

Pascal's Theorem in Real Projective Plane

Roland Coghetto Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. In this article we check, with the Mizar system [2], Pascal's theorem in the real projective plane (in projective geometry Pascal's theorem is also known as the Hexagrammum Mysticum Theorem)¹. Pappus' theorem is a special case of a degenerate conic of two lines.

For proving Pascal's theorem, we use the techniques developed in the section "Projective Proofs of Pappus' Theorem" in the chapter "Pappus' Theorem: Nine proofs and three variations" [11]. We also follow some ideas from Harrison's work. With HOL Light, he has the proof of Pascal's theorem². For a lemma, we use **PROVER9**³ and **OTT2MIZ** by Josef Urban⁴ [12, 6, 7]. We note, that we don't use Skolem/Herbrand functions (see "Skolemization" in [1]).

MSC: 51E15 51N15 03B35

Keywords: Pascal's theorem; real projective plane; Grassman-Plücker relation MML identifier: PASCAL, version: 8.1.06 5.43.1297

1. Preliminaries

From now on n denotes a natural number, K denotes a field, $a, b, c, d, e, f, g, h, i, a_1, b_1, c_1, d_1, e_1, f_1, g_1, h_1, i_1$ denote elements of K, M, N denote square matrices over K of dimension 3, and p denotes a finite sequence of elements of \mathbb{R} .

Now we state the propositions:

(1) Let us consider points p, q, r of \mathcal{E}^3_{T} . Then

¹https://en.wikipedia.org/wiki/Pascal's_theorem

²https://github.com/jrh13/hol-light/tree/master/100/pascal.ml

³https://www.cs.unm.edu/~mccune/prover9/

⁴https://github.com/JUrban/ott2miz

- (i) $\langle |p,q,r| \rangle = \langle |r,p,q| \rangle$, and
- (ii) $\langle |p,q,r| \rangle = \langle |q,r,p| \rangle$.
- (2) Suppose $\langle \langle a, b, c \rangle, \langle d, e, f \rangle, \langle g, h, i \rangle \rangle = \langle \langle a_1, b_1, c_1 \rangle, \langle d_1, e_1, f_1 \rangle, \langle g_1, h_1, i_1 \rangle \rangle$. Then
 - (i) $a = a_1$, and
 - (ii) $b = b_1$, and
 - (iii) $c = c_1$, and
 - (iv) $d = d_1$, and
 - (v) $e = e_1$, and
 - (vi) $f = f_1$, and
 - (vii) $g = g_1$, and
 - (viii) $h = h_1$, and
 - (ix) $i = i_1$.
- (3) There exists a and there exists b and there exists c and there exists d and there exists e and there exists f and there exists g and there exists h and there exists i such that $M = \langle \langle a, b, c \rangle, \langle d, e, f \rangle, \langle g, h, i \rangle \rangle$.
- (4) Suppose $M = \langle \langle a, b, c \rangle, \langle d, e, f \rangle, \langle g, h, i \rangle \rangle$. Then
 - (i) $a = M_{1,1}$, and
 - (ii) $b = M_{1,2}$, and
 - (iii) $c = M_{1,3}$, and
 - (iv) $d = M_{2,1}$, and
 - (v) $e = M_{2,2}$, and
 - (vi) $f = M_{2,3}$, and
 - (vii) $g = M_{3,1}$, and
 - (viii) $h = M_{3,2}$, and

(ix)
$$i = M_{3,3}$$
.

- (5) Suppose $M = \langle \langle a, b, c \rangle, \langle d, e, f \rangle, \langle g, h, i \rangle \rangle$. Then $M^{\mathrm{T}} = \langle \langle a, d, g \rangle, \langle b, e, h \rangle, \langle c, f, i \rangle \rangle$. The theorem is a consequence of (4) and (3).
- (6) Suppose $M = \langle \langle a, b, c \rangle, \langle d, e, f \rangle, \langle g, h, i \rangle \rangle$ and M is symmetric. Then
 - (i) b = d, and
 - (ii) c = g, and
 - (iii) h = f.

The theorem is a consequence of (5) and (2).

- (7) Let us consider square matrices M, N over \mathbb{R}_{F} of dimension 3. If N is symmetric, then $M^{\mathrm{T}} \cdot N \cdot M$ is symmetric.
- (8) Let us consider a square matrix M over \mathbb{R}_{F} of dimension 3, elements a, b, c, d, e, f, g, h, i, x, y, z of \mathbb{R}_{F} , an element v of $\mathcal{E}_{\mathrm{T}}^3$, a finite sequence u_{10} of elements of \mathbb{R}_{F} , and a finite sequence p of elements of \mathbb{R}^1 . Suppose $p = M \cdot u_{10}$ and $v = \mathrm{M2F}(p)$ and $M = \langle \langle a, b, c \rangle, \langle d, e, f \rangle, \langle g, h, i \rangle \rangle$ and $u_{10} = \langle x, y, z \rangle$. Then
 - (i) $p = \langle \langle a \cdot x + (b \cdot y) + (c \cdot z) \rangle, \langle d \cdot x + (e \cdot y) + (f \cdot z) \rangle, \langle g \cdot x + (h \cdot y) + (i \cdot z) \rangle \rangle,$ and

(ii)
$$v = \langle a \cdot x + (b \cdot y) + (c \cdot z), d \cdot x + (e \cdot y) + (f \cdot z), g \cdot x + (h \cdot y) + (i \cdot z) \rangle.$$

(9) Let us consider a square matrix M over \mathbb{R} of dimension 3, and elements $a, b, c, d, e, f, g, h, i, p_1, p_2, p_3$ of \mathbb{R} . Suppose $M = \langle \langle a, b, c \rangle, \langle d, e, f \rangle, \langle g, h, i \rangle \rangle$ and $p = \langle p_1, p_2, p_3 \rangle$. Then $M \cdot p = \langle a \cdot p_1 + (b \cdot p_2) + (c \cdot p_3), d \cdot p_1 + (e \cdot p_2) + (f \cdot p_3), g \cdot p_1 + (h \cdot p_2) + (i \cdot p_3) \rangle$.

2. Conic in Real Projective Plane

Let a, b, c, d, e, f be real numbers and u be an element of $\mathcal{E}_{\mathrm{T}}^3$. The functor $\operatorname{qfconic}(a, b, c, d, e, f, u)$ yielding a real number is defined by the term

 $(\text{Def. 1}) \quad a \cdot u(1) \cdot u(1) + (b \cdot u(2) \cdot u(2)) + (c \cdot u(3) \cdot u(3)) + (d \cdot u(1) \cdot u(2)) + (e \cdot u(1) \cdot u(3)) + (f \cdot u(2) \cdot u(3)).$

The functor conic(a, b, c, d, e, f) yielding a subset of the projective space over $\mathcal{E}^3_{\mathrm{T}}$ is defined by the term

(Def. 2) {P, where P is a point of the projective space over $\mathcal{E}_{\mathrm{T}}^3$: for every element u of $\mathcal{E}_{\mathrm{T}}^3$ such that u is not zero and P = the direction of u holds $\mathrm{qfconic}(a, b, c, d, e, f, u) = 0$ }.

In the sequel a, b, c, d, e, f denote real numbers, u, u_1, u_2 denote non zero elements of $\mathcal{E}_{\mathrm{T}}^3$, and P denotes an element of the projective space over $\mathcal{E}_{\mathrm{T}}^3$.

Now we state the propositions:

- (10) Suppose the direction of u_1 = the direction of u_2 and $\operatorname{qfconic}(a, b, c, d, e, f, u_1) = 0$. Then $\operatorname{qfconic}(a, b, c, d, e, f, u_2) = 0$.
- (11) If P = the direction of u and qfconic(a, b, c, d, e, f, u) = 0, then $P \in conic(a, b, c, d, e, f)$. The theorem is a consequence of (10).

Let a, b, c, d, e, f be real numbers. The functor symmetric3(a, b, c, d, e, f) yielding a square matrix over \mathbb{R}_{F} of dimension 3 is defined by the term (Def. 3) $\langle \langle a, d, e \rangle, \langle d, b, f \rangle, \langle e, f, c \rangle \rangle$.

Now we state the propositions:

- (12) symmetric3(a, b, c, d, e, f) is symmetric. The theorem is a consequence of (5).
- (13) Let us consider real numbers a, b, c, d, e, f, a point u of $\mathcal{E}_{\mathrm{T}}^{3}$, and a square matrix M over \mathbb{R} of dimension 3. Suppose p = u and M =symmetric3(a, b, c, d, e, f). Then SumAll QuadraticForm $(p, M, p) = \operatorname{qfconic}(a, b, c, 2 \cdot d, 2 \cdot e, 2 \cdot f, u)$.
- (14) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, square matrices N_1, M_1, M_2 over \mathbb{R} of dimension 3, and real numbers a, b, c, d, e, f. Suppose $N_1 = (\mathbb{R}_{\mathrm{F}} \to \mathbb{R})N$ and $M_1 = \mathrm{symmetric3}(a, b, c, \frac{d}{2}, \frac{f}{2}, \frac{e}{2})$ and $M_2 = (\mathbb{R}_{\mathrm{F}} \to \mathbb{R})((\mathbb{R} \to \mathbb{R}_{\mathrm{F}})N_1^{\mathrm{T}})^{\sim} \cdot M_1 \cdot (\mathbb{R}_{\mathrm{F}} \to \mathbb{R})((\mathbb{R} \to \mathbb{R}_{\mathrm{F}})N_1)^{\sim}$. Then $(\mathbb{R} \to \mathbb{R}_{\mathrm{F}})M_2$ is symmetric. PROOF: $((\mathbb{R} \to \mathbb{R}_{\mathrm{F}})N_1^{\mathrm{T}})^{\mathrm{T}} = (\mathbb{R} \to \mathbb{R}_{\mathrm{F}})N_1$ by [3, (16)]. $(\mathbb{R} \to \mathbb{R}_{\mathrm{F}})M_2$ is symmetric by [3, (16)], (12), (7). \Box
- (15) Let us consider real numbers a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , b_1 , b_2 , b_3 , b_4 , b_5 , b_6 . Suppose symmetric3 $(a_1, a_2, a_3, a_4, a_5, a_6) = \text{symmetric3}(b_1, b_2, b_3, b_4, b_5, b_6)$. Then
 - (i) $a_1 = b_1$, and
 - (ii) $a_2 = b_2$, and
 - (iii) $a_3 = b_3$, and
 - (iv) $a_4 = b_4$, and
 - (v) $a_5 = b_5$, and

(vi)
$$a_6 = b_6$$
.

The theorem is a consequence of (2).

- (16) Let us consider real numbers a, b, c, d, e, f, a point P of the projective space over $\mathcal{E}_{\mathrm{T}}^3$, and an invertible square matrix N over \mathbb{R}_{F} of dimension 3. Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0and e = 0 and f = 0. Suppose that $P \in \operatorname{conic}(a, b, c, d, e, f)$. Let us consider real numbers $f_5, f_{12}, f_{19}, f_{20}, f_{21}, f_{23}, f_{22}$, square matrices M_1 , M_2 over \mathbb{R} of dimension 3, and a square matrix N_1 over \mathbb{R} of dimension 3. Suppose $M_1 = \operatorname{symmetric3}(a, b, c, \frac{d}{2}, \frac{e}{2}, \frac{f}{2})$ and $N_1 = (\mathbb{R}_{\mathrm{F}} \to \mathbb{R})N$ and $M_2 = (\mathbb{R}_{\mathrm{F}} \to \mathbb{R})((\mathbb{R} \to \mathbb{R}_{\mathrm{F}})N_1^{\mathrm{T}})^{\sim} \cdot M_1 \cdot (\mathbb{R}_{\mathrm{F}} \to \mathbb{R})((\mathbb{R} \to \mathbb{R}_{\mathrm{F}})N_1)^{\sim}$ and $M_2 = \operatorname{symmetric3}(f_5, f_{21}, f_{23}, f_{12}, f_{19}, f_{22})$. Then
 - (i) it is not true that $f_5 = 0$ and $f_{21} = 0$ and $f_{23} = 0$ and $f_{12} = 0$ and $f_{22} = 0$ and $f_{19} = 0$, and

(ii) (the homography of N) $(P) \in \operatorname{conic}(f_5, f_{21}, f_{23}, 2 \cdot f_{12}, 2 \cdot f_{19}, 2 \cdot f_{22})$. PROOF: Consider Q being a point of the projective space over \mathcal{E}_T^3 such that P = Q and for every element u of \mathcal{E}_T^3 such that u is not zero

and Q = the direction of u holds qfconic(a, b, c, d, e, f, u) = 0. Reconsider $M = \text{symmetric3}(a, b, c, \frac{d}{2}, \frac{e}{2}, \frac{f}{2})$ as a square matrix over \mathbb{R} of dimension 3. Consider u_{19} , v_3 being elements of \mathcal{E}_{T}^3 , u_{17} being a finite sequence of elements of \mathbb{R}_{F} , p_{11} being a finite sequence of elements of \mathbb{R}^1 such that P = the direction of u_{19} and u_{19} is not zero and $u_{19} = u_{17}$ and $p_{11} = N \cdot u_{17}$ and $v_3 = M2F(p_{11})$ and v_3 is not zero and (the homography of N)(P) = the direction of v_3 . Reconsider $p_{10} = u_{19}$ as a finite sequence of elements of $\mathbb{R}. \text{ SumAll QuadraticForm}(p_{10}, M, p_{10}) = \operatorname{qfconic}(a, b, c, 2 \cdot \frac{d}{2}, 2 \cdot \frac{e}{2}, 2 \cdot \frac{f}{2}, u_{19}).$ Consider a_8 , b_8 , c_{11} , d_4 , e_5 , f_{24} , g_2 , h_2 , i_2 being elements of \mathbb{R}_F such that $N = \langle \langle a_8, b_8, c_{11} \rangle, \langle d_4, e_5, f_{24} \rangle, \langle g_2, h_2, i_2 \rangle \rangle$. Reconsider $u_{10} = u_{17}$ as a finite sequence of elements of \mathbb{R} . Reconsider $N_1 = (\mathbb{R}_F \to \mathbb{R})N$ as a square matrix over \mathbb{R} of dimension 3. Reconsider $M_2 = (\mathbb{R}_F \to \mathbb{R})((\mathbb{R} \to \mathbb{R}))$ $\mathbb{R}_{\mathrm{F}}(N_1^{\mathrm{T}})^{\sim} \cdot M \cdot (\mathbb{R}_{\mathrm{F}} \to \mathbb{R})((\mathbb{R} \to \mathbb{R}_{\mathrm{F}})N_1)^{\sim} \text{ as a square matrix over } \mathbb{R} \text{ of}$ dimension 3. $((\mathbb{R} \to \mathbb{R}_{\mathrm{F}})N_1^{\mathrm{T}})^{\mathrm{T}} = (\mathbb{R} \to \mathbb{R}_{\mathrm{F}})N_1$ by [3, (16)]. $(\mathbb{R} \to \mathbb{R}_{\mathrm{F}})M_2$ is symmetric by [3, (16)], (12), (7). Consider $m_1, m_2, m_3, m_4, m_5, m_6$, m_7, m_8, m_9 being elements of \mathbb{R}_F such that $M_2 = \langle \langle m_1, m_2, m_3 \rangle, \langle m_4, m_4 \rangle$ $(m_5, m_6), (m_7, m_8, m_9)$. $m_2 = m_4$ and $m_3 = m_7$ and $m_8 = m_6$. Reconsider $u_3 = N_1 \cdot u_{10}$ as an element of \mathcal{E}_T^3 . u_3 is not zero by [5, (24)], [14, (59), (86)]. Reconsider $u_2 = N_1 \cdot u_{10}$ as a non zero element of \mathcal{E}_T^3 . Reconsider $f_5 = m_1$, $f_{12} = m_2$, $f_{19} = m_3$, $f_{21} = m_5$, $f_{22} = m_6$, $f_{23} = m_9$ as a real number. $qfconic(f_5, f_{21}, f_{23}, 2 \cdot f_{12}, 2 \cdot f_{19}, 2 \cdot f_{22}, u_2) = 0$. It is not true that $f_5 = 0$ and $f_{21} = 0$ and $f_{23} = 0$ and $2 \cdot f_{12} = 0$ and $2 \cdot f_{22} = 0$ and $2 \cdot f_{19} = 0$. $u_2 = v_3$. For every real numbers u_{11} , $u_{12}, u_{13}, u_{14}, u_{15}, u_{18}, u_{16}$ and for every square matrices U_1, U_2 over \mathbb{R} of dimension 3 and for every square matrix U_3 over \mathbb{R} of dimension 3 such that $U_1 = \text{symmetric} 3(a, b, c, \frac{d}{2}, \frac{e}{2}, \frac{f}{2})$ and $U_3 = (\mathbb{R}_F \to \mathbb{R})N$ and $U_2 = (\mathbb{R}_F \to \mathbb{R})((\mathbb{R} \to \mathbb{R}_F)U_3^T) \check{-} \check{U}_1 \check{-} (\mathbb{R}_F \to \mathbb{R})((\mathbb{R} \to \mathbb{R}_F)U_3) \check{-}$ and $U_2 = \text{symmetric3}(u_{11}, u_{15}, u_{18}, u_{12}, u_{13}, u_{16})$ holds it is not true that $u_{11} = 0$ and $u_{15} = 0$ and $u_{18} = 0$ and $u_{12} = 0$ and $u_{16} = 0$ and $u_{13} = 0$. (the homography of N)(P) \in conic($u_{11}, u_{15}, u_{18}, 2 \cdot u_{12}, 2 \cdot u_{13}, 2 \cdot u_{16}$). \Box

- (17) Let us consider real numbers a, b, c, d, e, f, points $P_1, P_2, P_3, P_4, P_5, P_6$ of the projective space over \mathcal{E}_T^3 , and an invertible square matrix N over \mathbb{R}_F of dimension 3. Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and e = 0 and f = 0. Suppose that $P_1, P_2, P_3, P_4, P_5, P_6 \in \text{conic}(a, b, c, d, e, f)$. Then there exist real numbers $a_2, b_2, c_2, d_2, e_2, f_2$ such that
 - (i) it is not true that $a_2 = 0$ and $b_2 = 0$ and $c_2 = 0$ and $d_2 = 0$ and $e_2 = 0$ and $f_2 = 0$, and
 - (ii) (the homography of N)(P_1), (the homography of N)(P_2),

(the homography of N)(P_3), (the homography of N)(P_4), (the homography of N)(P_5), (the homography of N)(P_6) \in conic($a_2, b_2, c_2, d_2, e_2, f_2$).

The theorem is a consequence of (3), (14), (6), and (16).

From now on a, b, c, d, e, f, g, h, i denote elements of \mathbb{R}_{F} . Now we state the proposition:

(18) (i) if
$$qfconic(a, b, c, d, e, f, [1, 0, 0]) = 0$$
, then $a = 0$, and

- (ii) if qfconic(a, b, c, d, e, f, [0, 1, 0]) = 0, then b = 0, and
- (iii) if qfconic(a, b, c, d, e, f, [0, 0, 1]) = 0, then c = 0, and
- (iv) if qfconic(0, 0, 0, d, e, f, [1, 1, 1]) = 0, then d + e + f = 0.

3. Pascal's Theorem

In the sequel M denotes a square matrix over \mathbb{R}_{F} of dimension 3, e_1 , e_2 , e_3 , f_1 , f_2 , f_3 denote elements of \mathbb{R}_{F} , M_8 , M_{14} , M_{20} , M_{21} , M_{22} , M_{19} , M_{13} , M_{10} , M_9 , M_{12} , M_{16} , M_{17} , M_{11} , M_{15} , M_{18} denote square matrices over \mathbb{R}_{F} of dimension 3, and r_1 , r_2 denote real numbers.

Now we state the proposition:

(19) Suppose $M_9 = \langle \langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle e_1, e_2, e_3 \rangle \rangle$ and $M_{12} = \langle \langle 1, 0, 0 \rangle, \langle 0, 0, 1 \rangle, \langle f_1, f_2, f_3 \rangle \rangle$ and $M_{16} = \langle \langle 0, 1, 0 \rangle, \langle 1, 1, 1 \rangle, \langle f_1, f_2, f_3 \rangle \rangle$ and $M_{17} = \langle \langle 0, 0, 1 \rangle, \langle 1, 1, 1 \rangle, \langle e_1, e_2, e_3 \rangle \rangle$ and $M_{10} = \langle \langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle f_1, f_2, f_3 \rangle \rangle$ and $M_{11} = \langle \langle 1, 0, 0 \rangle, \langle 0, 0, 1 \rangle, \langle e_1, e_2, e_3 \rangle \rangle$ and $M_{15} = \langle \langle 0, 1, 0 \rangle, \langle 1, 1, 1 \rangle, \langle e_1, e_2, e_3 \rangle \rangle$ and $M_{15} = \langle \langle 0, 1, 0 \rangle, \langle 1, 1, 1 \rangle, \langle e_1, e_2, e_3 \rangle \rangle$ and $M_{18} = \langle \langle 0, 0, 1 \rangle, \langle 1, 1, 1 \rangle, \langle f_1, f_2, f_3 \rangle \rangle$ and $(r_1 \neq 0 \text{ or } r_2 \neq 0)$ and $r_1 \cdot e_1 \cdot e_2 + (r_2 \cdot e_1 \cdot e_3) = r_1 + r_2 \cdot e_2 \cdot e_3$ and $r_1 \cdot f_1 \cdot f_2 + (r_2 \cdot f_1 \cdot f_3) = r_1 + r_2 \cdot f_2 \cdot f_3$. Then Det $M_9 \cdot$ Det $M_{12} \cdot$ Det $M_{16} \cdot$ Det $M_{17} =$ Det $M_{10} \cdot$ Det $M_{11} \cdot$ Det $M_{15} \cdot$ Det M_{18} .

In the sequel p_1 , p_2 , p_3 , p_4 , p_5 , p_6 denote points of $\mathcal{E}_{\mathrm{T}}^3$.

- (20) Suppose $M_9 = \langle p_1, p_2, p_5 \rangle$ and $M_{12} = \langle p_1, p_3, p_6 \rangle$ and $M_{16} = \langle p_2, p_4, p_6 \rangle$ and $M_{17} = \langle p_3, p_4, p_5 \rangle$ and $M_{10} = \langle p_1, p_2, p_6 \rangle$ and $M_{11} = \langle p_1, p_3, p_5 \rangle$ and $M_{15} = \langle p_2, p_4, p_5 \rangle$ and $M_{18} = \langle p_3, p_4, p_6 \rangle$. Then
 - (i) Det $M_9 = \langle |p_1, p_2, p_5| \rangle$, and
 - (ii) Det $M_{12} = \langle |p_1, p_3, p_6| \rangle$, and
 - (iii) Det $M_{16} = \langle |p_2, p_4, p_6| \rangle$, and
 - (iv) Det $M_{17} = \langle |p_3, p_4, p_5| \rangle$, and
 - (v) Det $M_{10} = \langle |p_1, p_2, p_6| \rangle$, and
 - (vi) Det $M_{11} = \langle |p_1, p_3, p_5| \rangle$, and
 - (vii) Det $M_{15} = \langle |p_2, p_4, p_5| \rangle$, and

(viii) Det $M_{18} = \langle |p_3, p_4, p_6| \rangle$.

From now on p_7 , p_8 , p_9 denote points of $\mathcal{E}_{\mathrm{T}}^3$.

- (21) Suppose $\langle |p_1, p_5, p_9| \rangle = 0$. Then $\langle |p_1, p_5, p_7| \rangle \cdot \langle |p_2, p_5, p_9| \rangle = -(\langle |p_1, p_2, p_5| \rangle \cdot \langle |p_5, p_9, p_7| \rangle)$. The theorem is a consequence of (1).
- (22) Suppose $\langle |p_1, p_6, p_8| \rangle = 0$. Then $\langle |p_1, p_2, p_6| \rangle \cdot \langle |p_3, p_6, p_8| \rangle = \langle |p_1, p_3, p_6| \rangle \cdot \langle |p_2, p_6, p_8| \rangle$. The theorem is a consequence of (1).
- (23) Suppose $\langle |p_2, p_4, p_9| \rangle = 0$. Then $\langle |p_2, p_4, p_5| \rangle \cdot \langle |p_2, p_9, p_7| \rangle = -(\langle |p_2, p_4, p_7| \rangle \cdot \langle |p_2, p_5, p_9| \rangle).$
- (24) Suppose $\langle |p_2, p_6, p_7| \rangle = 0$. Then $\langle |p_2, p_4, p_7| \rangle \cdot \langle |p_2, p_6, p_8| \rangle = -(\langle |p_2, p_4, p_6| \rangle \cdot \langle |p_2, p_8, p_7| \rangle).$
- (25) Suppose $\langle |p_3, p_4, p_8| \rangle = 0$. Then $\langle |p_3, p_4, p_6| \rangle \cdot \langle |p_3, p_5, p_8| \rangle = \langle |p_3, p_4, p_5| \rangle \cdot \langle |p_3, p_6, p_8| \rangle$.
- (26) Suppose $\langle |p_3, p_5, p_7| \rangle = 0$. Then $\langle |p_1, p_3, p_5| \rangle \cdot \langle |p_5, p_8, p_7| \rangle = -(\langle |p_1, p_5, p_7| \rangle \cdot \langle |p_3, p_5, p_8| \rangle)$. The theorem is a consequence of (1).
- (27) Let us consider non zero real numbers r_{125} , r_{136} , r_{246} , r_{345} , r_{126} , r_{135} , r_{245} , r_{346} , r_{157} , r_{259} , r_{597} , r_{368} , r_{268} , r_{297} , r_{247} , r_{287} , r_{358} , r_{587} . Suppose $r_{125} \cdot r_{136} \cdot r_{246} \cdot r_{345} = r_{126} \cdot r_{135} \cdot r_{245} \cdot r_{346}$ and $r_{157} \cdot r_{259} = -(r_{125} \cdot r_{597})$ and $r_{126} \cdot r_{368} = r_{136} \cdot r_{268}$ and $r_{245} \cdot r_{297} = -(r_{247} \cdot r_{259})$ and $r_{247} \cdot r_{268} = -(r_{246} \cdot r_{287})$ and $r_{346} \cdot r_{358} = r_{345} \cdot r_{368}$ and $r_{135} \cdot r_{587} = -(r_{157} \cdot r_{358})$. Then $r_{287} \cdot r_{597} = r_{297} \cdot r_{587}$.
- (28) Suppose $p_1 = \langle 1, 0, 0 \rangle$ and $p_2 = \langle 0, 1, 0 \rangle$ and $p_3 = \langle 0, 0, 1 \rangle$ and $p_4 = \langle 1, 1, 1 \rangle$ 1) and $p_5 = \langle e_1, e_2, e_3 \rangle$ and $p_6 = \langle f_1, f_2, f_3 \rangle$ and qfconic(0, 0, 0, $r_1, r_2, -(r_1 + r_2), p_5) = 0$ and qfconic(0, 0, 0, $r_1, r_2, -(r_1 + r_2), p_6) = 0$. Then
 - (i) qfconic $(0, 0, 0, r_1, r_2, -(r_1 + r_2), p_1) = 0$, and
 - (ii) qfconic $(0, 0, 0, r_1, r_2, -(r_1 + r_2), p_2) = 0$, and
 - (iii) qfconic $(0, 0, 0, r_1, r_2, -(r_1 + r_2), p_3) = 0$, and
 - (iv) $\operatorname{qfconic}(0, 0, 0, r_1, r_2, -(r_1 + r_2), p_4) = 0$, and
 - (v) $r_1 \cdot e_1 \cdot e_2 + (r_2 \cdot e_1 \cdot e_3) = r_1 + r_2 \cdot e_2 \cdot e_3$, and
 - (vi) $r_1 \cdot f_1 \cdot f_2 + (r_2 \cdot f_1 \cdot f_3) = r_1 + r_2 \cdot f_2 \cdot f_3.$
- (29) Suppose $p_1 = \langle 1, 0, 0 \rangle$ and $p_2 = \langle 0, 1, 0 \rangle$ and $p_3 = \langle 0, 0, 1 \rangle$ and $p_4 = \langle 1, 1, 1 \rangle$ and $p_5 = \langle e_1, e_2, e_3 \rangle$ and $p_6 = \langle f_1, f_2, f_3 \rangle$ and $\langle |p_1, p_2, p_5| \rangle \neq 0$ and $\langle |p_1, p_3, p_6| \rangle \neq 0$ and $\langle |p_2, p_4, p_6| \rangle \neq 0$ and $\langle |p_3, p_4, p_5| \rangle \neq 0$ and $\langle |p_1, p_2, p_6| \rangle \neq 0$ and $\langle |p_1, p_3, p_5| \rangle \neq 0$ and $\langle |p_2, p_4, p_5| \rangle \neq 0$ and $\langle |p_3, p_4, p_6| \rangle \neq 0$ and $\langle |p_1, p_5, p_7| \rangle \neq 0$ and $\langle |p_2, p_5, p_9| \rangle \neq 0$ and $\langle |p_5, p_9, p_7| \rangle \neq 0$ and $\langle |p_2, p_4, p_7| \rangle \neq 0$ and $\langle |p_2, p_8, p_7| \rangle \neq 0$ and $\langle |p_3, p_5, p_8| \rangle \neq 0$ and $\langle |p_5, p_8, p_7| \rangle \neq 0$ and $\langle |p_2, p_8, p_7| \rangle \neq 0$ and $\langle |p_5, p_8, p_8| \rangle \neq 0$ and $\langle |p_5, p_8| \rangle = 0$ and $\langle |p_5, p_8| \rangle = 0$ and $\langle |p_5| p_8| \rangle = 0$ and $\langle |p_5| p_8| p_8| \rangle = 0$

 $\neq 0 \text{ and } (r_1 \neq 0 \text{ or } r_2 \neq 0) \text{ and } qfconic(0, 0, 0, r_1, r_2, -(r_1 + r_2), p_5) = 0 \text{ and } qfconic(0, 0, 0, r_1, r_2, -(r_1 + r_2), p_6) = 0 \text{ and } \langle |p_1, p_5, p_9| \rangle = 0 \text{ and } \langle |p_1, p_5, p_8| \rangle = 0 \text{ and } \langle |p_2, p_4, p_9| \rangle = 0 \text{ and } \langle |p_2, p_6, p_7| \rangle = 0 \text{ and } \langle |p_3, p_4, p_8| \rangle = 0 \text{ and } \langle |p_3, p_5, p_7| \rangle = 0. \text{ Then } \langle |p_2, p_8, p_7| \rangle \cdot \langle |p_5, p_9, p_7| \rangle = \langle |p_2, p_9, p_7| \rangle \cdot \langle |p_5, p_8, p_7| \rangle. \text{ The theorem is a consequence of } (20), (28), (19), (21), (22), (23), (24), (25), (26), \text{ and } (27).$

- (30) Suppose $\langle |p_2, p_8, p_7| \rangle \cdot \langle |p_5, p_9, p_7| \rangle = \langle |p_2, p_9, p_7| \rangle \cdot \langle |p_5, p_8, p_7| \rangle$. Then $\langle |p_7, p_2, p_5| \rangle \cdot \langle |p_7, p_8, p_9| \rangle = 0$. The theorem is a consequence of (1).
- (31) Let us consider a projective space P_{10} defined in terms of collinearity, and elements c_1 , c_2 , c_3 , c_4 , c_5 , c_6 , c_7 , c_8 , c_9 of P_{10} . Suppose c_1 , c_2 and c_4 are not collinear and c_1 , c_2 and c_5 are not collinear and c_1 , c_6 and c_4 are not collinear and c_1 , c_6 and c_5 are not collinear and c_2 , c_6 and c_4 are not collinear and c_3 , c_4 and c_2 are not collinear and c_3 , c_4 and c_6 are not collinear and c_3 , c_5 and c_2 are not collinear and c_3 , c_5 and c_6 are not collinear and c_4 , c_5 and c_2 are not collinear and c_1 , c_4 and c_7 are collinear and c_1 , c_5 and c_8 are collinear and c_2 , c_3 and c_7 are collinear and c_2 , c_5 and c_9 are collinear and c_6 , c_3 and c_8 are collinear and c_6 , c_4 and c_9 are collinear. Then
 - (i) c_9 , c_2 and c_4 are not collinear, and
 - (ii) c_1, c_4 and c_9 are not collinear, and
 - (iii) c_2 , c_3 and c_9 are not collinear, and
 - (iv) c_2 , c_4 and c_7 are not collinear, and
 - (v) c_2 , c_5 and c_8 are not collinear, and
 - (vi) c_2 , c_9 and c_8 are not collinear, and
 - (vii) c_2 , c_9 and c_7 are not collinear, and
 - (viii) c_6 , c_4 and c_8 are not collinear, and
 - (ix) c_6 , c_5 and c_8 are not collinear, and
 - (x) c_4 , c_9 and c_8 are not collinear, and
 - (xi) c_4 , c_9 and c_7 are not collinear.

PROOF: For every elements v_{102} , v_{103} , v_{100} , v_{104} of P_{10} , $v_{100} = v_{104}$ or v_{104} , v_{100} and v_{102} are not collinear or v_{104} , v_{100} and v_{103} are not collinear or v_{102} , v_{103} and v_{104} are collinear by [13, (5), (3)]. For every elements v_{102} , v_{104} , v_{100} , v_{103} of P_{10} , $v_{100} = v_{103}$ or v_{103} , v_{100} and v_{102} are not collinear or v_{103} , v_{100} and v_{104} are not collinear or v_{102} , v_{103} and v_{104} are collinear by [13, (5), (3)]. For every elements v_{102} , v_{103} , v_{104} , v_{101} of P_{10} , $v_{104} = v_{101}$ or v_{101} , v_{104} and v_{102} are not collinear or v_{101} , v_{104} and v_{103} are not collinear or v_{102} , v_{103} and v_{104} are collinear by [13, (2), (3)]. For every elements v_{103} , $v_{104}, v_{102}, v_{101}$ of $P_{10}, v_{102} = v_{101}$ or v_{101}, v_{102} and v_{103} are not collinear or v_{101}, v_{102} and v_{104} are not collinear or v_{102}, v_{103} and v_{104} are collinear by [13, (2), (3)]. For every elements v_2, v_{101}, v_{100} of $P_{10}, v_{101} = v_{100}$ or v_{100}, v_{101} and v_2 are not collinear or v_2, v_{101} and v_{100} are collinear by [13, (2)]. \Box

In the sequel P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 , P_9 denote points of the projective space over \mathcal{E}_T^3 and a, b, c, d, e, f denote real numbers.

Let P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 , P_9 be points of the projective space over $\mathcal{E}^3_{\mathrm{T}}$. We say that P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 , P_9 form the Pascal configuration if and only if

- (Def. 4) P_1 , P_2 and P_4 are not collinear and P_1 , P_3 and P_4 are not collinear and P_2 , P_3 and P_4 are not collinear and P_1 , P_2 and P_5 are not collinear and P_1 , P_2 and P_6 are not collinear and P_1 , P_3 and P_5 are not collinear and P_1 , P_3 and P_6 are not collinear and P_2 , P_4 and P_5 are not collinear and P_2 , P_4 and P_6 are not collinear and P_3 , P_4 and P_5 are not collinear and P_3 , P_4 and P_6 are not collinear and P_2 , P_3 and P_6 are not collinear and P_2 , P_3 and P_6 are not collinear and P_2 , P_3 and P_6 are not collinear and P_4 , P_5 and P_5 are not collinear and P_2 , P_3 and P_6 are not collinear and P_4 , P_5 and P_1 are not collinear and P_4 , P_6 and P_1 are not collinear and P_5 , P_6 and P_1 are not collinear and P_5 , P_6 and P_1 are not collinear and P_1 , P_5 and P_9 are collinear and P_1 , P_6 and P_8 are collinear and P_2 , P_4 and P_8 are collinear and P_2 , P_4 and P_7 are collinear and P_3 , P_4 and P_3 , P_4 and P_8 are collinear and P_2 , P_4 and P_7 are collinear. Now we state the propositions:
 - (32) Suppose P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 , P_9 form the Pascal configuration. Then
 - (i) P_7 , P_2 and P_5 are not collinear, and
 - (ii) P_1 , P_5 and P_7 are not collinear, and
 - (iii) P_2 , P_4 and P_7 are not collinear, and
 - (iv) P_2 , P_5 and P_9 are not collinear, and
 - (v) P_2 , P_6 and P_8 are not collinear, and
 - (vi) P_2 , P_7 and P_8 are not collinear, and
 - (vii) P_2 , P_7 and P_9 are not collinear, and
 - (viii) P_3 , P_5 and P_8 are not collinear, and
 - (ix) P_3 , P_6 and P_8 are not collinear, and
 - (x) P_5 , P_7 and P_8 are not collinear, and
 - (xi) P_5 , P_7 and P_9 are not collinear.

The theorem is a consequence of (31).

Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and e = 0(33)and f = 0. Suppose that $\{P_1, P_2, P_3, P_4, P_5, P_6\} \subseteq \operatorname{conic}(a, b, c, d, e, f)$ and P_1 , P_2 and P_3 are not collinear and P_1 , P_2 and P_4 are not collinear and P_1 , P_3 and P_4 are not collinear and P_2 , P_3 and P_4 are not collinear and P_7 , P_2 and P_5 are not collinear and P_1 , P_2 and P_5 are not collinear and P_1 , P_2 and P_6 are not collinear and P_1 , P_3 and P_5 are not collinear and P_1 , P_3 and P_6 are not collinear and P_1 , P_5 and P_7 are not collinear and P_2 , P_4 and P_5 are not collinear and P_2 , P_4 and P_6 are not collinear and P_2 , P_4 and P_7 are not collinear and P_2 , P_5 and P_9 are not collinear and P_2 , P_6 and P_8 are not collinear and P_2 , P_7 and P_8 are not collinear and P_2 , P_7 and P_9 are not collinear and P_3 , P_4 and P_5 are not collinear and P_3 , P_4 and P_6 are not collinear and P_3 , P_5 and P_8 are not collinear and P_3 , P_6 and P_8 are not collinear and P_5 , P_7 and P_8 are not collinear and P_5 , P_7 and P_9 are not collinear and P_1 , P_5 and P_9 are collinear and P_1 , P_6 and P_8 are collinear and P_2 , P_4 and P_9 are collinear and P_2 , P_6 and P_7 are collinear and P_3 , P_4 and P_8 are collinear and P_3 , P_5 and P_7 are collinear. Then P_7 , P_8 and P_9 are collinear.

PROOF: Consider N being an invertible square matrix over \mathbb{R}_{F} of dimension 3 such that (the homography of N)(P_1) = Dir100 and (the homography of $N(P_2) = \text{Dir}010$ and (the homography of $N(P_3) = \text{Dir}001$ and (the homography of $N(P_4)$ = Dir111. Consider u_5 being a point of \mathcal{E}_T^3 such that u_5 is not zero and (the homography of $N(P_5)$) = the direction of u_5 . Reconsider $p_{51} = u_5(1)$, $p_{52} = u_5(2)$, $p_{53} = u_5(3)$ as a real number. Consider u_6 being a point of \mathcal{E}^3_T such that u_6 is not zero and (the homography of $N(P_6)$ = the direction of u_6 . Reconsider $p_{61} = u_6(1), p_{62} = u_6(2),$ $p_{63} = u_6(3)$ as a real number. Consider u_7 being a point of \mathcal{E}_T^3 such that u_7 is not zero and (the homography of $N(P_7)$) = the direction of u_7 . Reconsider $p_{71} = u_7(1), p_{72} = u_7(2), p_{73} = u_7(3)$ as a real number. Consider u_8 being a point of \mathcal{E}_T^3 such that u_8 is not zero and (the homography) of $N(P_8)$ = the direction of u_8 . Reconsider $p_{81} = u_8(1), p_{82} = u_8(2),$ $p_{83} = u_8(3)$ as a real number. Consider u_9 being a point of \mathcal{E}_T^3 such that u_9 is not zero and (the homography of $N(P_9)$) = the direction of u_9 . Reconsider $p_{91} = u_9(1), p_{92} = u_9(2), p_{93} = u_9(3)$ as a real number. Consider $a_2, b_2, c_2, d_2, e_2, f_2$ being real numbers such that it is not true that $a_2 = 0$ and $b_2 = 0$ and $c_2 = 0$ and $d_2 = 0$ and $e_2 = 0$ and $f_2 = 0$. (the homography of $N(P_1) \in \operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$ and (the homography of $N(P_2) \in$ $\operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$ and (the homography of N)(P₃) $\in \operatorname{conic}(a_2, b_2, c_2, f_2)$ d_2, e_2, f_2 and (the homography of N) $(P_4) \in \operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$ and (the homography of N) $(P_5) \in \operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$ and (the homography of $N(P_6) \in \operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$. Consider P being a point of the projective space over \mathcal{E}_{T}^{3} such that the direction of [1,0,0] = P and for every element u of \mathcal{E}_{T}^{3} such that u is not zero and P = the direction of u holds $qfconic(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, u) = 0$. $qfconic(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [1,0,0]) = 0$ and $qfconic(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [0,1,0]) = 0$ and $qfconic(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [0,1,0]) = 0$ and $qfconic(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [0,0,1]) = 0$ and $qfconic(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [1,1,1]) = 0$ and $qfconic(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [p_{61}, p_{62}, p_{63}])$ = 0 by [4, (10)], [8, (3)]. Reconsider $a_{7} = a_{2}, b_{7} = b_{2}, c_{10} = c_{2}, d_{3} = d_{2},$ $e_{4} = e_{2}, f_{4} = f_{2}$ as an element of \mathbb{R}_{F} . $a_{7} = 0$ and $b_{7} = 0$ and $c_{10} =$ 0. $a_{7} = 0$ and $b_{7} = 0$ and $c_{10} = 0$ and $d_{3} + e_{4} + f_{4} = 0$. Reconsider $p_{2} = \langle 0, 1, 0 \rangle, p_{5} = \langle p_{51}, p_{52}, p_{53} \rangle, p_{7} = \langle p_{71}, p_{72}, p_{73} \rangle, p_{8} = \langle p_{81}, p_{82}, p_{83} \rangle,$ $p_{9} = \langle p_{91}, p_{92}, p_{93} \rangle$ as a point of \mathcal{E}_{T}^{3} . $\langle |p_{7}, p_{2}, p_{5}| \rangle \neq 0$ by [3, (102)], [8, (3)],[3, (43)], [4, (10)]. $\langle |p_{2}, p_{8}, p_{7}| \rangle \cdot \langle |p_{5}, p_{9}, p_{7}| \rangle = \langle |p_{2}, p_{9}, p_{7}| \rangle \cdot \langle |p_{5}, p_{8}, p_{7}| \rangle.$ $\langle |p_{7}, p_{2}, p_{5}| \rangle \cdot \langle |p_{7}, p_{8}, p_{9}| \rangle = 0$. \Box

(34) Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and e = 0and f = 0. Suppose that $\{P_1, P_2, P_3, P_4, P_5, P_6\} \subseteq \operatorname{conic}(a, b, c, d, e, f)$ and P_1, P_2 and P_3 are not collinear and $P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9$ form the Pascal configuration. Then P_7, P_8 and P_9 are collinear. The theorem is a consequence of (32) and (33).

Note that $\mathcal{E}_{\mathrm{T}}^3$ is up 3-dimensional.

(35) Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and e = 0and f = 0. Suppose that $\{P_1, P_2, P_3, P_4, P_5, P_6\} \subseteq \text{conic}(a, b, c, d, e, f)$ and P_1 , P_2 and P_3 are collinear and P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 , P_9 form the Pascal configuration. Then P_7 , P_8 and P_9 are collinear. **PROOF:** Consider N being an invertible square matrix over \mathbb{R}_{F} of dimension 3 such that (the homography of $N(P_1) = \text{Dir}100$ and (the homography of $N(P_2) = \text{Dir}010$ and (the homography of $N(P_4) = \text{Dir}001$ and (the homography of $N(P_5) = \text{Dir}111$. Consider u_3 being a point of \mathcal{E}_T^3 such that u_3 is not zero and (the homography of $N(P_3)$) = the direction of u_3 . Reconsider $p_{31} = u_3(1)$, $p_{32} = u_3(2)$, $p_{33} = u_3(3)$ as a real number. Consider u_6 being a point of \mathcal{E}^3_T such that u_6 is not zero and (the homography of $N(P_6)$ = the direction of u_6 . Reconsider $p_{61} = u_6(1), p_{62} = u_6(2),$ $p_{63} = u_6(3)$ as a real number. Consider $a_2, b_2, c_2, d_2, e_2, f_2$ being real numbers such that it is not true that $a_2 = 0$ and $b_2 = 0$ and $c_2 = 0$ and $d_2 = 0$ and $e_2 = 0$ and $f_2 = 0$ and (the homography of $N)(P_1) \in$ $\operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$ and (the homography of N) $(P_2) \in \operatorname{conic}(a_2, b_2, c_2, f_2)$ (d_2, e_2, f_2) and (the homography of N) $(P_3) \in \operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$ and (the homography of N) $(P_4) \in \operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$ and (the homography of $N(P_5) \in \operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$ and (the homography of $N(P_6) \in$ $\operatorname{conic}(a_2, b_2, c_2, d_2, e_2, f_2)$. Consider P being a point of the projective space over $\mathcal{E}_{\mathrm{T}}^3$ such that the direction of [1,0,0] = P and for every element u of $\mathcal{E}_{\mathrm{T}}^{3}$ such that u is not zero and P = the direction of u holds qfconic $(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, u) = 0$. qfconic $(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [1, 0, 0]) = 0$ and qfconic $(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [0, 1, 0]) = 0$ and qfconic $(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [0, 0, 1]) = 0$ and qfconic $(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [1, 1, 1]) = 0$ and qfconic $(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [0, 0, 1]) = 0$ and qfconic $(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [1, 1, 1]) = 0$ and qfconic $(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [p_{31}, p_{32}, p_{33}]) = 0$ and qfconic $(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}, [p_{61}, p_{62}, p_{63}])$ = 0 by [4, (10)], [8, (3)]. Reconsider $a_{7} = a_{2}, b_{7} = b_{2}, c_{10} = c_{2}, d_{3} = d_{2},$ $e_{4} = e_{2}, f_{4} = f_{2}$ as an element of \mathbb{R}_{F} . $a_{7} = 0$ and $b_{7} = 0$ and $c_{10} = 0$. $a_{7} = 0$ and $b_{7} = 0$ and $c_{10} = 0$ and $d_{3} + e_{4} + f_{4} = 0$. Reconsider $p_{1} = \langle 1, 0, 0 \rangle, p_{2} = \langle 0, 1, 0 \rangle, p_{3} = \langle p_{31}, p_{32}, p_{33} \rangle$ as a point of $\mathcal{E}_{\mathrm{T}}^{3}$. $\langle |p_{1}, p_{2}, p_{3}| \rangle = 0$ by [3, (102)], [10, (23)], [9, (25)], [4, (10)]. $p_{31} \neq 0$ and $p_{32} \neq 0$ by [8, (2), (8), (4)]. \Box

(36) PASCAL'S THEOREM:

Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and e = 0and f = 0. Suppose that $\{P_1, P_2, P_3, P_4, P_5, P_6\} \subseteq \operatorname{conic}(a, b, c, d, e, f)$ and $P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9$ form the Pascal configuration. Then P_7 , P_8 and P_9 are collinear. The theorem is a consequence of (35) and (34).

References

- [1] Jesse Alama. Escape to Mizar for ATPs. arXiv preprint arXiv:1204.6615, 2012.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- Roland Coghetto. Homography in ℝP². Formalized Mathematics, 24(4):239–251, 2016. doi:10.1515/forma-2016-0020.
- [4] Roland Coghetto. Group of homography in real projective plane. Formalized Mathematics, 25(1):55–62, 2017. doi:10.1515/forma-2017-0005.
- [5] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [6] Adam Grabowski. Solving two problems in general topology via types. In Types for Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18, 2004, Revised Selected Papers, pages 138–153, 2004. doi:10.1007/11617990_9.
- [7] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5.
- [8] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. *Formalized Mathematics*, 11(4):381–383, 2003.
- [9] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. *Formalized Mathematics*, 1(4):761–766, 1990.
- [10] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part I. Formalized Mathematics, 1(4):767–776, 1990.
- Jürgen Richter-Gebert. Pappos's Theorem: Nine Proofs and Three Variations, pages 3–31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi:10.1007/978-3-642-17286-1_1.
- [12] Piotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.
- [13] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657–659, 1990.

[14] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127–136, 2007. doi:10.2478/v10037-007-0014-7.

Received June 27, 2017

The English version of this volume of Formalized Mathematics was financed under agreement 548/P-DUN/2016 with the funds from the Polish Minister of Science and Higher Education for the dissemination of science.