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Summary. This paper continues formalization in the Mizar system [5, 1]
of basic notions of the composition-nominative approach to program semantics
[16] which was started in [11, 14? ].

The composition-nominative approach studies mathematical models of com-
puter programs and data on various levels of abstraction and generality and pro-
vides tools for reasoning about their properties. In particular, data in computer
systems are modeled as nominative data [17]. Besides formalization of seman-
tics of programs, certain elements of the composition-nominative approach were
applied to abstract systems in a mathematical systems theory [7, 9, 10, 8, 6].

In the paper we give a formal definition of the notions of a binominative
function over given sets of names and values (i.e. a partial function which maps
simple-named complex-valued nominative data to such data) and a nominati-
ve predicate (a partial predicate on simple-named complex-valued nominative
data). The sets of such binominative functions and nominative predicates form
the carrier of the generalized Glushkov algorithmic algebra for simple-named
complex-valued nominative data [17]. This algebra can be used to formalize al-
gorithms which operate on various data structures (such as multidimensional
arrays, lists, etc.) and reason about their properties.

In particular, we formalize the operations of this algebra which require a spe-
cification of a data domain and which include the existential quantifier, the as-
signment composition, the composition of superposition into a predicate, the
composition of superposition into a binominative function, the name checking
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predicate. The details on formalization of nominative data and the operations of
the algorithmic algebra over them are described in [13, 15, 12].
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1. Preliminaries

From now on a, b, c, v, v1, x, y denote objects, V , A denote sets, and d
denotes a nominative data with simple names from V and complex values from
A.

Now we state the proposition:

(1) {a, b, c} ⊆ A if and only if a, b, c ∈ A.

Let a, b, c, d, e, f be objects. One can verify that {〈〈a, b〉〉, 〈〈c, d〉〉, 〈〈e, f〉〉} is
relation-like.

Let us consider objects a, b, c, d, e, f . Now we state the propositions:

(2) dom{〈〈a, b〉〉, 〈〈c, d〉〉, 〈〈e, f〉〉} = {a, c, e}.
(3) rng{〈〈a, b〉〉, 〈〈c, d〉〉, 〈〈e, f〉〉} = {b, d, f}.
Let us consider V . Note that there exists a finite sequence which is one-to-one

and V -valued.
Now we state the proposition:

(4) dom〈a, b, c〉 = {1, 2, 3}.
Let us consider V and A. Let us note that NDSS(V,A) and has not non

empty elements and NDSC(V,A) and has not non empty elements.
Now we state the propositions:

(5) If v ∈ V , then {〈〈v, d〉〉} is a non-atomic nominative data of V and A.

(6) Let us consider a finite function D. Suppose domD ⊆ V and rngD ⊆
NDSC(V,A). Then D is a non-atomic nominative data of V and A.
Proof: Define P[set] ≡ $1 is a non-atomic nominative data of V and A.
For every sets x, B such that x ∈ D and B ⊆ D and P[B] holds P[B∪{x}]
by [11, (39)], (5), [3, (31)], [2, (14)]. P[D] from [4, Sch. 2]. �

(7) Let us consider nominative data d1, d2 with simple names from V and
complex values from A. Then d2 ⊆ d1∇ad2.

(8) Every non-atomic nominative data of V and A is a nominative data with
simple names from V and complex values from A.

http://zbmath.org/classification/?q=cc:03B35
http://zbmath.org/classification/?q=cc:68T99
http://fm.mizar.org/miz/nomin_2.miz
http://ftp.mizar.org/
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(9) Let us consider non-atomic nominative data d1, d2 of V and A. Then
d1∇ad2 is a non-atomic nominative data of V and A. The theorem is
a consequence of (8).

Let us consider V and A. Let d1, d2 be non-atomic nominative data of V
and A. Let us note that d1∇ad2 is function-like and relation-like.

Let us consider v. Observe that d1∇vad2 is function-like and relation-like.
Let d1 be a non-atomic nominative data of V and A and d2 be a nominative

data with simple names from V and complex values from A. Let us note that
d1∇vad2 is function-like and relation-like.

Now we state the propositions:

(10) Suppose v ∈ V . Let us consider nominative data d1, d2 with simple names
from V and complex values from A, and a function L. If L = d1∇vad2, then
L(v) = d2. The theorem is a consequence of (8).

(11) Suppose v ∈ V and v 6= v1. Let us consider a non-atomic nominative
data d1 of V and A, a nominative data d2 with simple names from V
and complex values from A, and a function L. Suppose L = d1∇vad2 and
v1 ∈ dom d1 and d1 /∈ A and ⇒v(d2) /∈ A. Then L(v1) = d1(v1). The
theorem is a consequence of (8).

Let us consider a non-atomic nominative data d1 of V and A and a nomi-
native data d2 with simple names from V and complex values from A. Now we
state the propositions:

(12) Suppose v ∈ V and v /∈ dom d1 and d1 /∈ A and ⇒v(d2) /∈ A. Then
dom(d1∇vad2) = {v} ∪ dom d1.
Proof: Set n = ⇒v(d2). dom(d1�(dom d1 \ domn)) = dom d1 by [18,
(60)], [3, (34)], [18, (62)]. �

(13) If v ∈ V and v ∈ dom d1 and d1 /∈ A and⇒v(d2) /∈ A, then dom(d1∇vad2) =
dom d1.
Proof: Set n =⇒v(d2). domn∪ dom(d1�(dom d1 \ domn)) = dom d1 by
[3, (31)], [18, (60), (57)]. �

(14) If v ∈ V and d1 /∈ A and⇒v(d2) /∈ A, then dom(d1∇vad2) = {v}∪dom d1.
The theorem is a consequence of (13) and (12).

Let us consider V and A.
A partial predicate over simple-named complex-valued nominative data of V and A

is a partial predicate of NDSC(V,A). In the sequel p, q, r denote partial predi-
cates over simple-named complex-valued nominative dates of V and A.

Now we state the propositions:

(15) dom(p∨ q) = {d, where d is a nominative data with simple names from
V and complex values fromA : d ∈ dom p and p(d) = true or d ∈ dom q and
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q(d) = true or d ∈ dom p and p(d) = false and d ∈ dom q and q(d) =
false}.
Proof: Set X = {d, where d is a nominative data with simple names
from V and complex values from A : d ∈ dom p and p(d) = true or d ∈
dom q and q(d) = true or d ∈ dom p and p(d) = false and d ∈ dom q and
q(d) = false}. Set Y = {d, where d is an element of NDSC(V,A) : d ∈
dom p and p(d) = true or d ∈ dom q and q(d) = true or d ∈ dom p and
p(d) = false and d ∈ dom q and q(d) = false}. X = Y by [11, (39)]. �

(16) dom(p∧ q) = {d, where d is a nominative data with simple names from
V and complex values from A : d ∈ dom p and p(d) = false or d ∈
dom q and q(d) = false or d ∈ dom p and p(d) = true and d ∈ dom q and
q(d) = true}.
Proof: Set F = p ∧ q. Set P = ¬p. Set Q = ¬q. Set D = {d, where
d is a nominative data with simple names from V and complex values
from A : d ∈ dom p and p(d) = false or d ∈ dom q and q(d) = false or d ∈
dom p and p(d) = true and d ∈ dom q and q(d) = true}. dom(P ∨ Q) =
{d, where d is a nominative data with simple names from V and complex
values from A : d ∈ domP and P (d) = true or d ∈ domQ and Q(d) =
true or d ∈ domP and P (d) = false and d ∈ domQ and Q(d) = false}.
domF ⊆ D by [14, (5), (4)]. Consider d being a nominative data with
simple names from V and complex values from A such that x = d and
d ∈ dom p and p(d) = false or d ∈ dom q and q(d) = false or d ∈ dom p
and p(d) = true and d ∈ dom q and q(d) = true. �

(17) dom(p ⇒ q) = {d, where d is a nominative data with simple names
from V and complex values from A : d ∈ dom p and p(d) = false or d ∈
dom q and q(d) = true or d ∈ dom p and p(d) = true and d ∈ dom q and
q(d) = false}.
Proof: Set F = p ⇒ q. Set D = {d, where d is a nominative data with
simple names from V and complex values from A : d ∈ dom p and p(d) =
false or d ∈ dom q and q(d) = true or d ∈ dom p and p(d) = true and d ∈
dom q and q(d) = false}. domF ⊆ D by [11, (39)], [14, (5), (4)]. Consider
d being a nominative data with simple names from V and complex values
from A such that x = d and d ∈ dom p and p(d) = false or d ∈ dom q and
q(d) = true or d ∈ dom p and p(d) = true and d ∈ dom q and q(d) = false.
�

Let us consider V , A, and v. The functor ∃V,Av yielding a function from
Pr(NDSC(V,A)) into Pr(NDSC(V,A)) is defined by

(Def. 1) for every partial predicate over simple-named complex-valued nomina-
tive data p of V and A, dom(it(p)) = {d, where d is a nominative data
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with simple names from V and complex values from A : there exists
a nominative data d1 with simple names from V and complex values from
A such that d∇vad1 ∈ dom p and p(d∇vad1) = true or for every nominative
data d1 with simple names from V and complex values from A, d∇vad1 ∈
dom p and p(d∇vad1) = false} and for every nominative data d with simple
names from V and complex values from A, if there exists a nominative
data d1 with simple names from V and complex values from A such that
d∇vad1 ∈ dom p and p(d∇vad1) = true, then it(p)(d) = true and if for every
nominative data d1 with simple names from V and complex values from
A, d∇vad1 ∈ dom p and p(d∇vad1) = false, then it(p)(d) = false.

Let us consider p. The functor ∃v p yielding a partial predicate over simple-
named complex-valued nominative data of V and A is defined by the term

(Def. 2) (∃V,Av )(p).

Now we state the propositions:

(18) Suppose x ∈ dom(∃v p). Then

(i) there exists a nominative data d1 with simple names from V and
complex values from A such that x∇vad1 ∈ dom p and p(x∇vad1) =
true, or

(ii) for every nominative data d1 with simple names from V and complex
values from A, x∇vad1 ∈ dom p and p(x∇vad1) = false.

(19) ∃v ⊥PP(NDSC(V,A)) = ⊥PP(NDSC(V,A)). The theorem is a consequen-
ce of (18).

Now we state the proposition:

(20) Distributivity law:
∃v (p ∨ q) = ∃v p ∨ ∃v q.
Proof: Set a = p ∨ q. Set f = ∃v a. Set g = ∃v p. Set h = ∃v q. Set
b = g ∨ h. dom a = {d, where d is a nominative data with simple names
from V and complex values from A : d ∈ dom p and p(d) = true or d ∈
dom q and q(d) = true or d ∈ dom p and p(d) = false and d ∈ dom q and
q(d) = false}. dom b = {d, where d is a nominative data with simple
names from V and complex values from A : d ∈ dom g and g(d) =
true or d ∈ domh and h(d) = true or d ∈ dom g and g(d) = false and
d ∈ domh and h(d) = false}. dom f = dom b by [11, (39)], (18), [14, (8),
(9), (13)]. �

2. On an Algorithmic algebra over Simple-Named Complex-Valued
Nominative Data
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From now on n denotes a natural number and X denotes a function.
Let F be a function yielding function and d be an object. We say that

d is in doms F if and only if

(Def. 3) for every object x such that x ∈ domF holds d ∈ dom(F (x)).

Let g be a function yielding function and X be a function. The functor
NDdataSeq(g,X, d) yielding a function is defined by

(Def. 4) dom it = domX and for every x such that x ∈ domX holds it(x) =
〈〈X(x), g(x)(d)〉〉.

Let X be a finite function. One can check that NDdataSeq(g,X, d) is finite.
Let X be a finite sequence. Let us observe that NDdataSeq(g,X, d) is finite

sequence-like.
Let X be a function. The functor NDentry(g,X, d) yielding a set is defined

by the term

(Def. 5) rng NDdataSeq(g,X, d).

Now we state the propositions:

(21) Let us consider a function f , and objects a, d. Then NDentry(〈f〉, 〈a〉, d) =
{〈〈a, f(d)〉〉}.

(22) Let us consider functions f , g, and objects a, b, d. Then NDentry(〈f,
g〉, 〈a, b〉, d) = {〈〈a, f(d)〉〉, 〈〈b, g(d)〉〉}.

(23) Let us consider functions f , g, h, and objects a, b, c, d. Then NDentry(〈f,
g, h〉, 〈a, b, c〉, d) = {〈〈a, f(d)〉〉, 〈〈b, g(d)〉〉, 〈〈c, h(d)〉〉}. The theorem is a con-
sequence of (4).

Let g be a function yielding function, X be a function, and d be an object.
One can check that NDentry(g,X, d) is relation-like.

Let X be a one-to-one function. Observe that NDentry(g,X, d) is function-
like.

Let X be a finite function. Note that NDentry(g,X, d) is finite.
Now we state the proposition:

(24) Let us consider a function yielding function g, a function X, and an ob-
ject d. Then dom(NDentry(g,X, d)) = rngX.

Let us consider V and A.
A binominative function over simple-named complex-valued nominative data of V and A

is a partial function from NDSC(V,A) to NDSC(V,A). From now on f , g, h deno-
te binominative functions over simple-named complex-valued nominative dates
of V and A.

Now we state the propositions:

(25) rng NDdataSeq(〈f〉, 〈v〉, d) = v 7−→. f(d).
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(26) If a ∈ V and d ∈ dom f , then NDentry(〈f〉, 〈a〉, d) = ⇒a(f(d)). The
theorem is a consequence of (25).

(27) If a ∈ V and d ∈ dom f , then NDentry(〈f〉, 〈a〉, d) is a non-atomic
nominative data of V and A. The theorem is a consequence of (26).

(28) Suppose {a, b} ⊆ V and a 6= b and d ∈ dom f and d ∈ dom g. Then
NDentry(〈f, g〉, 〈a, b〉, d) is a non-atomic nominative data of V and A. The
theorem is a consequence of (22) and (6).

(29) Suppose {a, b, c} ⊆ V and a, b, c are mutually different and d ∈ dom f
and d ∈ dom g and d ∈ domh. Then NDentry(〈f, g, h〉, 〈a, b, c〉, d) is a non-
atomic nominative data of V and A. The theorem is a consequence of (23),
(2), (3), (1), and (6).

Let us consider V andA. Let f be a finite sequence. We say that f is (V ,A)-FPrg-yielding
if and only if

(Def. 6) for every n such that 1 ¬ n ¬ len f holds f(n) is a binominative function
over simple-named complex-valued nominative data of V and A.

Let us consider f . One can check that 〈f〉 is (V ,A)-FPrg-yielding.
Let us consider g. One can verify that 〈f, g〉 is (V ,A)-FPrg-yielding.
Let us consider h. Let us note that 〈f, g, h〉 is (V ,A)-FPrg-yielding.
Let us consider n. Observe that there exists a finite sequence which is (V ,A)-

FPrg-yielding and n-element.
Let us consider x. Let g be a (V ,A)-FPrg-yielding finite sequence. Observe

that g(x) is function-like and relation-like and every finite sequence which is
(V ,A)-FPrg-yielding is also function yielding.

Now we state the propositions:

(30) Let us consider a (V ,A)-FPrg-yielding finite sequence g, and a one-to-
one finite sequence X. Suppose dom g = domX and d is in doms g. Then
rng NDentry(g,X, d) ⊆ NDSC(V,A).

(31) Let us consider a (V ,A)-FPrg-yielding finite sequence g, and a one-to-
one, V -valued finite sequence X. Suppose dom g = domX and d is in
doms g. Then NDentry(g,X, d) is a non-atomic nominative data of V and
A. The theorem is a consequence of (24), (30), and (6).

Let us consider V , A, and v. The functor AsgV,A,v yielding a function from
FPrg(NDSC(V,A)) into FPrg(NDSC(V,A)) is defined by

(Def. 7) for every binominative function over simple-named complex-valued no-
minative data f of V and A, dom(it(f)) = dom f and for every nominative
data d with simple names from V and complex values from A such that
d ∈ dom(it(f)) holds it(f)(d) = d∇vaf(d).

Let us consider V , A, v, and f . The functor Asgv(f) yielding a binominative
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function over simple-named complex-valued nominative data of V and A is
defined by the term

(Def. 8) (AsgV,A,v)(f).

Let d be a non-atomic nominative data of V and A. Let us observe that
(Asgv(f))(d) is function-like and relation-like.

Now we state the proposition:

(32) Let us consider a non-atomic nominative data d of V and A. Sup-
pose v ∈ V and d /∈ A and ⇒v(f(d)) /∈ A and d ∈ dom f . Then
dom((Asgv(f))(d)) = dom d ∪ {v}. The theorem is a consequence of (14).

Let us consider V and A. Let g be a (V ,A)-FPrg-yielding finite sequence.
Assume

∏
g 6= ∅. Let X be a function. The functor SP(g,X) yielding a function

from Pr(NDSC(V,A))×
∏
g into Pr(NDSC(V,A)) is defined by

(Def. 9) for every partial predicate over simple-named complex-valued nomina-
tive data p of V and A and for every element x of

∏
g, dom it(p, x) =

{d, where d is a nominative data with simple names from V and complex
values from A : d∇a(NDentry(g,X, d)) ∈ dom p and d is in doms g} and
for every nominative data d with simple names from V and complex values
fromA such that d is in doms g holds it(p, x)(d) ∼= p(d∇a(NDentry(g,X, d))).

Let us consider V , A, and p. Let g be a (V ,A)-FPrg-yielding finite sequ-
ence. Assume

∏
g 6= ∅. Let X be a function and x be an element of

∏
g. The

functor SC-Psuperpos(p, x,X) yielding a partial predicate over simple-named
complex-valued nominative data of V and A is defined by the term

(Def. 10) (SP(g,X))(p,x).

Now we state the proposition:

(33) Let us consider a (V ,A)-FPrg-yielding finite sequence g. Suppose
∏
g 6=

∅. Let us consider an element x of
∏
g. Suppose d ∈ dom(SC-Psuperpos(p, x,X)).

Then

(i) d is in doms g, and

(ii) (SC-Psuperpos(p, x,X))(d) = p(d∇a(NDentry(g,X, d))).

Let us consider V , A, and v. The functor SV,A,vP yielding a function from

Pr(NDSC(V,A))× FPrg(NDSC(V,A)) into Pr(NDSC(V,A)) is defined by

(Def. 11) for every partial predicate over simple-named complex-valued nomina-
tive data p of V and A and for every binominative function over simple-
named complex-valued nominative data f of V and A, dom it(p, f) =
{d, where d is a nominative data with simple names from V and complex
values from A : d∇vaf(d) ∈ dom p and d ∈ dom f} and for every nomina-
tive data d with simple names from V and complex values from A such
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that d ∈ dom f holds it(p, f)(d) ∼= p(d∇vaf(d)).
Let us consider V , A, v, p, and f . The functor SC-Psuperpos(p, f, v) yiel-

ding a partial predicate over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 12) (SV,A,vP)(p,f).

Now we state the propositions:

(34) If d ∈ dom(SC-Psuperpos(p, f, v)), then (SC-Psuperpos(p, f, v))(d) =
p(d∇vaf(d)) and d ∈ dom f .

(35) Let us consider an element x of
∏
〈f〉. Suppose v ∈ V and

∏
〈f〉 6=

∅. Then SC-Psuperpos(p, f, v) = SC-Psuperpos(p, x, 〈v〉). The theorem is
a consequence of (26), (33), and (34).

Let us consider V and A. Let g be a (V ,A)-FPrg-yielding finite sequence.
Assume

∏
g 6= ∅. LetX be a function. The functor SCFsuperpos(g,X) yielding

a function from FPrg(NDSC(V,A))×
∏
g into FPrg(NDSC(V,A)) is defined by

(Def. 13) for every binominative function over simple-named complex-valued no-
minative data f of V and A and for every element x of

∏
g, dom it(f, x) =

{d, where d is a nominative data with simple names from V and complex
values from A : d∇a(NDentry(g,X, d)) ∈ dom f and d is in doms g} and
for every nominative data d with simple names from V and complex values
fromA such that d is in doms g holds it(f, x)(d) ∼= f(d∇a(NDentry(g,X, d))).

Let us consider V , A, and f . Let g be a (V ,A)-FPrg-yielding finite sequence.
Assume

∏
g 6= ∅. Let X be a function and x be an element of

∏
g. The func-

tor SC-Fsuperpos(f, x,X) yielding a binominative function over simple-named
complex-valued nominative data of V and A is defined by the term

(Def. 14) (SCFsuperpos(g,X))(f, x).

Now we state the proposition:

(36) Let us consider a (V ,A)-FPrg-yielding finite sequence g. Suppose
∏
g 6=

∅. Let us consider an element x of
∏
g. Suppose d ∈ dom(SC-Fsuperpos(f, x,X)).

Then

(i) d is in doms g, and

(ii) (SC-Fsuperpos(f, x,X))(d) = f(d∇a(NDentry(g,X, d))).

Let us consider V , A, and v. The functor SCFsuperpos(V,A, v) yielding
a function from FPrg(NDSC(V,A))×FPrg(NDSC(V,A)) into FPrg(NDSC(V,A))
is defined by

(Def. 15) for every binominative functions over simple-named complex-valued no-
minative dates f , g of V andA, dom it(f, g) = {d, where d is a nominative
data with simple names from V and complex values from A : d∇vag(d) ∈
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dom f and d ∈ dom g} and for every nominative data d with simple na-
mes from V and complex values from A such that d ∈ dom g holds
it(f, g)(d) ∼= f(d∇vag(d)).

Let us consider V , A, v, f , and g. The functor SC-Fsuperpos(f, g, v) yiel-
ding a binominative function over simple-named complex-valued nominative da-
ta of V and A is defined by the term

(Def. 16) (SCFsuperpos(V,A, v))(f, g).

Now we state the propositions:

(37) If d ∈ dom(SC-Fsuperpos(f, g, v)), then (SC-Fsuperpos(f, g, v))(d) =
f(d∇vag(d)) and d ∈ dom g.

(38) Let us consider an element x of
∏
〈g〉. Suppose v ∈ V and

∏
〈g〉 6=

∅. Then SC-Fsuperpos(f, g, v) = SC-Fsuperpos(f, x, 〈v〉). The theorem is
a consequence of (26), (36), and (37).

Let us consider V , A, and v. The functor SC-name-check(V,A, v) yielding
a partial predicate over simple-named complex-valued nominative data of V
and A is defined by

(Def. 17) dom it = NDSC(V,A)\A and for every non-atomic nominative data d of
V and A such that d ∈ dom it holds if v ⇒a d ∈ dom it , then it(d) = true
and if v ⇒a d /∈ dom it , then it(d) = false.
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