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Summary. Using the Mizar system [I], [5], we start to show, that the
Call-Option, the Put-Option and the Straddle (more generally defined as in the
literature) are random variables ([, p. 15), see (Def. [I)) and (Def. [2). Next we
construct and prove the simple random variables ([2], p. 14) in (Def. [g).

In the third section, we introduce the definition of arbitrage opportunity, see
(Def. . Next we show, that this definition can be characterized in a different
way (Lemma 1.3. in [4], p. 5), see (17). In our formalization for Lemma 1.3 we
make the assumption that ¢ is a sequence of real numbers (there are only finitely
many valued of interest, the values of ¢ in R?). For the definition of almost sure
with probability 1 see p. 6 in [2]. Last we introduce the risk-neutral probability
(Definition 1.4, p. 6 in [4]), here see (Def. [16)).

We give an example in real world: Suppose you have some assets like bonds
(riskless assets). Then we can fix our price for these bonds with z for today
and z - (1 4+ r) for tomorrow, r is the interest rate. So we simply assume, that
in every possible market evolution of tomorrow we have a determinated value.
Then every probability measure of Q7,1 is a risk-neutral measure, see . This
example shows the existence of some risk-neutral measure. If you find more than
one of them, you can determine — with an additional conidition to the probability
measures — whether a market model is arbitrage free or not (see Theorem 1.6. in
i, p. 6.

A short graph for :

Suppose we have a portfolio with many (in this example infinitely many)
assets. For asset d we have the price 7(d) for today, and the price 7(d) - (1 +r)
for tomorrow with some interest rate » > 0.

Let G be a sequence of random variables on Qj,.1, Borel sets. So you have
many functions fr : {1,2,3,4} — R with G(k) = fx and fi is a random variable
of Qfu11, Borel sets. For every fi we have fi(w) = w(k)-(147) for w € {1,2,3,4}.
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Today Tomorrow
only one scenario wa1 = {1,2},
wa2 = {3,4},

fa(w) = G(d)(w) = 7(d) - (1 +7),
for all d € N holds = (d) w € w21 Or W € Wagz,
r > 0 is the interest rate.

Here, every probability measure of Q1 is a risk-neutral measure.
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1. Pur-OPTION, CALL-OPTION AND STRADDLE ARE RANDOM VARIABLES

From now on 2 denotes a non empty set and F' denotes a o-field of subsets
of Q.

Now we state the propositions:

(1) ]0,4o00[ is an element of the Borel sets.

(2) Let us consider a random variable R of F' and the Borel sets, an element
K of R, and a function g from 2 into R. Suppose g =
X(R—(Q»—>K))*1([0,+oo[),Q- Then Call—Option(R, K) =g- (R — (Q — K))

(3) Let us consider a random variable R of F' and the Borel sets, and a real
number K. Then (2 — K) — R is a random variable of F' and the Borel
sets.

(4) Let us consider an element A of F. Then X4 is a random variable of
F and the Borel sets.

(5) Xgq,q is random variable on F' and the Borel sets. The theorem is a con-
sequence of (4).

(6) Let us consider random variables f, R of F' and the Borel sets, and a real
number K. Then (f — R)7([0, +o0]) is an element of F. The theorem is
a consequence of (1).

Let us consider €2 and F. Let R be a random variable of F' and the Borel
sets and K be a real number. Let us note that the functor Call-Option(R, K)
yields a random variable of F' and the Borel sets. The functor Put-Option(R, K)
yielding a function from 2 into R is defined by

(Def. 1) for every element w of €, if (2 — K) — R)(w) > 0, then it(w) =
((Q+— K) — R)(w) and if (2 — K) — R)(w) < 0, then it(w) = 0.
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Now we state the proposition:

(7) Let us consider a random variable R of F' and the Borel sets, a real
number K, and a function g from 2 into R. Suppose g =
X((Q—K)—R)=1([0,4-00[),2- Then Put-Option(R, K) =g - ((2— K) — R).

Let us consider 2 and F. Let R be a random variable of F' and the Borel
sets and K be a real number. Note that the functor Put-Option(R, K) yields
a random variable of F' and the Borel sets.

2. SIMPLE RANDOM VARIABLES

Let us consider 2 and F. Let R be a random variable of F' and the Borel
sets and K be a real number. The functor Straddle(R, K) yielding a random
variable of F' and the Borel sets is defined by the term

(Def. 2) Put-Option(R, K) + Call-Option(R, K).

Now we state the proposition:

(8) Let us consider a random variable R of F' and the Borel sets, a real
number K, and an element w of Q. Then (Straddle(R, K))(w) = |(R —
(2 — K))(w)].
Let us consider €2 and F'. The functors: the set of constants F' and the set
of Xz yielding sets are defined by terms
(Def. 3) {f, where f is a function from € into R : f is random variable on F' and
the Borel sets and constant },
(Def. 4)  {Xa,q, where A is an element of F' : X4 q is random variable on F and
the Borel sets},
respectively. Let X be a set. We say that X is F-random membered if and only
if
(Def. 5) for every object = such that € X there exists a function f from  into
R such that f = x and f is random variable on F' and the Borel sets.

Observe that the set of constants F' is non empty and the set of X i is non
empty and the set of constants I is F-random membered and the set of X is
F-random membered and there exists a set which is F-random membered and
non empty.

Let D be an F-random membered, non empty set, C; be a sequence of D,
and n be a natural number. The change type of C; and n yielding a random
variable of F' and the Borel sets is defined by the term

(Def. 6) Ci(n).
Let C5 be a sequence of D and w be an element of €). The change all types
of Cy and w yielding a function from N into R is defined by
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(Def. 7) for every natural number n, it(n) = (the change type of Cy and n)(w).
Let D1, Dy be F-random membered, non empty sets, C; be a sequence of
Dy, Cs be a sequence of Dy, and n be a natural number. The simple RV of C1,
C5 and n yielding a function from ) into R is defined by
(Def. 8) for every element w of Q, it(w) = (3 &_y((the change all types of Cy
and w) - (the change all types of C1 and w))(a))xen(n).
Observe that the simple RV of C7, (5 and n yields a random variable of F
and the Borel sets.

3. ARBITRAGE THEORY: DEFINITION AND ALTERNATIVE REPRESENTATION

From now on ¢ denotes a sequence of real numbers and m denotes a price
function.

Let us consider €2 and F'. Let ¢ be a natural number and G be a sequence
of the set of random variables on F' and the Borel sets. The change element to
functions G and ¢ yielding a real-valued random variable on F' is defined by the
term

(Def. 9) G(q).

Let us consider ¢. Let n be a natural number. The functors: the first AO-
set of o, Q F, G and n and the second AO-set of ¢, ), F, G and n yielding
elements of F' are defined by terms

(Def. 10)  (the RV-portfolio value for future extension of o, F', G and n)~1([0, +o0),
(Def. 11)  (the RV-portfolio value for future extension of o, F', G and n)~*(]0, +o0]),
respectively. Let P be a probability on F' and 7 be a price function. We say that
there exists an AO w.r.t. P, G, w and n if and only if
(Def. 12) there exists a sequence ¢ of real numbers such that the buy portfolio
extension of ¢, m, and n < 0 and P(the first AO-set of p, Q, F, G and
n) = 1 and P(the second AO-set of ¢, Q, F', G and n) > 0.

Let r be a real number. The first RV of r yielding an element of the set of

random variables on 2., and the Borel sets is defined by the term
(Def. 13) {1,2,3,4} — 7.

Let m be a price function and d be a natural number. The first RV of =, r
and d yielding an element of the set of random variables on 2,41 and the Borel
sets is defined by the term

(Def. 14) the first RV of w(d) - (1 + 7).

Now we state the propositions:

(9) There exists a sequence G of the set of random variables on €4, and
the Borel sets such that
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(i) G(0) ={1,2,3,4} — 1, and

(i) G(1) = {1,2,3,4} — 5, and

(iii) for every natural number k such that £ > 1 holds G(k) =

{1,2,3,4} — 0.

PROOF: Define U (natural number) = ($; = 0 — the first RV of 1, ($1 =
1 — the first RV of 5, the first RV of 0)). Consider f being a sequence of
the set of random variables on €2,,,,, and the Borel sets such that for every
element d of N, f(d) = U(d). f(0) = (0 = 0 — the first RV of 1,(0 =
1 — the first RV of 5, the first RV of 0)). f(1) = (1 = 0 — the first RV
of 1,(1 = 1 — the first RV of 5, the first RV of 0)). For every natural
number k such that £ > 1 holds f(k) = {1,2,3,4} — 0. O

(10) Let us consider a probability P on €,,, and a sequence G of the set of
random variables on €24, and the Borel sets. Suppose G(0) = {1,2,3,4} —
1 and G(1) = {1,2,3,4} — 5 and for every natural number k such that
k> 1 holds G(k) = {1,2,3,4} — 0. Then there exists a price function =
such that there exists an AO w.r.t. P, G, 7 and 1.
PRrROOF: Set Q = {1,2,3,4}. Set F = Qyop- P(Q) = 1 and P(0) = 0.
Define U (element of N) = ($; =0 — 1,($; =1 — 1,0))(€ R). Consider f
being a function from N into R such that for every element d of N, f(d) =
U(d). f is a price function. Reconsider m = f as a price function. Define
U(element of N) = ($; =0 — —1,($; =1 — 1,0))(€ R). Consider ¢ being
a sequence of real numbers such that for every element k of N, (k) = U(k).
P(the first AO-set of p, Q, F, G and 1) = 1 and P(the second AO-set of
¢, Q, F, G and 1) > 0 and the buy portfolio extension of ¢, 7, and 1 <0
by [7, (9)]. O

(11) Let us consider a natural number n, a real number r, and a sequence G
of the set of random variables on F' and the Borel sets. Then {w, where
w is an element of €2 : the portfolio value for future extension of n, v, F,
G and w > 0} = (the RV-portfolio value for future extension of ¢, F', G
and n)~1([0, +-oc[). The theorem is a consequence of (1).

Let us consider natural numbers d, di, a real number r, and a sequence G
of the set of random variables on F' and the Borel sets.

(12) Suppose d; = d—1. Then {w, where w is an element of 2 : the portfolio
value for future of d, ¢, F, G and w > (1 + r) - (the buy portfolio of
¢, m, and d)} = ((the RV-portfolio value for future of ¢, F, G and
d1) — (Q — (1 +7) - (the buy portfolio of ¢, 7, and d)))~*([0, +-o0[).
PROOF: Set S; = {w, where w is an element of €2 : the portfolio value
for future of d, ¢, F;, G and w > (1 4 r) - (the buy portfolio of ¢, ,
and d)}. Set Sy = ((the RV-portfolio value for future of ¢, F, G and
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d1) — (@ — (1 + ) - (the buy portfolio of ¢, 7, and d))) ([0, +o0[). For
every object x, x € Sy iff x € Sp. U

(13) ((The RV-portfolio value for future of ¢, F', G and dy) — (2 — (1 +
7) - (the buy portfolio of o, 7, and d))) ([0, +o0[) is an event of F.

(14) Let us consider a natural number d, a real number r, and a sequence G
of the set of random variables on F' and the Borel sets. Then {w, where
w is an element of §2 : the portfolio value for future extension of d, ¢, F,
G and w > 0} = (the RV-portfolio value for future extension of ¢, F, G
and d)~1(]0, +oc[). The theorem is a consequence of (1).

Let us consider natural numbers d, di, a real number r, and a sequence G
of the set of random variables on F' and the Borel sets.

(15) Suppose d; = d—1. Then {w, where w is an element of {2 : the portfolio
value for future of d, ¢, F';, G and w > (1 + r) - (the buy portfolio of
@, m, and d)} = ((the RV-portfolio value for future of ¢, F, G and
di) — (2 — (1 +7) - (the buy portfolio of ¢, 7, and d)))~1(]0, +-o00[).
PROOF: Set S; = {w, where w is an element of  : the portfolio value
for future of d, ¢, F';, G and w > (1 4 r) - (the buy portfolio of ¢, ,
and d)}. Set Sp = ((the RV-portfolio value for future of ¢, F', G and
d1) — (Q — (1 + ) - (the buy portfolio of ¢, 7, and d)))~(]0, +o0[). For
every object z, x € Sy iff x € So. O

(16) ((The RV-portfolio value for future of ¢, F', G and di) — (2 — (1 +
7) - (the buy portfolio of ¢, 7, and d)))~1(]0, +-o0[) is an event of F.

(17) Let us consider a price function 7, and natural numbers d, d;. Suppose
d > 0 and dy = d — 1. Let us consider a probability P on F, and a real
number r. Suppose r > —1. Let us consider a sequence G of the set
of random variables on F' and the Borel sets. Suppose the element of
F, the Borel sets, G, and 0 = Q —— 1 + r. Then there exists an AQO
w.r.t. P, G, m and d if and only if there exists a sequence ¢, of real
numbers such that P(((the RV-portfolio value for future of ¢y, F, G and
d1) — (Q — (1+7) - (the buy portfolio of ¢y, m, and d)))~*([0, +oc[)) = 1
and P(((the RV-portfolio value for future of ¢, F, G and d;) — (2 —
(14 7) - (the buy portfolio of (1, m, and d)))~*(]0, +o0c])) > 0.

PRrOOF: If there exists an AQ w.r.t. P, G, m and d, then there exists
a sequence 1 of real numbers such that P(((the RV-portfolio value
for future of ¢1, F, G and di) — (@ — (1 + r) - (the buy portfolio
of 1, 7, and d)))~1([0,+oc[)) = 1 and P(((the RV-portfolio value for
future of 1, F, G and d;) — (2 — (1 + ) - (the buy portfolio of ¢y,
7, and d)))~1(]0, +00[)) > 0. Define U (natural number) = ($; = 0 —
—(the buy portfolio of 1, 7, and d), »1($1))(€ R). Consider ¢ being a se-
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quence of real numbers such that for every element n of N, p(n) = U(n).
For every natural number n, if n = 0, then ¢(n) = —(the buy portfolio of

1, m, and d) and if n > 0, then ¢(n) = ¢1(n). The buy portfolio
extension of ¢, m, and d = 0. P(the first AO-set of ¢, Q, F, G and

d) = 1. P(the second AO-set of ¢, Q, F', G and d) > 0. O

4. RISK-NEUTRAL PROBABILITY MEASURE

Let us consider 2 and F'. Let R be a real-valued random variable on F' and
r be a real number. The r-discounted value of R yielding a real-valued random
variable on F' is defined by the term
1
Let m be a price function and G be a sequence of the set of random variables
on F' and the Borel sets. We say that there exists a risk neutral measure w.r.t.
G, m and r if and only if
(Def. 16) there exists a probability P on F' such that for every natural number d,
7(d) = Ep{the r-discounted value of (the change element to functions G
and d)}.
From now on P denotes a probability on €2f,1.
Now we state the propositions:

(18) Let us consider a real number r. Suppose r > 0. Let us consider a pri-
ce function 7, and a natural number d. Then there exists a real-valued
random variable f on €, such that

() f=1{1,2,3,4} — 7(d)- (1+7), and

(ii) f is integrable on P2M(P), and
(iii) f is simple function in §fy.
PROOF: Set Q2 = {1,2,3,4}. Define U (element of 22) = 7(d)-(147)(€ R).
Consider f being a function from €2y into R such that for every element d
of Qo, f(d) =U(d). Set g = Qy — m(d) - (1+r)(€ R). For every object z
such that z € dom f holds f(z) = g(x). f is integrable on P2M(P) by [6),
(9), 3], B, (12)]. O

(19) Let us consider a natural number n, and a real number r. Suppose r > 0.
Let us consider a price function 7, a natural number d, and a real-valued
random variable R on Q1. Suppose R = {1,2,3,4} +— x(d) - (1 + )
and R is integrable on P2M(P) and R is simple function in Q1. Then
7(d) = Ep{the r-discounted value of R}.
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PROOF: Set F' = Q1. R(R) = R and R is non-negative. Set m = m(d) -
(1 + 7). for every object  such that z € domR(R) holds (R(R))(z) = m
and domR(R) € F and 0 < m. O

(20) Let us consider a real number r. Suppose r > 0. Let us consider a price

function 7. Then there exists a sequence G of the set of random variables
on Q1 and the Borel sets such that for every natural number d, G(d) =
{1,2,3,4} — m(d) - (1 + r) and the change element to functions G and d
is integrable on P2M(P) and the change element to functions G and d is
simple function in Q1.

PROOF: Define U (natural number) = the first RV of 7, r and $;. Consider
g being a sequence of the set of random variables on Q2,41 and the Borel
sets such that for every element d of N, g(d) = U(d). There exists a real-
valued random variable R on Q.1 such that R = {1,2,3,4} +— w(d) -
(14+r)(e R) and R is integrable on P2M(P) and R is simple function in
Qf’utl- 0

(21) Let us consider a real number r. Suppose r > 0. Let us consider a price

1]

function 7, and a sequence G of the set of random variables on 7,1 and
the Borel sets. Suppose for every natural number d, G(d) ={1,2,3,4} —
7(d) - (1+r) and the change element to functions G and d is integrable on
P2M(P) and the change element to functions G and d is simple function
in Q¢y41. Then

(i) there exists a risk neutral measure w.r.t. G, = and r, and

(ii) for every natural number s, w(s) = Ep{the r-discounted value of
(the change element to functions G and s)}.

The theorem is a consequence of (19).
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