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Summary. In the article we present in the Mizar system [1], [8] the ca-
talogue of triangular norms and conorms, used especially in the theory of fuzzy
sets [13]. The name triangular emphasizes the fact that in the framework of
probabilistic metric spaces they generalize triangle inequality [2].

After defining corresponding Mizar mode using four attributes, we introduced
the following t-norms:

• minimum t-norm minnorm (Def. 6),

• product t-norm prodnorm (Def. 8),

• Łukasiewicz t-norm Lukasiewicz_norm (Def. 10),

• drastic t-norm drastic_norm (Def. 11),

• nilpotent minimum nilmin_norm (Def. 12),

• Hamacher product Hamacher_norm (Def. 13),

and corresponding t-conorms:

• maximum t-conorm maxnorm (Def. 7),

• probabilistic sum probsum_conorm (Def. 9),

• bounded sum BoundedSum_conorm (Def. 19),

• drastic t-conorm drastic_conorm (Def. 14),

• nilpotent maximum nilmax_conorm (Def. 18),

• Hamacher t-conorm Hamacher_conorm (Def. 17).

Their basic properties and duality are shown; we also proved the predicate of the
ordering of norms [10], [9]. It was proven formally that drastic-norm is the po-
intwise smallest t-norm and minnorm is the pointwise largest t-norm (maxnorm
is the pointwise smallest t-conorm and drastic-conorm is the pointwise largest
t-conorm).
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This work is a continuation of the development of fuzzy sets in Mizar [6]
started in [11] and [3]; it could be used to give a variety of more general operations
on fuzzy sets. Our formalization is much closer to the set theory used within the
Mizar Mathematical Library than the development of rough sets [4], the approach
which was chosen allows however for merging both theories [5], [7].
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1. Preliminaries

One can verify that [0, 1] is non empty.
Let us consider elements a, b of [0, 1]. Now we state the propositions:

(1) min(a, b) ∈ [0, 1].

(2) max(a, b) ∈ [0, 1].

(3) a · b ∈ [0, 1].

(4) max(0, a+ b− 1) ∈ [0, 1].

(5) min(a+ b, 1) ∈ [0, 1].

(6) Let us consider elements a, b, c of [0, 1]. Then max(0,max(0, a+ b−1) +
c− 1) = max(0, a+ max(0, b+ c− 1)− 1).

(7) Let us consider an element a of [0, 1]. Then 1− a ∈ [0, 1].

Let us consider elements a, b of [0, 1]. Now we state the propositions:

(8) a+ b− (a · b) ∈ [0, 1]. The theorem is a consequence of (7) and (3).

(9) a·b
a+b−(a·b) ∈ [0, 1]. The theorem is a consequence of (3) and (8).

(10) If max(a, b) 6= 1, then a 6= 1 and b 6= 1.

(11) Let us consider elements x, y of [0, 1]. If x · y = x+ y, then x = 0. The
theorem is a consequence of (7).

Let us consider elements a, b of [0, 1]. Now we state the propositions:

(12) max(a, b) = 1−min(1− a, 1− b).
(13) min(a+ b, 1) = 1−max(0, 1− a+ (1− b)− 1).

(14) a+b−(2·a·b)
1−(a·b) ∈ [0, 1]. The theorem is a consequence of (7) and (3).

Let f be a binary operation on [0, 1] and a, b be real numbers. Let us observe
that f(a, b) is real.

Now we state the propositions:

(15) Let us consider real numbers a, b, and a binary operation t on [0, 1].
Then t(a, b) ∈ [0, 1].

http://zbmath.org/classification/?q=cc:03E72
http://zbmath.org/classification/?q=cc:94D05
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/fuznorm1.miz
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(16) Let us consider a binary operation f on [0, 1], and real numbers a, b.
Then 1− f(1− a, 1− b) ∈ [0, 1]. The theorem is a consequence of (15) and
(7).

(17) Let us consider real numbers x, y, k. Suppose k ¬ 0. Then

(i) k ·min(x, y) = max(k · x, k · y), and

(ii) k ·max(x, y) = min(k · x, k · y).

2. Basic Example of a Triangular Norm and Conorm: min and max

Let A be a real-membered set and f be a binary operation on A. We say
that f is monotonic if and only if

(Def. 1) for every elements a, b, c, d of A such that a ¬ c and b ¬ d holds
f(a, b) ¬ f(c, d).

We say that f has 1-identity if and only if

(Def. 2) for every element a of A, f(a, 1) = a.

We say that f has 1-annihilating if and only if

(Def. 3) for every element a of A, f(a, 1) = 1.

We say that f has 0-identity if and only if

(Def. 4) for every element a of A, f(a, 0) = a.

We say that f has 0-annihilating if and only if

(Def. 5) for every element a of A, f(a, 0) = 0.

The scheme ExBinOp deals with a non empty, real-membered set A and
a binary functor F yielding a set and states that

(Sch. 1) There exists a binary operation f on A such that for every elements a,
b of A, f(a, b) = F(a, b)

provided

• for every elements a, b of A, F(a, b) ∈ A.

The functor minnorm yielding a binary operation on [0, 1] is defined by

(Def. 6) for every elements a, b of [0, 1], it(a, b) = min(a, b).

Observe that minnorm is commutative, associative, and monotonic and has
1-identity and there exists a binary operation on [0, 1] which is commutative,
associative, and monotonic and has 1-identity.

A t-norm is a commutative, associative, monotonic binary operation on
[0, 1] with 1-identity. The functor maxnorm yielding a binary operation on [0, 1]
is defined by
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(Def. 7) for every elements a, b of [0, 1], it(a, b) = max(a, b).

One can verify that maxnorm is commutative, associative, and monotonic
and has 0-identity and there exists a binary operation on [0, 1] which is commu-
tative, associative, and monotonic and has 0-identity.

A t-conorm is a commutative, associative, monotonic binary operation on
[0, 1] with 0-identity. Now we state the propositions:

(18) Let us consider a commutative, monotonic binary operation t on [0, 1]
with 1-identity, and an element a of [0, 1]. Then t(a, 0) = 0. The theorem
is a consequence of (15).

(19) Let us consider a commutative, monotonic binary operation t on [0, 1]
with 0-identity, and an element a of [0, 1]. Then t(a, 1) = 1. The theorem
is a consequence of (15).

Let us note that every commutative, monotonic binary operation on [0, 1]
with 1-identity has 0-annihilating and every commutative, monotonic binary
operation on [0, 1] with 0-identity has 1-annihilating.

3. Further Examples of Triangular Norms

The functor prodnorm yielding a binary operation on [0, 1] is defined by

(Def. 8) for every elements a, b of [0, 1], it(a, b) = a · b.
Let us observe that prodnorm is commutative, associative, and monotonic

and has 1-identity.
The functor probsum-conorm yielding a binary operation on [0, 1] is defined

by

(Def. 9) for every elements a, b of [0, 1], it(a, b) = a+ b− (a · b).
The functor Lukasiewicz-norm yielding a binary operation on [0, 1] is defined

by

(Def. 10) for every elements a, b of [0, 1], it(a, b) = max(0, a+ b− 1).

One can check that Lukasiewicz-norm is commutative, associative, and mo-
notonic and has 1-identity.

The functor drastic-norm yielding a binary operation on [0, 1] is defined by

(Def. 11) for every elements a, b of [0, 1], if max(a, b) = 1, then it(a, b) = min(a, b)
and if max(a, b) 6= 1, then it(a, b) = 0.

Now we state the proposition:

(20) Let us consider elements a, b of [0, 1]. Then

(i) if a = 1, then (drastic-norm)(a, b) = b, and

(ii) if b = 1, then (drastic-norm)(a, b) = a, and
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(iii) if a 6= 1 and b 6= 1, then (drastic-norm)(a, b) = 0.

Note that drastic-norm is commutative, associative, and monotonic and has
1-identity.

The functor nilmin-norm yielding a binary operation on [0, 1] is defined by

(Def. 12) for every elements a, b of [0, 1], if a+ b > 1, then it(a, b) = min(a, b) and
if a+ b ¬ 1, then it(a, b) = 0.

Observe that nilmin-norm is commutative, associative, and monotonic and
has 1-identity.

The functor Hamacher-norm yielding a binary operation on [0, 1] is defined
by

(Def. 13) for every elements a, b of [0, 1], it(a, b) = a·b
a+b−(a·b) .

One can verify that Hamacher-norm is commutative, associative, and mo-
notonic and has 1-identity.

4. Basic Triangular Conorms

The functor drastic-conorm yielding a binary operation on [0, 1] is defined
by

(Def. 14) for every elements a, b of [0, 1], if min(a, b) = 0, then it(a, b) = max(a, b)
and if min(a, b) 6= 0, then it(a, b) = 1.

5. Translating between Triangular Norms and Conorms

Let t be a binary operation on [0, 1]. The functor conorm t yielding a binary
operation on [0, 1] is defined by

(Def. 15) for every elements a, b of [0, 1], it(a, b) = 1− t(1− a, 1− b).
Let t be a t-norm. Let us observe that conorm t is monotonic, commutative,

and associative and has 0-identity.
Now we state the propositions:

(21) maxnorm = conorm minnorm.
Proof: For every elements a, b of [0, 1], (maxnorm)(a, b) = 1−(minnorm)
(1− a, 1− b) by (7), (17), [12, (42)]. �

(22) Let us consider a binary operation t on [0, 1]. Then conorm conorm t = t.
The theorem is a consequence of (7).
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6. The Ordering of Triangular Norms (and Conorms)

Let f1, f2 be binary operations on [0, 1]. We say that f1 ¬ f2 if and only if

(Def. 16) for every elements a, b of [0, 1], f1(a, b) ¬ f2(a, b).

Let us consider a t-norm t. Now we state the propositions:

(23) drastic-norm ¬ t. The theorem is a consequence of (20).

(24) t ¬ minnorm.

Now we state the proposition:

(25) Let us consider t-norms t1, t2. If t1 ¬ t2, then conorm t2 ¬ conorm t1.
The theorem is a consequence of (7).

7. Triangular Conorms Generated from t-Norms

The functor Hamacher-conorm yielding a binary operation on [0, 1] is defined
by

(Def. 17) for every elements a, b of [0, 1], if a = b = 1, then it(a, b) = 1 and if
a 6= 1 or b 6= 1, then it(a, b) = a+b−(2·a·b)

1−(a·b) .

Now we state the proposition:

(26) conorm Hamacher-norm = Hamacher-conorm. The theorem is a conse-
quence of (7).

Let us note that Hamacher-conorm is commutative, associative, and mono-
tonic and has 0-identity.

Now we state the propositions:

(27) conorm drastic-norm = drastic-conorm. The theorem is a consequence of
(7).

(28) conorm prodnorm = probsum-conorm. The theorem is a consequence of
(7).

One can check that probsum-conorm is commutative, associative, and mo-
notonic and has 0-identity.

The functor nilmax-conorm yielding a binary operation on [0, 1] is defined
by

(Def. 18) for every elements a, b of [0, 1], if a+ b < 1, then it(a, b) = max(a, b) and
if a+ b ­ 1, then it(a, b) = 1.

Now we state the proposition:

(29) conorm nilmin-norm = nilmax-conorm. The theorem is a consequence of
(7) and (12).
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Let us note that nilmax-conorm is commutative, associative, and monotonic
and has 0-identity.

The functor BoundedSum-conorm yielding a binary operation on [0, 1] is
defined by

(Def. 19) for every elements a, b of [0, 1], it(a, b) = min(a+ b, 1).

Now we state the proposition:

(30) conorm Lukasiewicz-norm = BoundedSum-conorm. The theorem is a con-
sequence of (7) and (13).

One can check that BoundedSum-conorm is commutative, associative, and
monotonic and has 0-identity.

Let us consider a t-conorm t. Now we state the propositions:

(31) maxnorm ¬ t.
(32) t ¬ drastic-conorm.
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