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Summary. Makarios (with Isabelle/HOI_Eb and John Harrison (with HOL-
Light El) shown that “the Klein-Beltrami model of the hyperbolic plane satisfy
all of Tarski’s axioms except his Euclidean axiom” [4], [5], [22], [6].

With the Mizar system [3], [13] we use some ideas are taken from Tim Ma-
karios’ MSc thesis [21I] for formalized some definitions (like the absolute) and
lemmas necessary for the verification of the independence of the parallel postu-
late. Note that the model presented here, may also be called “Beltrami-Klein
Model”, “Klein disk model”, and the “Cayley-Klein model” [I].
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1. PRELIMINARIES

From now on a, b, ¢, d, e, f denote real numbers, g denotes a positive real
number, z, y denote complexes, S, T denote elements of R?, and u, v, w denote
elements of S%.

Now we state the propositions:

(1) Let us consider elements Py, P, P35 of the projective space over 5%.
Suppose u is not zero and v is not zero and w is not zero and P; =
the direction of v and P, = the direction of v and P3 = the direction of
w. Then Py, Py and Ps are collinear if and only if (Ju,v,w|) = 0.
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(2) If(a#0o0rb+#0)and a-d=">b-c, then there exists e such that c=e-a
and d =e-b.

(3) Ifa?+bv®=1landc-a®+c-b>=1,thenc=1orc=—1.

(4) a-u+(-a) u=0gs.

(5) If0<aandc<0and A(a,b,c) =0, then a = 0.
PrOOF: 0 < b2 by [23] (12)]. O

6) ST -8)=SC(s - T)).

(7) Ifa?+b2=1landc®+d>=1andc-a+d-b=1,thenb-c=a-d.
(8) Ifa?+b2=1anda=0,thenb=1orb=—1.

(9) 0<a?

(10) Ifa~b2+bzzl,thenb:\/1l+70rb: ;Jrlaz.

(11) Ifa#0andb®>=1+a-a,thena-(3) -a-(F)+(3) (F)=-1

PRrROOF: b # 0 by [23], (12)]. O

(12) a® () = (§)*

(13) a®+b% =1 if and only if [a,b] € circle(0,0,1).

(14) a? + b2 = g2 if and only if [a, b] € circle(0,0, g).

(15) Fa#0and —1<a<1andb=2VEES2D ypen (14g-a)-b-b—

2:b+1—-b-b=0.
PrOOF: 0 < 1 —a? by [23, (53), (41)]. A(a-a,—2,1) > 0.0
(16) Suppose a2 + b2 = 1 and —1 < ¢ < 1. Then there exists d and there
exists e and there exists f such that e = d-c-a+ (1 —d) - (=b) and
f=d-cb+(1—d)-aande?+ f2=d>
(17) Ifa? +b% <1and ®+d2? =1, then (<)% + (244)2 < 1.
(18) If |S|%2 <1, then 0 < A(X(X(T — 9)), b, 3(25) — 1).
(19) If a® + b? is negative, then a = 0 and b = 0.
(20) If u=[a,b,1] and v = [¢,d, 1] and w = [‘IT‘“:, %, 1], then (|u, v, w|) = 0.
(21) () a- () = |(a- u,v)], and
(i) a-[(u,v)| = |(u,a-v)|.
In the sequel a, b, ¢ denote elements of Rp and M, N denote square matrices

over Ry of dimension 3.
Now we state the propositions:

(22) If M = symmetric3(0,0,0,0,0,0), then Det M = Og,.
(23) Suppose N = ({a,0,0),(0,b,0),(0,0,c)). Then

(i) MT-(N-M)11 = a-(My)-(My1)+b-(Ma)-(Ma)4c-(Mzy)-(Msy),
and
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(i) MT-(N-M)12 = a-(M1)-(My2)+b-(My,1)-(Ma)+c-(Ms 1) (Ms2),

(i) 33'(]\7-1\4)1,3 = a-(My1)-(My3)+b-(Ma)-(Ma3)+c(Ms)-(Ms3),
(iv) xz'(N-M)z,l = a-(My2)-(My11)+b-(Ma2)-(Ma)+c(Ms2)- (M),
(v) Ez-(N-M)Q,g = a-(Mi2)-(Mi2)+b-(Ma2)-(Ma2)+c (Ms2)-(Ms2),
(vi) aan-(NM)z,s = a-(My2)-(My3)+b-(Ma2)-(Ma3)+c-(Ms2)-(Ms3),
(vii) aMnZ-(NM):z,l = a-(My3)-(My11)+b-(Ma3)-(Ma)+c-(Mz3)- (M),
(viii) aMnZ-(1\7-1\4)3,2 = a-(M3)-(M2)+b-(Ma3)-(Mag2)+c-(Msgz)-(Ms),

(ix) MT-(N-M)33 = a-(M3)-(M3)+b-(Myz)-(Maz)+c-(Ms3)-(Ms 3).

(24) Let us consider natural numbers m, n, a square matrix M over Rp of
dimension m, and a matrix N over Rp of dimension mxn. Suppose m > 0.
Then M - N is a matrix over Ry of dimension mxn.

In the sequel D denotes a non empty set, di, ds, d3 denote elements of D,
A denotes a matrix over D of dimension 1x3, and B denotes a matrix over D
of dimension 3x1.

Now we state the propositions:

(25) Let us consider a square matrix M over D of dimension 1. Then M7T =

M.
(26) AT is 3,1-size.
(27)  ((d1,d2,d3)) is a matrix over D of dimension 1x3.
(28) ((d1),(d2), (d3)) is a matrix over D of dimension 3x1.
(29) A= ((A11, 412, A13)).

PROOF: Reconsider B = ((A;1, A1,2, A1,3)) as a matrix over D of dimen-
sion 1x3. For every natural numbers 4, j such that (i, j) € the indices of
Aholds A; ; = B, ; by [9, (87)], [2, (2)], [24, (1)], [2} (40), (45)]. O
(30) B = ((Bi1),(B21),(B31))-
PRrROOF: Reconsider C' = ((By 1), (B21), (B31)) as a matrix over D of di-
mension 3x 1. For every natural numbers ¢, j such that (i, j) € the indices
of B holds B; j = C;; by [9, (87)], [2, (2)], [24] (1)], [2, (45), (40)]. O
(31) AT = ((A11), (A1), (A13)). The theorem is a consequence of (26) and
(30).
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(32) There exists d; and there exists do and there exists d3 such that A = ((dy,
da,ds)). The theorem is a consequence of (29).

(33) Let us consider a finite sequence p of elements of R!. If lenp = 3, then
ColVec2Mx(M2F(p)) = p. The theorem is a consequence of (30).

(34) Let us consider a square matrix M over Ry of dimension 3, a square
matrix M7 over R of dimension 3, an element v of 5%, a finite sequence
u1 of elements of R, a finite sequence uy of elements of R, and a finite
sequence p of elements of R!. Suppose p = M - u; and v = M2F(p) and
lenu; = 3 and uy = uo and My = M. Then v = My - uo.

(35) Let us consider a square matrix N over R of dimension 3, and a finite
sequence u1 of elements of R. If uq = Og%, then N -u; = 05%.

(36) Let us consider a square matrix N over R of dimension 3, a finite sequence
uy of elements of R, and an element u of £3. Suppose N is invertible and
u = wup and u is not zero. Then N -uj # 05% . The theorem is a consequence
of (35).

(37) Let us consider an invertible square matrix N over Rg of dimension 3,
a square matrix No over R of dimension 3, elements P, ) of the projective
space over £3. non zero elements u, v of £, and finite sequences vy, uz
of elements of R. Suppose P = the direction of u and ) = the direction
of vand u = ug and v = v; and N = Ny and Ny - us = v1. Then
(the homography of N)(P) = @. The theorem is a consequence of (34).

(38) Let us consider an invertible square matrix N over Ry of dimension 3,
a square matrix Ny over R of dimension 3, elements P, () of the projective
space over £3, non zero elements u, v of &3, finite sequences vy, uy of
elements of R, and a non zero real number a. Suppose P = the direction
of u and () = the direction of v and u = us and v = v; and N = Ny and
Ny - ug = a-v1. Then (the homography of N)(P) = Q. The theorem is
a consequence of (34) and (36).

Let us consider a finite sequence p of elements of R and a square matrix M
over R of dimension 3. Now we state the propositions:

(39) Iflenp =3, then |(a-p,M-(b-p))|=a-b-|(p,M -p)|.
(40) Iflenp = 3, then SumAll QuadraticForm(a-p, M, b-p) = a-b-(SumAll QuadraticForn
The theorem is a consequence of (39).
Now we state the propositions:
(41) Let us consider real numbers a, b. Then [a, b, 1] is not zero.

(42) Let us consider an element P of £2, an element @ of £%, and a real
number r. Then P € Sphere(Q, r) if and only if P € circle(Q(1), Q(2),7).

In the sequel u, v denote non zero elements of 5%.
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Now we state the proposition:
(43) If the direction of u = the direction of v and u(3) = v(3) and v(3) # 0,
then u = v.
The functor yielding a point of the projective space over &3 is
defined by the term
(Def. 1) the direction of [1,0, 1].
The functor yielding a point of the projective space over 5% is
defined by the term
(Def. 2)  the direction of [—1,0, 1].
The functor yielding a point of the projective space over 8% is
defined by the term
(Def. 3) the direction of [0, 1,1].
Now we state the propositions:
(44) (i) Dir101, Dirm101 and Dir011 are not collinear, and

(ii) Dir101, Dirm101 and Dir010 are not collinear, and
(iii) Dir101, Dir011 and Dir010 are not collinear, and

(iv) Dirm101, Dir011 and Dir010 are not collinear.

Proor: Dir101, Dirm101 and Dir011 are not collinear by [14] (2), (4)], [2,
(78)], (1). Dir101, Dirm101 and Dir010 are not collinear by [14}, (2), (4)],
[2, (78)], (1). Dir101, Dir011 and Dir010 are not collinear by [14} (2), (4)],
[2, (78)], (1). Dirm101, Dir011 and Dir010 are not collinear by [14, (2),

@], 2 (78)], (1). O

(45) symmetric3(1,1,1,0,0,0) = I2*°.

(46) Let us consider elements r, a, b, ¢, d, e, f, g, h, i of Rp, and a square
matrix M over Rp of dimension 3. Suppose M = ({(a,b,c),(d,e, f),{g, h
i)). Thenr- M = ((r-a,r-b,r-c),(r-d,r-e,r-f),(r-g,r-h,r-i)).

(47) Let us consider a real number a, and an element r of Rp. Suppose r =
a-a. Then (symmetric3(a, a,—a,0,0,0)) - (symmetric3(a, a, —a,0,0,0)) =
T (Iﬂ?é:g). The theorem is a consequence of (46).

—~

Let us consider a non zero real number a. Now we state the propositions:
(48) (symmetric3(a,a, —a,0,0,0)) - (symmetrch(a, a,—f 0,0,0)) = IBXS.
(49) (Symmetr1c3(a, a,—%,0,0,0))-(symmetr103( —a,0,0,0)) = I3X3 The

theorem is a consequence of (48).

Now we state the propositions:
(50) (symmetric3(1,1,-1,0,0,0))- (symmetric3(1,1, —1,0,0,0)) = Iz**. The
theorem is a consequence of (48).
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(51) Let us consider a non zero real number a, and a square matrix N over Rp
of dimension 3. If N = symmetric3(a, a, —a,0,0,0), then N is invertible.
The theorem is a consequence of (48) and (49).
(52) (i) symmetric3(1,1,—1,0,0,0) is an invertible square matrix over Rp
of dimension 3, and
(ii) (symmetric3(1,1,—-1,0,0,0))" = symmetric3(1,1,—-1,0,0,0).
The theorem is a consequence of (50).
(53) Let us consider an invertible square matrix N over Rp of dimension
3, a square matrix N over Rp of dimension 3, and square matrices M,
Ny over R of dimension 3. Suppose M = symmetric3(1,1,—1,0,0,0) and
Niy =M and Ny = (Rp — R)N~. Then NT- N;- N = ((Rp — R)((R —
Rp)N2")7) - M - (R — R)((R — Rp)Na)~).
PrOOF: (Rp — R)((R — Rp)NyT)~ = NT by [25, (13), (16)]. O
(54) Let us consider a natural number n, an element a of Ry, a real number
r, a square matrix A over R of dimension n, and a square matrix r; over
R of dimension n. If a =7 and A =r1, thena-A =7r-ry.
(55) Let us consider a natural number n, an element a of Ry, and square
matrices A, B over Ry of dimension n. If n > 0, then (a-A)-B = a-(A-B).
The theorem is a consequence of (54).
(56) symmetric3(a,a,—a,0,0,0) = a- (symmetric3(1,1,—1,0,0,0)). The the-
orem is a consequence of (46).
(57) If M = symmetric3(a,a,—a,0,0,0), then M-M-M = a-a-a-(symmetric3(1, 1, —1,0,
The theorem is a consequence of (47), (55), and (56).
Let us consider a natural number n, a real number a, a square matrix M
over R of dimension n, and a finite sequence x of elements of R. Now we state
the propositions:
(58) If n >0 and lenx =n, then M - (a-2x) = (a- M
(59) If n > 0 and lenx = n, then a - (M - x) =
a consequence of (58).

) - .
(a- M) - x. The theorem is

Now we state the propositions:
(60) Let us consider a natural number n, and a square matrix N over R of
dimension n. Suppose N is invertible. Then
(i) NT is invertible, and
(i) Inv NT = (Inv N) T,
(61) Let us consider a non zero real number r, and matrices N, O, M over R of
dimension 3x3. Suppose N is invertible and M = r-O and M = NT-O-N.

Then (Inv N)T-O - (InvN) = (1) - O. The theorem is a consequence of
(60).
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(62) Let us consider a real number r, square matrices M, N over Rg of
dimension 3, and square matrices M7, No over R of dimension 3. Suppose
M; = M and Ny = N and N is symmetric and M; = 7 - Na. Then M is
symmetric.

Let us consider a real number r and square matrices O, M over R of dimen-
sion 3. Now we state the propositions:

(63) Suppose O = symmetric3(1,1,—1,0,0,0) and M = r - O. Then

(i) O-M =r - (1gr matrix(3)), and
(ii) M - O = r - (1gr matrix(3)).
The theorem is a consequence of (50).

(64) If O = symmetric3(1,1,—1,0,0,0) and M = r - O, then M* .01 . O -
(MT.0)=r2.0.

PROOF: Reconsider M7 = M as a square matrix over Rr of dimension 3.
M is symmetric. 7 - (1g matrix(3)) - O - (r - (1g matrix(3))) = r2 - O by [10,
(16)], [11L (1)], (46), [10, (19)]. O

Now we state the propositions:

(65) Let us consider square matrices O, N over R of dimension 3. Then N7 -
O'-0-(N'-0)=(O"-(N-O-(NT))-0.

(66) Let us consider square matrices N2, M; over R of dimension 3, and finite
sequences p1, p2, p3 of elements of R. Suppose p; = (1,0,0) and ps = (0,
1,0) and p3 = (0,0,1) and Ny -p; = My - p; and Na - po = M - po and
N2 p3 = M1 - P3. Then N2 = Ml.

(67) Let us consider a non zero real number a, and an element u of £3. If
a-u= 05%, then w is zero.

(68) Let us consider non zero elements u, v of £, and real numbers a, b.
Suppose (a # 0or b #0)and a-u+0b-v = Ogs. Then w and v are
proportional.

ProOF: Reconsider a; = a - u, by = b- v as an element of 5%. Consider ¢
being a real number such that ¢ # 0 and a; = c¢-b1. a # 0 and b # 0 by
12, (22)], [I7, (3), (1)], (67). O

(69) Let us consider an invertible square matrix N over Rp of dimension 3,
and points P, @), R of the projective space over 5%. Suppose P # @ and
(the homography of N)(P) = @ and (the homography of N)(Q) = P and
P, @ and R are collinear. Then (the homography of N)((the homography
of N)(R)) = R.

ProoOF: Consider w1, v; being elements of 8%, uy4 being a finite sequence
of elements of Ry, p; being a finite sequence of elements of R! such that
P = the direction of u; and wq is not zero and u1 = u4 and p1 = N - uy
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and v; = M2F(p;) and v; is not zero and (the homography of N)(P) =
the direction of v1. Consider us, v2 being elements of €3, us being a finite
sequence of elements of Ry, ps being a finite sequence of elements of R!
such that Q = the direction of us and wus is not zero and us = us and
p2 = N - us and vy = M2F(p2) and vy is not zero and (the homography
of N)(Q) = the direction of vo. Consider uz being an element of £ such
that ug is not zero and R = the direction of ug. Consider [; being a real
number such that [; # 0 and vo = [; - u1. Consider /5 being a real number
such that ls # 0 and v; = g - ug. (Ju1, ug,us|) = 0. Consider a, b, ¢ being
real numbers such that a - u; +b-us +c-ug = 05% and (a Z0or b#0
or ¢ #0). ¢ # 0 by [12, (22)], [17, (3), (1)], [8, (15)]. (The homography of
N-N)(R)=R.O

(70) Let us consider a natural number n, elements u, v of £}, and real numbers
a,b.If (1—a)-u+a-v=(1-b)-v+b-u, then (1—(a+b))-u= (1—(a+b))-v.
PROOF: Reconsider r1 = u, 7o = v as an element of R™. (1—a)-r1+a-ro—
a-ro = (1—a)-ry by [8, (42)]. (1—=b)-re—a-ro+b-ri—b-ry = (1-0b)-ro—a-ry
by [8, (42)]. O

(71) The projective space over &3 is proper.

‘The real projective plane’ yielding a non empty, proper projective plane
defined in terms of collinearity is defined by the term

(Def. 4) the projective space over E3.
From now on P, @, R denote points of Inc-ProjSp(the real projective plane),
L denotes a line of Inc-ProjSp(the real projective plane), and p, ¢, r denote
points of the real projective plane.
Now we state the propositions:
(72) Let us consider an element L of L(the real projective plane). Then there
exists p and there exists ¢ such that p # ¢ and L = Line(p, q).

(73) There exists p and there exists ¢ such that p # g and L = Line(p, q).
(74) If R=r and L = Line(p, ¢), then R lies on L iff p, ¢ and r are collinear.
(75) Inc-ProjSp(the real projective plane) is an incidence projective plane.
PROOF: Inc-ProjSp(the real projective plane) is 2-dimensional by (73),
[19, (3)], (74). O
(76) Let us consider lines L1, Ly of the real projective plane. Then L; meets
Ls. The theorem is a consequence of (75).
In the sequel u, v, w denote non zero elements of 5%.
Now we state the propositions:
(77) Suppose p = the direction of u and ¢ = the direction of v and R =
the direction of w and L = Line(p,q). Then R lies on L if and only if
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(lu,v,w|) = 0. The theorem is a consequence of (74).

(78) Let us consider elements p, ¢ of the projective space over 5%. Suppose
p # q and p = the direction of u and ¢ = the direction of v. Then u X v is
not zero.

Let p, g be points of the real projective plane. Assume p # ¢. The functor
yielding a point of the real projective plane is defined by

(Def. 5) there exist non zero elements u, v of £ such that p = the direction of
u and g = the direction of v and it = the direction of u x v.

Now we state the propositions:

(79) Let us consider points p, ¢ of the real projective plane. Suppose p # q.
Then

(i) L2P(q,p) = L2P(p, q), and
(ii) p # L2P(p,q).

ProOF: Consider uj, v; being non zero elements of £ such that p =
the direction of u; and g = the direction of v; and L2P(p, ¢) = the direction
of u; X vy. Consider ug, v9 being non zero elements of 5% such that
q = the direction of uy and p = the direction of vy and L2P(q,p) =
the direction of uy X ve. Consider a being a real number such that a # 0
and u; = a - v9. Consider b being a real number such that b # 0 and
vy =b-uz. a-vy Xb-ug = (—a-b)- (uz xva) by [8 (44)], [14, (8)]. u1 X v;
is not zero by [10, (51)], [18, (22)]. ug x vy is not zero by [10, (51)], [18,
(22)). p # L2P(p,q) by [I8, (22), (1)), (21), [10, (44)]. O

(80) Let us consider an invertible square matrix N over Rp of dimension 3.
Then dom(the homography of N) = the projective points over &3.

2. ABSOLUTE

yielding a subset of the projective space over 5% is defined by the term

(Def. 6) {P, where P is a point of the projective space over & : for every ele-
ment u of &3 such that u is not zero and P = the direction of u holds
qfconic(a, b, c,d, e, f,u) is negative}.

Now we state the proposition:
(81) Let us consider real numbers a, b, ¢, d, e, f, and non zero elements w1, ug

of 5%. Suppose the direction of u; = the direction of uy and qgfconic(a, b, ¢, d, e, f,u1)
is negative. Then qfconic(a, b, ¢, d, e, f,us) is negative.
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; yielding a non empty subset of the projective space over 5%
is defined by the term

(Def. 7)  conic(1,1,-1,0,0,0).
Now we state the proposition:

(82) Let us consider a square matrix O over R of dimension 3, an element P of
the projective space over &3, and a finite sequence p of elements of R. Sup-
pose O = symmetric3(1,1,—1,0,0,0) and P = the direction of u and u =
p. Then P € the absolute if and only if SumAll QuadraticForm(p, O, p) =
0. The theorem is a consequence of (40).

Let us consider an element P of the absolute. Now we state the propositions:

(83) If P = the direction of u, then u(3) # 0.

PrOOF: Consider @ being a point of the projective space over £3. such
that P = Q and for every element u of £ such that u is not zero and
@ = the direction of u holds gfconic(1,1,—1,0,0,0,u) = 0. u(3) # 0 by
7, (D], 04, (3), (4)]. O

(84) If P = the direction of u and u(3) = 1, then [u(1),u(2)] € circle(0,0,1).
The theorem is a consequence of (13).

Now we state the propositions:

(85) Let us consider a point P of the projective space over 5%. Suppose P =
the direction of v and u(3) =1 and [u(1),u(2)] € circle(0,0,1). Then P is
an element of the absolute.

(86) Let us consider a point P of the projective space over S%, and a non
zero element u of 3. Suppose P = the direction of u and u(3) = 1. Then
[u(1),u(2)] € circle(0,0,1) if and only if P is an element of the absolute.

Let P be an element of the absolute. g yiel-

ding an element of circle(0,0, 1) is defined by
(Def. 8) there exists a non zero element u of £ such that P = the direction of
wand u(3) =1 and it = [u(1),u(2)].
Now we state the proposition:
(87) The carrier of TopUnitCircle 2 = circle(0, 0, 1).

PROOF: The carrier of TopUnitCircle2 C circle(0,0,1) by [16, (9)], [12,
(54)], [15, (52)]. circle(0,0,1) C the carrier of TopUnitCircle2 by [15,

(52)], [12 (54)], [16, (9)]. O
Let u be a non zero element of 2. Assume u € circle(0, 0, 1). ;

yielding an element of the absolute is defined by the term
(Def. 9) the direction of [u(1),u(2),1].

Now we state the proposition:
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Let us consider an element u of £3. Suppose gfconic(1,1,—1,0,0,0,u) =
0 and u(3) = 1. Then [u(1),u(2)] € Sphere(Og%, 1). The theorem is a con-
sequence of (13).

Let us consider an element P of the absolute. Now we state the propositions:

(89)

(90)

There exists u such that

(i) w(1)?2 +u(2)?2 =1, and

(i) u(3) =1, and
(iii) P = the direction of w.
The theorem is a consequence of (83), (84), and (14).

There exists an element ) of the absolute such that P # Q.
PRrROOF: Consider @) being a point of the projective space over S% such
that P = @ and for every element u of Eff such that u is not zero and
@ = the direction of u holds gfconic(1,1,—1,0,0,0,u) = 0. Consider u
being an element of 5% such that u is not zero and the direction of u =
P. u(3) # 0. [u(1),u(2),—u(3)] is not zero by [14, (4)], [2, (78)], (83).
Reconsider v = [u(1),u(2), —u(3)] as a non zero element of 3. Reconsider
R = the direction of v as an element of the projective space over £3. R # P
by [18, (22), (1)], [14, (2)], [8, (44)]. For every element w of £ such that w

is not zero and R = the direction of w holds gfconic(1,1,—-1,0,0,0,w) =0
by [18, (22), (1)], [8, (44)], 14} (2)]. O

Now we state the propositions:

(91)

(92)

Let us consider real numbers a, b. Suppose a2 + b2 = 1. Then [~b, a, 0]
is not zero.

Let us consider elements P, @), R of the absolute. If P, (), R are mutually
different, then P, Q and R are not collinear.
Proor: Consider u1s being an element of 5% such that uq9 is not zero
and P = the direction of u1s. Consider ujg being an element of 5% such
that uqg is not zero and ) = the direction of ui6. Consider ugy being
an element of 6'% such that usg is not zero and R = the direction of
ugo. Reconsider uig = (u12)1, w14 = (u12)2, wis = (u12)3, w1z = (w6)1,
u1g = (u16)2, w19 = (u16)3, u21 = (u20)1, U2z = (u20)2, uzs = (ug0)3 as
a real number. u12(3) # 0 and wui6(3) # 0 and wug(3) # 0. Reconsider
115:%2,1)6:%,1)8:Z—g,vgz%g,vn:Z—gé,vn:%asareal
number. Reconsider vy = [vs5,v6, 1], v7 = [vs,v9, 1], v1o = [v11,v12,1] as
a non zero element of 5%. P = the direction of vy and @ = the direction
of v7 and R = the direction of vig by [14} (8), (3)], [18, (1), (22)]. Consider
t1, ta, t3 being elements of £ such that P = the direction of ¢; and
() = the direction of ¢35 and R = the direction of t3 and ¢ is not zero and
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to is not zero and t3 is not zero and there exist real numbers aq, by, ¢; such
that aj-t1+b1-to+cy-t3 = 05% and (a1 # 0 or by # 0 or ¢; # 0). Consider
a1, by, c1 being real numbers such that a; - t; + b1 -ta + ¢ - t3 = 05% and
a1 # 0 or by # 0 or ¢; # 0. Consider [y being a real number such that
l1 # 0 and t; = [ - v4. Consider ls being a real number such that lo # 0
and to = Iy - v7. Consider I3 being a real number such that I3 # 0 and
t3 = lg + V10- Reconsider A = [(1}4)1, (U4)2], B = [(U7)1, (’07)2]7 C = [(’Ulo)l,
(v10)2) as an element of 2. A # B by [2, (77)], [14, (3)]. A # C by
2, (77)], [14, (3)]. B # C by 2, (77)], [14, (3)]. A € Sphere(Og%,l).
gfconic(1,1,—-1,0,0,0,v7) = 0. B € Sphere(Og%, 1).C e Sphere(Og%, 1). O

(93) Let us consider a non zero real number 7, and invertible square matrices

1]
2]

[4]

[5]

O, N, M over Ry of dimension 3. Suppose O = symmetric3(1,1,—1,0,0,0)

and M = symmetric3(r,r, —r,0,0,0) and M = NT-O-N and (the homography
of M)°(the absolute) = the absolute. Then (the homography of N)°(the absolute) =

the absolute.

PROOF: (The homography of N)°(the absolute) C the absolute by [11],
(13)], [12, (24), (22)], [20, (50)]. The absolute C (the homography of
N)°(the absolute) by [11), (15)], [12}, (24), (22)], [20, (50)]. O
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