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Summary. We show that the set of all partial predicates over a set D
together with the disjunction, conjunction, and negation operations, defined in
accordance with the truth tables of S.C. Kleene’s strong logic of indeterminacy
[17], forms a Kleene algebra. A Kleene algebra is a De Morgan algebra [3] (also
called quasi-Boolean algebra) which satisfies the condition z A =z < y V —y
(sometimes called the normality axiom). We use the formalization of De Morgan
algebras from [§].

The term “Kleene algebra” was introduced by A. Monteiro and D. Brignole
in [3]. A similar notion of a “normal i-lattice” had been previously studied by
J.A. Kalman [I6]. More details about the origin of this notion and its relation
to other notions can be found in |24, 4, [T, 2]. It should be noted that there is
a different widely known class of algebras, also called Kleene algebras [22] [6],
which generalize the algebra of regular expressions, however, the term “Kleene
algebra” used in this paper does not refer to them.

Algebras of partial predicates naturally arise in computability theory in the
study on partial recursive predicates. They were studied in connection with non-
classical logics [I77, [5, [I8] [32 29] [30]. A partial predicate also corresponds to
the notion of a partial set [26] on a given domain, which represents a (partial)
property which for any given element of this domain may hold, not hold, or
neither hold nor not hold. The field of all partial sets on a given domain is
an algebra with generalized operations of union, intersection, complement, and
three constants (0, 1, n which is the fixed point of complement) which can be
generalized to an equational class of algebras called DMF-algebras (De Morgan
algebras with a single fixed point of involution) [25]. In [27] partial sets and DMF-
algebras were considered as a basis for unification of set-theoretic and linguistic
approaches to probability.
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Partial predicates over classes of mathematical models of data were used
for formalizing semantics of computer programs in the composition-nominative
approach to program formalization [31 28] B3] [15], for formalizing extensions of
the Floyd-Hoare logic [7), [9] which allow reasoning about properties of programs
in the case of partial pre- and postconditions [23 20} [19] 21], for formalizing
dynamical models with partial behaviors in the context of the mathematical
systems theory [11I, 13} [14] 12} [10].

MSC: 103B70 103G25/ 103B35
Keywords: partial predicate; Kleene algebra

MML identifier: PARTPR_1, version: 8.1.07 5.47.1318

1. PARTIAL PREDICATES

From now on x denotes an object and D denotes a set.
Let us consider D. The functor Pr(D) yielding a set is defined by the term
(Def. 1)  D-> Boolean.
Observe that Pr(D) is non empty and functional.
A partial predicate of D is a partial function from D to Boolean. From now
on p denotes a partial predicate of D.
Now we state the propositions:
(1) If x € Pr(D), then z is a partial predicate of D.
(2) pePr(D).
(3) If x € domp, then p(x) = true or p(z) = false.
Let us consider D. The functor PPneg(D) yielding a function from Pr(D)
into Pr(D) is defined by
(Def. 2) for every partial predicate p of D, dom(it(p)) = domp and for every
object d, if d € domp and p(d) = true, then it(p)(d) = false and if
d € domp and p(d) = false, then it(p)(d) = true.
Let us consider p. The functor —p yielding a partial predicate of D is defined
by the term
(Def. 3) (PPneg(D))(p).
Let us note that the functor is involutive.
Now we state the propositions:
(4) If z € domp and (—p)(z) = false, then p(x) = true. The theorem is
a consequence of (3).
(5) If z € domp and (—p)(z) = true, then p(x) = false. The theorem is
a consequence of (3).
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(6) If z € dom—p and (—p)(x) = false, then x € domp and p(x) = true.
The theorem is a consequence of (3).
(7) If z € dom—p and (—p)(z) = true, then x € domp and p(x) = false.
The theorem is a consequence of (3).
In the sequel D denotes a non empty set and p, g, r denote partial predicates
of D.
Let us consider D. The functor PPdisj(D) yielding a function from Pr(D) x
Pr(D) into Pr(D) is defined by
(Def. 4) for every partial predicates p, ¢ of D, domit(p,q) = {d, where d is
an element of D : d € domp and p(d) = true or d € domgq and ¢(d) =
true or d € domp and p(d) = false and d € dom g and ¢(d) = false} and
for every object d, if d € domp and p(d) = true or d € domgq and
q(d) = true, then it(p,q)(d) = true and if d € domp and p(d) = false
and d € dom ¢ and ¢(d) = false, then it(p, q)(d) = false.
Let us consider p and ¢. The functor p V q yielding a partial predicate of D
is defined by the term

(Def. 5) (PPdisj(D))(p, q).
Observe that the functor is commutative and idempotent.
Now we state the propositions:
(8) Suppose z € dom(p V q). Then
(i) = € domp and p(x) = true, or
(ii) = € domgq and ¢(x) = true, or
(iii) « € domp and p(z) = false and = € dom g and q(z) = false.
(9) If x € domp and = € domgq and (p V q)(z) = true, then p(z) = true or
q(z) = true. The theorem is a consequence of (3).

(10) Ifx € dom(pVq) and (pV q)(x) = true, then x € domp and p(x) = true
or z € domgq and ¢g(z) = true. The theorem is a consequence of (8) and
(9)-

(11) If 2 € domp and (p V q)(x) = false, then p(xz) = false. The theorem is
a consequence of (3).

(12) If 2 € domgq and (p V q)(x) = false, then g(z) = false. The theorem is
a consequence of (3).

(13) Ifx € dom(pVq) and (pV q)(x) = false, then x € dom p and p(x) = false
and x € dom q and ¢(z) = false. The theorem is a consequence of (8) and
(12).

(14) ASSOCIATIVITY LAW:
pV(gVr)=(pVq)Vr. The theorem is a consequence of (8) and (11).
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(15) (pVvq)V(pVr)=(pVq) Vr. The theorem is a consequence of (14).

Let us consider D, p, and ¢. The functor p A q yielding a partial predicate of
D is defined by the term

(Def. 6) —(—pV —q).
Observe that the functor is commutative and idempotent. The functor p = q
yielding a partial predicate of D is defined by the term
(Def. 7) —pVg.
Now we state the propositions:

(16) dom(p A q) = {d, where d is an element of D : d € domp and p(d) =
false or d € domgq and ¢(d) = false or d € domp and p(d) = true and
d € dom g and ¢(d) = true}. The theorem is a consequence of (5) and (4).

(17) Suppose = € dom(p A q). Then
(i) € domp and p(x) = false, or
(ii) = € domq and ¢(x) = false, or
(iii) « € domp and p(z) = true and x € dom g and ¢(x) = true.

The theorem is a consequence of (16).

(18) If x € domp and p(x) = true and z € domgq and ¢(x) = true, then
(p A q)(x) = true.

(19) If x € domp and p(x) = false, then (p A q)(z) = false.
(20) If x € domg and g(z) = false, then (p A ¢)(x) = false.
(21) If x € domp and (p A q)(x) = true, then p(z) = true.
(22) If x € domg and (p A q)(z) = true, then q(x) = true.
(23)

If x € dom(pAq) and (pAq)(z) = true, then x € domp and p(z) = true
and = € dom ¢ and ¢(z) = true. The theorem is a consequence of (17) and
(19).

(24) If x € domp and z € domgq and (p A q)(z) = false, then p(z) = false or
q(z) = false. The theorem is a consequence of (18) and (3).

(25) Ifx € dom(pAq) and (pAq)(x) = false, then x € dom p and p(x) = false
or ¢ € domgq and ¢g(x) = false. The theorem is a consequence of (17) and
(24).

(26) ASSOCIATIVITY LAW:
pA(gAT)=(PAg) AT

27) (pAgA(pAT)=(PAg) AT

(28) MEET-ABSORBING LAW:

(p A q) V q = q. The theorem is a consequence of (16), (8), (17), (19), and

(3)-
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(29) JOIN-ABSORBING LAW:
p A (pV q) = p. The theorem is a consequence of (16), (17), (8), (3), (19),
and (18).

(30) DISTRIBUTIVITY LAW:
pA(qVr)=(pAq)V (pAr). The theorem is a consequence of (16), (17),
(19), (13), (10), (18), (8), (23), and (25).

(31) dom(p = q) = {d, where d is an element of D : d € domp and p(d) =
false or d € domgq and g(d) = true or d € domp and p(d) = true and
d € dom q and ¢(d) = false}. The theorem is a consequence of (5) and (4).

(32) Suppose z € dom(p = ¢). Then
(i) € domp and p(x) = false, or
(ii) « € domq and ¢(x) = true, or
(iii) « € domp and p(z) = true and x € dom g and ¢(x) = false.
The theorem is a consequence of (31).
(33) If x € domp and p(x) = false, then (p = ¢)(x) = true.
(34) If x € domgq and g(x) = true, then (p = q)(x) = true.
(35) If x € domp and p(x) = true and € domgq and ¢q(z) = false, then
(p = q)(z) = false.
(36) If z € domp and = € domq and (p = q)(z) = true, then p(z) = false or
q(x) = true. The theorem is a consequence of (35) and (3).
(37) If x € domp and (p = q)(z) = false, then p(x) = true.
(38) If x € domgq and (p = ¢)(x) = false, then q(z) = false.
(39) If x € dom(p = ¢q) and (p = ¢)(x) = false, then x € domp and p(x) =
true and x € domq and ¢(x) = false. The theorem is a consequence of
(32) and (33).
(40) If x € dom(p = q) and (p = q)(z) = true, then x € domp and p(x) =
false or x € dom g and ¢(x) = true. The theorem is a consequence of (32)
and (35).
(41) (p=r)A(¢=1r)=(pVq) = r. The theorem is a consequence of (30).
(42) (p=r)V(g=r)=(pAq) = r. The theorem is a consequence of (15)
and (14).
Let D be a set. The functor truepp(D) yielding a partial predicate of D is
defined by the term
(Def. 8) D +—— true.
Let D be a set. The functor falsepp (D) yielding a partial predicate of D is
defined by the term
(Def. 9) D +— false.
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Let us consider a set D. Now we state the propositions:
(43) —falsepp(D) = truepp(D).
(44) —truepp(D) = falsepp(D). The theorem is a consequence of (43).
Now we state the propositions:
(45) pV truepp(D) = truepp(D).
(46) truepp(D) V p = truepp(D).
(47)  p A falsepp(D) = falsepp (D).
(48) falsepp (D) A p = falsepp(D).
(49) pV —p = truepp(D)| domp. The theorem is a consequence of (8) and
(3).
(50) —pV p = truepp(D)[ dom p.
(51) pA-—p = falsepp(D)] dom p. The theorem is a consequence of (16), (17),
(3), and (19).
(52) —p A p = falsepp(D)| domp.
(53) falsepp(D) = p = truepp(D). The theorem is a consequence of (43) and
(45).
(54) p = truepp(D) = truepp(D).
(55) falsepp(D)[domp V truepp(D)| dom g = truepp(D)[ domq.
Let D be a set. The functor Lpp(D) yielding a partial predicate of D is
defined by the term

(Def. 10) 0.

Now we state the propositions:

(56) Let us consider a set D. Then = Lpp(D) = Lpp(D).

(57) Lpp(D) V truepp(D) = truepp (D).

(58) Lpp(D) Afalsepp(D) = falsepp (D).

(59) Lpp(D) = truepp(D) = truepp(D). The theorem is a consequence of

(56) and (57).

2. ALGEBRA OF PARTIAL CONNECTIVES WITH (STRONG) KLEENE LOGICAL
CONNECTIVES

Let us consider D. The functors: Ap and \/p yielding binary operations on
Pr(D) are defined by conditions

(Def. 11) for every partial predicates p, ¢ of D, Ap(p,q) =p A q,
(Def. 12) for every partial predicates p, ¢ of D, \/p(p,q) =pV q,
respectively. The functor “p yielding a unary operation on Pr(D) is defined by



KLEENE ALGEBRA OF PARTIAL PREDICATES

(Def. 13) for every partial predicate p of D, it(p) = —p.

The functor PartPredLatt(D) yielding a strict ortholattice structure is defi-
ned by the term

(Def' 14) <PT(D)7 \/D> /\D?TD>'

Let D be a non empty set, f, g be binary operations on D, and h be a unary
operation on D. One can verify that (D, f, g, h) is non empty.

Let us consider D. Let us note that PartPredLatt(D) is non empty and
constituted functions and there exists a lattice structure which is non empty
and constituted functions and there exists an ortholattice structure which is
strict, non empty, and constituted functions.

Let us consider D. One can verify that PartPredLatt(D) is lattice-like and
PartPredLatt(D) is bounded and PartPredLatt(D) is de Morgan and join-
idempotent and has idempotent element.

Now we state the propositions:

(60)  TpartPredratt(p) = truepp(D).
(61) J—PartPredLa‘nt(D) = falsePP(D)'

Let L be a non empty, constituted functions lattice structure and a, b be

elements of L. We say that a is a partial complement of b if and only if
(Def. 15) alUb = Trldomband blUa = Tr[domb and aMb = Lp[domb and
bMa = 1p[dombd.

We say that L is partially complemented if and only if

(Def. 16) for every element b of L, there exists an element a of L such that a is a
partial complement of b.

Let L be a constituted functions, non empty lattice structure. We say that

L is partially Boolean if and only if
(Def. 17) L is bounded, partially complemented, and distributive.

One can verify that every constituted functions, non empty lattice struc-
ture which is partially Boolean is also bounded, partially complemented, and
distributive and every constituted functions, non empty lattice structure which
is bounded, partially complemented, and distributive is also partially Boolean.

Now we state the proposition:

(62) Let us consider elements a, b of PartPredLatt(D). If a = p and b = —p,
then b is a partial complement of a. The theorem is a consequence of (60),
(49), (61), and (51).

Let us consider D. Note that PartPredLatt(D) is partially Boolean.
Now we state the proposition:

(63) DISTRIBUTIVITY LAW:

pV(gAT)= (Vg AlpVr).
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Let L be a non empty ortholattice structure. We say that L is Kleene if and
only if

(Def. 18) for every elements x, y of L, x Mz C y LI y°.

Let us observe that every meet-absorbing, join-absorbing, meet-commutative,
non empty ortholattice structure which is Boolean and well-complemented is al-
so Kleene.

Let us consider D. Observe that PartPredLatt(D) is Kleene and there exists
a non empty, constituted functions lattice structure which is partially Boolean,
join-idempotent, and lattice-like and there exists a non empty ortholattice struc-
ture which is Kleene, de Morgan, join-idempotent, lattice-like, and strict and has
idempotent element and there exists a non empty, constituted functions ortho-
lattice structure which is partially Boolean, Kleene, de Morgan, join-idempotent,
lattice-like, and strict and has idempotent element.
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