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Summary. In this article, using the Mizar system [3], [4], we define a struc-
ture [1], [6] in order to build a Pythagorean pentatonic scale and a Pythagorean
heptatonic scale1 [5], [7].
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1. Preliminaries

Now we state the proposition:

(1) Let us consider an object r. Then r ∈ R+∪{0} \ {0} if and only if r is
a positive real number.

Note that there exists a rational number which is positive.
The functor Q+ yielding a non empty subset of R+∪{0} is defined by the

term

(Def. 1) the set of all r where r is a positive rational number.

Now we state the propositions:

(2) Let us consider an object r. Then r is an element of Q+ if and only if r
is a positive rational number.

(3) Q+∪{0} ⊆ Q.

1https://en.wikipedia.org/wiki/Pythagorean_tuning
c© 2018 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)239

https://content.sciendo.com/view/journals/forma/forma-overview.xml
https://orcid.org/0000-0002-4901-0766
http://zbmath.org/classification/?q=cc:00A65
http://zbmath.org/classification/?q=cc:97M80
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/music_s1.miz
http://ftp.mizar.org/
https://en.wikipedia.org/wiki/Pythagorean_tuning
http://creativecommons.org/licenses/by-sa/3.0/


240 roland coghetto

The functor R+ yielding a non empty subset of R+∪{0} is defined by the
term

(Def. 2) R+∪{0} \ {0}.
Now we state the propositions:

(4) N+ ⊆ Q+.

(5) N+ ⊆ R+. The theorem is a consequence of (1).

(6) Q+ ⊆ R+. The theorem is a consequence of (2) and (1).

2. Real Frequency

We consider structures of music which extend 1-sorted structures and are
systems

〈〈a carrier, an equidistance, a Ratio〉〉

where the carrier is a set, the equidistance is a relation between (the carrier)×
(the carrier) and (the carrier)× (the carrier), the Ratio is a function from (the
carrier)× (the carrier) into the carrier.

Let S be a structure of music and a, b, c, d be elements of S. We say that
ab ∼= cd if and only if

(Def. 3) 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the equidistance of S.

Let x, y be elements of R+. The functor R -ratio(x, y) yielding an element
of R+ is defined by

(Def. 4) there exist positive real numbers r, s such that x = r and s = y and
it = s

r .

Now we state the proposition:

(7) Let us consider elements a, b, c, d of R+. Then R -ratio(a, b) = R -ratio(c, d)
if and only if R -ratio(b, a) = R -ratio(d, c).

The functor R -ratio yielding a function from R+×R+ into R+ is defined by

(Def. 5) for every element x of R+ × R+, there exist elements y, z of R+ such
that x = 〈〈y, z〉〉 and it(x) = R -ratio(y, z).

The functor eq- R -ratio yielding a relation between R+ × R+ and R+ × R+

is defined by

(Def. 6) for every elements x, y of R+ × R+, 〈〈x, y〉〉 ∈ it iff there exist elements
a, b, c, d of R+ such that x = 〈〈a, b〉〉 and y = 〈〈c, d〉〉 and R -ratio(a, b) =
R -ratio(c, d).

The functor R -music yielding a structure of music is defined by the term

(Def. 7) 〈〈R+, eq- R -ratio,R -ratio 〉〉.
Now we state the propositions:
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(8) (i) R -music is not empty, and

(ii) the carrier of R -music ⊆ R+, and

(iii) for every elements f1, f2, f3, f4 of R -music, f1f2 ∼= f3f4 iff (the Ratio
of R -music)(f1, f2) = (the Ratio of R -music)(f3, f4).

(9) Let us consider elements f1, f2, f3 of R -music. Suppose (the Ratio of
R -music)(f1, f2) = (the Ratio of R -music)(f1, f3). Then f2 = f3.

(10) N+ ⊆ the carrier of R -music.

(11) Let us consider an element fr of R -music, and a non zero natural number
n. Then there exists an element h of R -music such that 〈〈fr, h〉〉 ∈ [〈〈1, n〉〉]α,
where α is the equidistance of R -music. The theorem is a consequence of
(1) and (8).

(12) Let us consider elements f1, f2, f3 of R -music. Suppose (the Ratio of
R -music)(f1, f1) = (the Ratio of R -music)(f2, f3). Then f2 = f3.

(13) Let us consider elements f1, f2, f8, f6, f9, f7 of R -music, positive real
numbers r1, r2, and non zero natural numbers n, m. Suppose f8 = n · r1

and f6 = m · r1 and f9 = n · r2 and f7 = m · r2. Then f8f6 ∼= f9f7. The
theorem is a consequence of (8).

(14) Let us consider elements f1, f2, f3, f4 of R -music. Then (the Ratio of
R -music)(f1, f2) = (the Ratio of R -music)(f3, f4) if and only if (the Ratio
of R -music)(f2, f1) = (the Ratio of R -music)(f4, f3). The theorem is a con-
sequence of (7).

3. Rational Frequency

Let x, y be elements of Q+. The functor Q -ratio(x, y) yielding an element
of Q+ is defined by

(Def. 8) there exist positive rational numbers r, s such that x = r and s = y and
it = s

r .

Now we state the proposition:

(15) Let us consider elements a, b, c, d of Q+. Then Q -ratio(a, b) = Q -ratio(c, d)
if and only if Q -ratio(b, a) = Q -ratio(d, c).

The functor Q -ratio yielding a function from Q+ × Q+ into Q+ is defined
by

(Def. 9) for every element x of Q+ × Q+, there exist elements y, z of Q+ such
that x = 〈〈y, z〉〉 and it(x) = Q -ratio(y, z).

The functor eq- Q -ratio yielding a relation between Q+ ×Q+ and Q+ ×Q+

is defined by
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(Def. 10) for every elements x, y of Q+ × Q+, 〈〈x, y〉〉 ∈ it iff there exist elements
a, b, c, d of Q+ such that x = 〈〈a, b〉〉 and y = 〈〈c, d〉〉 and Q -ratio(a, b) =
Q -ratio(c, d).

The functor Q -music yielding a structure of music is defined by the term

(Def. 11) 〈〈Q+, eq- Q -ratio,Q -ratio 〉〉.
Now we state the propositions:

(16) (i) Q -music is not empty, and

(ii) the carrier of Q -music ⊆ R+, and

(iii) for every elements f1, f2, f3, f4 of Q -music, f1f2 ∼= f3f4 iff (the Ratio
of Q -music)(f1, f2) = (the Ratio of Q -music)(f3, f4).

The theorem is a consequence of (6).

(17) Let us consider elements f1, f2, f3 of Q -music. Suppose (the Ratio of
Q -music)(f1, f2) = (the Ratio of Q -music)(f1, f3). Then f2 = f3.

(18) N+ ⊆ the carrier of Q -music.

(19) Let us consider an element fr of Q -music, and a non zero natural number
n. Then there exists an element h of Q -music such that 〈〈fr, h〉〉 ∈ [〈〈1, n〉〉]α,
where α is the equidistance of Q -music. The theorem is a consequence of
(2) and (16).

(20) Let us consider elements f1, f2, f3 of Q -music. Suppose (the Ratio of
Q -music)(f1, f1) = (the Ratio of Q -music)(f2, f3). Then f2 = f3.

(21) Let us consider an element fr of Q -music. Then there exists a positive
real number r such that

(i) fr = r, and

(ii) for every non zero natural number n, n · r is an element of Q -music.

The theorem is a consequence of (2).

(22) Let us consider elements f1, f2, f8, f6, f9, f7 of Q -music, positive rational
numbers r1, r2, and non zero natural numbers n, m. Suppose f8 = n · r1

and f6 = m · r1 and f9 = n · r2 and f7 = m · r2. Then f8f6 ∼= f9f7. The
theorem is a consequence of (16).

(23) Let us consider elements f1, f2, f3, f4 of Q -music. Then (the Ratio of
Q -music)(f1, f2) = (the Ratio of Q -music)(f3, f4) if and only if (the Ratio
of Q -music)(f2, f1) = (the Ratio of Q -music)(f4, f3). The theorem is
a consequence of (15).
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4. Musical Structure and Some Axioms

Let S be a structure of music. We say that S is satisfying real if and only if

(Def. 12) the carrier of S ⊆ R+.

We say that S is equidistant-ratio equivalent if and only if

(Def. 13) for every elements f1, f2, f3, f4 of S, f1f2 ∼= f3f4 iff (the Ratio of
S)(f1, f2) = (the Ratio of S)(f3, f4).

We say that S is satisfying interval if and only if

(Def. 14) for every elements f1, f2, f3 of S such that (the Ratio of S)(f1, f2) =
(the Ratio of S)(f1, f3) holds f2 = f3.

We say that S is unison-ratio stable if and only if

(Def. 15) for every elements f1, f2, f3 of S such that (the Ratio of S)(f1, f1) =
(the Ratio of S)(f2, f3) holds f2 = f3.

We say that S is ratio symmetric if and only if

(Def. 16) for every elements f1, f2, f3, f4 of S, (the Ratio of S)(f1, f2) = (the Ratio
of S)(f3, f4) iff (the Ratio of S)(f2, f1) = (the Ratio of S)(f4, f3).

We say that S is natural if and only if

(Def. 17) N+ ⊆ the carrier of S.

We say that S is harmonic closed if and only if

(Def. 18) for every element fr of S and for every non zero natural number n,
there exists an element h of S such that 〈〈fr, h〉〉 ∈ [〈〈1, n〉〉]α, where α is
the equidistance of S.

Note that there exists a structure of music which is harmonic closed, na-
tural, ratio symmetric, unison-ratio stable, satisfying interval, equidistant-ratio
equivalent, satisfying real, and non empty.

Let us note that the functor R -music yields a harmonic closed, natural, ratio
symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structure of music. Observe that the functor
Q -music yields a harmonic closed, natural, ratio symmetric, unison-ratio sta-
ble, satisfying interval, equidistant-ratio equivalent, satisfying real, non empty
structure of music. Now we state the propositions:

(24) Let us consider a natural structure of music S. Then every non zero
natural number is an element of S.

(25) Let us consider an equidistant-ratio equivalent structure of music M ,
and elements a, b of M . Then ab ∼= ab.

(26) Let us consider an equidistant-ratio equivalent structure of music M ,
and elements a, b, c, d of M . Then ab ∼= cd if and only if cd ∼= ab.
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(27) Let us consider an equidistant-ratio equivalent structure of music M ,
and elements a, b, c, d, e, f of M . Suppose ab ∼= cd and cd ∼= ef . Then
ab ∼= ef .

(28) Let us consider a satisfying interval, equidistant-ratio equivalent struc-
ture of music S, and elements a, b, c of S. Then ab ∼= ac if and only if
b = c. The theorem is a consequence of (25).

From now on M denotes an equidistant-ratio equivalent structure of music
and a, b, c, d, e, f denote elements of M .

Now we state the propositions:

(29) aa ∼= aa.

(30) The equidistance of M is reflexive in (the carrier of M) × (the carrier
of M). The theorem is a consequence of (25).

(31) Suppose M is not empty. Then

(i) the equidistance of M is reflexive, and

(ii) field(the equidistance of M) = (the carrier of M) × (the carrier of
M).

The theorem is a consequence of (30).

(32) The equidistance of M is symmetric in (the carrier of M)× (the carrier
of M). The theorem is a consequence of (26).

(33) The equidistance of M is transitive in (the carrier of M)× (the carrier
of M). The theorem is a consequence of (27).

(34) The equidistance of M is an equivalence relation of (the carrier of M)×
(the carrier of M). The theorem is a consequence of (30), (32), and (33).

(35) Let us consider a ratio symmetric, equidistant-ratio equivalent structure
of music M , and elements a, b, c, d of M . Then ab ∼= cd if and only if
ba ∼= dc.

(36) Let us consider a unison-ratio stable, equidistant-ratio equivalent struc-
ture of music S, and elements a, b, c of S. If aa ∼= bc, then b = c.

Let S be a natural, satisfying interval, harmonic closed, equidistant-ratio
equivalent structure of music, fr be an element of S, and n be a non zero natural
number. The n-harmonic of fr in S yielding an element of S is defined by

(Def. 19) 〈〈fr, it〉〉 ∈ [〈〈1, n〉〉]α, where α is the equidistance of S.

We say that S is harmonic linear if and only if

(Def. 20) for every element fr of S and for every non zero natural number n, there
exists a positive real number f such that fr = f and the n-harmonic of
fr in S = n · f .

Now we state the propositions:
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(37) R -music is harmonic linear. The theorem is a consequence of (1) and
(24).

(38) Q -music is harmonic linear. The theorem is a consequence of (2) and
(24).

One can check that there exists a harmonic closed, natural, ratio symmetric,
unison-ratio stable, satisfying interval, equidistant-ratio equivalent, satisfying
real, non empty structure of music which is harmonic linear.

One can check that the functor R -music yields a harmonic linear, harmo-
nic closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music. Let
us note that the functor Q -music yields a harmonic linear, harmonic closed,
natural, ratio symmetric, unison-ratio stable, satisfying interval, equidistant-
ratio equivalent, satisfying real, non empty structure of music.

Let M be a harmonic closed, natural, satisfying interval, equidistant-ratio
equivalent structure of music. We say that M is harmonic stable if and only if

(Def. 21) for every elements f1, f2 of M and for every non zero natural numbers
n, m, the n-harmonic of f1 in M the m-harmonic of f1 in M ∼=
the n-harmonic of f2 in M the m-harmonic of f2 in M .

Now we state the propositions:

(39) R -music is harmonic stable. The theorem is a consequence of (1) and
(13).

(40) Q -music is harmonic stable. The theorem is a consequence of (2) and
(22).

Observe that there exists a harmonic linear, harmonic closed, natural, ratio
symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equivalent,
satisfying real, non empty structure of music which is harmonic stable.

One can verify that the functor R -music yields a harmonic stable, harmonic
linear, harmonic closed, natural, ratio symmetric, unison-ratio stable, satisfy-
ing interval, equidistant-ratio equivalent, satisfying real, non empty structure
of music. Observe that the functor Q -music yields a harmonic stable, harmonic
linear, harmonic closed, natural, ratio symmetric, unison-ratio stable, satisfy-
ing interval, equidistant-ratio equivalent, satisfying real, non empty structure
of music.

Let M be a harmonic closed, natural, satisfying interval, equidistant-ratio
equivalent structure of music and fr be an element of M . The functors: the set
of unison of fr in M , the set of octave of fr in M , the set of fifth of fr in M ,
the set of fourth of fr in M , and the set of major sixth of fr in M yielding
subsets of (the carrier of M)× (the carrier of M) are defined by terms
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(Def. 22) [〈〈the 1-harmonic of fr in M, the 1-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

(Def. 23) [〈〈the 1-harmonic of fr in M, the 2-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

(Def. 24) [〈〈the 2-harmonic of fr in M, the 3-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

(Def. 25) [〈〈the 3-harmonic of fr in M, the 4-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

(Def. 26) [〈〈the 3-harmonic of fr in M, the 5-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

respectively. The functors: the set of major third of fr in M , the set of minor
third of fr in M , the set of minor sixth of fr in M , the set of major tone of fr
in M , and the set of minor tone of fr in M yielding subsets of (the carrier of
M)× (the carrier of M) are defined by terms

(Def. 27) [〈〈the 4-harmonic of fr in M, the 5-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

(Def. 28) [〈〈the 5-harmonic of fr in M, the 6-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

(Def. 29) [〈〈the 5-harmonic of fr in M, the 8-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

(Def. 30) [〈〈the 8-harmonic of fr in M, the 9-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

(Def. 31) [〈〈the 9-harmonic of fr in M, the 10-harmonic of fr in M〉〉]α, where α is
the equidistance of M ,

respectively. The functors: the set of unison of M , the set of octave of M , the set
of fifth of M , the set of fourth of M , and the set of major sixth of M yielding
subsets of (the carrier of M)× (the carrier of M) are defined by terms

(Def. 32) [〈〈1, 1〉〉]α, where α is the equidistance of M ,

(Def. 33) [〈〈1, 2〉〉]α, where α is the equidistance of M ,

(Def. 34) [〈〈2, 3〉〉]α, where α is the equidistance of M ,

(Def. 35) [〈〈3, 4〉〉]α, where α is the equidistance of M ,

(Def. 36) [〈〈3, 5〉〉]α, where α is the equidistance of M ,

respectively. The functors: the set of major third of M , the set of minor third
of M , the set of minor sixth of M , the set of major tone of M , and the set of
minor tone of M yielding subsets of (the carrier of M)× (the carrier of M) are
defined by terms

(Def. 37) [〈〈4, 5〉〉]α, where α is the equidistance of M ,
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(Def. 38) [〈〈5, 6〉〉]α, where α is the equidistance of M ,

(Def. 39) [〈〈5, 8〉〉]α, where α is the equidistance of M ,

(Def. 40) [〈〈8, 9〉〉]α, where α is the equidistance of M ,

(Def. 41) [〈〈9, 10〉〉]α, where α is the equidistance of M ,

respectively. Let S be a harmonic closed, natural, satisfying interval, equidistant-
ratio equivalent structure of music. We say that S is fifth constructible if and
only if

(Def. 42) for every element fr of S, there exists an element q of S such that 〈〈fr,
q〉〉 ∈ the set of fifth of S.

Now we state the propositions:

(41) Let us consider an element fr of R -music. Then there exist positive real
numbers f , q1 such that

(i) f = fr, and

(ii) q1 = (3 qua real number)
2 · f , and

(iii) 〈〈f, q1〉〉 ∈ the set of fifth of R -music.

The theorem is a consequence of (1) and (24).

(42) R -music is fifth constructible. The theorem is a consequence of (41) and
(1).

(43) Let us consider an element fr of Q -music. Then there exist positive
rational numbers f , q1 such that

(i) f = fr, and

(ii) q1 = (3 qua rational number)
2 · f , and

(iii) 〈〈f, q1〉〉 ∈ the set of fifth of Q -music.

The theorem is a consequence of (2) and (24).

(44) Q -music is fifth constructible. The theorem is a consequence of (43) and
(2).

Let us observe that there exists a harmonic stable, harmonic linear, harmo-
nic closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music which
is fifth constructible.

Let us note that the functor R -music yields a fifth constructible, harmonic
stable, harmonic linear, harmonic closed, natural, ratio symmetric, unison-
ratio stable, satisfying interval, equidistant-ratio equivalent, satisfying real,
non empty structure of music. Let us note that the functor Q -music yields
a fifth constructible, harmonic stable, harmonic linear, harmonic closed, natu-
ral, ratio symmetric, unison-ratio stable, satisfying interval, equidistant-ratio
equivalent, satisfying real, non empty structure of music.



248 roland coghetto

Let M be a fifth constructible, harmonic closed, natural, satisfying inte-
rval, equidistant-ratio equivalent structure of music and fr be an element of
M . The fifth of fr in M yielding an element of M is defined by

(Def. 43) 〈〈fr, it〉〉 ∈ the set of fifth of M .

Now we state the propositions:

(45) Let us consider a fifth constructible, harmonic stable, harmonic linear,
harmonic closed, natural, satisfying interval, equidistant-ratio equivalent
structure of music M , and an element fr of M . Then the set of fifth of fr
in M = the set of fifth of M . The theorem is a consequence of (24) and
(27).

(46) Let us consider an element fr of R -music. Then there exists a positive
real number f such that

(i) fr = f , and

(ii) the fifth of fr in R -music = (3 qua real number)
2 · f .

The theorem is a consequence of (1) and (41).

(47) Let us consider an element fr of Q -music. Then there exists a positive
rational number f such that

(i) fr = f , and

(ii) the fifth of fr in Q -music = (3 qua rational number)
2 · f .

The theorem is a consequence of (2) and (43).

Let M be a fifth constructible, harmonic closed, natural, satisfying interval,
equidistant-ratio equivalent structure of music. We say that M is classical fifth
if and only if

(Def. 44) for every element fr of M , there exists a positive real number f such
that fr = f and the fifth of fr in M = (3 qua real number)

2 · f .

One can verify that there exists a fifth constructible, harmonic stable, har-
monic linear, harmonic closed, natural, ratio symmetric, unison-ratio stable,
satisfying interval, equidistant-ratio equivalent, satisfying real, non empty
structure of music which is classical fifth.

One can verify that the functor R -music yields a classical fifth, fifth con-
structible, harmonic stable, harmonic linear, harmonic closed, natural, ratio
symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structure of music.

One can check that the functor Q -music yields a classical fifth, fifth con-
structible, harmonic stable, harmonic linear, harmonic closed, natural, ratio
symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structure of music.
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5. Harmonic

Now we state the propositions:

(48) Let us consider a harmonic closed, natural, unison-ratio stable, sa-
tisfying interval, equidistant-ratio equivalent structure of music M , and
an element fr of M . Then the 1-harmonic of fr in M = fr. The theorem
is a consequence of (36).

(49) Let us consider a harmonic stable, harmonic closed, natural, unison-
ratio stable, satisfying interval, equidistant-ratio equivalent structure
of music M , and elements a, b of M . Then aa ∼= bb. The theorem is
a consequence of (48).

(50) Let us consider a harmonic stable, harmonic linear, harmonic closed,
natural, unison-ratio stable, satisfying interval, equidistant-ratio equ-
ivalent structure of music M , and an element fr of M . Then the set of
octave of fr in M = the set of octave of M . The theorem is a consequence
of (48), (27), and (24).

(51) Let us consider a fifth constructible, harmonic closed, natural, satisfying
interval, equidistant-ratio equivalent, non empty structure of music M ,
and an element fr of M . Then there exists a sequence s11 of M such that

(i) s11(0) = fr, and

(ii) for every natural number n, 〈〈s11(n), s11(n+ 1)〉〉 ∈ the set of fifth of
M .

Proof: Define P[set, set, set] ≡ there exist positive real numbers x, y such
that 〈〈$2, $3〉〉 ∈ the set of fifth of M . For every natural number n and for
every element x of M , there exists an element y of M such that P[n, x, y].
Consider s11 being a sequence of M such that s11(0) = fr and for every
natural number n, P[n, s11(n), s11(n+ 1)]. �

Let M be a structure of music and a, b, c be elements of M . We say that b
is between a and c if and only if

(Def. 45) there exist positive real numbers r1, r2, r3 such that a = r1 and b = r2

and c = r3 and r1 ¬ r2 < r3.

Let S be a harmonic closed, natural, satisfying interval, equidistant-ratio
equivalent structure of music. We say that S is octave constructible if and only
if

(Def. 46) for every element fr of S, there exists an element o of S such that 〈〈fr,
o〉〉 ∈ the set of octave of S.

Now we state the propositions:
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(52) Let us consider an element fr of R -music. Then there exist positive real
numbers f , q1 such that

(i) f = fr, and

(ii) q1 = 2 · f , and

(iii) 〈〈f, q1〉〉 ∈ the set of octave of R -music.

The theorem is a consequence of (1) and (24).

(53) R -music is octave constructible. The theorem is a consequence of (52)
and (1).

(54) Let us consider an element fr of Q -music. Then there exist positive
rational numbers f , q1 such that

(i) f = fr, and

(ii) q1 = 2 · f , and

(iii) 〈〈f, q1〉〉 ∈ the set of octave of Q -music.

The theorem is a consequence of (2) and (24).

(55) Q -music is octave constructible. The theorem is a consequence of (54)
and (2).

Let us note that there exists a classical fifth, fifth constructible, harmonic
stable, harmonic linear, harmonic closed, natural, ratio symmetric, unison-
ratio stable, satisfying interval, equidistant-ratio equivalent, satisfying real,
non empty structure of music which is octave constructible.

Let us observe that the functor R -music yields an octave constructible, clas-
sical fifth, fifth constructible, harmonic stable, harmonic linear, harmonic
closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music.
Let us note that the functor Q -music yields an octave constructible, classical
fifth, fifth constructible, harmonic stable, harmonic linear, harmonic closed,
natural, ratio symmetric, unison-ratio stable, satisfying interval, equidistant-
ratio equivalent, satisfying real, non empty structure of music.

Let M be an octave constructible, harmonic closed, natural, satisfying
interval, equidistant-ratio equivalent structure of music and fr be an element
of M . The octave of fr in M yielding an element of M is defined by

(Def. 47) 〈〈fr, it〉〉 ∈ the set of octave of M .

Let M be a satisfying real, non empty structure of music and r be an element
of M . The functor @r yielding a positive real number is defined by the term

(Def. 48) r.
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Let M be an octave constructible, harmonic closed, natural, satisfying
interval, equidistant-ratio equivalent structure of music. We say that M is
classical octave if and only if

(Def. 49) for every element fr of M , there exists a positive real number f such
that fr = f and the octave of fr in M = 2 · f .

Now we state the propositions:

(56) R -music is classical octave. The theorem is a consequence of (52) and
(1).

(57) Q -music is classical octave. The theorem is a consequence of (54) and
(2).

One can verify that there exists an octave constructible, classical fifth, fifth
constructible, harmonic stable, harmonic linear, harmonic closed, natural,
ratio symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equ-
ivalent, satisfying real, non empty structure of music which is classical octave.

Observe that the functor R -music yields a classical octave, octave construc-
tible, classical fifth, fifth constructible, harmonic stable, harmonic linear,
harmonic closed, natural, ratio symmetric, unison-ratio stable, satisfying
interval, equidistant-ratio equivalent, satisfying real, non empty structure of
music. Observe that the functor Q -music yields a classical octave, octave con-
structible, classical fifth, fifth constructible, harmonic stable, harmonic linear,
harmonic closed, natural, ratio symmetric, unison-ratio stable, satisfying in-
terval, equidistant-ratio equivalent, satisfying real, non empty structure of
music.

Let M be an octave constructible, harmonic closed, natural, satisfying
interval, equidistant-ratio equivalent structure of music. We say that M is
octave descending constructible if and only if

(Def. 50) for every element fr of M , there exists an element o of M such that 〈〈o,
fr〉〉 ∈ the set of octave of M .

Now we state the propositions:

(58) Let us consider an element fr of R -music. Then there exist positive real
numbers f , q1 such that

(i) f = fr, and

(ii) q1 = (1 qua real number)
2 · f , and

(iii) 〈〈q1, f〉〉 ∈ the set of octave of R -music.

The theorem is a consequence of (1), (24), and (35).

(59) R -music is octave descending constructible. The theorem is a consequ-
ence of (58) and (1).
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(60) Let us consider an element fr of Q -music. Then there exist positive
rational numbers f , q1 such that

(i) f = fr, and

(ii) q1 = (1 qua rational number)
2 · f , and

(iii) 〈〈q1, f〉〉 ∈ the set of octave of Q -music.

The theorem is a consequence of (2), (24), and (35).

(61) Q -music is octave descending constructible. The theorem is a consequ-
ence of (60) and (2).

One can verify that there exists a classical octave, octave constructible,
classical fifth, fifth constructible, harmonic stable, harmonic linear, harmo-
nic closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music which
is octave descending constructible.

One can verify that the functor R -music yields an octave descending con-
structible, classical octave, octave constructible, classical fifth, fifth construc-
tible, harmonic stable, harmonic linear, harmonic closed, natural, ratio sym-
metric, unison-ratio stable, satisfying interval, equidistant-ratio equivalent,
satisfying real, non empty structure of music. Note that the functor Q -music
yields an octave descending constructible, classical octave, octave constructible,
classical fifth, fifth constructible, harmonic stable, harmonic linear, harmo-
nic closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music.

Let M be an octave descending constructible, octave constructible, fifth
constructible, harmonic closed, natural, ratio symmetric, satisfying inte-
rval, equidistant-ratio equivalent structure of music and fr be an element of
M . The octave descending of fr in M yielding an element of M is defined by

(Def. 51) 〈〈it , fr〉〉 ∈ the set of octave of M .

Now we state the propositions:

(62) Let us consider an octave descending constructible, classical octave,
octave constructible, fifth constructible, harmonic closed, natural, ratio
symmetric, satisfying interval, equidistant-ratio equivalent, satisfying
real, non empty structure of music M , and an element fr of M . Then
there exists a positive real number r such that

(i) fr = r, and

(ii) the octave descending of fr in M = r
2 .

The theorem is a consequence of (1).
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(63) Let us consider classical octave, octave constructible, classical fifth, fifth
constructible, harmonic closed, natural, satisfying interval, equidistant-
ratio equivalent structures of music M1, M2, an element f1 of M1, and
an element f2 of M2. Suppose f1 = f2. Then

(i) the fifth of f1 in M1 = the fifth of f2 in M2, and

(ii) the octave of f1 in M1 = the octave of f2 in M2.

(64) Let us consider octave descending constructible, classical octave, octave
constructible, fifth constructible, harmonic closed, natural, ratio sym-
metric, satisfying interval, equidistant-ratio equivalent, satisfying real,
non empty structures of music M1, M2, an element fr1 of M1, and an ele-
ment fr2 of M2. Suppose fr1 = fr2. Then the octave descending of fr1 in
M1 = the octave descending of fr2 in M2. The theorem is a consequence
of (62).

Let M be an octave descending constructible, octave constructible, fifth
constructible, harmonic closed, natural, ratio symmetric, satisfying interval,
equidistant-ratio equivalent structure of music and f10, fr be elements of M .
The reduct fifth of the fr with fundamental frequency f10 in M yielding an ele-
ment of M is defined by the term

(Def. 52)


the fifth of fr in M, if the fifth of fr in M is between f10 and the

octave of f10 in M,

the octave descending of (the fifth of fr in M) in M,otherwise.
Now we state the propositions:

(65) Let us consider octave descending constructible, classical octave, octa-
ve constructible, classical fifth, fifth constructible, harmonic closed,
natural, ratio symmetric, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structures of music M1, M2, elements
fr1, f11 of M1, and elements fr2, f12 of M2. Suppose fr1 = fr2 and
f11 = f12. Then the reduct fifth of the fr1 with fundamental frequency
f11 in M1 = the reduct fifth of the fr2 with fundamental frequency f12 in
M2. The theorem is a consequence of (63) and (64).

(66) Let us consider a classical fifth, fifth constructible, harmonic closed,
natural, satisfying interval, equidistant-ratio equivalent structure of music
M , and an element fr of M . Then there exist positive real numbers r, s
such that

(i) r = fr, and

(ii) s = (3 qua real number)
2 · r, and

(iii) the fifth of fr in M = s.
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(67) Let us consider an octave descending constructible, classical octave,
octave constructible, classical fifth, fifth constructible, harmonic clo-
sed, natural, satisfying interval, equidistant-ratio equivalent structure
of music M , and elements f10, fr of M . Suppose fr is between f10 and
the octave of f10 in M . Then there exist positive real numbers r1, r2, r3

such that

(i) f10 = r1, and

(ii) fr = r2, and

(iii) the octave of f10 in M = 2 · r1, and

(iv) r1 ¬ r2 ¬ 2 · r1.

(68) Let us consider an octave descending constructible, classical octave,
octave constructible, classical fifth, fifth constructible, harmonic closed,
natural, ratio symmetric, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structure of music M , and elements f10,
fr of M . Suppose fr is between f10 and the octave of f10 in M . Then
the reduct fifth of the fr with fundamental frequency f10 in M is between
f10 and the octave of f10 in M . The theorem is a consequence of (67) and
(62).

A space of music is an octave descending constructible, classical octave,
octave constructible, classical fifth, fifth constructible, harmonic stable, har-
monic linear, harmonic closed, natural, ratio symmetric, unison-ratio stable,
satisfying interval, equidistant-ratio equivalent, satisfying real, non empty
structure of music. Now we state the propositions:

(69) R -music is a space of music.

(70) Q -music is a space of music.

6. Spiral of Fifths

Now we state the proposition:

(71) Let us consider an octave descending constructible, octave constructible,
fifth constructible, harmonic closed, natural, ratio symmetric, satisfying
interval, equidistant-ratio equivalent, non empty structure of music M ,
and elements f10, fr of M . Then there exists a sequence s11 of M such
that

(i) s11(0) = fr, and

(ii) for every natural number n, s11(n + 1) = the reduct fifth of the
s11(n) with fundamental frequency f10 in M .
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Proof: Define P[set, set, set] ≡ there exist elements x, y of M such that
x = $2 and y = $3 and y = the reduct fifth of the x with fundamental
frequency f10 in M . For every natural number n and for every element x
of M , there exists an element y of M such that P[n, x, y]. Consider s11

being a sequence of M such that s11(0) = fr and for every natural number
n, P[n, s11(n), s11(n+ 1)]. �

Let M be an octave descending constructible, octave constructible, fifth
constructible, harmonic closed, natural, ratio symmetric, satisfying interval,
equidistant-ratio equivalent, non empty structure of music and f10, fr be ele-
ments of M . The spiral of fifths of fr with fundamental frequency f10 in M

yielding a sequence of M is defined by

(Def. 53) it(0) = fr and for every natural number n, it(n+ 1) = the reduct fifth
of the it(n) with fundamental frequency f10 in M .

From now on M denotes an octave descending constructible, classical octa-
ve, octave constructible, classical fifth, fifth constructible, harmonic closed,
natural, ratio symmetric, satisfying interval, equidistant-ratio equivalent, sa-
tisfying real, non empty structure of music and f10, fr denote elements of M .

Now we state the propositions:

(72) Suppose fr is between f10 and the octave of f10 in M . Let us consider
a natural number n. Then (the spiral of fifths of fr with fundamental
frequency f10 in M)(n) is between f10 and the octave of f10 in M .
Proof: Define P[natural number] ≡ (the spiral of fifths of fr with
fundamental frequency f10 in M)($1) is between f10 and the octave of f10

in M . For every natural number k such that P[k] holds P[k+1]. For every
natural number k, P[k] from [2, Sch. 2]. �

(73) (The spiral of fifths of f10 with fundamental frequency f10 in M)(1) =
(3 qua real number)

2 · (@f10). The theorem is a consequence of (66).

(74) (The spiral of fifths of f10 with fundamental frequency f10 in M)(2) =
(9 qua real number)

8 · (@f10). The theorem is a consequence of (73), (66), and
(62).

(75) (The spiral of fifths of f10 with fundamental frequency f10 in M)(3) =
(27 qua real number)

16 · (@f10). The theorem is a consequence of (74) and (66).

(76) (The spiral of fifths of f10 with fundamental frequency f10 in M)(4) =
(81 qua real number)

64 · (@f10). The theorem is a consequence of (75), (66), and
(62).

(77) (The spiral of fifths of f10 with fundamental frequency f10 in M)(5) =
(243 qua real number)

128 ·(@f10). The theorem is a consequence of (76) and (66).

(78)
@(the spiral of fifths of fr with fundamental frequency fr in M)(2)

@fr
=
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3·3 qua real number
2·2·2 . The theorem is a consequence of (74).

(79)
@(the spiral of fifths of fr with fundamental frequency fr in M)(4)
@(the spiral of fifths of fr with fundamental frequency fr in M)(2) =

3·3 qua real number
2·2·2 . The theorem is a consequence of (74) and (76).

(80)
@(the spiral of fifths of fr with fundamental frequency fr in M)(1)
@(the spiral of fifths of fr with fundamental frequency fr in M)(4) =

32 qua real number
27 . The theorem is a consequence of (73) and (76).

(81)
@(the spiral of fifths of fr with fundamental frequency fr in M)(3)
@(the spiral of fifths of fr with fundamental frequency fr in M)(1) =

9 qua real number
8 . The theorem is a consequence of (73) and (75).

(82)
@(the octave of fr in M)

@(the spiral of fifths of fr with fundamental frequency fr in M)(3) =
32 qua real number

27 . The theorem is a consequence of (75).

Let M be a space of music and s10 be an element of (the carrier of M)2. We
say that s10 is monotonic if and only if

(Def. 54) there exists an element fr of M and there exist positive real numbers r1,
r2 such that s10(1) = fr and s10(1) = r1 and s10(2) = r2 and r1 < r2 and
s10(2) = the octave of fr in M .

Let s10 be an element of (the carrier of M)3. We say that s10 is ditonic if
and only if

(Def. 55) there exists an element fr of M and there exist positive real numbers
r1, r2, r3 such that s10(1) = fr and s10(1) = r1 and s10(2) = r2 and
s10(3) = r3 and r1 < r2 < r3 and s10(3) = the octave of fr in M .

Let s10 be an element of (the carrier of M)4. We say that s10 is tritonic if
and only if

(Def. 56) there exists an element fr of M and there exist positive real numbers
r1, r2, r3, r4 such that s10(1) = fr and s10(1) = r1 and s10(2) = r2

and s10(3) = r3 and s10(4) = r4 and r1 < r2 < r3 and r3 < r4 and
s10(4) = the octave of fr in M .

Let s10 be an element of (the carrier of M)5. We say that s10 is tetratonic if
and only if

(Def. 57) there exists an element fr of M and there exist positive real numbers
r1, r2, r3, r4, r5 such that s10(1) = fr and s10(1) = r1 and s10(2) = r2

and s10(3) = r3 and s10(4) = r4 and s10(5) = r5 and r1 < r2 < r3 and
r3 < r4 < r5 and s10(5) = the octave of fr in M .

Let n be a natural number and s10 be an element of (the carrier of M)n. We
say that s10 is pentatonic if and only if

(Def. 58) n = 6 and there exists an element fr of M and there exist positive real
numbers r1, r2, r3, r4, r5, r6 such that s10(1) = fr and s10(1) = r1 and
s10(2) = r2 and s10(3) = r3 and s10(4) = r4 and s10(5) = r5 and s10(6) =
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r6 and r1 < r2 < r3 and r3 < r4 < r5 and r5 < r6 and s10(6) = the octave
of fr in M .

Let s10 be an element of (the carrier of M)7. We say that s10 is hexatonic if
and only if

(Def. 59) there exists an element fr of M and there exist positive real numbers r1,
r2, r3, r4, r5, r6, r7 such that s10(1) = fr and s10(1) = r1 and s10(2) = r2

and s10(3) = r3 and s10(4) = r4 and s10(5) = r5 and s10(6) = r6 and
s10(7) = r7 and r1 < r2 < r3 and r3 < r4 < r5 and r5 < r6 < r7 and
s10(7) = the octave of fr in M .

Let n be a natural number and s10 be an element of (the carrier of M)n. We
say that s10 is heptatonic if and only if

(Def. 60) n = 8 and there exists an element fr of M and there exist positive real
numbers r1, r2, r3, r4, r5, r6, r7, r8 such that s10(1) = fr and s10(1) = r1

and s10(2) = r2 and s10(3) = r3 and s10(4) = r4 and s10(5) = r5 and
s10(6) = r6 and s10(7) = r7 and s10(8) = r8 and r1 < r2 < r3 and
r3 < r4 < r5 and r5 < r6 < r7 and r7 < r8 and s10(8) = the octave of fr
in M .

Let s10 be an element of (the carrier of M)9. We say that s10 is octatonic if
and only if

(Def. 61) there exists an element fr of M and there exist positive real numbers
r1, r2, r3, r4, r5, r6, r7, r8, r9 such that s10(1) = fr and s10(1) = r1 and
s10(2) = r2 and s10(3) = r3 and s10(4) = r4 and s10(5) = r5 and s10(6) =
r6 and s10(7) = r7 and s10(8) = r8 and s10(9) = r9 and r1 < r2 < r3 and
r3 < r4 < r5 and r5 < r6 < r7 and r7 < r8 < r9 and s10(9) = the octave
of fr in M .

7. Pentatonic Pythagorean Scale

Let M be a space of music and fr be an element of M . The pentatonic
pythagorean scale of fr in M yielding an element of (the carrier of M)6 is
defined by

(Def. 62) it(1) = fr and it(2) = (the spiral of fifths of fr with fundamental
frequency fr inM)(2) and it(3) = (the spiral of fifths of fr with fundamental
frequency fr inM)(4) and it(4) = (the spiral of fifths of fr with fundamental
frequency fr inM)(1) and it(5) = (the spiral of fifths of fr with fundamental
frequency fr in M)(3) and it(6) = the octave of fr in M .

From now on M denotes a space of music and f10, fr, f1, f2 denote elements
of M .

Now we state the proposition:
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(83) The pentatonic pythagorean scale of fr in M is pentatonic. The theorem
is a consequence of (74), (76), (73), and (75).

Let M be a space of music and f1, f2 be elements of M . The interval between
f1 and f2 yielding a positive real number is defined by

(Def. 63) there exist positive real numbers r1, r2 such that r1 = f1 and r2 = f2

and it = r2
r1

.

The pythagorean tone yielding a positive real number is defined by the term

(Def. 64) (9 qua real number)
8 .

The pythagorean semiditone yielding a positive real number is defined by
the term

(Def. 65) (32 qua real number)
27 .

The pythagorean major third yielding a positive real number is defined by
the term

(Def. 66) (the pythagorean tone) · (the pythagorean tone).

The pythagorean pure major third yielding a positive real number is defined
by the term

(Def. 67) (5 qua real number)
4 .

The syntonic comma yielding a positive real number is defined by the term

(Def. 68) the pythagorean major third
the pythagorean pure major third .

Now we state the propositions:

(84) The syntonic comma = (81 qua real number)
80 .

(85) The pythagorean tone < the pythagorean semiditone.

(86) (The pythagorean tone) · (the pythagorean tone) · (the pythagorean
semiditone) · (the pythagorean tone) · (the pythagorean semiditone) = 2.

Let M be a space of music and fr be an element of M . The functors: the first
degree of pentatonic scale of fr in M , the second degree of pentatonic scale of
fr in M , the third degree of pentatonic scale of fr in M , the fourth degree of
pentatonic scale of fr in M , and the fifth degree of pentatonic scale of fr in M

yielding elements of M are defined by terms

(Def. 69) (the pentatonic pythagorean scale of fr in M)(1),

(Def. 70) (the pentatonic pythagorean scale of fr in M)(2),

(Def. 71) (the pentatonic pythagorean scale of fr in M)(3),

(Def. 72) (the pentatonic pythagorean scale of fr in M)(4),

(Def. 73) (the pentatonic pythagorean scale of fr in M)(5),

respectively. The octave of pentatonic scale of fr in M yielding an element of
M is defined by the term

(Def. 74) the octave of fr in M .
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Now we state the propositions:

(87) There exist elements r1, r2 of R+ such that the interval between f1 and
f2 = R -ratio(r1, r2).

(88) Let us consider positive real numbers r1, r2, r3, r4, r5, r6. Suppose
(the pentatonic pythagorean scale of fr inM)(1) = r1 and (the pentatonic
pythagorean scale of fr in M)(2) = r2 and (the pentatonic pythagorean
scale of fr in M)(3) = r3 and (the pentatonic pythagorean scale of fr in
M)(4) = r4 and (the pentatonic pythagorean scale of fr in M)(5) = r5

and (the pentatonic pythagorean scale of fr in M)(6) = r6. Then

(i) r2
r1

= (9 qua real number)
8 , and

(ii) r3
r2

= (9 qua real number)
8 , and

(iii) r4
r3

= (32 qua real number)
27 , and

(iv) r5
r4

= (9 qua real number)
8 , and

(v) r6
r5

= (32 qua real number)
27 .

The theorem is a consequence of (83), (78), (79), (80), (81), and (82).

(89) There exist positive real numbers r1, r2, r3, r4, r5, r6 such that

(i) (the pentatonic pythagorean scale of fr in M)(1) = r1, and

(ii) (the pentatonic pythagorean scale of fr in M)(2) = r2, and

(iii) (the pentatonic pythagorean scale of fr in M)(3) = r3, and

(iv) (the pentatonic pythagorean scale of fr in M)(4) = r4, and

(v) (the pentatonic pythagorean scale of fr in M)(5) = r5, and

(vi) (the pentatonic pythagorean scale of fr in M)(6) = r6, and

(vii) r2
r1

= (9 qua real number)
8 , and

(viii) r3
r2

= (9 qua real number)
8 , and

(ix) r4
r3

= (32 qua real number)
27 , and

(x) r5
r4

= (9 qua real number)
8 , and

(xi) r6
r5

= (32 qua real number)
27 .

The theorem is a consequence of (1) and (88).

(90) (9 qua real number)
8 = (9 qua rational number)

8 .

(91) (i) the interval between the first degree of pentatonic scale of fr in M
and (the second degree of pentatonic scale of fr in M) =

the pythagorean tone, and



260 roland coghetto

(ii) the interval between the second degree of pentatonic scale of fr in
M and (the third degree of pentatonic scale of fr in M) =

the pythagorean tone, and

(iii) the interval between the third degree of pentatonic scale of fr in M
and (the fourth degree of pentatonic scale of fr in M) =

the pythagorean semiditone, and

(iv) the interval between the fourth degree of pentatonic scale of fr in M
and (the fifth degree of pentatonic scale of fr in M) =

the pythagorean tone, and

(v) the interval between the fifth degree of pentatonic scale of fr in M

and (the octave of pentatonic scale of fr in M) = the pythagorean
semiditone.

The theorem is a consequence of (89).

(92) the fifth of fr in M is between fr and the octave of fr in M .

Let us consider positive real numbers r1, r2. Now we state the propositions:

(93) Suppose f1 = r1 and f2 = r2 and r2 = (4 qua real number)
3 · r1. Then

(i) the fifth of f2 in M = 2 · r1, and

(ii) the fifth of f2 in M is not between f1 and the octave of f1 in M .

(94) Suppose f1 = r1 and f2 = r2 and r2 = (4 qua real number)
3 · r1. Then

(i) if the fifth of f2 in M is between f10 and the octave of f10 in M , then
the octave descending of (the reduct fifth of the f2 with fundamental
frequency f10 in M) in M = f1, and

(ii) if the fifth of f2 in M is not between f10 and the octave of f10 in
M , then the reduct fifth of the f2 with fundamental frequency f10

in M = f1.

The theorem is a consequence of (62).

(95) Suppose f1 = r1 and f2 = r2 and r2 = (4 qua real number)
3 · r1. Then

the reduct fifth of the f2 with fundamental frequency f1 in M = f1. The
theorem is a consequence of (94) and (93).

8. Heptatonic Pythagorean Scale

Let S be a space of music. We say that S is fourth constructible if and only
if

(Def. 75) for every element fr of S, there exists an element q of S such that 〈〈fr,
q〉〉 ∈ the set of fourth of S.
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Now we state the propositions:

(96) Let us consider a space of music M . Suppose M = R -music. Let us
consider an element fr of M . Then there exist positive real numbers f , q1

such that

(i) f = fr, and

(ii) q1 = (4 qua real number)
3 · f , and

(iii) 〈〈f, q1〉〉 ∈ the set of fourth of M .

The theorem is a consequence of (1) and (24).

(97) R -music is fourth constructible. The theorem is a consequence of (96)
and (1).

One can verify that there exists a space of music which is fourth constructi-
ble.

Let M be a fourth constructible space of music and fr be an element of M .
The fourth of fr in M yielding an element of M is defined by

(Def. 76) 〈〈fr, it〉〉 ∈ the set of fourth of M .

We say that M is classical fourth if and only if

(Def. 77) for every element fr of M , there exists a positive real number f such
that fr = f and the fourth of fr in M = (4 qua real number)

3 · f .

Now we state the proposition:

(98) Let us consider a fourth constructible space of music M . Suppose M =
R -music. Let us consider an element fr of M . Then there exists a positive
real number f such that

(i) fr = f , and

(ii) the fourth of fr in M = (4 qua real number)
3 · f .

The theorem is a consequence of (1) and (96).

Let us note that there exists a fourth constructible space of music which is
classical fourth.

Let M be a satisfying real, non empty structure of music. We say that M is
euclidean if and only if

(Def. 78) for every elements f1, f2 of M , (the Ratio of M)(f1, f2) =
@f2
@f1

.

One can verify that there exists a satisfying real, non empty structure of
music which is euclidean and every satisfying real, non empty structure of mu-
sic which is euclidean is also satisfying interval and every satisfying real, non
empty structure of music which is euclidean is also unison-ratio stable and eve-
ry satisfying real, non empty structure of music which is euclidean is also ratio
symmetric and there exists a classical fourth, fourth constructible space of music
which is euclidean.



262 roland coghetto

A heptatonic pythagorean score is a classical fourth, fourth constructible
space of music. From now on H denotes a heptatonic pythagorean score and fr
denotes an element of H.

Let H be a heptatonic pythagorean score and fr be an element of H.
The heptatonic pythagorean scale of fr in H yielding an element of (the carrier
of H)8 is defined by

(Def. 79) it(1) = (the spiral of fifths of (the fourth of fr in H) with fundamental
frequency fr in H)(1) and it(2) = (the spiral of fifths of (the fourth of
fr in H) with fundamental frequency fr in H)(3) and it(3) = (the spiral
of fifths of (the fourth of fr in H) with fundamental frequency fr in
H)(5) and it(4) = the fourth of fr in H and it(5) = (the spiral of fifths
of (the fourth of fr in H) with fundamental frequency fr in H)(2) and
it(6) = (the spiral of fifths of (the fourth of fr in H) with fundamental
frequency fr in H)(4) and it(7) = (the spiral of fifths of (the fourth of fr
in H) with fundamental frequency fr in H)(6) and it(8) = the octave of
(the spiral of fifths of (the fourth of fr in H) with fundamental frequency
fr in H)(1) in H.

Now we state the propositions:

(99) the fourth of fr in H is between fr and the octave of fr in H.

(100) Let us consider a natural number n. Then (the spiral of fifths of (the fourth
of fr in H) with fundamental frequency fr in H)(n) is between fr and
the octave of fr in H.

(101) (The spiral of fifths of (the fourth of fr inH) with fundamental frequency
fr in H)(1) = fr. The theorem is a consequence of (66) and (62).

(102) (The spiral of fifths of (the fourth of fr inH) with fundamental frequency
fr in H)(2) = (3 qua real number)

2 · (@fr). The theorem is a consequence of
(101) and (66).

(103) (The spiral of fifths of (the fourth of fr inH) with fundamental frequency
fr in H)(3) = (9 qua real number)

8 · (@fr). The theorem is a consequence of
(102), (66), and (62).

(104) (The spiral of fifths of (the fourth of fr inH) with fundamental frequency
fr in H)(4) = (27 qua real number)

16 · (@fr). The theorem is a consequence of
(103) and (66).

(105) (The spiral of fifths of (the fourth of fr inH) with fundamental frequency
fr in H)(5) = (81 qua real number)

64 · (@fr). The theorem is a consequence of
(104), (66), and (62).

(106) (The spiral of fifths of (the fourth of fr inH) with fundamental frequency
fr in H)(6) = (243 qua real number)

128 · (@fr). The theorem is a consequence of
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(105) and (66).

(107) (i) (the heptatonic pythagorean scale of fr in H)(1) = 1 · (@fr), and

(ii) (the heptatonic pythagorean scale of fr in H)(2) = (9 qua real number)
8 ·

(@fr), and

(iii) (the heptatonic pythagorean scale of fr inH)(3) = (81 qua real number)
64 ·

(@fr), and

(iv) (the heptatonic pythagorean scale of fr in H)(4) = (4 qua real number)
3 ·

(@fr), and

(v) (the heptatonic pythagorean scale of fr in H)(5) = (3 qua real number)
2 ·

(@fr), and

(vi) (the heptatonic pythagorean scale of fr inH)(6) = (27 qua real number)
16 ·

(@fr), and

(vii) (the heptatonic pythagorean scale of fr inH)(7) = (243 qua real number)
128 ·

(@fr), and

(viii) (the heptatonic pythagorean scale of fr in H)(8) = 2 · (@fr).
The theorem is a consequence of (101), (103), (105), (102), (104), and
(106).

(108) The heptatonic pythagorean scale of fr in H is heptatonic. The theorem
is a consequence of (107).

The pythagorean semitone yielding a positive real number is defined by the
term

(Def. 80) (256 qua real number)
243 .

Now we state the propositions:

(109) the pythagorean tone
2 < the pythagorean semitone.

(110) (The pythagorean tone) · (the pythagorean tone) · (the pythagorean
semitone)·(the pythagorean tone)·(the pythagorean tone)·(the pythagorean
tone) · (the pythagorean semitone) = 2.

Let H be a heptatonic pythagorean score and fr be an element of H. The
functors: the first degree of heptatonic scale of fr in H, the second degree of
heptatonic scale of fr in H, the third degree of heptatonic scale of fr in H,
the fourth degree of heptatonic scale of fr inH, and the fifth degree of heptatonic
scale of fr in H yielding elements of H are defined by terms

(Def. 81) (the heptatonic pythagorean scale of fr in H)(1),

(Def. 82) (the heptatonic pythagorean scale of fr in H)(2),

(Def. 83) (the heptatonic pythagorean scale of fr in H)(3),

(Def. 84) (the heptatonic pythagorean scale of fr in H)(4),
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(Def. 85) (the heptatonic pythagorean scale of fr in H)(5),

respectively. The functors: the sixth degree of heptatonic scale of fr in H, the se-
venth degree of heptatonic scale of fr in H, and the eight degree of heptatonic
scale of fr in H yielding elements of H are defined by terms

(Def. 86) (the heptatonic pythagorean scale of fr in H)(6),

(Def. 87) (the heptatonic pythagorean scale of fr in H)(7),

(Def. 88) the octave of fr in H,

respectively. Now we state the proposition:

(111) (i) the interval between the first degree of heptatonic scale of fr in H
and (the second degree of heptatonic scale of fr in H) =
the pythagorean tone, and

(ii) the interval between the second degree of heptatonic scale of fr in
H and (the third degree of heptatonic scale of fr in H) =
the pythagorean tone, and

(iii) the interval between the third degree of heptatonic scale of fr in H

and (the fourth degree of heptatonic scale of fr in H) =
the pythagorean semitone, and

(iv) the interval between the fourth degree of heptatonic scale of fr in H
and (the fifth degree of heptatonic scale of fr in H) =
the pythagorean tone, and

(v) the interval between the fifth degree of heptatonic scale of fr in H

and (the sixth degree of heptatonic scale of fr in H) =
the pythagorean tone, and

(vi) the interval between the sixth degree of heptatonic scale of fr in H

and (the seventh degree of heptatonic scale of fr in H) =
the pythagorean tone, and

(vii) the interval between the seventh degree of heptatonic scale of fr in
H and (the eight degree of heptatonic scale of fr in H) =
the pythagorean semitone.

The theorem is a consequence of (107).

From now on H denotes a heptatonic pythagorean score and fr denotes
an element of H.

Let M be a space of music, n be a natural number, and s10 be an element
of (the carrier of M)n. Assume s10 is heptatonic. We say that s10 is perfect fifth
if and only if

(Def. 89) 〈〈s10(1), s10(5)〉〉, 〈〈s10(2), s10(6)〉〉, 〈〈s10(3), s10(7)〉〉, 〈〈s10(4), s10(8)〉〉 ∈ the
set of fifth of M .
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Now we state the proposition:

(112) Let us consider an euclidean heptatonic pythagorean score H, and an ele-
ment fr of H. Then the heptatonic pythagorean scale of fr in H is perfect
fifth. The theorem is a consequence of (108), (107), and (24).

Let H be a heptatonic pythagorean score and fr be an element of H.
The heptatonic pythagorean scale ascending of fr in H yielding an element
of (the carrier of H)8 is defined by the term

(Def. 90) the heptatonic pythagorean scale of (the octave of fr in H) in H.

Now we state the propositions:

(113) (i) (the heptatonic pythagorean scale ascending of fr in H)(1) = 2 ·
(@fr), and

(ii) (the heptatonic pythagorean scale ascending of fr in H)(2) =
9 qua real number

4 · (@fr), and

(iii) (the heptatonic pythagorean scale ascending of fr in H)(3) =
81 qua real number

32 · (@fr), and

(iv) (the heptatonic pythagorean scale ascending of fr in H)(4) =
8 qua real number

3 · (@fr), and

(v) (the heptatonic pythagorean scale ascending of fr in H)(5) =
(3 qua real number) · (@fr), and

(vi) (the heptatonic pythagorean scale ascending of fr in H)(6) =
27 qua real number

8 · (@fr), and

(vii) (the heptatonic pythagorean scale ascending of fr in H)(7) =
243 qua real number

64 · (@fr), and

(viii) (the heptatonic pythagorean scale ascending of fr in H)(8) = 4·(@fr).
The theorem is a consequence of (107).

(114) (The heptatonic pythagorean scale of fr in H)(8) = (the heptatonic
pythagorean scale ascending of fr in H)(1). The theorem is a consequence
of (107) and (113).

(115) (i) the interval between the fifth degree of heptatonic scale of fr in H
and (the second degree of heptatonic scale of (the octave of fr in H)
in H) = (3 qua real number)

2 , and

(ii) the interval between the sixth degree of heptatonic scale of fr in H

and (the third degree of heptatonic scale of (the octave of fr in H)
in H) = (3 qua real number)

2 , and

(iii) the interval between the seventh degree of heptatonic scale of fr in
H and (the fourth degree of heptatonic scale of (the octave of fr in
H) in H) 6= (3 qua real number)

2 , and
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(iv) the interval between the eight degree of heptatonic scale of fr in H

and (the fifth degree of heptatonic scale of (the octave of fr in H)
in H) = (3 qua real number)

2 .
The theorem is a consequence of (107) and (113).

(116) Let us consider an euclidean heptatonic pythagorean score H, and ele-
ments f1, f2 of H. Then the interval between f1 and f2 = (the Ratio of
H)(f1, f2).

(117) Let us consider an euclidean heptatonic pythagorean score H, and an ele-
ment fr of H. Then

(i) 〈〈(the heptatonic pythagorean scale of fr in H)(5), (the heptatonic
pythagorean scale ascending of fr in H)(2)〉〉, 〈〈(the heptatonic

pythagorean scale of fr in H)(6), (the heptatonic pythagorean scale
ascending of fr in H)(3)〉〉 ∈ the set of fifth of H, and

(ii) 〈〈(the heptatonic pythagorean scale of fr in H)(7), (the heptatonic
pythagorean scale ascending of fr in H)(4)〉〉 /∈ the set of fifth of H.

The theorem is a consequence of (115), (24), and (116).

LetH be a space of music, n be a non zero, natural number, s10 be an element
of (the carrier of H)n, and i be a natural number. The functor #s10

i yielding
an element of H is defined by the term

(Def. 91)

{
s10(i), if i ∈ Seg n,
the element of H, otherwise.

Assume s10 is heptatonic. We say that s10 is dorian if and only if

(Def. 92) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval

between #s10
2 and #s10

3 = t2 and the interval between #s10
3 and #s10

4 = t1
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t1 and the interval between #s10
6 and #s10

7 = t2 and
the interval between #s10

7 and #s10
8 = t1.

Assume s10 is heptatonic. We say that s10 is hypodorian if and only if

(Def. 93) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval

between #s10
2 and #s10

3 = t2 and the interval between #s10
3 and #s10

4 = t1
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t2 and the interval between #s10
6 and #s10

7 = t1 and
the interval between #s10

7 and #s10
8 = t1.

Assume s10 is heptatonic. We say that s10 is phrygian if and only if

(Def. 94) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval
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between #s10
2 and #s10

3 = t2 and the interval between #s10
3 and #s10

4 = t1
and the interval between #s10

4 and #s10
5 = t2 and the interval between

#s10
5 and #s10

6 = t1 and the interval between #s10
6 and #s10

7 = t1 and
the interval between #s10

7 and #s10
8 = t1.

Assume s10 is heptatonic. We say that s10 is hypophrygian if and only if

(Def. 95) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t2 and the interval

between #s10
2 and #s10

3 = t1 and the interval between #s10
3 and #s10

4 = t1
and the interval between #s10

4 and #s10
5 = t2 and the interval between

#s10
5 and #s10

6 = t1 and the interval between #s10
6 and #s10

7 = t1 and
the interval between #s10

7 and #s10
8 = t1.

Assume s10 is heptatonic. We say that s10 is lydian if and only if

(Def. 96) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval

between #s10
2 and #s10

3 = t1 and the interval between #s10
3 and #s10

4 = t2
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t1 and the interval between #s10
6 and #s10

7 = t2 and
the interval between #s10

7 and #s10
8 = t1.

Assume s10 is heptatonic. We say that s10 is hypolydian if and only if

(Def. 97) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval

between #s10
2 and #s10

3 = t1 and the interval between #s10
3 and #s10

4 = t2
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t1 and the interval between #s10
6 and #s10

7 = t1 and
the interval between #s10

7 and #s10
8 = t2.

Assume s10 is heptatonic. We say that s10 is mixolydian if and only if

(Def. 98) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval

between #s10
2 and #s10

3 = t1 and the interval between #s10
3 and #s10

4 = t2
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t1 and the interval between #s10
6 and #s10

7 = t2 and
the interval between #s10

7 and #s10
8 = t1.

Assume s10 is heptatonic. We say that s10 is hypomixolydian if and only if

(Def. 99) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval

between #s10
2 and #s10

3 = t2 and the interval between #s10
3 and #s10

4 = t1
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t1 and the interval between #s10
6 and #s10

7 = t2 and
the interval between #s10

7 and #s10
8 = t1.
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Assume s10 is heptatonic. We say that s10 is eolian if and only if

(Def. 100) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval

between #s10
2 and #s10

3 = t2 and the interval between #s10
3 and #s10

4 = t1
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t2 and the interval between #s10
6 and #s10

7 = t1 and
the interval between #s10

7 and #s10
8 = t1.

Assume s10 is heptatonic. We say that s10 is hypoeolian if and only if

(Def. 101) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t2 and the interval

between #s10
2 and #s10

3 = t1 and the interval between #s10
3 and #s10

4 = t1
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t2 and the interval between #s10
6 and #s10

7 = t1 and
the interval between #s10

7 and #s10
8 = t1.

Assume s10 is heptatonic. We say that s10 is ionan if and only if

(Def. 102) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval

between #s10
2 and #s10

3 = t1 and the interval between #s10
3 and #s10

4 = t2
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t1 and the interval between #s10
6 and #s10

7 = t1 and
the interval between #s10

7 and #s10
8 = t2.

Assume s10 is heptatonic. We say that s10 is hypoionan if and only if

(Def. 103) there exist positive real numbers t1, t2 such that t1 · t1 · t1 · t1 · t1 · t2 ·
t2 = 2 and the interval between #s10

1 and #s10
2 = t1 and the interval

between #s10
2 and #s10

3 = t1 and the interval between #s10
3 and #s10

4 = t2
and the interval between #s10

4 and #s10
5 = t1 and the interval between

#s10
5 and #s10

6 = t1 and the interval between #s10
6 and #s10

7 = t2 and
the interval between #s10

7 and #s10
8 = t1.

Now we state the proposition:

(118) The heptatonic pythagorean scale of fr in H is ionan. The theorem is
a consequence of (108), (107), and (111).
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naturelles. Number 53. Association des Professeurs de Mathématiques de l’Enseignement
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Summary. In the article we continue in the Mizar system [8], [2] the for-
malization of fuzzy implications according to the monograph of Baczyński and
Jayaram “Fuzzy Implications” [1]. We develop a framework of Mizar attributes
allowing us for a smooth proving of basic properties of these fuzzy connectives [9].
We also give a set of theorems about the ordering of nine fundamental implica-
tions: Łukasiewicz (ILK), Gödel (IGD), Reichenbach (IRC), Kleene-Dienes (IKD),
Goguen (IGG), Rescher (IRS), Yager (IYG), Weber (IWB), and Fodor (IFD).

This work is a continuation of the development of fuzzy sets in Mizar [6]; it
could be used to give a variety of more general operations on fuzzy sets [13]. The
formalization follows [10], [5], and [4].

MSC: 03B52 68T37 03B35

Keywords: fuzzy implication; fuzzy set; fuzzy logic

MML identifier: FUZIMPL2, version: 8.1.08 5.53.1335

0. Introduction

There are two fundamental aims of this Mizar article: first of all, I wanted to
introduce in the Mizar Mathematical Library how nine basic fuzzy implications
formally defined in [4] are ordered – and this result is given in Section 2 as
a formal counterpart of Example 1.1.6, p. 3 of [1].

On the other hand, in the final section I prove the formal characterization
of fundamental fuzzy implications in terms of four elementary properties [12]
expressed in Table 1.4 of [1], p. 10 (note the absence of the continuity of the
operators in our version of this presentation). Here
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• (NP) – the left neutrality property,

• (EP) – the exchange principle,

• (IP) – the identity principle,

• (OP) – the ordering property.

Actually, this is the part of Example 1.3.2, p. 9 from [1]:

Fuzzy implication (NP) (EP) (IP) (OP)
ILK + + + +
IGD + + + +
IRC + + − −
IKD + + − −
IGG + + + +
IRS − − + +
IYG + + − −
IWB + + + −
IFD + + + +

Additionally, Section 4 contains registrations of clusters of adjectives allo-
wing for further work in more automated framework within fuzzy sets [3] – this
is the Mizar version of Lemma 1.3.3 and 1.3.4 from [1]. Such automatization
can be especially useful in the hybridization of fuzzy and rough approaches [7].

1. Preliminaries

We introduce the notation ILK as a synonym of the Łukasiewicz implication
and IGD as a synonym of the Gödel implication. We introduce IRC as a synonym
of the Reichenbach implication and IKD as a synonym of the Kleene-Dienes
implication.

We introduce IGG as a synonym of the Goguen implication and IRS as a sy-
nonym of the Rescher implication. We introduce IYG as a synonym of the Yager
implication and IWB as a synonym of the Weber implication and IFD as a sy-
nonym of the Fodor implication.

From now on x, y denote elements of [0, 1]. Now we state the propositions:

(1) �1 = (AffineMap(1, 0))�]0,+∞[.
Proof: Set f = �1. Set g = (AffineMap(1, 0))�]0,+∞[. For every object
x such that x ∈ dom f holds f(x) = g(x). �

(2) Let us consider real numbers a, b. Then
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(i) AffineMap(a, b) is differentiable on R, and

(ii) for every real number x, (AffineMap(a, b))′(x) = a.

(3) If 0 < x < 1 and 0 < y < 1, then (�x + (AffineMap(−x, x− 1)))�]0, 1[ is
increasing.
Proof: Set f1 = �x. Set f2 = AffineMap(−x, x−1). Reconsider Y = ]0, 1[
as an open subset of R. Set f = f1+f2. Set A = ]0,+∞[. f2 is differentiable
on A. f1�A is differentiable on A. f2 is differentiable on Y. For every real
number y such that y ∈ Y holds 0 < f ′(y) by [11, (21)], (2). �

(4) Let us consider a real number u. Suppose u ∈ ]0, 1].
Then (�x + (AffineMap(−x, x− 1)))(u) = ux − 1 + x− x · u.

2. The Ordering of Fuzzy Implications

Now we state the propositions:

(5) (i) if x ¬ y, then (ILK)(x, y) = 1, and

(ii) if x > y, then (ILK)(x, y) = 1− x+ y.

(6) (i) if x = 0, then (IGG)(x, y) = 1, and

(ii) if x > 0, then (IGG)(x, y) = min(1, yx).

(7) IKD ¬ IRC ¬ ILK ¬ IWB.

(8) IRS ¬ IGD ¬ IGG ¬ ILK ¬ IWB.

(9) IRC ¬ ILK ¬ IWB.

(10) IKD ¬ IFD ¬ ILK ¬ IWB.

(11) IRS ¬ IGD ¬ IFD ¬ ILK ¬ IWB.

3. Additional Properties of Fuzzy Implications

Let I be a binary operation on [0, 1]. We say that I satisfies (NP) if and only
if

(Def. 1) for every element y of [0, 1], I(1, y) = y.

We say that I satisfies (EP) if and only if

(Def. 2) for every elements x, y, z of [0, 1], I(x, I(y, z)) = I(y, I(x, z)).

We say that I satisfies (IP) if and only if

(Def. 3) for every element x of [0, 1], I(x, x) = 1.

We say that I satisfies (OP) if and only if

(Def. 4) for every elements x, y of [0, 1], I(x, y) = 1 iff x ¬ y.



274 adam grabowski

In the sequel I denotes a binary operation on [0, 1].
Let I be a binary operation on [0, 1]. We introduce the notation I satisfies

(NC) as a synonym of I is 01-dominant and I satisfies (I1) as a synonym of I
is antitone w.r.t. 1st coordinate.

We introduce I satisfies (I2) as a synonym of I is isotone w.r.t. 2nd coordi-
nate and I satisfies (I3) as a synonym of I is 00-dominant and I satisfies (I4) as
a synonym of I is 11-dominant and I satisfies (I5) as a synonym of I is 10-weak.

4. Dependencies between Chosen Properties

Now we state the proposition:

(12) If I satisfies (LB), then I satisfies (I3) and (NC).

One can verify that every binary operation on [0, 1] which satisfies (LB)
satisfies also (I3) and (NC).

Now we state the proposition:

(13) If I satisfies (RB), then I satisfies (I4) and (NC).

One can check that every binary operation on [0, 1] which satisfies (RB)
satisfies also (I4) and (NC).

Now we state the proposition:

(14) If I satisfies (NP), then I satisfies (I4) and (I5).

Note that every binary operation on [0, 1] which satisfies (NP) satisfies also
(I4) and (I5).

Now we state the proposition:

(15) If I satisfies (IP), then I satisfies (I3) and (I4).

Let us note that every binary operation on [0, 1] which satisfies (IP) satisfies
also (I3) and (I4).

Now we state the proposition:

(16) If I satisfies (OP), then I satisfies (I3), (I4), (NC), (LB), (RB), and (IP).

One can verify that every binary operation on [0, 1] which satisfies (OP)
satisfies also (I3), (I4), (NC), (LB), (RB), and (IP).

Now we state the proposition:

(17) If I satisfies (EP) and (OP), then I satisfies (I1), (I3), (I4), (I5), (LB),
(RB), (NC), (NP), and (IP).

One can verify that every binary operation on [0, 1] which satisfies (EP) and
(OP) satisfies also (I1), (I5), and (NP).
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5. Properties of Nine Classical Fuzzy Implications

Let us note that ILK satisfies (NP), (EP), (IP), and (OP).
IGD satisfies (NP), (EP), (IP), and (OP).
IRC satisfies (NP) and (EP) but does not satisfy (IP) and (OP).
IKD satisfies (NP) and (EP) but does not satisfy (IP) and (OP).
IGG satisfies (NP), (EP), (IP), and (OP).
Let us note that IRS satisfies (IP) and (OP) but does not satisfy (NP) and

(EP).
IYG satisfies (NP) and (EP) but does not satisfy (IP) and (OP).
IWB satisfies (NP), (EP), and (IP) but does not satisfy (OP).
IFD satisfies (NP), (EP), (IP), and (OP).
I0 satisfies (EP) but does not satisfy (NP), (IP), and (OP).
I1 satisfies (EP) and (IP) but does not satisfy (NP) and (OP).
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Summary. We formalize in the Mizar system [3], [4] basic definitions of
commutative ring theory such as prime spectrum, nilradical, Jacobson radical,
local ring, and semi-local ring [5], [6], then formalize proofs of some related the-
orems along with the first chapter of [1].

The article introduces the so-called Zariski topology. The set of all prime
ideals of a commutative ring A is called the prime spectrum of A denoted by
Spectrum A. A new functor Spec generates Zariski topology to make Spectrum A
a topological space. A different role is given to Spec as a map from a ring mor-
phism of commutative rings to that of topological spaces by the following manner:
for a ring homomorphism h : A −→ B, we defined (Spec h) : Spec B −→ Spec A
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1. Preliminaries: Some Properties of Ideals

From now on R denotes a commutative ring, A, B denote non degenerated,
commutative rings, h denotes a function from A into B, I, I1, I2 denote ideals
of A, J , J1, J2 denote proper ideals of A, p denotes a prime ideal of A.
S denotes non empty subset of A, E, E1, E2 denote subsets of A, a, b, f

denote elements of A, n denotes a natural number, and x denotes object.
Let us consider A and S. The functor Ideals(A,S) yielding a subset of
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Let us observe that Ideals(A,S) is non empty.
Now we state the proposition:

(1) Ideals(A,S) = Ideals(A,S–ideal).
Proof: Ideals(A,S) ⊆ Ideals(A,S–ideal). Consider y being an ideal of A
such that x = y and S–ideal ⊆ y. �

Let A be a unital, non empty multiplicative loop with zero structure and a
be an element of A. We say that a is nilpotent if and only if

(Def. 2) there exists a non zero natural number k such that ak = 0A.

Let us note that 0A is nilpotent and there exists an element of A which is
nilpotent.

Let us consider A. Observe that 1A is non nilpotent.
Let us consider f . The functor MultClSet(f) yielding a subset of A is defined

by the term

(Def. 3) the set of all f i where i is a natural number.

Let us observe that MultClSet(f) is multiplicatively closed.
Now we state the propositions:

(2) Let us consider a natural number n. Then (1A)n = 1A.
Proof: Define P[natural number] ≡ (1A)$1 = 1A. For every natural num-
ber n, P[n]. �

(3) 1A /∈
√
J . The theorem is a consequence of (2).

(4) MultClSet(1A) = {1A}. The theorem is a consequence of (2).

Let us consider A, J , and f . The functor Ideals(A, J, f) yielding a subset of
IdealsA is defined by the term

(Def. 4) {I, where I is a subset of A : I is a proper ideal of A and J ⊆ I and
I ∩MultClSet(f) = ∅}.

Let us consider A, J , and f . Now we state the propositions:

(5) If f /∈
√
J , then J ∈ Ideals(A, J, f).

(6) If f /∈
√
J , then Ideals(A, J, f) has the upper Zorn property w.r.t.

⊆
Ideals(A,J,f).
Proof: Set S = Ideals(A, J, f). Set P = ⊆

S . For every set Y such that
Y ⊆ S and P |2 Y is a linear order there exists a set x such that x ∈ S
and for every set y such that y ∈ Y holds 〈〈y, x〉〉 ∈ P . �

(7) If f /∈
√
J , then there exists a prime ideal m of A such that f /∈ m and

J ⊆ m.
Proof: Set S = Ideals(A, J, f). Set P = ⊆S . Consider I being a set such
that I is maximal in P . Consider p being a subset of A such that p = I
and p is a proper ideal of A and J ⊆ p and p ∩MultClSet(f) = ∅. p is
a quasi-prime ideal of A. �
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(8) There exists a maximal ideal m of A such that J ⊆ m.
Proof: 1A /∈

√
J . Set S = Ideals(A, J, 1A). Set P = ⊆S . Consider I being

a set such that I is maximal in P . Consider p being a subset of A such that
p = I and p is a proper ideal of A and J ⊆ p and p ∩MultClSet(1A) = ∅.
For every ideal q of A such that p ⊆ q holds q = p or q is not proper. �

(9) There exists a prime ideal m of A such that J ⊆ m. The theorem is
a consequence of (8).

(10) If a is a non-unit of A, then there exists a maximal ideal m of A such
that a ∈ m. The theorem is a consequence of (8).

2. Spectrum of Prime Ideals (Spectrum) and Maximal Ideals
(m-Spectrum)

Let R be a commutative ring. The spectrum of R yielding a family of subsets
of R is defined by the term

(Def. 5)


{I, where I is an ideal of R : I is quasi-prime and I 6= ΩR},
if R is not degenerated,

∅, otherwise.
Let us consider A. Observe that the spectrum of A yields a family of subsets

of A and is defined by the term

(Def. 6) the set of all I where I is a prime ideal of A.

Observe that the spectrum of A is non empty.
Let us consider R. The functor m-Spectrum(R) yielding a family of subsets

of R is defined by the term

(Def. 7)


{I, where I is an ideal of R : I is quasi-maximal and I 6= ΩR},
if R is not degenerated,

∅, otherwise.
Let us consider A. Observe that the functor m-Spectrum(A) yields a family

of subsets of the carrier of A and is defined by the term

(Def. 8) the set of all I where I is a maximal ideal of A.

Observe that m-Spectrum(A) is non empty.

3. Local and Semi-Local Ring

Let us consider A. We say that A is local if and only if

(Def. 9) there exists an ideal m of A such that m-Spectrum(A) = {m}.
We say that A is semi-local if and only if



280 yasushige watase

(Def. 10) m-Spectrum(A) is finite.

Now we state the propositions:

(11) If x ∈ I and I is a proper ideal of A, then x is a non-unit of A.

(12) If for every objects m1, m2 such that m1, m2 ∈ m-Spectrum(A) holds
m1 = m2, then A is local.

(13) If for every x such that x ∈ ΩA \J holds x is a unit of A, then A is local.
The theorem is a consequence of (8), (11), and (12).

In the sequelm denotes a maximal ideal of A. Now we state the propositions:

(14) If a ∈ ΩA \m, then {a}–ideal +m = ΩA.

(15) If for every a such that a ∈ m holds 1A+a is a unit of A, then A is local.
Proof: For every x such that x ∈ ΩA \m holds x is a unit of A. �

Let us consider R. Let E be a subset of R. The functor PrimeIdeals(R,E)
yielding a subset of the spectrum of R is defined by the term

(Def. 11)


{p, where p is an ideal of R : p is quasi-prime and p 6= ΩR and E ⊆ p},
if R is not degenerated,

∅, otherwise.
Let us consider A. Let E be a subset of A. Let us note that the functor

PrimeIdeals(A,E) yields a subset of the spectrum of A and is defined by the
term

(Def. 12) {p, where p is a prime ideal of A : E ⊆ p}.

Let us consider J . Observe that PrimeIdeals(A, J) is non empty.
From now on p denotes a prime ideal of A and k denotes a non zero natural

number. Now we state the proposition:

(16) If a /∈ p, then ak /∈ p.

4. Nilradical and Jacobson Radical

Let us consider A. The functor nilrad(A) yielding a subset of A is defined
by the term

(Def. 13) the set of all a where a is a nilpotent element of A.

Now we state the proposition:

(17) nilrad(A) =
√
{0A}.

Let us consider A. One can verify that nilrad(A) is non empty and nilrad(A)
is closed under addition as a subset of A and nilrad(A) is left and right ideal as
a subset of A.

Now we state the propositions:
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(18)
√
J =

⋂
PrimeIdeals(A, J). The theorem is a consequence of (16), (7),

and (9).

(19) nilrad(A) =
⋂

(the spectrum of A). The theorem is a consequence of (17)
and (18).

(20) I ⊆
√
I.

(21) If I ⊆ J , then
√
I ⊆
√
J .

Proof: Consider s1 being an element of A such that s1 = s and there
exists an element n of N such that s1n ∈ I. Consider n1 being an element
of N such that s1n1 ∈ I. n1 6= 0 by [7, (8)], [2, (19)]. �

Let us consider A. The functor J-Rad(A) yielding a subset of A is defined
by the term

(Def. 14)
⋂

m-Spectrum(A).

5. Construction of Zariski Topology of the Prime Spectrum of A

Now we state the propositions:

(22) PrimeIdeals(A,S) ⊆ Ideals(A,S).

(23) PrimeIdeals(A,S) = Ideals(A,S)∩ (the spectrum of A). The theorem is
a consequence of (22).

(24) PrimeIdeals(A,S) = PrimeIdeals(A,S–ideal). The theorem is a conse-
quence of (23) and (1).

(25) If I ⊆ p, then
√
I ⊆ p.

Proof: Consider s1 being an element of A such that s1 = s and there
exists an element n of N such that s1n ∈ I. Consider n1 being an element
of N such that s1n1 ∈ I. n1 6= 0. �

(26) If
√
I ⊆ p, then I ⊆ p. The theorem is a consequence of (20).

(27) PrimeIdeals(A,
√
S–ideal) = PrimeIdeals(A,S–ideal). The theorem is

a consequence of (26) and (25).

(28) If E2 ⊆ E1, then PrimeIdeals(A,E1) ⊆ PrimeIdeals(A,E2).

(29) PrimeIdeals(A, J1) = PrimeIdeals(A, J2) if and only if
√
J1 =

√
J2. The

theorem is a consequence of (18) and (27).

(30) If I1 ∗ I2 ⊆ p, then I1 ⊆ p or I2 ⊆ p.
Proof: If it is not true that I1 ⊆ p or I2 ⊆ p, then I1 ∗ I2 6⊆ p. �

(31) PrimeIdeals(A, {1A}) = ∅.
(32) The spectrum of A = PrimeIdeals(A, {0A}).
(33) Let us consider non empty subsets E1, E2 of A. Then there exists a non

empty subset E3 of A such that PrimeIdeals(A,E1)∪PrimeIdeals(A,E2) =
PrimeIdeals(A,E3).
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Proof: Set I1 = E1–ideal. Set I2 = E2–ideal. Reconsider I3 = I1 ∗ I2 as
an ideal of A. PrimeIdeals(A,E1) = PrimeIdeals(A, I1). PrimeIdeals(A, I3)
⊆ PrimeIdeals(A, I1)∪PrimeIdeals(A, I2). PrimeIdeals(A, I1)∪PrimeIdeals
(A, I2) ⊆ PrimeIdeals(A, I3). PrimeIdeals(A, I3) = PrimeIdeals(A,E1) ∪
PrimeIdeals(A,E2). �

(34) Let us consider a family G of subsets of the spectrum of A. Suppose for
every set S such that S ∈ G there exists a non empty subset E of A such
that S = PrimeIdeals(A,E). Then there exists a non empty subset F of A
such that Intersect(G) = PrimeIdeals(A,F ). The theorem is a consequence
of (28).

Let us consider A. The functor Spec(A) yielding a strict topological space is
defined by

(Def. 15) the carrier of it = the spectrum of A and for every subset F of it,
F is closed iff there exists a non empty subset E of A such that F =
PrimeIdeals(A,E).

Note that Spec(A) is non empty. Now we state the proposition:

(35) Let us consider points P , Q of Spec(A). Suppose P 6= Q. Then there
exists a subset V of Spec(A) such that

(i) V is open, and

(ii) P ∈ V and Q /∈ V or Q ∈ V and P /∈ V .

Note that there exists a commutative ring which is degenerated. Let R be
a degenerated, commutative ring. Let us observe that ADTS(the spectrum of
R) is T0. Let us consider A. Observe that Spec(A) is T0.

6. Continous Map of Zariski Topology Associated with a Ring
Homomorphism

From now on M0 denotes an ideal of B. Now we state the proposition:

(36) If h inherits ring homomorphism, then h−1(M0) is an ideal of A.

In the sequel M0 denotes a prime ideal of B.

(37) If h inherits ring homomorphism, then h−1(M0) is a prime ideal of A.
Proof: For every elements x, y of A such that x · y ∈ h−1(M0) holds
x ∈ h−1(M0) or y ∈ h−1(M0). h−1(M0) 6= the carrier of A. �

Let us consider A, B, and h. Assume h inherits ring homomorphism. The
functor Spec(h) yielding a function from Spec(B) into Spec(A) is defined by

(Def. 16) for every point x of Spec(B), it(x) = h−1(x).

Now we state the propositions:
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(38) If h inherits ring homomorphism, then Spec(h)−1 PrimeIdeals(A,E) =
PrimeIdeals(B, h◦E).
Proof: Spec(h)−1 PrimeIdeals(A,E) ⊆ PrimeIdeals(B, h◦E). Consider q
being a prime ideal of B such that x = q and h◦E ⊆ q. h−1(q) is a prime
ideal of A. �

(39) If h inherits ring homomorphism, then Spec(h) is continuous. The the-
orem is a consequence of (38).
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