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Pascal’s Theorem in Real Projective Plane

Roland Coghetto
Rue de la Brasserie 5

7100 La Louvière, Belgium

Summary. In this article we check, with the Mizar system [2], the Pascal’s
theorem in the real projective plane (in projective geometry Pascal’s theorem also
is known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is the
special case of a degenerate conic of two lines.

For proving the Pascal’s theorem, we use the technics developped in the sec-
tion “Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem:
Nine proofs and three variations” [11]. We also follow some ideas from Harrison’s
work. With HOL Light, he has the proof of the Pascal theorem 2. For a lemma,
we use PROVER93 and OTT2MIZ by Josef Urban4 [12, 6, 7]. We note, that we don’t
use Skolem/Herbrand functions (see “Skolemization” in [1]).
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1. Preliminaries

From now on n denotes a natural number, K denotes a field, a, b, c, d, e, f ,
g, h, i, a1, b1, c1, d1, e1, f1, g1, h1, i1 denote elements of K,M , N denote square
matrices over K of dimension 3, and p denotes a finite sequence of elements of
R.

Now we state the propositions:

(1) Let us consider points p, q, r of E3T. Then

1https://en.wikipedia.org/wiki/Pascal’s theorem
2https://github.com/jrh13/hol-light/tree/master/100/pascal.ml
3https://www.cs.unm.edu/˜mccune/prover9/
4https://github.com/JUrban/ott2miz
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(i) 〈|p, q, r|〉 = 〈|r, p, q|〉, and

(ii) 〈|p, q, r|〉 = 〈|q, r, p|〉.
(2) Suppose 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉 = 〈〈a1, b1, c1〉, 〈d1, e1, f1〉, 〈g1, h1, i1〉〉.

Then

(i) a = a1, and

(ii) b = b1, and

(iii) c = c1, and

(iv) d = d1, and

(v) e = e1, and

(vi) f = f1, and

(vii) g = g1, and

(viii) h = h1, and

(ix) i = i1.

(3) There exists a and there exists b and there exists c and there exists d
and there exists e and there exists f and there exists g and there exists h
and there exists i such that M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉.

(4) Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Then

(i) a =M1,1, and

(ii) b =M1,2, and

(iii) c =M1,3, and

(iv) d =M2,1, and

(v) e =M2,2, and

(vi) f =M2,3, and

(vii) g =M3,1, and

(viii) h =M3,2, and

(ix) i =M3,3.

(5) Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Then MT = 〈〈a, d, g〉, 〈b, e, h〉,
〈c, f, i〉〉. The theorem is a consequence of (4) and (3).

(6) Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉 and M is symmetric. Then

(i) b = d, and

(ii) c = g, and

(iii) h = f .

The theorem is a consequence of (5) and (2).
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(7) Let us consider square matrices M , N over RF of dimension 3. If N is
symmetric, then MT ·N ·M is symmetric.

(8) Let us consider a square matrix M over RF of dimension 3, elements a,
b, c, d, e, f , g, h, i, x, y, z of RF, an element v of E3T, a finite sequence
u10 of elements of RF, and a finite sequence p of elements of R1. Suppose
p = M · u10 and v = M2F(p) and M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉 and
u10 = 〈x, y, z〉. Then

(i) p = 〈〈a · x+ b · y+ c · z〉, 〈d · x+ e · y+ f · z〉, 〈g · x+ h · y+ i · z〉〉, and

(ii) v = 〈a · x+ b · y + c · z, d · x+ e · y + f · z, g · x+ h · y + i · z〉.

(9) Let us consider a square matrix M over R of dimension 3, and elements
a, b, c, d, e, f , g, h, i, p1, p2, p3 of R. SupposeM = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h,
i〉〉 and p = 〈p1, p2, p3〉. ThenM ·p = 〈a·p1+b·p2+c·p3, d·p1+e·p2+f ·p3,
g · p1 + h · p2 + i · p3〉.

2. Conic in Real Projective Plane

Let a, b, c, d, e, f be real numbers and u be an element of E3T. The functor
qfconic(a, b, c, d, e, f, u) yielding a real number is defined by the term

(Def. 1) a · u(1) · u(1) + b · u(2) · u(2) + c · u(3) · u(3) + d · u(1) · u(2) + e · u(1) ·
u(3) + f · u(2) · u(3).

The functor conic(a, b, c, d, e, f) yielding a subset of the projective space

over E3T is defined by the term

(Def. 2) {P , where P is a point of the projective space over E3T : for every ele-
ment u of E3T such that u is not zero and P = the direction of u holds
qfconic(a, b, c, d, e, f, u) = 0}.

In the sequel a, b, c, d, e, f denote real numbers, u, u1, u2 denote non zero
elements of E3T, and P denotes an element of the projective space over E3T.

Now we state the propositions:

(10) Suppose the direction of u1 = the direction of u2 and qfconic(a, b, c, d, e, f, u1) =
0. Then qfconic(a, b, c, d, e, f, u2) = 0.

(11) If P = the direction of u and qfconic(a, b, c, d, e, f, u) = 0, then P ∈
conic(a, b, c, d, e, f). The theorem is a consequence of (10).

Let a, b, c, d, e, f be real numbers. The functor symmetric3(a, b, c, d, e, f)
yielding a square matrix over RF of dimension 3 is defined by the term

(Def. 3) 〈〈a, d, e〉, 〈d, b, f〉, 〈e, f, c〉〉.
Now we state the propositions:
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(12) symmetric3(a, b, c, d, e, f) is symmetric. The theorem is a consequence of
(5).

(13) Let us consider real numbers a, b, c, d, e, f , a point u of E3T, and
a square matrix M over R of dimension 3. Suppose p = u and M =
symmetric3(a, b, c, d, e, f). Then SumAll QuadraticForm(p,M, p) = qfconic(a, b, c, 2·
d, 2 · e, 2 · f, u).

(14) Let us consider an invertible square matrix N over RF of dimension 3,
square matrices N1,M1,M2 over R of dimension 3, and real numbers a, b,
c, d, e, f . Suppose N1 = (RF → R)N andM1 = symmetric3(a, b, c, d2 ,

f
2 ,
e
2)

and M2 = (RF → R)((R → RF)N1T)` ·M1 · (RF → R)((R → RF)N1)`.
Then (R→ RF)M2 is symmetric.
Proof: ((R → RF)N1T)T = (R → RF)N1 by [3, (16)]. (R → RF)M2 is
symmetric by [3, (16)], (12), (7). �

(15) Let us consider real numbers a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6.
Suppose symmetric3(a1, a2, a3, a4, a5, a6) = symmetric3(b1, b2, b3, b4, b5, b6).
Then

(i) a1 = b1, and

(ii) a2 = b2, and

(iii) a3 = b3, and

(iv) a4 = b4, and

(v) a5 = b5, and

(vi) a6 = b6.

The theorem is a consequence of (2).

(16) Let us consider real numbers a, b, c, d, e, f , a point P of the projecti-
ve space over E3T, and an invertible square matrix N over RF of dimen-
sion 3. Suppose it is not true that a = 0 and b = 0 and c = 0 and
d = 0 and e = 0 and f = 0 and P ∈ conic(a, b, c, d, e, f). Let us consi-
der real numbers f5, f12, f19, f20, f21, f23, f22, square matrices M1, M2
over R of dimension 3, and a square matrix N1 over R of dimension 3.
Suppose M1 = symmetric3(a, b, c, d2 ,

e
2 ,
f
2 ) and N1 = (RF → R)N and

M2 = (RF → R)((R → RF)N1T)` ·M1 · (RF → R)((R → RF)N1)` and
M2 = symmetric3(f5, f21, f23, f12, f19, f22). Then

(i) it is not true that f5 = 0 and f21 = 0 and f23 = 0 and f12 = 0 and
f22 = 0 and f19 = 0, and

(ii) (the homography of N)(P ) ∈ conic(f5, f21, f23, 2 · f12, 2 · f19, 2 · f22).
Proof: Consider Q being a point of the projective space over E3T such
that P = Q and for every element u of E3T such that u is not zero
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and Q = the direction of u holds qfconic(a, b, c, d, e, f, u) = 0. Reconsi-
der M = symmetric3(a, b, c, d2 ,

e
2 ,
f
2 ) as a square matrix over R of dimen-

sion 3. Consider u19, v3 being elements of E3T, u17 being a finite sequence
of elements of RF, p11 being a finite sequence of elements of R1 such
that P = the direction of u19 and u19 is not zero and u19 = u17 and
p11 = N ·u17 and v3 = M2F(p11) and v3 is not zero and (the homography
of N)(P ) = the direction of v3. Reconsider p10 = u19 as a finite sequence
of elements of R. SumAll QuadraticForm(p10,M, p10) = qfconic(a, b, c, 2 ·
(d2), 2 · (

e
2), 2 · (

f
2 ), u19). Consider a8, b8, c11, d4, e5, f24, g2, h2, i2 be-

ing elements of RF such that N = 〈〈a8, b8, c11〉, 〈d4, e5, f24〉, 〈g2, h2, i2〉〉.
Reconsider u10 = u17 as a finite sequence of elements of R. Reconsider
N1 = (RF → R)N as a square matrix over R of dimension 3. Reconsider
M2 = (RF → R)((R → RF)N1T)` · M · (RF → R)((R → RF)N1)` as
a square matrix over R of dimension 3. ((R→ RF)N1T)T = (R→ RF)N1
by [3, (16)]. (R → RF)M2 is symmetric by [3, (16)], (12), (7). Consider
m1, m2, m3, m4, m5, m6, m7, m8, m9 being elements of RF such that
M2 = 〈〈m1,m2,m3〉, 〈m4,m5,m6〉, 〈m7,m8,m9〉〉. m2 = m4 and m3 = m7
and m8 = m6. Reconsider u3 = N1 ·u10 as an element of E3T. u3 is not zero
by [5, (24)], [14, (59), (86)]. Reconsider u2 = N1 ·u10 as a non zero element
of E3T. Reconsider f5 = m1, f12 = m2, f19 = m3, f21 = m5, f22 = m6,
f23 = m9 as a real number. qfconic(f5, f21, f23, 2 ·f12, 2 ·f19, 2 ·f22, u2) = 0.
it is not true that f5 = 0 and f21 = 0 and f23 = 0 and 2 · f12 = 0
and 2 · f22 = 0 and 2 · f19 = 0. u2 = v3. For every real numbers u11,
u12, u13, u14, u15, u18, u16 and for every square matrices U1, U2 over
R of dimension 3 and for every square matrix U3 over R of dimension
3 such that U1 = symmetric3(a, b, c, d2 ,

e
2 ,
f
2 ) and U3 = (RF → R)N

and U2 = (RF → R)((R → RF)U3T)` · U1 · (RF → R)((R → RF)U3)`

and U2 = symmetric3(u11, u15, u18, u12, u13, u16) holds it is not true that
u11 = 0 and u15 = 0 and u18 = 0 and u12 = 0 and u16 = 0 and u13 = 0
and (the homography of N)(P ) ∈ conic(u11, u15, u18, 2 ·u12, 2 ·u13, 2 ·u16).
�

(17) Let us consider real numbers a, b, c, d, e, f , points P1, P2, P3, P4, P5, P6
of the projective space over E3T, and an invertible square matrix N over RF
of dimension 3. Suppose it is not true that a = 0 and b = 0 and c = 0 and
d = 0 and e = 0 and f = 0 and P1, P2, P3, P4, P5, P6 ∈ conic(a, b, c, d, e, f).
Then there exist real numbers a2, b2, c2, d2, e2, f2 such that

(i) it is not true that a2 = 0 and b2 = 0 and c2 = 0 and d2 = 0 and
e2 = 0 and f2 = 0, and

(ii) (the homography ofN)(P1), (the homography ofN)(P2), (the homography
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of N)(P3), (the homography of N)(P4), (the homography of N)(P5),
(the homography of N)(P6) ∈ conic(a2, b2, c2, d2, e2, f2).

The theorem is a consequence of (3), (14), (6), and (16).

From now on a, b, c, d, e, f , g, h, i denote elements of RF.
Now we state the proposition:

(18) (i) if qfconic(a, b, c, d, e, f, [1, 0, 0]) = 0, then a = 0, and

(ii) if qfconic(a, b, c, d, e, f, [0, 1, 0]) = 0, then b = 0, and

(iii) if qfconic(a, b, c, d, e, f, [0, 0, 1]) = 0, then c = 0, and

(iv) if qfconic(0, 0, 0, d, e, f, [1, 1, 1]) = 0, then d+ e+ f = 0.

3. Pascal’s Theorem

In the sequel M denotes a square matrix over RF of dimension 3, e1, e2, e3,
f1, f2, f3 denote elements of RF,M8,M14,M20,M21,M22,M19,M13,M10,M9,
M12, M16, M17, M11, M15, M18 denote square matrices over RF of dimension 3,
and r1, r2 denote real numbers.

Now we state the proposition:

(19) Suppose M9 = 〈〈1, 0, 0〉, 〈0, 1, 0〉, 〈e1, e2, e3〉〉 and M12 = 〈〈1, 0, 0〉, 〈0, 0,
1〉, 〈f1, f2, f3〉〉 and M16 = 〈〈0, 1, 0〉, 〈1, 1, 1〉, 〈f1, f2, f3〉〉 and M17 = 〈〈0, 0,
1〉, 〈1, 1, 1〉, 〈e1, e2, e3〉〉 andM10 = 〈〈1, 0, 0〉, 〈0, 1, 0〉, 〈f1, f2, f3〉〉 andM11 =
〈〈1, 0, 0〉, 〈0, 0, 1〉, 〈e1, e2, e3〉〉 and M15 = 〈〈0, 1, 0〉, 〈1, 1, 1〉, 〈e1, e2, e3〉〉 and
M18 = 〈〈0, 0, 1〉, 〈1, 1, 1〉, 〈f1, f2, f3〉〉 and (r1 6= 0 or r2 6= 0) and r1 ·e1 ·e2+
r2 ·e1 ·e3 = (r1+r2) ·e2 ·e3 and r1 ·f1 ·f2+r2 ·f1 ·f3 = (r1+r2) ·f2 ·f3. Then
DetM9 ·DetM12 ·DetM16 ·DetM17 = DetM10 ·DetM11 ·DetM15 ·DetM18.

In the sequel p1, p2, p3, p4, p5, p6 denote points of E3T.
Now we state the proposition:

(20) Suppose M9 = 〈p1, p2, p5〉 and M12 = 〈p1, p3, p6〉 and M16 = 〈p2, p4, p6〉
and M17 = 〈p3, p4, p5〉 and M10 = 〈p1, p2, p6〉 and M11 = 〈p1, p3, p5〉 and
M15 = 〈p2, p4, p5〉 and M18 = 〈p3, p4, p6〉. Then

(i) DetM9 = 〈|p1, p2, p5|〉, and

(ii) DetM12 = 〈|p1, p3, p6|〉, and

(iii) DetM16 = 〈|p2, p4, p6|〉, and

(iv) DetM17 = 〈|p3, p4, p5|〉, and

(v) DetM10 = 〈|p1, p2, p6|〉, and

(vi) DetM11 = 〈|p1, p3, p5|〉, and

(vii) DetM15 = 〈|p2, p4, p5|〉, and
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(viii) DetM18 = 〈|p3, p4, p6|〉.
From now on p7, p8, p9 denote points of E3T.
Now we state the propositions:

(21) Suppose 〈|p1, p5, p9|〉 = 0. Then 〈|p1, p5, p7|〉·〈|p2, p5, p9|〉 = −〈|p1, p2, p5|〉 · 〈|p5, p9, p7|〉.
The theorem is a consequence of (1).

(22) Suppose 〈|p1, p6, p8|〉 = 0. Then 〈|p1, p2, p6|〉 · 〈|p3, p6, p8|〉 = 〈|p1, p3, p6|〉 ·
〈|p2, p6, p8|〉. The theorem is a consequence of (1).

(23) Suppose 〈|p2, p4, p9|〉 = 0. Then 〈|p2, p4, p5|〉·〈|p2, p9, p7|〉 = −〈|p2, p4, p7|〉 · 〈|p2, p5, p9|〉.
(24) Suppose 〈|p2, p6, p7|〉 = 0. Then 〈|p2, p4, p7|〉·〈|p2, p6, p8|〉 = −〈|p2, p4, p6|〉 · 〈|p2, p8, p7|〉.
(25) Suppose 〈|p3, p4, p8|〉 = 0. Then 〈|p3, p4, p6|〉 · 〈|p3, p5, p8|〉 = 〈|p3, p4, p5|〉 ·
〈|p3, p6, p8|〉.

(26) Suppose 〈|p3, p5, p7|〉 = 0. Then 〈|p1, p3, p5|〉·〈|p5, p8, p7|〉 = −〈|p1, p5, p7|〉 · 〈|p3, p5, p8|〉.
The theorem is a consequence of (1).

(27) Let us consider non zero real numbers r125, r136, r246, r345, r126, r135,
r245, r346, r157, r259, r597, r368, r268, r297, r247, r287, r358, r587. Suppose
r125 · r136 · r246 · r345 = r126 · r135 · r245 · r346 and r157 · r259 = −r125 · r597
and r126 · r368 = r136 · r268 and r245 · r297 = −r247 · r259 and r247 · r268 =
−r246 · r287 and r346 · r358 = r345 · r368 and r135 · r587 = −r157 · r358. Then
r287 · r597 = r297 · r587.

(28) Suppose p1 = 〈1, 0, 0〉 and p2 = 〈0, 1, 0〉 and p3 = 〈0, 0, 1〉 and p4 = 〈1, 1,
1〉 and p5 = 〈e1, e2, e3〉 and p6 = 〈f1, f2, f3〉 and qfconic(0, 0, 0, r1, r2,−(r1 + r2), p5) =
0 and qfconic(0, 0, 0, r1, r2,−(r1 + r2), p6) = 0. Then

(i) qfconic(0, 0, 0, r1, r2,−(r1 + r2), p1) = 0, and

(ii) qfconic(0, 0, 0, r1, r2,−(r1 + r2), p2) = 0, and

(iii) qfconic(0, 0, 0, r1, r2,−(r1 + r2), p3) = 0, and

(iv) qfconic(0, 0, 0, r1, r2,−(r1 + r2), p4) = 0, and

(v) r1 · e1 · e2 + r2 · e1 · e3 = (r1 + r2) · e2 · e3, and

(vi) r1 · f1 · f2 + r2 · f1 · f3 = (r1 + r2) · f2 · f3.
(29) Suppose p1 = 〈1, 0, 0〉 and p2 = 〈0, 1, 0〉 and p3 = 〈0, 0, 1〉 and p4 = 〈1,

1, 1〉 and p5 = 〈e1, e2, e3〉 and p6 = 〈f1, f2, f3〉 and 〈|p1, p2, p5|〉 6= 0
and 〈|p1, p3, p6|〉 6= 0 and 〈|p2, p4, p6|〉 6= 0 and 〈|p3, p4, p5|〉 6= 0 and
〈|p1, p2, p6|〉 6= 0 and 〈|p1, p3, p5|〉 6= 0 and 〈|p2, p4, p5|〉 6= 0 and 〈|p3, p4, p6|〉 6=
0 and 〈|p1, p5, p7|〉 6= 0 and 〈|p2, p5, p9|〉 6= 0 and 〈|p5, p9, p7|〉 6= 0 and
〈|p3, p6, p8|〉 6= 0 and 〈|p2, p6, p8|〉 6= 0 and 〈|p2, p9, p7|〉 6= 0 and 〈|p2, p4, p7|〉 6=
0 and 〈|p2, p8, p7|〉 6= 0 and 〈|p3, p5, p8|〉 6= 0 and 〈|p5, p8, p7|〉 6= 0 and
(r1 6= 0 or r2 6= 0) and qfconic(0, 0, 0, r1, r2,−(r1 + r2), p5) = 0 and
qfconic(0, 0, 0, r1, r2,−(r1 + r2), p6) = 0 and 〈|p1, p5, p9|〉 = 0 and 〈|p1, p6, p8|〉 =
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0 and 〈|p2, p4, p9|〉 = 0 and 〈|p2, p6, p7|〉 = 0 and 〈|p3, p4, p8|〉 = 0 and
〈|p3, p5, p7|〉 = 0. Then 〈|p2, p8, p7|〉·〈|p5, p9, p7|〉 = 〈|p2, p9, p7|〉·〈|p5, p8, p7|〉.
The theorem is a consequence of (20), (28), (19), (21), (22), (23), (24), (25),
(26), and (27).

(30) Suppose 〈|p2, p8, p7|〉 · 〈|p5, p9, p7|〉 = 〈|p2, p9, p7|〉 · 〈|p5, p8, p7|〉. Then
〈|p7, p2, p5|〉 · 〈|p7, p8, p9|〉 = 0. The theorem is a consequence of (1).

(31) Let us consider a projective space P10 defined in terms of collinearity,
and elements c1, c2, c3, c4, c5, c6, c7, c8, c9 of P10. Suppose c1, c2 and
c4 are not collinear and c1, c2 and c5 are not collinear and c1, c6 and
c4 are not collinear and c1, c6 and c5 are not collinear and c2, c6 and c4
are not collinear and c3, c4 and c2 are not collinear and c3, c4 and c6 are
not collinear and c3, c5 and c2 are not collinear and c3, c5 and c6 are not
collinear and c4, c5 and c2 are not collinear and c1, c4 and c7 are collinear
and c1, c5 and c8 are collinear and c2, c3 and c7 are collinear and c2, c5
and c9 are collinear and c6, c3 and c8 are collinear and c6, c4 and c9 are
collinear. Then

(i) c9, c2 and c4 are not collinear, and

(ii) c1, c4 and c9 are not collinear, and

(iii) c2, c3 and c9 are not collinear, and

(iv) c2, c4 and c7 are not collinear, and

(v) c2, c5 and c8 are not collinear, and

(vi) c2, c9 and c8 are not collinear, and

(vii) c2, c9 and c7 are not collinear, and

(viii) c6, c4 and c8 are not collinear, and

(ix) c6, c5 and c8 are not collinear, and

(x) c4, c9 and c8 are not collinear, and

(xi) c4, c9 and c7 are not collinear.

Proof: For every elements v102, v103, v100, v104 of P10, v100 = v104 or v104,
v100 and v102 are not collinear or v104, v100 and v103 are not collinear or
v102, v103 and v104 are collinear by [13, (5), (3)]. For every elements v102,
v104, v100, v103 of P10, v100 = v103 or v103, v100 and v102 are not collinear or
v103, v100 and v104 are not collinear or v102, v103 and v104 are collinear by
[13, (5), (3)]. For every elements v102, v103, v104, v101 of P10, v104 = v101 or
v101, v104 and v102 are not collinear or v101, v104 and v103 are not collinear
or v102, v103 and v104 are collinear by [13, (2), (3)]. For every elements v103,
v104, v102, v101 of P10, v102 = v101 or v101, v102 and v103 are not collinear
or v101, v102 and v104 are not collinear or v102, v103 and v104 are collinear
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by [13, (2), (3)]. For every elements v2, v101, v100 of P10, v101 = v100 or
v100, v101 and v2 are not collinear or v2, v101 and v100 are collinear by [13,
(2)]. �

In the sequel P1, P2, P3, P4, P5, P6, P7, P8, P9 denote points of the projective
space over E3T and a, b, c, d, e, f denote real numbers.

Let P1, P2, P3, P4, P5, P6, P7, P8, P9 be points of the projective space over
E3T. We say that P1, P2, P3, P4, P5, P6, P7, P8, P9 are in Pascal configuration
if and only if

(Def. 4) P1, P2 and P4 are not collinear and P1, P3 and P4 are not collinear and
P2, P3 and P4 are not collinear and P1, P2 and P5 are not collinear and
P1, P2 and P6 are not collinear and P1, P3 and P5 are not collinear and
P1, P3 and P6 are not collinear and P2, P4 and P5 are not collinear and
P2, P4 and P6 are not collinear and P3, P4 and P5 are not collinear and
P3, P4 and P6 are not collinear and P2, P3 and P5 are not collinear and
P2, P3 and P6 are not collinear and P4, P5 and P1 are not collinear and
P4, P6 and P1 are not collinear and P5, P6 and P1 are not collinear and
P5, P6 and P2 are not collinear and P1, P5 and P9 are collinear and P1, P6
and P8 are collinear and P2, P4 and P9 are collinear and P2, P6 and P7 are
collinear and P3, P4 and P8 are collinear and P3, P5 and P7 are collinear.

Now we state the propositions:

(32) Suppose P1, P2, P3, P4, P5, P6, P7, P8, P9 are in Pascal configuration.
Then

(i) P7, P2 and P5 are not collinear, and

(ii) P1, P5 and P7 are not collinear, and

(iii) P2, P4 and P7 are not collinear, and

(iv) P2, P5 and P9 are not collinear, and

(v) P2, P6 and P8 are not collinear, and

(vi) P2, P7 and P8 are not collinear, and

(vii) P2, P7 and P9 are not collinear, and

(viii) P3, P5 and P8 are not collinear, and

(ix) P3, P6 and P8 are not collinear, and

(x) P5, P7 and P8 are not collinear, and

(xi) P5, P7 and P9 are not collinear.

The theorem is a consequence of (31).

(33) Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and
e = 0 and f = 0 and {P1, P2, P3, P4, P5, P6} ⊆ conic(a, b, c, d, e, f) and P1,
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P2 and P3 are not collinear and P1, P2 and P4 are not collinear and P1, P3
and P4 are not collinear and P2, P3 and P4 are not collinear and P7, P2
and P5 are not collinear and P1, P2 and P5 are not collinear and P1, P2
and P6 are not collinear and P1, P3 and P5 are not collinear and P1, P3
and P6 are not collinear and P1, P5 and P7 are not collinear and P2, P4
and P5 are not collinear and P2, P4 and P6 are not collinear and P2, P4
and P7 are not collinear and P2, P5 and P9 are not collinear and P2, P6
and P8 are not collinear and P2, P7 and P8 are not collinear and P2, P7
and P9 are not collinear and P3, P4 and P5 are not collinear and P3, P4
and P6 are not collinear and P3, P5 and P8 are not collinear and P3, P6
and P8 are not collinear and P5, P7 and P8 are not collinear and P5, P7
and P9 are not collinear and P1, P5 and P9 are collinear and P1, P6 and
P8 are collinear and P2, P4 and P9 are collinear and P2, P6 and P7 are
collinear and P3, P4 and P8 are collinear and P3, P5 and P7 are collinear.
Then P7, P8 and P9 are collinear.

Proof: Consider N being an invertible square matrix over RF of dimen-
sion 3 such that (the homography ofN)(P1) = Dir100 and (the homography
ofN)(P2) = Dir010 and (the homography ofN)(P3) = Dir001 and (the homography
of N)(P4) = Dir111. Consider u5 being a point of E3T such that u5 is
not zero and (the homography of N)(P5) = the direction of u5. Recon-
sider p51 = u5(1), p52 = u5(2), p53 = u5(3) as a real number. Consider
u6 being a point of E3T such that u6 is not zero and (the homography
of N)(P6) = the direction of u6. Reconsider p61 = u6(1), p62 = u6(2),
p63 = u6(3) as a real number. Consider u7 being a point of E3T such that
u7 is not zero and (the homography of N)(P7) = the direction of u7. Re-
consider p71 = u7(1), p72 = u7(2), p73 = u7(3) as a real number. Consider
u8 being a point of E3T such that u8 is not zero and (the homography
of N)(P8) = the direction of u8. Reconsider p81 = u8(1), p82 = u8(2),
p83 = u8(3) as a real number. Consider u9 being a point of E3T such that u9
is not zero and (the homography of N)(P9) = the direction of u9. Recon-
sider p91 = u9(1), p92 = u9(2), p93 = u9(3) as a real number. Consider a2,
b2, c2, d2, e2, f2 being real numbers such that it is not true that a2 = 0 and
b2 = 0 and c2 = 0 and d2 = 0 and e2 = 0 and f2 = 0 and (the homography
of N)(P1) ∈ conic(a2, b2, c2, d2, e2, f2) and (the homography of N)(P2) ∈
conic(a2, b2, c2, d2, e2, f2) and (the homography ofN)(P3) ∈ conic(a2, b2, c2, d2, e2, f2)
and (the homography ofN)(P4) ∈ conic(a2, b2, c2, d2, e2, f2) and (the homography
of N)(P5) ∈ conic(a2, b2, c2, d2, e2, f2) and (the homography of N)(P6) ∈
conic(a2, b2, c2, d2, e2, f2). Consider P being a point of the projective spa-
ce over E3T such that the direction of [1, 0, 0] = P and for every ele-
ment u of E3T such that u is not zero and P = the direction of u holds
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qfconic(a2, b2, c2, d2, e2, f2, u) = 0. qfconic(a2, b2, c2, d2, e2, f2, [1, 0, 0]) = 0
and qfconic(a2, b2, c2, d2, e2, f2, [0, 1, 0]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [0,
0, 1]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [1, 1, 1]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [p51,
p52, p53]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [p61, p62, p63]) = 0 by [4,
(10)], [8, (3)]. Reconsider a7 = a2, b7 = b2, c10 = c2, d3 = d2, e4 =
e2, f4 = f2 as an element of RF. a7 = 0 and b7 = 0 and c10 = 0.
a7 = 0 and b7 = 0 and c10 = 0 and d3 + e4 + f4 = 0. Reconsider
p1 = 〈1, 0, 0〉, p2 = 〈0, 1, 0〉, p3 = 〈0, 0, 1〉, p4 = 〈1, 1, 1〉, p5 = 〈p51,
p52, p53〉, p6 = 〈p61, p62, p63〉, p7 = 〈p71, p72, p73〉, p8 = 〈p81, p82, p83〉,
p9 = 〈p91, p92, p93〉 as a point of E3T. 〈|p7, p2, p5|〉 6= 0 by [3, (102)], [8, (3)],
[3, (43)], [4, (10)]. 〈|p2, p8, p7|〉 · 〈|p5, p9, p7|〉 = 〈|p2, p9, p7|〉 · 〈|p5, p8, p7|〉.
〈|p7, p2, p5|〉 · 〈|p7, p8, p9|〉 = 0. �

(34) Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and
e = 0 and f = 0 and {P1, P2, P3, P4, P5, P6} ⊆ conic(a, b, c, d, e, f) and P1,
P2 and P3 are not collinear and P1, P2, P3, P4, P5, P6, P7, P8, P9 are in
Pascal configuration. Then P7, P8 and P9 are collinear. The theorem is
a consequence of (32) and (33).

Note that E3T is up 3-dimensional.
Now we state the propositions:

(35) Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and
e = 0 and f = 0 and {P1, P2, P3, P4, P5, P6} ⊆ conic(a, b, c, d, e, f) and P1,
P2 and P3 are collinear and P1, P2, P3, P4, P5, P6, P7, P8, P9 are in Pascal
configuration. Then P7, P8 and P9 are collinear.
Proof: Consider N being an invertible square matrix over RF of dimen-
sion 3 such that (the homography ofN)(P1) = Dir100 and (the homography
ofN)(P2) = Dir010 and (the homography ofN)(P4) = Dir001 and (the homography
of N)(P5) = Dir111. Consider u3 being a point of E3T such that u3 is not
zero and (the homography of N)(P3) = the direction of u3. Reconsider
p31 = u3(1), p32 = u3(2), p33 = u3(3) as a real number. Consider u6 being
a point of E3T such that u6 is not zero and (the homography of N)(P6) =
the direction of u6. Reconsider p61 = u6(1), p62 = u6(2), p63 = u6(3) as
a real number. Consider a2, b2, c2, d2, e2, f2 being real numbers such that it
is not true that a2 = 0 and b2 = 0 and c2 = 0 and d2 = 0 and e2 = 0 and
f2 = 0 and (the homography of N)(P1) ∈ conic(a2, b2, c2, d2, e2, f2) and
(the homography ofN)(P2) ∈ conic(a2, b2, c2, d2, e2, f2) and (the homography
of N)(P3) ∈ conic(a2, b2, c2, d2, e2, f2) and (the homography of N)(P4) ∈
conic(a2, b2, c2, d2, e2, f2) and (the homography ofN)(P5) ∈ conic(a2, b2, c2, d2, e2, f2)
and (the homography of N)(P6) ∈ conic(a2, b2, c2, d2, e2, f2). Consider P
being a point of the projective space over E3T such that the direction
of [1, 0, 0] = P and for every element u of E3T such that u is not ze-
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ro and P = the direction of u holds qfconic(a2, b2, c2, d2, e2, f2, u) = 0.
qfconic(a2, b2, c2, d2, e2, f2, [1, 0, 0]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [0,
1, 0]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [0, 0, 1]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [1,
1, 1]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [p31, p32, p33]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [p61,
p62, p63]) = 0 by [4, (10)], [8, (3)]. Reconsider a7 = a2, b7 = b2, c10 = c2,
d3 = d2, e4 = e2, f4 = f2 as an element of RF. a7 = 0 and b7 = 0 and
c10 = 0. a7 = 0 and b7 = 0 and c10 = 0 and d3 + e4 + f4 = 0. Reconsider
p1 = 〈1, 0, 0〉, p2 = 〈0, 1, 0〉, p4 = 〈0, 0, 1〉, p5 = 〈1, 1, 1〉, p3 = 〈p31, p32,
p33〉, p6 = 〈p61, p62, p63〉 as a point of E3T. 〈|p1, p2, p3|〉 = 0 by [3, (102)],
[10, (23)], [9, (25)], [4, (10)]. p31 6= 0 and p32 6= 0 by [8, (2), (8), (4)]. �

(36) Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and
e = 0 and f = 0 and {P1, P2, P3, P4, P5, P6} ⊆ conic(a, b, c, d, e, f) and P1,
P2, P3, P4, P5, P6, P7, P8, P9 are in Pascal configuration. Then P7, P8 and
P9 are collinear. The theorem is a consequence of (35) and (34).
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