
FORMALIZED MATHEMATICS

Vol. 26, No. 3, Pages 199–208, 2018
DOI: 10.2478/forma-2018-0018 https://www.sciendo.com/
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Summary. In contrast to other proving systems Mizar Mathematical Li-
brary, considered as one of the largest formal mathematical libraries [5], is ma-
intained as a single base of theorems, which allows the users to benefit from
earlier formalized items [3], [2]. This eventually leads to a development of certain
branches of articles using common notation and ideas. Such formalism for finite
sequences has been developed since 1989 [1] and further developed despite of the
controversy over indexing which excludes zero [7], also for some advanced and
new mathematics [6].

The article aims to add some new machinery for dealing with finite sequences,
especially those of short length.
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1. Preliminaries

One can verify that every binary relation which is empty is also positive
yielding and every binary relation which is empty is also negative yielding and
every binary relation which is natural-valued is also N-valued.

Let f be a complex-valued function and k be an object. Note that (0 · f)(k)
reduces to 0.

Let us observe that 1 · f reduces to f and (−1) · (−f) reduces to f . One can
verify that 0 · f is empty yielding and f − f is empty yielding.
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Let D be a set. Observe that there exists a D-valued finite sequence which is
empty yielding and every finite sequence which is empty yielding is also N-valued
and there exists an empty yielding finite sequence which is non empty.

Let n be a natural number. One can verify that there exists an empty yiel-
ding, N-valued finite sequence which is n-element and min(n, 0) is zero.

One can verify that max(n, 0) reduces to n.
Let a be a non zero natural number. One can verify that min(a, 1) reduces

to 1 and max(a, 1) reduces to a.
Let a be a non trivial natural number. One can verify that min(a, 2) reduces

to 2 and max(a, 2) reduces to a.
Let a be a positive real number and b be a positive natural number. One

can verify that b 7→ a is positive and every binary relation which is empty
yielding is also function-like and every function which is empty yielding is also
natural-valued and every real-valued function which is empty yielding is also
non-positive yielding and every real-valued function which is empty yielding is
also non-negative yielding and every non empty, real-valued function which is
empty yielding is also non positive yielding and every non empty, real-valued
function which is empty yielding is also non negative yielding and every non
empty, real-valued function which is positive yielding is also non non-positive
yielding and every non empty, real-valued function which is negative yielding is
also non non-negative yielding.

Let f be an empty yielding function and c be a complex number. Note that
c · f is empty yielding.

Let g be a complex-valued function. Note that f · g is empty yielding.

2. The Length of Finite Sequences

Let f be a complex-valued finite sequence and x be a complex number. Note
that f+x is (len f)-element and f−x is (len f)-element and |f | is (len f)-element
and −f is (len f)-element and f−1 is (len f)-element.

Let n, m be natural numbers, f be an n-element, complex-valued finite
sequence, and g be anm-element, complex-valued finite sequence. One can verify
that f + g is (min(n,m))-element and f · g is (min(n,m))-element and f − g is
(min(n,m))-element and f/g is (min(n,m))-element.

Let g be an (n+m)-element, empty yielding, complex-valued finite sequence.
Observe that f + g reduces to f .

Let n be a natural number and g be an n-element, empty yielding, complex-
valued finite sequence. One can verify that f + g reduces to f .

Let X be a non empty set. Observe that there exists an X-defined, empty
yielding function which is total.



Arithmetic operations on short finite sequences 201

Let f be a total, X-defined, complex-valued function and g be a total,
X-defined, empty yielding function. Let us observe that f + g reduces to f .

Let f be a binary relation. Let us observe that there exists a binary rela-
tion which is (dom f)-defined and f null f is (dom f)-defined and there exists
a (dom f)-defined binary relation which is total.

Let f be a complex-valued function. Observe that there exists a (dom f)-
defined, empty yielding function which is total and −f is (dom f)-defined and
−f is total and f−1 is (dom f)-defined and f−1 is total and |f | is (dom f)-defined
and |f | is total.

Let c be a complex number. Let us note that c+f is (dom f)-defined and c+f
is total and f−c is (dom f)-defined and f−c is total and c ·f is (dom f)-defined
and c · f is total.

Let f be a finite sequence. Let us observe that every finite sequence which
is (len f)-element is also (dom f)-defined.

Let n be a natural number. Let us observe that every finite sequence which
is n-element is also (Seg n)-defined and every finite sequence which is total and
(Seg n)-defined is also n-element.

Now we state the proposition:

(1) Let us consider a complex-valued finite sequence f . Then 0 ·f = len f 7→
0.

Let f be a complex-valued finite sequence. Note that f + len f 7→ 0 reduces
to f .

Let n be a natural number, D be a non empty set, and X be a non empty
subset ofD. One can verify that there exists anX-valued finite sequence which is
n-element and there exists a finite sequence of elements of X which is n-element.

3. On Positive and Negative Yielding Functions

Let f be a real-valued function. Let us note that f + |f | is non-negative
yielding and |f | − f is non-negative yielding.

Let f be a non-negative yielding, real-valued function and x be an object.
Observe that f(x) is non negative.

Let f be a non-positive yielding, real-valued function. Let us observe that
f(x) is non positive.

Let f be a non-negative yielding, real-valued function and r be a non negative
real number. One can verify that r · f is non-negative yielding and (−r) · f is
non-positive yielding and −f is non-positive yielding.

Let f be a non-positive yielding, real-valued function and r be a non negative
real number. Let us observe that r ·f is non-positive yielding and (−r) ·f is non-
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negative yielding and −f is non-negative yielding and every Z-valued function
which is non-negative yielding is also natural-valued.

Let f be a Z-valued function. Let us observe that 12 ·(f+|f |) is natural-valued
and 12 · (|f | − f) is natural-valued.

Let us consider a binary relation f . Now we state the propositions:

(2) rng f is natural-membered if and only if f is natural-valued.
Proof: If rng f is natural-membered, then f is natural-valued by [10, (2)].
�

(3) f is N-valued if and only if rng f is natural-membered. The theorem is
a consequence of (2).

(4) rng f is integer-membered if and only if f is Z-valued.
Proof: If rng f is integer-membered, then f is Z-valued by [10, (2)]. �

(5) rng f is rational-membered if and only if f is Q-valued.
Proof: If rng f is rational-membered, then f is Q-valued by [10, (2)]. �

(6) rng f is real-membered if and only if f is real-valued.
Proof: If rng f is real-membered, then f is real-valued by [10, (2)]. �

(7) f is R-valued if and only if rng f is real-membered. The theorem is
a consequence of (6).

(8) rng f is complex-membered if and only if f is complex-valued.
Proof: If rng f is complex-membered, then f is complex-valued by [10,
(2)]. �

(9) f is C-valued if and only if rng f is complex-membered. The theorem is
a consequence of (8).

(10) dom f is natural-membered if and only if f is N-defined.
Proof: If dom f is natural-membered, then f is N-defined by [10, (2)]. �

Let f be a Z-defined binary relation. Observe that dom f is integer-membered.
Now we state the proposition:

(11) Let us consider a binary relation f . Then dom f is integer-membered if
and only if f is Z-defined.
Proof: If dom f is integer-membered, then f is Z-defined by [10, (2)]. �

Let f be a Q-defined binary relation. Let us note that dom f is rational-
membered.

Now we state the proposition:

(12) Let us consider a binary relation f . Then dom f is rational-membered if
and only if f is Q-defined.
Proof: If dom f is rational-membered, then f is Q-defined by [10, (2)].
�
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Let f be a R-defined binary relation. Note that dom f is real-membered.
Now we state the proposition:

(13) Let us consider a binary relation f . Then dom f is real-membered if and
only if f is R-defined.
Proof: If dom f is real-membered, then f is R-defined by [10, (2)]. �

Let f be a C-defined binary relation. One can check that dom f is complex-
membered.

Now we state the propositions:

(14) Let us consider a binary relation f . Then dom f is complex-membered
if and only if f is C-defined.
Proof: If dom f is complex-membered, then f is C-defined by [10, (2)].
�

(15) Let us consider a set D, and a function f . Then f is D-valued if and
only if f is a function from dom f into D.
Proof: If f is D-valued, then f is a function from dom f into D by [4,
(2)]. �

(16) Let us consider a set C. Then every total, C-defined function is a function
from C into rng f .

(17) Let us consider sets C, D, and a total, C-defined function f . Then f
is a function from C into D if and only if f is D-valued. The theorem is
a consequence of (16) and (15).

(18) Every real-valued function is a function from dom f into R.

(19) Let us consider a complex-valued finite sequence f . Then

(i) f − f = 0 · f , and

(ii) f − f = len f 7→ 0.

The theorem is a consequence of (1).

(20) Let us consider a complex number a, a finite sequence f , and a natural
number k. If k ∈ dom f , then (len f 7→ a)(k) = a.

Let a be a real number, k be a non zero natural number, l be a natural
number, and f be a (k+ l)-element finite sequence. One can verify that (len f 7→
a)(k) reduces to a.

Let f be a complex-valued function. The functors: delneg f , delpos f , and

delall f yielding complex-valued functions are defined by terms

(Def. 1) 1
2 · (f + |f |),

(Def. 2) 1
2 · (|f | − f),

(Def. 3) 0 · f ,
respectively. Now we state the propositions:
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(21) Let us consider a complex-valued function f . Then

(i) dom f = dom(delpos f), and

(ii) dom f = dom(delneg f), and

(iii) dom f = dom(delall f).

(22) Let us consider a complex-valued function f , and an object x. Then
f(x) = (delneg f)(x) − (delpos f)(x). The theorem is a consequence of
(21).

(23) Let us consider a complex-valued function f . Then f = delneg f −
delpos f . The theorem is a consequence of (21) and (22).

Let us consider a real-valued function f and an object x. Now we state the
propositions:

(24) (i) f(x) = (delneg f)(x), or

(ii) f(x) = −(delpos f)(x).
The theorem is a consequence of (21).

(25) (i) (delneg f)(x) = 0, or

(ii) (delpos f)(x) = 0.
The theorem is a consequence of (22) and (24).

Let f be a real-valued function. One can verify that delneg f · delpos f is
empty yielding.

Now we state the proposition:

(26) Let us consider a real-valued function f . Then delall f = delneg f ·
delpos f . The theorem is a consequence of (21).

Let f be a complex-valued function and f1 be a total, (dom f)-defined, emp-
ty yielding function. Let us observe that f + f1 reduces to f and f − f1 reduces
to f .

Let f1 be a total, (dom f)-defined, complex-valued function and f2 be a to-
tal, (dom f)-defined, empty yielding function. One can verify that f1+f2 reduces
to f1 and f1 − f2 reduces to f1.

Observe that f − f is (dom f)-defined and f − f is total.
Now we state the proposition:

(27) Let us consider a complex-valued function f . Then |f | = delneg f +
delpos f .

Let f be an empty finite sequence. Let us note that
∏
f is natural and

∏
f

is non zero.
Let f be a positive yielding, real-valued finite sequence. One can check that∏
f is positive.



Arithmetic operations on short finite sequences 205

Let f be a complex-valued finite sequence. Let us note that delneg f is
(len f)-element and delpos f is (len f)-element.

Now we state the proposition:

(28) Let us consider a complex-valued function f . Then delneg f = delpos(−f).
Let f be a non-negative yielding, real-valued function. Note that |f | reduces

to f and delneg f reduces to f . We identify delall f with delpos f . We identify
delpos f with delall f . Let f be a non-positive yielding, real-valued function.
Observe that −delpos f reduces to f . One can verify that delneg f is empty
yielding.

We identify delall f with delneg f . We identify delneg f with delall f . Now
we state the proposition:

(29) Let us consider a finite sequence f of elements of Z. Then there exist
finite sequences f1, f2 of elements of N such that f = f1−f2. The theorem
is a consequence of (23).

Let a be an integer and n be a natural number. Note that n 7→ a is Z-valued.
Let f be a non empty, empty yielding finite sequence. Observe that

∏
f is

zero.
Now we state the propositions:

(30) Let us consider finite sequences f1, f2 of elements of R. Suppose len f1 =
len f2 and for every element k of N such that k ∈ dom f1 holds f1(k) 
f2(k) > 0. Then

∏
f1 

∏
f2.

Proof: For every element k of N such that k ∈ dom f2 holds f1(k) 
f2(k) > 0 by [9, (29)]. �

(31) Let us consider a real number a, and a finite sequence f of elements of R.
Suppose for every element k of N such that k ∈ dom f holds 0 < f(k) ¬ a.
Then

∏
f ¬
∏

(len f 7→ a). The theorem is a consequence of (20).

(32) Let us consider a non negative real number a, and a finite sequence f of
elements of R. Suppose for every natural number k such that k ∈ dom f
holds f(k)  a. Then

∏
f  alen f . The theorem is a consequence of (20).

(33) Let us consider non-negative yielding finite sequences f1, f2 of elements
of R. Suppose len f1 = len f2 and for every element k of N such that
k ∈ dom f2 holds f1(k)  f2(k). Then

∏
f1 

∏
f2.

(34) Let us consider finite sequences f1, f2 of elements of R. Suppose len f1 =
len f2 and for every element k of N such that k ∈ dom f2 holds f1(k) 
f2(k)  0. Then

∏
f1 

∏
f2.

Proof: For every real number r such that r ∈ rng f2 holds r  0. For
every real number r such that r ∈ rng f1 holds r  0 by [9, (29)]. �

(35) Let us consider a positive real number a, and a non-negative yielding
finite sequence f of elements of R. Suppose for every element k of N
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such that k ∈ dom f holds f(k) ¬ a. Then
∏
f ¬ alen f . The theorem is

a consequence of (20) and (33).

4. Basic Operations on Short Finsequences

Let a be a complex number. Let us note that (−〈−a〉)(1) reduces to a and
(〈a−1〉−1)(1) reduces to a.

Let us consider complex numbers a, b. Now we state the propositions:

(36) 〈a〉+ 〈b〉 = 〈a+ b〉.
(37) 〈a〉 − 〈b〉 = 〈a− b〉. The theorem is a consequence of (36).

(38) 〈a〉 · 〈b〉 = 〈a · b〉.
(39) 〈a〉/〈b〉 = 〈a · (b−1)〉. The theorem is a consequence of (38).

Let n be a natural number, f be an n-element finite sequence, and a be
a complex number. One can verify that (fa〈a〉)(n+1) reduces to a and (fa〈a〉)�n
reduces to f .

Let a, b, c, d be complex numbers. Let us observe that 〈a, b, c, d〉 is complex-
valued.

Let a, b be complex numbers. Let us observe that (−〈−a, b〉)(1) reduces
to a and (−〈a,−b〉)(2) reduces to b and (〈a−1, b〉−1)(1) reduces to a and (〈a,
b−1〉−1)(2) reduces to b.

Let a, b, c be complex numbers. Note that 〈a, b, c〉(1) reduces to a and 〈a, b,
c〉(2) reduces to b and (−〈−a, b, c〉)(1) reduces to a and (−〈a,−b, c〉)(2) reduces
to b and (−〈a, b,−c〉)(3) reduces to c and (〈a−1, b, c〉−1)(1) reduces to a and (〈a,
b−1, c〉−1)(2) reduces to b and (〈a, b, c−1〉−1)(3) reduces to c.

Now we state the propositions:

(40) Let us consider complex numbers a, b, a natural number n, and n-
element, complex-valued finite sequences f , g. Then f a 〈a〉 + g a 〈b〉 =
(f + g) a 〈a+ b〉.
Proof: Reconsider f3 = f a 〈a〉 as an (n + 1)-element finite sequence
of elements of C. Reconsider g1 = g a 〈b〉 as an (n + 1)-element finite
sequence of elements of C. For every object k such that k ∈ dom(f3 + g1)
holds (f3 + g1)(k) = ((f + g) a 〈a+ b〉)(k) by [9, (25)], [8, (7)]. �

(41) Let us consider complex numbers a, b, x, y. Then 〈a, b〉+ 〈x, y〉 = 〈a+x,
b+ y〉. The theorem is a consequence of (40) and (36).

(42) Let us consider complex numbers a, b, c, x, y, z. Then 〈a, b, c〉 + 〈x, y,
z〉 = 〈a+ x, b+ y, c+ z〉. The theorem is a consequence of (40) and (41).

(43) Let us consider complex numbers a, b, c, d, x, y, z, v. Then 〈a, b, c,
d〉+ 〈x, y, z, v〉 = 〈a+ x, b+ y, c+ z, d+ v〉. The theorem is a consequence
of (40) and (42).
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(44) Let us consider complex numbers a, b, a natural number n, and n-
element, complex-valued finite sequences f , g. Then (f a 〈a〉) · (g a 〈b〉) =
(f · g) a 〈a · b〉.
Proof: Reconsider f3 = f a 〈a〉 as an (n + 1)-element finite sequence
of elements of C. Reconsider g1 = g a 〈b〉 as an (n + 1)-element finite
sequence of elements of C. For every object k such that k ∈ dom(f3 · g1)
holds (f3 · g1)(k) = ((f · g) a 〈a · b〉)(k) by [9, (25)], [8, (7)]. �

(45) Let us consider complex numbers a, b, x, y. Then 〈a, b〉 · 〈x, y〉 = 〈a · x,
b · y〉. The theorem is a consequence of (44) and (38).

(46) Let us consider complex numbers a, b, c, x, y, z. Then 〈a, b, c〉 · 〈x, y,
z〉 = 〈a · x, b · y, c · z〉. The theorem is a consequence of (44) and (45).

(47) Let us consider complex numbers a, b, c, d, x, y, z, v. Then 〈a, b, c, d〉·〈x,
y, z, v〉 = 〈a · x, b · y, c · z, d · v〉. The theorem is a consequence of (44) and
(46).

(48) Let us consider a complex number a, a non zero natural number n, and
an n-element, complex-valued finite sequence f . Then 〈a〉+f = 〈a+f(1)〉.

(49) Let us consider complex numbers a, b, a non trivial natural number n,
and an n-element, complex-valued finite sequence f . Then 〈a, b〉 + f =
〈a+ f(1), b+ f(2)〉.

(50) Let us consider a complex number a, a non zero natural number n, and
an n-element, complex-valued finite sequence f . Then 〈a〉 · f = 〈a · f(1)〉.

(51) Let us consider complex numbers a, b, a non trivial natural number
n, and an n-element, complex-valued finite sequence f . Then 〈a, b〉 · f =
〈a · f(1), b · f(2)〉.
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