

Introduction to Stochastic Finance: Random Variables and Arbitrage Theory

Peter Jaeger Siegmund-Schacky-Str. 18a 80993 Munich, Germany

Summary. Using the Mizar system [1], [5], we start to show, that the Call-Option, the Put-Option and the Straddle (more generally defined as in the literature) are random variables ([4], p. 15), see (Def. 1) and (Def. 2). Next we construct and prove the simple random variables ([2], p. 14) in (Def. 8).

In the third section, we introduce the definition of arbitrage opportunity, see (Def. 12). Next we show, that this definition can be characterized in a different way (Lemma 1.3. in [4], p. 5), see (17). In our formalization for Lemma 1.3 we make the assumption that φ is a sequence of real numbers (there are only finitely many valued of interest, the values of φ in \mathbb{R}^d). For the definition of almost sure with probability 1 see p. 6 in [2]. Last we introduce the risk-neutral probability (Definition 1.4, p. 6 in [4]), here see (Def. 16).

We give an example in real world: Suppose you have some assets like bonds (riskless assets). Then we can fix our price for these bonds with x for today and $x \cdot (1 + r)$ for tomorrow, r is the interest rate. So we simply assume, that in every possible market evolution of tomorrow we have a determinated value. Then every probability measure of Ω_{fut1} is a risk-neutral measure, see (21). This example shows the existence of some risk-neutral measure. If you find more than one of them, you can determine – with an additional condition to the probability measures – whether a market model is arbitrage free or not (see Theorem 1.6. in [4], p. 6.)

A short graph for (21):

Suppose we have a portfolio with many (in this example infinitely many) assets. For asset d we have the price $\pi(d)$ for today, and the price $\pi(d) \cdot (1+r)$ for tomorrow with some interest rate r > 0.

Let G be a sequence of random variables on Ω_{fut1} , Borel sets. So you have many functions $f_k : \{1, 2, 3, 4\} \to R$ with $G(k) = f_k$ and f_k is a random variable of Ω_{fut1} , Borel sets. For every f_k we have $f_k(w) = \pi(k) \cdot (1+r)$ for $w \in \{1, 2, 3, 4\}$. Today

Tomorrow

only one scenario	$\begin{cases} w_{21} = \{1, 2\}, \\ w_{22} = \{3, 4\}, \end{cases}$
for all $d \in \mathbb{N}$ holds $\pi(d)$	$\begin{cases} f_d(w) = G(d)(w) = \pi(d) \cdot (1+r), \\ w \in w_{21} \text{ or } w \in w_{22}, \\ r > 0 \text{ is the interest rate.} \end{cases}$

Here, every probability measure of Ω_{fut1} is a risk-neutral measure.

MSC: 28A05 03B35

Keywords: random variable; arbitrage theory; risk-neutral measure

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{FINANCE6}, \ \mathrm{version:} \ \mathtt{8.1.07} \ \ \mathtt{5.47.1318}$

1. PUT-OPTION, CALL-OPTION AND STRADDLE ARE RANDOM VARIABLES

From now on Ω denotes a non empty set and F denotes a σ -field of subsets of Ω .

Now we state the propositions:

- (1) $]0, +\infty[$ is an element of the Borel sets.
- (2) Let us consider a random variable R of F and the Borel sets, an element K of \mathbb{R} , and a function g from Ω into \mathbb{R} . Suppose $g = \chi_{(R-(\Omega \longmapsto K))^{-1}([0,+\infty[),\Omega)}$. Then Call-Option $(R,K) = g \cdot (R (\Omega \longmapsto K))$.
- (3) Let us consider a random variable R of F and the Borel sets, and a real number K. Then $(\Omega \longmapsto K) R$ is a random variable of F and the Borel sets.
- (4) Let us consider an element A of F. Then $\chi_{A,\Omega}$ is a random variable of F and the Borel sets.
- (5) $\chi_{\Omega,\Omega}$ is random variable on F and the Borel sets. The theorem is a consequence of (4).
- (6) Let us consider random variables f, R of F and the Borel sets, and a real number K. Then (f − R)⁻¹([0, +∞[) is an element of F. The theorem is a consequence of (1).

Let us consider Ω and F. Let R be a random variable of F and the Borel sets and K be a real number. Let us note that the functor Call-Option(R, K)yields a random variable of F and the Borel sets. The functor Put-Option(R, K)yielding a function from Ω into \mathbb{R} is defined by

(Def. 1) for every element w of Ω , if $((\Omega \longmapsto K) - R)(w) \ge 0$, then $it(w) = ((\Omega \longmapsto K) - R)(w)$ and if $((\Omega \longmapsto K) - R)(w) < 0$, then it(w) = 0.

Now we state the proposition:

(7) Let us consider a random variable R of F and the Borel sets, a real number K, and a function g from Ω into \mathbb{R} . Suppose g =

 $\chi_{((\Omega \longmapsto K) - R)^{-1}([0, +\infty[), \Omega)}$. Then Put-Option $(R, K) = g \cdot ((\Omega \longmapsto K) - R)$.

Let us consider Ω and F. Let R be a random variable of F and the Borel sets and K be a real number. Note that the functor Put-Option(R, K) yields a random variable of F and the Borel sets.

2. SIMPLE RANDOM VARIABLES

Let us consider Ω and F. Let R be a random variable of F and the Borel sets and K be a real number. The functor Straddle(R, K) yielding a random variable of F and the Borel sets is defined by the term

(Def. 2) Put-Option(R, K) + Call-Option(R, K).

Now we state the proposition:

(8) Let us consider a random variable R of F and the Borel sets, a real number K, and an element w of Ω . Then $(\text{Straddle}(R, K))(w) = |(R - (\Omega \longmapsto K))(w)|$.

Let us consider Ω and F. The functors: the set of constants F and the set of χ_F yielding sets are defined by terms

- (Def. 3) $\{f, \text{ where } f \text{ is a function from } \Omega \text{ into } \mathbb{R} : f \text{ is random variable on } F \text{ and the Borel sets and constant}\},$
- (Def. 4) $\{\chi_{A,\Omega}, \text{ where } A \text{ is an element of } F : \chi_{A,\Omega} \text{ is random variable on } F \text{ and the Borel sets}\},$

respectively. Let X be a set. We say that X is F-random membered if and only if

(Def. 5) for every object x such that $x \in X$ there exists a function f from Ω into \mathbb{R} such that f = x and f is random variable on F and the Borel sets.

Observe that the set of constants F is non empty and the set of χ_F is non empty and the set of constants F is F-random membered and the set of χ_F is F-random membered and there exists a set which is F-random membered and non empty.

Let D be an F-random membered, non empty set, C_1 be a sequence of D, and n be a natural number. The change type of C_1 and n yielding a random variable of F and the Borel sets is defined by the term

(Def. 6) $C_1(n)$.

Let C_2 be a sequence of D and w be an element of Ω . The change all types of C_2 and w yielding a function from \mathbb{N} into \mathbb{R} is defined by (Def. 7) for every natural number n, $it(n) = (the change type of <math>C_2$ and n)(w).

Let D_1 , D_2 be *F*-random membered, non empty sets, C_1 be a sequence of D_1 , C_2 be a sequence of D_2 , and *n* be a natural number. The simple \mathcal{RV} of C_1 , C_2 and *n* yielding a function from Ω into \mathbb{R} is defined by

(Def. 8) for every element w of Ω , $it(w) = (\sum_{\alpha=0}^{\kappa} ((\text{the change all types of } C_2 \text{ and } w) \cdot (\text{the change all types of } C_1 \text{ and } w))(\alpha))_{\kappa \in \mathbb{N}}(n).$

Observe that the simple \mathcal{RV} of C_1 , C_2 and n yields a random variable of F and the Borel sets.

3. Arbitrage Theory: Definition and Alternative Representation

From now on φ denotes a sequence of real numbers and π denotes a price function.

Let us consider Ω and F. Let q be a natural number and G be a sequence of the set of random variables on F and the Borel sets. The change element to functions G and q yielding a real-valued random variable on F is defined by the term

(Def. 9) G(q).

Let us consider φ . Let *n* be a natural number. The functors: the first \mathcal{AO} set of φ , Ω , *F*, *G* and *n* and the second \mathcal{AO} -set of φ , Ω , *F*, *G* and *n* yielding elements of *F* are defined by terms

- (Def. 10) (the \mathcal{RV} -portfolio value for future extension of φ , F, G and n)⁻¹([0, + ∞ [),
- (Def. 11) (the \mathcal{RV} -portfolio value for future extension of φ , F, G and n)⁻¹(]0, + ∞ [), respectively. Let P be a probability on F and π be a price function. We say that there exists an \mathcal{AO} w.r.t. P, G, π and n if and only if
- (Def. 12) there exists a sequence φ of real numbers such that the buy portfolio extension of φ , π , and $n \leq 0$ and P(the first \mathcal{AO} -set of φ , Ω , F, G and n) = 1 and P(the second \mathcal{AO} -set of φ , Ω , F, G and n) > 0.

Let r be a real number. The first \mathcal{RV} of r yielding an element of the set of random variables on Ω_{now} and the Borel sets is defined by the term

(Def. 13) $\{1, 2, 3, 4\} \mapsto r.$

Let π be a price function and d be a natural number. The first \mathcal{RV} of π , r and d yielding an element of the set of random variables on Ω_{fut1} and the Borel sets is defined by the term

(Def. 14) the first \mathcal{RV} of $\pi(d) \cdot (1+r)$.

Now we state the propositions:

(9) There exists a sequence G of the set of random variables on Ω_{now} and the Borel sets such that

- (i) $G(0) = \{1, 2, 3, 4\} \mapsto 1$, and
- (ii) $G(1) = \{1, 2, 3, 4\} \longmapsto 5$, and
- (iii) for every natural number k such that k > 1 holds $G(k) = \{1, 2, 3, 4\} \longmapsto 0.$

PROOF: Define $\mathcal{U}(\text{natural number}) = (\$_1 = 0 \rightarrow \text{the first } \mathcal{RV} \text{ of } 1, (\$_1 = 1 \rightarrow \text{the first } \mathcal{RV} \text{ of } 5, \text{the first } \mathcal{RV} \text{ of } 0))$. Consider f being a sequence of the set of random variables on Ω_{now} and the Borel sets such that for every element d of \mathbb{N} , $f(d) = \mathcal{U}(d)$. $f(0) = (0 = 0 \rightarrow \text{the first } \mathcal{RV} \text{ of } 1, (0 = 1 \rightarrow \text{the first } \mathcal{RV} \text{ of } 5, \text{the first } \mathcal{RV} \text{ of } 0))$. $f(1) = (1 = 0 \rightarrow \text{the first } \mathcal{RV} \text{ of } 1, (1 = 1 \rightarrow \text{the first } \mathcal{RV} \text{ of } 5, \text{the first } \mathcal{RV} \text{ of } 0))$. For every natural number k such that k > 1 holds $f(k) = \{1, 2, 3, 4\} \longmapsto 0$. \Box

(10) Let us consider a probability P on Ω_{now} , and a sequence G of the set of random variables on Ω_{now} and the Borel sets. Suppose $G(0) = \{1, 2, 3, 4\} \mapsto 1$ and $G(1) = \{1, 2, 3, 4\} \mapsto 5$ and for every natural number k such that k > 1 holds $G(k) = \{1, 2, 3, 4\} \mapsto 0$. Then there exists a price function π such that there exists an \mathcal{AO} w.r.t. P, G, π and 1. PROOF: Set $\Omega = \{1, 2, 3, 4\}$. Set $F = \Omega_{now}$. $P(\Omega) = 1$ and $P(\emptyset) = 0$.

PROOF: Set $\Omega = \{1, 2, 3, 4\}$. Set $F = \Omega_{now}$. $P(\Omega) = 1$ and $P(\emptyset) = 0$. Define $\mathcal{U}(\text{element of } \mathbb{N}) = (\$_1 = 0 \to 1, (\$_1 = 1 \to 1, 0)) (\in \mathbb{R})$. Consider fbeing a function from \mathbb{N} into \mathbb{R} such that for every element d of \mathbb{N} , $f(d) = \mathcal{U}(d)$. f is a price function. Reconsider $\pi = f$ as a price function. Define $\mathcal{U}(\text{element of } \mathbb{N}) = (\$_1 = 0 \to -1, (\$_1 = 1 \to 1, 0)) (\in \mathbb{R})$. Consider φ being a sequence of real numbers such that for every element k of \mathbb{N} , $\varphi(k) = \mathcal{U}(k)$. $P(\text{the first } \mathcal{AO}\text{-set of } \varphi, \Omega, F, G \text{ and } 1) = 1$ and $P(\text{the second } \mathcal{AO}\text{-set of} \varphi, \Omega, F, G \text{ and } 1) > 0$ and the buy portfolio extension of φ, π , and $1 \leq 0$ by [7, (9)]. \Box

(11) Let us consider a natural number n, a real number r, and a sequence G of the set of random variables on F and the Borel sets. Then $\{w, \text{ where } w \text{ is an element of } \Omega : \text{the portfolio value for future extension of } n, \varphi, F, G and <math>w \ge 0\} = (\text{the } \mathcal{RV}\text{-portfolio value for future extension of } \varphi, F, G and <math>n)^{-1}([0, +\infty[))$. The theorem is a consequence of (1).

Let us consider natural numbers d, d_1 , a real number r, and a sequence G of the set of random variables on F and the Borel sets.

(12) Suppose $d_1 = d-1$. Then $\{w, \text{ where } w \text{ is an element of } \Omega : \text{the portfolio}$ value for future of d, φ, F, G and $w \ge (1+r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)\} = ((\text{the } \mathcal{RV}\text{-portfolio value for future of } \varphi, F, G \text{ and } d_1) - (\Omega \longmapsto (1+r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)))^{-1}([0, +\infty[).$ PROOF: Set $S_1 = \{w, \text{ where } w \text{ is an element of } \Omega : \text{ the portfolio value for future of } \varphi, \pi, \text{ and } d)\}$. Set $S_2 = ((\text{the } \mathcal{RV}\text{-portfolio value for future of } \varphi, F, G \text{ and } w \ge (1+r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)\}$. $d_1) - (\Omega \longmapsto (1+r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)))^{-1}([0, +\infty[).$ For every object $x, x \in S_1$ iff $x \in S_2$. \Box

- (13) ((The \mathcal{RV} -portfolio value for future of φ , F, G and d_1) ($\Omega \mapsto (1 + r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d))$)⁻¹([0, + ∞ [) is an event of F.
- (14) Let us consider a natural number d, a real number r, and a sequence G of the set of random variables on F and the Borel sets. Then $\{w, \text{ where } w \text{ is an element of } \Omega : \text{the portfolio value for future extension of } d, \varphi, F, G and <math>w > 0\} = (\text{the } \mathcal{RV}\text{-portfolio value for future extension of } \varphi, F, G and <math>d)^{-1}(]0, +\infty[)$. The theorem is a consequence of (1).

Let us consider natural numbers d, d_1 , a real number r, and a sequence G of the set of random variables on F and the Borel sets.

- (15) Suppose $d_1 = d-1$. Then $\{w, \text{ where } w \text{ is an element of } \Omega : \text{the portfolio}$ value for future of d, φ , F, G and $w > (1 + r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)\} = ((\text{the } \mathcal{RV}\text{-portfolio value for future of } \varphi, F, G \text{ and } d_1) (\Omega \longmapsto (1 + r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)))^{-1}(]0, +\infty[).$ PROOF: Set $S_1 = \{w, \text{ where } w \text{ is an element of } \Omega : \text{ the portfolio value for future of } d, \varphi, F, G \text{ and } w > (1 + r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)\}.$ Set $S_2 = ((\text{the } \mathcal{RV}\text{-portfolio value for future of } \varphi, F, G \text{ and } d_1) - (\Omega \longmapsto (1 + r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)))^{-1}(]0, +\infty[).$ For every object $x, x \in S_1$ iff $x \in S_2$. \Box
- (16) ((The \mathcal{RV} -portfolio value for future of φ , F, G and d_1) ($\Omega \mapsto (1 + r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d))$)⁻¹(]0, + ∞ [) is an event of F.
- (17) Let us consider a price function π , and natural numbers d, d_1 . Suppose d > 0 and $d_1 = d 1$. Let us consider a probability P on F, and a real number r. Suppose r > -1. Let us consider a sequence G of the set of random variables on F and the Borel sets. Suppose the element of F, the Borel sets, G, and $0 = \Omega \longmapsto 1 + r$. Then there exists an \mathcal{AO} w.r.t. P, G, π and d if and only if there exists a sequence φ_1 of real numbers such that $P(((\text{the }\mathcal{RV}\text{-portfolio value for future of }\varphi_1, F, G \text{ and } d_1) (\Omega \longmapsto (1+r) \cdot (\text{the buy portfolio of }\varphi_1, \pi, \text{ and } d_1))^{-1}([0, +\infty[)) = 1$ and $P(((\text{the }\mathcal{RV}\text{-portfolio value for future of }\varphi_1, F, G \text{ and } d_1) (\Omega \longmapsto (1+r) \cdot (\text{the buy portfolio of }\varphi_1, \pi, \text{ and } d_1)))^{-1}([0, +\infty[)) > 0.$

PROOF: If there exists an \mathcal{AO} w.r.t. P, G, π and d, then there exists a sequence φ_1 of real numbers such that $P(((\text{the }\mathcal{RV}\text{-portfolio value}$ for future of φ_1, F, G and $d_1) - (\Omega \longmapsto (1+r) \cdot (\text{the buy portfolio}$ of $\varphi_1, \pi, \text{ and } d)))^{-1}([0, +\infty[)) = 1$ and $P(((\text{the }\mathcal{RV}\text{-portfolio value for}$ future of φ_1, F, G and $d_1) - (\Omega \longmapsto (1+r) \cdot (\text{the buy portfolio of } \varphi_1, \pi, \text{ and } d)))^{-1}(]0, +\infty[)) > 0$. Define $\mathcal{U}(\text{natural number}) = (\$_1 = 0 \rightarrow -(\text{the buy portfolio of } \varphi_1, \pi, \text{ and } d), \varphi_1(\$_1))(\in \mathbb{R})$. Consider φ being a sequence of real numbers such that for every element n of \mathbb{N} , $\varphi(n) = \mathcal{U}(n)$. For every natural number n, if n = 0, then $\varphi(n) = -$ (the buy portfolio of φ_1 , π , and d) and if n > 0, then $\varphi(n) = \varphi_1(n)$. The buy portfolio extension of φ , π , and d = 0. P(the first \mathcal{AO} -set of φ , Ω , F, G and d) = 1. P(the second \mathcal{AO} -set of φ , Ω , F, G and d) > 0. \Box

4. RISK-NEUTRAL PROBABILITY MEASURE

Let us consider Ω and F. Let R be a real-valued random variable on F and r be a real number. The r-discounted value of R yielding a real-valued random variable on F is defined by the term

(Def. 15) $R \cdot \frac{1}{1+r}$.

Let π be a price function and G be a sequence of the set of random variables on F and the Borel sets. We say that there exists a risk neutral measure w.r.t. G, π and r if and only if

(Def. 16) there exists a probability P on F such that for every natural number d, $\pi(d) = E_P \{ \text{the } r \text{-discounted value of (the change element to functions } G \text{ and } d) \}.$

From now on P denotes a probability on Ω_{fut1} . Now we state the propositions:

- (18) Let us consider a real number r. Suppose r > 0. Let us consider a price function π , and a natural number d. Then there exists a real-valued random variable f on Ω_{fut1} such that
 - (i) $f = \{1, 2, 3, 4\} \mapsto \pi(d) \cdot (1+r)$, and
 - (ii) f is integrable on P2M(P), and
 - (iii) f is simple function in Ω_{fut1} .

PROOF: Set $\Omega_2 = \{1, 2, 3, 4\}$. Define $\mathcal{U}(\text{element of }\Omega_2) = \pi(d) \cdot (1+r) (\in \mathbb{R})$. Consider f being a function from Ω_2 into \mathbb{R} such that for every element d of Ω_2 , $f(d) = \mathcal{U}(d)$. Set $g = \Omega_2 \mapsto \pi(d) \cdot (1+r) (\in \mathbb{R})$. For every object x such that $x \in \text{dom } f$ holds f(x) = g(x). f is integrable on P2M(P) by [6, (9), (3)], [3, (12)]. \Box

(19) Let us consider a natural number n, and a real number r. Suppose r > 0. Let us consider a price function π , a natural number d, and a real-valued random variable R on Ω_{fut1} . Suppose $R = \{1, 2, 3, 4\} \mapsto \pi(d) \cdot (1 + r)$ and R is integrable on P2M(P) and R is simple function in Ω_{fut1} . Then $\pi(d) = E_P\{\text{the } r\text{-discounted value of } R\}.$ PROOF: Set $F = \Omega_{fut1}$. $\overline{\mathbb{R}}(R) = R$ and R is non-negative. Set $m = \pi(d) \cdot (1+r)$. for every object x such that $x \in \operatorname{dom} \overline{\mathbb{R}}(R)$ holds $(\overline{\mathbb{R}}(R))(x) = m$ and $\operatorname{dom} \overline{\mathbb{R}}(R) \in F$ and $0 \leq m$. \Box

(20) Let us consider a real number r. Suppose r > 0. Let us consider a price function π . Then there exists a sequence G of the set of random variables on Ω_{fut1} and the Borel sets such that for every natural number d, G(d) = $\{1, 2, 3, 4\} \mapsto \pi(d) \cdot (1 + r)$ and the change element to functions G and dis integrable on P2M(P) and the change element to functions G and d is simple function in Ω_{fut1} .

PROOF: Define $\mathcal{U}(\text{natural number}) = \text{the first } \mathcal{RV} \text{ of } \pi, r \text{ and } \$_1.$ Consider g being a sequence of the set of random variables on Ω_{fut1} and the Borel sets such that for every element d of \mathbb{N} , $g(d) = \mathcal{U}(d)$. There exists a real-valued random variable R on Ω_{fut1} such that $R = \{1, 2, 3, 4\} \mapsto \pi(d) \cdot (1+r) (\in \mathbb{R})$ and R is integrable on P2M(P) and R is simple function in Ω_{fut1} . \Box

- (21) Let us consider a real number r. Suppose r > 0. Let us consider a price function π , and a sequence G of the set of random variables on Ω_{fut1} and the Borel sets. Suppose for every natural number $d, G(d) = \{1, 2, 3, 4\} \mapsto \pi(d) \cdot (1+r)$ and the change element to functions G and d is integrable on P2M(P) and the change element to functions G and d is simple function in Ω_{fut1} . Then
 - (i) there exists a risk neutral measure w.r.t. G, π and r, and
 - (ii) for every natural number s, $\pi(s) = E_P \{\text{the } r\text{-discounted value of } (\text{the change element to functions } G \text{ and } s) \}.$

The theorem is a consequence of (19).

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Heinz Bauer. Wahrscheinlichkeitstheorie. de Gruyter-Verlag, Berlin, New York, 2002.
- [3] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525–529, 2001.
- [4] Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time, volume 27 of Studies in Mathematics. de Gruyter, Berlin, 2nd edition, 2004.
- [5] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
- [6] Peter Jaeger. Elementary introduction to stochastic finance in discrete time. Formalized Mathematics, 20(1):1–5, 2012. doi:10.2478/v10037-012-0001-5.

[7] Peter Jaeger. Modelling real world using stochastic processes and filtration. Formalized Mathematics, 24(1):1–16, 2016. doi:10.1515/forma-2016-0001.

Received March 27, 2018