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Pascal’s Theorem in Real Projective Plane
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Summary. In this article we check, with the Mizar system [2], the Pascal’s
theorem in the real projective plane (in projective geometry Pascal’s theorem also
is known as the Hexagrammum Mysticum Theorem)ﬂ Pappus’ theorem is the
special case of a degenerate conic of two lines.

For proving the Pascal’s theorem, we use the technics developped in the sec-
tion “Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem:
Nine proofs and three variations” [11I]. We also follow some ideas from Harrison’s
work. With HOL Light, he has the proof of the Pascal theorem El For a lemma,
we use PROVERY|and OTT2MIZ by Josef Urbar'] [12}[6}[7]. We note, that we don’t
use Skolem/Herbrand functions (see “Skolemization” in [IJ).
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1. PRELIMINARIES

From now on n denotes a natural number, K denotes a field, a, b, ¢, d, e, f,
g, h, i, a1, by, c1, d1, e1, f1, g1, h1, i1 denote elements of K, M, N denote square
matrices over K of dimension 3, and p denotes a finite sequence of elements of
R.

Now we state the propositions:

(1) Let us consider points p, g, r of &. Then
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@) (lp,q,rl) = (Ir,p,ql), and
(i) (lp,q,7]) = (lg.r,pl)-
(2) Suppose ((a,b,c), (d,e, f),{g,h,i)) = ((a1,b1,c1),{d1,e1, f1), (g1, h1,11)).

Then
(i) a =aq, and
(ii) b= by, and
(iii) ¢=c1, and
(iv) d = dy, and
(v) e=e1, and
(vi) f = f1, and
(vii) g = g1, and
(viii) h = hq, and
(ix) i = 4.

(3) There exists a and there exists b and there exists ¢ and there exists d

and there exists e and there exists f and there exists g and there exists h
and there exists i such that M = ({a,b,c),{(d,e, f),{g, h,1i)).

(4) Suppose M = {{(a,b,¢),(d,e, f), (g, h,i)). Then
(i) a= M, and

(ii) b= M2, and
(i) ¢ = My 3, and
(iv) d = My, and
(v) e = Msz, and
(vi) f = Ms3, and
(vil) g = M3, and
(viii) h = M3, and

(iX) 1= M3,3.

(5) Suppose M = ({a,b,c),{d,e, f),{g,h,i)). Then MT = {(a,d, g), (b, e, h),
(¢, f,i)). The theorem is a consequence of (4) and (3).

(6) Suppose M = ({(a,b,c), (d,e, f),(g,h,i)) and M is symmetric. Then

(i) b=d, and
(ii) ¢ =g, and
(i) h = f.

The theorem is a consequence of (5) and (2).
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(7) Let us consider square matrices M, N over Ry of dimension 3. If N is
symmetric, then MT - N - M is symmetric.

(8) Let us consider a square matrix M over Ry of dimension 3, elements a,
b,c,d,e, f,qg, h, i, x,y, z of Rp, an element v of &?r’, a finite sequence
u1o of elements of Ry, and a finite sequence p of elements of R!. Suppose
p =M -up and v = M2F(p) and M = ((a,b,0),(d, e, f), (g, h,i)) and
uio = (x,y, z). Then

i) p={a-z+b-y+cz)(datey+f-2),(g-x+h-y+i z)), and
i) v=(a-z+b-y+c-z,d-x+e-y+f-z,g-x+h-y+i-z).

(9) Let us consider a square matrix M over R of dimension 3, and elements
a, b, c,d,e, f,qg,h,i, p1, p2, p3 of R. Suppose M = ((a,b,c),(d,e, f), (g, h,
i)) and p = (p1, p2, p3). Then M-p = (a-p1+b-p2+c-ps,d-p1+e-pa+ f-ps,
g-p1+h-p2+i-ps).

2. CoNIC IN REAL PROJECTIVE PLANE

Let a, b, ¢, d, e, f be real numbers and u be an element of 8%. The functor
yielding a real number is defined by the term
(Def. 1) a-u(l)-u(l)+b-u2) uw2)+c-ud) uB)+d-ul) u2)+e-u(l)-
w(3) + f - u(2) - u(3).
The functor _ yielding a subset of the projective space
over £ is defined by the term

(Def. 2) {P, where P is a point of the projective space over £3. : for every ele-
ment u of 5% such that u is not zero and P = the direction of u holds
qfconic(a, b, c,d, e, f,u) = 0}.
In the sequel a, b, ¢, d, e, f denote real numbers, u, u1, us denote non zero
elements of £3, and P denotes an element of the projective space over £3.
Now we state the propositions:
(10) Suppose the direction of u; = the direction of ug and qfconic(a, b, ¢, d, e, f,u1) =
0. Then gfconic(a, b, c,d, e, f,us) = 0.
(11) If P = the direction of w and qgfconic(a,b,c,d,e, f,u) = 0, then P €
conic(a, b, ¢,d, e, f). The theorem is a consequence of (10).

Let a, b, ¢, d, e, f be real numbers. The functor F
yielding a square matrix over Rr of dimension 3 is defined by the term
(Def. 3)  ((a,d,e),(d,b, f), e, f,c)).

Now we state the propositions:
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(12) symmetric3(a,b,c,d, e, f) is symmetric. The theorem is a consequence of
(5)-

(13) Let us consider real numbers a, b, ¢, d, e, f, a point u of &£, and
a square matrix M over R of dimension 3. Suppose p = v and M =
symmetric3(a, b, ¢, d, e, ). Then SumAll QuadraticForm(p, M, p) = qgfconic(a, b, ¢, 2-
d,2-e,2- f,u).

(14) Let us consider an invertible square matrix N over Ry of dimension 3,
square matrices N1, My, Ms over R of dimension 3, and real numbers a, b,
¢, d, e, f. Suppose N1 = (Rp — R)N and M; = symmetric3(a, b, c, %, %, )
and My = (Rp — R)((R — Rp)N1 7)™ - M; - (Rp — R)((R — Rp)Np)™.
Then (R — Rp)Ms is symmetric.

Proor: (R — Rp)N; )T = (R — Rp)N; by [3, (16)]. (R — Rp)M, is
symmetric by [3, (16)], (12), (7). O

(15) Let us consider real numbers a1, ag, a3, a4, as, ag, b1, b2, b3, by, bs, bg.
Suppose symmetric3(aq, az, as, aq, as, ag) = symmetric3(by, b, b3, by, bs, bg).
Then

(i) a; = by, and

(ii ay = bg, and

(iv) aq = by, and

)

(iii) ag = b3, and
)
) as = bs, and

(v
(vi) ag = be.
The theorem is a consequence of (2).

(16) Let us consider real numbers a, b, ¢, d, e, f, a point P of the projecti-
ve space over £, and an invertible square matrix N over Rp of dimen-
sion 3. Suppose it is not true that ¢« = 0 and b = 0 and ¢ = 0 and
d=0and e =0and f =0 and P € conic(a,b,c,d,e, f). Let us consi-
der real numbers f5, fi2, fi9, f20, fo1, f23, fo2, square matrices My, Ms

over R of dimension 3, and a square matrix N7 over R of dimension 3.
Suppose M; = symmetric3(a, b, c,%,%,%) and Ny = (Rp — R)N and
My = (Rp — R)(R — Rp)N1 1)~ - My - (Rp — R)((R — Rp)Ny)~ and
My = symmetric3(fs, fo1, f23, f12, fi9, f22). Then

(i) it is not true that f5 = 0 and fo; = 0 and fo3 = 0 and fi12 = 0 and

fo2 =0 and fi9 =0, and

(ii) (the homography of N)(P) € conic(fs, fa1, f23,2 - f12,2 - f19,2 - f22).

PRrooF: Consider ) being a point of the projective space over 5% such
that P = Q and for every element u of & such that u is not zero
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and @ = the direction of w holds qfconic(a,b, ¢, d, e, f,u) = 0. Reconsi-
der M = symmetric3(a, b, c, g, 5 %) as a square matrix over R of dimen-
sion 3. Consider u1g, v3 being elements of £3, u17 being a finite sequence
of elements of Rp, pi1 being a finite sequence of elements of R! such
that P = the direction of u1g and w19 is not zero and w19 = uy17 and
p11 = N -uy7 and v3 = M2F(p;1) and vs is not zero and (the homography
of N)(P) = the direction of v3. Reconsider pjp = uj9 as a finite sequence
of elements of R. SumAll QuadraticForm(p19, M, p19) = qfconic(a, b, ¢, 2 -
(%),2 . (5)72 : (%),Uw). Consider as, bg, 011, d4, €5, f24, g2, hg, 12 be-
ing elements of Ry such that N = ((ag, bs,c11), (d4, €5, f2a), (g2, h2,i2)).
Reconsider u1p = w17 as a finite sequence of elements of R. Reconsider
N; = (Rp — R)N as a square matrix over R of dimension 3. Reconsider
My = (Rp — R)((R — Rp)N{H)” - M - (Rp — R)((R — Rg)Ny)~ as
a square matrix over R of dimension 3. (R — Rp)N;T)T = (R — Rp)V;
by [3, (16)]. (R — Rp)M; is symmetric by [3, (16)], (12), (7). Consider
mi, Mo, M3, My, M5, Mg, M7, Mg, Mg being elements of Rr such that
My = ((mq, ma, m3), (mg, ms, mg), (M7, Mg, Mg)). me = my and ms = my
and mg = mg. Reconsider us = N7 -u1g as an element of 5%. u3 is not zero
by [B, (24)], [14, (59), (86)]. Reconsider ug = Nj-ujg as a non zero element
of &. Reconsider f5 = mi, fia = ma, fig = ms, fo1 = ms, fo2 = me,
fas = myg as a real number. gfconic(fs, fo1, fo3,2- f12,2- f19,2- fo2,u2) = 0.
it is not true that f5 = 0 and fo; = 0 and fo3 = 0 and 2 fio = 0
and 2 - foo = 0 and 2 - fig = 0. us = wv3. For every real numbers u;,
u12, U13, Ui4, U15, U1g, Uig and for every square matrices Uy, Uy over
R of dimension 3 and for every square matrix Us over R of dimension
3 such that U; = symmetric3(a,b, c,%,%,%) and U3 = (Rp — R)N
and Uy = (Rp — R)((R — Rp)U3Y)” - Uy - (Rp — R)((R — Rp)Us3)~
and Uy = symmetric3(u11, u1s, u1s, 12, u13, 1) holds it is not true that
u11 = 0 and w15 = 0 and u1gs = 0 and w12 = 0 and w14 = 0 and w13 = 0
and (the homography of N)(P) € conic(uii, uis, uig,2-ui2,2-ui3, 2 - uig).
O

(17) Let us consider real numbers a, b, ¢, d, e, f, points Py, Py, P3, Py, P5, P
of the projective space over 8%, and an invertible square matrix N over Rp
of dimension 3. Suppose it is not true that a = 0 and b = 0 and ¢ = 0 and
d=0ande=0and f =0and Py, P», P3, Py, Ps, Ps € conic(a,b,c,d,e, f).
Then there exist real numbers a9, by, co, da, €3, fo such that

(i) it is not true that ag = 0 and by = 0 and ¢ = 0 and d2 = 0 and
eo =0 and fo =0, and

(ii) (the homography of N)(Py), (the homography of N)(Ps), (the homography
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of N)(P3), (the homography of N)(P,), (the homography of N)(Ps),
(the homography of N)(Ps) € conic(ag, ba, c2, d2, €2, f2).
The theorem is a consequence of (3), (14), (6), and (16).
From now on a, b, ¢, d, e, f, g, h, i denote elements of Ry.
Now we state the proposition:
(18) (i) if gfconic(a, b, c,d, e, f,[1,0,0]) = 0, then a = 0, and
(ii) if gfconic(a, b, c,d, e, f,]0,1,0]) = 0, then b = 0, and
(iii) if gfconic(a,b,c,d, e, f,[0,0,1]) = 0, then ¢ = 0, and
(iv) if gfconic(0,0,0,d,e, f,[1,1,1]) =0, then d+ e+ f = 0.

3. PascaLl’s THEOREM

In the sequel M denotes a square matrix over Rp of dimension 3, e, es, €3,
f1, f2, f3 denote elements of Rp, Mg, Mi4, Moy, Moy, Moo, Mig, Mi3, Mg, Moy,
Mo, Mg, M7, M1, Mys, Mg denote square matrices over Ry of dimension 3,
and rq, ro denote real numbers.

Now we state the proposition:

(19) Suppose My = ((1,0,0),(0,1,0), (e1,e2,e3)) and M2 = ((1,0,0), (0,0,
1> <f17f27f3>> and Me = <<07 170)? <17 1, 1)7 <f17f27f3>> and M7 = <<0707

> <1 1 1> <61762763>> and Mo = <<17070>7 <07 170>7 <f17f27f3>> and M1 =
((1,0,0),(0,0,1), (e1,e2,e3)) and M5 = ((0,1,0), (1,1,1), (e, e, e3)) and
Mg = <<0,0, 1>, <1, 1, 1>, <f1, fg,f3>> and (7"1 7& 0orro 75 0) and r1-e1-e9+
r2-€1-e3 = (r1+712)-ez-e3 and r1- f1- fo+re- fi- f3 = (r1+72)- f2- f3. Then

Det Mg'Det M12-Det M16-Det M17 = Det Mlo-Det MH-Det M15-Det Mlg.

In the sequel p1, p2, p3, P4, P5, Pe denote points of 8%.

Now we state the proposition:

(20) Suppose Mg = (p1,p2,ps) and Mz = (p1,p3,pe) and Mg = (p2,p4, D)
and M7 = (p3,pa,p5) and Mg = (p1,p2,ps) and M1 = (p1,p3, ps) and
Mis = (p2,pa,ps) and Mig = (p3,pa, ps). Then

(1) Det M9 = <|p17p27p5|>7 and

(ii) Det Mo = (|p1,ps, psl), and
(iii) Det M1 = (|p2, pa, ps|), and
(iv) Det My7 = (|p3,pa, ps|), and
(v) Det Mg = (|p1,p2, psl), and
(vi) Det Miy = (|p1,ps3,ps), and
(vii) Det M15 = (|p2, p4, ps|), and
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(viii) Det M1s = (|p3, pa, s|)-
From now on p7, pg, pg denote points of 5%.
Now we state the propositions:

(21) Suppose (|p1, ps, pol) = 0. Then (|p1, ps, pr[)-(Ip2, P5, Pol) = —(Ip1. P2, Ps) - {[P5, P91
The theorem is a consequence of (1).

(22) Suppose (|p1, ps, ps|) = 0. Then (|p1, p2, pel) - (|3, pe, ps|) = (|p1,p3, pel) -
(|p2, p6, pg|). The theorem is a consequence of (1).

)
(23) Suppose (|p2, 4, po|) = 0. Then (|p2, pa, ps|)-(|p2, po, p7|) = —(|P2, P41, P7]) - {|P2, P5,1
(24) Suppose (|p2, ps; pr|) = 0. Then (|p2, pa, p7])-(Ip2, 6, Psl) = —(|P2, 1, Psl) - (P2, P8, 1
(
)

(25) Suppose (|ps,pa,ps|) = 0. Then (|ps, pa, psl) - (|3, P5, Ps|) = (|P3, 1, P5|) -
<‘p37p6ap8| .

(26)  Suppose (|ps, ps, p7|) = 0. Then {[p1, p3, ps|)-(Ips, ps; prl) = —(lp1, p5, p7l) - (IP3, P5, 1
The theorem is a consequence of (1).

(27) Let us consider non zero real numbers 1125, 7136, 7246, 7345, 71265 T'135,
T245, T346, T157, 7259, T597, 7368, 7268, 7207, 7247, T287, 7358, T587- SUPPOSe

T125 - 136 * 7246 - T'345 = T126 - T'135 * 7245 - 346 and 157 - 7259 = —T125 - I'597
and 7126 - 7368 = T'136 - 7268 and rogs - 7297 = —7T247 - T259 and rag7 - 7268 =
—7246 - 287 and 7346 - 1358 = 1’345 - 368 and 7135 - r587 = —7T157 - r358. Then

T287 - 597 = 1297 - T587-

(28) Suppose p1 = (1,0,0) and p2 = (0,1,0) and p3 = (0,0,1) and py = (1,1,
1) and p5 = (e1, ez, e3) and pg = (f1, f2, f3) and qfconic(0,0, 0,71, 72, —(r1 +72),p5) =
0 and gfconic(0,0,0,r1,72, —(r1 4+ r2),ps) = 0. Then

(i) gfconic(0,0,0,71,72, —(r1 + 72),p1) = 0, and

—(
(ii) gfconic(0,0,0,71,r2, —(r1 +72),p2) = 0, and
—(r1 +72),p3) =0, and
), Pa)

(iv

)

(iii) qgfconic(0,0,0, 71,72,
) qfconic(0,0,0,r1,7r9, —(r1 4+ r2),p4) = 0, and
)

(V) ri-e1-ea+ry-er-es=(r1+712)-e2-e3, and
(vi) r1-fi-fatre- fi-fa=(r1+r2)- fo fa

(29) Suppose p; = (1,0,0) and ps = (0,1,0) and p3 = (0,0,1) and ps = (1,
1,1) and ps = (e1,e2,e3) and ps = (f1, f2, f3) and (|p1,p2,p5]) # O
and (|p1,p3,pel) # 0 and (|p2,ps,p6]) # O and (|ps3,ps,ps|) # 0 and
(Ip1,p2, pel) # 0 and (|p1, ps, ps|) # 0 and (|p2, p4, ps|) # 0 and (|p3, p4, ps|) #
0 and (|p1,ps,p7]) # 0 and (|p2,ps,pol) # 0 and (|ps,py,p7[) # 0 and
(Ip3, pe, ps|) # 0 and (|p2, ps, ps|) # 0 and (|p2, pg, p7|) # 0 and (|pz, ps, pr|) #
0 and (|pa, ps,p7|) # 0 and (|ps,ps,ps|) # 0 and (|ps,ps,pr|) # 0 and
(ri # 0 or r9 # 0) and qfconic(0,0,0,71,72, —(r1 +72),p5) = 0 and
qfconic(0,0,0, 71,79, —(r1 + 1r2),p) = 0 and {|p1, p5, p9|) = 0 and {|p1, ps, ps|) =
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0 and <|p2ap47p9|> = 0 and <‘p27p6ap7|> and <’p3ap47p8‘> = 0 and

=0
(Ips; ps, p7]) = 0. Then (|p2, ps, p7|)-(Ips, po, p7]) = (Ip2, P9, P7])-(IP5, P8, 7l)-
The theorem is a consequence of (20), (28), (19), (21), (22), (23), (24), (25),

(26), and (27).

(30) Suppose (|p2,ps,p7l) - (Ips, P9, p7l) = (Ip2,p9,p7]) - {|P5, s, p7]). Then
{|p7, 2, P5|) - {|P7, P8, P9|) = 0. The theorem is a consequence of (1).

(31) Let us consider a projective space Py defined in terms of collinearity,
and elements ¢, ¢, c3, ¢4, c5, Cg, C7, Cg, Cg of Pig. Suppose c1, co and
c4 are not collinear and ci, ¢o and c5 are not collinear and ¢, cg and
¢4 are not collinear and cq, ¢g and c¢5 are not collinear and cs, ¢g and ¢4
are not collinear and c3, ¢4 and co are not collinear and c3, ¢4 and cg are
not collinear and c3, ¢5 and ¢y are not collinear and c3, ¢; and ¢g are not
collinear and ¢4, c5 and co are not collinear and ¢y, ¢4 and ¢y are collinear
and c1, ¢; and cg are collinear and ¢z, c3 and ¢y are collinear and cs, cs
and cg are collinear and cg, c3 and cg are collinear and cg, ¢4 and cg are
collinear. Then

(i) cg, cg and ¢4 are not collinear, and
c1, ¢4 and cg are not collinear, and
c2, c3 and cg are not collinear, and
c2, ¢4 and c7 are not collinear, and

c2, ¢5 and cg are not collinear, and

c2, cg and c7 are not collinear, and
cg, ¢4 and cg are not collinear, and

)
)
)
)
(vi) c2, cg and cg are not collinear, and
)
)
) ¢, c5 and cg are not collinear, and
)

¢4, cg and cg are not collinear, and
(xi) ¢4, cg and c¢7 are not collinear.

PROOF: For every elements v1g2, v103, v100, V104 Of Pig, V100 = V104 OF V104,
v100 and vipz are not collinear or vig4, v1gg and wvig3 are not collinear or
v102, V103 and vipq are collinear by [13| (5), (3)]. For every elements v1p2,
V1045 V100, V103 of Pl(), V100 = V103 OT V103, V100 and V102 are not collinear or
V103, V100 and vigq are not collinear or vig2, vip3 and vigs are collinear by
[13, (5), (3)] For every elements V102, V103, V104, V101 of P107 V104 = V101 Or
101, V104 and v1g2 are not collinear or v1g1, v104 and vz are not collinear
or v102, v103 and vyg4 are collinear by [13] (2), (3)]. For every elements v1¢3,
V104, V102, V101 of Plo, V102 = V101 Or V101, V102 and V103 are not collinear
or vig1, V102 and vigq are not collinear or vige, vig3 and vigg are collinear
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by [13 (2), (3)]. For every elements va, vig1, vigo of Pio, v101 = vi00 Or
V100, V101 and ve are not collinear or ve, v191 and vigg are collinear by [13),
(2)]- O
In the sequel Py, P», Ps, Py, Ps, Ps, Pr, Ps, Py denote points of the projective
space over 5% and a, b, ¢, d, e, f denote real numbers.
Let Py, P», P3, Py, Ps, Ps, Pr, P3, Py be points of the projective space over
E3. We say that
if and only if
(Def. 4) Pj, P, and Py are not collinear and Py, P3 and P, are not collinear and
P, P3 and P, are not collinear and P;, P, and P5 are not collinear and
P, P, and Py are not collinear and P;, P3 and P5 are not collinear and
Py, P; and Py are not collinear and P, P, and P; are not collinear and
P, P, and Py are not collinear and P3, P, and P; are not collinear and
P;, P, and Py are not collinear and P, P3 and P; are not collinear and
P>, P; and Py are not collinear and Py, P; and P; are not collinear and
Py, Ps and P; are not collinear and P55, P and P; are not collinear and
P5, Ps and P, are not collinear and P;, P5 and Py are collinear and Py, Ps
and Pg are collinear and P», P4 and Py are collinear and P,, P and Pr are
collinear and P3, P, and Ps are collinear and P3, P; and P; are collinear.
Now we state the propositions:

(32) Suppose Py, P», P3, Py, Ps, Ps, P;, Pg, Py are in Pascal configuration.
Then

(i) P7, P, and Ps are not collinear, and
Pi, P; and P; are not collinear, and
P, Py and P; are not collinear, and
P, Ps and Py are not collinear, and

P, Ps and Pg are not collinear, and

)
)
)
)
(vi) Py, P; and Pg are not collinear, and
) P, P; and Py are not collinear, and
) P3, Ps and P are not collinear, and
) P3, Ps and Ps are not collinear, and
) Ps, P; and Ps are not collinear, and
(xi) Ps, Pr and Py are not collinear.

The theorem is a consequence of (31).

(33) Suppose it is not true that a = 0 and b = 0 and ¢ = 0 and d = 0 and
e=0and f=0and {P, P, P3, Py, Ps5, Ps} C conic(a,b,c,d,e, f) and P,
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P, and P5 are not collinear and P;, P> and Py are not collinear and Py, Ps
and P, are not collinear and P», P; and P, are not collinear and Py, P,
and P5 are not collinear and P;, P, and P5 are not collinear and P, P,
and Py are not collinear and P;, P; and P5 are not collinear and P, P;
and Py are not collinear and P;, P5 and P; are not collinear and Ps, Py
and P5 are not collinear and P, P4 and Py are not collinear and P, Py
and P; are not collinear and P», P5 and Py are not collinear and P», Py
and Pg are not collinear and P,, P; and Pg are not collinear and P», Ps
and Py are not collinear and P, P4, and P5 are not collinear and Ps, Py
and Py are not collinear and P3, P; and Ps are not collinear and Ps, P
and Pg are not collinear and P, P; and Ps are not collinear and Ps, P;
and Py are not collinear and P;, P; and Py are collinear and P;, FPg and
Ps are collinear and P, P, and Py are collinear and P, Py and P; are
collinear and P53, Py, and Pg are collinear and P3, Ps and P; are collinear.
Then P7, Py and Py are collinear.

PRrROOF: Consider N being an invertible square matrix over Rg of dimen-

sion 3 such that (the homography of N)(P;) = Dir100 and (the homography

of N)(FP») = Dir010 and (the homography of V)(P3) = Dir001 and (the homography
of N)(P,) = Dirlll. Consider us being a point of & such that wus is

not zero and (the homography of N)(FPs) = the direction of us. Recon-

sider ps1 = us(1), ps2 = us5(2), ps3 = us(3) as a real number. Consider

ug being a point of £ such that ug is not zero and (the homography

of N)(Ps) = the direction of ug. Reconsider pg1 = ug(1), pe2 = ug(2),

pes = ug(3) as a real number. Consider u; being a point of 8% such that

w7 is not zero and (the homography of N)(P7) = the direction of uy. Re-
consider p71 = uz(1), pra = u7(2), pr3 = u7(3) as a real number. Consider

ug being a point of 5% such that ug is not zero and (the homography

of N)(Ps) = the direction of ug. Reconsider pgs; = ug(1), pga = us(2),

ps3 = ug(3) as a real number. Consider ug being a point of 5% such that ug

is not zero and (the homography of N)(Py) = the direction of ug. Recon-

sider pg1 = ug(1), po2 = ug(2), po3 = ug(3) as a real number. Consider as,

ba, Ca, da, €2, fo being real numbers such that it is not true that as = 0 and

by =0and c2 = 0and dy = 0 and e = 0 and fo = 0 and (the homography

of N)(Py) € conic(ag,be, c2,da, €2, f2) and (the homography of N)(P2) €
conic(ag, ba, ca, da, €2, f2) and (the homography of N)(Ps) € conic(ag, ba, c2,d2, €2, fa
and (the homography of N)(Py) € conic(azg, bz, c2,ds, €2, f2) and (the homography
of N)(Ps) € conic(ag, b, c2,da, €2, f2) and (the homography of N)(Fs) €
conic(ag, ba, ¢, da, e2, f2). Consider P being a point of the projective spa-

ce over &3 such that the direction of [1,0,0] = P and for every ele-

ment u of £ such that u is not zero and P = the direction of u holds
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qfconic(ag, ba, c2, da, €2, fo,u) = 0. gfconic(ag, ba, c2, d2, €2, f2,[1,0,0]) = 0
and gfconic(ag, be, ca, da, €2, f2,]0,1,0]) = 0 and gfconic(asg, be, c2, da, €2, f2, [0,
0,1]) = 0 and gfconic(asg, be, ca, da, €2, f2,[1,1,1]) = 0 and gfconic(ag, b, c2, da, €2, f2,
ps2,p53]) = 0 and qgfconic(ag, by, c2,d2, €2, f2, P61, P62, Pe3]) = 0 by [,
(10)], [8, (3)] Reconsider a7 = ag, b7 = bg, 010 = Cg, d3 = dQ, €4 =
e2, f1 = fo as an element of Rp. a; = 0 and b7 = 0 and ;0 = 0.
a7 = 0 and by = 0 and 10 = 0 and d3 + e4 + f1 = 0. Reconsider
b1 = <170a0>a b2 = <0a1a0>7 b3 = <0a071>7 bs = <17131>> bs = <p517
P52,P53), P6 = (P61,P62,P63), P71 = (P71,P72,P73), P8 = (Ps1,Ps2,Ps3),
po = (po1, Po2, po3) as a point of EF. (|p7, p2, ps|) # 0 by [3, (102)], [8, (3)],
13, (43)], [& (10)]. (|p2, ps,p7l) - {|ps, pe; prl) = (P2, po,p7) - {|IP5, D8, pr)-
(|p7, P2, D5]) - (IP7, P8, P9|) = 0. O

(34) Suppose it is not true that a = 0 and b = 0 and ¢ = 0 and d = 0 and
e=0and f=0and {P, P, P3, Py, P5, Ps} C conic(a,b,c,d,e, f) and P,
P> and P5 are not collinear and Py, P>, P3, Py, P5, Ps, P;, Pg, Py are in
Pascal configuration. Then P;, Pg and Py are collinear. The theorem is
a consequence of (32) and (33).

Note that €3 is up 3-dimensional.
Now we state the propositions:

(35) Suppose it is not true that @ = 0 and b = 0 and ¢ = 0 and d = 0 and
e=0and f=0and {P, P, P3, Py, P5, Ps} C conic(a,b,c,d, e, f) and Pj,
P, and Pj5 are collinear and Py, P>, P3, Py, Ps, Py, P7, Pg, Py are in Pascal
configuration. Then P7, Py and Py are collinear.
PRrROOF: Consider N being an invertible square matrix over Rg of dimen-
sion 3 such that (the homography of N)(P;) = Dir100 and (the homography
of N)(P;) = Dir010 and (the homography of N)(P;) = Dir001 and (the homography
of N)(Ps) = Dirl11. Consider ug being a point of £ such that ug is not
zero and (the homography of N)(P;) = the direction of uz. Reconsider
ps1 = us(1), ps2 = u3(2), ps3 = uz(3) as a real number. Consider ug being
a point of £ such that ug is not zero and (the homography of N)(Fs) =
the direction of ug. Reconsider pg1 = ug(1l), pe2 = us(2), pes = us(3) as
a real number. Consider aq, ba, 2, do, €2, fo being real numbers such that it
is not true that a9 = 0 and by = 0 and ¢ = 0 and dy = 0 and e5 = 0 and
fo = 0 and (the homography of N)(P;) € conic(ag, be, co,ds, €2, f2) and
(the homography of N)(P,) € conic(ag, b2, c2, da, €2, f2) and (the homography
of N)(P3) € conic(ag, b, c2,da, €2, f2) and (the homography of N)(Fys) €
COHiC(CLQ, bQ, Co, d2, €9, fg) and (the homography of N)(P5) € COniC(ag, bg, Co, dg, €9, f2,
and (the homography of N)(Fs) € conic(ag, be, ca,ds, €2, f2). Consider P
being a point of the projective space over &3 such that the direction
of [1,0,0] = P and for every element u of £ such that u is not ze-
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ro and P = the direction of u holds qfconic(asg, be, co,ds, €2, fo,u) = 0.
qfconic(ag, ba, c2, da, €2, f2,[1,0,0]) = 0 and qfconic(ag, ba, c2, d2, €2, f2, [0,

1,0]) = 0 and gfconic(ag, ba, c2, d2, €2, f2,[0,0, 1]) = 0 and gfconic(az, by, ca, d2, €2, fa,
1,1]) = 0 and gfconic(ag, by, ¢, d2, €2, fa, P31, P32, p33]) = 0 and gfconic(az, by, ca, d2, ¢
p62,p63D =0 by [4, (10)}, [8, (3)] Reconsider a7 = ag, b7 = bg, 610 = C9,

ds = da, eq = eg, fy = fo as an element of Rp. a; = 0 and by = 0 and

c10=10. a7 =0 and b7 =0 and ¢10 = 0 and d3 + e4 + f4 = 0. Reconsider

p1 = (1,0,0), p2 = (0,1,0), pa = (0,0,1), ps = (1,1,1), p3 = (ps1, P32,

p33), Pe = (P61, Pe2: Pe3) as a point of E. (|p1, pa,ps|) = 0 by [3, (102)],

[0 (23)], [ (25)], [ (10)]. psx # 0 and pso # 0 by [8 (2), (8), (4)]. O

(36) Suppose it is not true that @ = 0 and b = 0 and ¢ = 0 and d = 0 and
e=0and f =0 and {Py, P», P3, Py, P5, Ps} C conic(a,b,c,d,e, f) and P,
Py, P3, Py, Ps, Ps, P7, Ps, Py are in Pascal configuration. Then Py, Pg and
Py are collinear. The theorem is a consequence of (35) and (34).
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