 7. The theorem is a consequence of (632).

(634) digits(3060, 10) = 〈0, 6, 0, 3〉.
(635)

∑
digits(3060, 10) = 9. The theorem is a consequence of (634).

(636) digits(3080, 10) = 〈0, 8, 0, 3〉.
(637)

∑
digits(3080, 10) = 11. The theorem is a consequence of (636).

(638) digits(3100, 10) = 〈0, 0, 1, 3〉.
(639)

∑
digits(3100, 10) = 4. The theorem is a consequence of (638).

(640) digits(3120, 10) = 〈0, 2, 1, 3〉.
(641)

∑
digits(3120, 10) = 6. The theorem is a consequence of (640).

(642) digits(3140, 10) = 〈0, 4, 1, 3〉.
(643)

∑
digits(3140, 10) = 8. The theorem is a consequence of (642).

(644) digits(3160, 10) = 〈0, 6, 1, 3〉.
(645)

∑
digits(3160, 10) = 10. The theorem is a consequence of (644).

(646) digits(3180, 10) = 〈0, 8, 1, 3〉.
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(647)
∑

digits(3180, 10) = 12. The theorem is a consequence of (646).

(648) digits(3200, 10) = 〈0, 0, 2, 3〉.
(649)

∑
digits(3200, 10) = 5. The theorem is a consequence of (648).

(650) digits(3220, 10) = 〈0, 2, 2, 3〉.
(651)

∑
digits(3220, 10) = 7. The theorem is a consequence of (650).

(652) digits(3240, 10) = 〈0, 4, 2, 3〉.
(653)

∑
digits(3240, 10) = 9. The theorem is a consequence of (652).

(654) digits(3260, 10) = 〈0, 6, 2, 3〉.
(655)

∑
digits(3260, 10) = 11. The theorem is a consequence of (654).

(656) digits(3280, 10) = 〈0, 8, 2, 3〉.
(657)

∑
digits(3280, 10) = 13. The theorem is a consequence of (656).

(658) digits(3300, 10) = 〈0, 0, 3, 3〉.
(659)

∑
digits(3300, 10) = 6. The theorem is a consequence of (658).

(660) digits(3320, 10) = 〈0, 2, 3, 3〉.
(661)

∑
digits(3320, 10) = 8. The theorem is a consequence of (660).

(662) digits(3340, 10) = 〈0, 4, 3, 3〉.
(663)

∑
digits(3340, 10) = 10. The theorem is a consequence of (662).

(664) digits(3360, 10) = 〈0, 6, 3, 3〉.
(665)

∑
digits(3360, 10) = 12. The theorem is a consequence of (664).

(666) digits(3380, 10) = 〈0, 8, 3, 3〉.
(667)

∑
digits(3380, 10) = 14. The theorem is a consequence of (666).

(668) digits(3400, 10) = 〈0, 0, 4, 3〉.
(669)

∑
digits(3400, 10) = 7. The theorem is a consequence of (668).

(670) digits(3420, 10) = 〈0, 2, 4, 3〉.
(671)

∑
digits(3420, 10) = 9. The theorem is a consequence of (670).

(672) digits(3440, 10) = 〈0, 4, 4, 3〉.
(673)

∑
digits(3440, 10) = 11. The theorem is a consequence of (672).

(674) digits(3460, 10) = 〈0, 6, 4, 3〉.
(675)

∑
digits(3460, 10) = 13. The theorem is a consequence of (674).

(676) digits(3480, 10) = 〈0, 8, 4, 3〉.
(677)

∑
digits(3480, 10) = 15. The theorem is a consequence of (676).

(678) digits(3500, 10) = 〈0, 0, 5, 3〉.
(679)

∑
digits(3500, 10) = 8. The theorem is a consequence of (678).

(680) digits(3520, 10) = 〈0, 2, 5, 3〉.
(681)

∑
digits(3520, 10) = 10. The theorem is a consequence of (680).
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(682) digits(3540, 10) = 〈0, 4, 5, 3〉.
(683)

∑
digits(3540, 10) = 12. The theorem is a consequence of (682).

(684) digits(3560, 10) = 〈0, 6, 5, 3〉.
(685)

∑
digits(3560, 10) = 14. The theorem is a consequence of (684).

(686) digits(3580, 10) = 〈0, 8, 5, 3〉.
(687)

∑
digits(3580, 10) = 16. The theorem is a consequence of (686).

(688) digits(3600, 10) = 〈0, 0, 6, 3〉.
(689)

∑
digits(3600, 10) = 9. The theorem is a consequence of (688).

(690) digits(3620, 10) = 〈0, 2, 6, 3〉.
(691)

∑
digits(3620, 10) = 11. The theorem is a consequence of (690).

(692) digits(3640, 10) = 〈0, 4, 6, 3〉.
(693)

∑
digits(3640, 10) = 13. The theorem is a consequence of (692).

(694) digits(3660, 10) = 〈0, 6, 6, 3〉.
(695)

∑
digits(3660, 10) = 15. The theorem is a consequence of (694).

(696) digits(3680, 10) = 〈0, 8, 6, 3〉.
(697)

∑
digits(3680, 10) = 17. The theorem is a consequence of (696).

(698) digits(3700, 10) = 〈0, 0, 7, 3〉.
(699)

∑
digits(3700, 10) = 10. The theorem is a consequence of (698).

(700) digits(3720, 10) = 〈0, 2, 7, 3〉.
(701)

∑
digits(3720, 10) = 12. The theorem is a consequence of (700).

(702) digits(3740, 10) = 〈0, 4, 7, 3〉.
(703)

∑
digits(3740, 10) = 14. The theorem is a consequence of (702).

(704) digits(3760, 10) = 〈0, 6, 7, 3〉.
(705)

∑
digits(3760, 10) = 16. The theorem is a consequence of (704).

(706) digits(3780, 10) = 〈0, 8, 7, 3〉.
(707)

∑
digits(3780, 10) = 18. The theorem is a consequence of (706).

(708) digits(3800, 10) = 〈0, 0, 8, 3〉.
(709)

∑
digits(3800, 10) = 11. The theorem is a consequence of (708).

(710) digits(3820, 10) = 〈0, 2, 8, 3〉.
(711)

∑
digits(3820, 10) = 13. The theorem is a consequence of (710).

(712) digits(3840, 10) = 〈0, 4, 8, 3〉.
(713)

∑
digits(3840, 10) = 15. The theorem is a consequence of (712).

(714) digits(3860, 10) = 〈0, 6, 8, 3〉.
(715)

∑
digits(3860, 10) = 17. The theorem is a consequence of (714).

(716) digits(3880, 10) = 〈0, 8, 8, 3〉.
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(717)
∑

digits(3880, 10) = 19. The theorem is a consequence of (716).

(718) digits(3900, 10) = 〈0, 0, 9, 3〉.
(719)

∑
digits(3900, 10) = 12. The theorem is a consequence of (718).

(720) digits(3920, 10) = 〈0, 2, 9, 3〉.
(721)

∑
digits(3920, 10) = 14. The theorem is a consequence of (720).

(722) digits(3940, 10) = 〈0, 4, 9, 3〉.
(723)

∑
digits(3940, 10) = 16. The theorem is a consequence of (722).

(724) digits(3960, 10) = 〈0, 6, 9, 3〉.
(725)

∑
digits(3960, 10) = 18. The theorem is a consequence of (724).

(726) digits(3980, 10) = 〈0, 8, 9, 3〉.
(727)

∑
digits(3980, 10) = 20. The theorem is a consequence of (726).

(728) 3980 is the solution to Sierpiński’s problem 36 for 20. The theorem is
a consequence of (727), (6), (19), (23), (27), (31), (35), (39), (43), (47),
(51), (361), (363), (193), (365), (367), (369), (203), (250), (371), (306),
(213), (373), (375), (377), (379), (381), (383), (385), (387), (389), (391),
(393), (395), (397), (399), (401), (403), (405), (346), (407), (409), (411),
(413), (415), (417), (419), (421), (423), (425), (427), (429), (431), (433),
(435), (437), (439), (441), (443), (445), (447), (449), (451), (453), (455),
(457), (459), (461), (463), (465), (467), (469), (471), (473), (475), (477),
(479), (481), (483), (485), (487), (489), (491), (493), (495), (497), (499),
(501), (503), (505), (507), (509), (511), (513), (515), (517), (519), (521),
(523), (525), (527), (529), (531), (533), (535), (537), (539), (541), (543),
(545), (547), (549), (551), (553), (555), (557), (559), (561), (563), (565),
(567), (569), (571), (573), (575), (577), (579), (581), (583), (585), (587),
(589), (591), (593), (595), (597), (599), (601), (603), (605), (607), (609),
(611), (613), (615), (617), (619), (621), (623), (625), (627), (629), (631),
(633), (635), (637), (639), (641), (643), (645), (647), (649), (651), (653),
(655), (657), (659), (661), (663), (665), (667), (669), (671), (673), (675),
(677), (679), (681), (683), (685), (687), (689), (691), (693), (695), (697),
(699), (701), (703), (705), (707), (709), (711), (713), (715), (717), (719),
(721), (723), and (725).
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14. Problem 36 for s = 21

Now we state the propositions:

(729) digits(21, 10) = 〈1, 2〉.
(730)

∑
digits(21, 10) = 3. The theorem is a consequence of (729).

(731) digits(63, 10) = 〈3, 6〉.
(732)

∑
digits(63, 10) = 9. The theorem is a consequence of (731).

(733) digits(147, 10) = 〈7, 4, 1〉.
(734)

∑
digits(147, 10) = 12. The theorem is a consequence of (733).

(735) digits(189, 10) = 〈9, 8, 1〉.
(736)

∑
digits(189, 10) = 18. The theorem is a consequence of (735).

(737) digits(231, 10) = 〈1, 3, 2〉.
(738)

∑
digits(231, 10) = 6. The theorem is a consequence of (737).

(739) digits(273, 10) = 〈3, 7, 2〉.
(740)

∑
digits(273, 10) = 12. The theorem is a consequence of (739).

(741) digits(294, 10) = 〈4, 9, 2〉.
(742)

∑
digits(294, 10) = 15. The theorem is a consequence of (741).

(743) digits(315, 10) = 〈5, 1, 3〉.
(744)

∑
digits(315, 10) = 9. The theorem is a consequence of (743).

(745) digits(378, 10) = 〈8, 7, 3〉.
(746)

∑
digits(378, 10) = 18. The theorem is a consequence of (745).

(747) 399 is the solution to Sierpiński’s problem 36 for 21. The theorem is
a consequence of (308), (6), (730), (141), (732), (145), (174), (151), (734),
(153), (736), (157), (738), (163), (740), (742), (744), (205), (252), and
(746).

15. Problem 36 for s = 22

Now we state the propositions:

(748) digits(242, 10) = 〈2, 4, 2〉.
(749)

∑
digits(242, 10) = 8. The theorem is a consequence of (748).

(750) digits(264, 10) = 〈4, 6, 2〉.
(751)

∑
digits(264, 10) = 12. The theorem is a consequence of (750).

(752) digits(286, 10) = 〈6, 8, 2〉.
(753)

∑
digits(286, 10) = 16. The theorem is a consequence of (752).

(754) digits(308, 10) = 〈8, 0, 3〉.
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(755)
∑

digits(308, 10) = 11. The theorem is a consequence of (754).

(756) digits(330, 10) = 〈0, 3, 3〉.
(757)

∑
digits(330, 10) = 6. The theorem is a consequence of (756).

(758) digits(396, 10) = 〈6, 9, 3〉.
(759)

∑
digits(396, 10) = 18. The theorem is a consequence of (758).

(760) digits(462, 10) = 〈2, 6, 4〉.
(761)

∑
digits(462, 10) = 12. The theorem is a consequence of (760).

(762) digits(484, 10) = 〈4, 8, 4〉.
(763)

∑
digits(484, 10) = 16. The theorem is a consequence of (762).

(764) digits(506, 10) = 〈6, 0, 5〉.
(765)

∑
digits(506, 10) = 11. The theorem is a consequence of (764).

(766) digits(528, 10) = 〈8, 2, 5〉.
(767)

∑
digits(528, 10) = 15. The theorem is a consequence of (766).

(768) digits(550, 10) = 〈0, 5, 5〉.
(769)

∑
digits(550, 10) = 10. The theorem is a consequence of (768).

(770) digits(572, 10) = 〈2, 7, 5〉.
(771)

∑
digits(572, 10) = 14. The theorem is a consequence of (770).

(772) digits(594, 10) = 〈4, 9, 5〉.
(773)

∑
digits(594, 10) = 18. The theorem is a consequence of (772).

(774) digits(616, 10) = 〈6, 1, 6〉.
(775)

∑
digits(616, 10) = 13. The theorem is a consequence of (774).

(776) digits(638, 10) = 〈8, 3, 6〉.
(777)

∑
digits(638, 10) = 17. The theorem is a consequence of (776).

(778) digits(682, 10) = 〈2, 8, 6〉.
(779)

∑
digits(682, 10) = 16. The theorem is a consequence of (778).

(780) digits(704, 10) = 〈4, 0, 7〉.
(781)

∑
digits(704, 10) = 11. The theorem is a consequence of (780).

(782) digits(726, 10) = 〈6, 2, 7〉.
(783)

∑
digits(726, 10) = 15. The theorem is a consequence of (782).

(784) digits(748, 10) = 〈8, 4, 7〉.
(785)

∑
digits(748, 10) = 19. The theorem is a consequence of (784).

(786) digits(770, 10) = 〈0, 7, 7〉.
(787)

∑
digits(770, 10) = 14. The theorem is a consequence of (786).

(788) digits(792, 10) = 〈2, 9, 7〉.
(789)

∑
digits(792, 10) = 18. The theorem is a consequence of (788).
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(790) digits(814, 10) = 〈4, 1, 8〉.
(791)

∑
digits(814, 10) = 13. The theorem is a consequence of (790).

(792) digits(858, 10) = 〈8, 5, 8〉.
(793)

∑
digits(858, 10) = 21. The theorem is a consequence of (792).

(794) digits(902, 10) = 〈2, 0, 9〉.
(795)

∑
digits(902, 10) = 11. The theorem is a consequence of (794).

(796) digits(924, 10) = 〈4, 2, 9〉.
(797)

∑
digits(924, 10) = 15. The theorem is a consequence of (796).

(798) digits(946, 10) = 〈6, 4, 9〉.
(799)

∑
digits(946, 10) = 19. The theorem is a consequence of (798).

(800) digits(968, 10) = 〈8, 6, 9〉.
(801)

∑
digits(968, 10) = 23. The theorem is a consequence of (800).

(802) digits(990, 10) = 〈0, 9, 9〉.
(803)

∑
digits(990, 10) = 18. The theorem is a consequence of (802).

(804) digits(1012, 10) = 〈2, 1, 0, 1〉.
(805)

∑
digits(1012, 10) = 4. The theorem is a consequence of (804).

(806) digits(1034, 10) = 〈4, 3, 0, 1〉.
(807)

∑
digits(1034, 10) = 8. The theorem is a consequence of (806).

(808) digits(1056, 10) = 〈6, 5, 0, 1〉.
(809)

∑
digits(1056, 10) = 12. The theorem is a consequence of (808).

(810) digits(1078, 10) = 〈8, 7, 0, 1〉.
(811)

∑
digits(1078, 10) = 16. The theorem is a consequence of (810).

(812) digits(1122, 10) = 〈2, 2, 1, 1〉.
(813)

∑
digits(1122, 10) = 6. The theorem is a consequence of (812).

(814) digits(1144, 10) = 〈4, 4, 1, 1〉.
(815)

∑
digits(1144, 10) = 10. The theorem is a consequence of (814).

(816) digits(1166, 10) = 〈6, 6, 1, 1〉.
(817)

∑
digits(1166, 10) = 14. The theorem is a consequence of (816).

(818) digits(1188, 10) = 〈8, 8, 1, 1〉.
(819)

∑
digits(1188, 10) = 18. The theorem is a consequence of (818).

(820) digits(1210, 10) = 〈0, 1, 2, 1〉.
(821)

∑
digits(1210, 10) = 4. The theorem is a consequence of (820).

(822) digits(1232, 10) = 〈2, 3, 2, 1〉.
(823)

∑
digits(1232, 10) = 8. The theorem is a consequence of (822).

(824) digits(1254, 10) = 〈4, 5, 2, 1〉.
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(825)
∑

digits(1254, 10) = 12. The theorem is a consequence of (824).

(826) digits(1276, 10) = 〈6, 7, 2, 1〉.
(827)

∑
digits(1276, 10) = 16. The theorem is a consequence of (826).

(828) digits(1298, 10) = 〈8, 9, 2, 1〉.
(829)

∑
digits(1298, 10) = 20. The theorem is a consequence of (828).

(830) digits(1342, 10) = 〈2, 4, 3, 1〉.
(831)

∑
digits(1342, 10) = 10. The theorem is a consequence of (830).

(832) digits(1364, 10) = 〈4, 6, 3, 1〉.
(833)

∑
digits(1364, 10) = 14. The theorem is a consequence of (832).

(834) digits(1386, 10) = 〈6, 8, 3, 1〉.
(835)

∑
digits(1386, 10) = 18. The theorem is a consequence of (834).

(836) digits(1408, 10) = 〈8, 0, 4, 1〉.
(837)

∑
digits(1408, 10) = 13. The theorem is a consequence of (836).

(838) digits(1430, 10) = 〈0, 3, 4, 1〉.
(839)

∑
digits(1430, 10) = 8. The theorem is a consequence of (838).

(840) digits(1452, 10) = 〈2, 5, 4, 1〉.
(841)

∑
digits(1452, 10) = 12. The theorem is a consequence of (840).

(842) digits(1474, 10) = 〈4, 7, 4, 1〉.
(843)

∑
digits(1474, 10) = 16. The theorem is a consequence of (842).

(844) digits(1496, 10) = 〈6, 9, 4, 1〉.
(845)

∑
digits(1496, 10) = 20. The theorem is a consequence of (844).

(846) digits(1518, 10) = 〈8, 1, 5, 1〉.
(847)

∑
digits(1518, 10) = 15. The theorem is a consequence of (846).

(848) digits(1562, 10) = 〈2, 6, 5, 1〉.
(849)

∑
digits(1562, 10) = 14. The theorem is a consequence of (848).

(850) digits(1584, 10) = 〈4, 8, 5, 1〉.
(851)

∑
digits(1584, 10) = 18. The theorem is a consequence of (850).

(852) digits(1606, 10) = 〈6, 0, 6, 1〉.
(853)

∑
digits(1606, 10) = 13. The theorem is a consequence of (852).

(854) digits(1628, 10) = 〈8, 2, 6, 1〉.
(855)

∑
digits(1628, 10) = 17. The theorem is a consequence of (854).

(856) digits(1650, 10) = 〈0, 5, 6, 1〉.
(857)

∑
digits(1650, 10) = 12. The theorem is a consequence of (856).

(858) digits(1672, 10) = 〈2, 7, 6, 1〉.
(859)

∑
digits(1672, 10) = 16. The theorem is a consequence of (858).
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(860) digits(1694, 10) = 〈4, 9, 6, 1〉.
(861)

∑
digits(1694, 10) = 20. The theorem is a consequence of (860).

(862) digits(1716, 10) = 〈6, 1, 7, 1〉.
(863)

∑
digits(1716, 10) = 15. The theorem is a consequence of (862).

(864) digits(1738, 10) = 〈8, 3, 7, 1〉.
(865)

∑
digits(1738, 10) = 19. The theorem is a consequence of (864).

(866) digits(1782, 10) = 〈2, 8, 7, 1〉.
(867)

∑
digits(1782, 10) = 18. The theorem is a consequence of (866).

(868) digits(1804, 10) = 〈4, 0, 8, 1〉.
(869)

∑
digits(1804, 10) = 13. The theorem is a consequence of (868).

(870) digits(1826, 10) = 〈6, 2, 8, 1〉.
(871)

∑
digits(1826, 10) = 17. The theorem is a consequence of (870).

(872) digits(1848, 10) = 〈8, 4, 8, 1〉.
(873)

∑
digits(1848, 10) = 21. The theorem is a consequence of (872).

(874) digits(1870, 10) = 〈0, 7, 8, 1〉.
(875)

∑
digits(1870, 10) = 16. The theorem is a consequence of (874).

(876) digits(1892, 10) = 〈2, 9, 8, 1〉.
(877)

∑
digits(1892, 10) = 20. The theorem is a consequence of (876).

(878) digits(1914, 10) = 〈4, 1, 9, 1〉.
(879)

∑
digits(1914, 10) = 15. The theorem is a consequence of (878).

(880) digits(1936, 10) = 〈6, 3, 9, 1〉.
(881)

∑
digits(1936, 10) = 19. The theorem is a consequence of (880).

(882) digits(1958, 10) = 〈8, 5, 9, 1〉.
(883)

∑
digits(1958, 10) = 23. The theorem is a consequence of (882).

(884) digits(2002, 10) = 〈2, 0, 0, 2〉.
(885)

∑
digits(2002, 10) = 4. The theorem is a consequence of (884).

(886) digits(2024, 10) = 〈4, 2, 0, 2〉.
(887)

∑
digits(2024, 10) = 8. The theorem is a consequence of (886).

(888) digits(2046, 10) = 〈6, 4, 0, 2〉.
(889)

∑
digits(2046, 10) = 12. The theorem is a consequence of (888).

(890) digits(2068, 10) = 〈8, 6, 0, 2〉.
(891)

∑
digits(2068, 10) = 16. The theorem is a consequence of (890).

(892) digits(2090, 10) = 〈0, 9, 0, 2〉.
(893)

∑
digits(2090, 10) = 11. The theorem is a consequence of (892).

(894) digits(2112, 10) = 〈2, 1, 1, 2〉.
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(895)
∑

digits(2112, 10) = 6. The theorem is a consequence of (894).

(896) digits(2134, 10) = 〈4, 3, 1, 2〉.
(897)

∑
digits(2134, 10) = 10. The theorem is a consequence of (896).

(898) digits(2156, 10) = 〈6, 5, 1, 2〉.
(899)

∑
digits(2156, 10) = 14. The theorem is a consequence of (898).

(900) digits(2178, 10) = 〈8, 7, 1, 2〉.
(901)

∑
digits(2178, 10) = 18. The theorem is a consequence of (900).

(902) digits(2222, 10) = 〈2, 2, 2, 2〉.
(903)

∑
digits(2222, 10) = 8. The theorem is a consequence of (902).

(904) digits(2244, 10) = 〈4, 4, 2, 2〉.
(905)

∑
digits(2244, 10) = 12. The theorem is a consequence of (904).

(906) digits(2266, 10) = 〈6, 6, 2, 2〉.
(907)

∑
digits(2266, 10) = 16. The theorem is a consequence of (906).

(908) digits(2288, 10) = 〈8, 8, 2, 2〉.
(909)

∑
digits(2288, 10) = 20. The theorem is a consequence of (908).

(910) digits(2310, 10) = 〈0, 1, 3, 2〉.
(911)

∑
digits(2310, 10) = 6. The theorem is a consequence of (910).

(912) digits(2332, 10) = 〈2, 3, 3, 2〉.
(913)

∑
digits(2332, 10) = 10. The theorem is a consequence of (912).

(914) digits(2354, 10) = 〈4, 5, 3, 2〉.
(915)

∑
digits(2354, 10) = 14. The theorem is a consequence of (914).

(916) digits(2376, 10) = 〈6, 7, 3, 2〉.
(917)

∑
digits(2376, 10) = 18. The theorem is a consequence of (916).

(918) digits(2398, 10) = 〈8, 9, 3, 2〉.
(919)

∑
digits(2398, 10) = 22. The theorem is a consequence of (918).

(920) 2398 is the solution to Sierpiński’s problem 36 for 22. The theorem is
a consequence of (919), (6), (58), (62), (66), (70), (37), (76), (80), (84),
(88), (363), (749), (751), (753), (755), (757), (207), (254), (759), (310),
(375), (761), (763), (765), (767), (769), (771), (773), (775), (777), (397),
(779), (781), (783), (785), (787), (789), (791), (354), (793), (417), (795),
(797), (799), (801), (803), (805), (807), (809), (811), (439), (813), (815),
(817), (819), (821), (823), (825), (827), (829), (461), (831), (833), (835),
(837), (839), (841), (843), (845), (847), (483), (849), (851), (853), (855),
(857), (859), (861), (863), (865), (505), (867), (869), (871), (873), (875),
(877), (879), (881), (883), (527), (885), (887), (889), (891), (893), (895),
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(897), (899), (901), (549), (903), (905), (907), (909), (911), (913), (915),
and (917).

16. Problem 36 for s = 23

Now we state the propositions:

(921) digits(23, 10) = 〈3, 2〉.
(922)

∑
digits(23, 10) = 5. The theorem is a consequence of (921).

(923) digits(46, 10) = 〈6, 4〉.
(924)

∑
digits(46, 10) = 10. The theorem is a consequence of (923).

(925) digits(69, 10) = 〈9, 6〉.
(926)

∑
digits(69, 10) = 15. The theorem is a consequence of (925).

(927) digits(92, 10) = 〈2, 9〉.
(928)

∑
digits(92, 10) = 11. The theorem is a consequence of (927).

(929) digits(115, 10) = 〈5, 1, 1〉.
(930)

∑
digits(115, 10) = 7. The theorem is a consequence of (929).

(931) digits(138, 10) = 〈8, 3, 1〉.
(932)

∑
digits(138, 10) = 12. The theorem is a consequence of (931).

(933) digits(161, 10) = 〈1, 6, 1〉.
(934)

∑
digits(161, 10) = 8. The theorem is a consequence of (933).

(935) digits(184, 10) = 〈4, 8, 1〉.
(936)

∑
digits(184, 10) = 13. The theorem is a consequence of (935).

(937) digits(207, 10) = 〈7, 0, 2〉.
(938)

∑
digits(207, 10) = 9. The theorem is a consequence of (937).

(939) digits(230, 10) = 〈0, 3, 2〉.
(940)

∑
digits(230, 10) = 5. The theorem is a consequence of (939).

(941) digits(253, 10) = 〈3, 5, 2〉.
(942)

∑
digits(253, 10) = 10. The theorem is a consequence of (941).

(943) digits(276, 10) = 〈6, 7, 2〉.
(944)

∑
digits(276, 10) = 15. The theorem is a consequence of (943).

(945) digits(299, 10) = 〈9, 9, 2〉.
(946)

∑
digits(299, 10) = 20. The theorem is a consequence of (945).

(947) digits(322, 10) = 〈2, 2, 3〉.
(948)

∑
digits(322, 10) = 7. The theorem is a consequence of (947).

(949) digits(345, 10) = 〈5, 4, 3〉.
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(950)
∑

digits(345, 10) = 12. The theorem is a consequence of (949).

(951) digits(414, 10) = 〈4, 1, 4〉.
(952)

∑
digits(414, 10) = 9. The theorem is a consequence of (951).

(953) digits(483, 10) = 〈3, 8, 4〉.
(954)

∑
digits(483, 10) = 15. The theorem is a consequence of (953).

(955) digits(529, 10) = 〈9, 2, 5〉.
(956)

∑
digits(529, 10) = 16. The theorem is a consequence of (955).

(957) digits(552, 10) = 〈2, 5, 5〉.
(958)

∑
digits(552, 10) = 12. The theorem is a consequence of (957).

(959) digits(575, 10) = 〈5, 7, 5〉.
(960)

∑
digits(575, 10) = 17. The theorem is a consequence of (959).

(961) digits(598, 10) = 〈8, 9, 5〉.
(962)

∑
digits(598, 10) = 22. The theorem is a consequence of (961).

(963) digits(621, 10) = 〈1, 2, 6〉.
(964)

∑
digits(621, 10) = 9. The theorem is a consequence of (963).

(965) digits(644, 10) = 〈4, 4, 6〉.
(966)

∑
digits(644, 10) = 14. The theorem is a consequence of (965).

(967) digits(667, 10) = 〈7, 6, 6〉.
(968)

∑
digits(667, 10) = 19. The theorem is a consequence of (967).

(969) digits(690, 10) = 〈0, 9, 6〉.
(970)

∑
digits(690, 10) = 15. The theorem is a consequence of (969).

(971) digits(713, 10) = 〈3, 1, 7〉.
(972)

∑
digits(713, 10) = 11. The theorem is a consequence of (971).

(973) digits(736, 10) = 〈6, 3, 7〉.
(974)

∑
digits(736, 10) = 16. The theorem is a consequence of (973).

(975) digits(759, 10) = 〈9, 5, 7〉.
(976)

∑
digits(759, 10) = 21. The theorem is a consequence of (975).

(977) digits(782, 10) = 〈2, 8, 7〉.
(978)

∑
digits(782, 10) = 17. The theorem is a consequence of (977).

(979) digits(805, 10) = 〈5, 0, 8〉.
(980)

∑
digits(805, 10) = 13. The theorem is a consequence of (979).

(981) digits(828, 10) = 〈8, 2, 8〉.
(982)

∑
digits(828, 10) = 18. The theorem is a consequence of (981).

(983) digits(851, 10) = 〈1, 5, 8〉.
(984)

∑
digits(851, 10) = 14. The theorem is a consequence of (983).
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(985) digits(897, 10) = 〈7, 9, 8〉.
(986)

∑
digits(897, 10) = 24. The theorem is a consequence of (985).

(987) digits(943, 10) = 〈3, 4, 9〉.
(988)

∑
digits(943, 10) = 16. The theorem is a consequence of (987).

(989) digits(966, 10) = 〈6, 6, 9〉.
(990)

∑
digits(966, 10) = 21. The theorem is a consequence of (989).

(991) digits(989, 10) = 〈9, 8, 9〉.
(992)

∑
digits(989, 10) = 26. The theorem is a consequence of (991).

(993) digits(1035, 10) = 〈5, 3, 0, 1〉.
(994)

∑
digits(1035, 10) = 9. The theorem is a consequence of (993).

(995) digits(1058, 10) = 〈8, 5, 0, 1〉.
(996)

∑
digits(1058, 10) = 14. The theorem is a consequence of (995).

(997) digits(1081, 10) = 〈1, 8, 0, 1〉.
(998)

∑
digits(1081, 10) = 10. The theorem is a consequence of (997).

(999) digits(1104, 10) = 〈4, 0, 1, 1〉.
(1000)

∑
digits(1104, 10) = 6. The theorem is a consequence of (999).

(1001) digits(1127, 10) = 〈7, 2, 1, 1〉.
(1002)

∑
digits(1127, 10) = 11. The theorem is a consequence of (1001).

(1003) digits(1150, 10) = 〈0, 5, 1, 1〉.
(1004)

∑
digits(1150, 10) = 7. The theorem is a consequence of (1003).

(1005) digits(1173, 10) = 〈3, 7, 1, 1〉.
(1006)

∑
digits(1173, 10) = 12. The theorem is a consequence of (1005).

(1007) digits(1196, 10) = 〈6, 9, 1, 1〉.
(1008)

∑
digits(1196, 10) = 17. The theorem is a consequence of (1007).

(1009) digits(1219, 10) = 〈9, 1, 2, 1〉.
(1010)

∑
digits(1219, 10) = 13. The theorem is a consequence of (1009).

(1011) digits(1242, 10) = 〈2, 4, 2, 1〉.
(1012)

∑
digits(1242, 10) = 9. The theorem is a consequence of (1011).

(1013) digits(1265, 10) = 〈5, 6, 2, 1〉.
(1014)

∑
digits(1265, 10) = 14. The theorem is a consequence of (1013).

(1015) digits(1288, 10) = 〈8, 8, 2, 1〉.
(1016)

∑
digits(1288, 10) = 19. The theorem is a consequence of (1015).

(1017) digits(1311, 10) = 〈1, 1, 3, 1〉.
(1018)

∑
digits(1311, 10) = 6. The theorem is a consequence of (1017).

(1019) digits(1334, 10) = 〈4, 3, 3, 1〉.
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(1020)
∑

digits(1334, 10) = 11. The theorem is a consequence of (1019).

(1021) digits(1357, 10) = 〈7, 5, 3, 1〉.
(1022)

∑
digits(1357, 10) = 16. The theorem is a consequence of (1021).

(1023) digits(1403, 10) = 〈3, 0, 4, 1〉.
(1024)

∑
digits(1403, 10) = 8. The theorem is a consequence of (1023).

(1025) digits(1426, 10) = 〈6, 2, 4, 1〉.
(1026)

∑
digits(1426, 10) = 13. The theorem is a consequence of (1025).

(1027) digits(1449, 10) = 〈9, 4, 4, 1〉.
(1028)

∑
digits(1449, 10) = 18. The theorem is a consequence of (1027).

(1029) digits(1472, 10) = 〈2, 7, 4, 1〉.
(1030)

∑
digits(1472, 10) = 14. The theorem is a consequence of (1029).

(1031) digits(1495, 10) = 〈5, 9, 4, 1〉.
(1032)

∑
digits(1495, 10) = 19. The theorem is a consequence of (1031).

(1033) digits(1541, 10) = 〈1, 4, 5, 1〉.
(1034)

∑
digits(1541, 10) = 11. The theorem is a consequence of (1033).

(1035) digits(1564, 10) = 〈4, 6, 5, 1〉.
(1036)

∑
digits(1564, 10) = 16. The theorem is a consequence of (1035).

(1037) digits(1587, 10) = 〈7, 8, 5, 1〉.
(1038)

∑
digits(1587, 10) = 21. The theorem is a consequence of (1037).

(1039) digits(1610, 10) = 〈0, 1, 6, 1〉.
(1040)

∑
digits(1610, 10) = 8. The theorem is a consequence of (1039).

(1041) digits(1633, 10) = 〈3, 3, 6, 1〉.
(1042)

∑
digits(1633, 10) = 13. The theorem is a consequence of (1041).

(1043) digits(1656, 10) = 〈6, 5, 6, 1〉.
(1044)

∑
digits(1656, 10) = 18. The theorem is a consequence of (1043).

(1045) digits(1679, 10) = 〈9, 7, 6, 1〉.
(1046)

∑
digits(1679, 10) = 23. The theorem is a consequence of (1045).

(1047) 1679 is the solution to Sierpiński’s problem 36 for 23. The theorem
is a consequence of (1046), (6), (922), (924), (926), (928), (930), (932),
(934), (936), (938), (940), (942), (944), (946), (948), (950), (209), (256),
(952), (312), (377), (954), (765), (956), (958), (960), (962), (964), (966),
(968), (970), (972), (974), (976), (978), (980), (982), (984), (358), (986),
(421), (988), (990), (992), (805), (994), (996), (998), (1000), (1002), (1004),
(1006), (1008), (1010), (1012), (1014), (1016), (1018), (1020), (1022), (467),
(1024), (1026), (1028), (1030), (1032), (847), (1034), (1036), (1038), (1040),
(1042), and (1044).
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17. Problem 36 for s = 24

Now we state the propositions:

(1048) digits(216, 10) = 〈6, 1, 2〉.
(1049)

∑
digits(216, 10) = 9. The theorem is a consequence of (1048).

(1050) digits(312, 10) = 〈2, 1, 3〉.
(1051)

∑
digits(312, 10) = 6. The theorem is a consequence of (1050).

(1052) digits(504, 10) = 〈4, 0, 5〉.
(1053)

∑
digits(504, 10) = 9. The theorem is a consequence of (1052).

(1054) digits(576, 10) = 〈6, 7, 5〉.
(1055)

∑
digits(576, 10) = 18. The theorem is a consequence of (1054).

(1056) digits(624, 10) = 〈4, 2, 6〉.
(1057)

∑
digits(624, 10) = 12. The theorem is a consequence of (1056).

(1058) digits(648, 10) = 〈8, 4, 6〉.
(1059)

∑
digits(648, 10) = 18. The theorem is a consequence of (1058).

(1060) digits(672, 10) = 〈2, 7, 6〉.
(1061)

∑
digits(672, 10) = 15. The theorem is a consequence of (1060).

(1062) digits(696, 10) = 〈6, 9, 6〉.
(1063)

∑
digits(696, 10) = 21. The theorem is a consequence of (1062).

(1064) digits(744, 10) = 〈4, 4, 7〉.
(1065)

∑
digits(744, 10) = 15. The theorem is a consequence of (1064).

(1066) digits(768, 10) = 〈8, 6, 7〉.
(1067)

∑
digits(768, 10) = 21. The theorem is a consequence of (1066).

(1068) digits(816, 10) = 〈6, 1, 8〉.
(1069)

∑
digits(816, 10) = 15. The theorem is a consequence of (1068).

(1070) digits(864, 10) = 〈4, 6, 8〉.
(1071)

∑
digits(864, 10) = 18. The theorem is a consequence of (1070).

(1072) digits(888, 10) = 〈8, 8, 8〉.
(1073)

∑
digits(888, 10) = 24. The theorem is a consequence of (1072).

(1074) 888 is the solution to Sierpiński’s problem 36 for 24. The theorem is
a consequence of (1073), (6), (95), (99), (273), (185), (39), (189), (153),
(191), (1049), (193), (751), (199), (1051), (205), (371), (211), (258), (217),
(314), (379), (1053), (767), (958), (1055), (391), (1057), (1059), (1061),
(1063), (403), (1065), (1067), (789), (1069), (413), and (1071).
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18. Problem 36 for s = 25

Now we state the propositions:

(1075) digits(25, 10) = 〈5, 2〉.
(1076)

∑
digits(25, 10) = 7. The theorem is a consequence of (1075).

(1077) digits(125, 10) = 〈5, 2, 1〉.
(1078)

∑
digits(125, 10) = 8. The theorem is a consequence of (1077).

(1079) digits(175, 10) = 〈5, 7, 1〉.
(1080)

∑
digits(175, 10) = 13. The theorem is a consequence of (1079).

(1081) digits(225, 10) = 〈5, 2, 2〉.
(1082)

∑
digits(225, 10) = 9. The theorem is a consequence of (1081).

(1083) digits(250, 10) = 〈0, 5, 2〉.
(1084)

∑
digits(250, 10) = 7. The theorem is a consequence of (1083).

(1085) digits(275, 10) = 〈5, 7, 2〉.
(1086)

∑
digits(275, 10) = 14. The theorem is a consequence of (1085).

(1087) digits(325, 10) = 〈5, 2, 3〉.
(1088)

∑
digits(325, 10) = 10. The theorem is a consequence of (1087).

(1089) digits(350, 10) = 〈0, 5, 3〉.
(1090)

∑
digits(350, 10) = 8. The theorem is a consequence of (1089).

(1091) digits(375, 10) = 〈5, 7, 3〉.
(1092)

∑
digits(375, 10) = 15. The theorem is a consequence of (1091).

(1093) digits(450, 10) = 〈0, 5, 4〉.
(1094)

∑
digits(450, 10) = 9. The theorem is a consequence of (1093).

(1095) digits(525, 10) = 〈5, 2, 5〉.
(1096)

∑
digits(525, 10) = 12. The theorem is a consequence of (1095).

(1097) digits(625, 10) = 〈5, 2, 6〉.
(1098)

∑
digits(625, 10) = 13. The theorem is a consequence of (1097).

(1099) digits(650, 10) = 〈0, 5, 6〉.
(1100)

∑
digits(650, 10) = 11. The theorem is a consequence of (1099).

(1101) digits(675, 10) = 〈5, 7, 6〉.
(1102)

∑
digits(675, 10) = 18. The theorem is a consequence of (1101).

(1103) digits(725, 10) = 〈5, 2, 7〉.
(1104)

∑
digits(725, 10) = 14. The theorem is a consequence of (1103).

(1105) digits(750, 10) = 〈0, 5, 7〉.
(1106)

∑
digits(750, 10) = 12. The theorem is a consequence of (1105).

(1107) digits(775, 10) = 〈5, 7, 7〉.
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(1108)
∑

digits(775, 10) = 19. The theorem is a consequence of (1107).

(1109) digits(825, 10) = 〈5, 2, 8〉.
(1110)

∑
digits(825, 10) = 15. The theorem is a consequence of (1109).

(1111) digits(850, 10) = 〈0, 5, 8〉.
(1112)

∑
digits(850, 10) = 13. The theorem is a consequence of (1111).

(1113) digits(875, 10) = 〈5, 7, 8〉.
(1114)

∑
digits(875, 10) = 20. The theorem is a consequence of (1113).

(1115) digits(925, 10) = 〈5, 2, 9〉.
(1116)

∑
digits(925, 10) = 16. The theorem is a consequence of (1115).

(1117) digits(950, 10) = 〈0, 5, 9〉.
(1118)

∑
digits(950, 10) = 14. The theorem is a consequence of (1117).

(1119) digits(975, 10) = 〈5, 7, 9〉.
(1120)

∑
digits(975, 10) = 21. The theorem is a consequence of (1119).

(1121) digits(1025, 10) = 〈5, 2, 0, 1〉.
(1122)

∑
digits(1025, 10) = 8. The theorem is a consequence of (1121).

(1123) digits(1050, 10) = 〈0, 5, 0, 1〉.
(1124)

∑
digits(1050, 10) = 6. The theorem is a consequence of (1123).

(1125) digits(1075, 10) = 〈5, 7, 0, 1〉.
(1126)

∑
digits(1075, 10) = 13. The theorem is a consequence of (1125).

(1127) digits(1125, 10) = 〈5, 2, 1, 1〉.
(1128)

∑
digits(1125, 10) = 9. The theorem is a consequence of (1127).

(1129) digits(1175, 10) = 〈5, 7, 1, 1〉.
(1130)

∑
digits(1175, 10) = 14. The theorem is a consequence of (1129).

(1131) digits(1225, 10) = 〈5, 2, 2, 1〉.
(1132)

∑
digits(1225, 10) = 10. The theorem is a consequence of (1131).

(1133) digits(1250, 10) = 〈0, 5, 2, 1〉.
(1134)

∑
digits(1250, 10) = 8. The theorem is a consequence of (1133).

(1135) digits(1275, 10) = 〈5, 7, 2, 1〉.
(1136)

∑
digits(1275, 10) = 15. The theorem is a consequence of (1135).

(1137) digits(1325, 10) = 〈5, 2, 3, 1〉.
(1138)

∑
digits(1325, 10) = 11. The theorem is a consequence of (1137).

(1139) digits(1350, 10) = 〈0, 5, 3, 1〉.
(1140)

∑
digits(1350, 10) = 9. The theorem is a consequence of (1139).

(1141) digits(1375, 10) = 〈5, 7, 3, 1〉.
(1142)

∑
digits(1375, 10) = 16. The theorem is a consequence of (1141).
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(1143) digits(1425, 10) = 〈5, 2, 4, 1〉.
(1144)

∑
digits(1425, 10) = 12. The theorem is a consequence of (1143).

(1145) digits(1450, 10) = 〈0, 5, 4, 1〉.
(1146)

∑
digits(1450, 10) = 10. The theorem is a consequence of (1145).

(1147) digits(1475, 10) = 〈5, 7, 4, 1〉.
(1148)

∑
digits(1475, 10) = 17. The theorem is a consequence of (1147).

(1149) digits(1525, 10) = 〈5, 2, 5, 1〉.
(1150)

∑
digits(1525, 10) = 13. The theorem is a consequence of (1149).

(1151) digits(1550, 10) = 〈0, 5, 5, 1〉.
(1152)

∑
digits(1550, 10) = 11. The theorem is a consequence of (1151).

(1153) digits(1575, 10) = 〈5, 7, 5, 1〉.
(1154)

∑
digits(1575, 10) = 18. The theorem is a consequence of (1153).

(1155) digits(1625, 10) = 〈5, 2, 6, 1〉.
(1156)

∑
digits(1625, 10) = 14. The theorem is a consequence of (1155).

(1157) digits(1675, 10) = 〈5, 7, 6, 1〉.
(1158)

∑
digits(1675, 10) = 19. The theorem is a consequence of (1157).

(1159) digits(1725, 10) = 〈5, 2, 7, 1〉.
(1160)

∑
digits(1725, 10) = 15. The theorem is a consequence of (1159).

(1161) digits(1750, 10) = 〈0, 5, 7, 1〉.
(1162)

∑
digits(1750, 10) = 13. The theorem is a consequence of (1161).

(1163) digits(1775, 10) = 〈5, 7, 7, 1〉.
(1164)

∑
digits(1775, 10) = 20. The theorem is a consequence of (1163).

(1165) digits(1825, 10) = 〈5, 2, 8, 1〉.
(1166)

∑
digits(1825, 10) = 16. The theorem is a consequence of (1165).

(1167) digits(1850, 10) = 〈0, 5, 8, 1〉.
(1168)

∑
digits(1850, 10) = 14. The theorem is a consequence of (1167).

(1169) digits(1875, 10) = 〈5, 7, 8, 1〉.
(1170)

∑
digits(1875, 10) = 21. The theorem is a consequence of (1169).

(1171) digits(1925, 10) = 〈5, 2, 9, 1〉.
(1172)

∑
digits(1925, 10) = 17. The theorem is a consequence of (1171).

(1173) digits(1950, 10) = 〈0, 5, 9, 1〉.
(1174)

∑
digits(1950, 10) = 15. The theorem is a consequence of (1173).

(1175) digits(1975, 10) = 〈5, 7, 9, 1〉.
(1176)

∑
digits(1975, 10) = 22. The theorem is a consequence of (1175).

(1177) digits(2025, 10) = 〈5, 2, 0, 2〉.
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(1178)
∑

digits(2025, 10) = 9. The theorem is a consequence of (1177).

(1179) digits(2050, 10) = 〈0, 5, 0, 2〉.
(1180)

∑
digits(2050, 10) = 7. The theorem is a consequence of (1179).

(1181) digits(2075, 10) = 〈5, 7, 0, 2〉.
(1182)

∑
digits(2075, 10) = 14. The theorem is a consequence of (1181).

(1183) digits(2125, 10) = 〈5, 2, 1, 2〉.
(1184)

∑
digits(2125, 10) = 10. The theorem is a consequence of (1183).

(1185) digits(2150, 10) = 〈0, 5, 1, 2〉.
(1186)

∑
digits(2150, 10) = 8. The theorem is a consequence of (1185).

(1187) digits(2175, 10) = 〈5, 7, 1, 2〉.
(1188)

∑
digits(2175, 10) = 15. The theorem is a consequence of (1187).

(1189) digits(2225, 10) = 〈5, 2, 2, 2〉.
(1190)

∑
digits(2225, 10) = 11. The theorem is a consequence of (1189).

(1191) digits(2250, 10) = 〈0, 5, 2, 2〉.
(1192)

∑
digits(2250, 10) = 9. The theorem is a consequence of (1191).

(1193) digits(2275, 10) = 〈5, 7, 2, 2〉.
(1194)

∑
digits(2275, 10) = 16. The theorem is a consequence of (1193).

(1195) digits(2325, 10) = 〈5, 2, 3, 2〉.
(1196)

∑
digits(2325, 10) = 12. The theorem is a consequence of (1195).

(1197) digits(2350, 10) = 〈0, 5, 3, 2〉.
(1198)

∑
digits(2350, 10) = 10. The theorem is a consequence of (1197).

(1199) digits(2375, 10) = 〈5, 7, 3, 2〉.
(1200)

∑
digits(2375, 10) = 17. The theorem is a consequence of (1199).

(1201) digits(2425, 10) = 〈5, 2, 4, 2〉.
(1202)

∑
digits(2425, 10) = 13. The theorem is a consequence of (1201).

(1203) digits(2450, 10) = 〈0, 5, 4, 2〉.
(1204)

∑
digits(2450, 10) = 11. The theorem is a consequence of (1203).

(1205) digits(2475, 10) = 〈5, 7, 4, 2〉.
(1206)

∑
digits(2475, 10) = 18. The theorem is a consequence of (1205).

(1207) digits(2525, 10) = 〈5, 2, 5, 2〉.
(1208)

∑
digits(2525, 10) = 14. The theorem is a consequence of (1207).

(1209) digits(2550, 10) = 〈0, 5, 5, 2〉.
(1210)

∑
digits(2550, 10) = 12. The theorem is a consequence of (1209).

(1211) digits(2575, 10) = 〈5, 7, 5, 2〉.
(1212)

∑
digits(2575, 10) = 19. The theorem is a consequence of (1211).
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(1213) digits(2625, 10) = 〈5, 2, 6, 2〉.
(1214)

∑
digits(2625, 10) = 15. The theorem is a consequence of (1213).

(1215) digits(2650, 10) = 〈0, 5, 6, 2〉.
(1216)

∑
digits(2650, 10) = 13. The theorem is a consequence of (1215).

(1217) digits(2675, 10) = 〈5, 7, 6, 2〉.
(1218)

∑
digits(2675, 10) = 20. The theorem is a consequence of (1217).

(1219) digits(2725, 10) = 〈5, 2, 7, 2〉.
(1220)

∑
digits(2725, 10) = 16. The theorem is a consequence of (1219).

(1221) digits(2750, 10) = 〈0, 5, 7, 2〉.
(1222)

∑
digits(2750, 10) = 14. The theorem is a consequence of (1221).

(1223) digits(2775, 10) = 〈5, 7, 7, 2〉.
(1224)

∑
digits(2775, 10) = 21. The theorem is a consequence of (1223).

(1225) digits(2825, 10) = 〈5, 2, 8, 2〉.
(1226)

∑
digits(2825, 10) = 17. The theorem is a consequence of (1225).

(1227) digits(2850, 10) = 〈0, 5, 8, 2〉.
(1228)

∑
digits(2850, 10) = 15. The theorem is a consequence of (1227).

(1229) digits(2875, 10) = 〈5, 7, 8, 2〉.
(1230)

∑
digits(2875, 10) = 22. The theorem is a consequence of (1229).

(1231) digits(2925, 10) = 〈5, 2, 9, 2〉.
(1232)

∑
digits(2925, 10) = 18. The theorem is a consequence of (1231).

(1233) digits(2950, 10) = 〈0, 5, 9, 2〉.
(1234)

∑
digits(2950, 10) = 16. The theorem is a consequence of (1233).

(1235) digits(2975, 10) = 〈5, 7, 9, 2〉.
(1236)

∑
digits(2975, 10) = 23. The theorem is a consequence of (1235).

(1237) digits(3025, 10) = 〈5, 2, 0, 3〉.
(1238)

∑
digits(3025, 10) = 10. The theorem is a consequence of (1237).

(1239) digits(3050, 10) = 〈0, 5, 0, 3〉.
(1240)

∑
digits(3050, 10) = 8. The theorem is a consequence of (1239).

(1241) digits(3075, 10) = 〈5, 7, 0, 3〉.
(1242)

∑
digits(3075, 10) = 15. The theorem is a consequence of (1241).

(1243) digits(3125, 10) = 〈5, 2, 1, 3〉.
(1244)

∑
digits(3125, 10) = 11. The theorem is a consequence of (1243).

(1245) digits(3150, 10) = 〈0, 5, 1, 3〉.
(1246)

∑
digits(3150, 10) = 9. The theorem is a consequence of (1245).

(1247) digits(3175, 10) = 〈5, 7, 1, 3〉.
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(1248)
∑

digits(3175, 10) = 16. The theorem is a consequence of (1247).

(1249) digits(3225, 10) = 〈5, 2, 2, 3〉.
(1250)

∑
digits(3225, 10) = 12. The theorem is a consequence of (1249).

(1251) digits(3250, 10) = 〈0, 5, 2, 3〉.
(1252)

∑
digits(3250, 10) = 10. The theorem is a consequence of (1251).

(1253) digits(3275, 10) = 〈5, 7, 2, 3〉.
(1254)

∑
digits(3275, 10) = 17. The theorem is a consequence of (1253).

(1255) digits(3325, 10) = 〈5, 2, 3, 3〉.
(1256)

∑
digits(3325, 10) = 13. The theorem is a consequence of (1255).

(1257) digits(3350, 10) = 〈0, 5, 3, 3〉.
(1258)

∑
digits(3350, 10) = 11. The theorem is a consequence of (1257).

(1259) digits(3375, 10) = 〈5, 7, 3, 3〉.
(1260)

∑
digits(3375, 10) = 18. The theorem is a consequence of (1259).

(1261) digits(3425, 10) = 〈5, 2, 4, 3〉.
(1262)

∑
digits(3425, 10) = 14. The theorem is a consequence of (1261).

(1263) digits(3450, 10) = 〈0, 5, 4, 3〉.
(1264)

∑
digits(3450, 10) = 12. The theorem is a consequence of (1263).

(1265) digits(3475, 10) = 〈5, 7, 4, 3〉.
(1266)

∑
digits(3475, 10) = 19. The theorem is a consequence of (1265).

(1267) digits(3525, 10) = 〈5, 2, 5, 3〉.
(1268)

∑
digits(3525, 10) = 15. The theorem is a consequence of (1267).

(1269) digits(3550, 10) = 〈0, 5, 5, 3〉.
(1270)

∑
digits(3550, 10) = 13. The theorem is a consequence of (1269).

(1271) digits(3575, 10) = 〈5, 7, 5, 3〉.
(1272)

∑
digits(3575, 10) = 20. The theorem is a consequence of (1271).

(1273) digits(3625, 10) = 〈5, 2, 6, 3〉.
(1274)

∑
digits(3625, 10) = 16. The theorem is a consequence of (1273).

(1275) digits(3650, 10) = 〈0, 5, 6, 3〉.
(1276)

∑
digits(3650, 10) = 14. The theorem is a consequence of (1275).

(1277) digits(3675, 10) = 〈5, 7, 6, 3〉.
(1278)

∑
digits(3675, 10) = 21. The theorem is a consequence of (1277).

(1279) digits(3725, 10) = 〈5, 2, 7, 3〉.
(1280)

∑
digits(3725, 10) = 17. The theorem is a consequence of (1279).

(1281) digits(3750, 10) = 〈0, 5, 7, 3〉.
(1282)

∑
digits(3750, 10) = 15. The theorem is a consequence of (1281).



272 adam naumowicz

(1283) digits(3775, 10) = 〈5, 7, 7, 3〉.
(1284)

∑
digits(3775, 10) = 22. The theorem is a consequence of (1283).

(1285) digits(3825, 10) = 〈5, 2, 8, 3〉.
(1286)

∑
digits(3825, 10) = 18. The theorem is a consequence of (1285).

(1287) digits(3850, 10) = 〈0, 5, 8, 3〉.
(1288)

∑
digits(3850, 10) = 16. The theorem is a consequence of (1287).

(1289) digits(3875, 10) = 〈5, 7, 8, 3〉.
(1290)

∑
digits(3875, 10) = 23. The theorem is a consequence of (1289).

(1291) digits(3925, 10) = 〈5, 2, 9, 3〉.
(1292)

∑
digits(3925, 10) = 19. The theorem is a consequence of (1291).

(1293) digits(3950, 10) = 〈0, 5, 9, 3〉.
(1294)

∑
digits(3950, 10) = 17. The theorem is a consequence of (1293).

(1295) digits(3975, 10) = 〈5, 7, 9, 3〉.
(1296)

∑
digits(3975, 10) = 24. The theorem is a consequence of (1295).

(1297) digits(4000, 10) = 〈0, 0, 0, 4〉.
(1298)

∑
digits(4000, 10) = 4. The theorem is a consequence of (1297).

(1299) digits(4025, 10) = 〈5, 2, 0, 4〉.
(1300)

∑
digits(4025, 10) = 11. The theorem is a consequence of (1299).

(1301) digits(4050, 10) = 〈0, 5, 0, 4〉.
(1302)

∑
digits(4050, 10) = 9. The theorem is a consequence of (1301).

(1303) digits(4075, 10) = 〈5, 7, 0, 4〉.
(1304)

∑
digits(4075, 10) = 16. The theorem is a consequence of (1303).

(1305) digits(4100, 10) = 〈0, 0, 1, 4〉.
(1306)

∑
digits(4100, 10) = 5. The theorem is a consequence of (1305).

(1307) digits(4125, 10) = 〈5, 2, 1, 4〉.
(1308)

∑
digits(4125, 10) = 12. The theorem is a consequence of (1307).

(1309) digits(4150, 10) = 〈0, 5, 1, 4〉.
(1310)

∑
digits(4150, 10) = 10. The theorem is a consequence of (1309).

(1311) digits(4175, 10) = 〈5, 7, 1, 4〉.
(1312)

∑
digits(4175, 10) = 17. The theorem is a consequence of (1311).

(1313) digits(4200, 10) = 〈0, 0, 2, 4〉.
(1314)

∑
digits(4200, 10) = 6. The theorem is a consequence of (1313).

(1315) digits(4225, 10) = 〈5, 2, 2, 4〉.
(1316)

∑
digits(4225, 10) = 13. The theorem is a consequence of (1315).

(1317) digits(4250, 10) = 〈0, 5, 2, 4〉.
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(1318)
∑

digits(4250, 10) = 11. The theorem is a consequence of (1317).

(1319) digits(4275, 10) = 〈5, 7, 2, 4〉.
(1320)

∑
digits(4275, 10) = 18. The theorem is a consequence of (1319).

(1321) digits(4300, 10) = 〈0, 0, 3, 4〉.
(1322)

∑
digits(4300, 10) = 7. The theorem is a consequence of (1321).

(1323) digits(4325, 10) = 〈5, 2, 3, 4〉.
(1324)

∑
digits(4325, 10) = 14. The theorem is a consequence of (1323).

(1325) digits(4350, 10) = 〈0, 5, 3, 4〉.
(1326)

∑
digits(4350, 10) = 12. The theorem is a consequence of (1325).

(1327) digits(4375, 10) = 〈5, 7, 3, 4〉.
(1328)

∑
digits(4375, 10) = 19. The theorem is a consequence of (1327).

(1329) digits(4400, 10) = 〈0, 0, 4, 4〉.
(1330)

∑
digits(4400, 10) = 8. The theorem is a consequence of (1329).

(1331) digits(4425, 10) = 〈5, 2, 4, 4〉.
(1332)

∑
digits(4425, 10) = 15. The theorem is a consequence of (1331).

(1333) digits(4450, 10) = 〈0, 5, 4, 4〉.
(1334)

∑
digits(4450, 10) = 13. The theorem is a consequence of (1333).

(1335) digits(4475, 10) = 〈5, 7, 4, 4〉.
(1336)

∑
digits(4475, 10) = 20. The theorem is a consequence of (1335).

(1337) digits(4500, 10) = 〈0, 0, 5, 4〉.
(1338)

∑
digits(4500, 10) = 9. The theorem is a consequence of (1337).

(1339) digits(4525, 10) = 〈5, 2, 5, 4〉.
(1340)

∑
digits(4525, 10) = 16. The theorem is a consequence of (1339).

(1341) digits(4550, 10) = 〈0, 5, 5, 4〉.
(1342)

∑
digits(4550, 10) = 14. The theorem is a consequence of (1341).

(1343) digits(4575, 10) = 〈5, 7, 5, 4〉.
(1344)

∑
digits(4575, 10) = 21. The theorem is a consequence of (1343).

(1345) digits(4600, 10) = 〈0, 0, 6, 4〉.
(1346)

∑
digits(4600, 10) = 10. The theorem is a consequence of (1345).

(1347) digits(4625, 10) = 〈5, 2, 6, 4〉.
(1348)

∑
digits(4625, 10) = 17. The theorem is a consequence of (1347).

(1349) digits(4650, 10) = 〈0, 5, 6, 4〉.
(1350)

∑
digits(4650, 10) = 15. The theorem is a consequence of (1349).

(1351) digits(4675, 10) = 〈5, 7, 6, 4〉.
(1352)

∑
digits(4675, 10) = 22. The theorem is a consequence of (1351).
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(1353) digits(4700, 10) = 〈0, 0, 7, 4〉.
(1354)

∑
digits(4700, 10) = 11. The theorem is a consequence of (1353).

(1355) digits(4725, 10) = 〈5, 2, 7, 4〉.
(1356)

∑
digits(4725, 10) = 18. The theorem is a consequence of (1355).

(1357) digits(4750, 10) = 〈0, 5, 7, 4〉.
(1358)

∑
digits(4750, 10) = 16. The theorem is a consequence of (1357).

(1359) digits(4775, 10) = 〈5, 7, 7, 4〉.
(1360)

∑
digits(4775, 10) = 23. The theorem is a consequence of (1359).

(1361) digits(4800, 10) = 〈0, 0, 8, 4〉.
(1362)

∑
digits(4800, 10) = 12. The theorem is a consequence of (1361).

(1363) digits(4825, 10) = 〈5, 2, 8, 4〉.
(1364)

∑
digits(4825, 10) = 19. The theorem is a consequence of (1363).

(1365) digits(4850, 10) = 〈0, 5, 8, 4〉.
(1366)

∑
digits(4850, 10) = 17. The theorem is a consequence of (1365).

(1367) digits(4875, 10) = 〈5, 7, 8, 4〉.
(1368)

∑
digits(4875, 10) = 24. The theorem is a consequence of (1367).

(1369) digits(4900, 10) = 〈0, 0, 9, 4〉.
(1370)

∑
digits(4900, 10) = 13. The theorem is a consequence of (1369).

(1371) digits(4925, 10) = 〈5, 2, 9, 4〉.
(1372)

∑
digits(4925, 10) = 20. The theorem is a consequence of (1371).

(1373) digits(4950, 10) = 〈0, 5, 9, 4〉.
(1374)

∑
digits(4950, 10) = 18. The theorem is a consequence of (1373).

(1375) digits(4975, 10) = 〈5, 7, 9, 4〉.
(1376)

∑
digits(4975, 10) = 25. The theorem is a consequence of (1375).

(1377) 4975 is the solution to Sierpiński’s problem 36 for 25. The theorem is
a consequence of (1376), (6), (1076), (25), (172), (35), (1078), (45), (1080),
(361), (1082), (1084), (1086), (369), (1088), (1090), (1092), (213), (260),
(1094), (316), (381), (1096), (769), (960), (391), (1098), (1100), (1102),
(401), (1104), (1106), (1108), (409), (1110), (1112), (1114), (419), (1116),
(1118), (1120), (429), (1122), (1124), (1126), (439), (1128), (1004), (1130),
(449), (1132), (1134), (1136), (459), (1138), (1140), (1142), (469), (1144),
(1146), (1148), (479), (1150), (1152), (1154), (489), (1156), (857), (1158),
(499), (1160), (1162), (1164), (509), (1166), (1168), (1170), (519), (1172),
(1174), (1176), (529), (1178), (1180), (1182), (539), (1184), (1186), (1188),
(549), (1190), (1192), (1194), (559), (1196), (1198), (1200), (569), (1202),
(1204), (1206), (579), (1208), (1210), (1212), (589), (1214), (1216), (1218),
(599), (1220), (1222), (1224), (609), (1226), (1228), (1230), (619), (1232),
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(1234), (1236), (629), (1238), (1240), (1242), (639), (1244), (1246), (1248),
(649), (1250), (1252), (1254), (659), (1256), (1258), (1260), (669), (1262),
(1264), (1266), (679), (1268), (1270), (1272), (689), (1274), (1276), (1278),
(699), (1280), (1282), (1284), (709), (1286), (1288), (1290), (719), (1292),
(1294), (1296), (1298), (1300), (1302), (1304), (1306), (1308), (1310), (1312),
(1314), (1316), (1318), (1320), (1322), (1324), (1326), (1328), (1330), (1332),
(1334), (1336), (1338), (1340), (1342), (1344), (1346), (1348), (1350), (1352),
(1354), (1356), (1358), (1360), (1362), (1364), (1366), (1368), (1370), (1372),
and (1374).

19. Problem 36 for s = 100

Now we state the proposition:

(1378) value((〈0, 0〉a (11 7−→ 9))a 〈1〉, 10) is the solution to Sierpiński’s problem
36 for 100. The theorem is a consequence of (5), (13), (12), and (14).
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Problems 42, 43, 51, and 51a are taken from Section II (“Relatively prime
numbers”), Problems 57, 59, and 72 are from Section III (“Arithmetic progres-
sions”), the rest, i.e. Problems 135, 136 – from Section IV (“Prime and composite
numbers”).

Problem 42 is closely connected to polygonal numbers formalized in [3].
Problems 153–155, taken from Section V (“Diophantine equations”) deal

with the solution of the equation

x

y
+
y

z
+
z

x
= k

in positive integers x, y, and z, where k is equal to one, two, and three, respec-
tively. More general idea of the problem (open in [12]), about positive integer
solution of this equation with arbitrary natural k is discussed quite recently in
[13].

Proofs of other problems are straightforward formalizations of solutions gi-
ven in the book, by means of available development of number theory in Mizar
[4], [5], using ellipsis [6] extensively, looking forward for more advanced auto-
matization of arithmetical calculations [9].

1. Preliminaries

Now we state the proposition:

(1) Let us consider objects x1, x2, x3, x4, x5, x6, x7, x8, x9, x10.
Then {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} =
{x1, x2, x3, x4, x5} ∪ {x6, x7, x8, x9, x10}.

Let m be a composite natural number and n be a non zero natural number.
Let us observe that m ·n is composite. Let m, n be non zero, non trivial natural
numbers. Observe that m·n is composite. Let r be a real number. Let us observe
that r2 is non negative.

Let k be a natural number and n be a non zero, non trivial natural number.
Let us observe that k + n is non trivial and non zero and k + 1 is non zero and
k + 2 is non trivial and non zero and k + 3 is non trivial and non zero. Now we
state the propositions:

(2) Let us consider a natural number n. Suppose n mod 11 = 1 and n mod
2 = 1. Then n mod 22 = 1.

(3) Let us consider natural numbers m, n, r. Suppose n > 1 and for every
natural number i such that 0 ¬ i < n holds (ArProg(m, r))(i) is odd and
prime. Let us consider a prime number p. If p < n, then p | r.
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2. Problem 42

Now we state the proposition:

(4) Let us consider natural numbers a, m, n. If a and m are relatively prime
and n | a, then n and m are relatively prime.

Let us consider a natural number a. Now we state the propositions:

(5) a and 2 · a+ 1 are relatively prime.

(6) a and 6 · a+ 1 are relatively prime.

(7) a and 3 · a+ 1 are relatively prime.

(8) Let us consider an increasing finite sequence f of elements of N, and
a natural number x. Suppose for every natural number i such that i ∈
dom f holds f(i) < x. Then f a 〈x〉 is increasing.
Proof: Consider k being a natural number such that dom f = Seg k. Set
f4 = f a 〈x〉. For every natural numbers m, n such that m, n ∈ dom f4

and m < n holds f4(m) < f4(n). �

Let us consider a natural number n. Now we state the propositions:

(9) Seg 1 7−→ n is an increasing finite sequence of elements of N.
Proof: Set f = Seg 1 7−→ n. For every natural numbers m, n such that
m, n ∈ dom f and m < n holds f(m) < f(n). �

(10) There exists an increasing, non-empty finite sequence f of elements of N
such that

(i) dom f = Seg(n+ 1), and

(ii) for every natural number i such that i ∈ dom f holds f(i) is triangu-
lar, and

(iii) f is with all coprime terms.

Proof: Define P[natural number] ≡ there exists an increasing, non-empty
finite sequence f of elements of N such that dom f = Seg($1 + 1) and for
every natural number i such that i ∈ dom f holds f(i) is triangular and
f is with all coprime terms. P[0]. For every natural number k such that
P[k] holds P[k + 1]. For every natural number n, P[n].

Consider f being an increasing, non-empty finite sequence of elements
of N such that dom f = Seg(n + 1) and for every natural number i such
that i ∈ dom f holds f(i) is triangular and f is with all coprime terms. �
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3. Problem 43

Let n be a natural number. The functor Tetrahedron(n) yielding a natural
number is defined by the term

(Def. 1) n·(n+1)·(n+2)
6 .

We say that n is tetrahedral if and only if

(Def. 2) there exists a natural number k such that n = Tetrahedron(k).

Now we state the proposition:

(11) Let us consider a natural number n. Then there exists an increasing,
non-empty finite sequence f of elements of N such that

(i) dom f = Seg(n+ 1), and

(ii) for every natural number i such that i ∈ dom f holds f(i) is tetrahe-
dral, and

(iii) f is with all coprime terms.

Proof: Define P[natural number] ≡ there exists an increasing, non-empty
finite sequence f of elements of N such that dom f = Seg($1 + 1) and for
every natural number i such that i ∈ dom f holds f(i) is tetrahedral and
f is with all coprime terms. P[0]. For every natural number k such that
P[k] holds P[k + 1]. For every natural number n, P[n].

Consider f being an increasing, non-empty finite sequence of elements
of N such that dom f = Seg(n + 1) and for every natural number i such
that i ∈ dom f holds f(i) is tetrahedral and f is with all coprime terms.
�

4. Problem 51

Let us consider a non zero natural number n. Now we state the propositions:

(12) gcd(n,Fermatn) = 1.

(13) n and Fermatn are relatively prime.

5. Problem 51a

Now we state the propositions:

(14) Let us consider natural numbers n, k, m. Suppose n | k ·m. Then there
exist natural numbers a, b such that

(i) a | k, and

(ii) b | m, and
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(iii) n = a · b.
(15) Let us consider a set A. Suppose A = {n, where n is a non zero natural

number : gcd(n, 2n − 1) > 1}. Then

(i) A is infinite, and

(ii) for every natural number k such that k ∈ A holds k  6.

Proof: For every non zero natural number k, gcd(6 · k, 26·k − 1)  3. For
every non zero natural number k, 6 · k ∈ A. For every natural number m,
there exists a natural number n such that n  m and n ∈ A. For every
natural number k such that k ∈ A holds k  6 by [14, (5)]. �

6. Problem 57

Let us consider positive natural numbers a, b and natural numbers k, x, m.
Now we state the propositions:

(16) If (ArProg(b, a))(k) = x2, then (ArProg(b, a))(m2 · a + 2 ·m · x + k) =
(m · a+ x)2.

(17) If (ArProg(b, a))(k) = x2, then (ArProg(b, a))(m2 · a + 2 ·m · x + k) is
a square.

(18) Let us consider non zero natural numbers m, n. Suppose m is quadra-
tic residue modulo n. Then there exists a natural number i such that
(ArProg(m,n))(i) is a square.

(19) Let us consider non zero natural numbers m, n, and a set A. Suppose A =
{i, where i is a natural number : (ArProg(m,n))(i) is a square}. Then A

is infinite if and only if m is quadratic residue modulo n.
Proof: Consider i being a natural number such that (ArProg(m,n))(i) is
a square. Consider x being a natural number such that (ArProg(m,n))(i) =
x2. For every natural number j, there exists a natural number k such that
k  j and k ∈ A. �

7. Problem 59

Now we state the proposition:

(20) Let us consider a natural number k. If k > 1, then k · k - k.

Observe that there exists an arithmetic progression which is non-empty,
natural-valued, and increasing. Now we state the propositions:

(21) Let us consider a natural number n, and a prime number p. If n is perfect
power and p | n, then p2 | n.
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(22) There exists no non-empty, natural-valued, increasing arithmetic pro-
gression f such that for every natural numbers i, N such that N = f(i)
holds N is perfect power.
Proof: Consider f being a non-empty, natural-valued, increasing ari-
thmetic progression such that for every natural numbers i, N such that
N = f(i) holds N is perfect power. Reconsider b = f(0) as a natural
number. Reconsider a = difference(f) as a natural number.

Consider p being a prime number such that p > a + b. Reconsider
p2 = p2 as a natural number. gcd(a, p) = 1. Consider x, y being natural
numbers such that a ·x− p2 · y = 1. Reconsider k = (p− b) ·x as a natural
number. Reconsider a1 = a · k+ b as a natural number. p2 - a · k+ b. a1 is
not perfect power. �

8. Problem 72

Now we state the propositions:

(23) Let us consider an arithmetic progression f . Suppose for every natural
number i, f(i) is a prime number. Then difference(f) is an integer.

(24) Let us consider prime numbers p, q. If p− q is odd, then p = 2 or q = 2.

Let p, q be prime numbers. One can check that p−q is integer. Let p, q be greater
than 2 prime numbers. Observe that p− q is even. Let us consider an increasing
arithmetic progression f . Now we state the propositions:

(25) If for every natural number i, f(i) is a prime number, then f(1) > 2.

(26) If for every natural number i, f(i) is a prime number, then difference(f)
is an even natural number. The theorem is a consequence of (25).

(27) (ArProg(199, 210))(0) = 199.

(28) (ArProg(199, 210))(1) = 409. The theorem is a consequence of (27).

(29) (ArProg(199, 210))(2) = 619. The theorem is a consequence of (28).

(30) (ArProg(199, 210))(3) = 829. The theorem is a consequence of (29).

(31) (ArProg(199, 210))(4) = 1039. The theorem is a consequence of (30).

(32) (ArProg(199, 210))(5) = 1249. The theorem is a consequence of (31).

(33) (ArProg(199, 210))(6) = 1459. The theorem is a consequence of (32).

(34) (ArProg(199, 210))(7) = 1669. The theorem is a consequence of (33).

(35) (ArProg(199, 210))(8) = 1879. The theorem is a consequence of (34).

(36) (ArProg(199, 210))(9) = 2089. The theorem is a consequence of (35).

Let f be a natural-valued arithmetic progression. One can verify that differe-
nce(f) is integer. Let us consider an increasing, natural-valued arithmetic pro-
gression f . Now we state the propositions:
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(37) If for every natural number i such that 0 ¬ i < 10 holds f(i) is an odd
prime number, then 210 | difference(f). The theorem is a consequence of
(3).

(38) If for every natural number i such that 0 ¬ i < 10 holds f(i) is an odd
prime number, then difference(f)  210.

(39) Let us consider an increasing, natural-valued arithmetic progression f .
Suppose for every natural number i such that 0 ¬ i < 10 holds f(i) is
an odd prime number and difference(f) = 210. Let us consider a natural
number f0. If f0 = f(0), then f0 mod 11 = 1.
Proof: f0 mod 11 6= 0. f0 mod 11 6= 10. f0 mod 11 6= 9. f0 mod 11 6= 8.
f0 mod 11 6= 7. f0 mod 11 6= 6. f0 mod 11 6= 5. f0 mod 11 6= 4. f0 mod 11 6=
3. f0 mod 11 6= 2. �

Let us consider an increasing, natural-valued arithmetic progression f . Now
we state the propositions:

(40) If for every natural number i such that 0 ¬ i < 10 holds f(i) is an odd
prime number and difference(f) = 210, then f(0)  199.
Proof: f(0) mod 11 = 1. f(0) mod 22 = 1. If f(0) div 22 = 0, then
f(0) = 1. If f(0) div 22 = 1, then f(0) = 23. If f(0) div 22 = 2, then
f(0) = 45. If f(0) div 22 = 3, then f(0) = 67. If f(0) div 22 = 4, then
f(0) = 89. If f(0) div 22 = 5, then f(0) = 111. If f(0) div 22 = 6, then
f(0) = 133. If f(0) div 22 = 7, then f(0) = 155. If f(0) div 22 = 8, then
f(0) = 177. If f(0) div 22 > 4, then f(0)  199. f(0) 6= 23. f(0) 6= 67.
f(0) 6= 89. �

(41) If for every natural number i such that 0 ¬ i < 10 holds f(i) is an odd
prime number, then f(9)  2089. The theorem is a consequence of (37),
(40), and (38).

(42) rng(ArProg(199, 210)�10) = {199, 409, 619, 829, 1039, 1249, 1459, 1669,
1879, 2089}.
Proof: Set g = ArProg(199, 210). rng(ArProg(199, 210)�10) ⊆ {199, 409,
619, 829, 1039, 1249, 1459, 1669, 1879, 2089}. x = g(0) or x = g(1) or x =
g(2) or x = g(3) or x = g(4) or x = g(5) or x = g(6) or x = g(7) or
x = g(8) or x = g(9). x ∈ rng(ArProg(199, 210)�10). �

(43) rng(ArProg(199, 210)�10) ∩ P = 10.
Proof: Set f = ArProg(199, 210)�10. {199, 409, 619, 829, 1039, 1249, 1459,
1669, 1879, 2089} ⊆ rng f∩P. {199, 409, 619, 829, 1039}misses {1249, 1459,
1669, 1879, 2089}. rng f ∩ P ⊆ {199, 409, 619, 829, 1039, 1249, 1459, 1669,
1879, 2089}. �
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9. Problem 135

Now we state the proposition:

(44) Let us consider a prime number p. Suppose p+ 2 is a prime number and
p+ 6 is a prime number and p+ 8 is a prime number and p+ 12 is a prime
number and p+ 14 is a prime number. Then p = 5.

10. Problem 136

Let n be an integer. The functor PrimeDivisors(n) yielding a subset of N is
defined by the term

(Def. 3) {k, where k is a prime number : k | n}.

Now we state the propositions:

(45) Let us consider an integer i. Then PrimeDivisors(i) ⊆ P.

(46) Let us consider a non zero natural number n. Then PrimeDivisors(n) ⊆
Seg n.

(47) Let us consider a natural number n. Then PrimeDivisors(n) ⊆ the set
of positive divisors of n.

(48) Let us consider natural numbers a, b. Then PrimeDivisors(a · b) =
PrimeDivisors(a) ∪ PrimeDivisors(b).
Proof: PrimeDivisors(a·b) ⊆ PrimeDivisors(a)∪PrimeDivisors(b) by [10,
(7)]. �

(49) Let us consider a natural number n, and a natural number a. If n  1,
then PrimeDivisors(an) = PrimeDivisors(a).
Proof: PrimeDivisors(an) ⊆ PrimeDivisors(a). Consider k being a prime
number such that k = x and k | a. �

(50) Let us consider a natural number k, and a prime number p. If k  1,
then PrimeDivisors(pk) = {p}.
Proof: Define P[natural number] ≡ PrimeDivisors(p$1+1) = {p}. For
every natural number k such that P[k] holds P[k + 1]. For every natural
number n, P[n]. �

(51) PrimeDivisors(1) = ∅.
Let us consider a natural number k. Now we state the propositions:

(52) If k  1, then PrimeDivisors(2k · (2k−2)) = {2}∪PrimeDivisors(2k−
′1−

1). The theorem is a consequence of (48) and (50).

(53) If k  1, then PrimeDivisors(2k − 2) = {2} ∪ PrimeDivisors(2k−
′1 − 1).

The theorem is a consequence of (48).
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(54) PrimeDivisors(2k · (2k − 2) + 1) = PrimeDivisors(2k − 1). The theorem
is a consequence of (48).

(55) Let us consider a natural number a. Then PrimeDivisors(a · a) =
PrimeDivisors(a). The theorem is a consequence of (48).

(56) Let us consider natural numbers k, m, n. Suppose k  1 and m = 2k−2
and n = 2k · (2k − 2). Then

(i) PrimeDivisors(m) = PrimeDivisors(n), and

(ii) PrimeDivisors(m+ 1) = PrimeDivisors(n+ 1).

The theorem is a consequence of (54), (53), and (52).

(57) (i) PrimeDivisors(75) = PrimeDivisors(1215), and

(ii) PrimeDivisors(75 + 1) = PrimeDivisors(1215 + 1).
The theorem is a consequence of (48) and (55).

11. Problem 153

Now we state the propositions:

(58) Let us consider positive real numbers x, y, z. Then x
y ·

y
z ·

z
x = 1.

(59) There exist no positive natural numbers x, y, z such that x
y + y

z + z
x = 1.

The theorem is a consequence of (58).

12. Problem 154

Now we state the propositions:

(60) Let us consider a positive real number a, and a positive natural number
n. Then n

√
a is positive.

(61) Let us consider positive real numbers a, b, c. If it is not true that a = b

and b = c, then (a+b+c
3 )

3
> a · b · c. The theorem is a consequence of (60).

(62) There exist no positive natural numbers x, y, z such that x
y + y

z + z
x = 2.

The theorem is a consequence of (58) and (61).

13. Problem 155

Now we state the proposition:

(63) Let us consider positive natural numbers x, y, z. If x
y + y

z + z
x = 3, then

x = y and y = z. The theorem is a consequence of (61) and (58).
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Summary. In this article we continue the formalization of field theory in
Mizar. We introduce simple extensions: an extension E of F is simple if E is
generated over F by a single element of E, that is E = F (a) for some a ∈ E.
First, we prove that a finite extension E of F is simple if and only if there are
only finitely many intermediate fields between E and F [7]. Second, we show
that finite extensions of a field F with characteristic 0 are always simple [1]. For
this we had to prove, that irreducible polynomials over F have single roots only,
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Introduction

In this paper we formalize simple extensions [6] using the Mizar formalism
[3, 2, 5, 4]. An extension E of F is simple, if E is generated by a single element,
that is E = F (a) for some a ∈ E. It is well known that both all finite extensions
of fields with characteristic 0 and finite extensions of finite fields are simple, so
that most common field extensions are simple. In this paper we deal with fields
of characteristic 0 only.

In the preliminary section, we provide some technical lemmas about sums
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The next two sections provide a number of basic theorems about bags and
polynomials necessary to prove our main theorems, for example, that if all roots
a of a polynomial of p ∗ q have multiplicity 1, then p and q have no common
roots.

The fourth section deals with divisibility of polynomials [8]. We among others
show that the gcd of two polynomials is the same in F and an extension E of
F and that for a polynomial p1 of the form

(x− a1) · (x− a2) · · · · · (x− an)

gcd(p1, p2) with a polynomial p2 is again of the form

(x− b1) · (x− b2) · · · · · (x− bk),

where the bj are exactly the common roots of p1 and p2. We also show that the
number of monic divisors of a polynomial is bounded by 2deg p. This is crucial
in the proof that a simple extension has only a finite number of intermediate
fields.

To show that finite extensions of characteric 0 are simple, it is used that
an irreducible polynomial has no multiple roots. This is shown in section five
using derivatives [1]: for an irreducible polynomial we have gcd(p, p′) = 1, so p
is square free.

In the last section we finally define simple extensions and primitive elements,
and show the main results. A finite extension E over an infinite field F is simple
if and only if there are only finitely many intermediate fields between E and F :
If E = F (a) is simple, then each intermediate field K is uniquely determined
by the roots of a’s minimal polynomial over K. Because each such polynomial
is a monic divisor of p’s minimal polynomial over E, there are only finitely
many intermediate fields. If the number of intermediate fields is finite, then
– because F is infinite – for a and b there exist x and y with x 6= y, and
F (a+x ∗ b) = F (a+ y ∗ b). Then both a and b are in F (a+x ∗ b) [1] from which
follows that F (a, b) = F (a + x ∗ b), so that E is simple by induction. Because
a field with characteristic 0 is infinite, this also shows our second main result:
every finite extension E over a field F with characteristic 0 is simple.

1. Preliminaries

Let n be a non zero, natural number. Note that n − 1 is natural. Let n
be an element of N. Note that n −′ 1 is natural. Let R be a ring and n be
a natural number. Let us note that n · (0R) reduces to 0R. Observe that every
finite sequence of elements of N is non-negative yielding. Now we state the
proposition:
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(1) Let us consider a finite sequence f of elements of N, and natural numbers
i, j. If i, j ∈ dom f and i 6= j, then

∑
f  f(i) + f(j).

Let F be a field, E be an extension of F , and a, b be F-algebraic elements
of E. One can verify that the functor {a, b} yields an F-algebraic subset of E.
Let K be an extension of F and E be a K-extending extension of F . Note that
every F-algebraic element of E is K-algebraic. Let E be an F -finite extension of
F . One can verify that every subset of E is F-algebraic.

Let K be an F -finite extension of F . Note that there exists an extension of
F which is K-extending and F -finite. Let E be an extension of F and K be
an extension of E. Let us observe that there exists an extension of F which is
K-extending and E-extending. Now we state the propositions:

(2) Let us consider a field F , an extension E of F , and subsets T1, T2,
T3 of E. Suppose FAdj(F, T1) = FAdj(F, T2). Then FAdj(F, T1 ∪ T3) =
FAdj(F, T2 ∪ T3).

(3) Let us consider a ring R, a ring extension S of R, an element a of R,
an element b of S, and an element n of N. If a = b, then n · a = n · b.
Proof: Define P[natural number] ≡ $1 · a = $1 · b. For every natural
number k, P[k]. �

Let F be a field and E be an extension of F .
The functor IntermediateFields(E,F ) yielding a set is defined by

(Def. 1) for every object x, x ∈ it iff there exists a strict field K such that K = x

and F is a subfield of K and K is a subfield of E.

One can check that IntermediateFields(E,F ) is non empty and field-mem-
bered. Now we state the propositions:

(4) Let us consider a field F , an extension E of F , and a strict field K. Then
K ∈ IntermediateFields(E,F ) if and only if F is a subfield of K and K is
a subfield of E.

(5) Let us consider a field F , an extension E of F , and an F -extending exten-
sion K of E. Then IntermediateFields(E,F ) ⊆ IntermediateFields(K,F ).

2. More on Bags

Let Z be a non empty set and B be a bag of Z. One can verify that the
functor B yields an element of N. Let us consider a non empty set Z and bags
B1, B2 of Z. Now we state the propositions:

(6) B1 | B2 if and only if there exists a bag B3 of Z such that B2 = B1 +B3.

(7) If B1 | B2, then B1 ¬ B2 . The theorem is a consequence of (6).
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(8) Let us consider a non empty set Z, a bag B of Z, and an object o. Then
B(o) ¬ B .

(9) Let us consider a non empty set Z, a bag B of Z, and objects o1, o2.
Suppose B(o1) = B and o2 6= o1. Then B(o2) = 0. The theorem is a con-
sequence of (1).

(10) Let us consider an integral domain R, and a bag B1 of the carrier of
R. Then B1 = 1 if and only if there exists an element a of R such that
B1 = Bag({a}). The theorem is a consequence of (8) and (9).

(11) Let us consider a field F , and non zero bags B1, B2 of the carrier of F .
If B2 | B1 and B1 = 1, then B2 = B1. The theorem is a consequence of
(10) and (7).

(12) Let us consider a non empty set Z, and bags B1, B2 of Z. If B2 | B1 and
B1 −′ B2 is zero, then B2 = B1.

(13) Let us consider a field F , and non empty, finite subsets S1, S2 of F . Then
Bag(S1) | Bag(S2) if and only if S1 ⊆ S2.

(14) Let us consider a field F , a non zero bag B of the carrier of F , and a non
empty, finite subset S1 of F . Then B | Bag(S1) if and only if there exists
a non empty, finite subset S2 of F such that B = Bag(S2) and S2 ⊆ S1.
The theorem is a consequence of (13).

3. More on Polynomials

Let R be an integral domain and p, q be non constant elements of the carrier
of Polynom-RingR. Let us note that p · q is non constant. Now we state the
propositions:

(15) Let us consider a field F , a monic polynomial p over F , and a polynomial
r over F . If p ∗ r is monic, then r is monic.

(16) Let us consider an integral domain R, and a polynomial p over R. Then
p is monic and constant if and only if p = 1.R.

(17) Let us consider an integral domain R, an element a of R, and a non zero
natural number m. Then (rpoly(1, a))m is a product of linear polynomials
of R.

(18) Let us consider a field F , a polynomial p over F , an extension E of F ,
a polynomial q over E, and an element n of N. If q = p, then qn = pn.

(19) Let us consider a field F , a polynomial p over F , and elements i, j of N.
Then pi+j = pi ∗ pj .

(20) Let us consider a field F , an element a of F , and a product of linear
polynomials p of F and {a}. Then p = rpoly(1, a).
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(21) Let us consider a field F , non zero bags B1, B2 of the carrier of F ,
a product of linear polynomials p of F and B1, and a product of linear
polynomials q of F and B2. If B1 = B2, then p = q.

(22) Let us consider a field F , an extension E of F , an element p of the carrier
of Polynom-RingF , and an element q of the carrier of Polynom-RingE.
If q = p, then Coeff(q) = Coeff(p).

(23) Let us consider a field F , non zero polynomials p, q over F , and an ele-
ment a of F . Then multiplicity(p, a) ¬ multiplicity(p ∗ q, a).

(24) Let us consider a field F , an extension E of F , polynomials p, q over F ,
and polynomials p1, q1 over E. If p1 = p and q1 = q, then p1[q1] = p[q].
Proof: Consider f being a finite sequence of elements of the carrier of
Polynom-RingF such that p[q] =

∑
f and len f = len p and for every

element n of N such that n ∈ dom f holds f(n) = p(n−′ 1) · (qn−′1).
Consider g being a finite sequence of elements of the carrier of Polynom-

RingE such that p1[q1] =
∑
g and len g = len p1 and for every element n

of N such that n ∈ dom g holds g(n) = p1(n−′ 1) · (q1
n−′1). f = g by (18),

[11, (23)], [12, (2)]. �

(25) Let us consider a field F , polynomials p, q over F , an extension E of F ,
and an element a of E. Then ExtEval(p[q], a) = ExtEval(p,ExtEval(q, a)).
The theorem is a consequence of (24).

(26) Let us consider a field F , elements a, b of F , an extension E of F , and
an element x of E. Then ExtEval(〈a, b〉, x) = (@(a,E)) + (@(b, E)) · x.

(27) Let us consider a non degenerated commutative ring R, and polynomials
p, q over R. Then Roots(p) ⊆ Roots(p ∗ q).

(28) Let us consider an integral domain R, non empty, finite subsets S1, S2 of
R, a product of linear polynomials p of R and S1, and a product of linear
polynomials q of R and S2. Suppose S1 ∩ S2 = ∅. Then p ∗ q is a product
of linear polynomials of R and S1 ∪ S2.

(29) Let us consider a field F , and non zero polynomials p, q over F . Suppose
for every element a of F such that a is a root of p∗ q holds multiplicity(p∗
q, a) = 1. Then Roots(p) ∩ Roots(q) = ∅.

(30) Let us consider a field F , and a product of linear polynomials p of F .
Then p is a product of linear polynomials of F and Roots(p) if and only
if for every element a ofF such that a is a root of p holds
multiplicity(p, a) = 1.

(31) Let us consider a field F , a non empty, finite subset S of F , a product
of linear polynomials p of F and S, and a non zero polynomial q over
F with roots. Suppose p ∗ q is a product of linear polynomials of F and
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S∪Roots(q). Then q is a product of linear polynomials of F and Roots(q).
The theorem is a consequence of (15), (23), and (30).

(32) Let us consider a field F , a non empty, finite subset S of F , an element
a of F , a product of linear polynomials p of F and S ∪ {a}, and a non
constant polynomial q over F . Suppose p = rpoly(1, a)∗q and a /∈ S. Then
q is a product of linear polynomials of F and S.
Proof: rpoly(1, a) is a product of linear polynomials of F and {a}. For
every element b of F such that b is a root of rpoly(1, a) ∗ q holds
multiplicity(rpoly(1, a) ∗ q, b) = 1. S = Roots(q). �

(33) Let us consider a field F , non empty, finite subsets S1, S2 of F , a product
of linear polynomials p of F and S1, an element a of F , and a non constant
polynomial q over F . Suppose p = rpoly(1, a) ∗ q and S2 = S1 \ {a}.
Then q is a product of linear polynomials of F and S2. The theorem is
a consequence of (32).

4. On Divisibility and Polynomial GCDs

Let R, S be non degenerated commutative rings and p be a polynomial over
R. We say that p is square-free over S if and only if

(Def. 2) there exists no non constant polynomial q1 over S and there exists a po-
lynomial q2 over S such that q2 = p and q1

2 | q2.

Let R be a non degenerated commutative ring. We say that p is square-free
if and only if

(Def. 3) p is square-free over R.

Let R be an integral domain. Let us note that there exists a non constant po-
lynomial over R which is square-free and there exists a non constant polynomial
over R which is non square-free. Now we state the propositions:

(34) Let us consider a non degenerated commutative ring R, and a polynomial
p over R. Then p is square-free if and only if there exists no non constant
polynomial q over R such that q2 | p.

(35) Let us consider a field F , and a monic polynomial p over F . If p | 1.F ,
then p = 1.F .

(36) Let us consider a field F , and non zero polynomials p, q over F . Then
BRoots(p) | BRoots(p ∗ q). The theorem is a consequence of (23).

(37) Let us consider an integral domain R, and polynomials p, q over R. If
q | p, then Roots(q) ⊆ Roots(p).

(38) Let us consider a field F , polynomials p, q over F , and a non zero poly-
nomial r over F . If r ∗ q | r ∗ p, then q | p.
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(39) Let us consider a field F , polynomials p, q over F , and a monic poly-
nomial r over F . Then gcd(r ∗ p, r ∗ q) = r ∗ (gcd(p, q)). The theorem is
a consequence of (15), (38), and (35).

(40) Let us consider a field F , polynomials p, q over F , and elements n, k of
N. If qn | p and k ¬ n, then qk | p. The theorem is a consequence of (19).

(41) Let us consider a field F , an extension E of F , an element p of the carrier
of Polynom-RingF , and an element q of the carrier of Polynom-RingE.
If q = p, then if q is irreducible, then p is irreducible.

(42) Let us consider a GCD domain R. Then every element of R is a GCD
of a and 0R.

Let us consider an EuclideanRing R, elements a, b of R, and a GCD g of a
and b. Now we state the propositions:

(43) There exist elements r, s of R such that g = a · r + b · s.
(44) {g}–ideal = {a, b}–ideal. The theorem is a consequence of (43).

(45) Let us consider a field F , an extension E of F , elements p, q of the carrier
of Polynom-RingF , and elements p1, q1 of the carrier of Polynom-RingE.
If p1 = p and q1 = q, then gcd(p1, q1) = gcd(p, q).

(46) Letus consider a field F, and anelement p ofthe carrier of Polynom-RingF .
Then gcd(p,0.F ) = NormPoly p.

(47) Let us consider a field F , an element p of the carrier of Polynom-RingF ,
and a non zero element q of the carrier of Polynom-RingF . If q | p, then
gcd(p, q) = NormPoly q.

(48) Let us consider a field F , an extension E of F , elements p, q of the carrier
of Polynom-RingF , and elements p1, q1 of the carrier of Polynom-RingE.
If p1 = p and q1 = q, then q1 | p1 iff q | p. The theorem is a consequence
of (45) and (47).

(49) Let us consider a field F , a non zero bag B1 of the carrier of F , a product
of linear polynomials p of F and B1, and a non constant, monic polynomial
q over F . Then q | p if and only if there exists a non zero bag B2 of
the carrier of F such that q is a product of linear polynomials of F and
B2 and B2 | B1. The theorem is a consequence of (36), (12), and (21).

(50) Let us consider a field F , a non empty, finite subset S1 of F , a product of
linear polynomials p of F and S1, and a non constant, monic polynomial
q over F . Then q | p if and only if there exists a non empty, finite subset
S2 of F such that q is a product of linear polynomials of F and S2 and
S2 ⊆ S1. The theorem is a consequence of (49), (14), and (13).

(51) Let us consider a field F , a product of linear polynomials p of F , a monic
polynomial q over F , and an element a of F . Then q | rpoly(1, a) ∗ p if
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and only if q | p or there exists a polynomial r over F such that r | p and
q = rpoly(1, a) ∗ r. The theorem is a consequence of (16), (49), and (38).

(52) Let us consider a field F , a product of linear polynomials p of F , and
a polynomial q over F . Then Roots(p) ∩ Roots(q) = ∅ if and only if
gcd(p, q) = 1.F .

(53) Let us consider a field F , non empty, finite subsets S1, S2 of F , a product
of linear polynomials p1 of F and S1, and a polynomial p2 over F . Suppose
S2 = S1 ∩ Roots(p2). Then gcd(p1, p2) is a product of linear polynomials
of F and S2.
Proof: Define P[natural number] ≡ for every non empty, finite subsets
S1, S2 of F for every product of linear polynomials p1 of F and S1 for
every polynomial p2 over F such that S2 = $1 and S2 = S1 ∩ Roots(p2)
holds gcd(p1, p2) is a product of linear polynomials of F and S2. P[1]. For
every natural number k, P[k]. Consider n being a natural number such
that S2 = n. �

Let R be an integral domain and p be a polynomial over R. The functors:
Divisors(p) and MonicDivisors(p) yielding non empty subsets of the carrier of
Polynom-RingR are defined by terms

(Def. 4) {q, where q is an element of the carrier of Polynom-RingR : q | p},

(Def. 5) {q, where q is a monic element of the carrier of Polynom-RingR : q | p},

respectively. Now we state the propositions:

(54) Let us consider a field F , and an element a of F .
Then MonicDivisors(rpoly(1, a)) = {1.F, rpoly(1, a)}.

(55) Let us consider a field F , a non zero element p of the carrier of Polynom-
RingF , and a non zero element a of F .
Then MonicDivisors(p) = MonicDivisors(a · p).

(56) Let us consider a field F , an extension E of F , a polynomial p over F , and
a polynomial q over E. If q = p, then MonicDivisors(p) ⊆ MonicDivisors(q).

Let F be a field and p be a non zero polynomial over F . Let us note that
MonicDivisors(p) is finite. Now we state the proposition:

(57) Let us consider a field F , and a non zero polynomial p over F . Then

MonicDivisors(p) ¬ 2deg(p). The theorem is a consequence of (55), (56),
and (16).
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5. Formal Derivative of Polynomials and Multiplicity of Roots

Let R be a ring. We introduce the notation Deriv(R) as a synonym of
Der1(R). Let R be an integral domain. Observe that Deriv(R) is derivation.
Now we state the propositions:

(58) Let us consider a non degenerated commutative ring R. Then

(i) (Deriv(R))(1.R) = 0.R, and

(ii) (Deriv(R))(0.R) = 0.R.

(59) Let us consider a ring R, an element p of the carrier of Polynom-RingR,
and an element a of R. Then (Deriv(R))(a · p) = a · (Deriv(R))(p).

(60) Let us consider a non degenerated commutative ring R, and a constant
element p of the carrier of Polynom-RingR. Then (Deriv(R))(p) = 0.R.
The theorem is a consequence of (59) and (58).

(61) Let us consider a ringR, and an element a ofR. Then (Deriv(R))(X− a) =
1.R.

(62) Let us consider a non degenerated commutative ring R, and an element
p of the carrier of Polynom-RingR. Then (Deriv(R))(p0) = 0.R. The
theorem is a consequence of (58).

(63) Let us consider an integral domain R, an element p of the carrier of
Polynom-RingR, and a non zero element n of N. Then (Deriv(R))(pn) =
n · (pn−1 · (Deriv(R))(p)).

(64) Let us consider a non degenerated commutative ring R, and a non zero
element p of the carrier of Polynom-RingR. Then deg((Deriv(R))(p)) <
deg(p).

(65) Let us consider a field F , and a non zero element p of the carrier of
Polynom-RingF . Suppose gcd(p, (Deriv(F ))(p)) = 1.F . Then p is square-
free.

(66) Let us consider a non degenerated commutative ring R, an element p
of the carrier of Polynom-RingR, a commutative ring extension S of
R, and an element q of the carrier of Polynom-RingS. If q = p, then
(Deriv(S))(q) = (Deriv(R))(p). The theorem is a consequence of (3).

Let R be a non degenerated commutative ring, S be a commutative ring
extension of R, p be a non zero polynomial over R, and a be an element of S.
The functor multiplicity(p, a) yielding an element of N is defined by

(Def. 6) there exists a non zero polynomial q over S such that q = p and it =
multiplicity(q, a).

Now we state the propositions:
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(67) Let us consider a field F , a non zero polynomial p over F , an element
a of F , and an element n of N. Then n = multiplicity(p, a) if and only if
(X− a)n | p and (X− a)n+1 - p.

(68) Let us consider a field F with characteristic 0, and a non zero element p
of the carrier of Polynom-RingF . Then deg((Deriv(F ))(p)) = deg(p)− 1.
The theorem is a consequence of (60) and (64).

(69) Let us consider a field F with characteristic 0, and an element p of
the carrier of Polynom-RingF . Then (Deriv(F ))(p) = 0.F if and only if p
is constant. The theorem is a consequence of (68) and (60).

(70) Let us consider a field F with characteristic 0, and an irreducible element
p of the carrier of Polynom-RingF . Then gcd(p, (Deriv(F ))(p)) = 1.F .
The theorem is a consequence of (69) and (64).

(71) Let us consider a field F with characteristic 0, an irreducible element p
of the carrier of Polynom-RingF , an extension E of F , and an element a
of E. If a is a root of p in E, then multiplicity(p, a) = 1. The theorem is
a consequence of (66), (70), (45), (65), (67), and (40).

6. Simple Extensions

Let F be a field and E be an extension of F . We say that E is F -simple if
and only if

(Def. 7) there exists an element a of E such that E ≈ FAdj(F, {a}).
Let a be an element of E. We say that a is F -primitive if and only if

(Def. 8) E ≈ FAdj(F, {a}).
Let us note that there exists an extension of F which is F -simple and F -

finite. Let E be an F -simple extension of F . One can verify that there exists
an element of E which is F -primitive.

Let E be an extension of F and a be an element of E. The functor deg(a, F )
yielding an integer is defined by the term

(Def. 9) deg(FAdj(F, {a}), F ).

Now we state the propositions:

(72) Let us consider a field F , an F -finite extension E of F , and an element
a of E. Then deg(a, F ) | deg(E,F ).

(73) Let us consider a field F , and an F -finite extension E of F . Then E is F -
simple if and only if there exists an element a of E such that deg(a, F ) =
deg(E,F ).

(74) Let us consider a field F , an F -finite extension E of F , and an element
a of E. Then a is F -primitive if and only if deg(a, F ) = deg(E,F ).



Simple extensions 297

(75) Let us consider a field F , an F -finite extension K of F , an F -finite, F -
extending extension E of K, and a K-algebraic element a of E. Suppose
E ≈ FAdj(F, {a}). Then

(i) E ≈ FAdj(K, {a}), and

(ii) K ≈ FAdj(F,Coeff(MinPoly(a,K))).

Proof: FAdj(K, {a}) = FAdj(F, {a}) by [9, (11)]. Set K1 = FAdj(F,Coeff
(MinPoly(a,K))). Reconsider E1 = E as an F -extending extension of
K1. Reconsider a1 = a as a K1-algebraic element of E1. FAdj(F, {a1}) =
FAdj(K1, {a1}). Reconsider p = MinPoly(a,K) as a polynomial over K1.
p is irreducible. �

(76) Let us consider an infinite field F , and an F -finite extension E of F .
Then E is F -simple if and only if IntermediateFields(E,F ) is finite. The
theorem is a consequence of (5), (2), (4), (75), and (22).

(77) Let us consider a field F with characteristic 0, an extension E of F , and
F-algebraic elements a, b of E. Then there exists an element x of F such
that FAdj(F, {a, b}) = FAdj(F, {a+ (@(x,E)) · b}).
Proof: Set K = FAdj(F, {a, b}). Set m1 = MinPoly(a, F ). Set m3 =
MinPoly(b, F ). Reconsider a3 = a, b1 = b as an element of K. Consider
Z being an extension of E such that Z is algebraic closed. Set R1 =
Roots(Z,m1). Set R2 = (Roots(Z,m3)) \ {b}. There exists an element x
of F such that for every elements c, d of Z such that c ∈ R1 and d ∈ R2

holds (@(a3, Z)) + (@(x, Z)) · (@(b1, Z)) 6= c+ (@(x, Z)) · d.
Consider x being an element of F such that for every elements c, d of

Z such that c ∈ R1 and d ∈ R2 holds (@(a3, Z)) + (@(x, Z)) · (@(b1, Z)) 6=
c + (@(x, Z)) · d. Set l1 = (@(a3, Z)) + (@(x, Z)) · (@(b1, Z)). Set G =
FAdj(F, {l1}). G is a subfield of K. Reconsider m2 = MinPoly(a, F ), m4 =
MinPoly(b, F ) as a polynomial over G.

Reconsider m2 = MinPoly(a, F ), m4 = MinPoly(b, F ) as a non con-
stant polynomial over G. Set g = 〈@(G, l1),−(@(x,G))〉. Set h = m2[g].
Reconsider m5 = m4, h1 = h as a polynomial over Z. gcd(h1,m5) =
X−(@(b1, Z)). b ∈ G. a ∈ G. a + (@(x,E)) · b = (@(a3, Z)) + (@(x, Z)) ·
(@(b1, Z)) by [10, (12)]. �

Let F be a field with characteristic 0. One can verify that every F -finite
extension of F is F -simple.
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[1] Andreas Gathmann. Einführung in die Algebra. Lecture Notes, University of Kaiserslau-
tern, Germany, 2011.

[2] Adam Grabowski and Christoph Schwarzweller. Translating mathematical vernacular
into knowledge repositories. In Michael Kohlhase, editor, Mathematical Knowledge Ma-
nagement, volume 3863 of Lecture Notes in Computer Science, pages 49–64. Springer,
2006. doi:10.1007/11618027 4. 4th International Conference on Mathematical Knowledge
Management, Bremen, Germany, MKM 2005, July 15–17, 2005, Revised Selected Papers.

[3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Mizar in a nutshell. Journal
of Formalized Reasoning, 3(2):153–245, 2010.

[4] Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierar-
chies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki,
editors, Proceedings of the 2016 Federated Conference on Computer Science and Infor-
mation Systems (FedCSIS), volume 8 of Annals of Computer Science and Information
Systems, pages 363–371, 2016. doi:10.15439/2016F520.

[5] Artur Korniłowicz. Flexary connectives in Mizar. Computer Languages, Systems & Struc-
tures, 44:238–250, December 2015. doi:10.1016/j.cl.2015.07.002.

[6] Serge Lang. Algebra. PWN, Warszawa, 1984.
[7] Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
[8] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra.

Oldenbourg Verlag, 1999.
[9] Christoph Schwarzweller. Normal extensions. Formalized Mathematics, 31(1):121–130,

2023. doi:10.2478/forma-2023-0011.
[10] Christoph Schwarzweller. Renamings and a condition-free formalization of Kronecker’s

construction. Formalized Mathematics, 28(2):129–135, 2020. doi:10.2478/forma-2020-
0012.

[11] Christoph Schwarzweller. Ring and field adjunctions, algebraic elements and minimal po-
lynomials. Formalized Mathematics, 28(3):251–261, 2020. doi:10.2478/forma-2020-0022.

[12] Christoph Schwarzweller. Splitting fields. Formalized Mathematics, 29(3):129–139, 2021.
doi:10.2478/forma-2021-0013.

[13] Christoph Schwarzweller. On roots of polynomials and algebraically closed fields. For-
malized Mathematics, 25(3):185–195, 2017. doi:10.1515/forma-2017-0018.

[14] Christoph Schwarzweller, Artur Korniłowicz, and Agnieszka Rowińska-Schwarzweller. So-
me algebraic properties of polynomial rings. Formalized Mathematics, 24(3):227–237,
2016. doi:10.1515/forma-2016-0019.

[15] Yasushige Watase. Derivation of commutative rings and the Leibniz formula for power of
derivation. Formalized Mathematics, 29(1):1–8, 2021. doi:10.2478/forma-2021-0001.

Accepted December 18, 2023

http://dx.doi.org/10.1007/11618027_4
http://dx.doi.org/10.15439/2016F520
http://dx.doi.org/10.1016/j.cl.2015.07.002
http://dx.doi.org/10.1016/j.cl.2015.07.002
http://dx.doi.org/10.2478/forma-2023-0011
http://dx.doi.org/10.2478/forma-2020-0012
http://dx.doi.org/10.2478/forma-2020-0012
http://dx.doi.org/10.2478/forma-2020-0022
http://dx.doi.org/10.2478/forma-2021-0013
http://dx.doi.org/10.1515/forma-2017-0018
http://dx.doi.org/10.1515/forma-2016-0019
http://dx.doi.org/10.2478/forma-2021-0001


FORMALIZED MATHEMATICS

Vol. 31, No. 1, pp. 299–308, 2023
DOI: 10.2478/forma-2023-0024

e-ISSN: 1898–9934 sciendo.com/journal/forma

Symmetrical Piecewise Linear Functions
Composed by Absolute Value Function

Takashi Mitsuishi
Faculty of Business and Informatics

Nagano University, Japan

Summary. We continue the formal development of the application of pie-
cewise linear functions and centroids in the area of fuzzy set theory. The corre-
sponding piecewise linear functions are symmetrical and composed by absolute
function. In this paper we prove that the membership functions of isosceles trian-
gle type and isosceles trapezoid type can be constructed by functions of this type.

MSC: 03E72 68V20

Keywords: fuzzy set; fuzzy number; centroid

MML identifier: FUZZY 8, version: 8.1.14 5.76.1462

Introduction

In this paper, some mathematical properties of piecewise linear functions are
formalized in Mizar [11], [10] in order to use them in fuzzy set theory [2], [22]. The
focused piecewise linear functions are symmetrical and composed by absolute
function. L-R fuzzy number is applied for various fields [1], [3], [20], [12]. Since
isosceles triangle type and isosceles trapezoid type membership functions are
simple [4], they are applied for the membership functions of L-R fuzzy number
in most cases [17]. It is formalized that the membership functions of isosceles
triangle type [16] and isosceles trapezoid type (introduced formally in Mizar
in [5]) can be constructed by absolute value functions. We wanted to avoid
duplication [9] of some basic functional notions, so we use extensively Mizar
functor “AffineMap” denoting just linear function with two parameters.

We prove that the centroids of the composite function of two continuous
functions are the weighted averages of the areas and centroids of the functions
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that compose them [21]. Moreover, some calculation and operation between
membership functions for fuzzy approximate reasoning [19], e.g. Mamdani me-
thod [13] and the product-sum-gravity method [18] are formalized, extending
also the development of both fuzzy numbers within the Mizar Mathematical
Library [7] and fuzzy sets in general [14], [15], [8] (for another recent formal
development in this area, see [6]).

1. Preliminaries

From now on A denotes a non empty, closed interval subset of R. Now we
state the proposition:

(1) Let us consider real numbers b, c, d. If b > 0 and c > 0 and d > 0, then
b−d
b
c

< c.

Let us consider real numbers a, x. Now we state the propositions:

(2) a− |a · x| ¬ a.

(3) a− |x| ¬ a.

(4) Let us consider real numbers a, b, c, x. Then | b·(a−x−a)
c | = | b·(a+x−a)

c |.
Let us consider real numbers a, b, c. Now we state the propositions:

(5) |max(c, a)−max(c, b)| ¬ |a− b|.
(6) |min(c, a)−min(c, b)| ¬ |a− b|.
(7) Let us consider real numbers a, b, c, d. Then |min(c,max(d, a))−min(c,

max(d, b))| ¬ |a− b|. The theorem is a consequence of (6) and (5).

2. Continuous Functions

Let us consider a real number c and partial functions f , g from R to R. Now
we state the propositions:

(8) Suppose ]−∞, c] ⊆ dom f and [c,+∞[ ⊆ dom g.
Then f�]−∞, c[+·g�[c,+∞[ = f�]−∞, c]+·g�[c,+∞[.
Proof: Set f1 = f�]−∞, c[+·g�[c,+∞[. Set f2 = f�]−∞, c]+·g�[c,+∞[.
For every object x such that x ∈ dom f1 holds f1(x) = f2(x). �

(9) Suppose f is continuous and g is continuous and f(c) = g(c) and ]−∞, c]
⊆ dom f and [c,+∞[ ⊆ dom g. Then f�]−∞, c]+·g�[c,+∞[ is continuous.
Proof: Set F = f�]−∞, c]+·g�[c,+∞[. For every real number x0 such
that x0 ∈ domF holds F is continuous in x0. �
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(10) Let us consider a real number c, and functions f , g from R into R.
Suppose f is continuous and g is continuous and f(c) = g(c). Then
f�]−∞, c]+·g�[c,+∞[ is a continuous function from R into R. The the-
orem is a consequence of (9).

(11) Let us consider real numbers a, b, c, and functions f , g, h from R in-
to R. Suppose a ¬ b ¬ c and f is continuous and g is continuous and

h�[a, c] = f�[a, b]+·g�[b, c] and f(b) = g(b). Then
∫

[a,c]

h(x)dx =
∫

[a,b]

f(x)dx+

∫
[b,c]

g(x)dx.

(12) Let us consider a function f from R into R, and real numbers a, b, c.
Suppose a ¬ b ¬ c and [a, c] ⊆ dom f and f�[a, b] is bounded and f�[b, c]
is bounded and f is integrable on [a, b] and f is integrable on [b, c]. Then

(i) f is integrable on [a, c], and

(ii)
c∫
a

f(x)dx =
b∫
a

f(x)dx+
c∫
b

f(x)dx.

(13) Let us consider real numbers a, b, c, and a function f from R into R.
Suppose a ¬ c and f is integrable on [a, c] and f�[a, c] is bounded and
[a, c] ⊆ dom f and b ∈ [a, c]. Then

(i) f is integrable on [a, b], and

(ii) f is integrable on [b, c], and

(iii)
c∫
a

f(x)dx =
b∫
a

f(x)dx+
c∫
b

f(x)dx.

(14) Let us consider a real number a, and functions f , g, h from R into R.
Suppose f�A is bounded and f is integrable on A and g�A is bounded
and g is integrable on A and a ∈ A and h = f�]−∞, a]+·g�[a,+∞[ and
f(a) = g(a). Then h is integrable on A.
Proof: For every object x such that x ∈ dom(f�[inf A, a]) holds (f�[inf A,
a])(x) = (h�[inf A, a])(x).Forevery object xsuchthatx ∈ dom(g�[a, supA])
holds (g�[a, supA])(x) = (h�[a, supA])(x). f is integrable on [inf A, a]. g
is integrable on [a, supA]. �

(15) Let us consider real numbers a, b, c, and functions f , g from R into R.
Suppose a ¬ b ¬ c. Then (f�]−∞, b]+·g�[b,+∞[)�[a, c] = f�[a, b]+·g�[b, c].
Proof: For every object x such that x ∈ dom((f�]−∞, b]+·g�[b,+∞[)�[a,
c]) holds ((f�]−∞, b]+·g�[b,+∞[)�[a, c])(x) = (f�[a, b]+·g�[b, c])(x). �
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(16) Let us consider real numbers a, b, c, and functions f , g, h from R into R.
Suppose a ¬ b ¬ c and f is integrable on [a, c] and f�[a, c] is bounded and g
is integrable on [a, c] and g�[a, c] is bounded and h = f�]−∞, b]+·g�[b,+∞[

and f(b) = g(b). Then
∫

[a,c]

h(x)dx =
∫

[a,b]

f(x)dx+
∫

[b,c]

g(x)dx. The theorem

is a consequence of (15) and (14).

3. Area and Centroid of Continuous Functions

Now we state the propositions:

(17) Let us consider functions f , g, h from R into R, and real numbers a,
b, c. Suppose a ¬ b ¬ c and f is continuous and g is continuous and

h�[a, c] = f�[a, b]+·g�[b, c] and
∫

[a,b]

f(x)dx 6= 0 and
∫

[b,c]

g(x)dx 6= 0 and

f(b) = g(b). Then centroid(h, [a, c]) = 1∫
[a,c]

h(x)dx
· ((centroid(f, [a, b])) ·

(
∫

[a,b]

f(x)dx) + (centroid(g, [b, c])) · (
∫

[b,c]

g(x)dx)).

(18) Let us consider a function f from R into R, and real numbers a, b, c.
Suppose for every real number x, f(x) = b − | b·(x−a)

c |. Let us consider
a real number y. Then f(a− y) = f(a+ y).

(19) Let us consider a function f from R into R, and real numbers a, b, c, d,
e. Suppose for every real number x, f(x) = min(d,max(e, b − | b·(x−a)

c |)).
Let us consider a real number y. Then f(a− y) = f(a+ y).

(20) Let us consider real numbers a, b, c, d. Suppose b > 0 and c > 0 and d > 0
and d < b. Let us consider a real number x. Then (d ·TrapezoidalFS((a−
c), (a+ d−b

b
c

), (a+ b−d
b
c

), (a+ c)))(x) = min(d,max(0, b− | b·(x−a)
c |)).

Proof: For every real number x, (d ·TrapezoidalFS((a−c), (a+ d−b
b
c

), (a+

b−d
b
c

), (a+ c)))(x) = min(d,max(0, b− | b·(x−a)
c |)). �

(21) Let us consider real numbers a, b, c, d. Suppose b > 0 and c > 0 and
d > 0 and d < b. Then centroid(d · TrapezoidalFS((a− c), (a+ d−b

b
c

), (a+
b−d
b
c

), (a+ c)), [a− c, a+ c]) = a.

Let us consider real numbers a, b, c, d and a function f from R into R. Now
we state the propositions:
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(22) Suppose b > 0 and c > 0 and d > 0 and d < b and for every real number
x, f(x) = min(d,max(0, b − | b·(x−a)

c |)). Then f = d · TrapezoidalFS((a −
c), (a+ d−b

b
c

), (a+ b−d
b
c

), (a+ c)). The theorem is a consequence of (20).

(23) Suppose b > 0 and c > 0 and d > 0 and d < b and for every real number
x, f(x) = min(d,max(0, b−| b·(x−a)

c |)). Then centroid(f, [a− c, a+ c]) = a.
The theorem is a consequence of (22) and (21).

Let us consider real numbers a, b, c, d, e and a function f from R into R.
Now we state the propositions:

(24) If b 6= 0 and c 6= 0 and for every real number x, f(x) = min(d,max(e, b−
| b·(x−a)

c |)), then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

(25) If c 6= 0 and for every real number x, f(x) = min(d,max(e, b−| b·(x−a)
c |)),

then f is Lipschitzian. The theorem is a consequence of (24).

Let us consider real numbers a, b, c, d and a function f from R into R. Now
we state the propositions:

(26) Suppose c > 0 and for every real number x, f(x) = min(d,max(0, b −
| b·(x−a)

c |)). Then

(i) f is integrable on A, and

(ii) f�A is bounded.

The theorem is a consequence of (25).

(27) Suppose b > 0 and c > 0 and d > 0 and for every real number x,
f(x) = min(d,max(0, b− | b·(x−a)

c |)). Then

(i) f(inf[a− c, a+ c]) = 0, and

(ii) f(sup[a− c, a+ c]) = 0.

(28) Let us consider real numbers a, b, c. Suppose b > 0 and c > 0. Let us
consider a real number x. If x /∈ [a−c, a+c], then max(0, b−| b·(x−a)

c |) = 0.

Proof: Define H(element of R) = (max(0, b− | b·($1−a)
c |))(∈ R). Consider

h being a function from R into R such that for every element x of R,
h(x) = H(x). For every real number x, h(x) = max(0, b− | b·(x−a)

c |). �

(29) Let us consider real numbers a, b, c, d. Suppose b > 0 and c > 0 and
d > 0. Let us consider a real number x. Suppose x /∈ [a − c, a + c]. Then
min(d,max(0, b− | b·(x−a)

c |)) = 0. The theorem is a consequence of (28).

Let us consider real numbers a, b, c, d, a function f from R into R, and a real
number x. Now we state the propositions:
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(30) Suppose b > 0 and c > 0 and d > 0 and for every real number x,
f(x) = min(d,max(0, b−| b·(x−a)

c |)). Then if x /∈ [a−c, a+c], then f(x) = 0.
The theorem is a consequence of (29).

(31) Suppose b > 0 and c > 0 and d > 0 and for every real number x,
f(x) = min(d,max(0, b − | b·(x−a)

c |)). Then if x ∈ A \ [a − c, a + c], then
f(x) = 0. The theorem is a consequence of (30).

Let us consider real numbers a, b, c, d and a function f from R into R. Now
we state the propositions:

(32) Suppose b > 0 and c > 0 and d > 0 and [a−c, a+c] ⊆ A and for every real
number x, f(x) = min(d,max(0, b − | b·(x−a)

c |)). Then centroid(f,A) = a.
The theorem is a consequence of (26), (31), (27), and (23).

(33) Suppose b > 0 and c > 0 and d > 0 and [a − c, a + c] ⊆ A and d < b

and for every real number x, f(x) = min(d,max(0, b − | b·(x−a)
c |)). Then

centroid(f,A) = centroid(f, [a − c, a + c]). The theorem is a consequence
of (32) and (23).

(34) Let us consider real numbers a, b, c, d, and functions f , F from R into R.
Suppose b > 0 and c > 0 and d > 0 and for every real number x, f(x) =
max(0, b−| b·(x−a)

c |) and for every real number x, F (x) = min(d,max(0, b−
| b·(x−a)

c |)). Then centroid(f, [a− c, a+ c]) = centroid(F, [a− c, a+ c]). The
theorem is a consequence of (23) and (3).

(35) Let us consider real numbers a, b, c, d, and a function f from R into
R. Suppose b > 0 and c > 0 and d > 0 and d < b and for every real
number x, f(x) = min(d,max(0, b − | b·(x−a)

c |)). Then f�[a − c, a + c] =
((AffineMap( bc , b −

a·b
c ))�[a − c, a + d−b

b
c

]+·(AffineMap(0, d))�[a + d−b
b
c

, a +
b−d
b
c

])+·(AffineMap(− b
c , b+ a·b

c ))�[a+ b−d
b
c

, a+ c].

Proof: − b−d
b
c

> −c. b−db
c

< c. For every object x such that x ∈ dom(f�[a−

c, a+ c]) holds (f�[a− c, a+ c])(x) = (((AffineMap( bc , b−
a·b
c ))�[a− c, a+

d−b
b
c

]+·(AffineMap(0, d))�[a+ d−b
b
c

, a+ b−d
b
c

])+·(AffineMap(− b
c , b+ a·b

c ))�[a+
b−d
b
c

, a+ c])(x). �

4. Some Special Examples

Now we state the proposition:

(36) Let us consider real numbers a, b, c, d, r, s. Suppose a < b < c < d.
Then

(i) (AffineMap( r
b−a ,−

a·r
b−a))(a) = 0, and

(ii) (AffineMap( r
b−a ,−

a·r
b−a))(b) = r, and
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(iii) (AffineMap( s−rc−b , s−
c·(s−r)
c−b ))(b) = r, and

(iv) (AffineMap( s−rc−b , s−
c·(s−r)
c−b ))(c) = s, and

(v) (AffineMap( −sd−c ,−
d·(−s)
d−c ))(c) = s, and

(vi) (AffineMap( −sd−c ,−
d·(−s)
d−c ))(d) = 0.

Let us consider real numbers a, b, c, d, r, s and a function f from R into R.
Now we state the propositions:

(37) Suppose a < b < c < d and f�[a, d] = ((AffineMap( r
b−a ,−

a·r
b−a))�[a, b]+·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b ))�[b, c])+·(AffineMap( −sd−c ,−

d·(−s)
d−c ))�[c, d]. Then∫

[a,d]

(idR · f)(x)dx =
∫

[a,b]

(idR · (AffineMap(
r

b− a
,− a · r

b− a
)))(x)dx+

∫
[b,c]

(idR·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b )))(x)dx+

∫
[c,d]

(idR · (AffineMap(
−s
d− c

,

−d·(−s)
d−c )))(x)dx.

Proof: Set f3 = AffineMap( r
b−a ,−

a·r
b−a). Set f4 = AffineMap( s−rc−b , s −

c·(s−r)
c−b ). Reconsider h = f3�]−∞, b[+·f4�[b,+∞[ as a function from R in-

to R. f3(b) = r. For every object x such that x ∈ dom(h�[a, c]) holds
(h�[a, c])(x) = (f3�[a, b]+·f4�[b, c])(x). �

(38) Suppose a < b < c < d and f�[a, d] = ((AffineMap( r
b−a ,−

a·r
b−a))�[a, b]+·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b ))�[b, c])+·(AffineMap( −sd−c ,−

d·(−s)
d−c ))�[c, d]. Then∫

[a,d]

f(x)dx =
∫

[a,b]

(AffineMap(
r

b− a
,− a · r

b− a
))(x)dx+

∫
[b,c]

(AffineMap(
s− r
c− b

,

s− c·(s−r)
c−b ))(x)dx+

∫
[c,d]

(AffineMap(
−s
d− c

,−d · (−s)
d− c

))(x)dx.

Proof: Set f3 = AffineMap( r
b−a ,−

a·r
b−a). Set f4 = AffineMap( s−rc−b , s −

c·(s−r)
c−b ). Reconsider h = f3�]−∞, b[+·f4�[b,+∞[ as a function from R in-

to R. f3(b) = r. For every object x such that x ∈ dom(h�[a, c]) holds

(h�[a, c])(x) = (f3�[a, b]+·f4�[b, c])(x).
∫

[a,c]

h(x)dx=
∫

[a,b]

f3(x)dx+
∫

[b,c]

f4(x)dx.

�

Let us consider real numbers a, b, c, d, r, s, x. Now we state the propositions:

(39) Suppose a < b < c < d and r  0 and s  0 and (x < a or d < x). Then
(((AffineMap( r

b−a ,−
a·r
b−a))�]−∞, b]+·(AffineMap( s−rc−b , s−

c·(s−r)
c−b ))�[b, c])+·

(AffineMap( −sd−c ,−
d·(−s)
d−c ))�[c,+∞[)(x) ¬ 0.
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(40) Suppose a < b < c < d and r  0 and s  0 and x ∈ [a, d]. Then
(((AffineMap( r

b−a ,−
a·r
b−a))�]−∞, b]+·(AffineMap( s−rc−b , s−

c·(s−r)
c−b ))�[b, c])+·

(AffineMap( −sd−c ,−
d·(−s)
d−c ))�[c,+∞[)(x)  0.

(41) Let us consider real numbers a, b, c, d, r, s. Suppose a < b < c < d and
r  0 and s  0 and r = s. Let us consider a real number x. Then (r ·
TrapezoidalFS(a, b, c, d))(x) = max+((((AffineMap( r

b−a ,−
a·r
b−a))�]−∞, b]+·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b ))�[b, c])+·

(AffineMap( −sd−c ,−
d·(−s)
d−c ))�[c,+∞[)(x)).

Proof: Set T = TrapezoidalFS(a, b, c, d). For every real number x, (r ·
T )(x) = max+((((AffineMap( r

b−a ,−
a·r
b−a))�]−∞, b]+·(AffineMap( s−rc−b , s −

c·(s−r)
c−b ))�[b, c])+·(AffineMap( −sd−c ,−

d·(−s)
d−c ))�[c,+∞[)(x)). �

(42) Let us consider real numbers a, b, c, d. Suppose c ¬ d. Then

(i)
∫

[c,d]

(idR · (AffineMap(a, b)))(x)dx = (d−c) ·(a · (d · d+ d · c+ c · c)
3

+

b · (d+ c)
2

), and

(ii)
∫

[c,d]

(AffineMap(a, b))(x)dx = (d− c) · (a · (d+ c)
2

+ b).

(43) Let us consider real numbers a, b, c, d, r, s, and a function f from R into
R. Suppose a < b < c < d and f�[a, d] = ((AffineMap( r

b−a ,−
a·r
b−a))�[a, b]+·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b ))�[b, c])+·(AffineMap( −sd−c ,−

d·(−s)
d−c ))�[c, d].

Then centroid(f, [a, d]) =
(

(b− a) · (
r
b−a ·(b·b+b·a+a·a)

3 +
(− a·r
b−a )·(b+a)

2 )+

(c− b) · (
s−r
c−b ·(c·c+c·b+b·b)

3 +
(s− c·(s−r)

c−b )·(c+b)
2 ) + (d− c) · (

−s
d−c ·(d·d+d·c+c·c)

3 +
(− d·(−s)

d−c )·(d+c)
2 )

)
/

(
(b− a) · (

r
b−a ·(b+a)

2 +− a·r
b−a) + (c− b) · (

s−r
c−b ·(c+b)

2 + (s−

c·(s−r)
c−b )) + (d− c) · (

−s
d−c ·(d+c)

2 +−d·(−s)
d−c )

)
. The theorem is a consequence

of (37), (38), and (42).

(44) Let us consider real numbers b, c, d. Suppose b < c. Then (AffineMap(d ·
1
c−b , d · (−

b
c−b))) + (AffineMap(d · (− 1

c−b), d ·
c
c−b)) = AffineMap(0, d).

(45) Let us consider real numbers a, b, c, p, q. Suppose a < b < c. Then
(AffineMap(p, q))�[a, b]+·(AffineMap(p, q))�[b, c] = (AffineMap(p, q))�[a, c].
Proof: Set f = AffineMap(p, q). For every object x such that
x ∈ dom(f�[a, c]) holds (f�[a, c])(x) = (f�[a, b]+·f�[b, c])(x). �

Let us consider real numbers a, b, c and a real number x. Now we state the
propositions:
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(46) If a < b < c, then if x ∈ [a, b], then (TriangularFS(a, b, c))(x) =
(AffineMap( 1

b−a ,−
a
b−a))(x).

Proof: For every real number x such that x ∈ [a, b] holds (TriangularFS(a,
b, c))(x) = (AffineMap( 1

b−a ,−
a
b−a))(x). �

(47) If a < b < c, then if x ∈ [b, c], then (TriangularFS(a, b, c))(x) =
(AffineMap(− 1

c−b ,
c
c−b))(x).

(48) If a < b < c, then if x /∈ ]a, c[, then (TriangularFS(a, b, c))(x) =
(AffineMap(0, 0))(x).
Proof: For every real number x such that x /∈ ]a, c[ holds
(TriangularFS(a, b, c))(x) = (AffineMap(0, 0))(x). �
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Introduction

So far, the authors have proved in Mizar [2], [15] many theorems on the
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[9], [5], [11] (for interesting survey of formalizations of real analysis in another
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we have shown that if a function bounded on a closed interval (i.e., a continu-
ous function) is Riemann integrable, then it is Lebesgue integrable, and both
integrals coincide [10]. Furthermore, for the Lebesgue integral, there exist inte-
gral theorems on the product measure spaces [9]. From these results, this article
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shows that the Lebesgue integral of a continuous function of two variables coin-
cides with the Riemann iterated integral of a projective function [1]. In the first
three sections of this article, we summarize the basic properties of the projec-
tion of functions of two variables. In the last section, we prove integrability and
iterated integrals of continuous functions of two variables.

Note that the continuity of functions of many variables is not directly ad-
dressed in this article, since there are quite a few formal notions of continuity
which can be applied in this case (although they are essentially the same; for
the discussion on the pros and cons of duplications in the Mizar Mathematical
Library, see [14]). The formalization follows [19] and [16].

1. Preliminaries

Now we state the propositions:

(1) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. If dom f = ∅,
then

∫
f dM = 0.

(2) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. If dom f = ∅,
then

∫
f dM = 0. The theorem is a consequence of (1).

(3) Let us consider a non empty set X, a σ-field S of subsets of X, and
a σ-measure M on S. If M is σ-finite, then COM(M) is σ-finite.
Proof: Consider E being a set sequence of S such that for every natural
number n, M(E(n)) < +∞ and

⋃
E = X. For every natural number n,

E(n) ∈ COM(S,M). Reconsider E1 = E as a set sequence of COM(S,M).
For every natural number n, (COM(M))(E1(n)) < +∞. �

(4) B-Meas is σ-finite.
Proof: Define S(natural number) = [−$1, $1](∈ 2R). Consider E being
a function from N into 2R such that for every element i of N, E(i) = S(i).
For every natural number n, E(n) = [−n, n]. For every natural num-
ber n, E(n) ∈ the Borel sets by [7, (5)]. For every natural number n,
(B-Meas)(E(n)) < +∞ by [8, (71)]. �

(5) L-Meas is σ-finite.

(6) ProdMeas(L-Meas,L-Meas) is σ-finite.

(7) Let us consider a closed interval subset I of R, and a subset E of the real
normed space of R. If I = E, then E is compact.
Proof: For every sequence s1 of the real normed space of R such that
rng s1 ⊆ E there exists a sequence s2 of the real normed space of R such
that s2 is subsequence of s1 and convergent and lim s2 ∈ E. �
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Let S1, S2 be real normed spaces, D1 be a subset of S1, and D2 be a subset
of S2. Let us note that the functor D1 ×D2 yields a subset of S1 × S2. Now we
state the propositions:

(8) Let us consider real normed spaces P , Q, a subset E of P , and a subset
F of Q. Suppose E is compact and F is compact. Then E × F is subset
of P ×Q and compact.
Proof: Set S = P ×Q. Set X = E × F . For every sequence s1 of S such
that rng s1 ⊆ X there exists a sequence s2 of S such that s2 is subsequence
of s1 and convergent and lim s2 ∈ X. �

(9) Let us consider closed interval subsets I, J of R, and a subset E of
(the real normed space of R) × (the real normed space of R). If E = I ×
J , then E is compact. The theorem is a consequence of (7) and (8).

(10) Let us consider a set E, a partial function f from (the real normed space
of R) × (the real normed space of R) to the real normed space of R, and
a partial function g from R×R to R. Suppose f = g and E ⊆ dom f . Then
f is uniformly continuous on E if and only if for every real number e such
that 0 < e there exists a real number r such that 0 < r and for every real
numbers x1, x2, y1, y2 such that 〈〈x1, y1〉〉, 〈〈x2, y2〉〉 ∈ E and |x2 − x1| < r

and |y2 − y1| < r holds |g(〈〈x2, y2〉〉)− g(〈〈x1, y1〉〉)| < e.
Proof: For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every points z1, z2 of (the real normed space of
R)× (the real normed space of R) such that z1, z2 ∈ E and ‖z1 − z2‖ < r

holds ‖f/z1 − f/z2‖ < e. �

(11) Let us consider intervals I, J . Then

(i) I × J is a subset of (the real normed space of R)× (the real normed
space of R), and

(ii) I × J ∈ σ(MeasRect(L-Field,L-Field)).

(12) Let us consider a point z of the real normed space of R, and real numbers
x, r. If x = z, then Ball(z, r) = ]x− r, x+ r[.
Proof: For every object p, p ∈ Ball(z, r) iff p ∈ ]x− r, x+ r[. �

(13) Let us consider a point z of (the real normed space of R) × (the real
normed space of R), and a real number r. Suppose 0 < r. Then there exists
a real number s and there exist real numbers x, y such that 0 < s < r and
z = 〈〈x, y〉〉 and ]x − s, x + s[ × ]y − s, y + s[ ⊆ Ball(z, r). The theorem is
a consequence of (12).

Let us consider a subset A of (the real normed space of R)×(the real normed
space of R). Now we state the propositions:

(14) Suppose for every real numbers a, b such that 〈〈a, b〉〉 ∈ A there exists
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a real-membered set R such that R is non empty and upper bounded and
R = {r,where r is a real number : 0 < r and ]a−r, a+r[×]b−r, b+r[ ⊆ A}.
Then there exists a function F from A into R such that for every real
numbers a, b such that 〈〈a, b〉〉 ∈ A there exists a real-membered set R such
that R is non empty and upper bounded and R = {r, where r is a real
number : 0 < r and ]a−r, a+r[× ]b−r, b+r[ ⊆ A} and F (〈〈a, b〉〉) = supR

2 .
Proof: Define P[object, object] ≡ there exist real numbers a, b and there
exists a real-membered set R such that $1 = 〈〈a, b〉〉 and R is non empty
and upper bounded and R = {r, where r is a real number : 0 < r and
]a− r, a+ r[× ]b− r, b+ r[ ⊆ A} and $2 = supR

2 . For every object x such
that x ∈ A there exists an object y such that y ∈ R and P[x, y].

Consider F being a function from A into R such that for every object
x such that x ∈ A holds P[x, F (x)]. For every real numbers a, b such that
〈〈a, b〉〉 ∈ A there exists a real-membered set R such that R is non empty
and upper bounded and R = {r, where r is a real number : 0 < r and
]a− r, a+ r[× ]b− r, b+ r[ ⊆ A} and F (〈〈a, b〉〉) = supR

2 . �

(15) If A is open, then A ∈ σ(MeasRect(L-Field,L-Field)). The theorem is
a consequence of (13) and (14).

(16) Let us consider a subset H of the real normed space of R, and an open
interval subset I of R. If H = I, then H is open.
Proof: For every point x of the real normed space of R such that x ∈ H
there exists a neighbourhood N of x such that N ⊆ H by [6, (18)], [18,
(4)]. �

(17) Let us consider a real number r, a set X, and a partial function g from
X to R. Then LE-dom(g, r) = g−1(]−∞, r[).

2. Continuity of Two-variable Functions

Now we state the propositions:

(18) Let us consider closed interval subsets I, J of R, a partial function f from
(the real normed space of R) × (the real normed space of R) to the real
normed space of R, and a partial function g from R×R to R. Suppose f is
continuous on I × J and f = g. Let us consider a real number e. Suppose
0 < e. Then there exists a real number r such that

(i) 0 < r, and

(ii) for every real numbers x1, x2, y1, y2 such that 〈〈x1, y1〉〉, 〈〈x2, y2〉〉 ∈ I×
J and |x2 − x1| < r and |y2 − y1| < r holds |g(〈〈x2, y2〉〉) − g(〈〈x1,

y1〉〉)| < e.
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The theorem is a consequence of (9) and (10).

(19) Let us consider a partial function f from (the real normed space of R)×
(the real normed space of R) to the real normed space of R, and a partial
function g from R× R to R. If f = g, then ‖f‖ = |g|.

(20) Let us consider a non empty set X, a partial function g from X to R,
and a subset A of X. Then |g�A| = |g|�A.
Proof: For every object x such that x ∈ dom |g�A| holds |g�A|(x) =
(|g|�A)(x). �

(21) Let us consider a real normed space S, a point x0 of S, and partial func-
tions f , g from S to the real normed space of R. Suppose f is continuous
in x0 and g = ‖f‖. Then g is continuous in x0.
Proof: For every sequence s1 of S such that rng s1 ⊆ dom g and s1 is
convergent and lim s1 = x0 holds g∗s1 is convergent and g/x0 = lim(g∗s1).
�

(22) Let us consider a set X, a real normed space S, and partial functions f ,
g from S to the real normed space of R. Suppose f is continuous on X

and g = ‖f‖. Then g is continuous on X. The theorem is a consequence
of (21).

(23) Let us consider closed interval subsets I, J of R, a partial function f from
(the real normed space of R) × (the real normed space of R) to the real
normed space of R, and a partial function g from R×R to R. Suppose f is
continuous on I × J and f = g. Let us consider a real number e. Suppose
0 < e. Then there exists a real number r such that

(i) 0 < r, and

(ii) for every real numbers x1, x2, y1, y2 such that 〈〈x1, y1〉〉, 〈〈x2, y2〉〉 ∈ I×
J and |x2 − x1| < r and |y2 − y1| < r holds ||g|(〈〈x2, y2〉〉) − |g|(〈〈x1,

y1〉〉)| < e.

The theorem is a consequence of (19), (22), and (18).

(24) Let us consider a real number r, a real normed space S, a subset E of S,
and a partial function f from S to the real normed space of R. Suppose
f is continuous on E and dom f = E. Then there exists a subset H of S
such that

(i) H ∩ E = f−1(]−∞, r[), and

(ii) H is open.

Proof: Define P[object, object] ≡ there exists a point t of S and there
exists a real number s such that t = $1 and s = $2 and 0 < s and for every
object t1 such that t1 ∈ E ∩ {t1, where t1 is a point of S : ‖t1 − t‖ < s}
holds f(t1) ∈ ]−∞, r[.
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For every object z such that z ∈ f−1(]−∞, r[) there exists an ob-
ject y such that y ∈ R and P[z, y]. Consider R being a function from
f−1(]−∞, r[) into R such that for every object x such that x ∈ f−1(]−∞, r[)
holds P[x,R(x)]. Define Q[object, object] ≡ there exists a point t of S
such that t = $1 and 0 < R($1) and $2 = {t1, where t1 is a point of
S : ‖t1− t‖ < R($1)}. For every object z such that z ∈ f−1(]−∞, r[) there
exists an object y such that y ∈ 2α and Q[z, y], where α is the carrier of S.

Consider B being a function from f−1(]−∞, r[) into 2(the carrier of S)

such that for every object x such that x ∈ f−1(]−∞, r[) holds Q[x,B(x)].
Set H =

⋃
rngB. For every object z, z ∈ H ∩E iff z ∈ f−1(]−∞, r[). For

every point z of S such that z ∈ H there exists a neighbourhood N of z
such that N ⊆ H. �

3. Properties of Projective Functions

Now we state the propositions:

(25) Let us consider non empty sets X, Y, Z, a subset A of X, a subset B of
Y, an element x of X, and a partial function f from X ×Y to Z. Suppose
dom f = A×B. Then

(i) if x ∈ A, then dom(ProjPMap1(f, x)) = B, and

(ii) if x /∈ A, then dom(ProjPMap1(f, x)) = ∅.
(26) Let us consider non empty sets X, Y, Z, a subset A of X, a subset B of

Y, an element y of Y, and a partial function f from X × Y to Z. Suppose
dom f = A×B. Then

(i) if y ∈ B, then dom(ProjPMap2(f, y)) = A, and

(ii) if y /∈ B, then dom(ProjPMap2(f, y)) = ∅.
(27) Let us consider non empty sets X, Y, a subset A of X, a subset B of Y,

an element x of X, and a partial function f from X × Y to R. Suppose
dom f = A×B. Then

(i) if x ∈ A, then dom(ProjPMap1(R(f), x)) =
B and dom(ProjPMap1(|R(f)|, x)) = B, and

(ii) if x /∈ A, then dom(ProjPMap1(R(f), x)) =
∅ and dom(ProjPMap1(|R(f)|, x)) = ∅.

The theorem is a consequence of (25).

(28) Let us consider non empty sets X, Y, a subset A of X, a subset B of Y,
an element y of Y, and a partial function f from X × Y to R. Suppose
dom f = A×B. Then
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(i) if y ∈ B, then dom(ProjPMap2(R(f), y)) =

A and dom(ProjPMap2(|R(f)|, y)) = A, and

(ii) if y /∈ B, then dom(ProjPMap2(R(f), y)) =

∅ and dom(ProjPMap2(|R(f)|, y)) = ∅.
The theorem is a consequence of (26).

(29) Let us consider non empty sets X, Y, a set Z, a partial function f from
X × Y to Z, an element x of X, and an element y of Y. Then

(i) rng ProjPMap1(f, x) ⊆ rng f , and

(ii) rng ProjPMap2(f, y) ⊆ rng f .

Let us consider non empty sets X, Y, a partial function f from X ×Y to R,
an element x of X, and an element y of Y. Now we state the propositions:

(30) (i) ProjPMap1(R(f), x) is a partial function from Y to R, and

(ii) ProjPMap1(|R(f)|, x) is a partial function from Y to R, and

(iii) ProjPMap2(R(f), y) is a partial function from X to R, and

(iv) ProjPMap2(|R(f)|, y) is a partial function from X to R.
The theorem is a consequence of (29).

(31) (i) ProjPMap1(R(f), x) = R(ProjPMap1(f, x)), and

(ii) ProjPMap1(|R(f)|, x) = |R(ProjPMap1(f, x))|, and

(iii) ProjPMap2(R(f), y) = R(ProjPMap2(f, y)), and

(iv) ProjPMap2(|R(f)|, y) = |R(ProjPMap2(f, y))|.
(32) (i) ProjPMap1(|f |, x) = |ProjPMap1(f, x)|, and

(ii) ProjPMap2(|f |, y) = |ProjPMap2(f, y)|.
Let us consider a partial function f from (the real normed space of R) ×

(the real normed space of R) to the real normed space of R, a partial function
g from R× R to R, and an element t of R. Now we state the propositions:

(33) If f is continuous on dom f and f = g, then ProjPMap1(g, t) is conti-
nuous and ProjPMap2(g, t) is continuous.
Proof: For every real number y0 such that y0 ∈ dom(ProjPMap1(g, t))
holds ProjPMap1(g, t) is continuous in y0. For every real number x0 such
that x0 ∈ dom(ProjPMap2(g, t)) holds ProjPMap2(g, t) is continuous in
x0. �

(34) Suppose f is continuous on dom f and f = g. Then

(i) ProjPMap1(|g|, t) is continuous, and

(ii) ProjPMap2(|g|, t) is continuous.

The theorem is a consequence of (33) and (32).
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(35) Suppose f is uniformly continuous on dom f and f = g. Then

(i) ProjPMap1(g, t) is uniformly continuous, and

(ii) ProjPMap2(g, t) is uniformly continuous.

Proof: For every real number r such that 0 < r there exists a real number
s such that 0 < s and for every real numbers y1, y2 such that y1, y2 ∈
dom(ProjPMap1(g, t)) and |y1 − y2| < s holds |(ProjPMap1(g, t))(y1) −
(ProjPMap1(g, t))(y2)| < r. For every real number r such that 0 < r

there exists a real number s such that 0 < s and for every real numbers
x1, x2 such that x1, x2 ∈ dom(ProjPMap2(g, t)) and |x1 − x2| < s holds
|(ProjPMap2(g, t))(x1)− (ProjPMap2(g, t))(x2)| < r by [17, (1)]. �

(36) Let us consider an element x of R, a partial function f from (the real
normed space of R) × (the real normed space of R) to the real normed
space of R, a partial function g from R × R to R, and a partial function
P1 from R to R. Suppose f is continuous on dom f and f = g and P1 =
ProjPMap1(R(g), x). Then P1 is continuous. The theorem is a consequence
of (31) and (33).

(37) Let us consider an element y of R, a partial function f from (the real
normed space of R) × (the real normed space of R) to the real normed
space of R, a partial function g from R × R to R, and a partial function
P2 from R to R. Suppose f is continuous on dom f and f = g and P2 =
ProjPMap2(R(g), y). Then P2 is continuous. The theorem is a consequence
of (31) and (33).

(38) Let us consider an element x of R, a partial function f from (the real
normed space of R) × (the real normed space of R) to the real normed
space of R, a partial function g from R × R to R, and a partial func-
tion P1 from R to R. Suppose f is continuous on dom f and f = g and
P1 = ProjPMap1(|R(g)|, x). Then P1 is continuous. The theorem is a con-
sequence of (31), (32), and (34).

(39) Let us consider an element y of R, a partial function f from (the real
normed space of R) × (the real normed space of R) to the real normed
space of R, a partial function g from R × R to R, and a partial func-
tion p2 from R to R. Suppose f is continuous on dom f and f = g and
p2 = ProjPMap2(|R(g)|, y). Then p2 is continuous. The theorem is a con-
sequence of (31), (32), and (34).
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4. Integral of Continuous Functions of Two Variables

Let us consider a subset I of R, a non empty, closed interval subset J of R,
an element x of R, a partial function f from (the real normed space of R) ×
(the real normed space of R) to the real normed space of R, a partial function
g from R × R to R, and a partial function P1 from R to R. Now we state the
propositions:

(40) Suppose x ∈ I and dom f = I × J and f is continuous on I × J and
f = g and P1 = ProjPMap1(R(g), x). Then

(i) P1�J is bounded, and

(ii) P1 is integrable on J .

The theorem is a consequence of (31), (27), and (33).

(41) Suppose x ∈ I and dom f = I × J and f is continuous on I × J and
f = g and P1 = ProjPMap1(R(g), x). Then

(i) P1 is integrable on L-Meas, and

(ii)
∫
J

P1(x)dx =
∫
P1 d L-Meas, and

(iii)
∫
J

P1(x)dx =
∫

ProjPMap1(R(g), x) d L-Meas, and

(iv)
∫
J

P1(x)dx = (Integral2(L-Meas,R(g)))(x).

The theorem is a consequence of (27) and (40).

Let us consider a non empty, closed interval subset I of R, a subset J of R,
an element y of R, a partial function f from (the real normed space of R) ×
(the real normed space of R) to the real normed space of R, a partial function
g from R × R to R, and a partial function P2 from R to R. Now we state the
propositions:

(42) Suppose y ∈ J and dom f = I × J and f is continuous on I × J and
f = g and P2 = ProjPMap2(R(g), y). Then

(i) P2�I is bounded, and

(ii) P2 is integrable on I.

The theorem is a consequence of (31), (28), and (33).

(43) Suppose y ∈ J and dom f = I × J and f is continuous on I × J and
f = g and P2 = ProjPMap2(R(g), y). Then

(i) P2 is integrable on L-Meas, and
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(ii)
∫
I

P2(x)dx =
∫
P2 d L-Meas, and

(iii)
∫
I

P2(x)dx =
∫

ProjPMap2(R(g), y) d L-Meas, and

(iv)
∫
I

P2(x)dx = (Integral1(L-Meas,R(g)))(y).

The theorem is a consequence of (28) and (42).

(44) Let us consider a subset I of R, a non empty, closed interval subset J of
R, an element x of R, a partial function f from (the real normed space of
R)× (the real normed space of R) to the real normed space of R, a partial
function g from R×R to R, and a partial function P1 from R to R. Suppose
x ∈ I and dom f = I × J and f is continuous on I × J and f = g and
P1 = ProjPMap1(|R(g)|, x). Then

(i) P1�J is bounded, and

(ii) P1 is integrable on J .

The theorem is a consequence of (27) and (38).

(45) Let us consider a subset I of R, a non empty, closed interval subset
J of R, an element x of R, a partial function f from (the real normed
space of R) × (the real normed space of R) to the real normed space of
R, a partial function g from R× R to R, a partial function P1 from R to
R, and an element E of L-Field. Suppose x ∈ I and dom f = I × J and
f is continuous on I × J and f = g and P1 = ProjPMap1(|R(g)|, x) and
E = J . Then P1 is E-measurable. The theorem is a consequence of (27)
and (44).

(46) Let us consider a subset I of R, a non empty, closed interval subset J of
R, an element x of R, a partial function f from (the real normed space of
R)× (the real normed space of R) to the real normed space of R, a partial
function g from R×R to R, and a partial function P1 from R to R. Suppose
x ∈ I and dom f = I × J and f is continuous on I × J and f = g and
P1 = ProjPMap1(|R(g)|, x). Then

(i) P1 is integrable on L-Meas, and

(ii)
∫
J

P1(x)dx =
∫
P1 d L-Meas, and

(iii)
∫
J

P1(x)dx =
∫

ProjPMap1(|R(g)|, x) d L-Meas, and

(iv)
∫
J

P1(x)dx = (Integral2(L-Meas, |R(g)|))(x).
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The theorem is a consequence of (27) and (44).

(47) Let us consider a non empty, closed interval subset I of R, a subset J of
R, an element y of R, a partial function f from (the real normed space of
R)× (the real normed space of R) to the real normed space of R, a partial
function g from R×R to R, and a partial function P2 from R to R. Suppose
y ∈ J and dom f = I × J and f is continuous on I × J and f = g and
P2 = ProjPMap2(|R(g)|, y). Then

(i) P2�I is bounded, and

(ii) P2 is integrable on I.

The theorem is a consequence of (28) and (39).

(48) Let us consider a non empty, closed interval subset I of R, a subset
J of R, an element y of R, a partial function f from (the real normed
space of R) × (the real normed space of R) to the real normed space of
R, a partial function g from R× R to R, a partial function P2 from R to
R, and an element E of L-Field. Suppose y ∈ J and dom f = I × J and
f is continuous on I × J and f = g and P2 = ProjPMap2(|R(g)|, y) and
E = I. Then P2 is E-measurable. The theorem is a consequence of (28)
and (47).

(49) Let us consider a non empty, closed interval subset I of R, a subset J of
R, an element y of R, a partial function f from (the real normed space of
R)× (the real normed space of R) to the real normed space of R, a partial
function g from R×R to R, and a partial function P2 from R to R. Suppose
y ∈ J and dom f = I × J and f is continuous on I × J and f = g and
P2 = ProjPMap2(|R(g)|, y). Then

(i) P2 is integrable on L-Meas, and

(ii)
∫
I

P2(x)dx =
∫
P2 d L-Meas, and

(iii)
∫
I

P2(x)dx =
∫

ProjPMap2(|R(g)|, y) d L-Meas, and

(iv)
∫
I

P2(x)dx = (Integral1(L-Meas, |R(g)|))(y).

The theorem is a consequence of (28) and (47).

(50) Let us consider non empty, closed interval subsets I, J of R, a partial
function f from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, a partial function g from R × R
to R, and an element E of σ(MeasRect(L-Field,L-Field)). Suppose I ×
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J = dom f and f is continuous on I × J and f = g and E = I × J . Then
g is E-measurable. The theorem is a consequence of (17), (24), and (15).

(51) Let us consider a subset I of R, a non empty, closed interval subset J
of R, a partial function f from (the real normed space of R) × (the real
normed space of R) to the real normed space of R, and a partial function
g from R× R to R. Suppose I × J = dom f and f is continuous on I × J
and f = g. Then

(i) Integral2(L-Meas, |R(g)|)�I is a partial function from R to R, and

(ii) Integral2(L-Meas,R(g))�I is a partial function from R to R.

The theorem is a consequence of (30), (46), and (41).

Let us consider non empty, closed interval subsets I, J of R, a partial function
f from (the real normed space of R)× (the real normed space of R) to the real
normed space of R, a partial function g from R×R to R, and a partial function
G2 from R to R. Now we state the propositions:

(52) Suppose I × J = dom f and f is continuous on I × J and f = g and
G2 = Integral2(L-Meas, |R(g)|)�I. Then G2 is continuous.
Proof: Consider c, d being real numbers such that J = [c, d]. For every
real number e such that 0 < e there exists a real number r such that 0 < r

and for every real numbers x1, x2 such that |x2−x1| < r and x1, x2 ∈ I for
every real number y such that y ∈ J holds ||g|(〈〈x2, y〉〉)−|g|(〈〈x1, y〉〉)| < e.
Set R = R(g). For every elements x, y of R such that x ∈ I and y ∈ J
holds (ProjPMap1(|R|, x))(y) = |R|(x, y) and |R|(x, y) = |g(〈〈x, y〉〉)| and
|R|(x, y) = |g|(〈〈x, y〉〉).

For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every elements x1, x2 of R such that |x2 −
x1| < r and x1, x2 ∈ I for every element y of R such that y ∈ J holds
|(ProjPMap1(|R|, x2))(y) − (ProjPMap1(|R|, x1))(y)| < e. For every real
numbers x0, r such that x0 ∈ I and 0 < r there exists a real number s such
that 0 < s and for every real number x1 such that x1 ∈ I and |x1−x0| < s

holds |G2(x1)−G2(x0)| < r. �

(53) Suppose I × J = dom f and f is continuous on I × J and f = g and
G2 = Integral2(L-Meas,R(g))�I. Then G2 is continuous.
Proof: Consider c, d being real numbers such that J = [c, d]. For every
real number e such that 0 < e there exists a real number r such that 0 < r

and for every real numbers x1, x2 such that |x2 − x1| < r and x1, x2 ∈ I
for every real number y such that y ∈ J holds |g(〈〈x2, y〉〉)−g(〈〈x1, y〉〉)| < e.
Set R = R(g).

For every real number e such that 0 < e there exists a real num-
ber r such that 0 < r and for every elements x1, x2 of R such that
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|x2 − x1| < r and x1, x2 ∈ I for every element y of R such that y ∈ J

holds |(ProjPMap1(R, x2))(y) − (ProjPMap1(R, x1))(y)| < e. For every
real numbers x0, r such that x0 ∈ I and 0 < r there exists a real number
s such that 0 < s and for every real number x1 such that x1 ∈ I and
|x1 − x0| < s holds |G2(x1)−G2(x0)| < r. �

(54) Let us consider non empty, closed interval subsets I, J of R, a partial
function g from (the real normed space of R)× (the real normed space of
R) to the real normed space of R, and a partial function f from R×R to
R. Suppose I × J = dom g and g is continuous on I × J and g = f . Then

(i) Integral1(L-Meas, |R(f)|)�J is a partial function from R to R, and

(ii) Integral1(L-Meas,R(f))�J is a partial function from R to R.

The theorem is a consequence of (30), (49), and (43).

Let us consider non empty, closed interval subsets I, J of R, a partial function
f from (the real normed space of R)× (the real normed space of R) to the real
normed space of R, a partial function g from R×R to R, and a partial function
G1 from R to R. Now we state the propositions:

(55) Suppose I × J = dom f and f is continuous on I × J and f = g and
G1 = Integral1(L-Meas, |R(g)|)�J . Then G1 is continuous.
Proof: Consider a, b being real numbers such that I = [a, b]. For every
real number e such that 0 < e there exists a real number r such that 0 < r

and for every real numbers y1, y2 such that |y2−y1| < r and y1, y2 ∈ J for
every real number x such that x ∈ I holds ||g|(〈〈x, y2〉〉)− |g|(〈〈x, y1〉〉)| < e.
Set R = R(g). For every elements x, y of R such that x ∈ I and y ∈ J
holds (ProjPMap2(|R|, y))(x) = |R|(x, y) and |R|(x, y) = |g(〈〈x, y〉〉)| and
|R|(x, y) = |g|(〈〈x, y〉〉).

For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every elements y1, y2 of R such that |y2 −
y1| < r and y1, y2 ∈ J for every element x of R such that x ∈ I holds
|(ProjPMap2(|R|, y2))(x) − (ProjPMap2(|R|, y1))(x)| < e. For every real
numbers y0, r such that y0 ∈ J and 0 < r there exists a real number s such
that 0 < s and for every real number y1 such that y1 ∈ J and |y1−y0| < s

holds |G1(y1)−G1(y0)| < r. �

(56) Suppose I × J = dom f and f is continuous on I × J and f = g and
G1 = Integral1(L-Meas,R(g))�J . Then G1 is continuous.
Proof: Consider a, b being real numbers such that I = [a, b]. For every
real number e such that 0 < e there exists a real number r such that 0 < r

and for every real numbers y1, y2 such that |y2−y1| < r and y1, y2 ∈ J for
every real number x such that x ∈ I holds |g(〈〈x, y2〉〉) − g(〈〈x, y1〉〉)| < e.
Set R = R(g).
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For every real number e such that 0 < e there exists a real num-
ber r such that 0 < r and for every elements y1, y2 of R such that
|y2 − y1| < r and y1, y2 ∈ J for every element x of R such that x ∈ I

holds |(ProjPMap2(R, y2))(x) − (ProjPMap2(R, y1))(x)| < e. For every
real numbers y0, r such that y0 ∈ J and 0 < r there exists a real number
s such that 0 < s and for every real number y1 such that y1 ∈ J and
|y1 − y0| < s holds |G1(y1)−G1(y0)| < r. �

(57) Let us consider non empty, closed interval subsets I, J of R, a partial
function f from (the real normed space of R)× (the real normed space of
R) to the real normed space of R, and a partial function g from R×R to
R. Suppose I × J = dom f and f is continuous on I × J and f = g. Then

(i) g is integrable on ProdMeas(L-Meas,L-Meas), and

(ii) for every element x of R, (Integral2(L-Meas, |R(g)|))(x) < +∞, and

(iii) for every element y of R, (Integral1(L-Meas, |R(g)|))(y) < +∞, and

(iv) for every element U of L-Field, Integral2(L-Meas,R(g)) is U -measu-
rable, and

(v) for every element V of L-Field, Integral1(L-Meas,R(g)) is V -measu-
rable, and

(vi) Integral2(L-Meas,R(g)) is integrable on L-Meas, and

(vii) Integral1(L-Meas,R(g)) is integrable on L-Meas, and

(viii)
∫
g d ProdMeas(L-Meas,L-Meas) =∫
Integral2(L-Meas,R(g)) d L-Meas, and

(ix)
∫
g d ProdMeas(L-Meas,L-Meas) =∫
Integral1(L-Meas,R(g)) d L-Meas.

(58) Let us consider non empty, closed interval subsets I, J of R, a partial
function f from (the real normed space of R)× (the real normed space of
R) to the real normed space of R, a partial function g from R × R to R,
and a partial function G2 from R to R. Suppose I × J = dom f and f is
continuous on I×J and f = g and G2 = Integral2(L-Meas,R(g))�I. Then∫

R(g) d ProdMeas(L-Meas,L-Meas) =
∫
I

G2(x)dx.

Proof: Set R = R(g). Set N1 = R \ I. Set R2 = Integral2(L-Meas, R).
Set F1 = R2�N1. G2 is continuous. For every element x of R such that
x ∈ domF1 holds F1(x) = 0. �

(59) Let us consider non empty, closed interval subsets I, J of R, a partial
function f from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, a partial function g from R × R to
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R, and a partial function G1 from R to R. Suppose I × J = dom f and
f is continuous on I × J and f = g and G1 = Integral1(L-Meas,R(g))�J .

Then
∫

R(g) d ProdMeas(L-Meas,L-Meas) =
∫
J

G1(x)dx.

Proof: Set R = R(g). Set N2 = R \ J . Set R1 = Integral1(L-Meas, R).
Set F1 = R1�N2. G1�J is bounded and G1 is integrable on J . For every
element y of R such that y ∈ domF1 holds F1(y) = 0. �
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Here we define the notion of half-planes and planes and prove some of their
basic properties, a theory of intersecting lines (including orthogonality), notions
of betweenness including lines and points, shifting this notion into planes and
spaces of higher dimension.

1. Preliminaries

Now we state the proposition:

(1) Let us consider Tarski plane S satisfying the axiom of congruence iden-
tity and the axiom of betweenness identity, and points a, b, c of S. If
a, b ¬ c, c, then a = b.

2. Betweenness Relation Revisited

Let S be a non empty Tarski plane, a, b be points of S, and A be a subset
of S. We say that A lies between a and b if and only if

(Def. 1) A is a line and a /∈ A and b /∈ A and there exists a point t of S such that
t ∈ A and t lies between a and b.

Now we state the proposition:

(2) Let us consider a non empty Tarski plane S satisfying the axiom of
betweenness identity, a point a of S, and a subset A of S. Then A does
not lie between a and a.

Let S be a non empty Tarski plane and a, b, p, q be points of S. We say that
between(a, p, q, b) if and only if

(Def. 2) p 6= q and Line(p, q) lies between a and b.

From now on S denotes a non empty Tarski plane satisfying the axiom of
congruence identity, the axiom of segment construction, the axiom of between-
ness identity, and the axiom of Pasch, a, b denote points of S, and A denotes
a subset of S. Now we state the proposition:

(3) 9.2 Satz:
If A lies between a and b, then A lies between b and a.

In the sequel S denotes a non empty Tarski plane satisfying seven Tarski’s
geometry axioms, a, b, c, m, r, s denote points of S, and A denotes a subset of
S. Now we state the propositions:

(4) If b lies between a and c and A is a line and a, c ∈ A, then b ∈ A.

(5) If b lies between a and c and a 6= b and A is a line and a, b ∈ A, then
c ∈ A.
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(6) Suppose A lies between a and c and m ∈ A and Middle(a,m, c) and
r ∈ A. If a 'r b and b lies between r and a, then A lies between b and c.
The theorem is a consequence of (4).

(7) 9.3 Lemma:
If A lies between a and c and m ∈ A and Middle(a,m, c) and r ∈ A, then
for every b such that a 'r b holds A lies between b and c. The theorem is
a consequence of (6), (4), and (5).

Let S be a non empty Tarski plane satisfying seven Tarski’s geometry axioms,
a, b be points of S, and A be a subset of S. We say that A ⊥a b if and only if

(Def. 3) A, a ⊥ a, b.

3. Half-lines and Outer Pasch

Let S be a non empty Tarski plane and K be a subset of S. We say that K
is a half-line if and only if

(Def. 4) there exist points p, a of S such that p 6= a and K = HalfLine(p, a).

Now we state the proposition:

(8) Let us consider points a, b, c, d, e of S. Suppose b 6= c and c 6= d and c

lies between b and d and (b lies between a and c or a lies between b and c)
and (d lies between c and e or e lies between c and d). Then c lies between
a and e.

From now on S denotes a non empty Tarski plane satisfying Lower Dimen-
sion Axiom and seven Tarski’s geometry axioms, a, b, c, d, m, p, q, r, s, x denote
points of S, and A, A′, E denote subsets of S. Now we state the propositions:

(9) Suppose r 6= s and s, c ¬ r, a and A lies between a and c and r ∈ A and
A ⊥r a and s ∈ A and A ⊥s c. Then

(i) if Middle(r,m, s), then for every point u of S, u 'r a iff Sm(u) 's c,
and

(ii) for every points u, v of S such that u 'r a and v 's c holds A lies
between u and v.

The theorem is a consequence of (1) and (7).

(10) 9.4 Lemma:
Suppose A lies between a and c and r ∈ A and A ⊥r a and s ∈ A and
A ⊥s c. Then

(i) if Middle(r,m, s), then for every point u of S, u 'r a iff Sm(u) 's c,
and
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(ii) for every points u, v of S such that u 'r a and v 's c holds A lies
between u and v.

The theorem is a consequence of (9) and (8).

(11) Let us consider points a, b of S. If a 6= b, then b 'a b.

(12) Satz 9.5 (Gupta 1965):
If A lies between a and c and r ∈ A, then for every b such that a 'r b holds
A lies between b and c.
Proof: Consider p, q being points of S such that p 6= q and A = Line(p, q).
Consider x being a point of S such that x is perpendicular foot of p, q,
a. b /∈ A by [7, (87), (45)]. Consider y being a point of S such that y is
perpendicular foot of p, q, b. Consider z being a point of S such that z
is perpendicular foot of p, q, c. Consider m being a point of S such that
Middle(x,m, z). Set d = Sm(a). d /∈ A by [7, (87)]. z 6= d by [7, (45), (87)].
d 'z c. A lies between a and d and m ∈ A and Middle(a,m, d) and r ∈ A
and a 'r b. A lies between b and d. �

(13) Satz 9.6 (Satz von Pasch, Exterior form – Gupta 1965):
If c lies between a and p and q lies between b and c, then there exists x
such that x lies between a and b and q lies between p and x. The theorem
is a consequence of (12).

4. Points on the Same Side of the Line

Let S be a non empty Tarski plane, A be a subset of S, and a, b be points
of S. We say that a 'A b if and only if

(Def. 5) there exists a point c of S such that A lies between a and c and A lies
between b and c.

Let a, b, p, q be points of S. We say that a 'p,q b if and only if

(Def. 6) p 6= q and a
'

Line(p,q) b.

Now we state the propositions:

(14) 9.8 Satz:
If A lies between a and c, then A lies between b and c iff a

'
A b. The

theorem is a consequence of (12).

(15) 9.9 Satz:
If A lies between a and b, then ¬a 'A b. The theorem is a consequence of
(14).

(16) 9.10 Lemma:
If A is a line and a /∈ A, then there exists c such that A lies between a

and c.
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Proof: Consider p, q such that p 6= q and A = Line(p, q).
Set c = Sp(a). p 6= c by [7, (104)]. �

(17) 9.11 Satz: Reflexivity:
If A is a line and a /∈ A, then a 'A a. The theorem is a consequence of (16).

(18) 9.12 Satz: Symmetry:
If a 'A b, then b

'
A a.

(19) 9.13 Satz: Transitivity:
If a 'A b and b

'
A c, then a

'
A c. The theorem is a consequence of (14).

5. Half-planes

Let S be a non empty Tarski plane, A be a subset of S, and a be a point of
S. The functor HalfPlane(A, a) yielding a subset of S is defined by the term

(Def. 7) {x, where x is a point of S : x 'A a}.

Let S be a non empty Tarski plane and p, q, a be points of S. Assume p, q
and a are not collinear. The functor HalfPlane(p, q, a) yielding a set is defined
by the term

(Def. 8) HalfPlane(Line(p, q), a).

Now we state the propositions:

(20) If A is a line and a /∈ A, then a ∈ HalfPlane(A, a). The theorem is
a consequence of (17).

(21) If A is a line and a /∈ A and b /∈ A and b ∈ HalfPlane(A, a), then
a ∈ HalfPlane(A, b).

(22) If b ∈ HalfPlane(A, a), then HalfPlane(A, b) ⊆ HalfPlane(A, a). The the-
orem is a consequence of (19).

(23) If A is a line and a /∈ A and b /∈ A and b ∈ HalfPlane(A, a), then
HalfPlane(A, b) = HalfPlane(A, a). The theorem is a consequence of (21)
and (22).

Let S be a non empty Tarski plane, A be a subset of S, and a, b be points
of S. We say that a and b are on the opposite sides of A if and only if

(Def. 9) A lies between a and b.

Now we state the propositions:

(24) If a 'A b, then A is a line and a /∈ A and b /∈ A.

(25) 9.17 Satz:
If a 'A b and c lies between a and b, then c

'
A a.

Proof: Consider d being a point of S such that A lies between a and d

and A lies between b and d. Consider x being a point of S such that x ∈ A
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and x lies between a and d. Consider y being a point of S such that y ∈ A
and y lies between b and d. Consider t being a point of S such that t lies
between c and d and t lies between x and y. c /∈ A. A lies between c and
d by (24), [7, (87), (14)]. �

6. Half-planes and Collinearity

Now we state the propositions:

(26) 9.18 Satz:
If A is a line and p ∈ A and a, b and p are collinear, then A lies between
a and b iff p lies between a and b and a /∈ A and b /∈ A.

(27) If A is a line and p ∈ A and a 'p b and a /∈ A, then A lies between b and
Sp(a).
Proof: Set c = Sp(a). p lies between a and c. c 6= p. b /∈ A by [7, (87),
(73)]. c /∈ A by [7, (87)]. �

(28) If A is a line and p ∈ A and a /∈ A, then A lies between a and Sp(a).
Proof: Set c = Sp(a). p lies between a and c. c 6= p. c /∈ A by [7, (87)]. �

(29) 9.19 Satz:
If A is a line and p ∈ A and a, b and p are collinear, then a

'
A b iff a 'p b

and a /∈ A. The theorem is a consequence of (15), (28), and (27).

7. Planes

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, A be a subset of S, and r be a point of S.
Assume A is a line and r /∈ A. The functor Plane(A, r) yielding a subset of S is
defined by

(Def. 10) there exists a point r′ of S such that A lies between r and r′ and it =
(HalfPlane(A, r) ∪A) ∪HalfPlane(A, r′).

Now we state the propositions:

(30) If A is a line and r /∈ A, then HalfPlane(A, r) ⊆ Plane(A, r).

(31) If A is a line and r /∈ A, then A ⊆ Plane(A, r) and r ∈ Plane(A, r). The
theorem is a consequence of (20) and (30).

(32) Suppose A is a line and r /∈ A. Then Plane(A, r) = {x, where x is
a point of S : x 'A r or x ∈ A or A lies between r and x}.
Proof: Consider r′ being a point of S such that A lies between r and
r′ and Plane(A, r) = (HalfPlane(A, r) ∪ A) ∪ HalfPlane(A, r′). Set P =
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{x, where x is a point of S : x 'A r or x ∈ A or A lies between r and x}.
Plane(A, r) ⊆ P by [7, (14)], (14). P ⊆ Plane(A, r) by [7, (14)]. �

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and p, q, r be points of S. Assume p, q and r

are not collinear. The functor Plane(p, q, r) yielding a subset of S is defined by
the term

(Def. 11) Plane(Line(p, q), r).

Let E be a subset of S. We say that E is a plane if and only if

(Def. 12) there exist points p, q, r of S such that p, q and r are not collinear and
E = Plane(p, q, r).

Now we state the propositions:

(33) If A lies between a and b, then b ∈ Plane(A, a). The theorem is a conse-
quence of (32).

(34) 9.21 Satz:
If A is a line and r /∈ A and s ∈ Plane(A, r) and s /∈ A, then Plane(A, r) =
Plane(A, s). The theorem is a consequence of (14) and (23).

(35) If A,A′ intersect at p and A,A′ intersect at q, then p = q.

(36) If A is a line and a, p ∈ A, then Sp(a) ∈ A.

(37) 9.22 Lemma:
If A,A′ intersect at p and r ∈ A′ and r 6= p, then A′ ⊆ Plane(A, r). The
theorem is a consequence of (32), (31), and (36).

(38) If A is a line and A′ is a line and A 6= A′, then there exists a point r of
S such that r /∈ A and r ∈ A′.

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and A, A′ be subsets of S. Assume A is a line
and A′ is a line and A 6= A′ and A ∩A′ is not empty. The functor Plane(A,A′)
yielding a subset of S is defined by

(Def. 13) there exists a point r of S such that r /∈ A and r ∈ A′ and it =
Plane(A, r).

Now we state the propositions:

(39) Let us consider a non empty Tarski plane S, subsets A, B of S, and
a point x of S. If A,B intersect at x, then B,A intersect at x.

(40) If A,A′ intersect atp, then A ⊆ Plane(A′, A) and A′ ⊆ Plane(A,A′). The
theorem is a consequence of (37).

(41) Suppose A,A′ intersect at p. Then there exists a point r of S such that

(i) r /∈ A, and

(ii) r ∈ A′, and
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(iii) Plane(A,A′) = Plane(A, r), and

(iv) A′ = Line(r, p), and

(v) there exists a point r′ of S such that p lies between r and r′ and
p 6= r′ and r, p and r′ are collinear and r′ /∈ A and Plane(A, r) =
Plane(A, r′).

Proof: Consider r being a point of S such that r /∈ A and r ∈ A′ and
Plane(A,A′) = Plane(A, r). Consider r′ being a point of S such that p
lies between r and r′ and p 6= r′. r′ /∈ A by [7, (89)]. r′ ∈ A′ and A′ ⊆
Plane(A, r). Plane(A, r) = Plane(A, r′). �

(42) If A,A′ intersect at p, then Plane(A,A′) ⊆ Plane(A′, A). The theorem is
a consequence of (41), (32), (31), (40), (14), (34), (29), and (37).

Now we state the propositions:

(43) 9.24 Satz:
If A,A′ intersect at p, then A ⊆ Plane(A,A′) and A′ ⊆ Plane(A,A′) and
Plane(A,A′) = Plane(A′, A). The theorem is a consequence of (39), (40),
and (42).

(44) Suppose a, b ∈ E and a 6= b and p, q and r are not collinear and
E = Plane(p, q, r) and c ∈ Line(p, q) and c /∈ Line(a, b) and b /∈ Line(p, q).
Then

(i) Line(a, b) ⊆ E, and

(ii) there exists c such that a, b and c are not collinear and E =
Plane(a, b, c).

The theorem is a consequence of (43), (34), and (31).

(45) Suppose a, b ∈ E and a 6= b and p, q and r are not collinear and
E = Plane(p, q, r) and b /∈ Line(p, q) and Line(p, q) 6= Line(a, b). Then

(i) Line(a, b) ⊆ E, and

(ii) there exists c such that a, b and c are not collinear and E =
Plane(a, b, c).

Proof: Set A = Line(p, q). Set A′ = Line(a, b). There exists a point c of
S such that c /∈ A′ and c ∈ A by [7, (46), (83), (87)]. �

(46) Satz 9.25:
If E is a plane and a, b ∈ E and a 6= b, then Line(a, b) ⊆ E and there
exists c such that a, b and c are not collinear and E = Plane(a, b, c). The
theorem is a consequence of (31) and (45).

(47) Satz 9.26:
If a, b and c are not collinear and E is a plane and a, b, c ∈ E, then
E = Plane(a, b, c). The theorem is a consequence of (46) and (34).
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(48) If A is a line and a /∈ A, then a ∈ Plane(A, a). The theorem is a conse-
quence of (32) and (17).

(49) 9.27.(1) Satz:
If a, b and c are not collinear, then there exists a subset E of S such
that Plane(a, b, c) = E and E is a plane and a, b, c ∈ E. The theorem is
a consequence of (31) and (48).

(50) 9.27.(2) Satz:
If A is a line and c /∈ A, then there exists a subset E of S such that E
is a plane and A ⊆ E and c ∈ E and Plane(A, c) = E. The theorem is
a consequence of (31) and (48).

(51) 9.27.(3) Satz:
If A,A′ intersect at p, then there exists a subset E of S such that E is
a plane and A ⊆ E and A′ ⊆ E and Plane(A,A′) = E. The theorem is
a consequence of (50) and (43).

(52) 9.28 Folgerung:
Suppose a, b and c are not collinear. Let us consider subsets E1, E2 of S.
Suppose E1 is a plane and a, b, c ∈ E1 and E2 is a plane and a, b, c ∈ E2.
Then E1 = E2. The theorem is a consequence of (47).

(53) 9.29 Folgerung:
Suppose a, b and c are not collinear. Then

(i) Plane(a, b, c) = Plane(b, c, a), and

(ii) Plane(a, b, c) = Plane(c, a, b), and

(iii) Plane(a, b, c) = Plane(b, a, c), and

(iv) Plane(a, b, c) = Plane(a, c, b), and

(v) Plane(a, b, c) = Plane(c, b, a).

The theorem is a consequence of (49) and (52).

(54) 9.30 Folgerung:
Suppose A is a line. Let us consider subsets E1, E2 of S. Suppose E1 is
a plane and E2 is a plane and A ⊆ E1 and A ⊆ E2 and E1 6= E2. Let us
consider a point x of S. Then x ∈ E1 and x ∈ E2 if and only if x ∈ A.
The theorem is a consequence of (52).

(55) If s 'p,q r, then s 6= p and s 6= q and r 6= p and r 6= q and p 6= q.

(56) Line(b, c) does not lie between a and a.

(57) If A lies between a and b, then a 6= b.

(58) Let us consider Tarski plane S satisfying the axiom of congruence identi-
ty, the axiom of segment construction, the axiom of betweenness identity,
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the axiom of Pasch, and Lower Dimension Axiom. Then there exist points
p, q of S such that p 6= q.

(59) 9.31 Satz:
If s 'p,q r and s 'p,r q, then Line(p, s) lies between q and r. The theorem is
a consequence of (14), (29), (19), and (12).

8. Coplanarity Relation

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and A be a subset of S. We say that A is a set
of coplanar points if and only if

(Def. 14) there exists a subset E of S such that E is a plane and A ⊆ E.

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and a, b, c, d be points of S. We say that a, b,
c, d are coplanar if and only if

(Def. 15) there exists a subset E of S such that E is a plane and a, b, c, d ∈ E.

Now we state the propositions:

(60) Suppose a, b, c, d are coplanar. Then

(i) a, b, d, c are coplanar, and

(ii) a, c, b, d are coplanar, and

(iii) a, c, d, b are coplanar, and

(iv) a, d, c, b are coplanar, and

(v) a, d, b, c are coplanar, and

(vi) b, a, c, d are coplanar, and

(vii) b, a, d, c are coplanar, and

(viii) b, c, a, d are coplanar, and

(ix) b, c, d, a are coplanar, and

(x) b, d, a, c are coplanar, and

(xi) b, d, c, a are coplanar, and

(xii) c, a, b, d are coplanar, and

(xiii) c, a, d, b are coplanar, and

(xiv) c, b, a, d are coplanar, and

(xv) c, b, d, a are coplanar, and

(xvi) d, a, b, c are coplanar, and
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(xvii) d, a, c, b are coplanar, and

(xviii) d, b, a, c are coplanar, and

(xix) d, b, c, a are coplanar.

(61) a, a, a, a are coplanar. The theorem is a consequence of (49).

(62) a, a, a, b are coplanar. The theorem is a consequence of (61) and (49).

(63) a, a, b, c are coplanar. The theorem is a consequence of (49), (46), and
(62).

(64) If a, b and x are collinear and c, d and x are collinear and a 6= x and
c 6= x, then a, b, c, d are coplanar. The theorem is a consequence of (49),
(31), and (53).

(65) If b, a and x are collinear and c, d and x are collinear and b 6= x and
c 6= x, then a, b, c, d are coplanar. The theorem is a consequence of (64).

(66) If a, b and x are collinear and c, d and x are collinear and b 6= x and
c 6= x, then a, b, c, d are coplanar. The theorem is a consequence of (65).

(67) Suppose a, b and x are collinear and c, d and x are collinear and (b 6= x

and c 6= x or b 6= x and d 6= x or a 6= x and c 6= x or a 6= x and d 6= x).
Then a, b, c, d are coplanar. The theorem is a consequence of (66), (64),
and (65).

(68) 9.33 Satz:
a, b, c, d are coplanar if and only if there exists x such that a, b and x are
collinear and c, d and x are collinear or a, c and x are collinear and b, d
and x are collinear or a, d and x are collinear and b, c and x are collinear.
The theorem is a consequence of (63), (47), (53), (59), (32), and (67).

(69) Suppose a, b and c are not collinear. Then

(i) Plane(a, b, c) is a plane, and

(ii) a, b, c ∈ Plane(a, b, c), and

(iii) for every points u, v of S such that u, v ∈ Plane(a, b, c) and u 6= v

holds Line(u, v) ⊆ Plane(a, b, c).

The theorem is a consequence of (49) and (46).

(70) 9.34 Satz:
Suppose a, b and c are not collinear. Let us consider a subset E of S.
Suppose a, b, c ∈ E and for every points u, v of S such that u, v ∈ E and
u 6= v holds Line(u, v) ⊆ E. Then Plane(a, b, c) ⊆ E.
Proof: Plane(a, b, c) is a plane and a, b, c ∈ Plane(a, b, c) and for every
points u, v of S such that u, v ∈ Plane(a, b, c) and u 6= v holds Line(u, v) ⊆
Plane(a, b, c). a 6= c by [7, (46), (14)]. b 6= c by [7, (46)]. Plane(a, b, c) ⊆ E
by (68), [7, (14)]. �
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9. Towards Higher Dimensions

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, a, b be points of S, and A be a subset of S. We
say that between2(a,A, b) if and only if

(Def. 16) A is a plane and a /∈ A and b /∈ A and there exists a point t of S such
that t ∈ A and t lies between a and b.

Now we state the propositions:

(71) 9.38 Satz (n = 2):
If between2(a,A, b), then between2(b, A, a).

(72) If p lies between a and c and a 'p b, then p lies between b and c.

(73) 9.39 Satz (n = 2):
If between2(a,A, c) and r ∈ A, then for every b such that a 'r b holds
between2(b, A, c). The theorem is a consequence of (69) and (12).

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, a, b be points of S, and A be a subset of S. We

say that a
2
'
A b if and only if

(Def. 17) there exists a point c of S such that between2(a,A, c) and between2(b, A, c).

Now we state the propositions:

(74) 9.41 Satz (n = 2):

If between2(a,A, c), then between2(b, A, c) iff a
2
'
A b. The theorem is a con-

sequence of (69) and (73).

(75) 9.9 Satz (Version n = 2):

If between2(a,A, b), then ¬(a
2
'
A b). The theorem is a consequence of (74).

(76) 9.10 Lemma (Version n = 2):
If A is a plane and a /∈ A, then there exists c such that between2(a,A, c).
Proof: Consider p, q, r such that p, q and r are not collinear and A =
Plane(p, q, r). r /∈ Line(p, q). Line(p, q) ⊆ A. p, q, r ∈ A. Set c = Sp(a).
p 6= c by [7, (104)]. c /∈ A. �

(77) 9.11 Satz (Version n = 2):

If A is a plane and a /∈ A, then a
2
'
A a. The theorem is a consequence of

(76).

(78) 9.12 Satz (Version n = 2):

If a
2
'
A b, then b

2
'
A a.
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(79) 9.13 Satz (Version n = 2):

If a
2
'
A b and b

2
'
A c, then a

2
'
A c. The theorem is a consequence of (74).

10. Half-spaces

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, A be a subset of S, and a be a point of S.
Assume A is a plane and a /∈ A. The functor HalfSpace3(A, a) yielding a subset
of S is defined by the term

(Def. 18) {x, where x is a point of S : x
2
'
A a}.

Let p, q, a be points of S. Assume p, q and a are not collinear. The functor
HalfSpace3(p, q, a) yielding a set is defined by the term

(Def. 19) HalfSpace3(Line(p, q), a).

Now we state the propositions:

(80) If A is a plane and a /∈ A, then a ∈ HalfSpace3(A, a). The theorem is
a consequence of (77).

(81) If A is a plane and a /∈ A and b /∈ A and b ∈ HalfSpace3(A, a), then
a ∈ HalfSpace3(A, b).

(82) If A is a plane and a /∈ A and b /∈ A and b ∈ HalfSpace3(A, a), then
HalfSpace3(A, b) ⊆ HalfSpace3(A, a). The theorem is a consequence of
(79).

(83) If A is a plane and a /∈ A and b /∈ A and b ∈ HalfSpace3(A, a), then
HalfSpace3(A, b) = HalfSpace3(A, a). The theorem is a consequence of
(81) and (82).

11. Towards Spaces in Higher Dimensions

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, A be a subset of S, and r be a point of S.
Assume A is a plane and r /∈ A. The functor Space3(A, r) yielding a subset of
S is defined by

(Def. 20) there exists a point r′ of S such that between2(r,A, r′) and it =
(HalfSpace3(A, r) ∪A) ∪HalfSpace3(A, r′).

Now we state the propositions:

(84) If A is a plane and r /∈ A, then HalfSpace3(A, r) ⊆ Space3(A, r).

(85) If A is a plane and r /∈ A, then A ⊆ Space3(A, r) and r ∈ Space3(A, r).
The theorem is a consequence of (80) and (84).
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(86) Suppose A is a plane and r /∈ A. Then Space3(A, r) = {x, where x is

a point of S : x
2
'
A r or x ∈ A or between2 (r,A, x)}.

Proof: Consider r′ being a point of S such that between2(r,A, r′) and
Space3(A, r) = (HalfSpace3(A, r)∪A)∪HalfSpace3(A, r′).SetP = {x,where

x is a point of S : x
2
'
A r or x ∈ A or between2 (r,A, x)}. Space3(A, r) ⊆ P

by [7, (14)], (74). P ⊆ Space3(A, r) by [7, (14)]. �

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and p0, p1, p2, r be points of S. Assume p0, p1,
p2, r are not coplanar. The functor Space3(p0, p1, p2, r) yielding a subset of S is
defined by the term

(Def. 21) Space3(Plane(p0, p1, p2), r).

Let E be a subset of S. We say that E is a space3 if and only if

(Def. 22) there exists a point r of S and there exists a subset A of S such that A
is a plane and r /∈ A and E = Space3(A, r).

Now we state the propositions:

(87) If A is a plane and a, b and c are not collinear and a, b, c ∈ A and d /∈ A,
then a, b, c, d are not coplanar.

(88) Suppose E is a space3. Then there exists a and there exists b and there
exists c and there exists d such that a, b, c, d are not coplanar and E =
Space3(a, b, c, d). The theorem is a consequence of (69) and (87).
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Summary. In this article we extend the algebraic theory of ordered fields
[6], [8] in Mizar. We introduce extensions of orderings: if E is a field extension
of F , then an ordering P of F extends to E, if there exists an ordering O of
E containing P . We first prove some necessary and sufficient conditions for P
being extendable to E, in particular that P extends to E if and only if the set
QS E := {

∑
a ∗ b2 | a ∈ P, b ∈ E} is a preordering of E – or equivalently if

and only if −1 /∈ QS E. Then we show for non-square a ∈ F that P extends to
F (
√
a) if and only if P and finally that every ordering P of F extends to E if

the degree of E over F is odd.

MSC: 12J15 12F99 68V20

Keywords: ordered fields; quadratic extensions; extensions of odd degree

MML identifier: REALALG3, version: 8.1.14 5.76.1462

Introduction

In this article we extend the algebraic theory of ordered fields [5] using the
Mizar formalism [1, 4, 2]. We define extensions of orderings: if E is a field
extension of F and P an ordering of F , then P extends to E, if there is an
ordering of E containing P .

In the preliminary section, we provide a number of technical lemmas. Among
others we define the sets P+ and P− of positive and negative elements, respec-
tively, and show that the existence of a partition {P+, {0}, P } is equivalent to
our definition of orderings, e.g. that P+ ∪ {0} is a positive cone [5].

c© 2023 The Author(s) / AMU
(Association of Mizar Users)
under CC BY-SA 3.0 license341

https://sciendo.com/journal/forma
https://orcid.org/0000-0001-9587-8737
http://zbmath.org/classification/?q=cc:12J15
http://zbmath.org/classification/?q=cc:12F99
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/realalg3.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


342 christoph schwarzweller

The next section is devoted to polynomials [9]. Here we prove some theorems
necessary for our main results, for example, that every polynomial of odd degree
has an irreducible factor of odd degree. We also show the – rather technical –
fact that evaluating a sum of polynomials is the same as summing up evaluations
of the addends, that is for a ∈ E we have

(
n∑
i=1

pi)(a) =
n∑
i=1

pi(a).

The third section presents more properties of the fields F (a) for an element
a such that a2 ∈ F , but a /∈ F . In this case the degree of the extension is 2, so
that the representation of elements of F (a) by x+ ·a · y with x, y ∈ F is unique
[7]. This follows from {1, a} being a basis of F (a)’s corresponding vector space
[3].

Then in Section 4 we define extensions (cf. [13, 10]) of orderings and intro-
duce the set of P -quadratic sums of E

QS(E) := {
∑

a · b2 | a ∈ P, b ∈ E}.

We show that P extends to E if and only if QS(E) is an ordering of P , which
is the case if and only if 1 /∈ QS(E). This allows to prove our main theorems
[8]: Firstly, that for a non-square element a ∈ F an ordering P of F extends to
F (a) if and only if

√
a ∈ P ; because if

−1 =
∑

ai · (xi + ·a · yi)2 ∈ QS(E),

then because −1 = 1 + a ∗ 0 would follow

−1 =
∑

ai · xi2 + ·ai · y2
i · a2,

and hence −1 ∈ P , because ai, a2 ∈ F .
Secondly, that every ordering P of F extends to a field extension E of odd

degree. The proof is by induction and uses the fact that E is a simple extension
of F , e.g. E = F (a). Then, because {1, a, . . . , an−1} is a basis of E, from −1 =∑
ai · (xi+a ·yi)2 would follow the existence of an irreducible polynomial h with

odd degree < n, so that by induction hypothesis P extends to F (b), where h is
the minimal polynomial of b. Then, however, the equation can again be pushed
down to F giving −1 ∈ P .

1. Preliminaries

The scheme 3SeqDEx deals with a non empty set D and a natural number
A and a binary predicate P and a binary predicate Q and a binary predicate R
and states that
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(Sch. 1) There exist finite sequences p, q, r of elements of D such that dom p =
SegA and dom q = SegA and dom r = SegA and for every natural number
k such that k ∈ SegA holds P[k, p(k)] and for every natural number k such
that k ∈ SegA holds Q[k, q(k)] and for every natural number k such that
k ∈ SegA holds R[k, r(k)]

provided

• for every natural number k such that k ∈ SegA there exists an element x
of D such that P[k, x] and

• for every natural number k such that k ∈ SegA there exists an element x
of D such that Q[k, x] and

• for every natural number k such that k ∈ SegA there exists an element x
of D such that R[k, x].

Now we state the proposition:

(1) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L. Then −{0L} = {0L}.

Let R be a ring. The functor 2.(R) yielding an element of R is defined by
the term

(Def. 1) 1R + 1R.

Let us note that there exists a field which has characteristic 2. Let R be
a ring with characteristic 2. One can verify that 2.(R) is zero.

Let R be a non degenerated ring without characteristic 2. One can verify
that 2.(R) is non zero and 2.(FQ) is non square and 2.(RF) is a square and
there exists a field which is preordered and polynomial-disjoint and every non
degenerated ring which is preordered and has also not characteristic 2. Now we
state the proposition:

(2) Let us consider a field F , an extension E of F , and a finite sequence f
of elements of E. Suppose for every natural number i such that i ∈ dom f

holds f(i) ∈ F . Then

(i) f is a finite sequence of elements of F , and

(ii)
∑
f ∈ F .

Let F be a field, a be sum of squares element of F , and b be sum of squares,
non zero element of F . Observe that a · (b−1) is a sum of squares. Let f be
a quadratic, non empty finite sequence of elements of F . Let us note that

∑
f

is a sum of squares. Let R be a zero structure. Let us observe that there exists
a finite sequence of elements of R which is trivial and ε(the carrier of R) is trivial
and every finite sequence of elements of R which is empty is also trivial.
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Let f , g be trivial finite sequences of elements of R. Observe that f a g is
trivial. Let R be a non degenerated ring, f be a non trivial finite sequence of
elements of R, and g be a finite sequence of elements of R. Observe that f a g
is non trivial and g a f is non trivial. Let R be a ring and f be a trivial finite
sequence of elements of R. One can check that

∑
f is zero. Let E be a field,

F be a subfield of E, and a be an element of F . The functor @(a,E) yielding
an element of E is defined by the term

(Def. 2) a.

Let a be an element of E. We say that a is F -membered if and only if

(Def. 3) a ∈ the carrier of F .

Let us observe that there exists an element of E which is F -membered. Let
a be an element of E. Assume a is F -membered. The functor @(F, a) yielding
an element of F is defined by the term

(Def. 4) a.

Let a be an F -membered element of E. Observe that @(F, a) reduces to a.
Let R be a non degenerated ring. One can check that 1R is non zero and −1R
is non zero. Let R be a preordered, non degenerated ring, P be a preordering of
R, and a, b be P -positive elements of R. Let us observe that a+ b is P -positive.

Let R be a preordered integral domain. Let us note that a · b is P -positive.
Let R be a ring and S be a subset of R. The functors: S+ and S− yielding
subsets of R are defined by terms

(Def. 5) S \ {0R},
(Def. 6) (−S) \ {0R},

respectively. Let R be a preordered, non degenerated ring and P be a preordering
of R. Let us note that P+ is non empty and P− is non empty and P+ ∩ P− is
empty and P+ is closed under addition. Let R be a preordered integral domain.
Note that P+ is closed under multiplication. Now we state the propositions:

(3) Let us consider a preordered, non degenerated ring R, and a preordering
P of R. Then

(i) P + P+ ⊆ P+, and

(ii) P+ + P ⊆ P+.

(4) Let us consider a preordered integral domain R, and a preordering P of
R. Then

(i) (P−) · (P−) ⊆ P+, and

(ii) (P+) · (P−) ⊆ P−, and

(iii) (P−) · (P+) ⊆ P−.
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(5) Let us consider a non degenerated integral domain R, and a subset S of
R. Suppose S is a positive cone. Then

(i) {S+, {0R}, S−} is a partition of the carrier of R, and

(ii) S+ is closed under addition and closed under multiplication.

(6) Let us consider a non degenerated ring R, and a subset S of R. Suppose
{S, {0R},−S} is a partition of the carrier of R and S is closed under
addition and closed under multiplication. Then S ∪ {0R} is a positive
cone. The theorem is a consequence of (1).

(7) Let us consider an ordered field F , an extension E of F , an ordering P
of F , and a finite sequence f of elements of E. Suppose for every natural
number i such that i ∈ dom f holds f(i) ∈ P . Then

∑
f ∈ P .

Proof: Define P[natural number] ≡ for every finite sequence f of elements
of E such that len f = $1 and for every natural number i such that i ∈
dom f holds f(i) ∈ P holds

∑
f ∈ P . P[0] by [11, (2)], [12, (25)]. For

every natural number k, P[k]. Consider n being a natural number such
that len f = n. �

(8) Let us consider an ordered field F , an ordering P of F , and a field E.
Suppose E ≈ F . Then

(i) E is ordered, and

(ii) there exists a subset Q of E such that Q = P and Q is a positive
cone.

Let F be an ordered field. Let us observe that there exists an extension of
F which is ordered.

2. Some Properties of Polynomials

Let F be a field, g be a non empty finite sequence of elements of the carrier of
Polynom-RingF , and i be an element of dom g. Let us observe that the functor
g(i) yields an element of the carrier of Polynom-RingF . Let us consider a field
F and polynomials p, q over F . Now we state the propositions:

(9) If LC p+ LC q 6= 0F , then deg((p+ q)) = max(deg(p),deg(q)).

(10) (i) if deg(p) > deg(q), then LC(p+ q) = LC p, and

(ii) if deg(p) < deg(q), then LC(p+ q) = LC q, and

(iii) if deg(p) = deg(q) and LC p + LC q 6= 0F , then LC(p + q) = LC p +
LC q.

The theorem is a consequence of (9).

Now we state the propositions:
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(11) Let us consider a field F , and an element p of the carrier of Polynom-Ring
F . Then deg(NormPoly p) = deg(p).

(12) Let us consider a field F , and a non constant element p of the carrier
of Polynom-RingF . Then there exists a non constant, monic element q of
the carrier of Polynom-RingF such that

(i) q | p, and

(ii) q is irreducible.

Proof: Define Q[natural number] ≡ for every non constant element p of
the carrier of Polynom-RingF such that deg(p) = $1 there exists a non
constant, monic element q of the carrier of Polynom-RingF such that q | p
and q is irreducible. For every natural number k, Q[k]. �

(13) Let us consider a field F , and an element p of the carrier of Polynom-Ring
F . Suppose deg(p) is odd. Then there exists a non constant, monic element
q of the carrier of Polynom-RingF such that

(i) q | p, and

(ii) q is irreducible, and

(iii) deg(q) is odd.

The theorem is a consequence of (11) and (12).

(14) Let us consider a field F , a finite sequence f of elements of the carrier of
Polynom-RingF , and a non zero polynomial p over F . Suppose p =

∑
f .

Let us consider a finite sequence g of elements of F , and a natural number
n. Suppose for every element i of dom f for every polynomial q over F
such that q = f(i) holds deg(q) ¬ n. Then deg(p) ¬ n.

(15) Let us consider an ordered field F , an ordering P of F , a finite sequence
f of elements of the carrier of Polynom-RingF , and a non zero polynomial
p over F . Suppose p =

∑
f and for every element i of dom f and for every

polynomial q over F such that q = f(i) holds deg(q) is even and LC q ∈ P .
Then deg(p) is even.

(16) Let us consider a field F , an extension E of F , a polynomial p over F ,
an element a of F , and elements x, b of E. If b = a, then ExtEval(a·p, x) =
b · (ExtEval(p, x)).

(17) Let us consider a field F , an extension E of F , a finite sequence f

of elements of the carrier of Polynom-RingF , and a polynomial p over
F . Suppose p =

∑
f . Let us consider an element a of E, and a finite

sequence g of elements of E. Suppose len g = len f and for every element
i of dom f and for every polynomial q over F such that q = f(i) holds
g(i) = ExtEval(q, a). Then ExtEval(p, a) =

∑
g.
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3. More on the Fields F (a)

Now we state the propositions:

(18) Let us consider a field F , an extension E of F , an element a of E, and
an element b of F . If b = a2, then ExtEval(X2- b, a) = 0E .

(19) Let us consider a field F , an extension E of F , and an element a of E.
If a2 ∈ F , then a is F-algebraic. The theorem is a consequence of (18).

(20) Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Then a /∈ F if and only if for every non zero polynomial p over F
such that ExtEval(p, a) = 0E holds deg(p)  2.

(21) Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Suppose a /∈ F . Let us consider an element b of F . If b = a2, then
MinPoly(a, F ) = X2- b. The theorem is a consequence of (18) and (20).

(22) Let us consider a field F , an extension E of F , and an element a of E.
Suppose a /∈ F and a2 ∈ F . Then

(i) {1E , a} is a basis of VecSp(FAdj(F, {a}), F ), and

(ii) deg(FAdj(F, {a}), F ) = 2.

Proof: Reconsider a1 = a as an F-algebraic element of E. Reconsider
b = a2 as an element of F . deg(MinPoly(a1, F )) = deg(X2- b). Base(a1) =
{1E , a}. �

(23) Let us consider a field F , an extension E of F , an F-algebraic element
a of E, and an element b of E. Then b ∈ the carrier of FAdj(F, {a})
if and only if there exists a polynomial p over F such that deg(p) <

deg(MinPoly(a, F )) and b = ExtEval(p, a).

(24) Let us consider a field F , an extension E of F , and an element a of E.
Suppose a2 ∈ F . Let us consider an element b of FAdj(F, {a}). Then there
exist elements c1, c2 of FAdj(F, {a}) such that

(i) c1, c2 ∈ F , and

(ii) b = c1 + (@(FAdj(F, {a}), a)) · c2.

The theorem is a consequence of (22).

(25) Let us consider a field F , an extension E of F , and an element a of
E. Suppose a /∈ F and a2 ∈ F . Let us consider elements c1, c2, d1, d2 of
FAdj(F, {a}). Suppose c1, c2, d1, d2 ∈ F and c1+(@(FAdj(F, {a}), a))·c2 =
d1 + (@(FAdj(F, {a}), a)) · d2. Then

(i) c1 = d1, and

(ii) c2 = d2.
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Proof: Set K = FAdj(F, {a}). Set V = VecSp(K,F ). Set j = @(K, a).
Reconsider 1V = 1K , j1 = j as an element of V . Define P[object, object] ≡
$1 = 1K and $2 = c1 − d1 or $1 = j and $2 = c2 − d2 or $1 6= 1K and
$1 6= j and $2 = 0F . For every object x such that x ∈ the carrier of V
there exists an object y such that y ∈ the carrier of F and P[x, y].

Consider l being a function from the carrier of V into the carrier of F
such that for every object x such that x ∈ the carrier of V holds P[x, l(x)].
For every element v of V such that v /∈ {1V , j1} holds l(v) = 0F . {1V , j1}
is linearly independent. �

Let us consider a field F , an extension E of F , an element a of E, an element
b of F , and a quadratic, non empty finite sequence f of elements of FAdj(F, {a}).
Now we state the propositions:

(26) Suppose a /∈ F and a2 = b. Then there exist quadratic, non empty
finite sequences g1, g2 of elements of F and there exists a non emp-
ty finite sequence g3 of elements of F such that

∑
f = (@(

∑
g1 + b ·

(
∑
g2),FAdj(F, {a}))) + (@(FAdj(F, {a}), a)) · (@(

∑
g3,FAdj(F, {a}))).

(27) Suppose a /∈ F and a2 = b and
∑
f ∈ F . Then there exist quadratic,

non empty finite sequences g1, g2 of elements of F such that
∑
f =

∑
g1 +

b · (
∑
g2). The theorem is a consequence of (26) and (25).

4. Extensions of Orderings

Let F be an ordered field, E be a field, and P be an ordering of F . We say
that P extends to E if and only if

(Def. 7) there exists a subset O of E such that P ⊆ O and O is a positive cone.

Let E be an ordered extension of F and O be an ordering of E. We say that
O extends P if and only if

(Def. 8) O ∩ (the carrier of F ) = P .

Let us consider an ordered field F , an ordered extension E of F , an ordering
P of F , and an ordering O of E. Now we state the propositions:

(28) O extends P if and only if for every element a of F , a ∈ P iff a ∈ O.

(29) O extends P if and only if P ⊆ O.

Let R be an ordered ring, P be an ordering of R, and a be an element of R.
The functor signum(P, a) yielding an integer is defined by the term

(Def. 9)


1, if a ∈ P \ {0R},
0, if a = 0R,
−1, otherwise.
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The functor signum(P ) yielding a function from the carrier of R into Z is
defined by

(Def. 10) for every element a of R, it(a) = signum(P, a).

Now we state the propositions:

(30) Let us consider an ordered integral domain R, an ordering P of R, and
an element a of R. Then a = signum(P, a) ? |a|P .

(31) Let us consider an ordered field F , an ordered extension E of F , an or-
dering P of F , and an ordering O of E. Then O extends P if and only if
signum(O)�(the carrier of F ) = signum(P ). The theorem is a consequence
of (29).

Let F be an ordered field, E be an extension of F , P be an ordering of F ,
and f be a finite sequence of elements of E. We say that f is P -quadratic if and
only if

(Def. 11) for every element i of N such that i ∈ dom f there exists a non zero
element a of E and there exists an element b of E such that a ∈ P and
f(i) = a · b2.

Observe that there exists a finite sequence of elements of E which is P -
quadratic and non empty. Let f , g be P -quadratic finite sequences of elements
of E. One can check that f a g is P -quadratic as a finite sequence of elements
of E. Now we state the proposition:

(32) Let us consider an ordered field F , an extension E of F , an ordering P of
F , a P -quadratic finite sequence f of elements of E, and finite sequences
g1, g2 of elements of E. Suppose f = g1

a g2. Then

(i) g1 is P -quadratic, and

(ii) g2 is P -quadratic.

Let F be an ordered field, E be an extension of F , and P be an ordering
of F . The functor P -quadraticSums(E) yielding a non empty subset of E is
defined by the term

(Def. 12) the set of all
∑
f where f is a P -quadratic finite sequence of elements

of E.

We introduce the notation QS(E,P ) as a synonym of P -quadraticSums(E).
Let us observe that QS(E,P ) is closed under addition and closed under multi-
plication and has all sums of squares. Now we state the propositions:

(33) Let us consider an ordered field F , an ordering P of F , an extension E

of F , and a non zero element a of E. Then a ∈ QS(E,P ) if and only if
there exists a P -quadratic, non empty finite sequence f of elements of E
such that

∑
f = a and for every element i of N such that i ∈ dom f holds

f(i) 6= 0E . The theorem is a consequence of (32).
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(34) Let us consider an ordered field F , an extension E of F , and an ordering
P of F . Then P ⊆ QS(E,P ).

(35) Let us consider an ordered field F , an ordered extension E of F , an orde-
ring P of F , and an ordering O of E. If O extends P , then QS(E,P ) ⊆ O.
Proof: P ⊆ O. Define P[natural number] ≡ for every P -quadratic finite
sequence f of elements of E such that len f = $1 holds

∑
f ∈ O. For every

natural number k, P[k]. �

Let us consider an ordered field F , an extension E of F , and an ordering P
of F . Now we state the propositions:

(36) QS(E,P ) is a prepositive cone if and only if −1E /∈ QS(E,P ).

(37) P extends to E if and only if QS(E,P ) is a prepositive cone. The theorem
is a consequence of (29), (35), (36), and (34).

(38) P extends to E if and only if for every P -quadratic, non empty finite
sequence f of elements of E such that

∑
f = 0E holds f is trivial. The

theorem is a consequence of (29), (36), and (37).

(39) Let us consider an ordered field F , an extension E of F , an ordering P of
F , and an element a of E. Suppose a2 ∈ F . Let us consider a P -quadratic,
non empty finite sequence f of elements of FAdj(F, {a}). Then there exist
non empty finite sequences g1, g2 of elements of FAdj(F, {a}) such that

(i)
∑
f =

∑
g1 + (@(FAdj(F, {a}), a)) · (2 ?

∑
g2), and

(ii) for every element i of N such that i ∈ dom g1 there exists a non
zero element b of FAdj(F, {a}) and there exist elements c1, c2 of
FAdj(F, {a}) such that b ∈ P and c1, c2 ∈ F and g1(i) = b · (c1

2 +
c2
2 · (@(FAdj(F, {a}), a))2), and

(iii) for every element i of N such that i ∈ dom g2 there exists a non
zero element b of FAdj(F, {a}) and there exist elements c1, c2 of
FAdj(F, {a}) such that b ∈ P and c1, c2 ∈ F and g2(i) = b · c1 · c2.

Proof: Define P[natural number] ≡ for every P -quadratic, non empty
finite sequence f of elements of FAdj(F, {a}) such that len f = $1 there
exist non empty finite sequences g1, g2 of elements of FAdj(F, {a}) such
that

∑
f =

∑
g1 +(@(FAdj(F, {a}), a)) · (2 ?

∑
g2) and for every element i

of N such that i ∈ dom g1 there exists a non zero element b of FAdj(F, {a}).
There exist elements c1, c2 of FAdj(F, {a}) such that b ∈ P and c1,

c2 ∈ F and g1(i) = b · (c1
2 + c2

2 · (@(FAdj(F, {a}), a))2) and for every
element i of N such that i ∈ dom g2 there exists a non zero element b
of FAdj(F, {a}) and there exist elements c1, c2 of FAdj(F, {a}) such that
b ∈ P and c1, c2 ∈ F and g2(i) = b · c1 · c2. For every non zero natural
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number k, P[k]. Consider n being a natural number such that n = len f .
�

(40) Let us consider an ordered field F , an extension E of F , and an element a
of E. Suppose a2 ∈ F . Let us consider an ordering P of F . Then P extends
to FAdj(F, {a}) if and only if a2 ∈ P . The theorem is a consequence of
(29), (8), (39), (2), (25), (7), (36), and (37).

(41) Let us consider an ordered, polynomial-disjoint field F , an ordering P

of F , and a non square element a of F . Then P extends to FAdj(F, {
√
a})

if and only if a ∈ P . The theorem is a consequence of (40).

(42) Positives(FQ) extends to FAdj(FQ, {
√

2.(FQ)}). The theorem is a conse-
quence of (41).

(43) Positives(FQ) does not extend to FAdj(FQ, {
√
−1FQ}).

(44) Let us consider an ordered field F , an ordering P of F , an extension
E of F , an element a of F , and elements b, c of E. Suppose b2 = a and
c2 = −a. Then

(i) P extends to FAdj(F, {b}), or

(ii) P extends to FAdj(F, {c}).

The theorem is a consequence of (40).

(45) Let us consider an ordered, polynomial-disjoint field F , an ordering P

of F , and non square elements a, b of F . Suppose b = −a. Then

(i) P extends to FAdj(F, {
√
a}), or

(ii) P extends to FAdj(F, {
√
b}).

The theorem is a consequence of (41).

Let us consider a formally real field F , an extension E of F , an element a of
F , and an element b of E. Now we state the propositions:

(46) If b2 = a and a ∈ QS(F ), then FAdj(F, {b}) is formally real. The theorem
is a consequence of (40).

(47) If b2 = a and FAdj(F, {b}) is not formally real, then −a ∈ QS(F ). The
theorem is a consequence of (8) and (27).

Let us consider an ordered, polynomial-disjoint field F and a non square
element a of F . Now we state the propositions:

(48) If a ∈ QS(F ), then FAdj(F, {
√
a}) is formally real. The theorem is a con-

sequence of (46).

(49) If FAdj(F, {
√
a}) is not formally real, then −a ∈ QS(F ). The theorem is

a consequence of (47).
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(50) Let us consider an ordered field F , an ordering P of F , and an extension
E of F . If deg(E,F ) is an odd natural number, then P extends to E.
Proof: Define Q[natural number] ≡ for every extension E of F such that
deg(E,F ) = 2 · $1 + 1 holds P extends to E. For every natural number k,
Q[k]. Reconsider n = deg(E1, F ) as an odd natural number. Consider k
being an integer such that n = 2 · k + 1. �

(51) Let us consider an ordered field F , an ordering P of F , an irreducible
element p of the carrier of Polynom-RingF , an extension E of F , and
an element a of E. Suppose deg(p) is odd and a is a root of p in E. Then
P extends to FAdj(F, {a}). The theorem is a consequence of (11) and (50).
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