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Summary. The purpose of this article is to show Fubini’s theorem on
measure [16], [4], [7], [I5], [18]. Some theorems have the possibility of slight
generalization, but we have priority to avoid the complexity of the description.
First of all, for the product measure constructed in [14], we show some theorems.
Then we introduce the section which plays an important role in Fubini’s theorem,
and prove the relevant proposition. Finally we show Fubini’s theorem on measure.

MSC: 28A35 103B35
Keywords: Fubini’s theorem; product measure

MML identifier: MEASUR11, version: 8.1.05 5.40.1286

1. PRELIMINARIES

Now we state the propositions:

(1) Let us consider a disjoint valued finite sequence F', and natural numbers
n, m. If n <m, then |Jrng(F [n) misses F(m).

(2) Let us consider a finite sequence F', and natural numbers m, n. Suppose
m < n. Then len(F[m) < len(F'In).

(3) Let us consider a finite sequence F', and a natural number n. Then
Urng(FIn)UF(n+1) = Urng(F[(n+1)). The theorem is a consequence
of (2).

(4) Let us consider a disjoint valued finite sequence F', and a natural number
n. Then [J(F[n) misses F(n + 1).

(5) Let us consider a set P, and a finite sequence F. Suppose P is U-closed
and ) € P and for every natural number n such that n € dom F holds
F(n) € P. Then JF € P.
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PROOF: Define P[natural number] = |Jrng(F'[$;) € P. For every natural
number k such that P[k] holds P[k + 1] by [2, (13)], [3, (59)], [19, (55)],
[3, (82)]. For every natural number k, P[k] from [2, Sch. 2]. O
Let A, X be sets. Observe that the functor X4 x yields a function from X
into R. Let X be a non empty set, S be a o-field of subsets of X, and F be
a finite sequence of elements of S. Let us observe that the functor |J F' yields
an element of S. Let F' be a sequence of S. Let us note that the functor |J F
yields an element of S. Let F be a finite sequence of elements of X R and z
be an element of X. The functor F'#x yielding a finite sequence of elements of
R is defined by
(Def. 1) dom it = dom F' and for every element n of N such that n € dom it holds
it(n) = F(n)(x).
Now we state the proposition:

(6) Let us consider a non empty set X, a non empty family S of subsets
of X, a finite sequence f of elements of S, and a finite sequence F' of
elements of X -R. Suppose dom f = dom F and f is disjoint valued and
for every natural number n such that n € dom F' holds F(n) = Xy, x-
Let us consider an element z of X. Then Xy rx (@) =2 (F#x).

2. PRoDUCT MEASURE AND PRODUCT o-MEASURE

Now we state the proposition:
(7) Let us consider non empty sets X;, Xo, a o-field S of subsets of X7,
and a o-field Sy of subsets of X5. Then o(DisUnion MeasRect(S1,S2)) =
o(MeasRect(S1,52)).
Let X1, X2 be non empty sets, S1 be a o-field of subsets of X1, Sy be a o-field
of subsets of Xs, M7 be a o-measure on S, and My be a o-measure on Sy. The
functor ’ProdMeas(Ml, M) ‘ yielding an induced measure of MeasRect(S1, S2)
and ProdpreMeas(M7, Ms) is defined by
(Def. 2) for every set E such that E € the field generated by MeasRect(S1, S2)
for every disjoint valued finite sequence F' of elements of MeasRect(S1, S2)
such that F = (J F holds it(F) = > (ProdpreMeas(Mj, M) - F).
The functor ‘ Prod o -Meas(M;, M>) ‘ yielding an induced o-measure of MeasRect (S, S2
and ProdMeas(Mj, M3) is defined by the term
(Def. 3) o-Meas(the Caratheodory measure determined by ProdMeas(M7, Ms))[o(MeasRe

Now we state the propositions:

(8) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X1, a o-
field Sy of subsets of X5, a o-measure M7 on S1, and a o-measure My on
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Sy. Then Prod o -Meas(M;, Ms) is a o-measure on o(MeasRect(S1,.52)).
The theorem is a consequence of (7).

(9) Let us consider non empty sets X;, Xo, a o-field S of subsets of X7,
a o-field Sy of subsets of X5, a set sequence Fj of S1, a set sequence
F5 of Sy, and a natural number n. Then Fj(n) x Fy(n) is an element of
o(MeasRect(S1,52)). The theorem is a consequence of (7).

(10) Let us consider sets X, Xy, a sequence F} of subsets of X, a sequence
F5 of subsets of X9, and a natural number n. Suppose F} is non descending
and Fy is non descending. Then Fj(n) x Fa(n) C Fi(n+ 1) x Fya(n + 1).

(11) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X, a o-measure M7 on S1, a o-measure My on So,
an element A of 51, and an element B of S3. Then (ProdMeas(M;, Ms))(Ax
B) = My (A) - Ma(B).

(12) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on S7, a o-measure My on
So, a set sequence F; of S, a set sequence F5 of Sy, and a natural number
n. Then (ProdMeas(Mi, M2))(Fi(n) x Fa(n)) = Mi(Fi(n)) - Ma(Fa(n)).
The theorem is a consequence of (11).

(13) Let us consider non empty sets X, Xs, a o-field S; of subsets of X7,
a o-field Sy of subsets of Xo, a o-measure M7 on Sy, a o-measure Ms on
S9, a finite sequence I of elements of S7, a finite sequence Fy of elements
of So, and a natural number n. Suppose n € dom F} and n € dom F5.
Then (ProdMeas(Ml,Mg))(Fl(n) X Fz(n)) = Ml(Fl(n)) . Mg(Fg(n))

(14) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7, a o-
field So of subsets of Xs, a o-measure M; on Si, a o-measure M on So,
and a subset F of X x Xa. Then (the Caratheodory measure determined
by ProdMeas(M;, M2))(E) = inf Sve(ProdMeas(M;, Ms), E).

(15) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on S, and a o-measure My
on Sy. Then o(MeasRect(S1,S2)) C o-Field(the Caratheodory measure
determined by ProdMeas(Mi, Ms)). The theorem is a consequence of (7).

(16) Let us consider non empty sets X, Xo, a o-field Sy of subsets of X1, a o-
field Sy of subsets of X5, a o-measure My on Si, a o-measure Mo on So,
an element E of o(MeasRect(S1,52)), an element A of Sy, and an element
B of Sy. Suppose E = Ax B. Then (Prod o -Meas(M;, M2))(E) = M;(A)-
Ms(B). The theorem is a consequence of (15) and (11).

(17) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure M; on S1, a o-measure My on
S9, a set sequence F; of S1, a set sequence Fy of So, and a natural number
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n. Then (Prod o -Meas(Mj, Ms))(F1(n) X Fa(n)) = My (Fy(n))-Ma(Fa(n)).
The theorem is a consequence of (9), (15), and (12).

(18) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure M; on Sp, a o-measure My on
Sy, and elements E7, Fo of o(MeasRect(S1,S2)). Suppose E; misses Fs.
Then (Prod o -Meas(Mj, Ms))(E1 U Ey) = (Prod o -Meas(Mj, Ms))(E) +
(Prod o -Meas(My, Ms))(E2). The theorem is a consequence of (8).

(19) Let us consider sets X;, Xo, A, B, a sequence F) of subsets of X,
a sequence Fy of subsets of X5, and a sequence F' of subsets of X7 x Xo.
Suppose F} is non descending and lim F; = A and Fj is non descending
and lim F5, = B and for every natural number n, F(n) = Fi(n) x Fy(n).
Then lim F' = A x B. The theorem is a consequence of (10).

3. SECTIONS

Let X be a set, Y be a non empty set, E/ be a subset of X x Y, and x be
a set. The functor ’ Xsection(E, z) ‘ yielding a subset of Y is defined by the term

(Def. 4) {y, where y is an element of Y : {(x, y) € E}.

Let X be anon empty set, Y be a set, and y be a set. The functor ’ Ysection(E, y) ‘
yielding a subset of X is defined by the term

(Def. 5) {z, where z is an element of X : (z, y) € E}.
Now we state the propositions:

(20) Let us consider a set X, a non empty set Y, subsets Ej, Ey of X x Y,
and a set p. Suppose Fy C Es. Then Xsection(E7,p) C Xsection(Fs, p).

(21) Let us consider a non empty set X, a set Y, subsets Ej, Fy of X XY,
and a set p. Suppose E; C Ey. Then Ysection(E7,p) C Ysection(Es, p).

(22) Let us consider non empty sets X, Y, a subset A of X, a subset B of Y,
and a set p. Then

(i) if p € A, then Xsection(A x B,p) = B, and
(ii) if p ¢ A, then Xsection(A x B,p) =0, and
( )
(

(iii) if p € B, then Ysection(A x B,p) = A, and
(iv) if p ¢ B, then Ysection(A x B,p) = 0.

(23) Let us consider non empty sets X, Y, a subset £ of X x Y, and a set p.
Then

(i) if p ¢ X, then Xsection(E, p) = (), and
(i) if p ¢ Y, then Ysection(E,p) = (.
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(24) Let us consider non empty sets X, Y, and a set p. Then
(i) Xsection(Dxxy,p) =0, and
(i) Ysection(Dxxy,p) = 0, and
(iii) if p € X, then Xsection(Qxxy,p) =Y, and
(iv) if p € Y, then Ysection(Qxxy,p) = X.
The theorem is a consequence of (22).
(25) Let us consider non empty sets X, Y, a subset E of X x Y, and a set p.
Then
(i) if p € X, then Xsection(X x Y \ E,p) =Y \ Xsection(FE, p), and
(i) if p € Y, then Ysection(X x Y \ E,p) = X \ Ysection(FE,p).
Let us consider non empty sets X, Y, subsets F, E2 of X X Y, and a set p.
Now we state the propositions:
(26) (i) Xsection(Ey U Es,p) = Xsection(F1,p) U Xsection(Fs, p), and
(ii) Ysection(Ej U Es,p) = Ysection(E1, p) U Ysection(Es, p).
(27) (i) Xsection(E; N Ea,p) = Xsection(E, p) N Xsection(E2, p), and

(ii) Ysection(Ej N Ea,p) = Ysection(E1, p) N Ysection(Es, p).
Now we state the propositions:

(28) Let us consider a set X, a non empty set Y, a finite sequence F' of ele-
ments of 2X*Y | a finite sequence F} of elements of 2¥, and a set p. Suppose
dom F' = dom F} and for every natural number n such that n € dom Fy
holds Fy(n) = Xsection(F'(n),p). Then Xsection(|Jrng F,p) = Jrng Fj.

(29) Let us consider a non empty set X, a set Y, a finite sequence F' of ele-
ments of 2X %Y a finite sequence Fj of elements of 2%, and a set p. Suppose
dom F' = dom F3 and for every natural number n such that n € dom F3
holds F3(n) = Ysection(F'(n),p). Then Ysection(|Jrng F,p) = [Jrng F3.

Let us consider a set X, a non empty set Y, a set p, a sequence F' of subsets
of X x Y, and a sequence Fj of subsets of Y. Now we state the propositions:

(30) If for every natural number n, Fy(n) = Xsection(F(n), p), then Xsection(|Jrng F, p)
(Jrng Fy.
(31) If for every natural number n, Fy(n) = Xsection(F'(n), p), then Xsection((rng F, p)
(rng Fy.
Let us consider a non empty set X, a set Y, a set p, a sequence F' of subsets
of X x Y, and a sequence F3 of subsets of X. Now we state the propositions:

(32) If for every natural number n, F5(n) = Ysection(F(n), p), then Ysection(Jrng F, p)
(Jrng F3.
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(33) If for every natural number n, F3(n) = Ysection(F(n), p), then Ysection(rng F, p)

(rng F3.
Now we state the propositions:

(34) Let us consider non empty sets X, Y, sets x, y, and a subset E of X X
Y. Then

(1) XE,XXY(xy y) = XXscction(E,z),Y(y)a and
(11> XE,XXY(x7 Z/) = XYsection(E,y),X (l‘)

(35) Let us consider non empty sets X, Y, subsets F1, Fy of X XY, and a set
p. Suppose Fq misses Fo. Then

(i) Xsection(E7,p) misses Xsection(Fs, p), and
(ii) Ysection(F1,p) misses Ysection(Es, p).

(36) Let us consider non empty sets X, Y, a disjoint valued finite sequence F’
of elements of 2X*Y and a set p. Then

(i) there exists a disjoint valued finite sequence Fj of elements of 2%
such that dom F' = dom Fj and for every natural number n such that
n € dom Fy holds Fy(n) = Ysection(F'(n),p), and

(ii) there exists a disjoint valued finite sequence F3 of elements of 2¥
such that dom F' = dom F3 and for every natural number n such that
n € dom F3 holds F3(n) = Xsection(F'(n),p).

PROOF: Define { (natural number) = Ysection(F($;), p). Define {¢(natural
number) = Xsection(F($1),p). There exists a disjoint valued finite sequ-
ence Fy of elements of 2% such that dom F = dom F} and for every natural
number n such that n € dom Fy holds Fy(n) = Ysection(F'(n),p) by (35),
[19, (29)]. There exists a disjoint valued finite sequence F3 of elements of
2Y such that dom F' = dom F3 and for every natural number n such that
n € dom F3 holds F3(n) = Xsection(F'(n),p) by (35), [19, (29)]. O
(37) Let us consider non empty sets X, Y, a disjoint valued sequence F' of
subsets of X x Y, and a set p. Then

(i) there exists a disjoint valued sequence Fy of subsets of X such that
for every natural number n, Fy(n) = Ysection(F'(n),p), and

(ii) there exists a disjoint valued sequence F3 of subsets of Y such that
for every natural number n, F3(n) = Xsection(F(n), p).

PRrOOF: There exists a disjoint valued sequence Fj of subsets of X such
that for every natural number n, Fy(n) = Ysection(F(n), p). Define {(natural
number) = Xsection(F($;), p). Consider F3 being a sequence of subsets of
Y such that for every element n of N, F3(n) = f(n) from [I1] Sch. 4]. O



FUBINI’S THEOREM ON MEASURE 7

Let us consider non empty sets X, Y, sets x, y, and subsets F1, Fs of
X x Y. Suppose E7 misses Es. Then

(1) XE1UE2,X><Y($7 y) = XXsection(El,z),Y(y) + XXsection(Ez,a:),Y(y)v and

(i) XBuE,xxv (T,Y) = Xysection(Ey ), X (T) + Xysection(Ea,y), X (T)-

The theorem is a consequence of (35), (34), and (26).

Let us consider a set X, a non empty set Y, a set x, a sequence E of
subsets of X x Y, and a sequence G of subsets of Y. Suppose E is non
descending and for every natural number n, G(n) = Xsection(E(n), ).
Then G is non descending. The theorem is a consequence of (20).

Let us consider a non empty set X, a set Y, a set x, a sequence E of
subsets of X x Y, and a sequence G of subsets of X. Suppose F is non
descending and for every natural number n, G(n) = Ysection(E(n), x).
Then G is non descending. The theorem is a consequence of (21).

Let us consider a set X, a non empty set Y, a set x, a sequence E of
subsets of X x Y, and a sequence G of subsets of Y. Suppose E is non
ascending and for every natural number n, G(n) = Xsection(E(n), ).
Then G is non ascending. The theorem is a consequence of (20).

Let us consider a non empty set X, a set Y, a set x, a sequence F of
subsets of X x Y, and a sequence G of subsets of X. Suppose F is non
ascending and for every natural number n, G(n) = Ysection(E(n), ).
Then G is non ascending. The theorem is a consequence of (21).

Let us consider a set X, a non empty set Y, a sequence E of subsets
of X xY, and a set . Suppose F is non descending. Then there exists
a sequence G of subsets of Y such that

(i) G is non descending, and
(i) for every natural number n, G(n) = Xsection(E(n), z).

PROOF: Define F(natural number) = Xsection(E($;),z). Consider G be-
ing a function from N into 2¥ such that for every element n of N, G(n) =
F(n) from [I1 Sch. 4]. For every natural number n, G(n) = Xsection(E(n), x).
O

Let us consider a non empty set X, a set Y, a sequence E of subsets
of X xY, and a set x. Suppose F is non descending. Then there exists
a sequence GG of subsets of X such that

(i) G is non descending, and
(ii) for every natural number n, G(n) = Ysection(E(n), ).

PROOF: Define F(natural number) = Ysection(E($;),z). Consider G be-
ing a function from N into 2% such that for every element n of N, G(n) =



8 NOBORU ENDOU

F(n) from [11l Sch. 4]. For every natural number n, G(n) = Ysection(E(n), x).
O

(45) Let us consider a set X, a non empty set Y, a sequence E of subsets
of X x Y, and a set x. Suppose F is non ascending. Then there exists
a sequence (G of subsets of Y such that

(i) G is non ascending, and
(ii) for every natural number n, G(n) = Xsection(E(n), z).

PROOF: Define F(natural number) = Xsection(E($;),z). Consider G be-
ing a function from N into 2¥ such that for every element n of N, G(n) =
F(n) from [11 Sch. 4]. For every natural number n, G(n) = Xsection(E(n), x).
O

(46) Let us consider a non empty set X, a set Y, a sequence E of subsets
of X x Y, and a set x. Suppose F is non ascending. Then there exists
a sequence (G of subsets of X such that

(i) G is non ascending, and

(ii) for every natural number n, G(n) = Ysection(E(n), ).
PROOF: Define F(natural number) = Ysection(E($;),z). Consider G be-
ing a function from N into 2% such that for every element n of N, G(n) =

F(n) from [11 Sch. 4]. For every natural number n, G(n) = Ysection(E(n), x).
O

4. MEASURABLE SECTIONS

Let us consider non empty sets X1, Xo, a o-field S of subsets of X1, a o-field
Sy of subsets of X, an element E of o(MeasRect(S1,52)), and a set K. Now
we state the propositions:

(47) Suppose K = {C, where C is a subset of X1 x X5y : for every set p, Xsection(C, p)
Ss}. Then

(i) the field generated by MeasRect(S1,S2) C K, and
(ii) K is a o-field of subsets of X x Xj.

PROOF: For every set z, Xsection(0x, «xx,,z) € S2 by (24), [B, (7)]. For
every subset C' of X; x Xy such that C' € K holds C° € K by [17, (5),
(6)], (25), (23). O
(48) Suppose K = {C, where C is a subset of X1 x X5 : for every set p, Ysection(C, p) ¢
S1}. Then

(i) the field generated by MeasRect(S1,52) C K, and
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(ii) K is a o-field of subsets of X1 x Xj.

PROOF: For every set y, Ysection(Dx, xx,,y) € S1 by (24), [5, (7)]. For
every subset C' of X x X3 such that C' € K holds C¢ € K by [17, (5),
(6)], (25), (23). O
Now we state the proposition:
(49) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X3, and an element E of o(MeasRect(S1,S2)).
Then

(i) for every set p, Xsection(E,p) € Sy, and
(i) for every set p, Ysection(E,p) € 5.
The theorem is a consequence of (47) and (48).
Let X1, X2 be non empty sets, S; be a o-field of subsets of X1, S be a o-
field of subsets of Xo, E be an element of o(MeasRect(S1,S52)), and x be a set.

The functor g yielding an element of Sy is defined by

the term
(Def. 6) Xsection(F, x).

Let y be a set. The functor _I yielding an element

of 57 is defined by the term
(Def. 7)  Ysection(E,y).
Now we state the propositions:

(50) Let us consider non empty sets X, Xs, a o-field S; of subsets of X, a o-
field Sz of subsets of X3, a finite sequence F' of elements of o (MeasRect(S1, 52)),
a finite sequence Fjy of elements of Sy, and a set p. Suppose dom F' =
dom F; and for every natural number n such that n € dom Fj; holds
Fy(n) = MeasurableXsection(F'(n), p). Then MeasurableXsection(|J F, p) =
U Fi. The theorem is a consequence of (28).

(51) Let us consider non empty sets X, Xs, a o-field S; of subsets of X, a o-
field Sy of subsets of X3, a finite sequence F' of elements of o (MeasRect(S1, 52)),
a finite sequence Fj3 of elements of Si, and a set p. Suppose dom F' =
dom F3 and for every natural number n such that n € dom F3 holds
F3(n) = MeasurableYsection(F'(n), p). Then MeasurableYsection(|J F, p) =
U F3. The theorem is a consequence of (29).

(52) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X5, a o-measure Ms on Sy, an element A of Sy,
an element B of Sy, and an element = of Xi. Then My(B) - X4 x,(z) =
Jeurry (X axB,x, x Xz, ) dMo.
PROOF: For every element y of Xo, (curry(XaxB,x, x X2, Z))(¥) = Xa,x, (x)-
XB, X, (y) by [? ’ (2)] O
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(53) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of Xs, a o-measure My on Sy, an element E of
o(MeasRect(S1,52)), an element A of Sy, an element B of Sy, and an ele-
ment z of X;. Suppose E = Ax B. Then My(MeasurableXsection(F,x)) =
M>(B) - Xa,x,(x). The theorem is a consequence of (22).

(54) Let us consider non empty sets X1, Xo, a o-field S; of subsets of Xj,
a o-field Sy of subsets of X5, a o-measure M; on S, an element A of 57,
an element B of Sy, and an element y of Xo. Then M;i(A) - Xp x,(y) =
Jeurry’ (X axB,x,x x5, y) dM;.

PROOF: For every element x of X, (curry’ (XaxB,x, x X2, ¥))(Z) = Xa,x, (z)-
XB,Xz (y) by [? ) (2)] g

(55) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on Sp, an element E of
o(MeasRect(S1, 52)), an element A of Si, an element B of Sz, and an ele-
ment y of Xo. Suppose £ = Ax B. Then M;(MeasurableYsection(F,y)) =
M;i(A) - XB,x,(y). The theorem is a consequence of (22).

5. FINITE SEQUENCE OF FUNCTIONS

Let X, Y be non empty sets, G be a non empty set of functions from X to
Y, F be a finite sequence of elements of G, and n be a natural number. Observe
that the functor F,, yields an element of G. Let X be a set and F be a finite
sequence of elements of RY. We say that _ if and only
if
(Def. 8) for every natural number n such that n € dom F' holds F(n) is without
+00.

(Def. 9) for every natural number n such that n € dom F' holds F(n) is without
—00.

Now we state the proposition:

(56) Let us consider a non empty set X. Then

(i) (X +— 0) is a finite sequence of elements of KX, and

(ii) for every natural number n such that n € dom(X ~—— 0) holds
(X + 0)(n) is without 400, and

(iii) for every natural number n such that n € dom(X +— 0) holds
(X +—— 0)(n) is without —oo.
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Let X be a non empty set. One can verify that there exists a finite sequence
of elements of R which is (without +oo)-valued and (without —oo)-valued.
Now we state the propositions:

(57) Let us consider a non empty set X, a (without +00)-valued finite sequ-
ence F' of elements of RX, and a natural number n. If n € dom F', then
(Fn) ' ({+00}) = 0.

(58) Let us consider a non empty set X, a (without —oo)-valued finite sequ-
ence F' of elements of @X, and a natural number n. If n € dom F', then
(Fn) ' ({~o00}) = 0.

(59) Let us consider a non empty set X, and a finite sequence F of elements of
R™. Suppose F' is (without +o0)-valued or (without —oo)-valued. Let us
consider natural numbers n, m. If n, m € dom F', then dom(F,,+F,,,) = X.
The theorem is a consequence of (57) and (58).

Let X be a non empty set and F' be a finite sequence of elements of R*. We
say that F' is summable if and only if

(Def. 10) F'is (without 4o00)-valued or (without —oo)-valued.
Observe that there exists a finite sequence of elements of R which is sum-
mable.
Let F' be a summable finite sequence of elements of R™. The functor >k _g F(a))ken
yielding a finite sequence of elements of R is defined by
(Def. 11) len F' = lenit and F(1) = (1) and for every natural number n such
that 1 < n <len F holds it(n + 1) = it,, + Fpi1.
One can check that every finite sequence of elements of R which is (without

+00)-valued is also summable and every finite sequence of elements of R which
is (without —oo)-valued is also summable.
Now we state the propositions:

(60) Let us consider a non empty set X, and a (without +o0)-valued finite

sequence F' of elements of R”™. Then (> ob_g F(a))ken is (without +o00)-
valued.
PROOF: Define P[natural number| = if $; € dom(}5_ F(«))xen, then
(>F o F(a))ken($1) is without +oo. For every natural number n such
that P[n] holds P[n + 1] by [19, (29)], [2, (14)], [19, (25)], [2, (13)]. For
every natural number n, P[n] from [2, Sch. 2]. O

(61) Let us consider a non empty set X, and a (without —oo)-valued finite
sequence F' of elements of R”™. Then >k _g F(a))ken is (without —oo)-
valued.

PROOF: Define P[natural number] = if $; € dom(} L_, F(«))xen, then
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>k _o F(a))ken($1) is without —oo. For every natural number n such
that P[n] holds P[n + 1] by [19, (29)], [2, (14)], [19, (25)], [2 (13)]. For
every natural number n, P[n] from [2, Sch. 2]. O

(62) Let us consider a non empty set X, a set A, an extended real e, and
a function f from X into R. Suppose for every element x of X, f(z) =
e- XA,X(JJ). Then

(i) if e = +oo, then f =X, x, and
(ii) if e = —oo, then f = —x4 x, and
(iii) if e # +o00 and e # —oo, then there exists a real number r such that
r=eand f=7r-Xzx.
(63) Let us consider a non empty set X, a o-field S of subsets of X, a partial

function f from X to R, and an element A of S. Suppose f is measurable
on A and A C dom f. Then —f is measurable on A.

Let X be a non empty set and f be a without —oo partial function from X
to R. Observe that — f is without -+oo.

Let f be a without +o0o partial function from X to R. One can check that
—f is without —oo.

Let f1, fo be without 400 partial functions from X to R. Let us note that
the functor fi + f2 yields a without +oo partial function from X to R. Let f,
fo be without —oco partial functions from X to R. Note that the functor fi + fo
yields a without —oo partial function from X to R. Let f; be a without +oo
partial function from X to R and f» be a without —oo partial function from
X to R. One can verify that the functor f; — fo yields a without +oo partial
function from X to R. Let f; be a without —oo partial function from X to R
and f3 be a without +oo partial function from X to R. Observe that the functor
f1 — f2 yields a without —oo partial function from X to R. Now we state the
propositions:

(64) Let us consider a non empty set X, and partial functions f, g from X
to R. Then

(i) =(f+9)=—f+—g,and
(i) =(f —g)=—f+g, and
(i) =(f—g)=g—f, and
(iv) =(=f+9)=1[—g,and
(v) =(=f+9)=f+-g
(65) Let us consider a non empty set X, a o-field S of subsets of X, without
+o00 partial functions f, g from X to R, and an element A of S. Suppose f

is measurable on A and ¢ is measurable on A and A C dom(f + ¢). Then
f + g is measurable on A. The theorem is a consequence of (63) and (64).
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(66) Let us consider a non empty set X, a o-field S of subsets of X, an element
A of S, a without +oo partial function f from X to R, and a without —oo
partial function ¢ from X to R. Suppose f is measurable on A and g is
measurable on A and A C dom(f — g). Then f — g is measurable on A.
The theorem is a consequence of (63) and (64).

(67) Let us consider a non empty set X, a o-field S of subsets of X, an element
A of S, a without —oo partial function f from X to R, and a without +oo
partial function ¢ from X to R. Suppose f is measurable on A and g is
measurable on A and A C dom(f — g). Then f — g is measurable on A.
The theorem is a consequence of (64), (63), and (65).

(68) Let us consider a non empty set X, a o-field S of subsets of X, an element
P of S, and a summable finite sequence F' of elements of RY. Suppose for
every natural number n such that n € dom F' holds F,, is measurable
on P. Let us consider a natural number n. Suppose n € dom F. Then

((>2F_g F(a))ken)n is measurable on P. The theorem is a consequence of
(60), (65), and (61).

6. SOME PROPERTIES OF INTEGRAL

Now we state the propositions:

(69) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure M; on Sp, a o-measure My on
S, an element F of o(MeasRect(S1,.52)), an element A of S1, an element
B of Sy, an element x of X1, and an element y of Xs. Suppose E = A x
B. Then

(i) [eurry(XEg x, x x5, ) dMy = Ma(MeasurableXsection(E, z))-X 4 x, (),
and

(ii) [eurry'(Xg,x, x X5, Yy) dM; = My (MeasurableYsection(E, y))-XB x, ().

The theorem is a consequence of (52), (53), (54), and (55).

(70) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X3, and an element E of o(MeasRect(S1, S2)).
Suppose E € the field generated by MeasRect(S1, S2). Then there exists
a disjoint valued finite sequence f of elements of MeasRect(S1,S2) and
there exists a finite sequence A of elements of S7 and there exists a finite
sequence B of elements of Sy such that len f = len A and len f = len B
and F = |J f and for every natural number n such that n € dom f holds
m1(f(n)) = A(n) and m2(f(n)) = B(n) and for every natural number n
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and for every sets x, y such that n € dom f and « € X; and y € X5 holds
Xt (n), X1 x X2 (T:Y) = Xa(n),x;1 () - XB(n), x5 (Y)-
PRrROOF: Consider F; being a subset of X1 x X5 such that £ = F; and there
exists a disjoint valued finite sequence f of elements of MeasRect(S1, S2)
such that Fy = |J f. Consider f being a disjoint valued finite sequence
of elements of MeasRect(S1,52) such that £y = |J f. Define S[natural
number, object] = $3 = m1(f($1)). For every natural number ¢ such that
i € Seglen f there exists an element A; of S; such that S[i, A1] by [12]
(D], [T, (9)], [B, (7)]. Consider A being a finite sequence of elements of
S1 such that dom A = Seglen f and for every natural number ¢ such
that ¢ € Seglen f holds S[i, A(7)] from [3, Sch. 5]. Define 7 [natural
number, object] = $2 = m2(f($1)). For every natural number i such that
i € Seglen f there exists an element By of S such that 7[i, By| by [12]
(4)], [ (9)], [B, (7)]. Consider B being a finite sequence of elements of
So such that dom B = Seglen f and for every natural number ¢ such that
i € Seglen f holds T[i, B(7)] from [3, Sch. 5]. For every natural number
n such that n € dom f holds 7 (f(n)) = A(n) and m(f(n)) = B(n).
Consider As being an element of S7, B being an element of So such that
f(n) = A2 X BQ. O

(71) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X9, a o-measure M; on Sp, a o-measure My on
Sa, an element E of o(MeasRect(S1, S2)), an element = of X7, an element
y of X9, an element U of 57, and an element V of S5. Then

(i) Mi(MeasurableYsection(E,y)NU) = [ curry’ (X gn(mx x,), X, x X2»> ¥) dM,
and
(ii) Ma(MeasurableXsection(E,z)NV) = [ curry(Xpn(x, xv),x, x Xs» ) dMa.
The theorem is a consequence of (34), (27), and (22).

(72) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure M; on Si, a o-measure M
on Sa, an element E of o(MeasRect(S1,52)), an element x of X, and
an element y of Xo. Then

(i) Mj(MeasurableYsection(E,y)) = [ curry’(Xg, x, xx,, y) dMi, and
(ii) Maz(MeasurableXsection(E, x)) = [ curry(Xg x, x Xy, ) dMo.
The theorem is a consequence of (71).

(73) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X, a o-measure Ms on So, a disjoint valued finite
sequence f of elements of MeasRect(S1, S2), an element x of X1, a natural
number n, an element Es of o(MeasRect(S7, 52)), an element A of Sy, and
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an element Bs of Sy. Suppose n € dom f and f(n) = E2 and Ey = Ag X
Bs. Then [ curry(Xf(n) x, x x,, %) dM2 = Ma(MeasurableXsection(Ez, r)) -
X A2,X1 (3:‘)

(74) Let us consider non empty sets X, Xo, a o-field Sy of subsets of X1, a o-
field Sy of subsets of X5, and an element E of o(MeasRect(S1,52)). Sup-
pose E € the field generated by MeasRect(S1, S2) and E # (). Then there
exists a disjoint valued finite sequence f of elements of MeasRect(S1, S2)
and there exists a finite sequence A of elements of S7 and there exists
a finite sequence B of elements of Sy and there exists a summable finite
sequence X3 of elements of RY* guch that E = U f and len f € dom f
and len f = lenA and len f = len B and len f = len X3 and for every
natural number n such that n € dom f holds f(n) = A(n) x B(n) and for
every natural number n such that n € dom X3 holds X3(n) = X¢(») x, xx»
and (3 -5—o X3(a))ken(len X3) = Xp x, xx, and for every natural number
n and for every sets x, y such that n € dom X3 and z € X; and y € Xs
holds X3(n)(7,y) = Xam),x, (%) XB(n),x, (y) and for every element x of X,
curry (X g, x, x x5, ) = curry (35 _g X3())ken)ien x5, ) and for every ele-
ment y of Xo, curry’ (X, x, x x5, y) = curry’ (X h—o X3(a))keN)ien X3, ¥)-
PRrOOF: Consider f being a disjoint valued finite sequence of elements of
MeasRect(S1, S2), A being a finite sequence of elements of S;, B being
a finite sequence of elements of Sy such that len f = len A and len f =
len B and £ = |Jf and for every natural number n such that n €
dom f holds m(f(n)) = A(n) and me(f(n)) = B(n) and for every na-
tural number n and for every sets x, y such that n € dom f and z € X3
and y € Xo holds Xy(n) x,xx,(%:Y) = Xam),x,(T) - XB(n),x,(y). Define
F(set) = Xp(s,),x1xx,- Consider X3 being a finite sequence such that
len X3 = len f and for every natural number n such that n € dom X3
holds X3(n) = F(n) from [3, Sch. 2]. Define Plnatural number] = if
$1 € dom f, then ( 3:0 XS(Q))KGN($1) = XU(f[$1),X1><X2' For every na-
tural number k£ such that P[k]| holds P[k + 1] by [9 (20)], [3 (39)], [13,
(25)], [2, (14)]. For every natural number n, Pln| from [2, Sch. 2]. For
every natural number n such that n € dom f holds f(n) = A(n) x
B(n) by [12, (4)], [13} (90)], [IL (9)]. For every natural number n and
for every sets x, y such that n € dom X3 and x € X; and y € Xs
holds X3(n)(%,y) = Xam),x, () - XBn),x, (y)- For every element = of Xj,
curry (Xp,x, x Xz, &) = curry (((Xa—o X3(a))wen)ien x5, ). U

(75) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field So of subsets of X5, and a finite sequence F of elements of
MeasRect(S1, S2). Then |J F' € o(MeasRect(S1, 52)).

PROOF: Define Plnatural number] = if $; < len F', then Jrng(F[$;) €
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o(MeasRect(S1, S2)). For every natural number k& such that P[k] holds
Plk+1] by [2, (11)], [19 (25)], [8, (11)], [3 (59)]. For every natural number
k, P[k] from [2 Sch. 2]. O

(76) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure My on Si, a o-measure My
on Sy, and an element E of o(MeasRect(S,S2)). Suppose E € the field
generated by MeasRect(S1,52) and E # (). Then there exists a disjo-
int valued finite sequence F' of elements of MeasRect(S1,S2) and the-
re exists a finite sequence A of elements of S; and there exists a finite
sequence B of elements of Sy and there exists a summable finite sequ-
ence C of elements of R "> and there exists a summable finite sequ-
ence I of elements of R\ and there exists a summable finite sequen-
ce J of elements of R > such that F = UF and len F € dom F' and
len F=1len A and len F = len B and len F' = lenC and len F' = len I and
len F' = len J and for every natural number n such that n € dom C' holds
C(n) = Xp(m),x1xx, and ((Xg=0 C(@))ren)ienc = XE,x,xx, and for eve-
ry element z of X; and for every natural number n such that n € dom I
holds I(n)(z) = [ curry(Cy,x) dMz and for every natural number n and
for every element P of S such that n € dom I holds I, is measurable on P
and for every element = of Xi, [curry(((35_o C(@))keN)lenc, ) dMy =
(b _gI())ken)ien1(z) and for every element y of Xo and for every na-
tural number n such that n € dom J holds J(n)(y) = [ curry’(Cy,y) dM;
and for every natural number n and for every element P of S5 such that
n € domJ holds J, is measurable on P and for every element y of Xo,
fCUI‘I'y/((( g:O C(a))fiEN)len07y) dM, = (( Z:O J(a))ﬁeN)lenJ(y)'
PRrROOF: Consider F' being a disjoint valued finite sequence of elements of
MeasRect(S1, S2), A being a finite sequence of elements of S;, B being
a finite sequence of elements of S;, C being a summable finite sequen-
ce of elements of R such that E = UF and len F € dom F' and
len F=len A and len F' = len B and len F' = len C and for every natural
number n such that n € dom F holds F(n) = A(n) x B(n) and for every
natural number n such that n € dom C holds C(n) = Xp(,), x, xx, and
(>or_o C(a))ken(lenC) = Xg x, xx, and for every natural number n and
for every sets x, y such that n € domC and x € X; and y € X5 holds
Cn)(z,y) = Xam),x, () - XB(n),x,(y) and for every element x of Xj,
curry (X g, x, x Xo, ) = curry (3 a—o C(@))keN)ienc, ) and for every ele-
ment y of X, curry’(Xp, x, x X2, ) = cwrry’ (((Xa—o C(@))ken)ien ¢ ¥)- De-
fine S[natural number, object] = there exists a function f from X7 into R
such that f = $5 and for every element x of X1, f(z) = [ curry(Cy,, x) dMo.
For every natural number n such that n € Seglen F' there exists an ob-
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ject z such that S[n,z]. Consider I being a finite sequence such that
dom I = Seglen F' and for every natural number n such that n € Seglen I’
holds S[n, I(n)] from [3, Sch. 1]. For every element z of X; and for every
natural number n such that n € dom I holds I(n)(z) = [ curry(Cy, z) dMs
by [12, (4)]. Define 7 [natural number, object] = there exists a function f
from X5 into R such that f = $5 and for every element = of Xo, f(z) =
[ curry’(Cs,, x) dM;. For every natural number n such that n € Seglen F
there exists an object z such that 7[n, z]. Consider J being a finite sequ-
ence such that domJ = Seglen F' and for every natural number n such
that n € Seglen F' holds 7 [n, J(n)] from [3, Sch. 1]. For every element
x of X9 and for every natural number n such that n € domJ holds
J(n)(z) = [curry(Cp,z)dM; by [12, (4)]. For every natural number
n and for every element P of S; such that n € dom [ holds I, is me-
asurable on P by [12, (4)], (69), (22), [? , (32)]. For every element z
of X1, [curry(((36=0 C(a))ren)ienc, @) dMa = ((36-0 I(at))ren)ien1(x)
by [19, (24), (25)], [2, (13)], [9, (20)]. For every natural number n and
for every element P of S5 such that n € domJ holds J, is measura-
ble on P by [12, (4)], (69), (22), [? , (32)]. For every element = of X,
J earry’ ((Z6=0 C(a))wen)ien o @) dMy = ((3X6=0 J())xen)ten s (x) by [19,
(24), (25)], [20 (13)], [9, (20)]. O
Let X1, X2 be non empty sets, S1 be a o-field of subsets of Xi, S2 be a o-
field of subsets of Xa, F' be a set sequence of o(MeasRect(S1,S2)), and n be
a natural number. One can verify that the functor F'(n) yields an element of
o(MeasRect(S7,52)). Let F' be a function from N x o(MeasRect(S1,.52)) into
o(MeasRect(S1,52)), n be an element of N, and E be an element of o (MeasRect (S, S2)).
Let us observe that the functor F'(n, E) yields an element of o(MeasRect(S1, S2)).
Now we state the propositions:

(77) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M; on S, a o-measure My
on Sa, an element E of o(MeasRect(51,52)), and an element V of Ss.
Suppose E € the field generated by MeasRect(S7, S2). Then there exists
a function F from X, into R such that

(i) for every element x of X1, F(x) = My(MeasurableXsection(F,x) N
V), and

(i) for every element P of Sj, F is measurable on P.

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).

(78) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure My on Si, a o-measure My
on Sy, an element F of o(MeasRect(S1,S52)), and an element V of Sj.
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Suppose E € the field generated by MeasRect(S1, S2). Then there exists
a function F from X5 into R such that

(i) for every element x of Xo, F(x) = M;(MeasurableYsection(F,x) N
V), and

(ii) for every element P of So, F' is measurable on P.

The theorem is a consequence of (22), (27), (24), (76), (71), and (68).

(79) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure My on So, and an element E of
o(MeasRect(S1, S2)). Suppose E € the field generated by MeasRect(S1, S2).
Let us consider an element B of Sz. Then E € {E, where E is an element
of o(MeasRect(S1,52)) : there exists a function F from X into R such that

for every element x of Xi, F'(z) = Ms(MeasurableXsection(E, z)NB) and
for every element V' of Sy, F' is measurable on V'}. The theorem is a con-
sequence of (77).

(80) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure M7 on S7, and an element E of
o(MeasRect(S1,52)). Suppose E € the field generated by MeasRect (S, S2).
Let us consider an element B of S;. Then E € {E, where E is an element
of o(MeasRect(S], S2)) : there exists a function F from X3 into R such that

for every element x of Xy, F'(x) = M;(MeasurableYsection(E, z)NB) and
for every element V' of Sy, F' is measurable on V'}. The theorem is a con-
sequence of (78).

(81) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X5, a o-measure Ms on S, and an element B
of So. Then the field generated by MeasRect(S1,52) C {E, where E is
an element of o(MeasRect(S7,52)) : there exists a function F' from X;
into R such that for every element z of X1, F(z) = My(MeasurableXsection(E, z)N
B) and for every element V' of Sy, F' is measurable on V'}. The theorem
is a consequence of (7) and (79).

(82) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on S, and an element B
of S1. Then the field generated by MeasRect(S1,S2) C {E, where FE is
an element of o(MeasRect(S1,52)) : there exists a function F' from X,
into R such that for every element y of Xo, F(y) = M;(MeasurableYsection(E, y)N
B) and for every element V of Sy, F' is measurable on V'}. The theorem
is a consequence of (7) and (80).

7. o-FINITE MEASURE
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Let X be a non empty set, S be a o-field of subsets of X, and M be a o-
measure on S. We say that if and only if
(Def. 12) there exists a set sequence E of S such that for every natural number n,
M(E(n)) < +ocand UE = X.
Now we state the propositions:

(83) Let us consider a non empty set X, a o-field S of subsets of X, and
a o-measure M on S. Then M is o-finite if and only if there exists a set
sequence F' of S such that F' is non descending and for every natural
number n, M(F(n)) < +oo0 and lim F' = X.

(84) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P of
S, and an induced measure M of S and P. Then M = (the Caratheodory
measure determined by M)[(the field generated by 5).

8. FUBINI’'S THEOREM ON MEASURE

Now we state the propositions:

(85) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure My on Sy, and an element
B of Sy. Suppose M3(B) < +o00. Then {E, where E is an element of
o(MeasRect(S7, S2)) : there exists a function F from X; into R such that
for every element = of X, F/(z) = Ma(MeasurableXsection(E, z) N B) and
for every element V' of S1, F' is measurable on V'} is a monotone class of
X1 X X2.

PROOF: Set Z = {F, where E is an element of o(MeasRect(S1,52)) :
there exists a function F' from X7 into R such that for every element x

of X1, F(x) = Ma(MeasurableXsection(E,z)NB) and for every element V
of Sy, F is measurable on V'}. For every sequence A; of subsets of X; X
X, such that A; is monotone and rng A; C Z holds lim A; € Z by [10,
(3)1, B: (35)], 21, (63)], [12} (45)]. O

(86) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X3, a o-measure M; on S7, and an element
B of S;. Suppose M;(B) < +oo. Then {E, where E is an element of
o(MeasRect(S7, S2)) : there exists a function F from X5 into R such that
for every element y of Xs, F'(y) = M;(MeasurableYsection(E,y) N B) and
for every element V' of Sy, F' is measurable on V'} is a monotone class of
X 1 X XQ.

PROOF: Set Z = {F, where E is an element of o(MeasRect(S1,52)) :
there exists a function F from X5 into R such that for every element y
of Xo, F(y) = M;(MeasurableYsection(E,y)NB) and for every element V'
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of Sy, F' is measurable on V'}. For every sequence A; of subsets of X; X
Xy such that A; is monotone and rng A; C Z holds lim A; € Z by [10,
(3)], B (35)], 214 (63)], [12, (45)]. O

(87) Let us consider a non empty set X, a field F' of subsets of X, and

a sequence L of subsets of X. Suppose rng L is a monotone class of X and
F C rng L. Then

(i) o(F') = monotone-class(F'), and
(ii) o(F) C rng L.

(88) Let us consider a non empty set X, a field F' of subsets of X, and a family
K of subsets of X. Suppose K is a monotone class of X and F' C K. Then

(i) o(F) = monotone-class(F'), and
(ii) o(F) C K.

(89) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure My on So, and an element B of
Sy. Suppose My(B) < 4o00. Then o(MeasRect(S1,52)) C {E, where FE is
an element of o(MeasRect(S7,52)) : there exists a function F' from X,
into R such that for every element z of X1, F(z) = My(MeasurableXsection(E, z)N
B) and for every element V of S, F' is measurable on V'}. The theorem
is a consequence of (85), (81), (7), and (88).

(90) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on Sq, and an element B of
S1. Suppose M;(B) < 4o00. Then o(MeasRect(S1,S2)) C {E, where E is
an element of o(MeasRect(S1,52)) : there exists a function F' from X»
into R such that for every element y of Xo, F'(y) = M;(MeasurableYsection(E, y)N
B) and for every element V of Sy, F' is measurable on V'}. The theorem
is a consequence of (86), (82), (7), and (88).
(91) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of Xj,
a o-field Sy of subsets of X5, a o-measure Ms on So, and an element E of

o(MeasRect(S1, 52)). Suppose Ms is o-finite. Then there exists a function
F from X into R such that

(i) for every element x of X;, F(x) = Msy(MeasurableXsection(E, )),
and

(ii) for every element V of Si, F' is measurable on V.

ProoF: Consider B being a set sequence of Sy such that B is non de-
scending and for every natural number n, My(B(n)) < oo and lim B =
Xs. Define P[natural number, object] = there exists a function f; from
X1 into R such that $2 = f; and for every element x of X1, fi(z) =
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My (MeasurableXsection(FE, x) N B($1)) and for every element V of S1, f1
is measurable on V. For every element n of N, there exists an element f of
X1-5R such that Pln, f] by (89), [12, (45)]. Consider f being a function
from N into X;-R such that for every element n of N, P[n, f(n)] from
[T1, Sch. 3]. For every natural number n, f(n) is a function from X; into R
and for every element z of X1, f(n)(z) = Ma(MeasurableXsection(E, z)N
B(n)) and for every element V' of Si, f(n) is measurable on V. For every
natural numbers n, m, dom(f(n)) = dom(f(m)). For every element z of
X1 such that z € X; holds f#x is convergent by [5, (11), (31)], [20, (7),
(37)]. Reconsider F = lim f as a function from X; into R. For every ele-
ment x of X1, F(z) = My(MeasurableXsection(E, x)) by [21, (80)], [22]
(92)], (49), 5, (11)]. O

(92) Let us consider non empty sets X, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on S, and an element E of
o(MeasRect(S1, S2)). Suppose M; is o-finite. Then there exists a function
F from X5 into R such that

(i) for every element y of Xo, F(y) = Mj(MeasurableYsection(E,vy)),
and

(ii) for every element V of So, F' is measurable on V.

ProOOF: Consider B being a set sequence of S such that B is non de-
scending and for every natural number n, M;(B(n)) < oo and lim B =
X1. Define P[natural number, object] = there exists a function f; from
X5 into R such that $ = f; and for every element y of X5, fi(y) =
M (MeasurableYsection(E,y) N B($1)) and for every element V' of Sa, fi
is measurable on V. For every element n of N, there exists an element f of
X5-5R such that Pln, f] by (90), [12, (45)]. Consider f being a function
from N into Xo—>R such that for every element n of N, P[n, f(n)] from [11]
Sch. 3]. For every natural number n, f(n) is a function from X3 into R and
for every element y of X2, f(n)(y) = M;(MeasurableYsection(E, y)NB(n))
and for every element V of S, f(n) is measurable on V. For every natural
numbers n, m, dom(f(n)) = dom(f(m)). For every element y of Xs such
that y € Xs holds f#y is convergent by [5, (11), (31)], [20, (7), (37)].
Reconsider F' = lim f as a function from X, into R. For every element
y of X9, F(y) = M;(MeasurableYsection(E,y)) by [21), (80)], [22, (92)],

(49), [5, (11)]. O
Let Xy, X2 be non empty sets, S; be a o-field of subsets of X, So be
a o-field of subsets of Xy, Ms be a o-measure on Sy, and E be an element of
o(MeasRect(S7, 52)). Assume M is o-finite. The functor yielding

a non-negative function from X; into R is defined by
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(Def. 13) for every element x of Xy, it(x) = Ms(MeasurableXsection(FE, z)) and
for every element V of Si, it is measurable on V.

Let M; be a o-measure on Sy. Assume M is o-finite. The functor | Xvol(E, M)
yielding a non-negative function from X» into R is defined by

(Def. 14) for every element y of Xy, it(y) = M;(MeasurableYsection(E,y)) and
for every element V' of So, it is measurable on V.

Now we state the propositions:

(93) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure My on Sy, and elements Fq, Fs
of o(MeasRect(S1,.52)). Suppose My is o-finite and E; misses Es. Then
YVOI(El U Es, Mg) = YVOI(El, Mg) + YVO](EQ, MQ)

PROOF: For every element z of X; such that x € dom Yvol(E; U Es, M)
holds (Yvol(E1UEs, Ms))(z) = (Yvol(E1, Ma)+Yvol(Es, Ms))(x) by (26),
(35), [, (30)]. O

(94) Let us consider non empty sets X1, Xo, a o-field S; of subsets of X7,
a o-field Sy of subsets of X5, a o-measure M7 on S1, and elements Eq, Fo
of o(MeasRect(S1,52)). Suppose M; is o-finite and E; misses Fy. Then
XVOI(E1 U Es, Ml) = XVOI(El, M1) + XVOI(EQ, Ml).

PROOF: For every element x of X3 such that z € dom Xvol(E; U Ey, M)
holds (Xvol(E1UEs, My))(z) = (Xvol(E1, M1)+Xvol(Esq, My))(x) by (26),
(35), [5, (30)]. O
Let us consider non empty sets X1, Xo, a o-field S7 of subsets of X1, a o-
field Sy of subsets of X5, a o-measure M7 on S1, a o-measure My on So, and
elements E7, Fy of o(MeasRect(S1,52)). Now we state the propositions:

(95) Suppose My is o-finite and Eq misses Ea. Then [ Yvol(E1UFEy, My) dM; =
J Yvol(Ey, My)dM; + [ Yvol(Esa, M) dM;. The theorem is a consequence
of (93).

(96) Suppose M is o-finite and Fy misses Fy. Then [ Xvol(E1UEy, M) dMy =
[ Xvol(Ey, My)dMs + [ Xvol(Esy, M) dMs. The theorem is a consequence
of (94).

Let us consider non empty sets X, X9, a o-field S7 of subsets of X, a o-field
So of subsets of X, a o-measure M; on 57, a o-measure Ms on So, an element
E of o(MeasRect(S1,52)), an element A of S1, and an element B of Sy. Now
we state the propositions:

(97) Suppose E = A x B and My is o-finite. Then
(i) if M2(B) = +oo0, then Yvol(E, M2) =X 4 x,, and

(i) if Ma(B) # 400, then there exists a real number r such that r =
Msy(B) and Yvol(E, M) =r- X4 x,.
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The theorem is a consequence of (53).
(98) Suppose E = A x B and M; is o-finite. Then

(i) if M1(A) = +oo, then Xvol(E, M1) = Xp x,, and

(ii) if M;1(A) # o0, then there exists a real number r such that r =
Ml(A) and XVOI(E, Ml) =71 -XBX,-

The theorem is a consequence of (55).
Now we state the proposition:

(99) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, an element A of S, and a real number r. If » > 0, then
f?“-XA,XdM:T-M(A).

Let us consider non empty sets X1, Xo, a o-field S7 of subsets of X1, a o-
field S5 of subsets of X5, a o-measure My on S1, a o-measure Ms on Sy, a finite
sequence F of elements of o(MeasRect(S1,S52)), and a natural number n. Now
we state the propositions:

(100) Suppose My is o-finite and F is a finite sequence of elements of MeasRect(S1, S2).
Then (Prod o -Meas(M, Ms))(F(n)) = [Yvol(F(n), Ms)dMj. The the-
orem is a consequence of (16), (97), and (99).
(101) Suppose M; is o-finite and F is a finite sequence of elements of MeasRect (51, S2).
Then (Prod o-Meas(M;, M))(F(n)) = [Xvol(F(n), M1)dM;. The the-
orem is a consequence of (16), (98), and (99).
Let us consider non empty sets X1, Xo, a o-field S of subsets of X1, a o-field
Sy of subsets of X3, a o-measure M; on Si, a o-measure My on Ss, a disjoint
valued finite sequence F' of elements of o(MeasRect(S1,952)), and a natural
number n. Now we state the propositions:

(102) Suppose M is o-finite and F is a finite sequence of elements of MeasRect(S1, S2).
Then (Prod o -Meas(M1, M2))(UF) = [ Yvol(U F, Ms) dM;.
PROOF: Define P[natural number] = (Prod o -Meas(M;, M))(U(F[$1)) =
JYvol(U(F'[$1), M) dM;. P[0]. For every natural number k such that
P[k] holds P[k + 1] by [2, (13)], [, (59)], [19, (55)], [3, (82)]. For every
natural number k, P[k] from [2, Sch. 2]. O

(103) Suppose Mj is o-finite and F' is a finite sequence of elements of MeasRect (S, S2).
Then (Prod o -Meas(M1, Ms))(U F) = [ Xvol( F, M1) dMs.
PROOF: Define P[natural number] = (Prod o -Meas(M7, M))(U(F[$1)) =
J Xvol(U(F'[$1), M) dMs. P[0]. For every natural number k such that
P[k] holds P[k + 1] by [2, (13)], [3, (59)], [19, (55)], [3, (82)]. For every
natural number k, P[k] from [2, Sch. 2]. O

Let us consider non empty sets X, Xo, a o-field Sy of subsets of X1, a o-field
So of subsets of X5, a o-measure M; on S7, a o-measure Ms on So, an element
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E of o(MeasRect(S1,52)), an element V' of o(MeasRect(S1,S2)), an element A
of S1, and an element B of S5. Now we state the propositions:

(104) Suppose E € the field generated by MeasRect(S1,S2) and My is o-
finite. Then suppose V' = A x B. Then E € {E, where F is an element of
o(MeasRect(S1,52)) : [ Yvol(ENV, Ms) dM; = (Prod o -Meas(Mjy, Ms))(EN
V)}. The theorem is a consequence of (102).

(105) Suppose E € the field generated by MeasRect(S1,52) and M; is o-
finite. Then suppose V' = A x B. Then E € {E, where FE is an element of
o(MeasRect(S1, 52)) : [ Xvol(ENV, M) dMy = (Prod o -Meas(M;, M2))(EN
V)}. The theorem is a consequence of (103).

Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X1, a o-field

So of subsets of X5, a o-measure M on S1, a o-measure M> on So, an element

V of o(MeasRect(S1,52)), an element A of S1, and an element B of Sy. Now

we state the propositions:

(106) Suppose Mo is o-finite and V' = A x B. Then the field generated by
MeasRect(S1,52) C {E, where E is an element of o(MeasRect(S7, 52)) :
JYvol(ENV, Ms)dM; = (Prod o -Meas(Mj, M2))(ENV)}. The theorem
is a consequence of (7) and (104).

(107) Suppose M; is o-finite and V' = A x B. Then the field generated by
MeasRect(S1, 52) C {E, where FE is an element of o(MeasRect(S1, S2)) :
[ Xvol(ENV, M) dMsy = (Prod o -Meas(Mi, M2))(ENV)}. The theorem
is a consequence of (7) and (105).

Now we state the propositions:

(108) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure Ms on S5, elements E, V
of o(MeasRect(S1,52)), a set sequence P of o(MeasRect(Si,S2)), and
an element x of X;. Suppose P is non descending and lim P = E. Then
there exists a sequence K of subsets of S9 such that

(i) K is non descending, and

(ii) for every natural number n, K(n) = MeasurableXsection(P(n),x) N
MeasurableXsection(V, x), and

(iii) lim K = MeasurableXsection(£, z) N MeasurableXsection(V, x).

The theorem is a consequence of (43), (49), and (30).

(109) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure M; on Sy, elements E, V
of o(MeasRect(S1,52)), a set sequence P of o(MeasRect(Si,S2)), and
an element y of Xo. Suppose P is non descending and lim P = E. Then
there exists a sequence K of subsets of S7 such that
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(i) K is non descending, and

(ii) for every natural number n, K(n) = MeasurableYsection(P(n),y) N
MeasurableYsection(V, y), and

(iii) lim K = MeasurableYsection(FE, y) N MeasurableYsection(V, y).

The theorem is a consequence of (44), (49), and (32).

(110) Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X7,
a o-field Sy of subsets of X5, a o-measure My on So, elements E, V
of o(MeasRect(51,52)), a set sequence P of o(MeasRect(Si,S2)), and
an element x of X;. Suppose P is non ascending and lim P = E. Then
there exists a sequence K of subsets of S5 such that

(i) K is non ascending, and

(ii) for every natural number n, K(n) = MeasurableXsection(P(n),x) N
MeasurableXsection(V, x), and

(iii) lim K = MeasurableXsection(£, z) N MeasurableXsection(V, x).

The theorem is a consequence of (45), (49), and (31).

(111) Let us consider non empty sets X, Xo, a o-field S; of subsets of X,
a o-field Sy of subsets of X5, a o-measure M; on Si, elements E, V
of o(MeasRect(S1,52)), a set sequence P of o(MeasRect(S,S2)), and
an element y of Xs5. Suppose P is non ascending and lim P = E. Then
there exists a sequence K of subsets of S7 such that

(i) K is non ascending, and

(ii) for every natural number n, K(n) = MeasurableYsection(P(n),y) N
MeasurableYsection(V, y), and

(iii) lim K = MeasurableYsection(E, y) N MeasurableYsection(V, y).

The theorem is a consequence of (46), (49), and (33).

Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X1, a o-field
Sy of subsets of X5, a o-measure My on Si, a o-measure M> on S, an element
V of o(MeasRect(S1,52)), an element A of S1, and an element B of Sy. Now
we state the propositions:
(112) Suppose M is o-finite and V' = Ax B and (Prod o -Meas(M;, M2))(V) <
+oo and My(B) < 4o0. Then {E, where E is an element of o(MeasRect(S1, S2))
: [ Yvol(ENV, Ma) dM; = (Prod o -Meas(M;, M3))(ENV)} is a monotone
class of X7 x Xs.
PROOF: Set Z = {F, where E is an element of o(MeasRect(S1,52)) :
JYvol(ENV, My)dM; = (Prod o -Meas(M, Ms))(ENV)}. For every se-
quence A; of subsets of X7 x X5 such that Ay is monotone and rng A1 C Z
holds lim A; € Z by [10, (3)], [B, (35)], 21L (63)], 12, (45)]. O
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(113) Suppose M is o-finite and V' = Ax B and (Prod o -Meas(M;, M2))(V) <
+o00 and M1 (A) < +o0. Then {E, where E is an element of o(MeasRect(S1, S2))
: [ Xvol(ENV, M) dMy = (Prod o -Meas(My, Ms))(ENV)} is a monotone
class of X7 x Xs.
PROOF: Set Z = {F, where E is an element of o(MeasRect(S1,52)) :
[ Xvol(ENV, M;)dMsy = (Prod o -Meas(Mi, Ms))(ENV)}. For every se-
quence A; of subsets of X7 x X5 such that A; is monotone and rng A; C 7
holds lim A; € Z by [10, (3)], [B, (35)], [21} (63)], [12, (45)]. O

(114) Suppose My is o-finite and V = Ax B and (Prod o -Meas(M7, M2))(V) <
+o0o and M3(B) < +o00. Then o(MeasRect(S1,S52)) C {E, where FE is
an element of o(MeasRect(S1,.52)) : [ Yvol(ENV, My)dM; = (Prod o -Meas(M;, M:
V)}. The theorem is a consequence of (112), (106), (7), and (88).

(115) Suppose M is o-finite and V' = Ax B and (Prod o -Meas(M;, M2))(V) <
+o0o and M;(A) < 4oo. Then o(MeasRect(S1,52)) C {E, where FE is
an element of o(MeasRect(S1, S2)) : [ Xvol(ENV, M) dMy = (Prod o -Meas(M;, M-
V)}. The theorem is a consequence of (113), (107), (7), and (88).

Now we state the proposition:

(116) Let us consider sets X, Y, a sequence A of subsets of X, a sequence
B of subsets of Y, and a sequence C' of subsets of X x Y. Suppose A is
non descending and B is non descending and for every natural number n,

C(n) = A(n) x B(n). Then
(i) C is non descending and convergent, and

(i) yc=UA xUB.
PROOF: For every natural numbers n, m such that n < m holds C(n) C
C(m) by [13}, (96)]. O

Now we state the proposition:

(117) FUBINI'S THEOREM:

Let us consider non empty sets X1, Xo, a o-field Sy of subsets of X1, a o-
field S5 of subsets of X5, a o-measure M7 on Sy, a o-measure My on S5,
and an element E of o(MeasRect(S1, S2)). Suppose M; is o-finite and Ms
is o-finite. Then [Yvol(E, Ms)dM; = (Prod o -Meas(M;, Ms))(E).

PRrROOF: Consider A being a set sequence of S; such that A is non de-
scending and for every natural number n, M;(A(n)) < +oo and lim A =
X;. Consider B being a set sequence of Sy such that B is non descen-
ding and for every natural number n, My(B(n)) < 400 and lim B =
Xs. Define C(element of N) = A($1) x B($1). Consider C being a func-
tion from N into 2%1*X2 such that for every element n of N, C(n) =
C(n) from [II, Sch. 4]. For every natural number n, C(n) = A(n) x
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B(n). For every natural number n, C(n) € o(MeasRect(S1,S2)). For
every natural numbers n, m such that n < m holds C(n) C C(m) by
[13, (96)]. For every natural number n, (Prod o -Meas(M7, M2))(C(n)) <
+oo by (16), [6, (51)]. Set C1 = E N C. For every object n such that
n € N holds C;(n) € o(MeasRect(S1,52)). For every natural number n,
JYvol(E N C(n), M2)dM; = (Prodo-Meas(Mi, M2))(E N C(n)). Defi-
ne Plelement of N,object] = $2 = Yvol(E N C(8$1), Mz). For every ele-
ment n of N, there exists an element f of X;->R such that P[n, f] by
[12, (45)]. Consider F being a function from N into X;-~R such that
for every element n of N, P[n, F(n)] from [11, Sch. 3]. For every na-
tural number n, F(n) = Yvol(E N C(n), Ms). Reconsider X3 = X as
an element of S;. For every natural number n and for every element =z
of Xy, (F#=x)(n) = (Yvol(ENC(n), Ms))(x). For every natural numbers
n, m, dom(F(n)) = dom(F(m)). For every natural number n, F(n) is
measurable on X3. For every natural numbers n, m such that n < m
for every element x of X; such that x € X3 holds F(n)(x) < F(m)(z)
by (20), [5, (31)]. For every element = of X such that x € X3 holds
F#x is convergent by [20, (7), (37)]. Consider I being a sequence of
extended reals such that for every natural number n, I(n) = [ F(n)dM;
and I is convergent and [lim F'dM; = lim . For every element z of
X; such that z € domlim F holds (lim F)(z) = (Yvol(E, Ma))(z) by
(116), (108), (27), [10, (13)]. Set J = E N C. For every object n such
that n € N holds J(n) € o(MeasRect(S,52)). Prod o -Meas(M;, M>) is
a o-measure on o(MeasRect(S1,52)). For every element n of N, I(n) =
(Prod o -Meas(My, Ms).J)(n) by [10, (13)]. O
Now we state the proposition:

(118) FUBINI'S THEOREM:

Let us consider non empty sets X1, Xo, a o-field S7 of subsets of X1, a o-
field Sy of subsets of X5, a o-measure M7 on Sp, a o-measure Ms on S9,
and an element E of o(MeasRect(S1, S2)). Suppose M is o-finite and My
is o-finite. Then [ Xvol(E, M;)dMs = (Prod o -Meas(M;, Ms))(E).

PrOOF: Consider A being a set sequence of S; such that A is non de-
scending and for every natural number n, M;(A(n)) < +oo and lim A =
X;. Consider B being a set sequence of Sy such that B is non descen-
ding and for every natural number n, My(B(n)) < 400 and lim B =
X5. Define C(element of N) = A($;) x B($1). Consider C' being a func-
tion from N into 2%1%X2 such that for every element n of N, C(n) =
C(n) from [II, Sch. 4]. For every natural number n, C(n) = A(n) x
B(n). For every natural number n, C(n) € o(MeasRect(S1,S2)). For
every natural numbers n, m such that n < m holds C(n) C C(m) by
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[13, (96)]. For every natural number n, (Prod o -Meas(Mj, M2))(C(n)) <
+oo by (16), [6, (51)]. Set C; = E N C. For every object n such that
n € N holds Ci(n) € o(MeasRect(S1,52)). For every natural number n,
J Xvol(E N C(n), My)dMs = (Prodo-Meas(M;i, M2))(E N C(n)). Defi-
ne Plelement of N,object] = $3 = Xvol(E N C(3$1), M;). For every ele-
ment n of N, there exists an element f of Xy—>R such that P[n, f] by
[12, (45)]. Consider F being a function from N into X5-5R such that
for every element n of N, P[n, F(n)] from [1I, Sch. 3]. For every na-
tural number n, F(n) = Xvol(E N C(n), M;). Reconsider X3 = X as
an element of S;. For every natural number n and for every element x
of X9, (F#x)(n) = (Xvol(E N C(n), M;))(x). For every natural numbers
n, m, dom(F(n)) = dom(F(m)). For every natural number n, F(n) is
measurable on X3. For every natural numbers n, m such that n < m
for every element x of X5 such that x € X3 holds F(n)(x) < F(m)(z)
by (21), [, (31)]. For every element x of X5 such that =z € X3 holds
F#x is convergent by [20, (7), (37)]. Consider I being a sequence of
extended reals such that for every natural number n, I(n) = [ F(n)dM;
and I is convergent and [lim FFdM,; = limI. For every element z of
Xy such that z € domlim F' holds (lim F)(z) = (Xvol(E, M;))(z) by
(116), (109), (27), [10, (13)]. Set J = E N C. For every object n such
that n € N holds J(n) € o(MeasRect(S1,52)). Prod o -Meas(M;, M) is
a o-measure on o(MeasRect(S,52)). For every element n of N, I(n) =
(Prod o -Meas(My, Ms).J)(n) by [10, (13)]. O
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Summary. In this article, we formalize in the Mizar system [3] the notion
of the derivative of polynomials over the field of real numbers [4]. To define it,
we use the derivative of functions between reals and reals [9].
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1. PRELIMINARIES

From now on ¢ denotes a complex, r denotes a real number, m, n denote
natural numbers, and f denotes a complex-valued function.
Now we state the propositions:

(1) 0+f=1F.
(2) f-0=/.
Let f be a complex-valued function. Observe that 0 + f reduces to f and
f — 0 reduces to f.
Now we state the propositions:
3) ¢+ f=(domf+—rc)+f.
4) f—c=f—(domfr— c).
) c-f=(domfr—c)-f.
6)
7)

f + (dom f —— 0) = f. The theorem is a consequence of (3).

A~~~ Y~ A/~
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f — (dom f —— 0) = f. The theorem is a consequence of (4).
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8) °=R+— 1.
PROOF: Reconsider s = 1 as an element of R. (I = R —— s by [8, (34)],
[10, (7)]. O

2. DIFFERENTIABILITY OF REAL FUNCTIONS

One can check that every function from R into R which is differentiable is

also continuous.
Let f be a differentiable function from R into R. The functor yielding
a function from R into R is defined by the term

(Def. 1) fig.
Now we state the propositions:
(9) Let us consider a function f from R into R. Then f is differentiable if
and only if for every r, f is differentiable in r.
(10) Let us consider a differentiable function f from R into R. Then f/(r) =
Fof
Let f be a function from R into R. Observe that f is differentiable if and
only if the condition (Def. 2) is satisfied.
(Def. 2) for every r, f is differentiable in r.
Let us note that every function from R into R which is constant is also
differentiable.
Now we state the proposition:
(11) Let us consider a constant function f from R into R. Then f' = R — 0.
PROOF: Reconsider z = 0 as an element of R. f/ = R — z by [9] (22)],
[10, (7)]. O
One can verify that idg is differentiable as a function from R into R.
Now we state the proposition:
(12) idg =R+ 1.
PROOF: Set f = idg. Reconsider z = 1 as an element of R. f/ =R +—— 2
by [9, (17)], [10, (7)]. O
Let us consider n. One can verify that [ is differentiable.
Now we state the proposition:
(13) (O =n- (@O 1.

From now on f, g denote differentiable functions from R into R.

Left-side f’(r) is the value of the derivative defined in this article for differentiable functions
f :R+— R, and right-side f’(r) is the value of the derivative defined for partial functions in [9].
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Let us consider f and g. Let us observe that f + g is differentiable as a func-
tion from R into R and f — ¢ is differentiable as a function from R into R and
f - g is differentiable as a function from R into R.

Let us consider r. One can verify that r + f is differentiable as a function
from R into R and r - f is differentiable as a function from R into R and f —r is
differentiable as a function from R into R and — f is differentiable as a function
from R into R and f2 is differentiable as a function from R into R.

Now we state the propositions:

r-f) = ’. The theorem is a consequence of (9) and (10).
!/

s

(14) (f+9) = f’ + ¢’. The theorem is a consequence of (9) and (10).

(15) (f—g) = f'—¢'. The theorem is a consequence of (9) and (10).

(16) (f-g9) =g-f +f-g. The theorem is a consequence of (9) and (10).
17 (r+f) = f’ The theorem is a consequence of (11), (3), (14), and (6).
(18) (f—nr) = f’ The theorem is a consequence of (11), (4), (15), and (7).
(19) (

(20) (=

3. POLYNOMIALS

In the sequel L denotes a non empty zero structure and x denotes an element
of L.
Now we state the proposition:
(21) Let us consider a (the carrier of L)-valued function f, and an object a.
Then Support(f +- (a,z)) € Support f U {a}.
PROOF: a = z or z € Support f by [2, (32), (30)]. O
Let us consider L and x. Let f be a finite-Support sequence of L and a be
an object. Observe that f +- (a, ) is finite-Support as a sequence of L.
Now we state the proposition:
(22) Let us consider a polynomial p over L. If p # 0. L, then lenp —' 1 =
lenp — 1.
Let L be a non empty zero structure and = be an element of L. Let us note
that (x) is constant and (x,0r) is constant.
Now we state the proposition:

(23) Let us consider a non empty zero structure L, and a constant polynomial
p over L. Then

(i) p=0.L, or
(if) p = (p(0)).
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Let us consider L, x, and n. The functor seq(n,z) yielding a sequence of L
is defined by the term
(Def. 3) 0.L +- (n,z).
Observe that seq(n, z) is finite-Support.
Now we state the propositions:
(24) (seq(n,x))(n) = x.
(25) If m # n, then (seq(n,x))(m) = 0r.
(26) the length of seq(n,x) is at most n + 1.
(27) If & # 0p, then lenseq(n,x) = n + 1.
PROOF: Set p = seq(n, z). For every m such that the length of p is at most
m holds n +1 < m by (24), [, (13)]. O

(28) seq(n,0r) = 0. L. The theorem is a consequence of (24).

(29) Let us consider a right zeroed, non empty additive loop structure L, and
elements z, y of L. Then seq(n, x)+seq(n,y) = seq(n, x+y). The theorem
is a consequence of (24) and (25).

(30) Let us consider an add-associative, right zeroed, right complementa-
ble, non empty additive loop structure L, and an element x of L. Then
—seq(n, z) = seq(n, —x). The theorem is a consequence of (24) and (25).

(31) Let us consider an add-associative, right zeroed, right complementa-
ble, non empty additive loop structure L, and elements x, y of L. Then
seq(n, z) —seq(n,y) = seq(n, z —y). The theorem is a consequence of (30)
and (29).

Let L be a non empty zero structure and p be a sequence of L. Let us
consider n. The functor p | n yielding a sequence of L is defined by the term

(Def. 4) p+-(n,0r).
Let p be a polynomial over L. Let us note that p [ n is finite-Support.

Let us consider a non empty zero structure L and a sequence p of L. Now
we state the propositions:

(32) (pIn)(n)=0r.
(33) If m # n, then (p [ n)(m) = p(m).
Now we state the proposition:

(34) Let us consider a non empty zero structure L. Then 0. L [ n = 0. L. The
theorem is a consequence of (32).

Let L be a non empty zero structure. Let us consider n. One can verify that
0. L | n reduces to 0. L.

Let us consider a non empty zero structure L and a polynomial p over L.
Now we state the propositions:
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(35) If n>lenp—'1, then p [ n = p. The theorem is a consequence of (32).
(36) If p#0.L, then len(p [ (lenp —'1)) < lenp.
PROOF: Set m =lenp —' 1. m = lenp — 1. the length of p | m is at most
lenp by [2, (32)], [7, (8)]. O
Now we state the proposition:
(37) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and a polynomial p over L. Then
p | (lenp —' 1) 4+ Leading-Monomial p = p. The theorem is a consequence
of (32).
Let L be a non empty zero structure and p be a constant polynomial over
L. Observe that Leading-Monomial p is constant.
Now we state the proposition:
(38) Let us consider an add-associative, right zeroed, right complementable,
distributive, unital, non empty double loop structure L, and elements z,
y of L. Then eval(seq(n,x),y) = (seq(n,x))(n) - power(y,n). The theorem
is a consequence of (28), (27), and (25).

4. DIFFERENTIABILITY OF POLYNOMIALS OVER REALS

In the sequel p, ¢ denote polynomials over Rp.
Now we state the propositions:
(39) Let us consider an element r of Rp. Then power(r,n) = r".
PROOF: Define P[natural number] = power(r, $1) = r%. For every natural
number n, P[n] from [I, Sch. 2]. O
(40) O™ = FPower(1g,,n).
PrOOF: Reconsider f = FPower(1g,,n) as a function from R into R.
O™ = f by [8, (36)], (39). O
Let us consider an element r of Rp. Now we state the propositions:
(41) FPower(r,n + 1) = FPower(r,n) - idg.
(42) FPower(r,n) is a differentiable function from R into R.
PROOF: Define P[natural number] = FPower(r, $;) is a differentiable func-
tion from R into R. P[0] by [6, (66)]. For every natural number n such that
P[n] holds P[n + 1]. For every natural number n, P[n] from [I, Sch. 2]. O

(43) power(r,n) = (O")(r). The theorem is a consequence of (40).
Let us consider p. The functor yielding a sequence of Ry is defined by
(Def. 5) for every natural number n, it(n) =p(n+1)-(n+1).

Note that p’ is finite-Support.
Now we state the propositions:
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(44) If p # 0.Rp, then lenp’ =lenp — 1.
PROOF: Set = lenp — 1. Set d = p'. the length of d is at most = by [7,
(8)]. For every n such that the length of d is at most n holds = < n by
AT (7], [ (10)], [T, (21)]. O

(45) If p # 0.Rp, then lenp = lenp’ 4+ 1. The theorem is a consequence of
(44).

(46) Let us consider a constant polynomial p over Rg. Then p’ = 0. Rg. The
theorem is a consequence of (45).

47) (p+q) =p"+d.

(48) (-p)'=—7p.

(49) (p—q)' =p' — ¢. The theorem is a consequence of (47) and (48).
(50) Leading-Monomial p’ = 0. Rp +- (lenp —' 2, p(lenp —' 1) - (lenp —' 1)).

PROOF: Set [ = Leading-Monomial p. Set m = lenp—'1. Set k = lenp—'2.
Reconsider a = p(m) - m as an element of Rp. Set f = 2z +- (k,a). I' = f
by [1, (53)], [2, (31), (32)], [0, (7)]. OO

(51) Let us consider elements 7, s of Rg. Then (r, s)’ = (s).

Let us consider p. The functor Eval(p) yielding a function from R into R is
defined by the term
(Def. 6) Polynomial-Function(Rp, p).
Let us note that Eval(p) is differentiable.
Now we state the propositions:
(52) Eval(0.Rp) =R +— 0.
PRrROOF: Eval(z) = R+ 0(€ R) by [5, (17)], [10, (7)]. O
(53) Let us consider an element 7 of Rp. Then Eval((r)) = R —— r.
PRrOOF: Eval((r)) =R —— r(e R) by [6, (37)], [10, (7)]. O
(54) If p is constant, then Eval(p)’ = R —— 0. The theorem is a consequence
of (23), (52), and (11).
(55) Eval(p + ¢) = Eval(p) + Eval(q).
(56) Eval(—p) = —Eval(p).
(57) Eval(p — q) = Eval(p) — Eval(q). The theorem is a consequence of (55)
and (56).
(58) Eval(Leading-Monomial p) = FPower(p(lenp —' 1),lenp —' 1).
PROOF: Set | = Leading-Monomial p. Set m = lenp —' 1. Reconsider f =
FPower(p(m), m) as a function from R into R. Eval(l) = f by [5}, (22)]. O

(59) Eval(Leading-Monomial p) = p(lenp — 1) - (C'"P='1),
PROOF: Set | = Leading-Monomial p. Set m = lenp —' 1. Set f = p(m) -
(@m). Eval(l) = f by (39), B, (36)], [5, (22)]. U
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(60) Let us consider an element r of Rp. Then Eval(seq(n,r)) = r-(0O"). The

theorem is a consequence of (24), (43), and (38).

(61) Eval(p)’ = Eval(p’).

(10]

(11]

PROOF: Define P[natural number| = for every p such that lenp < $; holds
Eval(p)’ = Eval(p’). P[0] by [B} (5)], (46), (52), (54). If P[n], then P[n+1]
by (36), [5, (3)], [L, (13)], (37). P[n] from [Il Sch. 2]. O

Let us consider p. Let us observe that Eval(p)’ is differentiable.
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Summary. The article defines Liouville numbers, the object introduced
by Joseph Liouville in 1844 [I7] as an example of an object which can be approxi-
mated “quite closely” by a sequence of rational numbers. x is a Liouville number
iff for every positive integer n, there exist integers p and ¢ such that ¢ > 1 and
1

< —.
q

p
r—£

q

0<

It is easy to show that all Liouville numbers are irrational. Liouville constant,
which is also defined formally, is the first transcendental (not algebraic) number.
It is defined in Section 6 quite generally as the sum
Ak
Do} P
for a finite sequence {ay }ren and b € N. Based on this definition, we also intro-
duced the so-called Liouville number as

L = ¥32,10~* = 0.110001000000000000000001 . . . ,

substituting in the definition of L(a,b) the constant sequence of 1’s and b = 10.
At the end, we show that the construction of an arbitrary Liouville number leads
to Liouville numbers [12], [I]. We show additionally, that the set of all Liouville
numbers is infinite, opening the next item from Abad and Abad’s list of “Top 100
Theorems”. We show also some preliminary constructions linking real sequences
and finite sequences, where summing formulas are involved. In the Mizar [I4] pro-
of, we follow closely https://en.wikipedia.org/wiki/Liouville_number. The
aim is to show that all Liouville numbers are transcendental (and to continue the
series of proving specific numbers as e or 7 to be transcendental [7], [13], [6]).
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1. PRELIMINARIES

Now we state the proposition:
(1) Let us consider natural numbers x, y. If x > 1 and y > 1, then z - y >
T +y.
Let us consider a natural number n. Now we state the propositions:
(2) n<nl
(3) n-nl=((n+1)!—nl
(4) Ifn>1,then 2 < (n+ 1)L
Let us consider natural numbers n, . Now we state the propositions:
(5) Ifn>1andi>1, then (n+1i)! > n!+i.
(6) Ifn>2andi>1,then (n+1i)! > n!+i. The theorem is a consequence
of (1).
Now we state the propositions:
(7) Let us consider a natural number b. If b > 1, then |3| < 1.

(8) Let us consider an integer d. Then there exists a non zero natural number
n such that 2771 > d.

Let a be an integer and b be a natural number. Note that a® is integer.

2. SEQUENCES

Now we state the propositions:

(9) Let us consider sequences s1, s2 of real numbers. Suppose for every na-
tural number n, 0 < s1(n) < s2(n) and there exists a natural number n
such that 1 < n and s1(n) < s3(n) and sg is summable. Then

(i) sp is summable, and

(il) >-s1 <Y so0.

(10) Let us consider a sequence f of real numbers. Suppose there exists a na-
tural number n such that for every natural number k such that & > n
holds f(k) = 0. Then f is summable.

PROOF: Set p = (3-6—o f())ken-. Reconsider po = p(n) as a real number.
Set 7 = {p2}nen. For every natural number k such that & > n holds
p(k) = r(k) by [I5, (57)], [3, (12)]. O

(11) Let us consider a natural number b. If b > 1, then 3 (($)")xen = %.

The theorem is a consequence of (7).
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Let n be a natural number. Let us observe that {n},cn is N-valued.

Let r be a positive natural number. Note that {r},ecn is positive yielding
and there exists a sequence of real numbers which is N-valued and Z-valued.

Now we state the propositions:

(12) Let us consider a sequence F' of real numbers, a natural number n, and
a real number a. Suppose for every natural number k, F(k) = a. Then
(S0 F(a))wer(n) = a - (n+1).
PROOF: Define P[natural number] = (38 _ F(a))ken($1) = a - ($1 + 1).
For every natural number i such that P[i] holds P[i+ 1]. For every natural
number ¢, P[i] from [3, Sch. 2]. O
(13) Let us consider a natural number n, and a real number a. Then (3°5_({a}nen)(@)),
a-(n+1). The theorem is a consequence of (12).
Let f be a Z-valued sequence of real numbers. Note that (35 _ f(a))ken is
Z-valued.
Let f be a N-valued sequence of real numbers. Observe that (3>°5_g f(a))ken
is N-valued.
Now we state the propositions:

(14) Let us consider a sequence f of real numbers. Suppose there exists a na-
tural number n such that for every natural number k such that & > n
holds f(k) = 0. Then there exists a natural number n such that for
every natural number k such that £ > n holds (3 h_ f(a))ken(k) =
(S5 F(@))wen(n).

PROOF: Set p = (3-h_ f())xen. Reconsider po = p(n) as a real number.
Set r = {p2}nen. For every natural number k such that & > n holds
p(k) = r(k) by [I5, (57)], [3, (12)]. O

(15) Let us consider a Z-valued sequence f of real numbers. Suppose there
exists a natural number n such that for every natural number & such that
k > n holds f(k) = 0. Then Y f is an integer.

PROOF: Set p = (36 _ f())xen. Reconsider po = p(n) as a real number.
Set r = {p2}nen. For every natural number k such that & > n holds
p(k) = (k) by [15, (57)], B, (12)). O
Let f be a non-negative yielding sequence of real numbers and n be a natural
number. One can verify that f T n is non-negative yielding.

3. TRANSFORMATIONS BETWEEN REAL FUNCTIONS AND FINITE SEQUENCES

Let f be a sequence of real numbers and X be a subset of N. The functor
yielding a sequence of real numbers is defined by the term

(Def. 1) (N — 0)+-f[X.
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Note that f[X is N-defined.
Let n be a natural number. Let us note that f|Segn is summable.
Let f be a Z-valued sequence of real numbers. One can verify that f|Segn
is Z-valued.
Now we state the proposition:
(16) Let us consider a sequence f of real numbers. Then f|Seg0 = {0}pen.
PROOF: Set f3 = f|Seg0. Set g = {0},en. For every element = of N,

fs(z) = g(z) by [10, (11)]. O
Let f be a sequence of real numbers and n be a natural number. The functor
m yielding a finite sequence of elements of R is defined by the term
(Def. 2)  fSegn.
Now we state the proposition:
(17) Let us consider a sequence f of real numbers, and natural numbers £,
n. If k € Segn, then (f|Segn)(k) = f(k).
Let us consider a sequence f of real numbers and a natural number n. Now
we state the propositions:
(18) If f(0) =0, then Y FinSeq(f,n) = > (f | Segn).
PROOF: Set f1 = f|Segn. Set g = FinSeq(f,n). Reconsider fy = f(0) as
an element of R. Set h = (fp) ™ g. For every natural number k such that
k <n+1holds fi(k) = h(k+1) by [3, (13), (14)], [22 (25)], [8, (49)]. For
every natural number k such that £ > n + 1 holds f1(k) = 0 by [3], (16)],
[4, (1)], [24, (57)], [10} (11)]. O
(19) dom FinSeq(f,n) = Segn.
Now we state the proposition:
(20) Let us consider a sequence f of real numbers, and a natural number i.
Then FinSeq(f,i) ™ (f(¢ + 1)) = FinSeq(f,i + 1).
PROOF: Set f1 = FinSeq(f,7). Set g = (f(i+1)). Set h = FinSeq(f,i+1).
dom f; = Segi. For every natural number k such that k£ € dom(f; ™ g)
holds (f1 ™ g)(k) = h(k) by [3, (13)], [4, (5), (25)], (19). O
Let us consider a sequence f of real numbers and a natural number n. Now
we state the propositions:
(21) If f(0) =0, then Y FinSeq(f,n) = (> ha_o f(a))ken(n).
PROOF: Define P[natural number] = Y~ FinSeq(f,$1) = (> r_o f(a))ken($1)-
For every natural number i such that P[] holds P[i+ 1] by (20), [23] (4)].
For every natural number n, P[n| from [3, Sch. 2]. O
(22) If f(0) = 0, then > (f|Segn) = (> hr_of(a))ken(n). The theorem is
a consequence of (21) and (18).

Now we state the propositions:
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(23) Let us consider a Z-valued sequence f of real numbers, and a natural
number n. If f(0) = 0, then > (f|Segn) is an integer. The theorem is
a consequence of (22).

(24) Let us consider a sequence f of real numbers, and a natural number n.
Suppose f is summable and f(0) = 0. Then )" f = > FinSeq(f,n)+>.(f1
(n+1)). The theorem is a consequence of (21).

One can check that there exists a sequence of real numbers which is positive
yielding and N-valued.

4. SEQUENCES NOT VANISHING AT INFINITY

Let f be a sequence of real numbers. We say that ’ f is eventually non-zero
if and only if

(Def. 3) for every natural number n, there exists a natural number N such that
n < N and f(N) # 0.
Observe that every sequence of real numbers which is eventually nonzero is
also eventually non-zero and ideeq(idy) is eventually nonzero and there exists
a sequence of real numbers which is eventually non-zero.
Now we state the proposition:

(25) Let us consider an eventually non-zero sequence f of real numbers, and
a natural number n. Then f T n is eventually non-zero.

Let f be an eventually non-zero sequence of real numbers and n be a natural
number. Note that fTn is eventually non-zero as a sequence of real numbers and
every sequence of real numbers which is non-zero and constant is also eventually
non-zero.

Let b be a natural number. The functor | pfact(b) | yielding a sequence of real

numbers is defined by

(Def. 4) for every natural number 4, it(i) = %

Now we state the propositions:
(26) Let us consider natural numbers b, i. Suppose b > 1. Then (pfact(b))(i) <
((5)")wen(9)-
(27) Let us consider a natural number b. Suppose b > 1. Then
(i) pfact(b) is summable, and
(ii) 3 pfact(b) < 725
The theorem is a consequence of (26) and (11).
Let b be a non trivial natural number. Observe that pfact(b) is summable

and there exists a sequence of real numbers which is non-negative yielding.
Now we state the proposition:

43
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(28) Let us consider natural numbers n, b. Suppose b > 1 and n > 1. Then
S((b—1) - (pfact(b) T (n +1))) < G-
PRrROOF: pfact(b) T (n+1) is summable. Set s; = pfact(b) T (n+1). Set s9 =
(($)")ken T (n+ 1)L For every natural number k, 0 < s1(k) < sa(k) by [3,
(13)], [19L (7)], [3, (16)], [5) (8)]. There exists a natural number k such that
1 <k and s1(k) < s2(k) by [19, (7)], [20, (39)]. >°s1 < > s2. Reconsider
b3 = b D! as a natural number. ((3)%)wen T (n+1)! = (%) (($)")xen by

[16, (8)], 19 (7)1, [9; (63)]. O

5. LIouvILLE NUMBERS

Let x be a real number. We say that - if and only if

(Def. 5) for every natural number n, there exists an integer p and there exists
a natural number ¢ such that ¢ > 1 and 0 < |z — 75’] < qin.

Now we state the proposition:

(29) Let us consider a real number r. Then r is Liouville if and only if for
every non zero natural number n, there exists an integer p and there exists
a natural number g such that 1 < g and 0 <|r—£| < q%.

Let a be a sequence of real numbers and b be a natural number. The functor
yielding a sequence of real numbers is defined by

(Def. 6) it(0) =0 and for every non zero natural number k, it(k) = “T(]ﬁl,

One can check that every real number which is Liouville is also irrational.

6. LIOUVILLE CONSTANT

Let a be a sequence of real numbers and b be a natural number. The functor
yielding a real number is defined by the term

(Def. 7) 3" LiouvilleSeq(a, b).
The functor - yielding a sequence of real numbers is defined
by
(Def. 8) for every natural number n, it(n) = b™.
Let us note that BLiouvilleSeq(b) is N-valued.

Let a be a sequence of real numbers. The functor - yiel-

ding a sequence of real numbers is defined by
(Def. 9)  for every natural number n, it(n) = (BLiouvilleSeq(b))(n)->_(LiouvilleSeq(a, b) | Se

Now we state the propositions:
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(30) Let us consider a N-valued sequence a of real numbers, and natural
numbers b, n, k. Suppose b > 0 and k < n. Then (LiouvilleSeq(a, b)) (k)
(BLiouvilleSeq(b))(n) is an integer.

(31) Let us consider a N-valued sequence a of real numbers, and natural
numbers b, n. If b > 0, then (ALiouvilleSeq(a,b))(n) is an integer.
PRrROOF: Set L = LiouvilleSeq(a,b). Set B = BLiouvilleSeq(b). Set f3 =
B(n)-(L|Segn). rmg f3 C Z by [, (1)], [24, (62)], [10, (13)], [8 (49)]. Set
m = n + 1. For every natural number k such that k& > m holds f3(k) =0
by [3, (13)], [4, (1)], [24, (57)], [10, (11)]. O

Let a be a N-valued sequence of real numbers and b be a non zero natural
number. Let us observe that ALiouvilleSeq(a,b) is Z-valued.
Now we state the propositions:

(32) Let us consider non zero natural numbers n, b. If b > 1, then (BLiouvilleSeq(b))(n) :
1.

(33) Let us consider a N-valued sequence a of real numbers, and a non zero
natural number b. Suppose b > 2 and rnga C b. Then LiouvilleSeq(a, b) is
summable.

PROOF: Set f = LiouvilleSeq(a,b). For every natural number i, bbj!l =

((b — 1) - pfact(b)) (). For every natural number i, f(i) > 0 and f(i) <

((b—1)-pfact(b))(¢) by 21} (3)], [16} (12)], [3, (51), (44), (13)]. pfact(d) is

summable. O

(34) Let us consider a sequence a of real numbers, a non zero natural number

n, and a non zero natural number b. Suppose b > 1. Then (?;ﬁ?sa’glfsegé?b;’;%fg) =

>~ FinSeq(LiouvilleSeq(a, b), n). The theorem is a consequence of (32) and
(18).

(35) Let us consider a N-valued sequence a of real numbers, a non trivial
natural number b, and a natural number n. Then (LiouvilleSeq(a, b))(n) >
0.

(36) Let us consider a positive yielding, N-valued sequence a of real numbers,
a non trivial natural number b, and a non zero natural number n. Then
(LiouvilleSeq(a, b))(n) > 0.

Let a be a N-valued sequence of real numbers and b be a non trivial natural
number. One can check that LiouvilleSeq(a, b) is non-negative yielding.
Now we state the propositions:
(37) Let us consider a N-valued sequence a of real numbers, and natural

numbers b, ¢. Suppose b > 2 and ¢ > 1 and rnga C ¢ and ¢ < b. Let
us consider a natural number i. Then (LiouvilleSeq(a, b))(i) < ((¢ — 1) -

pfact())(i).
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(38) Let us consider a N-valued sequence a of real numbers, and natural
numbers b, ¢. Suppose b > 2 and ¢ > 1 and rmga C ¢ and ¢ < b. Then
> LiouvilleSeq(a, b) < >>((¢—1) - pfact(b)). The theorem is a consequence
of (27), (35), and (37).

(39) Let us consider a N-valued sequence a of real numbers, and natural
numbers b, ¢, n. Suppose b > 2 and ¢ > 1 and rnga C ¢ and ¢ < b. Then
3> (LiouvilleSeq(a, b) T (n + 1)) < Y((c — 1) - (pfact(b) T (n + 1))).
PROOF: Set g = (c—1) - (pfact(b) T (n+1)). pfact(b) T (n+1) is summable.
Set f = LiouvilleSeq(a,b) T (n + 1). For every natural number i, 0 < f(7)
by [8, (3)]. For every natural number 4, f(i) < g(¢) by [15, (9)], (37). O

(40) Let us consider a N-valued sequence a of real numbers, a non trivial

natural number b, and a natural number n. Suppose a is eventually non-
zero and rnga C b. Then Y (LiouvilleSeq(a,b) T (n + 1)) > 0.
PROOF: Set L = LiouvilleSeq(a,b) T (n + 1). For every natural number i,
0 < L(7). There exists a natural number ¢ such that i € dom L and 0 < L(%)
by [21}, (5)]. Consider k being a natural number such that k£ € dom L and
L(k) > 0. LiouvilleSeq(a, b) is summable. [J

(41) Let us consider a N-valued sequence a of real numbers, and a non
trivial natural number b. Suppose rnga C b and a is eventually non-
zero. Let us consider a non zero natural number n. Then there exists
an integer p and there exists a natural number ¢ such that ¢ > 1 and
0 < | LiouvilleConst(a, b) — 2| < . The theorem is a consequence of (32),
(33), (40), (24), (34), (39), and (28).

The functor ‘LiouvilleConst‘ yielding a real number is defined by the term
(Def. 10) LiouvilleConst({1},en, 10).

Now we state the proposition:

(42) Let us consider a N-valued sequence a of real numbers, and a non trivial
natural number b. Suppose rnga C b and a is eventually non-zero. Then
LiouvilleConst(a, b) is Liouville. The theorem is a consequence of (41) and
(29).

One can check that LiouvilleConst is Liouville and there exists a real number
which is Liouville.

‘A Liouville number’ is a Liouville real number. Now we state the proposi-
tions:

(43) Let us consider non zero natural numbers m, n. Then (LiouvilleSeq({1},en, m))(n)

—n!
m~"™.

(44) Let us consider a natural number m. If 1 < m, then LiouvilleSeq({1},en, m)
is negligible.
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PROOF: There exists a function f from N into R such that for every natural
number z, f(z) = 5. Consider f being a function from N into R such that
for every natural number z, f(z) = 5. Set g = LiouvilleSeq({1},en, m).
For every natural number z, |g(x)| < |f(x)| by [I8, (5), (4)]. O

(45) % < LiouvilleConst < ¥ — L

9 ~ 10
PROOF: Set a = {1},en. Set b = 10. Reconsider n = 1 as a non zero natural

number. Set f = LiouvilleSeq(a, b). Set p; = pfact(b). f is summable. For
every natural number n, 0 < f(n). f(1) = 1071 Set s; = f T 2. Set
so=p112 Xp1=(CE_op1(a))ren(l) + (11 (1 +1)). Xp1 < 525 82
is summable. For every natural number n, 0 < s1(n) < s2(n) by (37), [11,
(7], 2, (50)], (35). O

(46) Let us consider a Liouville number n;, and an integer z. Then z + ny is

Liouville. The theorem is a consequence of (29).

Let n1 be a Liouville number and z be an integer. One can verify that nq + z

is Liouville.

’The set of all Liouville numbers‘ yielding a subset of R is defined by the

term

(Def. 11) the set of all ny where n; is a Liouville number.

Note that the set of all Liouville numbers is infinite.
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Summary. In this Mizar article, we complete the formalization of one of
the items from Abad and Abad’s challenge list of “Top 100 Theorems” about
Liouville numbers and the existence of transcendental numbers. It is item #18
from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http:
//www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph
Liouville in 1844 [15] as an example of an object which can be approximated
“quite closely” by a sequence of rational numbers. x is a Liouville number iff for
every positive integer n, there exist integers p and ¢ such that ¢ > 1 and

p
r— £

q

0< < —.

q’n

It is easy to show that all Liouville numbers are irrational. The definition and
basic notions are contained in [I2]. Liouville’s constant, which is also defined
formally, is the first explicit transcendental (not algebraic) number. Algebraic
numbers were formalized with the help of the Mizar system [I3] very recently,
by Yasushige Watase in [23] and now we expand these techniques into the area
of not only pure algebraic domains (as field, rings and formal polynomials), but
also for more set-theoretic fields. Finally we show that all Liouville numbers are
transcendental, based on Liouville’s theorem on Diophantine approximation. Lio-
uville’s constant, which is also defined formally, is the first explicit transcendental
(not algebraic) number [10], [I]. We plan to develop the theory of transcendental
numbers in the Mizar Mathematical Library, following HOL Light [5], Isabelle
[11], and Coq [4].
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From now on m, n denote natural numbers, » denotes a real number, and ¢
denotes an element of Cp.

Let f be a non empty, complex-valued function. One can check that |f] is
non empty.

Now we state the propositions:

(1) If 2 < m, then for every real number A, there exists a positive natural

number n such that A < m".

(2) Let us consider a positive real number A. Then there exists a positive
natural number n such that 5 < A. The theorem is a consequence of (1).

Let us consider r and n. Observe that [r — n,r + n] is right-ended.
Let a, b be real numbers. One can verify that [a,b] is closed interval as
a subset of R and there exists an element of Ry which is irrational.
Now we state the propositions:
(3) Rg is a subring of Cp.
(4) Fq is a subring of Rp.
(5) ZR® is a subring of Rp.
Let us consider a ring R and a subring S of R. Now we state the propositions:
(6) Every element of S is an element of R.
(7) Every polynomial over S is a polynomial over R.

Let us consider a ring R, a subring S of R, a polynomial f over S, and
a polynomial g over R. Now we state the propositions:

(8) If f =g, thenlen f =leng.
PRrROOF: the length of f is at most leng by [20 (8)]. For every natural
number m such that the length of f is at most m holds len g < m. O
(9) If f=g,then LCf=LCg.
Now we state the proposition:
(10) Let us consider a non degenerated ring R, a subring S of R, a polynomial

f over S, and a monic polynomial g over R. If f = g, then f is monic.
The theorem is a consequence of (8).

Let R be a non degenerated ring. Let us note that every subring of R is non
degenerated and there exists a subring of R which is non degenerated.
Now we state the propositions:
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(11) Let us consider a non degenerated ring R, a non degenerated subring S
of R, a monic polynomial f over S, and a polynomial g over R. If f = g,
then ¢ is monic. The theorem is a consequence of (8).

(12) Let us consider a non degenerated ring R, a subring S of R, a polynomial
f over S, and a non-zero polynomial g over R. If f = g, then f is non-zero.
The theorem is a consequence of (8).

(13) Let us consider a non degenerated ring R, a subring S of R, a non-zero
polynomial f over S, and a polynomial g over R. If f = g, then g is
non-zero. The theorem is a consequence of (8).

(14) Let us consider rings R, T, a subring S of R, a polynomial f over S,
and a polynomial g over R. Suppose f = ¢g. Let us consider an element
a of R. Then ExtEval(f,a(€ T)) = ExtEval(g,a(€ T)). The theorem is

a consequence of (8).

(15) Let us consider a ring R, a subring S of R, a polynomial f over S,
an element r of R, and an element s of S. If r = s, then ExtEval(f,r) =
ExtEval(f, s). The theorem is a consequence of (6).

(16) Let us consider a ring R, a subring S of R, an element r of R, and
an element s of S. If r = s and s is integral over S, then r is integral over
R. The theorem is a consequence of (7), (8), (14), and (15).

(17) Let us consider a ring R, a subring S of R, an element r of R, an element
s of S, a polynomial f over R, and a polynomial g over S. If r = s and
f =g and ris a root of f, then s is a root of g.
PRrOOF: Consider F' being a finite sequence of elements of R such that
eval(f,r) = > F and len F' = len f and for every element n of N such that
n € dom F holds F(n) = f(n—'1) - powerg(r,n —' 1). For every element
n of N such that n € dom F holds F(n) = g(n —' 1) - powerg(s,n =" 1)
by (6), [23, (11)]. rng F' C the carrier of S. Reconsider G = F' as a finite
sequence of elements of S. len G =leng. > G is an element of R. [J

(18) Every ring is a subring of R.

One can check that 0. Cp is Z-valued and 1. Cp is Z-valued.

Let L be a non degenerated, non empty double loop structure. One can check
that every polynomial over L which is monic is also non-zero and there exists
a polynomial over Cg which is monic and Z-valued and there exists a polynomial
over Cp which is monic and QQ-valued and there exists a polynomial over Cg
which is monic and R-valued.

Now we state the propositions:

(19) Every Z-valued polynomial over Cr is a polynomial over ZR.

(20) Every Q-valued polynomial over Cg is a polynomial over Fg.
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(21) Every R-valued polynomial over Cy is a polynomial over Rp.

Let L be a non empty zero structure. Let us note that every polynomial over
L which is non-zero is also non zero and every polynomial over L which is zero
is also non non-zero.

Now we state the propositions:

(22) Let us consider an integer i, and a Z-valued finite sequence f. If i € rng f,
then ¢ | [T f.
PROOF: Define Plfinite sequence of elements of Z| = for every integer a
such that a € rng $; holds a | [T $;. For every finite sequence p of elements
of Z and for every element n of Z such that P[p] holds P[p ™ (n)] by [3,
(31)], [8, (96)], [14, (2)], [3, (39)]. For every finite sequence p of elements
of Z, P[p] from [0, Sch. 2]. O

(23) there exists a non-zero, Z-valued polynomial f over Cg such that ¢ is a
root of f if and only if there exists a monic, Q-valued polynomial f over
Cr such that c is a root of f.
PRrROOF: If there exists a non-zero, Z-valued polynomial f over Cy such
that cis a root of f, then there exists a monic, Q-valued polynomial f over
Cr such that c is a root of f by [I8, (5)], [16, (6)], [19) (59)]. Reconsider | =
len f as an element of N. Define F(element of N) = (den(f($1)))(€ Cp).
Consider d being a polynomial over Cg such that lend < [ and for every
element n of N such that n < [ holds d(n) = F(n) from [I7, Sch. 2]. Define
G(natural number) = d($; —' 1). Consider dy being a finite sequence such
that lends = lend and for every natural number k£ such that & € domds
holds da(k) = G(k) from [3, Sch. 2]. rngds C Z by [22, (25)]. Reconsider
ds = do as a finite sequence of elements of Cp. Reconsider d; = [[ds as
an element of Cg. For every natural number 4 such that ¢ € dom dsz holds
d3(i) # Ocy by [22), (25)]. Consider d4 being a finite sequence of elements
of C such that dy = dy and [[de = -¢c ® dy. rng(dy - f) C Z by [20} (8)], [2,
(12), (13)], [22, (25)]. O

(24) c is algebraic if and only if there exists a monic, Q-valued polynomial f
over Cy such that ¢ is a root of f. The theorem is a consequence of (7),
(8), (14), and (20).

(25) cis algebraic if and only if there exists a non-zero, Z-valued polynomial
f over Cp such that ¢ is a root of f. The theorem is a consequence of (24)
and (23).

(26) c is algebraic integer if and only if there exists a monic, Z-valued poly-
nomial f over Cg such that cis a root of f. The theorem is a consequence
of (7), (8), (14), and (19).

Let us observe that every complex which is algebraic integer is also algebraic
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and every complex which is transcendental is also non algebraic integer.

Now we state the proposition:

(27) LIOUVILLE’'S THEOREM ON DIOPHANTINE APPROXIMATION:

[
2]
3]

[4]

Let us consider a non-zero, Z-valued polynomial f over Rp, and an irratio-
nal element a of Rp. Suppose a is a root of f. Then there exists a positive
real number A such that for every integer p for every positive natural

D A
number ¢, |a — E| > Jen

PROOF: Set n = lenf. Set X = [a — 1,a + 1]. Set E = Eval(f). Set
F = E‘||X. Set M; = suprng|F|. Set M = M; + 1. Consider Y being
an object such that Y € rng|F|. Consider A being an object such that
A € dom|F| and |F|(A) = Y. Set R1 = Roots f \ {a}. Define F(real
number) = |a—$;|. Set D = {F(b), where b is an element of Rp : b € Ry }.
D is finite from [2I, Sch. 21]. D C R. Set My = {1,+;} U D. For every
real number x such that @ € My holds x > 0 by [9, (56)]. Consider A

being a real number such that 0 < A and A < inf M. Set ¢1 = ¢".

Reconsider g2 = ¢ as an element of Rp. Reconsider p; = % as an element

of Rg. Consider F4 being a finite sequence of elements of the carrier of Rp
such that E( g) = > FE; and len ] = len f and for every element n of N
such that n € dom Ey holds Ey(n) = f(n —'1) - powerg, (p1,n —' 1). Set
G =q-E1.mmgG C Z by [3, (1)], [2, (10)], [, (3)], [24, (50)]. OO

Main Result: All Liouville numbers are transcendental.
Observe that every Liouville number is transcendental.
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1. PRELIMINARIES

From now on i, n denote natural numbers, » denotes a real number, 7|
denotes an element of Ry, a, b, ¢ denote non zero elements of Rp, u, v denote
elements of £3., p; denotes a finite sequence of elements of R, p3, u4 denote finite
sequences of elements of Rp, IV denotes a square matrix over Rp of dimension
3, K denotes a field, and k£ denotes an element of K.

Now we state the propositions:

(1) Ige® = ((1,0,0),{0,1,0),(0,0,1)).

(2) n-N:rl-Iﬁ:g-N.

(3) If r # 0 and w is not zero, then 7 - u is not zero.
PROOF: 7 u 7 Ogs by 4, (52), (49)]. O

Let us consider elements ai1, a12, a13, as1, a9, a3, asi, ase, asz of Ry and

a square matrix A over Ry of dimension 3. Now we state the propositions:
(4) Suppose A = ((a11,a12,a13), (az1, aze, azs), (as1, asz,ass)). Then
(i) Line(A, 1) = <a11,a12,a13>, and
(ii) Line(A, 2) = <a21, asg, a23>, and
(iii) Line(A,3) = (as1, asz2, ass).
(5) Suppose A = ({(a11, a12,a13), (@21, aze, a3), {(as1, asz, azs)). Then
(i) Aoy = (a11,a21,a31), and
(i) Aggz = (a12,a22,as2), and
(ili) Aggs = (a13,a23, as3).
The theorem is a consequence of (4).

Now we state the propositions:

(6) Let us consider elements a1, a2, ais, az1, a2, a3, asi, asz, ass, bii,
blg, b13, bgl, bgz, b23, b31, bgg, 1)33 of RF, and square matrices A, B over RF
Of dimension 3. Suppose A = (<a11, a9, CL13>, <a21, a9, a23>, <a31, asa, a33>>
and B = ((b11, b12,b13), (b21, b2z, b23), (b31,b32,b33)). Then A - B = ({(a11 -
bi1+a12-b21+a13-b31,a11-b12+a12-bea+a13-b32, a11-b13+a12-baz+a13-b33),
(ag1 - b11 + agz - bay + ag3 - b3y, az - bio + aga - bag + ag3 - bz, asy - biz + aze -
ba3 + ag3 - b33), (az1 - bi1 + aszz - bay + a3 - b3, a31 - b2 + azz - baz + ass - baa,
asy - b1z + asg - beg + ass - b3)). The theorem is a consequence of (4) and
(5)-

(7) Let us consider elements a1, aj2, a3, a1, as2, ass, asi, ass, ass, by, ba,
bz of Rp, a matrix A over Rr of dimension 3x3, and a matrix B over R of

dimension 3x1. Suppose A = ({a11, a1, a13), {as1, ase, as3), (as1, ase, ass))
and B = <<b1>, <b2>, <b3>> Then A- B = <<(L11 -b1 + ayg - by + aiz - b3>,
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(a21 -b1 + ago - by + ass - bg>, <a31 -b1 + ago - by + ass - b3>> The theorem is
a consequence of (4).

(8) Let us consider non zero elements a, b, ¢ of Ry, and square matrices M7,
Ms over Ry of dimension 3. Suppose M1 = ({(a,0,0), (0, b,0), (0,0, c)) and
M, = ((1,0,0),(0,%,0),(0,0,2)). Then

(i) My - My = I}, and
(i) My - My = I3

The theorem is a consequence of (1).

(9) Let us consider non zero elements a, b, ¢ of Rp. Then ((a,0,0), (0,b,
0),(0,0,¢)) is an invertible square matrix over Ry of dimension 3. The
theorem is a consequence of (8).

(10) (i) [1,0,0] is not zero, and

(i) [0,1,0] # Oga, and

(ii) [0,1,0] is not zero, and
(iii) [0,0,1] is not zero, and
(iv) [1,1,1] is not zero.
(11) (i) [1,0,0] # Ogz, and
i)
)

(iii) [0,0,1] # Ogz, and

(iv) [1,1,1] # Ogs.

Proor: [1,0,0] # [0,0,0] by [7, (2)]. [0,1

1] #[0,0,0] by [7, (2)]. [1,1,1] #[0,0,0] b
(12) (i) e1 # Ogs, and

(i) ex # Ogs, and

(iii) es # 08%.
Proor: [1,0,0] # [0,0,0] by [7, (2)]. [0,1,0] # [0,0,0] by [7, (2)]. [0,0,
1] #[0,0,0] by [7, (2)]. O
Let n be a natural number. Note that Iﬂg:" is invertible.
Let M be an invertible square matrix over Ry of dimension n. One can verify
that M~ is invertible.
Let K be a field and Ny, No be invertible square matrices over K of dimen-
sion n. One can check that Ny - Ny is invertible.
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2. GROUP OF HOMOGRAPHY

From now on N, Ni, Ny denote invertible square matrices over Rp of di-

mension 3 and P, P, P», P53 denote points of the projective space over 5%.

(13)

(14)
(15)

(16)

(The homography of Ni)((the homography of N2)(P)) = (the homography
of N1 : NQ)(P)
PRrOOF: Consider u19, v12 being elements of S%, ug being a finite sequ-
ence of elements of Ry, pia being a finite sequence of elements of R!
such that P = the direction of w1y and uqy is not zero and uis = usg
and p12 = Ni - Ny - ug and vig = M2F(p12) and vi2 is not zero and
(the homography of Nj - No)(P) = the direction of v12. Consider ug, vy
being elements of 3., ug being a finite sequence of elements of Ry, ps being
a finite sequence of elements of R! such that P = the direction of us and
ug is not zero and ug = ug and py = Na-ug and vy = M2F (p2) and v9 is not
zero and (the homography of Ny)(P) = the direction of ve. Consider u;, v;
being elements of E%, u7 being a finite sequence of elements of Ry, p; being
a finite sequence of elements of R! such that (the homography of No)(P) =
the direction of u; and wy is not zero and u; = wy and p; = Ni-uy and v1 =
M2F(p;) and v is not zero and (the homography of N7)((the homography
of N2)(P)) = the direction of v;. Consider a being a real number such that
a # 0 and us = a - uje. Consider b being a real number such that b # 0
and u = b-va. v1 = (N1 - (ug) )11, (N1 - (ur) )21, (N1 - (ur) )3 ) by [IL
(1), (40)]. v2 = ((Na - (ug) )11, (N2 - {ue) )21, (N2 - {ue)")s,1) by [LL (1),
(40)]. viz = (N1 - Na - (ug) )11, (N1 - Na - (ug) )1, (N1 - Na - (ug))31) by
[T, (1), (40)]. Reconsider vg = vo as a finite sequence of elements of Rp.
Reconsider iy = ¢ as a real number. vg = is - u by [4, (49), (52)]. Re-
consider l11 = Line(NQ, 1)(1), l12 = Line(Ng, 1)(2), l13 == Line(Ng, 1)(3),
121 == Line(NQ,Z)(l), l22 = Line(Ng,Q)(Q), 123 == Line(Ng,Q)(3), 131 ==
Line(N2,3)(1), 32 = Line(Na, 3)(2), 33 = Line(N2, 3)(3) as an element of
Rp. Nogq = (l11,l21,131) and Nogo = (l12,l22,132) and Nogs = (l13, l23,
l33) by [IL (1), (45)]. The direction of v; = the direction of v12 by [5, (7)],
[T, (45)], [55 (93)], [7, (8)]. O

(The homography of IH%:“S)(P) =P.
(i) (the homography of N)((the homography of N~)(P)) = P, and
(ii) (the homography of N~)((the homography of N)(P)) = P.
The theorem is a consequence of (13) and (14).

If (the homography of N)(P;) = (the homography of N)(Ps), then P, =
P,. The theorem is a consequence of (15).
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(17) Let us consider a non zero element a of Rp. Suppose a - If;’{:g = N. Then
(the homography of N)(P) = P.

The functor - yielding a set is defined by the term

(Def. 1) the set of all the homography of N where N is an invertible square
matrix over Ry of dimension 3.

One can check that EnsHomography3 is non empty.
Let hy, he be elements of EnsHomography3. The functor h; o hy yielding
an element of EnsHomography3 is defined by

(Def. 2) there exist invertible square matrices Ny, No over Rp of dimension 3
such that hy = the homography of N; and he = the homography of Ns
and it = the homography of Ny - Ns.

(18) Let us consider elements hy, he of EnsHomography3. Suppose hy =
the homography of Ny and hy = the homography of Ny. Then the homography
of N1+ Ny = hy o ha. The theorem is a consequence of (13).

(19) Let us consider elements z, y, z of EnsHomography3. Then (zoy)oz =
x o (yo z). The theorem is a consequence of (18).

The functor - yielding a binary operation on EnsHomography3
is defined by

(Def. 3) for every elements hy, hy of EnsHomography3, it(hi, he) = hi o ha.
The functor _ yielding a strict multiplicative magma is
defined by the term
(Def. 4) (EnsHomography3, BinOpHomography3).
Note that GroupHomography3 is non empty, associative, and group-like.

(20)  1GroupHomography3 = the homography of Iﬂi:?’.

(21) Let us consider elements h, g of GroupHomography3, and invertible squ-
are matrices N, N1g over Ry of dimension 3. Suppose h = the homography
of N and g = the homography of Nip and Nig = N~. Then g = h~'. The
theorem is a consequence of (20).

3. MAIN RESULTS

The functors: -, -, ‘, and - yielding points of

the projective space over £3 are defined by terms
(Def. 5)  the direction of [1,0,0],
(Def. 6) the direction of [0, 1, 0],
(Def. 7) the direction of [0,0, 1],
(Def. 8) the direction of [1,1,1],
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respectively. Now we state the proposition:
(22) (i) Dirl00 # Dir010, and
(if) Dirl00 # Dir001, and
(iii) Dir100 # Dir111, and
(iv) Dir010 % Dir001, and
(v) Dir010 # Dirl11, and
(vi) Dir001 # Dirl11.
Let a be a non zero element of Rr. Let us consider V. Note that a - N is
invertible as a square matrix over Rr of dimension 3.
(23) Let us consider a non zero element a of Rp. Then (the homography of
a - N1)(P) = (the homography of Nj)(P). The theorem is a consequence
of (2), (13), and (17).
(24) Suppose P, P, and Ps are not collinear. Then there exists an invertible
square matrix N over Rp of dimension 3 such that
(i) (the homography of N)(P;) = Dir100, and
(ii) (the homography of N)(F2) = Dir010, and
(iii) (the homography of N)(Ps;) = Dir001.
Proor: Consider u; being an element of é’% such that uq is not zero and
P, = the direction of u;. Consider us being an element of 5% such that
u9 is not zero and P» = the direction of us. Consider ug being an element
of 5% such that us is not zero and P3; = the direction of u3. Reconsider
p3 = u1, q1 = u2, "o = ug as a finite sequence of elements of Rr. Consider
N being a square matrix over Rg of dimension 3 such that N is invertible
and N - p3 = F2M(e;) and N - ¢1 = F2M(e2) and N - ro = F2M(e3).
(The homography of N)(P;) = Dir100 by [8, (22), (1)], [6, (22)], [5} (75)].
(The homography of N)(P,) = Dir010 by [8, (22), (1)], [6, (22)], [5} (75)].
(The homography of N)(Ps) = Dir001 by [8, (22), (1)], [6, (22)], [5, (75)].
O
(25) Let us consider non zero elements a, b, ¢ of Rp. Suppose N = ((a, 0, 0),
(0,0,0),(0,0,c)). Then
(i) (the homography of N)(Dir100) = Dir100, and
(ii) (the homography of N)(Dir010) = Dir010, and
(iii) (the homography of N)(Dir001) = Dir001.
PRrROOF: (The homography of N)(Dir100) = Dir100 by (12), [8, (22), (1)],
[7, (8), (2)]. (The homography of N)(Dir010) = Dir010 by (12), [8, (22),
(D], [T, (8), (2)]. (The homography of N)(Dir001) = Dir001 by (12), [8
(

22), (D], [7, (8), (2)]. O

d
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Let us consider a point P of the projective space over 5%. Now we state the
propositions:
(26) There exist elements a, b, ¢ of Ry such that
(i) P = the direction of [a, b, ¢], and
(ii) a#0o0r b# 0 or ¢ # 0.

(27) Suppose Dir100, Dir010 and P are not collinear and Dir100, Dir001 and
P are not collinear and Dir010, Dir001 and P are not collinear. Then there
exist non zero elements a, b, ¢ of Rp such that P = the direction of [a, b,
¢]. The theorem is a consequence of (26).

(28) Let us consider non zero elements a, b, ¢, i1, i2, i3 of Rp, a point P of

the projective space over 5%, and an invertible square matrix N over Ry of
dimension 3. Suppose P = the direction of [a, b, c| and i1 = % and 79 = %
and i3 = L and N = ({i1,0,0), (0,42, 0), (0,0, i3)). Then (the homography
of N)(P) = the direction of [1,1,1].
PrOOF: Consider u, v being elements of £3, uy being a finite sequence
of elements of Ry, p being a finite sequence of elements of R! such that
P = the direction of u and u is not zero and u = u4 and p = N-uyq and v =
M2F(p) and v is not zero and (the homography of N)(P) = the direction
of v. [a, b, c] is not zero by [7, (4)], [I, (78)]. Consider d being a real number
such that d # 0 and u = d - [a, b, c|. Reconsider z =0, d; =d-a, do = d-b,
d3 = d - c as an element of Ry. v = [i1 - d1,i2 - da, i3 - d3] by [1}, (45)]. O

(29) Let us consider a point P of the projective space over S%. Suppose
Dir100, Dir010 and P are not collinear and Dir100, Dir001 and P are
not collinear and Dir010, Dir001 and P are not collinear. Then there exist
non zero elements a, b, ¢ of Rp such that for every invertible square matrix
N over Rp of dimension 3 such that N = ({(a, 0, 0), (0,b,0), (0,0, c)) holds
(the homography of N)(P) = Dirl1l. The theorem is a consequence of
(27) and (28).

(30) Let us consider points Py, P2, P3, Py of the projective space over &3.
Suppose P;, P, and P35 are not collinear and P;, P> and Py are not collinear
and P, P3 and P4 are not collinear and P», P3 and Py are not collinear.
Then there exists an invertible square matrix N over Ry of dimension 3
such that

(i) (the homography of N)(P;) = Dir100, and
(ii) (the homography of N)(FP2) = Dir010, and
(iii) (the homography of N)(P3) = Dir001, and
(iv) (the homography of N)(P;) = Dirl11.

The theorem is a consequence of (24), (29), (9), (25), and (13).
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(31) Let us consider points Py, Py, P3, Py, Q1, Q2, Q3, Q4 of the projective

1]
2]

(10]

(11]

space over £3. Suppose Py, P» and Py are not collinear and Pj, P, and Py
are not collinear and Py, P3 and P, are not collinear and P, P3 and Py
are not collinear and @1, @2 and Q3 are not collinear and @1, @2 and Q4
are not collinear and @1, Q3 and Q4 are not collinear and ()2, (Y3 and Q4
are not collinear. Then there exists an invertible square matrix N over Rp
of dimension 3 such that

(i) (the homography of N)(P;) = @1, and
(ii) (the homography of N)(P2) = Q2, and
(iii) (the homography of N)(Ps) = Q3, and
(iv) (the homography of N)(Py) = Q4.

f

The theorem is a consequence of (30), (15), and (13).
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Summary. We introduce ordered rings and fields following Artin-Schreier’s
approach using positive cones. We show that such orderings coincide with total
order relations and give examples of ordered (and non ordered) rings and fields.
In particular we show that polynomial rings can be ordered in (at least) two dif-
ferent ways [8, [5] [4, [9]. This is the continuation of the development of algebraic
hierarchy in Mizar [2 [3].
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1. ON ORDER RELATIONS

Let X be aset and R be a binary relation on X. We say that _I

if and only if
(Def. 1) R is reflexive in X.

We say that g if and only if

(Def. 2) R is strongly connected in X.

One can check that there exists a binary relation on X which is strongly
reflexive and there exists a binary relation on X which is totally connected and
every binary relation on X which is strongly reflexive is also reflexive and every
binary relation on X which is totally connected is also strongly connected.

Let X be a non empty set. One can check that every binary relation on X
which is strongly reflexive is also non empty and every binary relation on X
which is totally connected is also non empty.

Now we state the propositions:
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(1) Let us consider a non empty set X, a strongly reflexive binary relation
R on X, and an element x of X. Then x <p x.

(2) Let us consider a non empty set X, an antisymmetric binary relation R
on X, and elements z, y of X. If x <z y and y <g z, then x = y.

(3) Let us consider a non empty set X, a transitive binary relation R on X,
and elements z, y, z of X. If z <g y and y <y z, then =z <y z.

(4) Let us consider a non empty set X, a totally connected binary relation
R on X, and elements x, y of X. Then
(i) 2 <gpy, or
(i) y <g x.

Let L be an additive loop structure and R be a binary relation on L. We

(Def. 3) for every elements a, b, ¢ of L such that a <g b holds a + ¢ <r b+ c.

Let L be a multiplicative loop with zero structure. We say that ;

if and only if

(Def. 4) for every elements a, b, ¢ of L such that a <r b and 07 <p ¢ holds
a-c<pb-c

2. ON MINIMAL NON ZERO INDICES OF POLYNOMIALS

Now we state the proposition:

(5) Let us consider a degenerated ring R, and a polynomial p over R. Then
{i, where i is a natural number : p(i) # Og} = 0.

Let us consider a ring R and a polynomial p over R. Now we state the
propositions:
(6) p=0.Rif and only if {i, where i is a natural number : p(i) # Or} = 0.
(7) min*{i, where 7 is a natural number : (p+0. R)(i) # Og} = min*{i, where
i is a natural number : p(i) # Or}. The theorem is a consequence of (6).
Now we state the proposition:

(8) Let us consider a non degenerated ring R, and a polynomial p over R.
Then min*{i, where ¢ is a natural number : (—p)(i) # Or} = min*{i, where
i is a natural number : p(i) # Ogr}.

Let us consider a non degenerated ring R and non zero polynomials p, g over
R. Now we state the propositions:
(9) Suppose min*{i, where 7 is a natural number : p(i) # Og} > min*{i, where
i is a natural number : ¢(i) # Ogr}. Then min*{i, where i is a natural
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number : (p + ¢)(i) # Og} = min*{i, where ¢ is a natural number : ¢(i) #
Or}.

(10) Suppose p + ¢ # 0. R and min*{i, where ¢ is a natural number : p(i) #
Or} = min*{i, where i is a natural number : ¢(i) # Or}. Then min*{i, where
i is a natural number : (p + ¢)(i) # Or} > min*{i, where 7 is a natural
number : p(i) # Og}. The theorem is a consequence of (6).

(11) Suppose p(min*{i, where i is a natural number : p(i) # Or})+¢(min*{i, where
i is a natural number : ¢(i) # Or}) # Or. Then min*{i, where 7 is a natural
number : (p + ¢)(i) # Or} = min(min*{7, where 7 is a natural number :

p(i) # Or}, min*{i, where ¢ is a natural number : ¢(i) # Or}). The the-
orem is a consequence of (9), (6), and (10).

(12) Suppose p * ¢ # 0. R. Then min*{i, where i is a natural number : (p *
q)(i) # O} > min*{i, where i is a natural number : p(i) # Og }+min*{i, where
i is a natural number : ¢(i) # Ogr}.

Now we state the proposition:

(13) Let us consider an integral domain R, and non zero polynomials p, ¢
over R. Then min*{i, where i is a natural number : (p % ¢)(i) # Or} =
min*{7, where ¢ is a natural number : p(i) # Or} + min*{i, where i is
a natural number : ¢(i) # Or}. The theorem is a consequence of (12).

3. PRELIMINARIES

Let L be a non empty multiplicative loop structure and S be a subset of L.
We say that ’S is closed under multiplication | if and only if

(Def. 5) for every elements s1, s of L such that si, s € S holds s1 - s9 € S.

Let L be a non empty additive loop structure. The functor —S yielding
a subset of L is defined by the term

(Def. 6) {—s, where s is an element of L : s € S}.

Let L be an add-associative, right zeroed, right complementable, non empty
additive loop structure. One can check that ——S reduces to S.
Now we state the proposition:

(14) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, a subset S of L, and an element a
of L. Then a € §' if and only if —a € —S.

Let us consider an add-associative, right zeroed, right complementable, non
empty additive loop structure L and subsets Si, So of L. Now we state the
propositions:

(15) -5 NSy = (—Sl) N (—52).
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(16) —(S1US2) =—=S1U—5,.
Let L be a non empty additive loop structure and S be a subset of L. We
say that _ if and only if
(Def. 7) SN (=S)={0.}.
We say that S is spanning if and only if
(Def. 8) SU—S = the carrier of L.

4. SQUARES AND SUMS OF SQUARES

Let R be a ring and a be an element of R. We introduce the notation a is
a square as a synonym of a is a square.

Let us note that Op is a square and 1 is a square and there exists an element
of R which is a square.

Let a be an element of R. We say that _ if and only if

(Def. 9) there exists a finite sequence f of elements of R such that ) f = a and
for every natural number ¢ such that ¢ € dom f there exists an element a
of R such that f(i) = a2.

Let us note that every element of R which is a square is also a sum of squares.
Let R be a commutative ring and a, b be square elements of R. Observe that
a - b is a square.
Let R be a ring and a, b be sum of squares elements of R. One can verify
that a 4 b is a sum of squares.
Let R be a commutative ring. Let us observe that a - b is a sum of squares.
Let R be a ring. The functors: - and ‘ yiel-
ding subsets of R are defined by terms
(Def. 10) {a, where a is an element of R : a is a square},
(Def. 11) {a, where a is an element of R : a is a sum of squares},
respectively. We introduce the notation SQ(R) as a synonym of Squares(R) and
QS(R) as a synonym of QuadraticSums(R).
One can check that SQ(R) is non empty and QS(R) is non empty.
Let S be a subset of R. We say that
(Def. 12) SQ(R) C S.
We say that _ if and only if
(Def. 13) QS(R) C S.
One can check that there exists a subset of R which has all squares and there

exists a subset of R which has all sums of squares and every subset of R which
has all squares is also non empty and every subset of R which has all sums of

if and only if

squares is also non empty and every subset of R which has all sums of squares
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has also all squares and every subset of R which is closed under addition and has
all squares has also all sums of squares and SQ(R) has all squares and QS(R)
has all sums of squares.
Let us consider a ring R. Now we state the propositions:
(17) Og, 1g € SQ(R).
(18) SQ(R) C QS(R).
Let R be a ring. Note that QS(R) is closed under addition.
Let R be a commutative ring. Note that QS(R) is closed under multiplica-
tion.
Let us consider a ring R and a subring S of R. Now we state the propositions:

(19) SQ(S) C SQR).
(20) QS(S) € QS(R).

5. POSITIVE CONES AND ORDERINGS

Let R be aring and S be a subset of R. We say that g

if and only if
(Def. 14) S+ SC Sand S-S C S and SN(—S)={0r} and SQ(R) C S.

We say that g if and only if

(Def. 15) S4+SC Sand S-S C Sand SN(—S) = {0r} and SU—S = the carrier
of R.

One can check that every subset of R which is a prepositive cone is also non
empty and every subset of R which is a positive cone is also non empty and every
subset of R which is a prepositive cone is also closed under addition, closed under
multiplication, and negative-disjoint and has also all squares and every subset
of R which is closed under addition, closed under multiplication, and negative-
disjoint and has all squares is also a prepositive cone and every subset of R which
is a positive cone is also closed under addition, closed under multiplication,
negative-disjoint, and spanning and every subset of R which is closed under
addition, closed under multiplication, negative-disjoint, and spanning is also
a positive cone and every subset of R which is a positive cone is also a prepositive
cone.

Let us consider a field F' and a subset .S of F'. Now we state the propositions:

(21) If S-S C S and SQ(F) C S, then SN (—S) = {0p} iff —1p ¢ S.

(22) Suppose S-S C S and SU—S = the carrier of F. Then SN(—S) = {0}
if and only if —1p ¢ S.
ProOF: SQ(F) C S by [7, (10)]. O

Let R be a ring. We say that ! if and only if

67
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(Def. 16) there exists a subset P of R such that P is a prepositive cone.
We say that R is ordered if and only if
(Def. 17) there exists a subset P of R such that P is a positive cone.

Let us note that there exists a field which is preordered and there exists
a field which is ordered and every ring which is ordered is also preordered.

Let R be a preordered ring. One can verify that there exists a subset of R
which is a prepositive cone.

Let R be an ordered ring. Let us note that there exists a subset of R which
is a positive cone.

Let R be a preordered ring.

’A preordering of R‘ is prepositive cone subset of R. Let R be an ordered
ring.

’ An ordering of R ‘ is positive cone subset of R. Now we state the proposition:

(23) Let us consider a preordered ring R, a preordering P of R, and an element
a of R. Then a? € P.

Let us consider a preordered ring R and a preordering P of R. Now we state
the propositions:

(24) QS(R) C P.
(25) Og, 1g € P. The theorem is a consequence of (24).
Now we state the propositions:

(26) Let us consider a preordered, non degenerated ring R, and a preordering
P of R. Then —1g ¢ P. The theorem is a consequence of (25).

(27) Let us consider a preordered field F', a preordering P of F, and a non
zero element a of F. If a € P, then a~! € P. The theorem is a consequence
of (23).

(28) Let us consider a preordered, non degenerated ring R. Then char(R) = 0.
The theorem is a consequence of (25) and (24).

(29) Let us consider an ordered ring R, and orderings O, P of R. If O C P,
then O = P. The theorem is a consequence of (25).

6. ORDERINGS VS. ORDER RELATIONS

Let R be a preordered ring, P be a preordering of R, and a, b be elements
of R. We say that a <; P if and only if

(Def. 18) b—a € P.
The functor OrdRel P yielding a binary relation on R is defined by the term
(Def. 19) {{(a, b), where a, b are elements of R : a <; P}.
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One can verify that OrdRel P is non empty and OrdRel P is strongly re-
flexive, antisymmetric, and transitive and OrdRel P is respecting addition and
respecting multiplication.

Let R be an ordered ring and O be an ordering of R. One can verify that
OrdRel O is totally connected.

Let R be a preordered ring. Note that there exists a binary relation on R
which is strongly reflexive, antisymmetric, transitive, respecting addition, and
respecting multiplication.

Let R be an ordered ring. Note that there exists a binary relation on R which
is strongly reflexive, antisymmetric, transitive, respecting addition, respecting
multiplication, and totally connected.

Let R be a preordered ring.

is a strongly reflexive, antisymmetric, transitive,
respecting addition, respecting multiplication binary relation on R. Let R be
an ordered ring.

g is a strongly reflexive, antisymmetric, transi-
tive, respecting addition, respecting multiplication, totally connected binary
relation on R. Let R be a ring and @ be a binary relation on R. The functor

yielding a subset of R is defined by the term

(Def. 20) {a, where a is an element of R : Or <g a}.

Let R be a preordered ring and @ be a strongly reflexive binary relation on
R. One can verify that Positives(Q) is non empty.

Let @ be an order relation of R. Observe that Positives(Q) is closed under
addition, closed under multiplication, and negative-disjoint.

Let R be an ordered ring and @ be a total order relation of R. One can
verify that Positives(Q) is spanning.

Now we state the propositions:

(30) Let us consider a preordered ring R, and a preordering P of R. Then
OrdRel P is an order relation of R.

(31) Let us consider an ordered ring R, and an ordering P of R. Then
OrdRel P is a total order relation of R.

(32) Let us consider an ordered ring R, and a total order relation @ of R.
Then Positives(Q) is an ordering of R.

7. SOME ORDERED (AND NON-ORDERED) RINGS

Let R be a preordered ring. Observe that every subring of R is preordered.
Let R be an ordered ring. One can check that every subring of R is ordered.
Now we state the propositions:
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(33) Let us consider a preordered ring R, a preordering P of R, and a subring
S of R. Then P N (the carrier of S) is a preordering of S.

(34) Let us consider an ordered ring R, an ordering O of R, and a subring S
of R. Then O N (the carrier of S) is an ordering of S.
Let us observe that Cp is non preordered.

Let n be a non trivial natural number. Let us observe that 7 /n is non
preordered.

The functor _ yielding a subset of Rp is defined by the term
(Def. 21) {r, where r is an element of R : 0 < r}.
One can verify that Positives(Rp) is closed under addition, closed under
multiplication, negative-disjoint, and spanning and Ry is ordered.
Now we state the propositions:
(35) Positives(Rp) is an ordering of Rp.

(36) Let us consider an ordering O of Rp. Then O = Positives(Rp). The
theorem is a consequence of (24) and (29).

The functor _l yielding a subset of Fg is defined by the term
(Def. 22) {r, where r is an element of Q : 0 < r}.
Observe that Positives(Fg) is closed under addition, closed under multipli-
cation, negative-disjoint, and spanning and Fg is ordered.
Now we state the propositions:
(37) Positives(Fg) is an ordering of Fg.
(38) Let us consider an ordering O of Fg. Then O = Positives(Fg).

PROOF: Define P[natural number] = $; € O. 1gy, Op, € O. P[0]. For
every natural number k, P[k] from [I, Sch. 2]. Positives(Fg) C O by [6),

(D], (25), [0, (3)], (27). O

The functor ! yielding a subset of Z® is defined by the term

(Def. 23) {i, where ¢ is an element of Z : 0 < i}.
Note that Positives(Z?) is closed under addition, closed under multiplica-
tion, negative-disjoint, and spanning and ZR is ordered.
Now we state the propositions:
(39) Positives(ZR) is an ordering of ZE.
(40) Let us consider an ordering O of ZE. Then O = Positives(Z?).

PROOF: Define Plnatural number] = $; € O. 1zr, Oz € O. P[0]. For
every natural number k, P[k| from [I], Sch. 2]. O
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8. ORDERED POLYNOMIAL RINGS

Let R be a preordered ring and P be a preordering of R. The functor
PositPoly(P) | yielding a subset of PolyRing(R) is defined by the term

(Def. 24) {p, where p is a polynomial over R : LCp € P}.

Let R be a preordered, non degenerated ring. Note that PositPoly(P) is
closed under addition and negative-disjoint.

Let R be a preordered integral domain. Let us observe that PositPoly(P) is
closed under multiplication and has all sums of squares.

Let R be an ordered ring and O be an ordering of R. Let us observe that
PositPoly(O) is spanning.

Let R be a preordered integral domain. One can verify that PolyRing(R) is
preordered.

Let R be an ordered integral domain. Note that PolyRing(R) is ordered.

Now we state the propositions:

(41) Let us consider a preordered integral domain R, and a preordering P of
R. Then PositPoly(P) is a preordering of PolyRing(R).

(42) Let us consider an ordered integral domain R, and an ordering O of R.
Then PositPoly(O) is an ordering of PolyRing(R).

Let R be a preordered ring and P be a preordering of R. The functor
’LowPositPoly(P) ‘ yielding a subset of PolyRing(R) is defined by the term

(Def. 25) {p, where p is a polynomial over R : p(min*{i, where i is a natural
number : p(i) # Or}) € P}.

Let R be a preordered, non degenerated ring. Observe that LowPositPoly(P)
is closed under addition and negative-disjoint.

Let R be a preordered integral domain. One can verify that LowPositPoly(P)
is closed under multiplication and has all sums of squares.

Let R be an ordered, non degenerated ring and O be an ordering of R. One
can check that LowPositPoly(O) is spanning.

Now we state the propositions:

(43) Let us consider a preordered integral domain R, and a preordering P of
R. Then LowPositPoly(P) is a preordering of PolyRing(R).

(44) Let us consider an ordered integral domain R, and an ordering O of R.
Then LowPositPoly(O) is an ordering of PolyRing(R).

(45) Let us consider a preordered, non degenerated ring R, and a preordering
P of R. Then PositPoly(P) # LowPositPoly(P). The theorem is a conse-
quence of (25) and (26).
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Now we state the propositions:

(1) Let us consider a ring K, a left module V over K, a function L from
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(2) Let us consider a ring K, a left module V' over K, and a finite subset
A of V. Then A is linearly independent if and only if for every linear
combination L of A such that there exists a finite sequence F' of elements of
the carrier of V such that F'is one-to-one and rng F' = A and > (L-F) = Oy
holds the support of L = (.

PRrROOF: For every linear combination L of A such that Y~ L = Oy holds
the support of L = () by [22], (13)], [26, (13)], [24, (41)]. O

(3) Let us consider a ring K, a left module V over K, and a finite sequence

b of elements of V. Suppose b is one-to-one. Then rngb is linearly inde-
pendent if and only if for every finite sequence r of elements of K and
for every finite sequence r; of elements of V' such that lenr = lenb and
lenr; = lenb and for every natural number ¢ such that ¢ € dom; holds
r1(i) =r; - b; and Y r; = Oy holds r = Seglenr — 0.
PRrOOF: For every linear combination L of rngb such that there exists
a finite sequence F' of elements of the carrier of V such that F' is one-to-
one and rng F' = rngb and Y (L - F') = Oy holds the support of L = () by
29, (27)], [23, (29)], [6, (13)], (1). O

(4) Let us consider a ring K, a left module V' over K, and a finite subset
A of V. Then A is linearly independent if and only if there exists a finite
sequence b of elements of V' such that b is one-to-one and rngb = A and
for every finite sequence r of elements of K and for every finite sequence
r1 of elements of V' such that lenr = lenb and lenr; = lenb and for every
natural number ¢ such that i € domr; holds r1(i) = r; - b; and " r1 = Oy
holds r = Seglenr — 0. The theorem is a consequence of (3).

Let V' be a non trivial, free Z-module. Let us note that every basis of V is
non empty.

Let I; be a Z-lattice. We say that if and only if

(Def. 1) for every vectors v, u of I, (v,u) € Q.

Let us note that there exists a Z-lattice which is non trivial, rational, and
positive definite.

Let L be a rational Z-lattice and v, u be vectors of L. Note that (v, u)is
rational and every integral Z-lattice is rational.

Let L be a Z-lattice. The functor ‘ ScProductEM(L) ‘ yielding a function from
(the carrier of Embedding(L)) x (the carrier of Embedding(L)) into the carrier
of Rp is defined by

(Def. 2) for every vectors v, u of L and for every vectors vy, u; of Embedding(L)
such that v; = (MorphsZQ(L))(v) and u; = (MorphsZQ(L))(u) holds
it(vy,uy) = (v, u).

Now we state the proposition:
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(5) Let us consider a Z-lattice L. Then

(i) for every vector x of Embedding(L) such that for every vector y of
Embedding(L), (ScProductEM(L))(x,y) = 0 holds * = Ogmpbedding(L)>
and

(ii) for every vectors x, y of Embedding(L), (ScProductEM(L))(z,y) =
(ScProductEM(L))(y, z), and

(iii) for every vectors z, y, z of Embedding(L) and for every element
a of Z®, (ScProductEM(L))(z + y,2) = (ScProductEM(L))(x, z) +
(ScProductEM(L))(y, z) and (ScProductEM(L))(a-z,y) = a-(ScProductEM (L]

PROOF: Set Z = Embedding(L). Set f = ScProductEM(L). For every
vector x of Z such that for every vector y of Z, f(x,y) = 0 holds =z =
OEmbedding(z) by [10, (22)], [7, (4)]. For every vectors z, y of Z, f(z,y) =
f(y,z) by [10, (22)]. For every vectors z, y, z of Z and for every element
aof Z%, f(z +y,2) = f(x,2) + f(y,2) and f(a-2,y) = a- f(z,y) by [10,
(22), (19)]. O
Let L be a Z-lattice. The functor ‘ScProductDM(L)‘ yielding a function
from (the carrier of DivisibleMod(L)) x (the carrier of DivisibleMod(L)) into
the carrier of Ry is defined by

(Def. 3) for every vectors vy, uy of DivisibleMod(L) and for every vectors v, u of
Embedding(L) and for every elements a, b of Z® and for every elements a1,
b1 of R such that a =a; and b=>b; and a; #0and by ZOand v =a - vy
and u = b - up holds it(vy,u1) = a; ! - b1 (ScProductEM(L)) (v, u).

Let us consider a Z-lattice L. Now we state the propositions:

(6) (i) for every vector x of DivisibleMod(L) such that for every vec-
tor y of DivisibleMod(L), (ScProductDM(L))(z,y) = 0 holds = =
OpivisibleMod(Z), and

(ii) for every vectors z, y of DivisibleMod(L), (ScProductDM(L))(z,y) =
(ScProductDM(L))(y, =), and

(iii) for every vectors z, y, z of DivisibleMod(L) and for every element
a of Z®, (ScProductDM(L))(z + v, z) = (ScProductDM(L))(z, ) +
(ScProductDM(L))(y, z) and (ScProductDM(L))(a-x,y) = a-(ScProductDM(L

PRrROOF: Set D = DivisibleMod(L). Set f = ScProductDM(L). For every

vector x of D such that for every vector y of D, f(z,y) = 0 holds z = Op by

[10, (29)], [11, (24)], [15, (25)], (5). For every vectors z, y of D, f(z,y) =

f(y,z) by [10, (29)], (5). For every vectors z, y, z of D and for every

element i of Z®, f(x 4+ vy,2) = f(z,2) + f(y,2) and f(i-z,y) =i - f(z,y)

by [10 (29)], [11}, (29), (28)], [18, (11)]. O
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(7)  ScProductEM(L) = ScProductDM(L) [ rng MorphsZQ(L).
PRrROOF: Reconsider s = ScProductDM(L) [ rng MorphsZQ(L) as a func-
tion from rng MorphsZQ(L) x rng MorphsZQ(L) into the carrier of Rp.
For every object z such that x € rng MorphsZQ(L) x rng MorphsZQ(L)
holds (ScProductEM(L))(z) = s(x) by [11, (24)], [6, (49)], [8, (87)]. O
Now we state the propositions:

(8) Let us consider a Z-lattice L, vectors v, vy of DivisibleMod(L), and
vectors uj, ug of Embedding(L). Suppose v; = u; and vy = wuy. Then
(ScProductEM(L))(u1, u2) = (ScProductDM(L))(v1, v2).

(9) Let us consider a Z-lattice L, an element r of Fg, and vectors v, u of
Embedding(r, L). Then (ScProductDM(L) [ (the carrier of Embedding(r, L)))(v,u)
(ScProductDM(L))(v, ).

(10) Let us consider a Z-lattice L, a non empty set A, an element z of A, a bi-
nary operation a; on A, a function m; from (the carrier of Z%®) x A into
A, and a function s; from A x A into the carrier of Rp. Suppose A is a li-
nearly closed subset of DivisibleMod(L) and z = OpjyisibleMod(L) and aj =
(the addition of DivisibleMod(L)) | A and m; = (the left multiplication
of DivisibleMod(L))[((the carrier of Z®) x A). Then (A4, a1, z,my,s1) is
a submodule of DivisibleMod(L).

(11) Let us consider a Z-lattice L, and vectors v, u of DivisibleMod(L). Then
(i) (ScProductDM(L))(—v,u) = —(ScProductDM(L))(v, u), and
(ii) (ScProductDM(L))(u, —v) = —(ScProductDM(L))(u,v).

The theorem is a consequence of (6).

(12) Let us consider a Z-lattice L, and vectors v, u, w of DivisibleMod(L).
Then (ScProductDM(L)) (v, u+w) = (ScProductDM(L))(v, u)+(ScProduct DM (L))
The theorem is a consequence of (6).
(13) Let us consider a Z-lattice L, vectors v, u of DivisibleMod (L), and an ele-
ment a of Z®. Then (ScProductDM(L))(v, a-u) = a-(ScProductDM(L)) (v, u).
The theorem is a consequence of (6).

(14) Let us consider a Z-lattice L, and a vector v of DivisibleMod(L). Then
(i) (ScProductDM(L))(OpivisibleMod(z), v) = 0, and
(11) (ScProductDM(L))(v, ODivisibleMod(L)) =0.
The theorem is a consequence of (6) and (11).

(15) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a basis
I of Embedding(L). Suppose for every vector u of DivisibleMod(L) such
that u € I holds (ScProductDM(L))(v,u) = 0. Let us consider a vector u
of DivisibleMod(L). Then (ScProductDM(L))(v,u) = 0.
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PROOF: Define P[natural number] = for every finite subset I of Embedding(L)
such that I = $; and [ is linearly independent and for every vector u
of DivisibleMod(L) such that u € I holds (ScProductDM(L))(v,u) =
0 for every vector w of DivisibleMod(L) such that w € Lin(I) holds
(ScProductDM(L))(v,w) = 0. P[0] by [12Z, (67), (66)], (14). For every
natural number n such that P[n] holds P[n + 1] by [28, (41)], [2, (44)],
[T, (30)], [8, (31)]. For every natural number n, P[n| from [3, Sch. 2]. For
every vector w of DivisibleMod (L), (ScProductDM(L))(v,w) = 0 by [10,
(29)], (6). O

(16) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a basis
I of Embedding(L). Suppose for every vector u of DivisibleMod(L) such
that u € I holds (ScProductDM(L))(v,u) = 0. Then v = OpjyisibleMod(L)-
The theorem is a consequence of (15) and (6).

(17) Let us consider a ring R, a left module V' over R, a vector v of V, and
an object u. Suppose u € Lin({v}). Then there exists an element ¢ of R
such that u =1 - v.

(18) Let us consider a ring R, a left module V' over R, and a vector v of V.
Then v € Lin({v}).

(19) Let us consider a ring R, a left module V over R, a vector v of V, and
an element ¢ of R. Then i-v € Lin({v}).

2. EMBEDDING OF LATTICE

Let L be a Z-lattice. The functor |EMLat(L)| yielding a strict Z-lattice is
defined by

(Def. 4) the carrier of it = rng MorphsZQ(L) and the zero of it = zeroCoset(L)
and the addition of it = addCoset(L) [ rng MorphsZQ(L) and the left
multiplication of it = ImultCoset(L)[((the carrier of Z*)xrng MorphsZQ(L))
and the scalar product of it = ScProductEM(L).

Let r be an element of Fg. The functor M yielding a strict Z-
lattice is defined by

(Def. 5) the carrier of it = r-rng MorphsZQ(L) and the zero of it = zeroCoset (L)
and the addition of it = addCoset(L) [ (r-rng MorphsZQ(L)) and the left
multiplication of it = ImultCoset(L)[((the carrier of Z®)x (r-rng MorphsZQ(L)))
and the scalar product of it = ScProductDM(L) | (7 - rng MorphsZQ(L)).

Let L be a non trivial Z-lattice. One can verify that EMLat(L) is non trivial.
Let  be a non zero element of Fg. One can verify that EMLat(r, L) is non
trivial.
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Let L be an integral Z-lattice. Observe that EMLat(L) is integral.
Now we state the propositions:

(20) Let us consider a Z-lattice L. Then EMLat(L) is a submodule of DivisibleMod(L).

(21) Let us consider a Z-lattice L, and an element r of Fg. Then EMLat(r, L)
is a submodule of DivisibleMod(L).

(22) Let us consider a Z-lattice L, a non zero element r of Fg, elements m,
n of ZR, elements m, ny of Z, and a vector v of EMLat(r, L). Suppose
m=m and n = ny and r = nﬂl and n1 # 0. Then there exists a vector
x of EMLat(L) such that n-v = m - z. The theorem is a consequence of
(20) and (21).

(23) Let us consider a Z-lattice L, an element r of Fg, vectors v, u of EMLat(r, L),
and vectors x, y of EMLat(L). If v = z and w = y, then (v,u) = (x,y).
The theorem is a consequence of (9) and (7).

(24) Let us consider an integral Z-lattice L, a non zero element r of Fg,
a rational number a, and vectors v, u of EMLat(r, L). Suppose r = a.
Then a=!-a~!- (v,u) € Z. The theorem is a consequence of (22) and (23).

Let L be a positive definite Z-lattice. One can verify that EMLat(L) is
positive definite.

Let 7 be a non zero element of Fg. Let us observe that EMLat(r, L) is positive
definite.

Now we state the proposition:

(25) Let us consider a positive definite Z-lattice L, and a vector v of DivisibleMod(L).
Then (ScProductDM(L))(v,v) = 0 if and only if v = OpjyisibleMod(r)- The
theorem is a consequence of (6) and (7).

Let us consider a positive definite Z-lattice L and a non empty structure of
Z-lattice Z over ZR. Now we state the propositions:

(26) Suppose Z is a submodule of DivisibleMod(L) and the scalar product
of Z = ScProductDM(L) | (the carrier of Z). Then Z is Z-lattice-like.
PROOF: For every vectors x, y of Z, (the scalar product of Z)(z,y) =
(ScProductDM(L))(z,y) by [6l (49)]. Z is Z-lattice-like by [11], (25), (26)],
(25), (6). O

(27) Suppose Z is a finitely generated submodule of DivisibleMod(L) and
the scalar product of Z = ScProductDM(L) | (the carrier of Z). Then Z
is a Z-lattice.

Now we state the propositions:

(28) Let us consider a Z-lattice L. Then the vector space structure of EMLat(L) =
Embedding(L).
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(29) Let us consider Z-modules L, E. Suppose the vector space structure of
L = the vector space structure of . Then L is a submodule of E.

(30) Let us consider Z-modules E, L, a subset I of L, a subset J of E, and
a linear combination K of J. Suppose I = J and the vector space structure
of L = the vector space structure of E. Then K is a linear combination of
1.

Let us consider Z-modules E, L, a linear combination K of F, and a linear
combination H of L. Now we state the propositions:

(31) Suppose K = H and the vector space structure of L = the vector space
structure of E. Then the support of K = the support of H.

(32) Suppose K = H and the vector space structure of L = the vector space
structure of E. Then Y}~ K =Y H. The theorem is a consequence of (29).

Let us consider Z-modules L, F, a subset I of L, and a subset J of E. Now
we state the propositions:

(33) Suppose the vector space structure of L = the vector space structure of
E and I = J. Then [ is linearly independent if and only if J is linearly
independent. The theorem is a consequence of (30) and (32).

(34) Suppose the vector space structure of L = the vector space structure
of E and I = J. Then Lin(/) = Lin(J). The theorem is a consequence of
(29).

Now we state the propositions:

(35) Let us consider free Z-modules L, E, a subset I of L, and a subset J of
E. Suppose the vector space structure of L. = the vector space structure
of ¥ and I = J. Then [ is a basis of L if and only if J is a basis of E. The
theorem is a consequence of (33) and (34).

(36) Let us consider finite rank, free Z-modules L, E. Suppose the vector
space structure of L = the vector space structure of E. Then rank L =
rank F. The theorem is a consequence of (35).

Let us consider a Z-lattice L and a subset I of L. Now we state the propo-
sitions:

(37) Iisabasisof L if and only if (MorphsZQ(L))°I is a basis of Embedding(L).

(38) I is a basis of L if and only if (MorphsZQ(L))°I is a basis of EMLat(L).
The theorem is a consequence of (37), (28), and (35).

Now we state the propositions:

(39) Let us consider a Z-lattice L, and a finite sequence b of elements of L.
Then b is an ordered basis of L if and only if MorphsZQ(L)-b is an ordered
basis of Embedding(L). The theorem is a consequence of (37).
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(40) Let us consider a Z-lattice L, a finite rank, free Z-module F, a finite
sequence I of elements of L, and a finite sequence J of elements of FE.
Suppose the vector space structure of L = the vector space structure of £
and I = J. Then I is an ordered basis of L if and only if J is an ordered
basis of E. The theorem is a consequence of (35).

(41) Let us consider a Z-lattice L, and a finite sequence b of elements of L.
Then b is an ordered basis of L if and only if MorphsZQ(L)-b is an ordered
basis of EMLat(L). The theorem is a consequence of (39), (28), and (40).

(42) Let us consider a Z-lattice L. Then rank L = rank EMLat(L). The the-
orem is a consequence of (28) and (36).

(43) Let us consider a Z-lattice L, and an object . Then x is a vector of
EMLat(L) if and only if z is a vector of Embedding(L). The theorem is
a consequence of (28).

Let L be a rational Z-lattice and v, u be vectors of EMLat(L). One can
check that (ScProductEM(L))(v,u) is rational.

Let v, u be vectors of DivisibleMod(L). One can verify that (ScProductDM(L))(v, u)
is rational.

3. PROPERTIES OF GRAM MATRIX

Let V be a vector space structure over Z® and f be an R-form of V and V.

We say that f is symmetric if and only if
(Def. 6) for every vectors v, w of V, f(v,w) = f(w,v).

Let V be a non empty vector space structure over Z. Let us observe that
NulFrForm(V, V) is symmetric and there exists an R-form of V' and V which is
symmetric and there exists an R-bilinear form of V' and V' which is symmetric.

Let L be a Z-lattice. Let us observe that InnerProduct L is symmetric.

Let V' be a finite rank, free Z-module, f be a symmetric R-bilinear form of
V and V, and b be an ordered basis of V. Let us note that GramMatrix(f,b) is
symmetric.

Now we state the propositions:

(44) Let us consider a rational Z-lattice L, and vectors v, u of DivisibleMod(L).
Then (ScProductDM(L))(v,u) € Fg.

(45) Let us consider a rational Z-lattice L, and an ordered basis b of L. Then
GramMatrix(b) is a square matrix over Fg of dimension dim(L).
PROOF: For every natural numbers ¢, j such that (i, j) € the indices of
GramMatrix(b) holds (GramMatrix(b)); ; € the carrier of Fg by [8 (87)].
O
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(46) Let us consider a finite sequence F' of elements of Rp, and a finite sequ-
ence G of elements of Fg. If F' = G, then ) F =3 G.
PROOF: Define P[natural number] = for every finite sequence F' of ele-
ments of Ry for every finite sequence G of elements of Fg such that
len F = $; and F = G holds >_ F = > G. P[0] by [24, (43)]. For eve-
ry natural number n such that P[n] holds P[n+ 1] by [4, (4)], [6, (3)], [4,
(59)], [3, (11)]. For every natural number n, P[n| from [3| Sch. 2]. O

(47) Let us consider a natural number 4, an element j of Ry, and an element
k of Fg. Suppose j = k. Then powerg (—1gy, @) j = powerg, (—1gg, 1) - k.
PROOF: Define P[natural number| = powerg, (—1g, $1)-j = powerg, (—1ry, $1)-
k. P[0]. For every natural number n such that P[n] holds P[n + 1]. For
every natural number n, P[n] from [3, Sch. 2]. O

(48) Let us consider a finite sequence F' of elements of Rp. Suppose for every
natural number i such that ¢ € dom F holds F(i) € Fg. Then ) F € Fg.
PROOF: Define P[natural number] = for every finite sequence F of ele-
ments of Rr such that len F' = $; and for every natural number 7 such
that ¢ € dom F" holds F(i) € Fg holds >° F € Fg. P[0] by [24], (43)]. For
every natural number n such that P[n| holds P[n+ 1] by [4, (4)], [6, (3)],
[, (59)], [3, (11)]. For every natural number n, P[n| from [3, Sch. 2]. O

(49) Let us consider a natural number i. Then powerg, (—1gy,7) € Fg. The
theorem is a consequence of (47).

(50) Let us consider natural numbers n, i, j, k, m, a square matrix M
over Ry of dimension n + 1, and a square matrix L over Fg of dimen-
sion n + 1. Suppose 0 < n and M = L and (i, j) € the indices of M
and (k, m) € the indices of Delete(M,1,j). Then (Delete(M,,7))km =
(Delete(L, %, j))k,m.-

(51) Let us consider natural numbers n, i, j, k, m, and a square matrix M
over Rp of dimension n + 1. Suppose 0 < n and M is a square matrix
over Fg of dimension n + 1 and (i, j) € the indices of M and (k, m) €
the indices of Delete(M,i,j). Then (Delete(M,1,j))km is an element of
Fg. The theorem is a consequence of (50).

(52) Let us consider natural numbers n, i, j, a square matrix M over Ry of
dimension n+1, and a square matrix L over Fg of dimension n+1. Suppose
0 <nand M = L and (i, j) € the indices of M. Then Delete(M, 1, j) =
Delete(L, i, 7). The theorem is a consequence of (50).

(53) Let us consider natural numbers n, i, j, and a square matrix M over
Ry of dimension n + 1. Suppose 0 < n and M is a square matrix over Fg
of dimension n + 1 and (7, j) € the indices of M. Then Delete(M, i, j) is
a square matrix over Fg of dimension n. The theorem is a consequence of
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(52).

(54) Let us consider a natural number n, a square matrix M over Rp of

dimension n, and a square matrix H over Fg of dimension n. If M = H,
then Det M = Det H.
PROOF: Define P[natural number] = for every square matrix M over Rp
of dimension $; for every square matrix H over Fg of dimension $; such
that M = H holds Det M = Det H. P[0] by [21}, (41)]. For every natural
number n such that P[n] holds P[n + 1] by [3| (14)], 20, (27)], [8, (87)],
[13, (1)]. For every natural number n, P[n] from [3, Sch. 2]. O

(55) Let us consider a natural number n, and a square matrix M over Ry of
dimension n. Suppose M is a square matrix over Fg of dimension n. Then
Det M € ]F@.
PROOF: Define P[natural number| = for every square matrix M over Rp
of dimension $; such that M is a square matrix over Fg of dimension $;
holds Det M € Fq. P[0] by [21, (41)]. For every natural number n such
that P[n] holds P[n + 1] by [3, (14)], [20, (27)], [8 (87)], [13} (41)]. For
every natural number n, P[n] from [3, Sch. 2]. O

(56) Let us consider natural numbers n, ¢, j, and a square matrix M over Rp
of dimension n + 1. Suppose M is a square matrix over Fg of dimension
n+ 1 and (i, j) € the indices of M. Then Cofactor(M, 1, j) € Fo.
PROOF: Reconsider D; = Delete(M,,j) as a square matrix over Ry of
dimension n. Det D1 € Fq by (53), (55), [21} (41)]. powerg (—1rg,i+j) €
Fo. O

(57) Let us consider a rational Z-lattice L, and an ordered basis b of L. Then
Det GramMatrix(b) € Fg. The theorem is a consequence of (45) and (55).

(58) Let us consider a positive definite Z-lattice L, a basis I of L, and vectors
v, w of L. Suppose for every vector u of L such that u € I holds (u,v) =
(u, w). Let us consider a vector u of L. Then (u,v) = (u, w).
PRrROOF: Define P[natural number| = for every vector u of L for every
finite subset J of L such that J C I and J = $; and u € Lin(J) holds
(u,v) = (u,w). P[0] by [27, (9)], 25, (35)], [9, (12)]. For every natural
number n such that P[n] holds P[n + 1] by [28] (41)], [2, (44)], [1, (30)],
[27, (7)]. For every natural number n, P[n] from [3, Sch. 2]. O

(59) Let us consider a positive definite Z-lattice L, an ordered basis b of L,
and vectors v, w of L. Suppose for every natural number n such that
n € domb holds (b, v) = (bn,w). Then v = w.
PROOF: Reconsider I = rngb as a basis of L. For every vector u of L such
that u € I holds (u,v) = (u,w) by [5, (10)]. (v —w,v) = (v —w,w). O

(60) Let us consider a natural number n, and a square matrix M over Fg of
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dimension n. Suppose M is without repeated line. Then Det M # Op,, if
and only if lines(M) is linearly independent.

(61) Let us consider a positive definite Z-lattice L, a basis I of L, and vectors
v, w of L. Suppose for every vector u of L such that u € I holds (v,u) =
(w,u). Let us consider a vector u of L. Then (v, u) = (w,u). The theorem
is a consequence of (58).

(62) Let us consider a positive definite Z-lattice L, an ordered basis b of L, and
vectors v, w of L. Suppose for every natural number n such that n € dom b
holds (v, b,) = (w, b,). Then v = w. The theorem is a consequence of (59).

Let us consider a positive definite Z-lattice L, an ordered basis b of EMLat(L),
and vectors v, w of DivisibleMod(L). Now we state the propositions:

(63) If for every natural number n such that n € dom b holds (ScProductDM(L))(by,, v) =
(ScProductDM(L))(by,, w), then v = w.
PRrROOF: Consider i being an element of Z® such that i # 0 and i - v €
Embedding(L). Consider j being an element of Z® such that j # 0 and
j -w € Embedding(L). Reconsider i1 = i - v as a vector of EMLat(L).
Reconsider j; = j-w as a vector of EMLat(L). EMLat(L) is a submodule
of DivisibleMod(L). For every natural number n such that n € dom b holds
(bn,j - i1) = (bn,i- j1) by [11L (24)], (6), (8). j i1 =i-j1. O

(64) If for every natural number n such that n € dom b holds (ScProductDM(L))(v, by,) -
(ScProductDM(L))(w, by,), then v = w.
PROOF: For every natural number n such that n € dom b holds (ScProductDM(L)) (b,
(ScProductDM(L)) (b, w) by (20), [11], (24)], (6). O

Now we state the propositions:

(65) Let us consider a non trivial, rational, positive definite Z-lattice L,
an element v of L, a finite sequence b of elements of L, and a finite sequence
s of elements of Fg. Suppose lenb = len s and for every natural number n
such that n € dom s holds s(n) = (by,v). Then (>°b,v) =3 s.
PROOF: Define P[natural number| = for every finite sequence F of ele-
ments of L for every finite sequence Fj of elements of Fgp such that
len ' = $; and len ' = len F; and for every natural number i such that
i € dom F} holds Fy (i) = (F;,v) holds (3" F,v) = " Fy. P[0] by [24, (43)],
[9, (12)]. For every natural number n such that P[n| holds P[n + 1] by [4,
(4)], [6, (3)], [, (59)], [3, (11)]. For every natural number n, P[n] from [3|
Sch. 2]. O

(66) Let us consider a natural number n, and a finite sequence r of elements
of Fg. Suppose lenr = n. Then there exists an integer K and there exists
a finite sequence K3 of elements of Z® such that K # 0 and len Ko = n
and for every natural number ¢ such that ¢ € dom K5 holds Ks(i) = K - ;.
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ProoF: Consider K being an integer such that K # 0 and for every
natural number ¢ such that i € Segn holds K - r; € Z. Define Qnatural
number, object] = $3 = K - rg,. For every natural number ¢ such that
i € Segn there exists an element = of the carrier of Z® such that Q[i, z].
Consider Ky being a finite sequence of elements of the carrier of Z® such
that dom Ky = Segn and for every natural number k£ such that k € Segn
holds Qlk, Ks(k)] from [4, Sch. 5]. O

Let us consider natural numbers i, j, a field K, elements a, a; of K,
and an element R of the i-dimension vector space over K. If j € Segi and
a1 = R(j), then (a- R)(j) =a - a.

Let us consider natural numbers ¢, j, a field K, elements a1, by of K, and
elements A, B of the i-dimension vector space over K. Suppose j € Seg1
and a; = A(j) and by = B(j). Then (A + B)(j) = a1 + ba.

Let us consider a field K, and natural numbers n, i. Suppose ¢ € Segn.
Let us consider a finite sequence s of elements of the n-dimension vector
space over K. Then there exists a finite sequence s; of elements of K such
that

(i) lens; = lens, and

(ii) (>°s)(@) =3 s1, and
(iii) for every natural number k such that k& € dom s; holds s1(k) = si(i).

PROOF: Define P[natural number| = for every finite sequence s of elements
of the n-dimension vector space over K such that lens = $; there exists
a finite sequence s of elements of K such that len sy = lensand (3} s)(i) =
>~ s1 and for every natural number k such that & € dom s; holds s1(k) =
sk(i). P[0] by [22, (7)], [24, (43)]. For every natural number k such that
P[k] holds Plk+1] by [4, (4)], [6, (3)], [, (59)], [3, (11)]. For every natural
number k, P[k] from [3, Sch. 2]. O

Let us consider a non trivial, rational, positive definite Z-lattice L, and
an ordered basis b of L. Then Det GramMatrix(b) # Og,.
PROOF: Reconsider M = GramMatrix(b) as a square matrix over Fg of
dimension rank L. Det M = Op,. M is one-to-one by [13, (49)], [8, (87)],
(59). Reconsider M7 = M as a finite sequence of elements of the rank L-
dimension vector space over Fg. Consider r being a finite sequence of ele-
ments of Fg, r1 being a finite sequence of elements of the rank L-dimension
vector space over Fg such that lenr = rank L and lenr; = rank L and for
every natural number i such that ¢ € domr; holds ri(i) = r; - M;; and
>-r1 = 04 and r # Seglenr —— Op,, where « is the rank L-dimension
vector space over Fg. Consider K being an integer, K being a finite se-
quence of elements of Z® such that K # 0 and len Ko = rank L and for
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every natural number i such that i € dom K holds K3(i) = K - ;. Recon-
sider K; = K as an element of Fg. Define P[natural number, object] =
there exists an element ry of the rank L-dimension vector space over Fg
such that ro = r1($1) and $2 = K - 7. For every natural number k such
that k € Segrank L there exists an element = of the carrier of the rank L-
dimension vector space over Fg such that Pk, z]. Consider K3 being a fini-
te sequence of elements of the carrier of the rank L-dimension vector space
over Fg such that dom K3 = Segrank L and for every natural number k
such that k& € Segrank L holds Pk, K3(k)] from [4, Sch. 5]. For every
natural number ¢ such that i € dom K3 there exists an element My of
the rank L-dimension vector space over Fg and there exists an element K3
of Fg such that My = M; (i) and K5 = K»(i) and K3(i) = Ks5- M. For eve-
ry natural number k and for every element v of the rank L-dimension vec-
tor space over Fg such that £ € dom K3 and v = 7 (k) holds K3(k) = K;-v.
Ky # Seglen K9 — 0Ozr by [22, (7)]. Set S = >~ K3. For every natural
number n such that n € domb holds S(n) = Ozr by [22, (7)]. Define
Q[natural number, object] = 33 = Kag, - bg,. Consider Ky being a finite
sequence of elements of the carrier of L such that dom K4 = Segrank L
and for every natural number k such that k € Segrank L holds Q[k, K4(k)]
from [4, Sch. 5]. For every natural number n such that n € domb holds
S(n) = (X K4,b,) by (69), [19, (102)], [8, (87)], (67). For every natural
number n such that n € domb holds (0r,b,) = (X K4,b,) by [9, (12)].
> K4 =0g. rngb is linearly dependent. [

Let L be a non trivial, rational, positive definite Z-lattice and b be an ordered

basis of L. Let us observe that GramMatrix(b) is invertible.

(10]
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