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Variables and Arbitrage Theory
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Summary. Using the Mizar system [1], [5], we start to show, that the
Call-Option, the Put-Option and the Straddle (more generally defined as in the
literature) are random variables ([4], p. 15), see (Def. 1) and (Def. 2). Next we
construct and prove the simple random variables ([2], p. 14) in (Def. 8).

In the third section, we introduce the definition of arbitrage opportunity, see
(Def. 12). Next we show, that this definition can be characterized in a different
way (Lemma 1.3. in [4], p. 5), see (17). In our formalization for Lemma 1.3 we
make the assumption that ϕ is a sequence of real numbers (there are only finitely
many valued of interest, the values of ϕ in Rd). For the definition of almost sure
with probability 1 see p. 6 in [2]. Last we introduce the risk-neutral probability
(Definition 1.4, p. 6 in [4]), here see (Def. 16).

We give an example in real world: Suppose you have some assets like bonds
(riskless assets). Then we can fix our price for these bonds with x for today
and x · (1 + r) for tomorrow, r is the interest rate. So we simply assume, that
in every possible market evolution of tomorrow we have a determinated value.
Then every probability measure of Ωfut1 is a risk-neutral measure, see (21). This
example shows the existence of some risk-neutral measure. If you find more than
one of them, you can determine – with an additional conidition to the probability
measures – whether a market model is arbitrage free or not (see Theorem 1.6. in
[4], p. 6.)

A short graph for (21):
Suppose we have a portfolio with many (in this example infinitely many)

assets. For asset d we have the price π(d) for today, and the price π(d) · (1 + r)
for tomorrow with some interest rate r > 0.

Let G be a sequence of random variables on Ωfut1, Borel sets. So you have
many functions fk : {1, 2, 3, 4} → R with G(k) = fk and fk is a random variable
of Ωfut1, Borel sets. For every fk we have fk(w) = π(k)·(1+r) for w ∈ {1, 2, 3, 4}.
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Today Tomorrow

only one scenario

{
w21 = {1, 2},
w22 = {3, 4},

for all d ∈ N holds π(d)

 fd(w) = G(d)(w) = π(d) · (1 + r),
w ∈ w21 or w ∈ w22,
r > 0 is the interest rate.

Here, every probability measure of Ωfut1 is a risk-neutral measure.
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1. Put-Option, Call-Option and Straddle are Random Variables

From now on Ω denotes a non empty set and F denotes a σ-field of subsets
of Ω.

Now we state the propositions:

(1) ]0,+∞[ is an element of the Borel sets.

(2) Let us consider a random variable R of F and the Borel sets, an element
K of R, and a function g from Ω into R. Suppose g =
χ(R−(Ω7−→K))−1([0,+∞[),Ω. Then Call-Option(R,K) = g · (R− (Ω 7−→ K)).

(3) Let us consider a random variable R of F and the Borel sets, and a real
number K. Then (Ω 7−→ K)−R is a random variable of F and the Borel
sets.

(4) Let us consider an element A of F . Then χA,Ω is a random variable of
F and the Borel sets.

(5) χΩ,Ω is random variable on F and the Borel sets. The theorem is a con-
sequence of (4).

(6) Let us consider random variables f , R of F and the Borel sets, and a real
number K. Then (f − R)−1([0,+∞[) is an element of F . The theorem is
a consequence of (1).

Let us consider Ω and F . Let R be a random variable of F and the Borel
sets and K be a real number. Let us note that the functor Call-Option(R,K)
yields a random variable of F and the Borel sets. The functor Put-Option(R,K)
yielding a function from Ω into R is defined by

(Def. 1) for every element w of Ω, if ((Ω 7−→ K) − R)(w) ­ 0, then it(w) =
((Ω 7−→ K)−R)(w) and if ((Ω 7−→ K)−R)(w) < 0, then it(w) = 0.

http://zbmath.org/classification/?q=cc:28A05
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/finance6.miz
http://ftp.mizar.org/
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Now we state the proposition:

(7) Let us consider a random variable R of F and the Borel sets, a real
number K, and a function g from Ω into R. Suppose g =
χ((Ω 7−→K)−R)−1([0,+∞[),Ω. Then Put-Option(R,K) = g · ((Ω 7−→ K)−R).

Let us consider Ω and F . Let R be a random variable of F and the Borel
sets and K be a real number. Note that the functor Put-Option(R,K) yields
a random variable of F and the Borel sets.

2. Simple Random Variables

Let us consider Ω and F . Let R be a random variable of F and the Borel
sets and K be a real number. The functor Straddle(R,K) yielding a random
variable of F and the Borel sets is defined by the term

(Def. 2) Put-Option(R,K) + Call-Option(R,K).

Now we state the proposition:

(8) Let us consider a random variable R of F and the Borel sets, a real
number K, and an element w of Ω. Then (Straddle(R,K))(w) = |(R −
(Ω 7−→ K))(w)|.

Let us consider Ω and F . The functors: the set of constants F and the set
of χF yielding sets are defined by terms

(Def. 3) {f , where f is a function from Ω into R : f is random variable on F and
the Borel sets and constant},

(Def. 4) {χA,Ω, where A is an element of F : χA,Ω is random variable on F and
the Borel sets},

respectively. Let X be a set. We say that X is F -random membered if and only
if

(Def. 5) for every object x such that x ∈ X there exists a function f from Ω into
R such that f = x and f is random variable on F and the Borel sets.

Observe that the set of constants F is non empty and the set of χF is non
empty and the set of constants F is F -random membered and the set of χF is
F -random membered and there exists a set which is F -random membered and
non empty.

Let D be an F -random membered, non empty set, C1 be a sequence of D,
and n be a natural number. The change type of C1 and n yielding a random
variable of F and the Borel sets is defined by the term

(Def. 6) C1(n).

Let C2 be a sequence of D and w be an element of Ω. The change all types
of C2 and w yielding a function from N into R is defined by
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(Def. 7) for every natural number n, it(n) = (the change type of C2 and n)(w).

Let D1, D2 be F -random membered, non empty sets, C1 be a sequence of
D1, C2 be a sequence of D2, and n be a natural number. The simple RV of C1,
C2 and n yielding a function from Ω into R is defined by

(Def. 8) for every element w of Ω, it(w) = (
∑κ
α=0((the change all types of C2

and w) · (the change all types of C1 and w))(α))κ∈N(n).

Observe that the simple RV of C1, C2 and n yields a random variable of F
and the Borel sets.

3. Arbitrage Theory: Definition and Alternative Representation

From now on ϕ denotes a sequence of real numbers and π denotes a price
function.

Let us consider Ω and F . Let q be a natural number and G be a sequence
of the set of random variables on F and the Borel sets. The change element to
functions G and q yielding a real-valued random variable on F is defined by the
term

(Def. 9) G(q).

Let us consider ϕ. Let n be a natural number. The functors: the first AO-
set of ϕ, Ω, F , G and n and the second AO-set of ϕ, Ω, F , G and n yielding
elements of F are defined by terms

(Def. 10) (the RV-portfolio value for future extension of ϕ, F ,G and n)−1([0,+∞[),

(Def. 11) (the RV-portfolio value for future extension of ϕ, F ,G and n)−1(]0,+∞[),

respectively. Let P be a probability on F and π be a price function. We say that
there exists an AO w.r.t. P , G, π and n if and only if

(Def. 12) there exists a sequence ϕ of real numbers such that the buy portfolio
extension of ϕ, π, and n ¬ 0 and P (the first AO-set of ϕ, Ω, F , G and
n) = 1 and P (the second AO-set of ϕ, Ω, F , G and n) > 0.

Let r be a real number. The first RV of r yielding an element of the set of
random variables on Ωnow and the Borel sets is defined by the term

(Def. 13) {1, 2, 3, 4} 7−→ r.

Let π be a price function and d be a natural number. The first RV of π, r
and d yielding an element of the set of random variables on Ωfut1 and the Borel
sets is defined by the term

(Def. 14) the first RV of π(d) · (1 + r).

Now we state the propositions:

(9) There exists a sequence G of the set of random variables on Ωnow and
the Borel sets such that
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(i) G(0) = {1, 2, 3, 4} 7−→ 1, and

(ii) G(1) = {1, 2, 3, 4} 7−→ 5, and

(iii) for every natural number k such that k > 1 holds G(k) =
{1, 2, 3, 4} 7−→ 0.

Proof: Define U(natural number) = ($1 = 0 → the first RV of 1, ($1 =
1→ the first RV of 5, the first RV of 0)). Consider f being a sequence of
the set of random variables on Ωnow and the Borel sets such that for every
element d of N, f(d) = U(d). f(0) = (0 = 0 → the first RV of 1, (0 =
1 → the first RV of 5, the first RV of 0)). f(1) = (1 = 0 → the first RV
of 1, (1 = 1 → the first RV of 5, the first RV of 0)). For every natural
number k such that k > 1 holds f(k) = {1, 2, 3, 4} 7−→ 0. �

(10) Let us consider a probability P on Ωnow, and a sequence G of the set of
random variables on Ωnow and the Borel sets. SupposeG(0) = {1, 2, 3, 4} 7−→
1 and G(1) = {1, 2, 3, 4} 7−→ 5 and for every natural number k such that
k > 1 holds G(k) = {1, 2, 3, 4} 7−→ 0. Then there exists a price function π
such that there exists an AO w.r.t. P , G, π and 1.
Proof: Set Ω = {1, 2, 3, 4}. Set F = Ωnow. P (Ω) = 1 and P (∅) = 0.
Define U(element of N) = ($1 = 0→ 1, ($1 = 1→ 1, 0))(∈ R). Consider f
being a function from N into R such that for every element d of N, f(d) =
U(d). f is a price function. Reconsider π = f as a price function. Define
U(element of N) = ($1 = 0→ −1, ($1 = 1→ 1, 0))(∈ R). Consider ϕ being
a sequence of real numbers such that for every element k of N, ϕ(k) = U(k).
P (the first AO-set of ϕ, Ω, F , G and 1) = 1 and P (the second AO-set of
ϕ, Ω, F , G and 1) > 0 and the buy portfolio extension of ϕ, π, and 1 ¬ 0
by [7, (9)]. �

(11) Let us consider a natural number n, a real number r, and a sequence G
of the set of random variables on F and the Borel sets. Then {w, where
w is an element of Ω : the portfolio value for future extension of n, ϕ, F ,
G and w ­ 0} = (the RV-portfolio value for future extension of ϕ, F , G
and n)−1([0,+∞[). The theorem is a consequence of (1).

Let us consider natural numbers d, d1, a real number r, and a sequence G
of the set of random variables on F and the Borel sets.

(12) Suppose d1 = d−1. Then {w, where w is an element of Ω : the portfolio
value for future of d, ϕ, F , G and w ­ (1 + r) · (the buy portfolio of
ϕ, π, and d)} = ((the RV-portfolio value for future of ϕ, F , G and
d1)− (Ω 7−→ (1 + r) · (the buy portfolio of ϕ, π, and d)))−1([0,+∞[).
Proof: Set S1 = {w, where w is an element of Ω : the portfolio value
for future of d, ϕ, F , G and w ­ (1 + r) · (the buy portfolio of ϕ, π,
and d)}. Set S2 = ((the RV-portfolio value for future of ϕ, F , G and
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d1)− (Ω 7−→ (1 + r) · (the buy portfolio of ϕ, π, and d)))−1([0,+∞[). For
every object x, x ∈ S1 iff x ∈ S2. �

(13) ((The RV-portfolio value for future of ϕ, F , G and d1) − (Ω 7−→ (1 +
r) · (the buy portfolio of ϕ, π, and d)))−1([0,+∞[) is an event of F .

(14) Let us consider a natural number d, a real number r, and a sequence G
of the set of random variables on F and the Borel sets. Then {w, where
w is an element of Ω : the portfolio value for future extension of d, ϕ, F ,
G and w > 0} = (the RV-portfolio value for future extension of ϕ, F , G
and d)−1(]0,+∞[). The theorem is a consequence of (1).

Let us consider natural numbers d, d1, a real number r, and a sequence G
of the set of random variables on F and the Borel sets.

(15) Suppose d1 = d−1. Then {w, where w is an element of Ω : the portfolio
value for future of d, ϕ, F , G and w > (1 + r) · (the buy portfolio of
ϕ, π, and d)} = ((the RV-portfolio value for future of ϕ, F , G and
d1)− (Ω 7−→ (1 + r) · (the buy portfolio of ϕ, π, and d)))−1(]0,+∞[).
Proof: Set S1 = {w, where w is an element of Ω : the portfolio value
for future of d, ϕ, F , G and w > (1 + r) · (the buy portfolio of ϕ, π,
and d)}. Set S2 = ((the RV-portfolio value for future of ϕ, F , G and
d1)− (Ω 7−→ (1 + r) · (the buy portfolio of ϕ, π, and d)))−1(]0,+∞[). For
every object x, x ∈ S1 iff x ∈ S2. �

(16) ((The RV-portfolio value for future of ϕ, F , G and d1) − (Ω 7−→ (1 +
r) · (the buy portfolio of ϕ, π, and d)))−1(]0,+∞[) is an event of F .

(17) Let us consider a price function π, and natural numbers d, d1. Suppose
d > 0 and d1 = d − 1. Let us consider a probability P on F , and a real
number r. Suppose r > −1. Let us consider a sequence G of the set
of random variables on F and the Borel sets. Suppose the element of
F , the Borel sets, G, and 0 = Ω 7−→ 1 + r. Then there exists an AO
w.r.t. P , G, π and d if and only if there exists a sequence ϕ1 of real
numbers such that P (((the RV-portfolio value for future of ϕ1, F , G and
d1)− (Ω 7−→ (1 + r) · (the buy portfolio of ϕ1, π, and d)))−1([0,+∞[)) = 1
and P (((the RV-portfolio value for future of ϕ1, F , G and d1) − (Ω 7−→
(1 + r) · (the buy portfolio of ϕ1, π, and d)))−1(]0,+∞[)) > 0.
Proof: If there exists an AO w.r.t. P , G, π and d, then there exists
a sequence ϕ1 of real numbers such that P (((the RV-portfolio value
for future of ϕ1, F , G and d1) − (Ω 7−→ (1 + r) · (the buy portfolio
of ϕ1, π, and d)))−1([0,+∞[)) = 1 and P (((the RV-portfolio value for
future of ϕ1, F , G and d1) − (Ω 7−→ (1 + r) · (the buy portfolio of ϕ1,
π, and d)))−1(]0,+∞[)) > 0. Define U(natural number) = ($1 = 0 →
−(the buy portfolio of ϕ1, π, and d), ϕ1($1))(∈ R). Consider ϕ being a se-
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quence of real numbers such that for every element n of N, ϕ(n) = U(n).
For every natural number n, if n = 0, then ϕ(n) = −(the buy portfolio of
ϕ1, π, and d) and if n > 0, then ϕ(n) = ϕ1(n). The buy portfolio
extension of ϕ, π, and d = 0. P (the first AO-set of ϕ, Ω, F , G and
d) = 1. P (the second AO-set of ϕ, Ω, F , G and d) > 0. �

4. Risk-Neutral Probability Measure

Let us consider Ω and F . Let R be a real-valued random variable on F and
r be a real number. The r-discounted value of R yielding a real-valued random
variable on F is defined by the term

(Def. 15) R · 1
1+r .

Let π be a price function and G be a sequence of the set of random variables
on F and the Borel sets. We say that there exists a risk neutral measure w.r.t.
G, π and r if and only if

(Def. 16) there exists a probability P on F such that for every natural number d,
π(d) = EP {the r-discounted value of (the change element to functions G
and d)}.

From now on P denotes a probability on Ωfut1.
Now we state the propositions:

(18) Let us consider a real number r. Suppose r > 0. Let us consider a pri-
ce function π, and a natural number d. Then there exists a real-valued
random variable f on Ωfut1 such that

(i) f = {1, 2, 3, 4} 7−→ π(d) · (1 + r), and

(ii) f is integrable on P2M(P ), and

(iii) f is simple function in Ωfut1.

Proof: Set Ω2 = {1, 2, 3, 4}. Define U(element of Ω2) = π(d)·(1+r)(∈ R).
Consider f being a function from Ω2 into R such that for every element d
of Ω2, f(d) = U(d). Set g = Ω2 7−→ π(d) · (1 + r)(∈ R). For every object x
such that x ∈ dom f holds f(x) = g(x). f is integrable on P2M(P ) by [6,
(9), (3)], [3, (12)]. �

(19) Let us consider a natural number n, and a real number r. Suppose r > 0.
Let us consider a price function π, a natural number d, and a real-valued
random variable R on Ωfut1. Suppose R = {1, 2, 3, 4} 7−→ π(d) · (1 + r)
and R is integrable on P2M(P ) and R is simple function in Ωfut1. Then
π(d) = EP {the r-discounted value of R}.
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Proof: Set F = Ωfut1. R(R) = R and R is non-negative. Set m = π(d) ·
(1 + r). for every object x such that x ∈ dom R(R) holds (R(R))(x) = m

and dom R(R) ∈ F and 0 ¬ m. �

(20) Let us consider a real number r. Suppose r > 0. Let us consider a price
function π. Then there exists a sequence G of the set of random variables
on Ωfut1 and the Borel sets such that for every natural number d, G(d) =
{1, 2, 3, 4} 7−→ π(d) · (1 + r) and the change element to functions G and d
is integrable on P2M(P ) and the change element to functions G and d is
simple function in Ωfut1.
Proof: Define U(natural number) = the first RV of π, r and $1. Consider
g being a sequence of the set of random variables on Ωfut1 and the Borel
sets such that for every element d of N, g(d) = U(d). There exists a real-
valued random variable R on Ωfut1 such that R = {1, 2, 3, 4} 7−→ π(d) ·
(1 + r)(∈ R) and R is integrable on P2M(P ) and R is simple function in
Ωfut1. �

(21) Let us consider a real number r. Suppose r > 0. Let us consider a price
function π, and a sequence G of the set of random variables on Ωfut1 and
the Borel sets. Suppose for every natural number d, G(d) = {1, 2, 3, 4} 7−→
π(d) · (1 + r) and the change element to functions G and d is integrable on
P2M(P ) and the change element to functions G and d is simple function
in Ωfut1. Then

(i) there exists a risk neutral measure w.r.t. G, π and r, and

(ii) for every natural number s, π(s) = EP {the r-discounted value of
(the change element to functions G and s)}.

The theorem is a consequence of (19).
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