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Preface

In recent years, several projects have aimed at providing computer assistance for do-
ing mathematics. The project discussed here is called Mizar and concerns computer
oriented formalization of mathematics, begun in 1973. The author of the Mizar
language is Prof.Andrzej Trybulec (Warsaw University), who is also the leader of the
group which prepared the majority of implementations. The project original goal was to
design and implement a software environment to assist the process of preparing math-
ematical papers: the human writes mathematical texts and the machine verifies their
correctness.

Université Catholique de Louvain and Foundation Philippe le Hodey (both of Bel-
gium) has been conducting research related to the applications of the Mizar system since
1984. This research has involved an international group of mathematicians who first met
at the Mizar Summer Workshop in Louvain-la-Neuve (Belgium) in 1985. Of these, the
Polish group is the most active. These researchers cooperate within the framework of
the Mizar Users Group (MizUG).

The papers published in the consecutive issues of ”Formalized Mathematics (a com-
puter assisted approach)” constitute the Main Mizar Library (MML). The power of the
Mizar system lies in the automatic processing of cross—references among articles. This
is done by the continuous actualization of MML. Before the theorems and definitions
are included into the MML, they must be proved valid and correct. MML forms the
basis of a Knowledge Management System for Mathematics supplied with Mizar articles.
MML together with PC MIZAR are the systems for collecting, formalizing and verifying
mathematical knowledge. The latest, the most advanced version of Mizar is PC MIZAR
which together with MML runs on IBM PC under DOS 3.xx (implemented in Poland
under the direction of Prof.A.Trybulec).

”

In the current issue of ”Formalized Mathematics...” all the papers appear in chrono-
logical order, since they form the very beginning of MML. They concern both very general
and very specialized, narrow subjects. In the future we intend to classify the papers into
groups according to the mathematical domains i.e. foundations of mathematics, geome-

try, etc.

The MizTEX system, used for the automatic editing of this publication is constantly
being developed.



Finally, I would like to add that for MizUG members we also publish the technical
report "Main Mizar Library”, containing the list of summaries of the articles; names of
the authors, titles of the articles and names of files; publicity — ranking of theorems and
articles as well as the list of contents of the articles so far published in the ” Formalized
Mathematics...”.

Roman Matuszewski



Introduction

The Mizar project started many years ago and, as it developed, the emphasis on its
different applications varied. It is therefore worthwhile to take this opportunity to recall
that one of the main applications originally considered was using Mizar articles as source
texts for mathematical publications. Of course, none of the following papers, or, rather,
their abstracts, fulfils that expectation. Neverthelless, they let us see how close or how
far are we still from our aim.In order to explain what exactly is published here it is
necessary to at least give an outline of the project itself.

The Mizar language is a strongly standarized mathematial language, or, if one prefers,
an extensively extended formalized language, for writing mathematical papers. Its struc-
ture allows for using a database; the final goal of the project is to provide a knowledge
management system for mathematics. Thus it is possible to write mathematical papers in
Mizar. They are usually 1000 - 2000 line texts corresponding to a short six- to nine-page
publication or to one chapter of a textbook.

An article consists of two parts. The first, usually very short, is the description of the
environment. It contains a list of publications where the notions used in the paper were
introduced or where the theorems we refer to were proved, and other similar information.
The second part is the text proper, where we define new notions, prove the correctness
of the proposed definitions and where we prove new theorems. From the construction of
the article follows that to write a new one we have to have access to the Mizar library
of papers we can refer to. Obviously, to write the first papers we have to start with
some axiomatics. The papers presented below make use of Main Mizar Library (MML),
which was first created at the beginning of 1989 owing to the financial help obtained
from the Ministry of National Education of the Republic Poland (grant RPBP III.24).
The axiomatic foundation of this library is the Tarski-Grothendieck set theory which is
quite a strong theory quaranteeing the existence of universal classes. To enable the Mizar
processor to perform natural number computations, several additional axioms were also
introduced, namely the axiomatics of strong real number arithmetic. So far the Main
Mizar Library comprises of about 80 papers but their number is growing fast.

However, to verify the correctness of a paper the PC Mizar system used to build the
library refers not to the library direct, but to a database automatically created from the
papers there included. The data introduced into the database from a paper pass through
an intermediate stage where the abstract of the paper is created. The abstractor program
removes from the paper all data which are not stored in the database, i.e. justification
of theorems, lemmas and private object definitions.

The evolution of the library requires writing many papers containing well-known
theorems with uninteresting proofs. It seemed to us, therefore, that publication of whole

papers is not justified. To tell the truth, only some of the authors were inclined to devote



their time to the systematic development of the database; others agreed to write down
only that part of mathematical folklore which makes work on an ambitious paper possible.
Some of the papers submitted to the library concern new, unpublished mathematical
results; thus the level of the papers varies.

As we prepared this collection, we wondered whether it should not be restricted
to chosen, more interesting papers. There were doubts concerning the publication of
such monotonous articles as, for example [2]. Actually, this paper was written mainly
because, while justifying some trivial facts, the checker (system module checking inference
correctness) exceeded certain quantitative limitations and we wanted to show how this
can be overcome. Those who write in Mizar may have found the proofs in this paper
interesting, they were removed, however, when the abstract was created.

Still, there are good reasons for publishing all papers. First, in this way we obtain a
true picture of what the library looks like. It does not seem fair to remove trivial papers,
even though the reader is warned that it’s been done. Second, this publication will serve
to write new papers, and Mizar authors need the information what has been proved and
where. This actually was our original aim, similar to [1].

The abstracts of Mizar papers do not look as well as the present publication would
lead to think, if only because they are ASCII files. These abstracts were automatically
converted into source files of the TEX language. Some fragments were automatically
translated into English, or to be precise, into a language which reminds English a little
and others were left in original Mizar form with slight modifications, for example the
keywords are in bold type. The obtained texts, with the exception of abstracts containing
axiomatics, were not post-edited. The programs used were implemented by the following
group: Grzegorz Bancerek, Czestaw Bylinski, Wojciech Leoniczuk, Krzysztof Prazmowski,
Michal Muzalewski and the author. They include a program in Turbo Pascal converting
Mizar into TgX and a special TEX format (a set of TEX macros).

Andrzej Trybulec

References

[1] Piotr Rudnicki and Andrzej Trybulec. A Collection of TgXed Mizar Abstracts. Tech-
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FORMALIZED MATHEMATICS
Number 1, January 1990
Université Catholique de Louvain

Tarski Grothendieck Set Theory

Andrzej Trybulec!
Warsaw University
Bialystok

Summary. This is the first part of the axiomatics of the Mizar system. It
includes the axioms of the Tarski Grothendieck set theory. They are: the axiom
stating that everything is a set, the extensionality axiom, the definitional axiom of
the singleton, the definitional axiom of the pair, the definitional axiom of the union
of a family of sets, the definitional axiom of the boolean (the power set) of a set, the
regularity axiom, the definitional axiom of the ordered pair, the Tarski’s axiom A
introduced in [2] (see also [1]), and the Freenkel scheme. Also, the definition of
equinumerosity is introduced.

For simplicity we adopt the following convention: =z, y, z, u will denote objects of the
type Any; N, M, X,Y, Z will denote objects of the type set.  Next we state two

axioms:
(1) x is set,
(2) (forz holds z € X iff z € Y) implies X =Y.
We now introduce two functors. Let us consider y. The functor

{y},

with values of the type set, is defined by
zeitiffz=y.

Let us consider z. The functor
{y, 2},

with values of the type set, is defined by

zeitiffr=yorz ==z

1Supported by RPBP.I11-24.B1.
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The following axioms hold:

(3) X ={y}iffforz holdsz € X iff x = y,

(4) X ={y,z}iff forr holdsz € X iff t =y or x = z.
Let us consider X, Y. The predicate

XCY is defined by xz € X impliesz €Y.

Let us consider X. The functor
Ux.
with values of the type set, is defined by

rzcitifexYstzcY &Y € X.

Then we get
(5) X=|Jviffforzholdsz € X iffexZstr € Z& Z €Y,
(6) X =boolY ifffor Zholds Z € X if ZC Y,

The regularity axiom claims that
(7) r € X impliesexY stY € X & notexzstzx e X & eY.

The scheme Fraenkel deals with a constant A that has the type set and a binary
predicate P and states that the following holds

ex X st forx holds z € X iffexy st y € A & Ply, z]

provided the parameters satisfy the following condition:
° for z,y,z st Plz,y] & Pz, z] holds y = z.
Let us consider x, y. The functor
(x,9),
is defined by
it = {{z,y}.{z}}.
According to the definition
(8) (z,y) = {{z, y}{}}.
Let us consider X, Y. The predicate

X=rY
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is defined by

exZst(forzstxe XexystyeY & (z,y) € 2) &
(forystyeYexastax e X & (x,y) € 2)
& forz,y,zu st (x,y) € Z & (z,u) € Z holds x = z iff y = u.
The Tarski’s axiom A claims that

(9) exMstNeME&(forX,Yholds X € M &Y C X impliesY € M) &
(for X holds X € M implies bool X € M)
& for X holds X C M implies X ~ M or X € M.

References
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FORMALIZED MATHEMATICS
Number 1, January 1990
Université Catholique de Louvain

Built-in Concepts

Andrzej Trybulec!
Warsaw University
Biatystok

Summary. This abstract contains the second part of the axiomatics of the
Mizar system (the first part is in abstract [1]). The axioms listed here characterize
the Mizar built-in concepts that are automatically attached to every Mizar article.
We give definitional axioms of the following concepts: element, subset, Cartesian
product, domain (non empty subset), subdomain (non empty subset of a domain),
set domain (domain consisting of sets). Axioms of strong arithmetics of real num-
bers are also included.

The notation and terminology used here have been introduced in the axiomatics [1]. For
simplicity we adopt the following convention: x, y, z denote objects of the type Any;
X, X1, X2, X3, X4,Y denote objects of the type set. The following axioms hold:

(1) (exz st x € X) implies (z is Element of X iff z € X)),
(2) X is Subset of Y iff X C Y,

(3) zelX,Y]iffexzystz e X &yeY & z=(z,y),
(4) X is DOMAIN iffexz st x € X,

(5) EX1,X2,X3] = [[X1,X2],X3],

(6) EX1,X2,X3,X4] = [[X1,X2,X3],X4].

In the sequel D1, D2, D3, D4 will denote objects of the type DOMAIN. Let us

introduce the consecutive axioms:

(7) for X being Element of [D1,D2] holds X is TUPLE of D1,D2,

(8) for X being Element of [D1,D2,D3] holds X is TUPLE of D1,D2,D3,

1Supported by RPBP.I11-24.B1.

© 1990 Fondation Philippe le Hodey
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for X being Element of [ D1,D2,D3,D4]
holds X is TUPLE of D1,D2,D3,D4

In the sequel D has the type DOMAIN. The following axioms hold:

(10)

(11)

In the sequel z, y, z denote objects of the type Element of REAL.

D1 is SUBDOMAIN of D2 iff D1 C D2,

D is SET_DOMAIN.

axioms are true:

(12
(13
(14
(15
(16
(17

(18

)
)
)
)
)
)
)
(19)
(20)
(21)
(22)
(23)
(24)
(25)

)

(26

r+y=y+uz,
r+(y+z)=(r+y)+z

rz+0=uc,

x-(y+z2)=z-y+uz-z

exystx+y=0,

z # 0 impliesexy stz -y =1,

<y &y<zimplies z =y,

r<y&y<zimpliesz < z,
r<yory<ux,

r <yimpliesx + 2z < y + z,

r<y&0<zimpliesz-z<y-z,

for XY being Subset of REAL st
(exzstre X)& (exzstrzeY)&forzystre X &yeY holdsz <y
exzstforrzystzre X &yeY holdszx <z & 2z <y,

x is Real ,
x € NAT implies x + 1 € NAT,

for A being set of Real
st0 e A& forzstx € Aholdsz + 1 € A holds NAT C A,

x € NAT implies z is Nat.

The following
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FORMALIZED MATHEMATICS
Number 1, January 1990
Université Catholique de Louvain

Boolean Properties of Sets

Zinaida Trybulec! Halina SwieczkowskaQ
WarsaW University Warsaw University
Bialystok Biatystok

Summary. The text includes a number of theorems about Boolean opera-
tions on sets: union, intersection, difference, symmetric difference; and relations
on sets: meets (having non-empty intersection), misses (being disjoint) and subset
(inclusion).

The terminology and notation used here are introduced in the article [1]. For simplicity
we adopt the following convention: x will have the type Any; X,Y, Z, V will have
the type set. The scheme Separation concerns a constant A that has the type set and

a unary predicate P and states that the following holds

ex X st forz holds z € X iff x € A & PJz]

for all values of the parameters.
We now define several new constructions. The constant () has the type set, and is
defined by

notexz st x € it .

Let us consider X, Y. The functor
XUY,

with values of the type set, is defined by

rzecitifre XorzeV.

The functor
Xny,

'Supported by RPBP.I11-24.C1.
2Supported by RPBP.III1-24.C1.
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with values of the type set, is defined by
reitifre X &zeV.

The functor
X\Y,

yields the type set and is defined by

rzcitifr € X & notx €Y.

The predicate

X meets Y is defined by exrstre X &zreY.

The predicate

X misses Y is defined by for z holds z € X implies notx € Y.
Let us consider X, Y. The functor
XY,
with values of the type set, is defined by
it=(X\Y)u (¥ \X).

We now state several propositions:

(1) Z =0iff notexz stz € Z,

(2) Z=XUY iffforrholdsz € Ziffr€ X orz €Y,

(3) Z=XnY iffforrholdsz e Ziffr € X & x €,

(4) Z=X\Yiffforrholdsz € Ziff x € X & notz €Y,
(5) X CY iff forz holds z € X impliesz € Y,

(6) X meets Y ifexz stz € X &z €7,

(7) X misses Y iff for z holds x € X implies notz € Y.

Let us consider X, Y. Let us note that one can characterize the predicate

X=Y

by the following (equivalent) condition:

XCY&Y CX.

The following propositions are true:

(8) zeXUYiffre Xorz ey,
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reXNYiffre X&xey,
zreX\Yiffre X &notz ey,
r€ X & X CY impliesz €7,
x € X & X misses Y implies notx € Y,
x € X & x € Y implies X meets Y,
z € X implies X # (),
X meets Y impliesexz stz € X & x €Y,
(forz st x € X holds z € Y) implies X C Y,

(forz st x € X holds not z € Y') implies X misses Y,
(forz holdsx € X ifft € Y orz € Z) implies X =Y U Z,
(forzholdsz € X iffr €Y &z € Z) implies X =Y N Z,

(forzholdsz € X iff t € Y & notz € Z) implies X =Y \ Z,
not (exx st z € X) implies X = (),
(forz holds z € X iff € Y) implies X =Y,
reX Y iffnot(z e Xiffz€Y),
z€X &xeY implies X NY # (),
(forz holdsnotz € X iff (z € YV iff x € 7)) implies X =Y =~ Z,
X CX,
0CX,
XCY &Y C X implies X =Y,
XCY &Y C Zimplies X C Z,
X C 0 implies X = 0,
XCXUY &Y CXUY,
XCZ&Y CZimpliesXUY C Z,

XCYimpliesXUZCYUZ&ZUX CZUY,

19
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XCY&ZCVimpliesXUZCY UV,

X CYimpliessXUY =Y &YUX =Y,
XUY=YorYUX =Y implies X CY,
XNYCcX&Xnycy,

XNy cxuz,

ZCX&ZCY impliesZ C X NY,
XCYimpliessXNZCYNZ&ZNX CZNY,
XCY&ZCVimpliesXNZCYNV,

X CYimpliessXNY =X&YNX=X,
XNY=XorYNX=Ximplies X CY,

X CZimpliesXUYNZ=(XUY)NZ,
X\Y =0iff X C,

X CYimplies X\ ZCY\ Z,

X CYimpliesZ\Y C Z\ X,
XCY&ZCVimpliesX\V CY)\ Z,
X\Y CX,

X CY \ X implies X =0,
XCY&XCZ&YNZ=0implies X = (),
XCYUZimpliesX\Y CZ&X\ZCY,
(XNY)u(XNnZ)=X implies X CY U Z,

X CYimpliesY = XU Y\ X) &Y =(Y\X)UX,
XCY&YNZ=0implies X NZ =),
X=YUZITYCX&ZC X &forVstY CV &ZCVholds X CV,
X=YNZIFXCY&XCZ&forVstVCY &V CZholdsV C X,

X\YCX-Y,
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XUY=0if X=0&Y =0,
XUP=X&0UX =X,
XN0=0&0NX =0,

XUX =X,

XUY =YUX,
(XUY)UZ=XU(YUZ),
XnX =X,

XNY =YnX,
(XNY)NZ=Xn(YNZ),

XNXuy)=X
EXUY)NX=X&XNYUX)=X&YUX)NnX =X,

XU(XnY)=X
EXNY)UX=X&XUYNX)=X&(YNX)UX =X,

XN(YUZ)=XNYUXNZ&(YUZ)NX=YNXUZNX,
XUYNZ=(XUY)N(XUZ)&YNZUX=(YUX)N(ZUX),

(XNAY)U(Y NZ)U(ZNX)=(XUY)N(YUZ)N(ZUX),

X\ X =0,
X\0=X,
P\ X =0,

X\(XUY)=0& X\ (YUX) =0,
X\XNY=X\Y&X\YNX=X\Y,
(X\Y)NY =0&YN(X\Y)=0,
XUY\X)=XUY &Y\ X)UX=YUX,
XNYUX\Y)=X&X\Y)UXNY =X,
X\(Y\2)=(X\Y)uXnZ,

X\ (X\Y)=XnY,
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(XUY)\Y =X\Y,

XNY =0if X\Y =X,
X\(Yuz)=(X\Y)n(X\2),
X\N(YNZ)=(X\Y)U(X\2),

(XUY)\(XNY)=(X\Y)u (Y \X),

(X\Y)\Z=X\(YU2),
(XUY)\Z=(X\2)U(Y\2),
X\Y =Y\ X implies X =Y,

X =Y =X\Y)u\X),

X-0=X&0-X=2X,

X=X =0,
XY =Y =X,

XUy =(X-Y)uXny,

X-Y=(XUuY)\XnY,
(X=Y)\Z=(X\(YUu2z)u\(XUuZz)),
X\Y=-2)=X\YuzZ)uXnYnz,

(X-Y)=Z=X=(Y = 2),
X meets Y U Z iff X meets Y or X meets Z,

X meets Y &Y C Z implies X meets Z,

X meets Y N Z implies X meets Y & X meets Z,

X meets Y implies Y meets X,
not (X meets () or () meets X),
X misses Y iff not X meets Y,
X misses Y U Z iff X misses Y & X misses Z,

X misses Z & Y C Z implies X misses Y,
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(108) X misses Y or X misses Z implies X misses Y N Z,

(109) X misses () & () misses X,

(110) X meets X iff X # 0,

(111) X NY misses X \ Y,

(112) X NY misses X ~Y,

(113) X meets Y\ Z implies X meets Y,

(114) XCY & X CZ &Y misses Z implies X = (),

(115) X\YCZ&Y\XCZimplies X ~Y C Z,

(116) XNY\2Z2)=(XnY)\ Z,

(117) XNY\2)=XnNY\XNZ&Y\Z2)NX=YNX\ZNX,

(118) X misses Y iff X NY =0,

(119) X meets Y iff X NY # 0,

(120) XC(YUZ)&XNZ=0implies X CY,

(121) YCX&XNY =0impliesY =0,

(122) X misses Y implies Y misses X.
References
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FORMALIZED MATHEMATICS
Number 1, January 1990
Université Catholique de Louvain

Enumerated Sets

Andrzej Trybulec!
Warsaw University
Bialystok

Summary. We prove basic facts about enumerated sets: definitional theorems
and their immediate consequences, some theorems related to the decomposition of
an enumerated set into union of two sets, facts about removing elements that occur
more than once, and facts about permutations of enumerated sets (with the length
< 4). The article includes also schemes enabling instantiation of up to nine universal
quantifiers.

The terminology and notation used in this paper have been introduced in the papers [1]
and [2]. For simplicity we adopt the following convention: x, 1, 22, x3, x4, x5, 26,
x7, 8 have the type Any; X has the type set. In the article we present several logical
schemes. The scheme Ul concerns a constant A and a unary predicate P and states
that the following holds

PlA]
provided the parameters satisfy the following condition:

o for 1 holds P[x1].

The scheme UI2 deals with a constant A, a constant 5 and a binary predicate P
and states that the following holds

P[A, B]
provided the parameters satisfy the following condition:

o for 21,22 holds P[z1,22].

The scheme UI8 concerns a constant A, a constant 5, a constant C and a ternary

predicate P and states that the following holds
P[A, B.C]

1Supported by RPBP.I11-24.C1.
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provided the parameters satisfy the following condition:

o for z1,22,23 holds P[z1,22,z3].

The scheme UL/ concerns a constant A, a constant B, a constant C, a constant D
and a 4-ary predicate P and states that the following holds

P[A, B,C,D]

provided the parameters satisfy the following condition:

. for z1,22,2:3,24 holds P[z1,22,23,24].

The scheme UI5 deals with a constant A, a constant B, a constant C, a constant D,

a constant £ and a 5-ary predicate P and states that the following holds

PlA,B,C,D,E]

provided the parameters satisfy the following condition:

. for z1,22,23,24,25 holds Plz1,22,23,x4,25].

The scheme UI6 deals with a constant A, a constant B, a constant C, a constant D,

a constant £, a constant F and a 6-ary predicate P and states that the following holds

P[A,B,C,D.E,F]

provided the parameters satisfy the following condition:
° for z1,22,23,24,25,26 holds P[z1,x2,23,24,25,x6].
The scheme UI7 concerns a constant A, a constant B, a constant C, a constant D,

a constant £, a constant F, a constant G and a 7-ary predicate P and states that the

following holds
PlA,B,C,D,E,F.G|

provided the parameters satisfy the following condition:

° for z1,22,23,24,25,26,27 holds P[x1,22,23,24,25,26,27].

The scheme UIS8 concerns a constant A, a constant B, a constant C, a constant D, a
constant £, a constant F, a constant G, a constant H and a 8-ary predicate P and states
that the following holds

PlA,B.C,D,E,F .G H]

provided the parameters satisfy the following condition:

° for z1,22,23,24,25,26,27,28 holds P[z1,22,23,24,25,26,27,28].
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The scheme UI9 concerns a constant A, a constant B, a constant C, a constant D, a
constant £, a constant F, a constant G, a constant H, a constant Z and a 9-ary predicate
P and states that the following holds

PlA,BLC,D.E,F.GHI]

provided the parameters satisfy the following condition:

° for x1,22,23,24,x5,26,27,28, 29 being Any
holds P[z1,22,23,24,25,26,27,28,29].

We now state a number of propositions:

(1) for 21,X holds X = {x1} iff for z holds z € X iff x = 21,
(2) for z1,z holds = € {z1} iff v = z1,
(3) x € {x1} implies © = z1,

(4) x € {x},
(5) for z1,X st for x holds z € X iff z = z1 holds X = {z1},

(6) forx1,22,X holds X = {x1,22} iff for x holds z € X iff z = z1 or z = 22,

(7) for 21,22 for z holds x € {z1,22} iff z = 21 or z = 22,
(8) x € {z1,22} implies z = z1 or © = 22,
9) x =zl or x = 22 implies z € {z1,22},

(10) forzl,22,X st forx holds z € X iff x = z1 or x = 22 holds X = {x1,22}.

Let us consider z1, x2, 3. The functor

{x1,22,23},

yields the type set and is defined by

rzeitifx =zl orax=22o0rz=23.

One can prove the following propositions:

(11) for x1,22,23,X
holds X = {z1,22,23} iff for x holds « € X iff z = z1 or x = 22 or z = 23,

(12) for z1,22,23 for z holds z € {z1,22,23} iff x = 21 or © = 22 or = = 3,

(13) x € {x1,22,23} implies x = 21 or z = 22 or z = z3,
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(14) x =zl or x = 22 or = 23 implies z € {z1,22,23},
(15) for z1,22,23,X
st forz holds € X iff z = 21 or z = 22 or = 23 holds X = {z1,22,23}.
Let us consider z1, 22, 3, 4. The functor
{z1,22,23,24},
with values of the type set, is defined by

reitifx =zlorz=220r z=2x3o0rz=ux4.

We now state several propositions:
(16) for 21,22,23,24,X holds X = {z1,22,23,z4}
iff forz holds z € X iff t = 21 or x = 22 or z = 3 or x = x4,
(17) for z1,22,23,x4

forz holds z € {z1,22,23,24} iff x = 21 or z = 22 or © = 23 or x = x4,

(18) x € {x1,22,23,24} implies z = 21 or x = 22 or x = x3 or = = x4,
(19) z=uzlorz=2z2orz=a3orz=ux4implies z € {zl,22,23,24},
(20) for z1,22,23,24,X st

forz holdsz € X iffr =zl orx =22 or z =x3 or x = 24
holds X = {x1,22,23,24}.
Let us consider z1, x2, x3, x4, 5. The functor
{xl,22,23,24,25},
yields the type set and is defined by
zeitifr=xlorxz=2x20rx=z3 orz=2x4orzx=uxb.

Next we state several propositions:

(21) for z1,22,23,24,25 for X being set holds X = {z1,22,23,24,25}

iff forz holdsx € X iffxr =xlorz =220rxz =z3 or x = x4 or x = x5,
(22) z € {xl,22,23,24,25} iff x =2l or z =22 or x = 23 or x = x4 or z = x5,

(23) x € {zl,x2,23,24,25}

impliesz =zl or x =22 or x = 3 or x = 24 or x = x5,

(24) z=zlorz=a2orzx=z30orz=axdorzx=2ad

implies x € {z1,22,23,24,25},
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(25) for X being set st
forrholdsx € X iffr =xlorxz=220orz=z3orx=x40rx =2x5
holds X = {x1,22,23,24,25}.
Let us consider z1, x2, x3, x4, 5, 6. The functor

{zl,22,23,24,25,26},

with values of the type set, is defined by

zeitifr=xlorzx=220rxz=x30rxz=x4o0rzx=ux5o0rzx=ux0.

We now state several propositions:

(26) for x1,22,23,24,25,26 for X being set holds X = {z1,22,23,24,25,26} iff
for z

holdsz € X iffr =zlorxz=220rx =23 0or z = z4 or x = z5 or x = x6,

(27) x € {x1,22,23,24,25,26}

iffr=zxlorx=220rxz=2a30rz=ux4orzx=ux5o0rx=ux6,

(28) x € {x1,22,23,24,25,26}

impliesz =zl orx =22 or x =x3 or x = x4 or x = z5 or = = x6,

(29) r=zxzlorz=x20orr=2z30orx=x4dorz=ux50rx=2a6

implies x € {z1,22,23,24,25,26},

(30) for X being set st
for z
holdsr e X iffr=zlorx=220rxz=230orz=z40or x = x5 or x = 26
holds X = {z1,22,23,24,25,26}.
Let us consider z1, x2, x3, x4, x5, 26, 7. The functor

{z1,22,23,24,25,26,27},

yields the type set and is defined by

zeitiffr=xlorzx=220orx=x3orx=xdorxz=zx50rx=ux6o0rzx==z".

The following propositions are true:

(31) for x1,22,23,24,25,26,27 for X being set holds X = {x1,22,23,24,25,26,27}
iff for z holds x € X

iffr=zlorx=220orz=23orz=zdorx=2x50rx=2x6o0rz==2x"7,
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(32) x € {z1,22,23,24,25,26,27}
ifr=xzlorx=220orz=230orz=zdorx=2x50rzx=ax6orz==zx"7,

(33) x € {x1,22,23,24,25,26,27} implies

r=xlorx=zx20orx=x30orx=zdorx=uxborz=ux6orz==a",

(34) r=zlorz=22orx=z30orx=xdorzx=xdorx=a6orz=a7

implies z € {z1,22,23,24,25,26,27},

(35) for X being set st
forz holds x € X
ifr=xzlorx=220orz=230orx=zdorx=zx50rx=2a6orz==zx7
holds X = {z1,22,23,24,25,26,27}.
Let us consider z1, 22, x3, x4, x5, 6, 7, 8. The functor

{z1,22,23,24,25,26,27,28},

with values of the type set, is defined by
T € it
iffr=zxzlorx=220rz=x30orxr=zdorx=2x5orxz=a6orz=zx7orzx=uz8.
Next we state a number of propositions:
(36) for x1,22,23,24,25,26,27,28 for X being set holds
X = {x1,22,23,24,25,26,27,28} iff for x holds x € X iff z = z1
orr=x2orx=x3orx=xd4orx=zborx=2x6orzx=2x7o0rz=2x8,
(37) x € {xl,22,23,24,25,26,27,28} iff v = x1
orrzr=x2orx=x3orx=xd4orx=zborx=ux6orzx=2x7o0rz=2x8,
(38) x € {xl,22,23,24,25,26,27,28} implies x = z1
orr=x2orx=x3orx=xd4orx=zborx=ux6orzx=2x7o0rz=2x8,
(39) =zl
orr=x2orx=x3orx=x4orx=xborx=ax60rx=2a7o0rx=2x8

implies x € {z1,22,23,24,25,26,27,28},

(40) for X being set st
forx holdsz € X iff z = z1
orxr=x2orx=x30orx=x4orx=xborx=x60rx=2a7o0rx=ux8

holds X = {x1,22,23,24,25,26,27,28},
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{zl,22} = {x1} U {22},
{z1,22,23} = {21} U {22,23},
{zl,22,23} = {xl,22} U {23},
{zl,22,23,24} = {x1} U {22,23,24},
{zl,22,23,24} = {x1,22} U {«3,24},
{zl,22,23,24} = {x1,22,23} U {24},
{z1,22,23,24,25} = {21} U {22,23,24,25},
{z1,22,23,24,25} = {x1,22} U {x3,24,25},
{z1,22,23,24,25} = {x1,22,23} U {x4,25},
{z1,22,23,24,25} = {x1,22,23,24} U {25},
{z1,22,23,24,25,26} = {z1} U {22,23,24,25,26},
{zl,22,23,24,25,26} = {z1,22} U {x3,24,25,26},
{zl,22,23,24,25,26} = {x1,22,23} U {z4,25,26},
{zl,22,23,24,25,26} = {z1,22,23,24} U {x5,26},
{z1,22,23,24,25,26} = {z1,22,23,24,25} U {26},
{z1,22,23,24,25,26,27} = {21} U {22,23,24,25,26,27},
{z1,22,23,24,25,26,27} = {21,222} U {23,24,25,26,27},
{z1,22,23,24,25,26,27} = {x1,22,23} U {z4,25,26,27},
{z1,22,23,24,25,26,27} = {x1,22,23,24} U {25,26,27},
{zl,22,23,24,25,26,27} = {x1,22,23,24,25} U {x6,27},
{zl,22,23,24,25,26,27} = {x1,22,23,24,25,26} U {xT},
{z1,22,23,24,25,26,27,28} = {x1} U {22,23,24,25,26,27,28},
{z1,22,23,24,25,26,27,28} = {x1,22} U {x3,24,25,26,27,28},
{zl,22,23,24,25,26,27,28} = {x1,22,23} U {x4,25,26,27,28},

{z1,22,23,24,25,26,27,28} = {z1,22,23,24} U {x5,26,27,28},
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{z1,22,23,24,25,26,27,28} = {z1,22,23,24,25} U {26,27,28},
{z1,22,23,24,25,26,27,28} = {z1,22,23,24,25,26} U {x7,28},
{z1,22,23,24,25,26,27,28} = {x1,22,23,24,25,26,27} U {28},
{zl,21} = {x1},
{zl,21,22} = {z1,22},

{zl,21,22,23} = {x1,22,23},
{zl,21,22,23,24} = {x1,22,23,24},
{zl,21,22,23,24,25} = {x1,22,23,24,25},
{zl,21,22,23,24,25,26} = {x1,22,23,24,25,26},
{zl,21,22,23,24,25,26,27} = {x1,22,23,24,25,26,27},
{zl,21,21} = {z1},

{zl,21,21,22} = {x1,22},
{zl,21,21,22,23} = {x1,22,23},
{zl,21,21,22,23,24} = {x1,22,23,24},
{zl,21,21,22,23,24,25} = {x1,22,23,24,25},
{zl,21,21,22,23,24,25,26} = {zl,22,23,24,25,26},
{zl,21,21,21} = {z1},

{zl,21,21,21,22} = {2122},
{zl,21,21,21,22,23} = {z1,22,23},
{zl,21,21,21,202,23,24} = {x1,22,23,24},
{zl,21,21,21,22,23,24,25} = {xl,22,23,24,25},
{zl,21,21,21,21} = {z1},
{zl,21,21,21,21,22} = {x1,22},
{zl,21,21,21,21,22,23} = {x1,22,23},

{zl,21,21,21,21,22,23,24} = {z1,22,23 24},
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{zl,21,21,21,21,21} = {z1},
{zl,21,21,21,21,21,22} = {21,222},
{zl,21,21,21,21,21,22,23} = {zl,22,23},
{zl,21,21,21,21,21,21} = {x1},
{zl,21,21,21,21,21,21,22} = {x1,22},
{zl,21l,21,21,21,21,21,21} = {z1},
{z1,22} = {2221},
{z1,22,23} = {z1,23,22},
{z1,22,23} = {x2,21,23},
{x1,22,23} = {x2,23,21},
{z1,22,23} = {23,21,22},
{zl,22,23} = {x3,22,21},
{z1,22,23,24} = {z1,22,24,23},
{zl,22,23,24} = {z1,23,22,24},
{zl,22,23,24} = {z1,23,24,22},
{z1,22,23,24} = {z1,24,22,23},
{z1,22,23,24} = {x1,24,23,22},
{z1,22,23,24} = {22,21,23,24},
{z1,22,23,24} = {22,21,24,23},
{zl,22,23,24} = {x2,23,x1,24},
{zl,22,23,24} = {22,23,24,21},
{zl,22,23,24} = {22,24,21,23},
{zl,22,23,24} = {22,24,23,21},
{zl,22,23,24} = {x3,x1,22,24},

{z1,22,23,24} = {23,21,24,22},
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(116) {z1,22,23,24} = {23,22,21,24},
(117) {zl,22,23,24} = {23,22,24,x1},
(118) {z1,22,23,24} = {x3,24,21,22},
(119) {z1,22,23,24} = {23,24,22,21},
(120) {zl,22,23,24} = {zd,21,22,23},
(121) {zl,22,23,24} = {zd,21,23,22},
(122) {z1,22,23,24} = {z4,22,21,23},
(123) {z1,22,23,24} = {2z4,22,23,21},
(124) {zl,22,23,24} = {z4,23,21,22},
(125) {zl,22,23,24} = {24,23,22,21}.
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Basic Properties of Real Numbers

Krzysztof Hryniewiecki®
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Summary. Basic facts of arithmetics of real numbers are presented: definitions
and properties of the complement element, the inverse element, subtraction and
division; some basic properties of the set REAL (e.g. density), and the scheme of
separation for sets of reals.

For simplicity we adopt the following convention: =z, y, z, ¢t will denote objects of the
type Real; r will denote an object of the type Any. Let us consider x, y. Let us note

that it makes sense to consider the following functors on restricted areas. Then
T4y is Real,
Ty is Real.

One can prove the following propositions:

(1) r is Real iff r € REAL,

(2) Tt+y=y+x,

(3) r+(y+z)=(x+y)+z

4) r+0=2&0+2=r,

() Toy=y-z,

(6) z-(y-2)=(2-y) 2

(7) r-l=zx&l-z=ux,

() (x4+y) z=z-z+y-z&z-(z+y)=z-2+2-y,

(9) 2£0&x#yimpliesz- 24y -z2&z- a4y -2&z-v#z-y&ka-z2#£2-y,
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(10) z+r=z4yorzx+z=y+zorz+r=y+zorr+z=z+y
implies z = y,
(11) z#yiffe+z#y+ 2,
(12) 2#0& (x-z=y-zorz-x=z-yorx-z=z-yorz-x=y-z)

implies z = y.

We now define two new functors. Let us consider x. The functor

—z,
with values of the type Real, is defined by
x+it=0.
Assume that the following holds
x # 0.
The functor
z7! ,
yields the type Real and is defined by
r-it=1.

We now define two new functors. Let us consider x, y. The functor

r—y,

yields the type Real and is defined by
it=a+(—vy).

Assume that the following holds

y # 0.
The functor

z/y,
yields the type Real and is defined by

it=z-yt.
The following propositions are true:

(13) x+—x=0& —x+x=0,

(14) r-y=ax+ -y,
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r#0impliesz-z ' =1&z -z =1,
y#0impliesz/y=z-y & z/y=y"" z,
vty—z=a+(y—2)
(o)==,
0—xz=—ux,
z-0=0&0-2=0,
(—2) y=—@y) &z (—y)=—(r-y) & (—z)-y=z-(—y),
x#0iff —x #0,
z-y=0iffr =00ry =0,
r#0&y#0impliesz™ -yt = (z-y)",
z—0=uz,
—-0=0,
v (y+2)=z—y—2,
r—(y—2z)=xz—y+ 2z,
- (y—2z)=x-y—z-2&y—2)-z=y-x—z-x,
r+z=yimplieszr=y—2& 2=y —x,
x # 0 implies 27! # 0,
x # 0 implies 717! =z,

z #0implies 1/z =27 & 1/ =,
x#0impliesz- (1/2) =1& (1/z) -2 =1,
y#0& t £ 0 implies (2/y) - (/1) = (- 2)/(y - ).
z—x =0,

x # 0 implies z/x = 1,

y#0& z#0impliesz/y = (x - 2)/(y - 2),

y # 0 implies —z/y = (—z)/y & z/(~y) = —z/y,
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(40) z#0impliesx/z+y/z=(x+y)/z& z/2 —y/z=(x —y)/z,

(41) y#0&t#0
impliesx/y+z/t=(x-t+2-y)/(y-t) &afy—z/t=(x-t—2z-y)/(y 1),

(42) y# 0& z # 0implies z/(y/z) = (z - 2)/y,
(43) y # 0 implies z/y - y = x,

(44) forzyexzstr=y+z2&z=2+y,
(45) forzysty#OQexzste=y-z2&z=2-y,
(46) z <y &y <zimplies x = v,

(47) z<y&y<zimpliesz < z,

(48) r<yory<uwx

(49) r<yimpliesz+z2<y+z&x—2<y—z,
(50) r<yiff —y < —u,

(5l) z<y&0<zimpliesz - z2<y-z&z - z<z-y&z-z<y-z&zx-z2<z-y,

(52) r<y&z<Oimpliesy-z2<z-z2&z-y<z-z&y-z2<z-z&z-y<uz-z

(53) r<yifz+z2<y+z,
(54) r<yiffzr — 2 <y— 2z,
(55) r<y&z<t

impliesz+ 2 <y+t&zr+z2z<t+y&z+ax<t+y&z+ax<y+t,
(56) x <.

Let us consider x, y. The predicate

r <y is defined by r<y&ax#y.

One can prove the following propositions:

(57) r<yiffe <y &z #y,
(58) r<y&y<zorr<y&y<zorzr<y&y<zimpliesz < z,
(59) x<yimpliesx +z<y+z

Cr—z<y—z&z+rx<z+y&art+z<z+y&zt+r<y+z,
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(60) rH+z<y+z
orzt+r<zt+yorx+z<zt+yorzt+r<ytzorx—z<y—=z

implies z < y,

(61) x # yimpliesz < yor y < z,

(62) notz < yiff y < x,

(63) r<yory<zorx=y,

(64) x < y implies noty < z,

(65) 0<1,

(66) r<0iff0 < —z,

(67) r<y&z<torz<y&z<torz<y&z<t

impliesz +z<y+t&z+o<y+t&z+o<t+y&z+z<i+y,
(68) r<yiff —y < —x,
(69) for z,y st 0 < z holds y < y + z,
(70)0<z&z<yimpliesz-z2<y-z&z - a2<z-y&r-2<z-y&kz-z<y-z

(71) z2<0&z<yimpliesy - z2<z-2& 2z y<z-z &y z<z-z&kz-y<uz-z

(72) 0 <z implies0 < 27!,

(73) 0 < zimplies (z < y iff z/z < y/z),
(74) z < 0implies (z <y iff y/z < z/z),
(75) x <yimpliesexzstz <z & z <y,
(76) forzexy stz <y,

(77) forrzexysty <z,

(78) for XY being Subset of REAL st

(exzstre X)& (exzstreY)&forzystr e X &yeY holdsz <y
exzstforrystre X &yecY holdsx <z& 2z <y.

The scheme SepReal concerns a unary predicate P states that the following holds

ex X being set of Real st for z holds x € X iff P[x]

for all values of the parameter.
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The following propositions are true:

(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)

(92)

(93)

y=—zciffz+y =0,
forz,ystz #0holdsy =z tiffz -y =1,
forz,yst 2 # 0 & y # 0 holds (z/y) ™! =y/x,
forz,y,ztsty#0& z2#0& ¢ # 0holds (z/y)/(2/t) = (x - t)/(y - 2),
—(z-y)=y—u,
r+y<zifz<z-—y,
r+y<ziffy<z—uzx,
r<y+4ziffx —y <z,
r<y+ziffz—2<y,
rt+y<zifz<z-—y,
r+y<ziffy<z-—ux,
r<z4yiffz—2z<y,
r<y+ziffz—2z<y,

(z<y&z<timpliesz —t<y-—2z)
&(r<y&z<torz<y&kz<torz<y&z<timpliesz—t<y-—z),

0<x- .
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Grzegorz Bancerek!
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Summary. Some fundamental properties of addition, multiplication, order
relations, exact division, the remainder, divisibility, the least common multiple, the
greatest common divisor are presented. A proof of Euclid algorithm is also given.

The article [1] provides the terminology and notation for this paper. For simplicity we
adopt the following convention: z will denote an object of the type Real; k, I, m, n
will denote objects of the type Nat; X will denote an object of the type set of Real.
One can prove the following propositions:

(1) x is Nat implies x + 1 is Nat,

(2) for X st0 e X & forx stz € X holdsz+ 1€ X fork holds k € X,

(3) k+n=n+k,

(4) k+m+n=k+ (m+n),

(5) k+0=k&0+k=k,

(6) k-n=n-k,

(7) k-(m-n)=(k-m)-n,

8) kl=k&l-k=k,

(9) k-(n+m)=k-n+k-m&n+m) - k=n-k+m-k,

(10) E+m=n+mork+m=m+norm+k=m+nimplies k =n,

1Supported by RPBP I11.24 C1
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(11) k-0=0&0-k=0.

Let us consider n, k. Let us note that it makes sense to consider the following functor
on a restricted area. Then
n+k is Nat .

The scheme Ind deals with a unary predicate P states that the following holds
for k holds PIk]

provided the parameter satisfies the following conditions:
. P[o],
. for k st P[k] holds P[k + 1].

Let us consider n, k. Let us note that it makes sense to consider the following functor
on a restricted area. Then
n-k is Nat .

One can prove the following propositions:

(12) k <n & n < kimplies k = n,
(13) k <n&n <mimplies k < m,
(14) k<norn<k,

(15) k <k,

(16) k < n implies

k+m<ni+m&k+m<m+n&m+k<m+n&m+k<n+m,

(17)  k+m<n+mork+m<m+norm+k<m+norm+k<n+m

implies k£ < n,
(18) for k holds 0 < k,
(19) 0 # k implies 0 < k,

(20) k<nimpliessk-m<n-m&k-m<m-n&m-k<n-m&m-k<m-n,

(21) 0#£k+1,
(22) k=0orexnstk=n+1,
(23) k+n=0impliesk=0&n =0,

(24) k#0& (n-k=m-korn-k=k-mork-n=%k-m)impliesn =m,
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(25) k-n=0impliesk=0orn =0.

The scheme Def by_Ind concerns a constant 4 that has the type Nat, a binary functor
F yielding values of the type Nat and a binary predicate P and states that the following
holds

(for k exn st Plk,n]) & for k,n,m st Plk,n] & P[k, m| holds n = m

provided the parameters satisfy the following condition:

° for k,n holds
Plk,n)ifk=0&n=Aorexm,lstk=m+1& P[m,l] &n=F(k,I).

Next we state several propositions:

(26) forkmstk<n+1lholdsk<nork=n+1,
(27) fornkstn<k&k<n-+1lholdsn=kork=n-+1,
(28) forknstk<nexmstn==k+m,

(29) k<k+m,

(30) E<niffk<n&k#n,

(31) not k < 0.

Now we present three schemes. The scheme Comp_Ind deals with a unary predicate
P states that the following holds

for k holds P|k]

provided the parameter satisfies the following condition:

. for k st for n st n < k holds P[n] holds P[k].

The scheme Min concerns a unary predicate P states that the following holds

ex k st P[k] & forn st P[n] holds k < n

provided the parameter satisfies the following condition:

. exk st P[k].

The scheme Maz concerns a unary predicate P and a constant A that has the type
Nat, and states that the following holds

exk st P[k] & forn st P[n] holds n < k

provided the parameters satisfy the following conditions:

o for k st P[k] holds k < A,
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. exk st P[k].

We now state a number of propositions:

(32) not (k <n &n <k),

(33) k <n & n <mimplies k < m,
(34) k<nork=norn<k,
(35) not k < k,

(36) k < n implies

E+m<n+m&k+m<m+n&m+k<m+n&m+k<n+m,

(37) k < nimplies k < n +m,

(38) E<n+1iff k <n,

(39) k<n&n<mork<n&n<mork<né&n<mimplies k < m,
(40) k-n=1impliesk=1&n =1,

(41) E+1<niffk <n.

The scheme Regr concerns a unary predicate P states that the following holds

PO]

provided the parameter satisfies the following conditions:

. exk st P[k],

. fork st k #0 & Plk]exn st n < k & Pn].

In the sequel k1, t, t1 will denote objects of the type Nat. The following
propositions are true:
(42) formst0<mfornexktstn=(m-k)+t&t<m,
(43) for n,m,k.k1,t,t1

stn=m-k+t&t<m&n=m-kl+tl1&tl<mholdsk =kl &t="11.

We now define two new functors. Let k, [ have the type Nat. The functor
k=1,
yields the type Nat and is defined by

(extsthk=1[0-it+t&t<l)orit=0&[=0.
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The functor
kmod I,

yields the type Nat and is defined by

(extstk=1-t+it&it<l)orit=0&1=0.

Next we state four propositions:

(44) for k,l,n being Nat
holdsn =k +liff (extstk=1-n+t&t<l)orn=0&[=0,

(45) for k,l,n being Nat
holdsn = kmod [ iff (extstk=1-t+n&n<l)orn=0&1=0,

(46) for m,n st 0 < m holds n mod m < m,
(47) forn,m st 0 < m holds n = m - (n +m) + (n mod m).

Let k, [ have the type Nat. The predicate

k|l is defined by extstl=Fk-t.

Next we state a number of propositions:

(48) for k,l being Nat holds k | l iffextst i =k - ¢,
(49) forn,m holds m | niff n =m - (n +m),
(50) forn holds n | n,

(51) fornm,lstn|m&m|lholdsn |,
(52) forn,mstn|m & m|nholdsn=m,
(53) k|0& 1]k,

(54) fornmst 0 <m & n | mholdsn < m,
(55) fornmlstn|mé&n|lholdsn|m+1,
(56) n | k impliesn | k - m,

(57) fornm,lstn|mé&n|m+lholdsn|l,
(58) n|m & n | k implies n | m mod k.

Let us consider k, n. The functor

klecm n,



46 (GRZEGORZ BANCEREK

with values of the type Nat, is defined by

klit&n|it & form st k| m & n | m holds it | m.

Next we state a proposition
(59) for M being Nat
holds M = klemn iff k | M & n | M & form st k | m & n | m holds M | m.
Let us consider k, n. The functor

k gedn,

yields the type Nat and is defined by

it | k&it|n& formstm|k&m|nholdsm |it.

We now state a proposition

(60) for M being Nat
holds M =kgedniff M | k& M | n & form st m | k & m | n holds m | M.

The scheme Fuklides deals with a unary functor F yielding values of the type Nat,
a constant A that has the type Nat and a constant B that has the type Nat, and states
that the following holds

exnst F(n) = AgedB& F(n+1)=0

provided the parameters satisfy the following conditions:

° 0<B&B<A,

. FO)=A& F(1) =5,

. forn holds F(n +2) = F(n) mod F(n + 1).
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Summary. In this article some basic theorems about singletons, pairs, power
sets, unions of families of sets, and the cartesian product of two sets are proved.

The articles [1] and [2] provide the terminology and notation for this paper. One can

prove the following propositions:

(1) bool ) = {0},
(2) Yo =0

For simplicity we adopt the following convention: =z, z1, 2, y, y1, y2, z will denote
objects of the type Any; A, B, X, X1, X2, Y, Y1, Y2, Z will denote objects of the
type set. One can prove the following propositions:

(3) {z} #0,

(4) {z,y} #0,

(5) {z} = {x, 2},

(6) {z} = {y} implies z = y,

(7) (21,02} = {e2,21},

(8) {2} = {y1y2} implies z = y1 & o = y2,
9) {z} = {y1,y2} implies y1 = y2,

(10) {=zl,22} = {yl,y2} implies (z1 =yl or 21 = y2) & (22 = yl or 22 = y2),

(11) {zl,22} = {x1} U {22},
1Supported by RPBP.I11-24.C1.
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{z} S {z,y} &{y} S {2y},

{z} U{y} = {a} or {z} U{y} = {y} implies z =y,
{z} U{z,y} = {z, v} & {z,y} U{z} = {20},
{y} U{z, y} = {z, v} & {2, 9} U{y} = {=, 9},

{z}n{y} =0 or {y} N {z} = 0 implies = # y,
 # y implies {z} N {y} =0 & {y} N {z} =0,

{z}n{y} ={z} or {z} N {y} = {y} implies = =y,

{z} n{z,y} = {=}
&y} n{z,y} = {y} & {z,y} n{z} = {z} & {z,y} N {y} = {y},

{z}\{y} ={a} iffx # ,
{z}\{y} =0 implies z = y,
{z}\{z,y} =0 & {y} \ {z,y} =10,
x # y implies {z,y} \ {y} = {} & {z,y} \ {z} = {v},
{z} € {y} implies {z} = {y},
(2} C {z,y} implies z = z or 2 = ,
{z,y} C {2} impliesz = z & y = 2,
{z,y} C {2} implies {z,y} = {2},
{21,22} C {y1,42} implies (z1 = yl or z1 = y2) & (2 = y1 or 22 = y2),
z # y implies {z} = {y} = {z,y},
bool{z} = {0,{z}},
Ut} ==,
Ut} gy} = {=. 9},
(x1,22) = (y1,42) implies 21 = y1 & =2 = y2,
(z,y) € o1} {1} iffz = 21 & y = y1,

Het{uH = {(@,9)},
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Had Ay, 2H = {{z,9).(z, 2)} & Kz, w} {21 = {(2,2),(y, 2)
{z} C X iffz € X,
{2122} C Ziffzl e Z & 22 € Z,
Y C{z}iff Y =QorY = {z},
Y C X & notz € Y implies Y C X \ {z},
X #{z} &z € X impliesexysty € X &y # z,
Z C {122} iff Z = 0 or Z = {z1} or Z = {22} or Z = {x1,22},

{z}=XUY
impliess X = {2z} &Y ={z}or X =0& Y ={z}or X ={z} &Y =10,

{2} =XUY & X #Y implies X = or Y = (),

{z}UX =X or X U{z} = X implies z € X,

z € X implies {zr}UX =X & X U{z} = X,
{r,y}UZ=Zor ZU{z,y} =Z impliesx € Z& y € Z,
re€Z&ye Zimplies{z,y} UZ =2 & ZU{x,y} = Z,

{z}UX £0& XU{z} #0,
{9} UX #0 & X U{z,y} #0,
X Nn{z} ={z}or {z}NX = {z} implies z € X,
z € X implies X N {z} = {z} & {z} N X = {z},

x € Z &ye Zimplies {z,y} N Z = {z,y} & {z,y} = Z N {z,y},
{z}NnX =0 or X N{z} =0 implies notx € X,
{z,y}NZ =0o0r ZN{z,y} = 0 implies notz € Z & noty € Z,
notz € X implies {z} N X =0 & X N{z} =0,
notz € Z & noty € Z implies {z,y}NZ =0 & ZN{z,y} =0,
{z}nX =0or {z}NX ={z} & X N{z} = {z},

{z,y}NX ={2} or X N{z,y} = {z} impliesnoty € X or z =y,
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(60) z € X & (noty € X or z = y) implies {z,y} N X = {2} & X N {z,y} = {z},
(61) {z,y}NX ={y} or X N{z,y} = {y} impliesnotz € X or x =y,

(62) ye X & (notx € X or x = y) implies {z,y} N X = {y} & X N {z,y} = {y},

(63) (2,9} N X = {z,y} or XN {z,y} = {z,y} impliesz € X & y € X,
(64) zeX\{a}iffze X &z +#u,
(65) X\ {z} = X iffnot z € X,
(66) X\ {z} = 0 implies X = 0 or X = {z},
(67) {z}\ X = {«} iff notz € X,
(68) (z}\ X =0 iffz € X,
(69) {z}\ X =0Dor {a}\ X = {z},
(70) {2y} \ X = {2} iff notz € X & (y € X or z = y),
(71) (2,9} \ X = {y} iff (r € X or 2 = y) & not y € X,
(72) {2,y}\ X = {z,y} iff not z € X & noty € X,
(73) (e, )\ X =0iffre X &ye X,
(74) {z.y}\ X =0
or {z,y} \ X = {z} or {z,y} \ X = {y} or {,y} \ X = {x,y},
(75) X\ {z,y} =0if X =Por X = {z} or X = {y} or X = {z,y},
(76) 0 € bool A,
(77) A € bool 4,
(78) bool A # 0,
(79) A C B implies bool A C bool B,
(80) {A} C bool 4,
(81) bool A Ubool B C bool(A U B),
(82) bool A U bool B = bool(A U B) implies A C B or B C A,

(83) bool(A N B) = bool A N'bool B,
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(101)

(102)
(103)

(104)

(105)

(106)
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bool(A \ B) C {0} U (bool A \ bool B),
X € bool(A\ B) iff X C A & X misses B,
bool(A \ B) Ubool(B \ A) C bool(A - B),
X €bool(A=B)iff X C AUB & X misses AN B,
X €boolA &Y € bool Aimplies X UY € bool A,
X €boolAorY € bool Aimplies X NY € bool A,
X € bool A implies X \' Y € bool 4,
X €boolA &Y € bool A implies X ~Y € bool A4,
X € Aimplies X C UA,
U{x, v} =xuy,
(for X st X € A holds X C Z7) implies UA cZ,

AgBimpliesUAg UB,

Uwnus)=JaulJB,
Uuanp)clJanl B,
(for X st X € Aholds X N B = () implies | J(4) N B =9,
(Jbool 4 = 4,

AC boolLJA7

(for XY st X#Y & X € AUB&Y € AUBholds X NY =0)
implies | J(AnB) = JAn|JB,
z € [X,Y] implies exz,y st (z,y) = z,
ACIX,Y]& z€ Aimpliesexzystz € X &yeY &z = (z,y),

z € [ XLY1N[X2,Y2]
impliesexz,yst z=(z,y) &z e X1NX2&yeY1INY2,

[X,Y] C boolbool(X UY),

() €[ X, Y]ifzr e X &y ey,
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(107) (z,y) € [X,Y]implies (y,z) € [Y, X],

(108) (for z,y holds (z,y) € [ X1,Y1] iff (x,y) € [X2,Y2])
implies [X1,Y1] = [X2,Y2],

(109) ACX, Y] & (forx,y st (x,y) € A holds (z,y) € B) implies A C B,

(110) AC[XLY1]& B C[X2,Y2] & (forz,y holds (x,y) € Aiff (x,y) € B)
implies A = B,

(111) (forz stz € Aexx,yst z= (z,y)) & (for z,y st (x,y) € A holds (z,y) € B)
implies A C B,

(112) (forzstz € Aexayst 2= (z,y) &

(forz st z € Bexz,yst z = (x,y)) & (for z,y holds (z,y) € A iff (x,y) € B)

implies A = B,

(113) X, Y]{=0if X =0orY =0,
(114) X#A0&Y #0& [X,Y] = [V, X] implies X =,
(115) EX, X] = [Y,Y] implies X =Y,
(116) X C [X, X] implies X = 0,
(117) Z#0& (1X,Z] C Y, Z]or [Z,X] C}[Z,Y]) implies X C Y,
(118) X CY implies [ X, Z] C [V, Z] & [Z,X] C [ Z,Y],
(119) X1CY1& X2 CY2implies [ X1,X2] C [Y1,Y2],
(120) EXUY,Z] =X, Z]UlY, Z] & [Z, X UY] = [Z,X]U}Z,Y],
(121) EX1UX2,YIUY2] = [X1LYJUEX1,Y2]UEX2Y1]U[X2,Y2],
(122) EXNY,Z] =X, ZINY, Z] & [Z, X NY]=}Z X]N}Z,Y],
(123) EX1NX2,Y1NY2] =[X1,Y1]N[X2,Y2],
(124) AC X & BCY implies [A,Y]N[X, B] = [A, B],
(125) FXA\Y,Z] = [ X, ZIN Y, 2] & 12, X\ Y] = |2, X]\ |2, Y],
(126) EX1,X2]\ [Y1,Y2] = [X1\Y1,X2]U[X1,X2\Y?2],

(127) X1NX2=0or Y1NY2=(implies [X1,Y1]N[X2,Y?2] =0,
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(128) (w,y) € {2} Y]iffz =2 &y €Y,
(129) (w,y) € IX, {zHiffr € X &y =z,

(130) X # 0 implies [{z},X] # 0 & [X, {2}] £ 0,

(131) z # y implies {z} X]N[{y} Y] =0 & [ X {aH N Y {y}{ =0,
(132) Her,yh X = Hab, XU Hy b X & EX {a, yH = X {zH UEX {y}H,

(133) Z=I[X,Y]iffforzholdsz € Ziffexzystzr e X &yeY & z = (x,y),
(134) X1£0&Y1#0&[X1,Y1] = [X2,Y2] implies X1 = X2 & Y1 = Y2,

(135) X CiX,Y]or X C[Y,X]implies X = .
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Summary. The definitions of the mode Function and the graph of a function
are introduced. The graph of a function is defined to be identical with the function.
The following concepts are also defined: the domain of a function, the range of
a function, the identity function, the composition of functions, the 1-1 function,
the inverse function, the restriction of a function, the image and the inverse image.
Certain basic facts about functions and the notions defined in the article are proved.

The notation and terminology used here are introduced in the papers [1] and [2]. For
simplicity we adopt the following convention: X, X1, X2, Y, Y1, Y2 have the type
set; p, x, xl, 22, y, yl, y2, z have the type Any. The mode

Function,

which widens to the type Any, is defined by

ex F being set st it = F & (forp st p € F exz,y st (z,y) = p)
& forz,yly2 st (z,yl) € F & (x,y2) € F holds yl1 = y2.

In the sequel f, g, h will have the type Function. Let us consider f. The functor

graph f,
yields the type set and is defined by
f=it.
Next we state several propositions:
(1) graph f = f,

1Supported by RPBP.I11-24.C1.
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(2) for F' being set st
(forpst p € Fexux,yst (x,y) =p)
& forz,yl,y2 st (x,yl) € F & (z,42) € F holds yl1 = y2
ex [ being Function st graph f = F,

(3) p € graph f implies exx,y st (x,y) = p,
(4) (x,yl) € graph f & (x,y2) € graph f implies y1 = 42,
(5) graph f = graph g implies f = g.

The scheme GraphFunc concerns a constant A that has the type set and a binary

predicate P and states that the following holds

ex f st for z,y holds (z,y) € graph f iff z € A & Pz, y]
provided the parameters satisfy the following condition:
o for z,y1,y2 st Plz,yl] & P[z,y2] holds y1 = y2.

Let us consider f. The functor
dom f,

yields the type set and is defined by

for z holds x € it iff exy st (x,y) € graph f.
One can prove the following proposition
(6) X =dom f iff forz holds x € X iff exy st (z,y) € graph f.
Let us consider f, x. Assume that the following holds

x € dom f.

The functor
[z,

yields the type Any and is defined by

(x,it) € graph f.

The following three propositions are true:

(7) z € dom f implies (y = f.x iff (x,y) € graph f),
(8) (x,y) € graph f iff x € dom f & y = f.x,

(9) X =dom f & X =domg & (forz st € X holds f.x = g.z) implies f = g.
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Let us consider f. The functor

mg f,

with values of the type set, is defined by

foryholdsy citiffexz stz €domf &y = f.x.

One can prove the following propositions:

(10) Y =mgfiffforyholdsy € Y iffexzstx € domf &y = f.z,
(11) yermgfiffexrstrxecdomf &y=f.x,

(12) z € dom f implies f.x € rng f,

(13) dom f = iff rng f = 0,

(14) dom f = {z} implies rng f = {f.z}.

Now we present two schemes. The scheme FuncEz concerns a constant A that has

the type set and a binary predicate P and states that the following holds
ex f st dom f = A & forz st x € A holds Pz, f.x]

provided the parameters satisfy the following conditions:
. for z,yl,y2 st x € A & Plz,yl] & Pz, y2] holds y1 = 32,
. forz st x € Aexy st Plz,y].

The scheme Lambda concerns a constant .4 that has the type set and a unary functor
F and states that the following holds

ex [ being Function st dom f = A & forz st x € A holds f.x = F(z)

for all values of the parameters.

Next we state several propositions:

(15) X # () implies fory ex f st dom f = X & rng f = {y},

(16) (for f,g st dom f = X & domg = X holds f = g) implies X = 0),
(17) dom f = domg & g f = {y} & mgg = {y} implies f = g,
(18) Y #0or X =0 impliesex f st X =dom f &g f CY,
(19) (forysty € Yexaste c€domf &y=f.x)impliesY Crng f.

Let us consider f, g. The functor

g'f7
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yields the type Function and is defined by

(for z holds = € domit iff x € dom f & f.z € domg)
& forz st © € domit holds it.z = g.(f.x).

The following propositions are true:

(20) h=g- fiff (forz holds z € domh iff x € dom f & f.x € dom g)
& forz st © € domh holds h.z = g.(f.x),

(21) x €dom(g- f)iff v € dom f & f.x € domyg,

(22) z € dom (g - f) implies (¢- f).z = g.(f.2),

(23) z€domf & f.x € domg implies (g- f).z = g.(f.x),
(24) dom (g - f) € dom f,

(25) z €rng(g- f) implies z € rng g,

(26) mg (g - f) € mgyg,

(27) g f C dom g iff dom (g - f) = dom f,

(28) dom g C g f implies g (g - f) =1ngg,

(29) mg f = dom g implies dom (g - f) = dom f & rng (g - f) =gy,
(30) h-(g-f)=(h-9)-f,

(31) g f Cdomg & z € dom f implies (g - f).x = g.(f.2),
(32) g f = domg & « € dom f implies (¢ - f).x = g.(f.z),

(33) mgf CY & (forg,hstdomg=Y &domh=Y &g-f=h-fholds g=nh)
implies Y = rng f.

Let us consider X. The functor
id X,

with values of the type Function, is defined by

domit = X & forz st z € X holds it.x = .

Next we state a number of propositions:

(34) f=idX iffdom f = X & forz st x € X holds f.x = «z,

(35) z € X implies (id X).x = z,
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(36) domid X = X & rngid X = X,

(37) dom (f - (id X)) = dom f N X,

(38) z € dom f N X implies f.z = (f - (id X)).x,
(39) dom f C X implies f - (id X) = f,

(40) z€dom((idY)- f)iffz € dom f & f.z €Y,
(41) rng f C Y implies (idY) - f = f,

(42) f - (iddom f) = f & (idmg f) - f = f,
(43) (idX)-(idY) =id (X NY),

(44) domf=X&mgf=X&domg=X &g-f=fimplies g =id X.

Let us consider f. The predicate

fis_one-to-one

is defined by

forzl,x2 st z1 € dom f & 22 € dom f & f.x1 = f.x2 holds z1 = z2.

One can prove the following propositions:

(45) f is_one-to-one

iff forzl,22 st 1 € dom f & 22 € dom f & f.x1 = f.22 holds x1 = 22,
(46) f is_one-to-one & gis_one-to-one implies g - f is_one-to-one,
(47) g - fis_one-to-one & rng f C dom g implies fis_one-to-one,
(48) ¢ - fis_one-to-one & rng f = dom g implies f is_one-to-one & gis_one-to-one,

(49) f is_one-to-one iff for g,h st
rngg C dom f & rngh C dom f & domg =domh & f-g = f-hholds g = h,

(50) dom f=X & domg=X &rngg C X & fisone-to-one& f-g=f
implies g = id X,

(51) rng (g - f) = rmgg & gis_one-to-one implies dom g C rng f,
(52) id X is_one-to-one,

(53) (exg st g- f =iddom f) implies fis_one-to-one.
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Let us consider f. Assume that the following holds

f is_one-to-one.

The functor
f -1
with values of the type Function, is defined by
domit =rng f & fory,z holdsy e g f &z =it.yiffr e dom f &y = f.z.

We now state a number of propositions:
(54) f is_one-to-one implies (g = f ! iff
domg=rngf & foryxholdsyemgf&r=g.yiffx €dom f &y = f.x),

(55) f is_one-to-one implies rng f = dom (f ') & dom f = g (f 1),
(56)  fis_one-to-one & x € dom f implies z = (f™).(f.2) &z = (f " f).z,
(57)  fis_one-to-one & y € rng f implies y = f.((f ™).y) &y = (- f ).y,
(58)  fis_one-to-one implies dom (f ! - f) = dom f & rng (f "' - f) = dom f,
(59)  fis_one-to-one implies dom (f - f ™) =g f & g (f - f ) = mg f,

(60) fis_one-to-one & dom f =rngg & rng f = domg
& (forz,y st x € dom f & y € domg holds f.x =y iff g.y = x)

implies g = f !,
(61) fis_one-to-one implies f ' - f =iddom f & f - f ' =idng f,
(62) f is_one-to-one implies f ™ is_one-to-one,

(63) fis_one-to-one & rng f = domg & ¢ - f = iddom f implies g = f ™1,

(64) fis_one-to-one & rngg = dom f & f - g = idrng f implies g = f !,
(65) f is_one-to-one implies (f 1) = f,

(66) fis_one-to-one & gis_one-to-one implies (g- f) ™' = f™'.g7",
(67) (id X)™ = (id X).

Let us consider f, X. The functor

X,
yields the type Function and is defined by

domit =dom f N X & forz st x € domit holds it.x = f.z.
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We now state a number of propositions:

(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)

(84)

g=f|Xiffdomg=dom fNX & forz st € domg holds g.x = f.z,

dom (f | X) = dom f N X,

2 € dom (f | X) implies (f | X).z = f.z,
€ dom f N X implies (f | X).x = f.z,
z € dom f & x € X implies (f| X).z = f.x,
z € dom f & x € X implies f.z € mg(f | X),
X C dom f implies dom (f | X) = X,
dom (f | X) C X,
dom (f | X) C dom f & rng (f | X) C g f,
fIX =f-(dX),
dom f C X implies f | X = f,
f1(dom f) = f,
(fIX) Y =fl(XNY),

(fIX)[X=F]X,

X CV implies (f | X) |V = f | X & (f|Y) | X = f| X,

(g-NIX=g-(f]X),

fis_one-to-one implies f | X is_one-to-one.

Let us consider Y, f. The functor

Y,

with values of the type Function, is defined by

(for z holds = € domit iff r e dom f & f.x €Y)

& for z st x € dom it holds it.x = f.x.

We now state a number of propositions:

(85)

g=Y|fiff (forz holdsx € domgiff t e dom f & f.x €Y)

& forx st x € domg holds g.x = f.xz,
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(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)
(96)
(97)
(98)
(99)

(100)
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redom(Y | f)iffredomf& fixey,
z € dom (Y | f) implies (Y | f).x = f.x,
mg (Y[ f) €Y,
dom (Y| f) € dom f & rng (Y| f) C g f,
mg (Y | f) =mgfNY,
Y Crng f implies g (Y | f) =Y,
V|f=(@0dY)-f,

g f C Y implies Y | f = f,
(g f) | f =1,
YI(X[f)=nX)|f
YY) =Y/

X CYimpliesY [ (X [f) =X |f&X|(Y[f)=X]/,
Yi(g-f)=X19)-f,

f is_one-to-one implies Y | f is_one-to-one

Y INIX=Y[(f]X).

Let us consider f, X. The functor

f°X,

yields the type set and is defined by

foryholdsy citiffexzstzcdomf&rze X &y= f.x.

The following propositions are true:

(101)
(102)
(103)
(104)
(105)

(106)

Y=f°Xiffforyholdsy c Y iffexzstzcdomf&rec X &y=f.x,
yef°Xiffexsstrcdomf&rze X &y=f.r,
f°X Cmglf,
f2(X)=f°(dom fNX),
f° (dom f) =g f,

f°X C f°(dom f),



(107)
(108)
(109)
(110)
(111)
(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)

(122)

(123)
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mg (f | X)=[f°X,

FOX =0iffdomfNX =0,

X #( & X C dom f implies f° X # (),

X1C X2implies f° X1C f° X2,
FO(X1UX2)=f°X1Uf°X2,
FO(XINX2)Cf°X1Inf° X2,
FOXINfOX2C f°(X1\X2),

(9-f)°X=9°(f°X),
mg(g- f)=g° (mgf),
z € dom f implies f ° {z} = {f.z},
rl € dom f & 22 € dom f implies f © {z1,22} = {f.21,f .22},
(fIV)°XCfoX,
Y[H°XCfoX,
[ is_one-to-one implies f ° (X1NX2) = f° X1N f° X2,

(for X1,X2holds f° (X1NX2)=f° X1Nf° X2)

implies f is_one-to-one,

fis_one-to-one implies f ° (X1\ X2) = f° X1\ f° X2,

(124) (for X1,X2holds f° (X1\ X2) = f° X1\ f° X2) implies fis_one-to-one,

(125)

(126)

XNY =0 & fis_one-to-one implies f° XN f°Y =0,

Y| X=Ynf°Xx.

Let us consider f, Y. The functor

7y,

yields the type set and is defined by

forrz holdsz € itiffr e dom f & f.x €Y.
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We now state a number of propositions:

(127)
(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)
(147)
(148)
(149)

(150)

X =f"1Yiffforrholds z € X iffx € dom f & f.z €Y,
reflYifrcdomf& f.x ey,
f7Y Cdom f,
fY = f1(mgfny),
f7! (g f) = dom f,
Fro=0,
frY =0iffrngfNy =90,

Y C rng f implies (f 'Y =0 iff Y = (),
Y1 CY2implies f'Y1C f1Y2,
fryiuy2) =f1tyiuftye,
fryiny2)=f1tyinftye,
FEYINY2) = [TV Y2,
(f107Y=Xn(f"Y),

(- NTY=fT(gY),
dom (g - f) = f ! (domg),

y € mg fiff f7 {y} # 0,
(fory st y € Y holds f ™ {y} # 0) implies Y C rng f,
(fory sty € rng fexz st f 7' {y} = {z}) iff fis_one-to-one,
feUty)cy,

X C dom f implies X C f ™ (f° X),

Y Cmg f implies f° (f7'Y) =Y,
FOFY)=YNf° (domf),
feXnftY)Cc(r°x)ny,

FEEXNY)=(f°X)nY,
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(151) Xnflycrt(f°exny),

(152) fis_one-to-one implies f " (f ° X) C X,

(153) (for X holds f ™' (f ° X) C X) implies f is_one-to-one,
(154) fis_one-to-one implies f ° X = (f ™)' X,

(155) fis_one-to-one implies f 'Y = (f 1) °Y,

(156) Y=mgf&domg=Y &domh=Y &g-f=h-fimpliesg = h,

(157) f°X1C f°X2& X1C dom f & fis_one-to-one implies X1 C X2,

(158) f'Y1Cf'y2&Y1CrngfimpliesY1C Y2,

(159) fis_one-to-one iff fory exx st f " {y} C {x},

(160) g f C dom g implies f 7 X C (g- f) ™ (9° X).
References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[2] Zinaida Trybulec and Halina Swigczkowska. Boolean properties of sets. Formalized
Mathematics, 1, 1990.

Received March 3, 1989

65



66



FORMALIZED MATHEMATICS
Number 1, January 1990
Université Catholique de Louvain
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Summary. The text includes theorems concerning properties of subsets, and
some operations on sets. The functions yielding improper subsets of a set, i.e. the
empty set and the set itself are introduced. Functions and predicates introduced
for sets are redefined. Some theorems about enumerated sets are proved.

The articles [2], [3], and [1] provide the terminology and notation for this paper. In
the sequel E, X denote objects of the type set; x denotes an object of the type Any.
One can prove the following propositions:

(1) E # () implies (z is Element of F iff € E),
(2) x € E implies x is Element of E,
(3) X is Subset of Fiff X C E.

We now define two new functors. Let us consider E. The functor
0E,
yields the type Subset of E and is defined by
it =0.
The functor
QF,
with values of the type Subset of E, is defined by
it=~F.
We now state two propositions:

(4) () is Subset of X,
1Supported by RPBP.I11-24.C1.
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(5) X is Subset of X.

In the sequel A, B, C' denote objects of the type Subset of E. Next we state

several propositions:

(6) x € A implies z is Element of F,

(7)  (for z being Element of E holds z € A implies z € B) implies A C B,

(8) (for z being Element of E holds z € A iff x € B) implies A = B,
(9) x € Aimpliesz € E,
(10) A # () iff ex x being Element of E st x € A.

Let us consider E, A. The functor
A€
yields the type Subset of E and is defined by
it=F\ A.
Let us consider B. Let us note that it makes sense to consider the following functors on

restricted areas. Then
AUB is Subset of E,

ANB is Subset of E,
A\ B is Subset of E,
A-B is Subset of E.

One can prove the following propositions:

(11) x € AN B implies z is Element of A & x is Element of B,
(12) x € AU B implies z is Element of A or z is Element of B,
(13) xz € A\ B implies z is Element of A,

(14) x € A= B implies z is Element of A or z is Element of B,
(15) (for z being Element of E holds z € Aiffx € Bor z € ()

implies A = BUC,

(16) (for z being Element of £ holds z € Aiffx € B& z € O)
implies A = BN C,

(17) (for z being Element of F holds z € Aiff x € B & notz € C)
implies A = B\ C,



PROPERTIES OF SUBSETS 69

(for z being Element of E holds z € A iff not (x € B iff z € C))
implies A= B = C,

QFE=0E)°,
A°=FE\ A,
AcC — A,

AUA =QF & A UA=QF,
ANA =0E & A°NA=0FE,
ANPE=0E & OENA=0FE,
AUQE=QFE&QFUA=QEF,
(AUB)*=A°NB°,
(ANnB)*=A°UB°,
ACBIiff B¢ C A°,
A\B=ANB*°,

(A\ B)®=A°UB,
(A-B)*=ANBUA°NB°,
AC B®implies BC A°,
A° C Bimplies B¢ C A,
0ECE,
ACA°iff A=(0FE,

A CAIfFA=QF,

X CA& X C A€ implies X = (),

(AUB)*C A°& (AUB)° C B°,
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A°C(ANB)*& B°C(ANnB)°,
A misses Biff AC B¢,
A misses B¢ iff A C B,
A misses A€,
A misses B & A€ misses B implies A = B¢,
A C B & C misses B implies A C C°,

(for a being Element of A holds a € B) implies A C B,
(for z being Element of F holds z € A) implies E = A,

E # () implies for A,B
holds A = B € iff for z being Element of F holds = € A iff notx € B,

E # () implies for A,B
holds A = B € iff for z being Element of F holds notz € A iff x € B,

E # () implies for A,B

holds A = B¢ iff for « being Element of E holds not (x € A iff x € B),

x € A° implies notx € A.

In the sequel x1, 22, x3, x4, x5, 6, x7, 8 will have the type Element of X. One

can prove the following propositions:

(54)
(55)
(56)
(57)
(58)
(59)
(60)

(61)

In the sequel x1, x2, x3, x4, x5, 6, 7, 8 denote objects of the type Any.

X # () implies {z1} is Subset of X,
X # () implies {x1,22} is Subset of X,
X # () implies {z1,22,23} is Subset of X,
X # () implies {z1,2,23,z4} is Subset of X,
X # 0 implies {21,22,23,24,25} is Subset of X
X # 0 implies {21,22,23,24,25,26} is Subset of X,
X # () implies {z1,22,23,x4,25,26,z7} is Subset of X

X # () implies {z1,22,23,x4,25,26,07,28} is Subset of X.

now state several propositions:

(62)

zl € X implies {x1} is Subset of X,

We
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(63) zl € X & 22 € X implies {z1,22} is Subset of X,
(64) zl € X & 22 € X & 23 € X implies {z1,22,23} is Subset of X
(65) z1le X & 22 € X & 23 € X & 24 € X implies {z1,22,23,24} is Subset of X,

(66) rleX&a2eX&a3e X &ade X &abe X
implies {x1,22,23,24,25} is Subset of X,

(67) xleX&a2e X &a3eX&rde X &abe X &a6e X
implies {x1,22,23,24,25,26} is Subset of X,

(68) rle X&22eX&23eX&rde X &abe X &abe X &aTeX
implies {x1,22,23,24,25,26,27} is Subset of X,

(69) 2le X
&r2eX&rdeX&ardeX&abeX&abe X &aTeX &ax8e X
implies {x1,22,23,24,25,26,27,28} is Subset of X.

The scheme Subset_Ex concerns a constant A that has the type set and a unary

predicate P and states that the following holds

ex X being Subset of A st for z holds z € X iff x € A & P[z]

for all values of the parameters.
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Summary. We define here: mode Relation as a set of pairs, the domain,
the codomain, and the field of relation, the empty and the identity relations, the
composition of relations, the image and the inverse image of a set under a relation.
Two predicates = and C , and three functions U, N and \ are redefined. Basic facts
about the above mentioned notions are presented.

The terminology and notation used in this paper have been introduced in the articles [1]
and [2]. For simplicity we adopt the following convention: A, B, X, Y, Y1, Y2 denote
objects of the type set; a, b, ¢, d, x, y, z denote objects of the type Any. The mode

Relation
which widens to the type set, is defined by
z € it implies exy,z st = (y, 2).
One can prove the following proposition

(1) for R being set st forz st x € Rexy,z st z = (y, z) holds R is Relation.

In the sequel P, P1, P2, , R, S will have the type Relation. Next we state

several propositions:

(2) z € R implies exy,z st x = (y, 2),
(3) A C R implies A is Relation,
4) {{(z,y)} is Relation,

(5) {{a,b),{c,d)} is Relation,

(6) [X,Y] is Relation.

1Supported by RPBP I11.24 C1
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The scheme Rel_FExistence deals with a constant A that has the type set, a constant

B that has the type set and a binary predicate P and states that the following holds
ex R being Relation st for z,y holds (z,y) € Riffz € A& y € B & Pz, y]

for all values of the parameters.

Let us consider P, R. Let us note that one can characterize the predicate

P=R

by the following (equivalent) condition:

for a,b holds (a,b) € P iff (a,b) € R.

The following proposition is true
(7) P = R iff for a,b holds (a,b) € P iff (a,b) € R.
For convenience we may adopt another formulas defining notions considered in the
paper. From now on we shall treat them as new definitions.

Let us consider P, R. Let us note that it makes sense to consider the following

functors on restricted areas. Then

PNR is Relation,

PUR is Relation,
P\ R is Relation .
Let us note that one can characterize the predicate

PCR

by the following (equivalent) condition:

for a,b holds (a, b) € P implies (a, b) € R.

The following three propositions are true:

(8) P C R iff for a,b holds (a,b) € P implies (a,b) € R,
(9) X N R is Relation & RN X is Relation,
(10) R\ X is Relation.

Let us consider R. The functor
dom R,

with values of the type set, is defined by

x € it iffexy st (x,y) € R.
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We now state several propositions:

(11) X = dom R iff for z holds = € X iff exy st (z,y) € R,
(12) z € domR iffexy st (x,y) € R,
(13) dom (P U R) = dom P U dom R,
(14) dom (PN R) C dom PNdomR,
(15) dom P\ dom R C dom (P \ R).

Let us consider R. The functor
rng R,

yields the type set and is defined by

y € it iff exz st (z,y) € R.

One can prove the following propositions:

(16) X =rngR iff for x holds z € X iff exy st (y,x) € R,
(17) x ermg R iffexy st (y,z) € R,

(18) x € dom R implies exy st y € rng R,

(19) y € rng R implies exx st z € dom R,

(20) (z,y) € Rimpliesz € dom R & y € rng R,

(21) R C [dom R,rng R{,

(22) RN dom Ryrng R] = R,

(23) R = {(z,y)} implies dom R = {z} & rng R = {y},
(24) R = {{a,b),{x,y)} implies dom R = {a, 2} & rng R = {b,y},
(25) P C Rimplies dom P C dom R & rng P C rng R,
(26) rng (PUR) =rng PUrng R,

(27) rng (PN R) Crng PNrng R,

(28) rng P\ rng R C rng (P \ R).

Let us consider R. The functor
field R,
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yields the type set and is defined by

it = dom R U rng R.

We now state several propositions:

(29) field R = dom R Urng R,

(30) (a,b) € R implies a € field R & b € field R,
(31) P C R implies field P C field R,

(32) R = {(z,y)} implies field R = {z,y},
(33) field (P U R) = field P U field R,

(34) field (P N R) C field P N field R.

Let us consider R. The functor
R,
yields the type Relation and is defined by
(x,y) € it iff (y,z) € R.

One can prove the following propositions:

(35) R = P~iff for 2,y holds (z,y) € Riff (y,z) € P,
(36) (x,y) € P"iff (y,z) € P,

(37) (R) =R,

(38) field R = field (R"),

(39) (PAR)" =P NR",

(40) (PUR) = P"UR",

(41) (P\R) =P\ R".

Let us consider P, R. The functor
PR,
with values of the type Relation, is defined by
(z,y) €eitiffexz st (x,2) € P& {z,y) € R.

We now state a number of propositions:

(42) Q= P-Riffforz,yholds (z,y) € Q iffexz st (z,2) € P& (z,y) € R,
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(43) (z,y) € P-Riffexz st (z,z) € P& (z,y) € R,
(44) dom (P - R) C dom P,

(45) mg (P - R) C g R,

(46) rng R C dom P implies dom (R - P) = dom R,
(47) dom P C rng R implies g (R - P) = rng P,
(48) P C RimpliesQ-P C Q- R,

(49) P C QimpliesP-RC Q- R,

(50) PCR&QC SimpliesP-QCR-S,
(51) P-(RUQ)=(P-R)U(P-Q),

(52) P-(RNQ)C(P-R)N(P-Q),

(53) (P-R)\(P-Q) S P-(R\Q),

(54) (P-R)"=R"- P,

(55) (P-R)-Q@=P-(R-Q).

The constant @ has the type Relation, and is defined by

not (x,y) € it.

One can prove the following propositions:

(56) R = @ iff for 2,5 holds not (z,y) € R,
(57) not (z,y) € @,

(58) O C A, B,

(59) O CR,

(60) dom @ =) & rng @ = 0,

(61) ONR=0&DUR=R,

(62) O-R=0&R-0=0,

(63) R-O=0-R,

(64) domR =0 or rng R = () implies R =0,
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(65) dom R = ) iff rng R = (),
(66) 0" =0,
(67) rmg RNdom P = () implies R- P = Q.

Let us consider X. The functor
A X,

with values of the type Relation, is defined by

(y) eitiffre X &oz=y.

The following propositions are true:

(68) P=AXiff forxz,y holds (x,y) € Piff x € X & x =y,
(69) r,y) e AXifre X &a=y,

(70) x e X iff (x,z) € A X,

(71) domAX =X &mghAX =X,

(72) (AX) =AX,

(73) (forz st x € X holds (z,z) € R) implies A X C R,
(74) (,y) e (AX)-Riffx € X & (x,y) € R,

(75) (x,y) e R-AY iffyeY & (z,y) € R,

(76) R- (AX)CR&(AX)-RCR,

(77) dom R C X implies (A X)-R =R,

(78) (AdomR)-R=R,

(79) rmg R C Y implies R- (AY) = R,

(80) R-(AmgR) =R,

(81) AD=0,

(82) domR=X&mgP2C X & P2-R=A(domPl)& R-P1=AX
implies P1 = P2,

(83) domR=X&rmgP2=X&P2-R=A(domPl)& R-P1=AX
implies P1 = P2.
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Let us consider R, X. The functor

R|X,

with values of the type Relation, is defined by

(x,y) eitiffz € X & (z,y) € R.

We now state a number of propositions:

(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)
(96)
(97)
(98)
(99)
(100)
(101)
(102)
(103)

(104)

P =R| X iff for z,y holds (x,y) € Piff x € X & (z,vy)
(x,y) e R| X iffz € X & (x,y) € R,
x€dom(R|X)iffx € X & x € dom R,
dom(R|X) C X,

R|X CR,
dom (R | X) C dom R,
dom (R |X)=domRNX,

X C dom R implies dom (R | X) = X,
(R|X)-PCR-P,
P-(R|X)CP-R,

R|X =(AX)-R,
R|X = Qiff (domR) N X =0,
R| X = RN[X,mgR],
dom R C X implies R | X = R,
R|domR = R,
mg (R [ X) C mgR,
(R|X)|Y = R|(XNY),
(R| X)| X = R| X,
X CYimplies (R|X)|Y =R| X,
Y C X implies (R| X)|Y =R|Y,

X CY impliesR| X CR|Y,

€ R,

79



80 EDMUND WORONOWICZ

(105) P C Rimplies P| X C R| X,
(106) PCR& X CY implies P| X C R|Y,
(107) RI(XUY)=(R|X)U(R]Y),
(108) RI(XNY)=(R|X)N(R]Y),
(109) RI(X\Y)=R[X\R|Y,
(110) R|0=0,

(111) OX=0,

(112) (P-R)| X =(P|X) R

Let us consider Y, R. The functor

Y|R,
yields the type Relation and is defined by

(x,y) eitiffy e Y & (x,y) € R.

The following propositions are true:

(113) P =Y |Riff forz,y holds (z,y) e Piff y € Y & (x,y) € R,
(114) (x,y) eY|RiffyeY & (z,y) € R,
(115) yemg(Y|R)iffyeY &y ermgR,
(116) mg (Y | R) €Y,

(117) Y|RCR,

(118) mg (Y| R) CrngR,

(119) mg (Y |R) =rgRNY,

(120) Y Crng R impliesng (Y | R) =Y,
(121) Y|R)-PCR-P,

(122) P-(Y|R)CP-R,

(123) Y|IR=R-(AY),

(124) Y|R=RN}domR)Y],

(125) rng R C Y implies Y | R = R,



RELATIONS AND THEIR BASIC PROPERTIES 81

(126) mgR|R =R,

(127) V[(X[R)=(¥NX)[R,
(128) YI(Y[R)=Y|R,

(129) X CY impliesY | (X | R) = X | R,
(130) Y C XimpliesY | (X |R) =Y | R,
(131) X CY impliesX |RCY |R,
(132) P1C P2impliesY | P1CY | P2,
(133) P1C P2&Y1CY2impliesY1|Pl1CY2| P2,
(134) (XUY)|R=(X[R)U(Y|R),
(135) (XNY)|R=X|RNY |R,
(136) (X\Y)|R=X|R\Y|R,
(137) VR=0,

(138) Y 0=0,

(139) Y[(P-R)=P-(Y|R),
(140) (VIR)|X =Y |(R]|X).

Let us consider R, X. The functor
R° X,
yields the type set and is defined by

yeitiffexzst (x,y) e R&z e X.

One can prove the following propositions:

(141) Y =R° X iffforyholdsy € Y iffexz st (v,y) € R& z € X,
(142) ye R° X iffexz st (z,y) € R& x € X,

(143) yeR° X iffexrstz €domR & (r,y) € R& z € X,
(144) R° X CmgR,

(145) R°X =R°(dom RN X),

(146) R°domR =1mgR,
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(147) R°X CR°(domR),

(148) mg(R|X)=R°X,

(149) R°0 =0,

(150) B°X =0,

(151) R°X =0 iffdomRNX =0,
(152) X #0 & X C dom R implies R° X # (),
(153) R°(XUY)=R°XUR"Y,
(154) R°(XNY)CR°XNRY,
(155) R°X\R°YCR°(X\Y),
(156) X CY implies R° X CR°Y,
(157) P C Rimplies P° X C R° X,
(158) PCR& X CY impliesP° X CR°Y,
(159) (P-R)°X=R°(P°X),

(160) rng (P~ R) = R° (g P),

(161) (RIX)°Y CR?Y,

(162) R|X = Qiff (domR) N X =0,
(163) (domR)N X C (R)° (R° X).

Let us consider R, Y. The functor

Ry,
with values of the type set, is defined by

zeitiffexyst (r,y) e R&yeY.

Next we state a number of propositions:

(164) X =R1'Y iffforz holds z € X iffexyst (z,y) e R&y €Y,
(165) r€R'Yiffexyst (r,y) ER&y <Y,
(166) reR'YiffexystycmgR& (z,y) e R&y €Y,

(167) R'Y C domR,
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(168) R'Y =R (mmgRNY),

(169) R 'rgR = domR,

(170) R'Y C R'mgR,

(171) R0 =0,

(172) Oty =0,

(173) R'Y =0iffrmgRNY =,

(174) Y #0 &Y CrngRimplies R™'Y # (),

(175) RY'(XUY)=R'XUR'Y,

(176) RYXNY)CR'YNR'Y,

(177) RM'X\R'YCR'(X\Y),

(178) X CYimpliesR™* X CR'Y,

(179) PC RimpliesP'Y CR'Y,

(180) PCR&X CY impliesP ' X CRY,

(181) (P-R)'Y=P Y (R'Y),

(182) dom (P - R) =P (dom R),

(183) (mgR)NY C(R) M (R'Y).
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Summary. The paper contains definitions of some properties of binary rela-
tions: reflexivity, irreflexivity, symmetry, asymmetry, antisymmetry, connectedness,
strong connectedness, and transitivity. Basic theorems relating the above mentioned
notions are given.

The terminology and notation used here have been introduced in the following articles:
[1], [2], and [3]. For simplicity we adopt the following convention: X will have the type
set; x, y, z will have the type Any; P, R will have the type Relation. We now define
several new predicates. Let us consider R, X. The predicate

R is_reflexive_in X is defined by z € X implies (z,x) € R.

The predicate

R is_irreflexive_in X is defined by z € X implies not (z,z) € R.

The predicate

R is_symmetric_in X
is defined by

x € X &yeX & (x,y) € Rimplies (y,x) € R.

The predicate

R is_antisymmetric_in X
is defined by

reX&ye X &(x,y) € R& (y,z) € Rimplies z = y.
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The predicate
R is_asymmetric_in X

is defined by

x € X &yeX & (x,y) € Rimplies not (y,z) € R.

The predicate

R is_connected_in X
is defined by

reX &ye X &ax+#yimplies (z,y) € Ror (y,z) € R.

The predicate

R is_strongly_connected_in X
is defined by

x € X & y € X implies (z,y) € Ror (y,z) € R.

The predicate
R is_transitive_in X

is defined by

reX&yeX&ze X & (x,y) € R& (y,z) € Rimplies (z,z) € R.

We now state several propositions:

(1) R is_reflexive_in X iff for x st z € X holds (z,z) € R,
(2) R is_irreflexive_in X iff for x st € X holds not (z,z) € R,
(3) R is_symmetric_in X

iffforzystrze X &ye X & (x,y) € Rholds (y,z) € R,

(4) R is_antisymmetric_in X

iffforrystre X &ye X & (r,y) € R& (y,z) € Rholds z = y,

(5) R is_asymmetric_in X
iffforr,ystz e X &y e X & (x,y) € R holds not (y,z) € R,

(6) R is_connected_in X
iffforzystez € X &y € X & # yholds (x,y) € Ror (y,z) € R,

(7) R is_strongly_connected_in X
iff forz,ystz € X & y € X holds (z,y) € Ror (y,z) € R,
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(8)

We now define several new predicates.

Ris_reflexive

The predicate

Ris_irreflexive

The predicate

Ris_symmetric

The predicate

Ris_antisymmetric

The predicate

Ris_asymmetric

The predicate

Ris_connected

The predicate

Ris_strongly_connected

The predicate

Ris_transitive

R is_transitive_in X iff for z,y,z

streX&yeX&zeX & (x,y) € R& (y,2z) € Rholds (z, z) € R.

is defined by

is defined by

is defined by

is defined by

is defined by

is defined by

is defined by

is defined by

We now state a number of propositions:

Let us consider R. The predicate

R is_reflexive_in field R.

R is_irreflexive_in field R.

R is_symmetric_in field R.

R is_antisymmetric_in field R.

R is_asymmetric_in field R.

R is_connected_in field R.

R is_strongly_connected_in field R.

R is_transitive_in field R.

9) Ris_reflexive iff R is_reflexive_in field R,
(10) Ris_irreflexive iff R is_irreflexive_in field R,
(11) Ris_symmetric iff R is_symmetric_in field R,
(12) Ris_antisymmetric iff R is_antisymmetric_in field R,
(13) Ris_asymmetric iff R is_asymmetric_in field R,
(14) Ris_connected iff R is_connected_in field R,
(15) Ris_strongly_connected iff R is_strongly_connected_in field R,

(16) Ris_transitive iff R is_transitive_in field R,

87
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Risreflexive iff Afield R C R,
Ris_irreflexive iff A (field )N R =0,
R is_antisymmetric_in X iff R\ A X is_asymmetric_in X
R is_asymmetric_in X implies R U A X is_antisymmetric_in X,
R is_antisymmetric_in X implies R\ A X is_asymmetric_in X,
Ris_symmetric & Ris_transitive implies Ris_reflexive,
A X is_symmetric & A X is_transitive,

A X is_antisymmetric & A X is_reflexive,
Ris_irreflexive & R is_transitive implies R is_asymmetric,
Ris_asymmetric implies Ris_irreflexive & Ris_antisymmetric,
Ris_reflexive implies R™is_reflexive,
Ris_irreflexive implies R is_irreflexive,
Ris_reflexive implies dom R = dom (R") & rng R = rng (R"),
Ris_symmetric iff R = R,

Pis_reflexive & Ris_reflexive implies P U Ris_reflexive & P N Ris_reflexive,

Pis_irreflexive & Ris_irreflexive

implies P U Ris_irreflexive & P N Ris_irreflexive,
Pis_irreflexive implies P \ Ris_irreflexive,
Ris_symmetric implies R™is_symmetric,

Pis_symmetric & Ris_symmetric

implies P U Ris_symmetric & P N Ris_symmetric & P\ Ris_symmetric,
Ris_asymmetric implies R is_asymmetric,
Pis_asymmetric & Ris_asymmetric implies P N Ris_asymmetric,
Pis_asymmetric implies P \ Ris_asymmetric,
Ris_antisymmetric iff RN (R") C A (dom R),

Ris_antisymmetric implies R™is_antisymmetric,
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(41) P is_antisymmetric

implies P N Ris_antisymmetric & P\ Ris_antisymmetric,

(42) Ris_transitive implies Ris_transitive,

(43) Pis_transitive & Ris_transitive implies P N Ris_transitive,
(44) Ris_transitive iff R- R C R,

(45) Ris_connected iff [field R,field R]\ A (field R) C RUR",
(46) Ris_strongly_connected implies Ris_connected & R is_reflexive,
(47) Ris_strongly_connected iff [field R,field R = RUR".
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Summary. In the beginning of article we show some consequences of the
regularity axiom. In the second part we introduce the successor of a set and the
notions of transitivity and connectedness wrt membership relation. Then we define
ordinal numbers as transitive and connected sets, and we prove some theorems of
them and of their sets. Lastly we introduce the concept of a transfinite sequence
and we show transfinite induction and schemes of defining by transfinite induction.

The notation and terminology used in this paper have been introduced in the following
articles: [2], [3], and [1]. For simplicity we adopt the following convention: X,Y, Z,
A, B, X1, X2, X3, X4, X5, X6 will denote objects of the type set; z will denote an
object of the type Any. Next we state several propositions:

(1) not X € X,

(2) not(X eY &Y € X),

(3) not(XeY&YeZ&ZecX),

(4) not (X1 € X2& X2€ X3& X3 € X4& X4 € X1),

(5) not (X1 € X2& X2€ X3& X3 € X4& X4¢€ X5& X5€ X1),

(6) not (X1€ X2& X2 € X3& X3 € X4& X4¢e X5& X5¢€ X6& X6¢€ X1),
(7) Y € X implies not X CY.

The scheme Comprehension deals with a constant A that has the type set and a

unary predicate P and states that the following holds
ex B st for Z being set holds Z € Biff Z € A & P[Z]
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for all values of the parameters.

One can prove the following proposition

(8) (for X holds X € A iff X € B) implies A = B.

Let us consider X. The functor

succ X,
with values of the type set, is defined by

it =X U{X}.

Next we state several propositions:

9) succ X = X U{X},
(10) X €succ X,
(11) succ X # 0,
(12) succ X = succY implies X =Y,
(13) x€succX iffr € X orz =X,
(14) X # succ X.

For simplicity we adopt the following convention: «a has the type Any; X, Y, Z,
x, y have the type set. We now define two new predicates. Let us consider X. The
predicate

X is_e-transitive is defined by forxz st x € X holds z C X.

The predicate

X is_e-connected
is defined by
forzystre X &ye X holdsx € yorx=yory € x.
One can prove the following two propositions:

(15) X is_e-transitive iff for x st x € X holds z C X,
(16) X is_e-connected iff forz,ystz € X & y€ X holdsz € yorx =yory € x.

The mode
Ordinal ,

which widens to the type set, is defined by

it is_e-transitive & it is_€-connected .
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In the sequel A, B, C will have the type Ordinal. The following propositions are

true:

(17) X is Ordinal iff X is_e-transitive & X is_&-connected ,
(18) x € Aimpliesz C A,

(19) A€ B& BeCimplies A € C,

(20) r€A&yec Aimpliesr e yorz=yoryec z,
(21) for z,A being Ordinalst t C A& z # A holds z € A,
(22) ACB& B cCimplies A e C,

(23) a € A implies a is Ordinal,

(24) A€eBorA=DBorBecA,

(25) ACBor BCA,

(26) ACBorBeA,

(27) () is Ordinal .

The constant 0 has the type Ordinal, and is defined by

it = 0.
Next we state three propositions:
(28) 0=10,
(29) z is Ordinal implies succ z is Ordinal,
(30) z is Ordinal implies U 2 is Ordinal .

Let us consider A. Let us note that it makes sense to consider the following functors
on restricted areas. Then

succ A is Ordinal ,
JA s Ordinal.
One can prove the following propositions:

(31) (for z st € X holds z is Ordinal & = C X) implies X is Ordinal,
(32) X CA& X #(impliesexC st C € X & for Bst B € X holds C C B,

(33) A€ Biff succ A C B,
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(34) AesuccCiff ACC.

Now we present two schemes. The scheme Ordinal_Min concerns a unary predicate
P states that the following holds

ex A st P[A] & for B st P[B] holds A C B

provided the parameter satisfies the following condition:

. ex A st P[A4].

The scheme Transfinite_Ind concerns a unary predicate P states that the following
holds

for A holds P[A]

provided the parameter satisfies the following condition:

. for A st for C' st C € A holds P[C] holds P[A].

One can prove the following propositions:

(35) for X st fora st a € X holds a is Ordinal holds U X is Ordinal,,
(36) for X st fora st a € X holds a is Ordinalex A st X C A,
(37) not ex X st for x holds x € X iff « is Ordinal ,

(38) not ex X st for A holds A € X,

(39) for X ex Ast not A € X & for Bst not B € X holds A C B.

Let us consider A. The predicate

Ais_limit_ordinal is defined by A= U A.

One can prove the following three propositions:

(40) Ais_limit_ordinal iff A = U A,
(41) for A holds Ais_limit_ordinal iff for C' st C' € A holds succC € A,
(42) not Ais_limit_ordinal iff ex B st A = succ B.

In the sequel F' denotes an object of the type Function. The mode

Transfinite-Sequence,

which widens to the type Function, is defined by

ex A st domit = A.
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Let us consider Z. The mode

Transfinite-Sequence of Z,
which widens to the type Transfinite-Sequence, is defined by
rngit C Z.
The following propositions are true:

(43) F' is Transfinite-Sequence iff ex A st dom F' = A,
(44)  F is Transfinite-Sequence of Z iff F' is Transfinite-Sequence & g F' C Z,
(45) () is Transfinite-Sequence of Z.

In the sequel L, L1, L2 will have the type Transfinite-Sequence. = The following

proposition is true

(46) dom F' is Ordinal implies I’ is Transfinite-Sequence of rng F.

Let us consider L. Let us note that it makes sense to consider the following functor
on a restricted area. Then
dom L is Ordinal.

We now state a proposition
(47) X C Y implies
for L being Transfinite-Sequence of X holds L is Transfinite-Sequence of Y.

Let us consider L, A. Let us note that it makes sense to consider the following functor

on a restricted area. Then

L|A is Transfinite-Sequence of rng L.

The following two propositions are true:

(48) for L being Transfinite-Sequence of X
for A holds L | A is Transfinite-Sequence of X,

(49) (for a st a € X holds a is Transfinite-Sequence) & (for L1,L2
st L1 € X & L2 € X holds graph L1 C graph L2 or graph L2 C graph L1)
implies U X is Transfinite-Sequence .

Now we present three schemes. The scheme T'S_Uniq deals with a constant A that has
the type Ordinal, a unary functor F, a constant 5 that has the type Transfinite-Sequence
and a constant C that has the type Transfinite-Sequence, and states that the following
holds

B=C
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provided the parameters satisfy the following conditions:

o domB=A&forB,Lst Be A& L=5|Bholds B.B=F(L),
o domC=A&forB,Lst Be A& L=C|BholdsC.B = F(L).

The scheme TS_Ezist deals with a constant A that has the type Ordinal and a unary
functor F and states that the following holds

exLstdomL =A&forB,L1st Be A& L1=L|Bholds L.B=F(L1)

for all values of the parameters.
The scheme Func_TS concerns a constant A4 that has the type Transfinite-Sequence,

a unary functor F and a unary functor G and states that the following holds

for B st B € dom.Aholds A.B=G(A|B)

provided the parameters satisfy the following conditions:

o for A,a holds a = F(A)
iffexLsta=G(L) & domL=A&forBst Bec Aholds L.B=(G(L|B),

. for Ast A € dom A holds A.A = F(A).
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Summary. The purpose of this article is to define projections of ordered pairs,
and to introduce triples and quadruples, and their projections. The theorems in this
paper may be roughly divided into two groups: theorems describing basic properties
of introduced concepts and theorems related to the regularity, analogous to those
proved for ordered pairs by Cz. Byliniski [1]. Cartesian products of subsets are
redefined as subsets of Cartesian products.

The notation and terminology used here are introduced in the following papers: [3], [4],
and [2]. For simplicity we adopt the following convention: v, z, z1, 22, 23, 24, y, y1,
y2, y3, y4, z denote objects of the type Any; X, X1, X2, X3, X4,Y,Y1,Y2 Y3,Y4,
Y5, Z denote objects of the type set. Omne can prove the following propositions:

(1) X # () impliesexY st Y € X & Y misses X,
(2) X #0impliesexY stY € X &forY1st Y1 €Y holds Y1 misses X,

(3) X # (0 implies
exYstY e X &forY1,Y2stY1€Y2& Y2 €Y holds Y1 misses X,

(4) X # () impliesexY st Y € X
&forY1,Y2Y3stY1eY2&Y2e€Y3&Y3eY holds Y1 misses X,

(5) X # ) impliesexY st Y € X & forY1,Y2,Y3,Y4
stY1eY2&Y2€eY3&Y3e€eY4&Y4eY holds Y1 misses X,

(6) X # () impliesexY st Y € X & forY1,Y2,Y3,Y4,Y5 st
Y1eY2&Y2€Y3&Y3€Y4&Y4€Y5&Y5 €Y holds Y1 misses X.
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We now define two new functors. Let us consider xz. Assume there exist z1, x2, of
the type Any such that

x = (xl,22).

The functor

is defined by

x = (yl,y2) implies it = y1.

The functor

is defined by

z = (yl,y2) implies it = y2.
We now state a number of propositions:
(7) (y)1 =2 & (z,y)2 =y,
(8) (exz,y st z = (x,y)) implies (21 ,22) = 2,

(9) X #0impliesexvstve X &notexz,yst (€ Xorye X)&v=/_z,y),

(10) z€[X,Y]impliesz1 € X & z2 €Y,

(11) (exz,yst z=(x,y) & 21 € X & z2 €Y implies z € [ X, Y],
(12) ze€ {z},Y]impliesz1 =2z & z2 €Y,

(13) z€[X,{y}]impliesz1 € X & z2 =y,

(14) z € [{z},{y}] implies z1 =z & 22 =y,

(15) z € H{z1,22},Y] implies (z1 =2lorz; =22) & z2 €Y,
(16) z € [X,{yl,y2}] implies z1 € X & (z2 =yl or z2 = y2),
(17) z € [{zl,22},{y}] implies (z1 =zlorzi1 =22) & z2 =y,
(18) z € H{z}{yl,y2}] implies z1 =z & (z2 = yl or z 2 = y2),
(19) z € Hal22},{yly2}]

implies (z1 =zl orzy =122) & (z2 =yl or z2 = y2),

(20) (exy,zstx = (y,z)) impliesz #z1 & x # 2.
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In the sequel zz will have the type Element of X; yy will have the type Element

of Y. One can prove the following propositions:

(21) X #0 &Y # 0 implies (zz,yy) € [ X,Y],
(22) X #0 &Y # 0 implies (zz,yy) is Element of [ X, Y],
(23) x € [X,Y] implies © = (x 1 ,x 2),

(24) X #0 &Y # 0 implies for z being Element of [ X,Y] holds z = (z 1,7 2),

(25) Halx2} {yly2}H] = {(z1,91),(21,92),(22,y1) (22,92) },

(26) X#AD&LY £0
implies for z being Element of [ X, Y] holdsz #z1 &z # z 2.

Let us consider z1, x2, 3. The functor
(x1,22,23),
is defined by
it = ((x1,22),23).

One can prove the following three propositions:

(27) (x1,22,23) = ((x1,22),23),
(28) (x1,22,23) = (y1,y2,y3) implies z1 = y1 & 22 = y2 & 23 = y3,
(29) X#0

impliesexvstv e X & notexz,y,zst (x € Xorye X) &v={x,y,z).

Let us consider z1, 22, 3, x4. The functor
(x1,22,23,24),
is defined by
it = ((x1,22,23),24).

The following propositions are true:

(30) (x1,22,23,24) = ({x1,22,23),24),
(31) (x1,22,23,24) = (((x1,22),23),24),
(32) (x1,22,23,24) = ((x1,22),23,24),
(33) (x1,22,23,24) = (yl,y2,y3,y4)

implieszl =yl & 22 =y2 & 23 = y3 & x4 = y4,
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(34)

(35)
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X # () implies exv

stve X &notexxlx2x3,24st (21 € Xor a2 € X) & v = (xl,22,23,24),

X1#40& X240& X3+ 0iff [X1,X2,X3] 0.

In the sequel zzl has the type Element of X1; zx2 has the type Element of X2;

23 has the type Element of X3. One can prove the following propositions:

(36)

X1#0 & X2+# 0 & X3 # 0 implies
(EX1,X2,X3] = [Y'1,Y2,Y3] implies X1 = Y1 & X2 = Y2 & X3 = Y3),

FX1,X2,X3]#0& [ X1,X2,X3]=[Y1,Y2Y3]
implies X1 =Y1& X2=Y2& X3=Y3,

EX, X, X]=[Y,Y,Y] implies X =,
Hal} {22} {x3}H = {{z1,22,23)},

Halyl} {a2} {o3}H = {(21.22,23),(y1,22,03)}

1} {222} {o3} = {(21,22,23),(x1,52.23)},

1} {22} {233} = {(x1,22,23),(x1,22,y3)},
Hxlyl}{z2,y2},{23}] = {{z1,22,23) (y1,22,23),(x1,y2,23),{y1,y2,23) },
Halyl} {a2} {e3.53H = {(21,22,23),(y1 22,23),(x1,22,y3), (y1 22,y3) },
a1} ,{z2,y2},{23,y3}] = {{z1,22,23) (x1,y2,23),(x1,22,y3),(x1,y2,y3) },

Halyl} {2292} {e3y3} = {(21,22,23),

(x1,y2,23),(x1,22,y3),(x1,y2,y3),(y1,22,23) ,(y1,y2,23),(y1,22,y3),(y1,y2,y3) }.

We now define three new functors. Let us consider X1, X2, X3. Assume that the
following holds

X1#40& X240& X3 £0.

Let « have the type Element of [X1,X2,X3]. The functor

T,

with values of the type Element of X1, is defined by

z = (z1,22,23) implies it = x1.

The functor
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yields the type Element of X2 and is defined by
z = (z1,22,23) implies it = x2.

The functor

rs,
with values of the type Element of X3, is defined by
x = (z1,22,23) implies it = 3.
One can prove the following propositions:
(47) X140 & X2 # 0 & X3 # () implies for 2 being Element of [ X1,X2,X3]

for x1,22,23 st x = (x1,22,23) holds x1 =21 & z 2 = 22 & x 3 = 23,

(48) X1#£0& X24£0& X3£0
implies for = being Element of [ X1,X2,X3] holds z = (x1,x 2,z 3),
(49) XCiX,)Y,Z]or X ClY,Z,X]or X C|[Z,X,Y] implies X = 0),
(50) X1#£0& X2 +# 0 & X3 +# () implies for 2 being Element of [ X1,X2,X3]
holds z1 = (zr qua Any)11 & 2 = (x qua Any) 12 & 3 = (z qua Any) 2,
(51) X1#0& X2#0 & X3 # 0 implies
for z being Element of [ X1,X2,X3]holdsz #z1 &z #x2& x# x5,

(52) [X1,X2,X3] meets [Y1,Y2,Y3]
implies X1 meets Y1 & X2 meets Y2 & X 3 meets Y3,

(53) EX1,X2,X3,X4] = [[EX1,X2],X3],X4],

(54) FEX1,X2],X3,X4] = [X1,X2,X3,X4],

(55) X1#0& X240 & X3+ 0 & X440 ifF [X1,X2,X3,X4] 0,
(56) X1#08& X2#0 & X3+ 0 & X4 # 0 implies

(EX1,X2,X3,X4] = [Y1,Y2Y3,Y4]
implies X1 =Y1& X2=Y2& X3=Y3 & X4=Y4),

(57) EX1,X2,X3,X4] # 0 & [X1,X2,X3.X4] =[Y1,Y2,Y3,Y4]
implies X1 =Y1 & X2=Y2& X3 =Y3& X4 =Y4,
(58) X, X, X, X]=}Y,Y,Y,Y] implies X =Y.

In the sequel zx4 will have the type Element of X4. We now define four new
functors. Let us consider X1, X2, X3, X4. Assume that the following holds

X1£0&X2£0& X340& X440,



102 ANDRZEJ TRYBULEC

Let x have the type Element of [X1,X2 X3 X4]. The functor
i,

yields the type Element of X1 and is defined by
z = (zl,22,23,z4) implies it = z1.
The functor
Tz,
with values of the type Element of X2, is defined by
z = (z1,22,23,z4) implies it = z2.
The functor
rs,
yields the type Element of X3 and is defined by
z = (z1,22,23,z4) implies it = z3.
The functor
Ta,
with values of the type Element of X4, is defined by

z = (z1,22,23,z4) implies it = 24.

Next we state several propositions:
(59) X1#D0& X240 & X3#0 & X4 # () implies
for = being Element of [ X1,X2,X3,X4] for x1,22,23,24
st x = (x1,22,23,24) holds z1 =zl & 22 =22 & x3 =23 & v4 = 24,
(60) X1#£D&X24£D&X3A£D& X4A£0)
implies for 2 being Element of [ X1,X2,X3,X4] holds z = (21,2 2,23 ,24),
(61) X1#£0& X2#£0& X3+# 0 & X4 # 0 implies
for z being Element of [ X1,X2,X3,X4] holds 1 = (x qua Any) 111
&ra=(rqualny)i12&23=(rquaAny)i2&z4=(2qualny)a2,
(62) X1#0& X240 & X3#0 & X4 # () implies
for z being Element of [ X1,X2,X3,X4]
holdsz #x1 & c#z2&rx#ax3&r#xy,
(63) X1C[X1,X2,X3,X4] or
X1C[X2,X3,X4,X1]or X1 C[X3,X4,X1,X2]or X1 C [X4,X1,X2,X3]
implies X1 = 0,
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(64) FX1,X2,X3,X4] meets [Y1,Y2,Y3,Y4]
implies X1 meets Y1 & X2 meets Y2 & X3 meets Y3 & X4 meets Y4,

(65) H{xl}{=2} {23} {z4}] = {(z1,22,23,24)},
(66) [X,Y]# 0 implies for z being Element of [X, Y] holdsz #z1 & z £ 2,
(67) x€[X,Y]impliesz #x1 &x#x2o.

For simplicity we adopt the following convention: Al will denote an object of the
type Subset of X1; A2 will denote an object of the type Subset of X2; A3 will denote
an object of the type Subset of X3; A4 will denote an object of the type Subset of
X4; z will denote an object of the type Element of [X1,X2 X3].  We now state a
number of propositions:

(68) X1#0& X2#0 & X3 # 0 implies
for x1,22,23 st x = (x1,22,23) holds x1 =21 & 2 = 22 & x 3 = 23,

(69) X140&
X2#0 & X3 +#0& (for zxl,xx2,x23 st x = (zxl,zz2,x23) holds y1 = xxl)

implies yl = x 1,

(70) X140&
X240 & X3 #0 & (for zxl,xzx2,xx3 st z = (zxl,zx2,223) holds y2 = zx2)

implies y2 =z 5,

(71) X1#£0&
X2+# 0 & X3 # 0 & (for zzxl,xx2,x23 st x = (zzl,zx2,223) holds y3 = zx3)

implies y3 =x 3,

(72) z € [X1,X2,X3]
implies exz1,22,23 st x1 € X1 & 22 € X2 & 23 € X3 & 2z = (x1,22,23),

(73) (x1,22,23) € [ X1,X2,X3]iff vl € X1 & 22 € X2 & 23 € X3,

(74) (for z holds
ze€Ziffexxlx2x3stal € X1&ax2€ X2& 23 € X3 & 2z = (x1,22,23))
implies Z = [ X1,X2,X3],

(75) X1#£D& X240 & X3AD&Y1#D&Y2#(D & Y3 # D implies
for z being Element of [ X1,X2,X3], y being Element of [Y1,Y2,Y3]
holds z =y impliesz1 =y1 & 2 =y2 & 3 =vy3,
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(76) for z being Element of [ X1,X2 X 3]
stz € [A1,A2,A3] holds z1 € Al & x2 € A2 & x 3 € A3,

(77)  X1CY1& X2CY2& X3CV3implies [X1,X2,X3] C [Y1,Y2,Y3].
In the sequel z has the type Element of [ X1,X2,X3,X4]. We now state a number
of propositions:

(78) X1#£0& X2+#0 & X3 # 0 & X4 # () implies for x1,22,23,24
st x = (r1,22,23,24) holds z1 =zl & xa =22 & x3 =23 & v4 = 24,

(79) X140&X2#£0&X3#40&
X4 # 0 & (for xxl,xx2,xx3,224 st © = (xxl,xa2,xx3,x24) holds yl1 = zz1)

implies yl =z 1,

(80) X140&X2#£0&X3#40&
X4 # 0 & (for xxl,xx2,xx3,224 st © = (xxl,xa2,xx3,x24) holds y2 = xx2)

implies y2 =z 5,

(81) X1£0& X240 & X340 &
X4 # 0 & (for xxl,zx2,x23,274 st v = (xxl,xx2,223,774) holds y3 = xx3)

impliesy3 =z 3,

(82) X1#£P&X24£0& X3£0&
X4 # 0 & (for xxl,zx2,x23,274 st x = (xxl,xx2,x23,774) holds y4 = xx4)

implies y4 = x 4,

(83) z € [X1,X2,X3,X4] implies ex x1,22,23,24
strle X1&a2e X2& a3 € X3& a4 € X4 & 2= (z],22,23,24),

(84) (x1,22,23,24) € [ X1,X2,X3,X4]
ifzle X1&a2€ X2& 23 € X3 & x4 € X4,

(85) (for z holds z € Z iff ex x1,22,23,24
stzle X1& 22 X2& 23 € X3& xd € X4& 2= (x1,22,23,24))
implies Z = [ X1,X2,X3,X4],

(86) X140
EX2ALD&EX3ADEX4AD&E&YTAD&Y2AD&LY3IAD&YAH#D
implies
for = being Element of [ X1,X2,X3,X4],y being Element of [Y'1,Y2,Y3,Y4]
holds z =y impliesz1 =y1 & 2o =y2 & zxz3=y3& r4=vy4,
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(87) for 2 being Element of [ X1,X2,X3,X4]
stz € [A1,A2,A3,A4] holds x1 € Al & x2 € A2& w35 € A3 & x4 € A4,

(88) XICYI&X2CY2& X3CV3& X4C Y4
implies [X1,X2,X3,X4] C [Y1,Y2,Y3,Y4].

Let us consider X1, X2, Al, A2. Let us note that it makes sense to consider the

following functor on a restricted area. Then

FA1,A2] is Subset of [ X1,X2].

Let us consider X1, X2, X3, A1, A2, A3. Let us note that it makes sense to consider

the following functor on a restricted area. Then

[A1,A2,A3] is Subset of [X1,X2,X3].

Let us consider X1, X2, X3, X4, Al, A2, A3, A4. Let us note that it makes sense

to consider the following functor on a restricted area. Then

[A1,A2, A3 A4] is Subset of [ X1,X2,X3,X4].
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Summary. We define the notion of an initial segment of natural numbers and
prove a number of their properties. Using this notion we introduce finite sequences,
subsequences, the empty sequence, a sequence of a domain, and the operation of

concatenation of two sequences.

The papers [4], [5], [2], [3], and [1] provide the notation and terminology for this paper.

For simplicity we adopt the following convention:

k, 1, m, n, k1, k2 denote objects of

the type Nat; X denotes an object of the type set; x, y, z, y1, y2 denote objects of the

type Any; f denotes an object of the type Function.

Segn,

with values of the type set, is defined by
it={k:1<k&k<n}.

Let us consider n. The functor

Let us consider n. Let us note that it makes sense to consider the following functor

on a restricted area. Then

Segn is set of Nat .

One can prove the following propositions:

(1) Segn={k:1<k&k<n},
(2) x € Segn implies z is Nat ,
(3) keSegniff 1 <k &k <n,

'Supported by RPBP I11.24 C1
2Supported by RPBP II1.24 C1
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(4) Seg0 =0 & Seg1 = {1} & Seg2 = {1,2},

(5) n=0orn € Segn,

(6) n+1¢€ Seg(n+1),

(7) n < m iff Segn C Segm,

(8) Segn = Segm implies n = m,

(9) k < n implies Segk = Segk N Segn & Segk = Segn N Segk,
(10) Seg k = Seg k N Segn or Segk = Segn N Seg k implies k < n,
(11) SegnU{n+ 1} = Seg(n + 1).

The mode
FinSequence ,

which widens to the type Function, is defined by

exn st domit = Segn.

In the sequel p, g, r denote objects of the type FinSequence. Let us consider p.
The functor
len p,

with values of the type Nat, is defined by

Segit = domp.

Next we state four propositions:

(12) for f being Function holds f is FinSequence iff exn st dom f = Segn,

(13) k =lenp iff Seg k = dom p,
(14) () is FinSequence,
(15) (exk st dom f C Segk) implies ex p st graph f C graphp.

In the article we present several logical schemes. The scheme SeqFz concerns a
constant A that has the type Nat and a binary predicate P and states that the following
holds

exp st domp = Seg A & for k st k € Seg.A holds Plk, p.k]

provided the parameters satisfy the following conditions:

. for k,yl,y2 st k € Seg A & Pk, y1] & Pk, y2] holds y1 = y2,
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. fork st k € Seg Aexx st Pk, z].

The scheme SeqLambda deals with a constant A that has the type Nat and a unary
functor F and states that the following holds

ex p being FinSequence st lenp = A & for k st k € Seg.A holds p.k = F(k)

for all values of the parameters.

We now state several propositions:
(16) z € graphp implies exk st k € domp & z = (k, p.k),
(17) X =domp & X =domgq & (for k st k € X holds p.k = ¢q.k) implies p = g,

(18) forp,q
stlenp=leng & forkst 1 <k & k <lenpholds p.k = g.k holds p = g,

(19) p | (Segn) is FinSequence,
(20) rng p C dom f implies f - p is FinSequence,
(21) k <lenp & q =p| (Segk) implies len g = k & dom g = Seg k.

Let D have the type DOMAIN. The mode

FinSequence of D,
which widens to the type FinSequence, is defined by
rngit C D.

In the sequel D will have the type DOMAIN. The following three propositions
are true:

(22) p is FinSequence of D iff rngp C D,
(23) for D,k for p being FinSequence of D holds p | (Seg k) is FinSequence of D,
(24) ex p being FinSequence of D st lenp = k.

The constant € has the type FinSequence, and is defined by

lenit = 0.
The following propositions are true:
(25) p=cifflenp =0,
(26) p=ciff domp =0,

(27) p=c¢iffrngp =0,

109
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(28) graphe = 0),
(29) for D holds ¢ is FinSequence of D.

Let D have the type DOMAIN. The functor
eD,

yields the type FinSequence of D and is defined by

it=c¢.

One can prove the following four propositions:

(30) p=¢ (D) iff domp = 0,
(31) e(D)=c¢,

(32) p=c(D) ifflenp =0,
(33) p=c(D)iff mgp = 0.

Let us consider p, g. The functor

p g

with values of the type FinSequence, is defined by

dom it = Seg (lenp + lengq) &
(for k st k € domp holds it.k = p.k) & for k st k € dom ¢ holds it.(lenp + k) = ¢.k.

One can prove the following propositions:

(34) r=p  qiff domr = Seg(lenp +lengq) &
(for k st k € domp holds r.k = p.k)
& fork st k € domg holds r.(lenp + k) = q.k,

(35) len (p ~ q) = lenp + leng,

(36) forkstlenp+1<k&k<lenp+lengholds (p ™ ¢).k =q.(k—lenp),
(37) lenp < k& k <len(p ~ q) implies (p ~ ¢).k = ¢q.(k — lenp),

(38) kedom(p™ ¢) implies k € dompor exnstn € domqg & k =lenp+n,
(39) domp C dom (p ™ q),

(40) z € domg impliesexk st k =z & lenp + k € dom (p ™ q),

(41) k € domgq implies lenp + k € dom (p ~ ¢),
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(42) mgp € mg(p ™ q),

(43) mgq C g (p~ q),

(44) mg (p " q) = mgp Urngg,

(45) pTq r=p~(¢7 ),

(46) p T r=q rorr  p=r" gimpliesp = q,
(47) p e=p&ke T p=p,

(48) p qg=cimpliesp=c& g=c¢.

The arguments of the notions defined below are the following: D which is an object
of the type reserved above; p, ¢ which are objects of the type FinSequence of D. Let
us note that it makes sense to consider the following functor on a restricted area. Then

—~

P q is FinSequence of D.

One can prove the following proposition

(49) for p,q being FinSequence of D holds p — ¢ is FinSequence of D.

Let us consider x. The functor
<x>,

with values of the type FinSequence, is defined by

domit = Segl & it.1 = x.

The following proposition is true
(50) p " q is FinSequence of D
implies p is FinSequence of D & ¢ is FinSequence of D.
We now define two new functors. Let us consider x, y. The functor

<z,y>,

with values of the type FinSequence, is defined by
it =<a>" <y>.
Let us consider z. The functor
<x,y,z>,
with values of the type FinSequence, is defined by

it=<a>" <y>" <z>.
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Next we state a number of propositions:

(51) p=<x>iff domp = Segl & p.1 =z,

(52) graph <> = {{12)},

(53) <z, y>=<x>" <y>,

(54) <z y,z>=<x>" <y>" <z>,

(55) p=<z> iff domp = Segl & rngp = {z},

(56) p=<z>ifflenp=1& rngp = {z},

(57) p=<zx>ifflenp=1&p.1 =z,

(58) (<x>"p).1=uz,

(59) (p™ <az>).(lenp+1) ==z,

(60) <x,y,z>=<a>" <y, z> & <y, 2> =<z, y> " <z>,
(61) p=<z,y>ifflenp=2&p.l=x& p2=y,

(62) p=<z,y,z>ifflenp=3&pl=x&p2=y&p3=z,
(63) forpstp#cexqrstp=q~ <x>.

The arguments of the notions defined below are the following: D which is an object
of the type reserved above; x which is an object of the type Element of D. Let us note

that it makes sense to consider the following functor on a restricted area. Then

<x> is FinSequence of D.

The arguments of the notions defined below are the following: D which is an object
of the type reserved above; S which is an object of the type SUBDOMAIN of D; =x
which is an object of the type Element of S. Let us note that it makes sense to consider

the following functor on a restricted area. Then
<xr> is FinSequence of S.
The arguments of the notions defined below are the following: S which is an object
of the type SUBDOMAIN of REAL; =z which is an object of the type Element of S.
Let us note that it makes sense to consider the following functor on a restricted area.

Then
<xr> is FinSequence of S.

The scheme IndSeq concerns a unary predicate P states that the following holds

for p holds P|p]
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provided the parameter satisfies the following conditions:
. Plel,
o for p,x st P[p] holds Pp — <z>].

One can prove the following proposition
(64) for p,q,r,s being FinSequence

stp T q=1r"s&lenp <lenrext being FinSequence st p ~ ¢t =r.

Let us consider D. The functor
D*,
yields the type DOMAIN and is defined by

x € it iff x is FinSequence of D.

One can prove the following propositions:

(65) x € D*iff z is FinSequence of D,
(66) eeD*.

The scheme SepSeq deals with a constant .4 that has the type DOMAIN and a unary
predicate P and states that the following holds

ex X st forx holdsz € X iffexpstpe A*& Pl &z =p

for all values of the parameters.
The mode

FinSubsequence,
which widens to the type Function, is defined by

ex k st domit C Segk.

The following three propositions are true:

(67) f is FinSubsequence iff ex k st dom f C Segk,
(68) for p being FinSequence holds p is FinSubsequence ,
(69) forp,X holds p | X is FinSubsequence & X | p is FinSubsequence .

In the sequel p’ has the type FinSubsequence. Let us consider X. Assume there
exists k, such that

X C Segk.

The functor
Sgm X,
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with values of the type FinSequence of NAT, is defined by
mgit =X &
forlm,k1,k2st 1 <l &I <m&m<lenit & k1 =it.l & k2 = it.m holds k1 < k2.
One can prove the following propositions:

(70) (exk st X C Segk) implies for p being FinSequence of NAT holds
p=SgmX iff rngp = X & forl,m,k1,k2
st1<l&l<m&m<lenp &kl =p.l& k2=p.mholds k1l < k2,

(71) rng Sgm dom p’ = dom p’.

Let us consider p’. The functor
Seqp’,
yields the type FinSequence and is defined by

it = p’ - Sgm (dom p’).

Next we state two propositions:

(72) for X st exk st X C Segk holds Sgm X = ¢ iff X = (),
(73) p = Seqp iff p=p' - Sgm (domp’).
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Domains and Their Cartesian Products
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Summary. The article includes: theorems related to domains, theorems re-
lated to Cartesian products presented earlier in various articles and simplified here
by substituting domains for sets and omitting the assumption that the sets involved
must not be empty. Several schemes and theorems related to Fraenkel operator are
given. We also redefine subset yielding functions such as the pair of elements of a
set and the union of two subsets of a set.

The terminology and notation used in this paper have been introduced in the following
articles: [2], [5], [1], [4], and [3]. For simplicity we adopt the following convention: a,
b, ¢, d will have the type Any; A, B will have the type set; D, X1, X2, X3, X4, Y1,
Y2, Y3, Y4 will have the type DOMAIN; z1, y1, z1 will have the type Element of
X1; 2 will have the type Element of X2; x3 will have the type Element of X3; z4
will have the type Element of X4. The following three propositions are true:

(1) A is DOMAIN iff A # 0,
(2) D # ),
(3) a is Element of D implies a € D.

In the sequel Al, B1 will denote objects of the type Subset of X1. One can prove

the following propositions:

4) Al = B1°¢ iff for 1 holds z1 € Al iff notz1 € B1,
(5) Al = B1°¢ iff for 21 holds not 21 € Al iff z1 € B1,
(6) Al = B1°iff for 21 holds not (z1 € Al iff 1 € B1),
(7) (x1,22) € [X1,X2],

1Supported by RPBP.I11-24.C1.
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(8) (xz1,22) is Element of [X1,X2],
9) a € [X1,X2] implies ex 21,22 st a = (x1,22).

In the sequel z denotes an object of the type Element of [X1,X2]. One can prove
the following propositions:

(10) r=(r1,72),

(11) r#r1&r#xg,

(12)  forz,y being Element of [ X1,X2]st 1 =y1 & 22 =y2 holds z =y,
(13) tA,D] C[B,Djor [D,A] C[D,B]implies A C B,

(14) [X1,X2] =[A, B] implies X1 =A & X2 =B.

Let us consider X1, X2, x1, 2. Let us note that it makes sense to consider the
following functor on a restricted area. Then
(x1,22) is Element of [ X1,X2].
The arguments of the notions defined below are the following: X1, X2 which are
objects of the type reserved above; z which is an object of the type Element of [ X1,X2].
Let us note that it makes sense to consider the following functors on restricted areas.

Then
T is Element of X1,

9 is Element of X 2.
One can prove the following propositions:

(15) a € [X1,X2,X3]iff exxl,22,23 st a = (z1,22,23),

(16) (fora holds a € D iff ex x1,22,23 st a = (z1,22,23))
implies D = [X1,X2,X3],

(17) D =[X1,X2,X3]iff fora holds a € D iff exx1,22,23 st a = (z1,22,23),

(18)  [X1,X2,X3]=[V1,Y2Y3]implies X1 =Y1& X2=Y2& X3 =Y3.

In the sequel =z, y will have the type Element of [X1,X2,X3]. Next we state
several propositions:
(19) x={a,b,c) impliesx1 =a&zxa=b& z3=c,
(20) x=(x1,r2,23),

(21)  ¢1=(rquadny);; &= (2 qualny)iz & s = (2 quaAny)s,
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(22) c#rr&r#axs&kr#zrs,
(23) (x1,22,23) € [ X1,X2,X3].

Let us consider X1, X2, X3, 21, 2, 3. Let us note that it makes sense to consider
the following functor on a restricted area. Then

(x1,22,2:3) is Element of [ X1,X2,X3].

The arguments of the notions defined below are the following: X1, X2, X3 which
are objects of the type reserved above; x which is an object of the type Element of
[X1,X2,X3]. Let us note that it makes sense to consider the following functors on

restricted areas. Then
T is Element of X1,

To is Element of X2,
T3 is Element of X3.

The following propositions are true:

(24) a = x4 iff for x1,22,23 st x = (z1,22,23) holds a = z1,
(25) b= x o iff for x1,22,23 st © = (z1,22,23) holds b = x2,
(26) ¢ = x g iff for x1,22,23 st © = (x1,22,23) holds ¢ = x3,
(27) (x1,x2,x3) =1,

(28) z1=y1& 2 =y2 & x3=1y3 implies z =y,

(29) (xl,22,23) 1 = 21 & (21,22,23) 2 = 22 & (z1,22,23) 3 = a3,

(30) for z being Element of [ X1,X2,X3], y being Element of [Y1,Y2,Y3]
holds x = y impliesz1 =y1 & x2=y2 & r3 =93,

(31) a€[X1,X2,X3.X4]iff exxl,22,23,24 st a = (x1,22,23,24),
(32) (fora holds a € D iff ex x1,22,23,24 st a = (x1,22,23,24))
implies D = [ X1,X2,X3,X4],
(33) D =[X1,X2,X3,X4]
iff for a holds a € D iff ex x1,22,23,24 st a = (x1,22,23,24).

In the sequel z denotes an object of the type Element of [X1,X2,X3,X4]. The
following propositions are true:
(34) [X1,X2,X3,X4]=[Y1,Y2,Y3,Y4]
implies X1=Y1& X2=Y2& X3=Y3& X4=Y4,
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(35) x={a,b,c,d) impliesz1 =a& xa=b&axzg=c&r4=4d,
(36) x=(r1,r2,23,T4),
(37) r1=(rqualny)i11
&ro=(rquaAny)i12& x3=(xrqualny)i2& 4= (xrquaAny)a,
(38) rEx1&rFro&rFtrs&rF£r,,
(39) (x1,22,23,24) € [ X1,X2,X3,X4].

Let us consider X1, X2, X3, X4, z1, 2, 23, z4. Let us note that it makes sense to
consider the following functor on a restricted area. Then

(x1,22,23,24) is Element of [ X1,X2,X3,X4].
The arguments of the notions defined below are the following: X1, X2, X3, X4
which are objects of the type reserved above; x which is an object of the type Element

of [ X1,X2,X3,X4]. Let us note that it makes sense to consider the following functors

on restricted areas. Then

T1 is Element of X1,

To is Element of X2,
T3 is Element of X3,
T4 is Element of X4.

The following propositions are true:

(40) a = x 1 iff for x1,22,23,24 st x = (v1,22,23,24) holds a = z1,
(41) b= x g iff for x1,22,23,24 st x = (x1,22,23,24) holds b = 22,
(42) ¢ = x g iff for x1,22,23,24 st x = (x1,22,23,24) holds ¢ = 3,
(43) d = x 4 iff for x1,22,23,24 st x = (v1,22,23,24) holds d = 24,

(44) for z being Element of [ X1,X2,X3,X4] holds (x1,x2,r3,24) = x,

(45) for z,y being Element of [ X1,X2,X3,X4]
stz =y1&x2=y2& r3=y3z& r4=19y4 holds z =y,

(46) (x1,22,23,24) 1 = x1
& (xl,22,23,24) 2 = 22 & (v1,22,23,24) 3 = 23 & (x1,22,23,24) 4 = 24,

(47) for x being Element of [ X1,X2,X3,X4], y being Element of [Y'1,Y2Y3,Y4]
holdsz =y impliesz1 =y1 & o =y2 & z3=ys3& x4=y4.
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In the sequel A2 will denote an object of the type Subset of X2; A3 will denote
an object of the type Subset of X3; A4 will denote an object of the type Subset of
X4. In the article we present several logical schemes. The scheme Fraenkell deals with
a unary predicate P states that the following holds

for X1 holds { z1 : P[z1] } is Subset of X1

for all values of the parameter.

The scheme Fraenkel2 deals with a binary predicate P states that the following holds

for X1,X2 holds { (z1,22) : P[zl,22] } is Subset of [ X1,X2]

for all values of the parameter.

The scheme Fraenkel3 concerns a ternary predicate P states that the following holds

for X1,X2,X3 holds { (z1,z2,23) : P[zl,22,23] } is Subset of [ X1,X2,X3]

for all values of the parameter.

The scheme Fraenkels deals with a 4-ary predicate P states that the following holds

for X1,X2,X3,X4
holds { (z1,22,23,z4) : Plxl,22,23,24] } is Subset of [ X1,X2,X3,X4]

for all values of the parameter.
The scheme Fraenkel5 concerns a unary predicate P and a unary predicate Q and
states that the following holds

for X1 st for z1 holds P[r1] implies Q[z1] holds { y1: P[yl] } C {z1: Q[z1]}

for all values of the parameters.
The scheme Fraenkel6 deals with a unary predicate P and a unary predicate Q and
states that the following holds

for X1 st for 21 holds P[z1] iff Q[z1] holds {yl: Pyl]} = {z1: Q[=1]}

for all values of the parameters.

Next we state several propositions:

(48) X1 = {21 : not contradiction },

(49) [X1,X2] = { (x1,22) : not contradiction },

(50) [X1,X2,X3] = { (x1,22,23) : not contradiction },
(51) [X1,X2,X3,X4] = { (x1,22,23,4) : not contradiction },

(52) Al={zl:z1 € Al}.

119
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Let us consider X1, X2, A1, A2. Let us note that it makes sense to consider the

following functor on a restricted area. Then

FA1,A2] is Subset of [ X1,X2].

Next we state a proposition

(53) FAL,A2] = { (x1,22) : z1 € Al & 22 € A2}.

Let us consider X1, X2, X3, Al, A2, A3. Let us note that it makes sense to consider

the following functor on a restricted area. Then

FA1,A2,A3] is Subset of [X1,X2,X3].

Next we state a proposition

(54) FA1,A2,A3] = { (z1,22,23) : 1 € Al & 22 € A2 & 23 € A3 }.

Let us consider X1, X2, X3, X4, Al, A2, A3, A4. Let us note that it makes sense

to consider the following functor on a restricted area. Then

FA1,A2,A3,A4]  is  Subset of [X1,X2,X3,X4].

Next we state a number of propositions:
(55) [A1,A2,A3,A4]
={(2l,22,23,24) : 21 € A1 & 22 € A2& 23 € A3 & 24 € A4},

(56) PX1={x1: contradiction },

(57) Al°={zl:notzxl € Al},

(58) AlNBl={zl:21€ Al&zl € Bl1},
(59) AlUBl={zl:zl € Alorzl € Bl},
(60) A1\ Bl={zl:21 € Al & notzl € Bl},

(61) Al=Bl={zl:21€ Al & notzl € Blor notzl € Al & z1 € B1},

(62) Al = Bl={zl:notzxl € Al iff z1 € B1},
(63) Al =Bl={zl:21 € Al iff notzl € B1},
(64) Al = Bl ={zl:not(zl € Al iffz1 € B1) }.

In the sequel x1, 22, x3, x4, x5, x6, 7, 8 will have the type Element of D.

now state several propositions:

(65) {z1} is Subset of D,

We
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(66) {z1,22} is Subset of D,

(67) {x1,22,23} is Subset of D,

(68) {z1,22,23,24} is Subset of D,

(69) {z1,22,23,24,25} is Subset of D,

(70) {z1,22,23,24,25,26} is Subset of D,
(71) {x1,22,23,24,25,26,27} is Subset of D,
(72) {z1,22,23,24,25,26,27,28} is Subset of D.

Let us consider D. Let x1 have the type Element of D. Let us note that it makes

sense to consider the following functor on a restricted area. Then

{z1} is Subset of D.

Let 22 have the type Element of D. Let us note that it makes sense to consider the
following functor on a restricted area. Then
{z1,22} is Subset of D.
Let 23 have the type Element of D. Let us note that it makes sense to consider the
following functor on a restricted area. Then
{21,22,23} is Subset of D.
Let x4 have the type Element of D. Let us note that it makes sense to consider the
following functor on a restricted area. Then
{zl,22,23,24} is Subset of D.
Let 25 have the type Element of D. Let us note that it makes sense to consider the
following functor on a restricted area. Then
{z1,22,23,24,25} is Subset of D.
Let 26 have the type Element of D. Let us note that it makes sense to consider the
following functor on a restricted area. Then
{z1,22,23,r4,25,26} is Subset of D.
Let z7 have the type Element of D. Let us note that it makes sense to consider the

following functor on a restricted area. Then

{x1,22,23,24,25,26,27} is Subset of D.
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Let 8 have the type Element of D. Let us note that it makes sense to consider the

following functor on a restricted area. Then

{x1,22,23,24,25,26,27,28} is Subset of D.

Let us consider X1, Al. Let us note that it makes sense to consider the following
functor on a restricted area. Then

Al°€ is Subset of X1.

Let us consider B1l. Let us note that it makes sense to consider the following functors
on restricted areas. Then

AlU B1 is Subset of X1,

AlN Bl is Subset of X1,
A1\ B1 is Subset of X1,
Al - B1 is Subset of X1.

References
[1] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[3] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathe-
matics, 1, 1990.

[4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.

[5] Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized
Mathematics, 1, 1990.

Received April 3, 1989



FORMALIZED MATHEMATICS
Number 1, January 1990
Université Catholique de Louvain

The Well Ordering Relations

Grzegorz Bancerek!
Warsaw University
Bialystok

Summary. Some theorems about well ordering relations are proved. The goal
of the article is to prove that every two well ordering relations are either isomorphic
or one of them is isomorphic to a segment of the other. The following concepts are
defined: the segment of a relation induced by an element, well founded relations,
well ordering relations, the restriction of a relation to a set, and the isomorphism
of two relations. A number of simple facts is presented.

The terminology and notation used here are introduced in the following papers: [2], [3],
[4], [5], and [1]. For simplicity we adopt the following convention: a, b, ¢, = denote
objects of the type Any; X, Y, Z denote objects of the type set. = The scheme
Extensionality concerns a constant A that has the type set, a constant B that has the
type set and a unary predicate P and states that the following holds

A=D8
provided the parameters satisfy the following conditions:

o for a holds a € A iff P[a],
o for a holds a € B iff P[a].

In the sequel R, S, T will have the type Relation. Let us consider R, a. The
functor

R —Sega,
with values of the type set, is defined by
zeitifx#a& (r,a) € R.
One can prove the following propositions:

(1) forRY,aholdsY = R —Seg (a) iff forb holds b € Y iff b # a & (b, a) € R,
'Supported by RPBP II1.24 C1.
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(2) z € field R or R —Seg (x) = 0.

We now define two new predicates. Let us consider R. The predicate

Ris_well_founded

is defined by
forVstY CfieldR&Y #lexastacY & R —Seg(a)NY =0.

Let us consider X. The predicate
R is_well founded_in X

is defined by
forYstY CX &Y #0exastacY & R—Seg(a)NY = 0.

One can prove the following three propositions:
(3) for R holds Ris_well_founded
iffforYstY CfieldR&Y #0exastac€Y & R—Seg(a)NY =0,

4) for R, X holds R is_well_founded_in X
iffforYstY CX &Y #0exastacY & R—Seg(a)NY =0,

(5) Ris_well founded iff R is_well founded_in field R.

We now define two new predicates. Let us consider R. The predicate

Ris_well-ordering-relation

is defined by
Ris_reflexive
& Ris_transitive & Ris_antisymmetric & Ris_connected & Ris_well_founded.
Let us consider X. The predicate

R well_orders X

is defined by
R is_reflexive_in X & R is_transitive_in X
& R is_antisymmetric_in X & R is_connected_in X & R is_well founded_in X.
The following propositions are true:

(6) for R holds Ris_well-ordering-relation iff Ris_reflexive

& Ris_transitive & Ris_antisymmetric & Ris_connected & Ris_well founded,
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(7) for R, X holds R well orders X iff R is_reflexive_in X & R is_transitive_in X
& R is_antisymmetric_in X & R is_connected_in X & R is_well founded_in X,
(8) R well_orders field R iff Ris_well-ordering-relation,

(9) R well_orders X implies
forYstY CX &Y #0exastacYY & forbstbeY holds (a,b) € R,

(10) Ris_well-ordering-relation implies

forVstY Cfield R&Y #0exastacY &forbstbcY holds (a,b) € R,

(11) for R st Ris_well-ordering-relation & field R # ()
exa st a € field R & forb st b € field R holds (a,b) € R,

(12)  for R st Ris_well-ordering-relation & field R # () for a st a € field R holds
(forb st b € field R holds (b,a) € R) or exbst b € field R
& (a,b) € R & forcst c € field R & (a,c) € Rholds ¢ =a or (b, c) € R.

In the sequel F', G have the type Function. Next we state a proposition

(13) R —Seg (a) C field R.

Let us consider R, Y. The functor

RP?Y,
yields the type Relation and is defined by
it=RNI}Y,Y].

We now state a number of propositions:

(14) RI’Y = RN}Y,Y],

(15) RPXCR&RP*X CIX, X],

(16) reRP?Xiffre R&xe X, X,

(17) R?PX=X|R|X,

(18) R?X =X | (R]X),

(19) z € field (R |? X) implies x € field R & z € X,
(20) field (R |? X) C field R & field (R |? X) C X,

(21) (R|* X) —Seg (a) € R —Seg (a),
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Ris_reflexive implies R |? X is_reflexive,
Ris_connected implies R |? Y is_connected ,
Ris_transitive implies R |? Y is_transitive,

Ris_antisymmetric implies R |? Y is_antisymmetric,
(RIPX)PY =R[(XNY),
(RIPX)PY = (RPY) 2 X,
(RPY)PY =RJ?Y,
Z CY implies (R|*’Y)|?Z=R|? Z,
R|?field R = R,
Ris_well founded implies R |? X is_well founded ,
Ris_well-ordering-relation implies R |? Y is_well-ordering-relation,

Ris_well-ordering-relation

implies R —Seg (a) C R —Seg (b) or R —Seg (b) C R —Seg (a),
Ris_well-ordering-relation implies R |? (R —Seg (a)) is_well-ordering-relation,

Ris_well-ordering-relation & a € field R & b € R —Seg (a)
implies (R |? (R —Seg (a))) —Seg (b) = R —Seg (b),

Ris_well-ordering-relation & Y C field R implies
(Y =field Ror (exasta € fieldR& Y = R —Seg (a))
iff forasta € Y forbst (b,a) € RholdsbeY),

Ris_well-ordering-relation & a € field R & b € field R
implies ((a,b) € Riff R —Seg (a) C R —Seg (b)),

Ris_well-ordering-relation & a € field R & b € field R
implies (R —Seg (a) C R —Seg (b) iff a = bor a € R —Seg (b)),

Ris_well-ordering-relation & X C field R implies field (R |? X) = X,
Ris_well-ordering-relation implies field (R |> R —Seg (a)) = R —Seg (a),

Ris_well-ordering-relation implies

for Z st forast a € field R & R —Seg (a) C Z holds a € Z holds field R C Z,
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(42) Ris_well-ordering-relation &
a € fieldR& b € field R & (forc st ¢ € R —Seg (a) holds (¢,b) € R & ¢ # b)
implies (a,b) € R,

(43) Ris_well-ordering-relation & dom F' = field R & g F' C field R
& (fora,b st (a,b) € R& a # bholds (F.a,F.b) € R& F.a # F.b)
implies fora st a € field R holds (a, F.a) € R.
Let us consider R, S, F. The predicate

F is_isomorphism_of R, S

is defined by
dom F' = field R & rng F' = field S &

Fis_one-to-one & for a,b holds (a,b) € Riffa € field R& b € field R & (F.a,F.b) € S.

Next we state two propositions:

(44) F is_isomorphism_of R, S iff dom F' = field R & rng F' = field S &
F'is_one-to-one

& fora,b holds (a,b) € Riffa € field R & b € field R & (F.a,F.b) € S,

(45) F is_isomorphism_of R, S
implies for a,b st (a,b) € R & a # b holds (F.a,F.b) € S & F.a # F.b.

Let us consider R, S. The predicate

R, S are_isomorphic is defined by ex I st F' is_isomorphism_of R, S.

We now state a number of propositions:

(46) R, S are_isomorphic iff ex F' st F is_isomorphism_of R, S,
(47) id (field R) is-isomorphism_of R, R,

(48) R, Rare_isomorphic,

(49) F is_isomorphism_of R, S implies F ! is_isomorphism_of S, R,
(50) R, S are_isomorphic implies S, R are_isomorphic,

(51) F is_isomorphism_of R, S & G is_isomorphism_of S, T’

implies G - F' is_isomorphism_of R, T

(52) R, S are_isomorphic & S, T are_isomorphic implies R, T are_isomorphic,
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F is_isomorphism_of R, S implies (R is_reflexive implies S is_reflexive) &
(Ris_transitive implies S is_transitive) &
(Ris_connected implies S is_connected) &
(Ris_antisymmetric implies S is_antisymmetric)

& (Ris_well_founded implies S is_well_founded),

Ris_well-ordering-relation & F'is_isomorphism_of R, S

implies S is_well-ordering-relation,

Ris_well-ordering-relation implies for F,G

st F' is_isomorphism_of R, S & G is_isomorphism_of R, S holds F = G.

Let us consider R, S. Assume that the following holds

Ris_well-ordering-relation & R, S are_isomorphic.

The functor

canonical isomorphism_of (R, 5),

yields the type Function and is defined by

it is_isomorphism_of R, S.

The following propositions are true:

(56)

(57)

(58)

Ris_well-ordering-relation & R, S are_isomorphic

implies (F' = canonical isomorphism_of (R, S) iff F' is_isomorphism_of R, 5),

Ris_well-ordering-relation

implies for a st a € field R holds not R, R |* (R —Seg (a)) are_isomorphic,

Ris_well-ordering-relation & a € field R & b € field R & a # b
implies not R |> (R —Seg (a)),R |* (R —Seg (b)) are_isomorphic,

(59) Ris_well-ordering-relation & Z C field R & F' is_isomorphism_of R, S implies

F | Z is{isomorphism of R |2 Z,S |2 (F © Z)
& R|*Z,S|? (F° Z)are_isomorphic,

Ris_well-ordering-relation & F' is_isomorphism_of R, S implies

fora st a € fieldRexbst b€ fieldS & F ° (R —Seg (a)) = S —Seg (b),

Ris_well-ordering-relation & F'is_isomorphism_of R, S implies for a st
a € field R
exbst b€ fieldS & R|? (R —Seg (a)),S |? (S —Seg (b)) are_isomorphic,
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(62) Ris_well-ordering-relation & S'is_well-ordering-relation & a € field R &
befieldS & c € field S & R, S |? (S —Seg (b)) are_isomorphic
& R |? (R —Seg (a)),S |? (S —Seg (c)) are_isomorphic
implies S —Seg (¢) C S —Seg (b) & (¢, b) € S,

(63) Ris_well-ordering-relation & S is_well-ordering-relation implies
R, S are_isomorphic or
(exasta € field R & R |* (R —Seg (a)),S are_isomorphic)
orexasta € fieldS & R, S | (S —Seg (a)) are_isomorphic,

(64) Y C field R & Ris_well-ordering-relation implies R, R |* Y are_isomorphic
orexastac field R & R|? (R —Seg (a)),R |* Y are_isomorphic.
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Summary. The goal of this article is to construct a language of the ZF set the-
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defined by

it={k:5<k}.
The following proposition is true

(1) VAR = {k:5<k}.

Variable stands for Element of VAR .
One can prove the following proposition

(2) a is Variable iff a is Element of VAR .

Let us consider n. The functor
&n,
with values of the type Variable, is defined by
it=5+n.
One can prove the following proposition
(3) En=5+n.
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In the sequel =z, y, z, t denote objects of the type Variable. Let us consider x. Let

us note that it makes sense to consider the following functor on a restricted area. Then
<x> is FinSequence of NAT .
We now define two new functors. Let us consider x, y. The functor
=Y,
with values of the type FinSequence of NAT, is defined by
it=<0>" <> <y>.

The functor

x ey,
yields the type FinSequence of NAT and is defined by

it=<1>"<a>" <y>.

Next we state four propositions:

4) r=y=<0>" <> <y>,
(5) rey=<1>"<a>" <y>,
(6) r=y=z=timpliesx =z & y = t,
(7) rxey=zetimpliesz =2 & y=t.

We now define two new functors. Let us consider p. The functor
-p
with values of the type FinSequence of NAT), is defined by
it =<2>"p.
Let us consider gq. The functor
pAg,
with values of the type FinSequence of NAT), is defined by
it=<3>"p" ¢
Next we state three propositions:
(8) op=<2>""p,
(9) pPAg=<3>"p g

(10) - p = —gq implies p = q.
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Let us consider z, p. The functor
vV (x,p),
yields the type FinSequence of NAT and is defined by
it=<4>" <a>"p.
The following propositions are true:

(11) V(z,p) = <4>" <z> " p,
(12) V(x,p) =V (y,q) impliesz =y & p = q.

The constant WFF has the type DOMAIN, and is defined by

(fora st a € it holds a is FinSequence of NAT) &

(forz,y holds x=y € it & x ey € it) & (forpst p € it holds —p € it) &
(forp,gstp €it & g € it holds p A g € it) & (forz,p st p € it holds V (z,p) € it) &
for D st
(fora st @ € D holds a is FinSequence of NAT) &
(forz,yholdsz=ye D& zey € D) & (forpst p € D holds —p € D)

& (forp,gstpe D& ge DholdspAge D) & forx,pstpe DholdsV (z,p) € D
holds it C D.

One can prove the following proposition

(13) (for a st a € WFF holds a is FinSequence of NAT) &
(for z,y holds =y € WFF & z ey € WFF) &
(for p st p € WFF holds —-p € WFF) &
(for p,g st p € WFF & ¢ € WFF holds p A ¢ € WFF) &
(for z,p st p € WFF holds V (x, p) € WFF) & for D st
(fora st @ € D holds a is FinSequence of NAT) &
(forz,yholdsz=ye D& zey e D) & (forpst pe Dholds -pe D) &
(forp,gstpe D& qe D holdspA g€ D)
& forz,p st p e D holds V (z,p) € D
holds WFF C D.

The mode
ZF-formula,,

which widens to the type FinSequence of NAT, is defined by
it is Element of WFF .
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We now state two propositions:
(14) a is ZF-formula iff a € WFF,
(15) a is ZF-formula iff @ is Element of WFF .

In the sequel F, F1, G, G1, H, H1 denote objects of the type ZF-formula. Let
us consider x, y. Let us note that it makes sense to consider the following functors on
restricted areas. Then

T=y is ZF-formula,
TEY is ZF-formula .

Let us consider H. Let us note that it makes sense to consider the following functor
on a restricted area. Then

-H is ZF-formula .

Let us consider G. Let us note that it makes sense to consider the following functor on
a restricted area. Then
HAG is ZF-formula .

Let us consider x, H. Let us note that it makes sense to consider the following functor
on a restricted area. Then

Y (z,H) is ZF-formula.
We now define five new predicates. Let us consider H. The predicate
H is_a_equality is defined by exx,yst H=x=y.
The predicate
H is_a_membership is defined by exx,yst H=xey.
The predicate
H is_negative is defined by exHlst H=-H]1.
The predicate
H is_conjunctive is defined by exF\Gst H=FANG.
The predicate
H is_universal is defined by exx,Hlst H=VY(z,H1).
The following proposition is true
(16) (H is.a_equality iff exz,y st H =2=y) &
(H is_.a_membership iff exz,y st H =z ey) &
(Hisnegative iffex Hlst H =-H1) &

(H is_conjunctive iff ex ;G st H = F A G)
& (H is_universal iff exz,H1 st H =V (x, H1)).
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Let us consider H. The predicate
H is_atomic is defined by H is_a_equality or H is_a_membership .
Next we state a proposition
(17) H is_atomic iff H is_a_equality or H is_a_membership .

We now define two new functors. Let us consider F', G. The functor

FvaG,
yields the type ZF-formula and is defined by
it=-(-FA-G).

The functor
F =G,

yields the type ZF-formula and is defined by

it == (FA-G).

The following two propositions are true:

(18) FVG=-(-FA-QG),
(19) F=G=-(FA-Q).
Let us consider F', G. The functor
F&@G,
yields the type ZF-formula and is defined by
it=(F=G)AN(G=F).
We now state a proposition
(20) FeG=(F=G0)ANG=1F).
Let us consider x, H. The functor
I(x, H),
yields the type ZF-formula and is defined by
it=-V(x,- H).

The following proposition is true

(21) I (x, H) = =V (2, ~ H).



136 (GRZEGORZ BANCEREK

We now define four new predicates. Let us consider H. The predicate

H is_disjunctive is defined by exF\Gst H=FVQG.

The predicate
H is_conditional is defined by exF\Gst H=F=QG.

The predicate
H is_biconditional is defined by exF\Gst H=F&G.

The predicate
H is_existential is defined by exx,Hl st H=3(x,H1).
The following proposition is true
(22) (H is_disjunctive iff ex FFGst H =FV G) &
(H is_conditional iffex F,Gst H =F = G) &

(H is_biconditional iff ex F,G st H = F' & G)
& (H is_existential iff exx,H1 st H = 3 (z, H1)).

We now define two new functors. Let us consider x, y, H. The functor
v (z,y, H),
yields the type ZF-formula and is defined by
it=V(z,V(y, H)).

The functor
3 (x,y, H),

yields the type ZF-formula and is defined by
it=3(z,3(y, H)).

The following proposition is true
(23) V(x,y, H) =V (2,V (y, H)) & 3 (x,y, H) = 3 (x,3 (y, H))-

We now define two new functors. Let us consider z, y, z, H. The functor

vV (z,y, 2 H),
with values of the type ZF-formula, is defined by
it=V (2, (y,z, H)).

The functor
3 (x7 Y, =z, H)a



A MOoDEL OoF ZF SET THEORY LANGUAGE 137

with values of the type ZF-formula, is defined by

it =3(z,3(y,2,H)).

We now state several propositions:

(24)

(25)

(26)
(27)
(28)
(29)

(30)

v(a:?y) Z,H) = v(m’v(y’z7H)) & 3 (m’y7 Z? H) = 3 (x73 (y7 Z7 H))?

H is_a_equality

or H is_a_membership or H is_negative or H is_conjunctive or H is_universal,

H is_atomic or H is_negative or H is_conjunctive or H is_universal,

H is_atomic implies len H = 3,
His_atomicorex Hl stlen H1 4+ 1 <len H,
3<lenH,

len H = 3 implies H is_atomic.

One can prove the following propositions:

(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)

(40)

forz,y holds (z=y).1=0& (zey).1 =1,
for H holds (- H).1 =2,
for F,G holds (FFAG).1 =3,
for z,H holds V (z, H).1 = 4,
H is_a_equality implies H.1 = 0,
H is_a_membership implies H.1 = 1,
H is_negative implies H.1 = 2,
H is_conjunctive implies H.1 = 3,
H is_universal implies H.1 =4,

His_a_equality & H.1 = 0 or H is_a_membership & H.1 =1 or
H is_negative & H.1 =2

or H is_conjunctive & H.1 = 3 or H is_universal & H.1 = 4,
H.1=0implies H is_a_equality,

H.1 =1 implies H is_a_membership,
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(43) H.1 =2 implies H is_negative,
(44) H.1 = 3 implies H is_conjunctive,
(45) H.1 =4implies H is_universal.

In the sequel sq denotes an object of the type FinSequence. We now state several

propositions:

(46) H =F "~ sqimplies H = F,

(47) HANG=H1ANG1implies H=H1 & G =G1,
(48) FVvG=F1vGlimplies F = F1 & G = G1,
(49) F=G=F1=Glimplies F = F1 & G =G1,
(50) F&G=F1&Glimplies F=F1 & G =(Gl,
(51) I(x,H) =3 (y,G) impliesz =y & H = G.

We now define two new functors. Let us consider H. Assume that the following
holds

H is_atomic.

The functor
Var1 H,

yields the type Variable and is defined by
it=H.2.
The functor
Vary H,
yields the type Variable and is defined by

it=H.3.

One can prove the following three propositions:

(52) H is_atomic implies Var; H = H.2 & Varg H = H .3,
(53) H is_a_equality implies H = (Var; H) = Vary H,
(54) H is_a_membership implies H = (Var; H) € Vary H.

Let us consider H. Assume that the following holds

H is_negative.
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The functor
the_argument_of H,

with values of the type ZF-formula, is defined by

-it = H.
We now state a proposition

(55) H is_negative implies H = —the_argument_of H.

We now define two new functors. Let us consider H. Assume that the following
holds

H is_conjunctive or H is_disjunctive.

The functor
the_left_argument_of H,

with values of the type ZF-formula, is defined by

exHlstitAN Hl=H, if H is_conjunctive
exHlstitv Hl = H, otherwise.

The functor
the_right_argument_of H,

with values of the type ZF-formula, is defined by

exHlst HIANit=H, if H is_conjunctive,
exHlst H1Vit =H, otherwise.

One can prove the following propositions:
(56) H is_conjunctive implies (F' = the_left_argument of H iffexG st FAG = H)
& (F = the_right_argument_of H iff ex G st GA F = H),

(57) H is_disjunctive implies (F' = the_left_argument of H iff ex G st F'V G = H)
& (F = the_right_argument_of H iff ex G st GV F = H),

(58) H is_conjunctive

implies H = (the_left_argument_of H) A the_right_argument_of H,

(59) H is_disjunctive
implies H = (the_left_argument_of H) V the_right_argument_of H.

We now define two new functors. Let us consider H. Assume that the following
holds

H is_universal or H is_existential.



140 (GRZEGORZ BANCEREK

The functor
bound_in H,

with values of the type Variable, is defined by

exHlstV(it,Hl)=H, if H is_universal,
exHlst3(it,Hl) = H, otherwise.

The functor
the_scope_of H,

with values of the type ZF-formula, is defined by
exx stV (x,it) = H, if H is_universal,
exx st 3(x,it) = H, otherwise.
Next we state four propositions:
(60) H is_universal implies (z = bound.in H iffex H1 stV (z, H1) = H)
& (H1 = the_scopeof H iff exx st V (z, H1) = H),

(61) H is_existential implies (x = bound.in H iffex H1 st 3 (x, H1) = H)
& (H1 = the_scopeof H iff exx st 3 (z, H1) = H),

(62) H is_universal implies H =V (bound_in H,the_scope_of H),
(63) H is_existential implies H = 3 (bound.in H,the_scope_of H).

We now define two new functors. Let us consider H. Assume that the following
holds

H is_conditional .

The functor
the_antecedent_of H,

with values of the type ZF-formula, is defined by

exHlst H=it= HI1.

The functor
the_consequent_of H,

with values of the type ZF-formula, is defined by

exHlst H=Hl=it.

The following propositions are true:

(64) H is_conditional implies (F' = the_antecedent of H iff exG st H = F = G)
& (F = the_consequent of H iffex G st H = G = F),
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(65) H is_conditional implies H = (the_antecedent_of H) = the_consequent_of H.

We now define two new functors. Let us consider H. Assume that the following
holds

H is_biconditional .

The functor
the_left_side_of H,

yields the type ZF-formula and is defined by

exHlst H=it< HI1.

The functor
the_right_side_of H,

with values of the type ZF-formula, is defined by

exHlst H=Hl<it.

We now state two propositions:

(66) H is_biconditional implies (F' = the left side of H iffex G st H = F < G)
& (F = therightside_of H iffexGst H =G & F),

(67)  H is_biconditional implies H = (the_left_side_of H) < the_right_side_of H.
Let us consider H, F'. The predicate
H is_immediate_constituent_of F’

is defined by

F=-Hor(exHlst F=HAHlor F=HIANH)orexxst F=Y(z,H).

We now state a number of propositions:

(68) H is_immediate_constituent_of F' iff
F=-Hor(exHlst F=HAHlor F=HIANH)orexxst F=Y(z,H),

(69) not H is_immediate_constituent_of x = y,

(70) not H is_immediate_constituent_of x € y,

(71) F is_immediate_constituent_of -~ H iff ' = H,

(72) F is_immediate_constituent of GAH iff F =G or F' = H,

(73) F' is_immediate_constituent_of V (z, H) iff F' = H,
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(74) H is_atomic implies not F' is_immediate_constituent_of H,
(75) H is_negative
implies (F is_.immediate_constituent_of H iff F' = the_argument_of H),

(76) H is_conjunctive implies (F is_immediate_constituent_of H

iff F' = the_left_argument_of H or F' = the_right_argument_of H),

(77) H is_universal

implies (F is_.immediate_constituent_of H iff F' = the_scope_of H).

In the sequel L will denote an object of the type FinSequence. Let us consider H,
F'. The predicate
H is_subformula_of F

is defined by
exn,Lstl<n&lenL=n& L1=H&Ln=F&forkstl<k&k<n
exH1,F1st L.k=H1& L.(k+1)=F1 & H1 is.immediate_constituent_of F'1.
Next we state two propositions:

(78) H is_subformula_of F iffexn,Lst 1 <n&lenL=n& L1=H& Ln=F&
forkstl1 <k&k<nexH1UF1
st L.k=H1& L.(k+1)=F1& H1 is.immediate_constituent_of F'1,

(79) H is_subformula_of H.

Let us consider H, F. The predicate
H is_proper_subformula_of F' is defined by H is_subformula_of F' & H # F.

We now state several propositions:

(80) H is_proper_subformula_of F' iff H is_subformula_of F' & H # F,
(81) H is_.immediate_constituent_of F' implies len H < len F,

(82) H is_immediate_constituent_of F' implies H is_proper_subformula_of F,
(83) H is_proper_subformula_of F' implies len H < len F,

(84) H is_proper_subformula_of F

implies ex G st G is_immediate_constituent_of F.

The following propositions are true:

(85) F is_proper_subformula_of G & G is_proper_subformula_of H

implies F' is_proper_subformula_of H,
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(86) F' is_subformula_of G & G is_subformula_of H implies F' is_subformula_of H,

(87) G is_subformula_of H & H is_subformula_of G implies G = H,
(88) not F' is_proper_subformula_of x = y,

(89) not F is_proper_subformula_of z € y,

(90) F is_proper_subformula_of = H implies F' is_subformula_of H,
(91) F is_proper_subformula_of G A H

implies F' is_subformula_of G or F' is_subformula_of H,

(92) F' is_proper_subformula_of V (z, H) implies F' is_subformula_of H,
(93) H is_atomic implies not F' is_proper_subformula_of H,
(94) H is_negative implies the_argument_of H is_proper_subformula_of H,

(95) H is_conjunctive implies the_left_argument_of H is_proper_subformula_of H

& the_right_argument_of H is_proper_subformula_of H,

(96) H is_universal implies the_scope_of H is_proper_subformula_of H,
(97) H is_subformulaof z=y iff H = 2=y,
(98) H is_subformulaof z ey iff H =z ey.

Let us consider H. The functor

Subformulae H,

yields the type set and is defined by

acitiffex st F = a & F is_subformula_of H.

We now state a number of propositions:

(99) a € Subformulae H iff ex F' st F = a & F is_subformula_of H,
(100) G € Subformulae H implies G is_subformula_of H,
(101) F is_subformula_of H implies Subformulae F' C Subformulae H,
(102) Subformulaez =y = {z =y},
(103) Subformulaez ey = {z ey},

(104) Subformulae - H = Subformulae H U {- H},
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(105) Subformulae (H A F') = Subformulae H U Subformulae FF U {H A F'},

(106) SubformulaeV (z, H) = Subformulae H U {V¥ (z, H)},
(107) H is_atomic iff Subformulae H = {H},
(108) H is_negative

implies Subformulae H = Subformulae the_argument_of H U {H },

(109) H is_conjunctive implies Subformulae H = Subformulae

the_left_argument_of H U Subformulae the_right_argument_of H U {H },
(110) H is_universal implies Subformulae H = Subformulae the_scope-of H U {H },

(111) (H is-immediate_constituent_of G
or H is_proper_subformula_of G or H is_subformula_of G)
& G € Subformulae F
implies H € Subformulae F.

In the article we present several logical schemes. The scheme ZF_Ind deals with a
unary predicate P states that the following holds

for H holds P[H]

provided the parameter satisfies the following conditions:

. for H st H is_atomic holds P[H]|,
. for H st H is_negative & P[the_argument_of H] holds P[H],
. for H st

H is_conjunctive & P[the_left_argument_of H| & P[the_right_argument_of H|
holds P[H],

. for H st H is_universal & P[the_scope_of H] holds P[H].

The scheme ZF_Complnd deals with a unary predicate P states that the following
holds

for H holds P[H]

provided the parameter satisfies the following condition:

e  for H st for F st F is_proper_subformula_of H holds P[F] holds P[H].
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Summary. The article contains definitions of the following concepts: family
of sets, family of subsets of a set, the intersection of a family of sets. Functors U, N,
and \ are redefined for families of subsets of a set. Some properties of these notions
are presented.

The terminology and notation used in this paper are introduced in the following papers:
(1], [3], and [2]. For simplicity we adopt the following convention: X, Y, Z, Z1, D
will denote objects of the type set; x, y will denote objects of the type Any. Let us

Nx

consider X. The functor

with values of the type set, is defined by
for z holds z € it iff for Y holds Y € X impliesz € Y, if X £,

it =0, otherwise.

The following propositions are true:

(1) X # () implies for z holds z € ﬂX iffforY stY € X holdsz €7,
(2) ﬂ@ =0,
(3) NxcUx,

(4) Z € X implies (X C Z,
(5) 0 € X implies ()X =0
(6) X #0& (for Z1 st Z1 € X holds Z C Z1) impliesZgr)X7

1Supported by RPBP.I11-24.C1.
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(7) X #0& X CY implies [ Y C (X,

(8) X €Y & X C Zimplies (Y C Z,

(9) XeY&XNZ=0implies( Y NZ=0,
(10) X #0&Y # 0 implies (X UY) =X N[V,
(11) Nz} ==,

(12) (X, Y}=XnY.

Set-Family stands for set.

In the sequel SFX, SFY, SFZ will have the type Set-Family. One can prove

the following two propositions:

(13) x is Set-Family ,
(14) SFX = SFY iff for X holds X € SFX iff X € SFY.

We now define two new predicates. Let us consider SFX, SFY. The predicate
SFX is_finer_than SFY

is defined by
forXst X e SFXexYstY e SFY & X CY.

The predicate
SFX is_coarser_than SF'Y

is defined by
forYstY e SFY exXst X e SFX & X CY.

Next we state several propositions:

(15) SFX is finer than SFY ifffor X st X € SFX exY stY e SFY & X CY,

(16) SFX is_coarser_than SFY
iffforYstY e SFYexXst X e SFX&XCY,

(17) SFX C SFY implies SFX is_finer_than SFY,

(18) SFX is_finer_than SFY implies | JSFX C | JSFY,

(19) SFY # () & SFX is_coarser_than SFY implies ﬂ SFX C ﬂ SFY.
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Let us note that it makes sense to consider the following constant. Then § is
Set-Family . Let us consider z. Let us note that it makes sense to consider the following

functor on a restricted area. Then
{z} is Set-Family .
Let us consider y. Let us note that it makes sense to consider the following functor on a

restricted area. Then
{z,y} is Set-Family .

One can prove the following propositions:

(20) () is_finer_than SFX,

(21) SFX is_finer_than () implies SFX = (),

(22) SFX isfiner_than SF X,

(23) SFX isfiner_than SFY & SFY is_finer_than SFZ

implies SFX is_finer_than SFZ,
(24) SFX is finer_than {Y'} implies for X st X € SFX holds X CY,

(25) SFX is_finer_than {X,Y}
implies for Z st 7 € SFX holds Z C X or Z CY.
We now define three new functors. Let us consider SFX, SFY. The functor

UNION (SFX,SFY),

yields the type Set-Family and is defined by

ZeitifexX)Yst X e SFX &Y e SFY & Z=XUY.

The functor
INTERSECTION (SFX,SFY),

with values of the type Set-Family, is defined by
ZeitifexX)YstXeSFX&Y eSFY&Z=XnNY.

The functor
DIFFERENCE (SFX,SFY),

with values of the type Set-Family, is defined by
Zeitiffex XY st X e SFX&Y eSFY &Z=X\Y.

One can prove the following propositions:

(26) Z € UNION (SFX,SFY) iffex XY st X e SFX &Y € SFY & Z =X UY,
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(27) Z € INTERSECTION (SFX,SFY)
iffexX,Yst XeSFX&Y eSFY & Z=XnNY,

(28) Z € DIFFERENCE (SFX,SFY)
ifexX,Yst X e SFX &Y eSFY & Z=X\Y,

(29) SFX is_finer_than UNION (SFX,SFX),

(30) INTERSECTION (SFX,SFX) is_finer_than SFX,

(31) DIFFERENCE (SFX,SFX) is_finer_than SFX,

(32) UNION (SFX,SFY) = UNION (SFY,SFX),

(33) INTERSECTION (SFX,SFY) = INTERSECTION (SFY,SFX),
(34) SFXNSFY # 1)

implies (| SFX N(|SFY = (| INTERSECTION (SFX,SFY),

(35) SFY #  implies X U[ | SFY = (|UNION ({X},SFY),
(36) X n| JSFY = JINTERSECTION ({X},SFY),

(37) SFY #  implies X \ | JSFY = (| DIFFERENCE ({X},SFY),
(38) SFY #  implies X \ (| SFY = | JDIFFERENCE ({X},SFY),
(39) | JINTERSECTION (SFX,SFY) C | JSFX n| JSFY,

(40) SFX # () & SFY # () implies [ | SFX U["|SFY C [ |UNION (SFX,SFY),

(41) SEX # 0 & SFY #10)
implies (| DIFFERENCE (SFX,SFY) C (| SFX \ [ SFY.
Let D have the type set.

Subset-Family of D stands for Subset of bool D.

We now state a proposition
(42) for F' being Subset of bool D holds F' is Subset-Family of D.
In the sequel F, G have the type Subset-Family of D; P has the type Subset of

D. Let us consider D, F'; G. Let us note that it makes sense to consider the following
functors on restricted areas. Then

FUG is Subset-Family of D,
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FnaG is Subset-Family of D,

F\G is Subset-Family of D.
Next we state a proposition

(43) X € F implies X is Subset of D.

Let us consider D, F'. Let us note that it makes sense to consider the following functor
on a restricted area. Then

U F is Subset of D.

Let us consider D, F'. Let us note that it makes sense to consider the following functor
on a restricted area. Then

ﬂ F is Subset of D.

The following proposition is true

(44) F =G iff for P holds P € Fiff P € G.

The scheme SubFamEx deals with a constant A that has the type set and a unary
predicate P and states that the following holds

ex F being Subset-Family of A st for B being Subset of A holds B € F iff P[B]

for all values of the parameters.
Let us consider D, F'. The functor

Fe,
yields the type Subset-Family of D and is defined by

for P being Subset of D holds P € it iff P¢ € F.

Next we state four propositions:

(45) for Pholds P € FCiff P¢ € F,
(46) F # () implies F ¢ # (),
(47) F # 0 implies @D\ | JF = ((F°),

(48) F # 0 implies | JF*=QD\[F.
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Summary. The article is a continuation of [1]. We define the following con-
cepts: a function from a set X into a set Y, denoted by “Function of X,Y”  the
set of all functions from a set X into a set Y, denoted by Funcs(X,Y’), and the
permutation of a set (mode Permutation of X, where X is a set). Theorems and
schemes included in the article are reformulations of the theorems of [1] in the new
terminology. Also some basic facts about functions of two variables are proved.

The notation and terminology used in this paper are introduced in the following articles:
[2], [3], and [1]. For simplicity we adopt the following convention: P, @, X, Y, Y1,
Y2, Z will denote objects of the type set; =z, x1, x2, y, yl, y2, z, z1, 22 will denote
objects of the type Any. Let us consider X, Y. Assume that the following holds

Y = () implies X = 0.
The mode
Function of X,V
which widens to the type Function, is defined by

X =domit & rmgit C Y.

Next we state several propositions:

(1) (Y = 0 implies X = ()) implies for f being Function
holds f is Function of X, Y iff X = dom f & rng f C Y]

(2) for f being Function of X, Y
st Y = () implies X = () holds X =dom f & mg f C Y,

(3) for f being Function holds f is Function of dom f,rng f,

1Supported by RPBP.I11-24.C1.
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(4) for f being Function st rng f C Y holds f is Function of dom f,Y,
(5) for f being Function

st dom f = X & forx st z € X holds f.z € Y holds f is Function of XY,

(6) for f being Function of X, Y st Y # () & x € X holds f.z € rng f,
(7) for f being Function of X, Y st Y # () & x € X holds f.z € Y,
(8) for f being Function of X, Y

st (Y = () implies X = () & rng f C Z holds f is Function of X, Z,

(9) for f being Function of X,Y
st (Y = () implies X =) & Y C Z holds f is Function of X, Z.

In the article we present several logical schemes. The scheme FuncFEx1 deals with
a constant A that has the type set, a constant B that has the type set and a binary
predicate P and states that the following holds

ex f being Function of A,B st for z st € A holds P[z, f.x]

provided the parameters satisfy the following conditions:

. forz stz e Aexysty e B & Plz,y],
. for z,yl,y2 st x € A & Plz,yl] & Pz, y2] holds y1 = 2.

The scheme Lambdal concerns a constant A that has the type set, a constant 3 that

has the type set and a unary functor F and states that the following holds

ex [ being Function of A5 st forz st v € A holds f.x = F(z)

provided the parameters satisfy the following condition:

° forz st z € A holds F(z) € B.
Let us consider X, Y. The functor
Funcs (X,Y),
yields the type set and is defined by

z € it iff ex f being Functionst z = f & dom f = X & rng f C Y.

We now state a number of propositions:

(10) for F being set holds F' = Funcs (X,Y) iff forz
holds z € F iff ex f being Functionst z = f & dom f = X &g f C Y,



(17)

(18)

(19)

(20)

(21)

(25)

(26)
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for f being Function of X,Y
st Y = () implies X = () holds f € Funcs (X,Y),

for f being Function of X, X holds f € Funcs (X, X),
for f being Function of §,X holds f € Funcs (,X),
X # () implies Funcs (X, 0) = 0,

Funcs (X,Y) = ) implies X #0 & Y =0,

for f being Function of X,Y
stY £ & forystycYexzstre X &y=f.xholdsrng f =Y,

for f being Functionof X, Y styce Y & mgf=Yexzstzx e X & f.x =y,

for f1,f2 being Function of X, Y
stY #£0 & forx st z € X holds fl.2 = 2.2 holds f1 = f2,

for f being Function of X, Y for g being Function of Y, Z st
(Z =0 implies Y = 0) & (Y = 0 implies X = 0)
holds g - f is Function of X, Z,

for f being Function of X, Y for g being Function of Y, Z
stY £0& Z#D&mgf =Y &rngg=Zholdsng(g- f) = Z,

for f being Function of X, Y for g being Function of Y, Z
stY £0& Z#0 &z € X holds (g- ).z =g.(f.z),

for f being Function of X, Y st Y # @ holdsmg f =Y
iff for Z st Z # () for g,h being Function of Y, Z st g- f = h - f holds g = h,

for f being Function of X, Y
st Y =( implies X =0 holds f- idX) = f & (idY) - f = f,

for f being Function of X, Y
for g being Function of Y, X st Y A0 & f-g=1idY holdsrng f =Y,

for f being Function of X,Y st Y = () implies X = () holds f is_one-to-one
iffforzlx2stxl € X & 22 € X & f.x1 = f.22 holds x1 = 22,

for f being Function of X, Y for g being Function of Y, Z st
(Z =0 implies Y = () & (Y = () implies X = 0)) & g - f is_one-to-one

holds f is_one-to-one,
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(27) for f being Function of X, Y st X # () & Y # () holds f is_one-to-one
iff for Z for g,h being Function of Z, X st f- g = f - h holds g = h,

(28) for f being Function of X,Y for g being Function of Y, Z
st Z£D&Y £ & rng(g- f) = Z & gis_one-to-one holds rng f =Y,

(29) for f being Function of X, Y for g being Function of Y, X
st X £0&Y #0 & g- f =id X holds fis_one-to-one & rngg = X,

(30) for f being Function of X, Y for g being Function of Y, Z st
(Z =0 implies Y = () & g - f is_one-to-one & rng f =Y

holds fis_one-to-one & gis_one-to-one,

(31) for f being Function of X, Y st
fis_one-to-one & (X =0 if Y =0) &g f =Y
holds f ! is Function of Y, X,

(32) for f being Function of X,Y
st Y # 0 & fis_one-to-one & = € X holds (f™).(f.x) = =,

(33) for f being Function of X,Y
st ng f =Y & fis_one-to-one & y € Y holds f.((f™').y) = v,

(34) for f being Function of X,Y for g being Function of Y, X st
X#£D&Y #P&mgf=Y
& fis_one-to-one & fory,xr holdsy € Y & gy=zxiff e e X & f.x =y
holds g = 7,

(35) for f being Function of X, Y
stY Q&g f =Y & fis.one-to-one holds f™ - f=idX & f- f ' =idY,
(36) for f being Function of X,Y for g being Function of Y, X st
XAP&Y #D&mgf=Y & g-f=1id X & fis_one-to-one holds g = f !,
(37) for f being Function of X, Y st
Y # () & ex g being Function of Y, X st g - f = id X holds f is_one-to-one,

(38) for f being Function of X,Y
st (Y = 0 implies X =()) & Z C X holds f | Z is Function of Z,Y,

(39) for f being Function of X, Y
stY #0&xe X &z e Zholds (f|Z).x = f.x,
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(40) for f being Function of X,Y
st (Y =0 implies X =0)& X C Z holds f | Z = ,

(41) for f being Function of X, Y
stY #0&xze X & f.x € Zholds (Z | f).x = f.x,

(42) for f being Function of X, Y
st (Y =0 implies X =0) &Y C Zholds Z | f = f,

(43) for f being Function of X,Y
stY #£(foryholdsy € f° Pifexsrstr c X &x € P&y=f.x,

(44)  for f being Function of X,Y st Y = () implies X = ( holds f ° P C Y,
(45) for f being Function of X,Y st Y = () implies X = () holds f ° X = rng f,

(46) for f being Function of X,Y
stY #@forzholdszc f'Qiffr € X & f.x € Q,

(47)  for f being Function of X,Y st Y = () implies X = () holds f ' Q C X,
(48)  for f being Function of X,Y st Y = () implies X =@ holds f 'Y = X,

(49) for f being Function of X, Y
st Y # () holds (fory st y € Y holds f -1 {y} #0)iff rng f =Y,

(50) for f being Function of X, Y
st (Y = () implies X =) & PC X holds PC f ' (f° P),

(51) for f being Function of X, Y
st Y = () implies X = holds f ! (f° X) = X,

(52) for f being Function of X, Y
st (Y = implies X =) & rng f =Y holds f° (f ' Y) =Y,

(53) for f being Function of X, Y for g being Function of Y, Z st
(Z =0 implies Y = 0) & (Y = () implies X = ()
holds ™ Q C (9 1) (9° Q)

(54) for f being Function of #,Y holds dom f = 0 & rng f = 0,
(55) for f being Function st dom f = () holds f is Function of (),Y,

(56) for f1 being Function of (,Y'1 for 2 being Function of #,Y2 holds f1 = f2,
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(57) for f being Function of (),Y for g being Function of Y, Z

st Z = () implies Y = () holds g - f is Function of 0,7,
(58) for f being Function of §),Y holds f is_one-to-one,
(59) for f being Function of (,Y holds f ° P = 0,
(60) for f being Function of (,Y holds f ™ Q = 0,
(61) for f being Function of {z},Y st Y # @ holds f.z €Y,
(62) for f being Function of {z},Y st Y # 0 holds rng f = {f .z},
(63) for f being Function of {z},Y st Y # () holds f is_one-to-one,
(64) for f being Function of {z},Y st Y # () holds f ° P C {f.x},
(65) for f being Function of X, {y} st x € X holds f.z =y,
(66) for f1,f2 being Function of X, {y} holds f1 = f2.

The arguments of the notions defined below are the following: X which is an object
of the type reserved above; f, g which are objects of the type Function of X, X. Let
us note that it makes sense to consider the following functor on a restricted area. Then

g-f is Function of X, X.
Let us consider X. Let us note that it makes sense to consider the following functor
on a restricted area. Then

idX is Function of X, X.

The following propositions are true:

(67) for f being Function of X, X holds dom f = X & rng f C X,

(68) for f being Function
st dom f = X & rng f C X holds f is Function of X, X,

(69) for f being Function of X, X st z € X holds f.z € X,
(70) for f,g being Function of X, X st € X holds (¢ f).z = g.(f.x),
(71) for f being Function of X, X

for g being Function of X, Y st Y #0 & 2 € X holds (g f).x = g.(f .x),

(72) for f being Function of X,Y
for g being Function of Y)Y st Y A0 & 2 € X holds (¢ - f).z = g.(f.2),



FUNCTIONS FROM A SET TO A SET 159
(73) for f,g being Function of X, X
strng f = X & rmgg = X holds g (g f) = X,
(74) for f being Function of X, X holds f- (idX) = f & (id X) - f = f,
(75)  for f,g being Function of X, X st g- f = f & rng f = X holds g = id X,
(76) for f,g being Function of X, X st f-g = f & fis_one-to-one holds g = id X,

(77) for f being Function of X, X holds f is_one-to-one
iffforzlax2staxl €e X & 22€ X & f.21 = f.22 holds z1 = z2,

78 for f being Function of X, X holds f° P C X.
(78) g

The arguments of the notions defined below are the following: X which is an object
of the type reserved above; f which is an object of the type Function of X, X; P which
is an object of the type reserved above. Let us note that it makes sense to consider the

following functor on a restricted area. Then

feP is Subset of X.

One can prove the following propositions:

(79) for f being Function of X, X holds f ° X = ng f,
(80) for f being Function of X, X holds f "' Q C X.

The arguments of the notions defined below are the following: X which is an object
of the type reserved above; f which is an object of the type Function of X, X; @ which
is an object of the type reserved above. Let us note that it makes sense to consider the
following functor on a restricted area. Then

ftQ is Subset of X.

Next we state two propositions:
(81) for f being Function of X, X st rng f = X holds f° (f ' X) = X,
(82) for f being Function of X, X holds f ! (f° X) = X.

Let us consider X. The mode

Permutation of X,

which widens to the type Function of X, X, is defined by

it is_one-to-one & rngit = X.
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Next we state three propositions:

(83) for f being Function of X, X
holds f is Permutation of X iff fis_one-to-one & rng f = X

(84) for f being Permutation of X holds f is_one-to-one & rng f = X,

(85) for f being Permutation of X
forzla2stzl € X & 22 € X & f.x1 = f.22 holds z1 = z2.

The arguments of the notions defined below are the following: X which is an object
of the type reserved above; f, g which are objects of the type Permutation of X. Let
us note that it makes sense to consider the following functor on a restricted area. Then

g-f is Permutation of X.

Let us consider X. Let us note that it makes sense to consider the following functor
on a restricted area. Then

idX is Permutation of X.

The arguments of the notions defined below are the following: X which is an object
of the type reserved above; f which is an object of the type Permutation of X. Let us
note that it makes sense to consider the following functor on a restricted area. Then

ft is Permutation of X.

The following propositions are true:

(86) for f,g being Permutation of X st g- f = g holds f =id X,

(87) for f,g being Permutation of X st g- f =id X holds g = f ™',

(88)  for f being Permutation of X holds (f™!)- f=id X & f- (f™!) =id X,
(89) for f being Permutation of X holds (f ™)™ = f,

(90) for f,g being Permutation of X holds (¢- f) ™' = f.¢g7*,

(91) for f being Permutation of X st PNQ =0 holds f° PN f°Q =0,

(92) for f being Permutation of X
st PC X holds f°(f*P)=P& f(f°P)=P,

(93) for f being Permutation of X holds f° P = (f ") ' P& f*P=(f"°P

In the sequel C, D, E denote objects of the type DOMAIN. The arguments of
the notions defined below are the following: X, D, E which are objects of the type



FUNCTIONS FROM A SET TO A SET 161

reserved above; f which is an object of the type Function of X, D; ¢ which is an object
of the type Function of D, E. Let us note that it makes sense to consider the following

functor on a restricted area. Then

g-f is Function of X, F.

Let us consider X, D. Let us note that one can characterize the mode

Function of X, D

by the following (equivalent) condition:
X =domit & rngit C D.
We now state a number of propositions:

(94) for f being Function of X, D holds dom f = X & rng f C D,

(95) for f being Function
st dom f = X & rng f C D holds f is Function of X, D,

(96) for f being Function of X, D st z € X holds f.x € D,
(97) for f being Function of {«},D holds f.z € D,
(98) for f1,f2 being Function of X, D

st forz st z € X holds fl.2 = f2.2 holds f1 = f2,

(99) for f being Function of X, D
for g being Function of D, E st x € X holds (¢- f).x = g.(f.2),

(100) for f being Function of X, D holds f - (idX) = f & (id D) - f = f,

(101) for f being Function of X, D holds f is_one-to-one
iffforxlx2stxl € X & 22 € X & f.x1 = f.22 holds x1 = 22,

(102) for f being Function of X, D
foryholdsy € f° Piffexsrstr c X & v € P&y = f.x,

103 for f being Function of X, D holds f ° P C D.
(103) g

The arguments of the notions defined below are the following: X, D which are
objects of the type reserved above; f which is an object of the type Function of X,
D; P which is an object of the type reserved above. Let us note that it makes sense to
consider the following functor on a restricted area. Then

feP is Subset of D.
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One can prove the following propositions:

(104) for f being Function of X, D holds f ° X = rng f,

(105) for f being Function of X, D st f ° X = D holds rg (f) = D,
(106)  for f being Function of X, D forz holdsz € f ' Qiffz € X & f.x € Q,
(107) for f being Function of X, D holds f 1 Q C X.

The arguments of the notions defined below are the following: X, D which are
objects of the type reserved above; f which is an object of the type Function of X,
D; @ which is an object of the type reserved above. Let us note that it makes sense to

consider the following functor on a restricted area. Then

ftaQ is Subset of X.

One can prove the following propositions:

(108) for f being Function of X, D holds f ' D = X,

(109) for f being Function of X, D
holds (fory st y € D holds f ™ {y} # 0) iff rng f = D,

(110) for f being Function of X, D holds f ™' (f° X) = X,
(111) for f being Function of X, D st rng f = D holds f ° (f ' D) = D,
(112) for f being Function of X, D

for g being Function of D, Eholds f ' Q C (¢- f) ' (9° Q).

In the sequel ¢ denotes an object of the type Element of C; d denotes an object of
the type Element of D. The arguments of the notions defined below are the following:
C, D which are objects of the type reserved above; f which is an object of the type
Function of C, D; ¢ which is an object of the type reserved above. Let us note that it

makes sense to consider the following functor on a restricted area. Then

f.c is Element of D.

Now we present two schemes. The scheme FuncExD concerns a constant A that has
the type DOMAIN, a constant B that has the type DOMAIN and a binary predicate P
and states that the following holds

ex f being Function of A,B st for 2 being Element of .4 holds Pz, f.z]

provided the parameters satisfy the following conditions:

. for z being Element of A ex y being Element of B st Pz, y],
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. for x being Element of A, y1,y2 being Element of 5
st Pz,y1] & P[z,y2] holds y1 = y2.

The scheme LambdaD concerns a constant A that has the type DOMAIN, a constant
B that has the type DOMAIN and a unary functor F yielding values of the type Element
of B and states that the following holds

ex [ being Function of A,5 st for z being Element of A holds f.x = F(z)

for all values of the parameters.

One can prove the following propositions:

(113) for f1,f2 being Function of C, D st for c holds f1.c = f2.cholds f1 = f2,
(114) (idC).c=c,

(115) for f being Function of C, D
for g being Function of D, E holds (g - f).c = g.(f.c),

(116) for f being Function of C, D
fordholdsd € f° Piffexcstcc P& d = f.c,

(117) for f being Function of C, D forc holds c € f ' Qiff f.c € Q,

(118) for f1,f2 being Function of [ X,Y],Z st
Z+P&forzystee X &yeY holds f1.(z,y) = f2.(x,y) holds f1 = f2,

(119) for f being Function of [ X,Y],Z
stze X &yeY &Z#0Dholds f.(z,y) € Z.

Now we present two schemes. The scheme FuncEz2 concerns a constant A that has
the type set, a constant B that has the type set, a constant C that has the type set and
a ternary predicate P and states that the following holds

ex [ being Function of [.4,B],C st forz,y st z € A& y € B holds P[z,y, f.(z,y)]

provided the parameters satisfy the following conditions:

° forrystre AkyeBexzstzel & Plx,y, 2],
o foray,zlz2stxe A& ye B& Plx,y,21] & Plz,y, 22] holds 21 = 22.

The scheme Lambda?2 concerns a constant A that has the type set, a constant B that
has the type set, a constant C that has the type set and a binary functor F and states
that the following holds

ex [ being Function of [A,B],C st forz,y st v € A& y € Bholds f.(z,y) = F(z,y)
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provided the parameters satisfy the following condition:

o forz,y st x € A& y € Bholds F(z,y) € C.

We now state a proposition
(120) for f1,f2 being Function of [C, D],FE
st for ¢,d holds f1.(c,d) = f2.{(c,d) holds f1 = f2.
Now we present two schemes. The scheme FuncEx2D deals with a constant A that

has the type DOMAIN, a constant B that has the type DOMAIN, a constant C that has
the type DOMAIN and a ternary predicate P and states that the following holds

ex [ being Function of [.4,8],C
st for x being Element of A for y being Element of B holds P[z,y, f.(x,y)]
provided the parameters satisfy the following conditions:
° for x being Element of A

for y being Element of B ex z being Element of C st Pz, y, 2],

° for z being Element of A for y being Element of B
for 21,22 being Element of C st P[z,y, 21] & P|x,y, 22] holds z1 = 22.

The scheme Lambda2D concerns a constant A that has the type DOMAIN, a constant
B that has the type DOMAIN, a constant C that has the type DOMAIN and a binary
functor F yielding values of the type Element of C and states that the following holds

ex f being Function of [.4,8],C
st for z being Element of A for y being Element of B holds f.(z,y) = F(x,y)

for all values of the parameters.
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Summary. The article contains the definition of a finite set based on the
notion of finite sequence. Some theorems about properties of finite sets and finite
families of sets are proved.

The terminology and notation used here are introduced in the following papers: [5], [6],
[4], [2], [1], and [3]. Let A have the type set. The predicate

Ais_ finite is defined by ex p being FinSequence st rngp = A.
For simplicity we adopt the following convention: A, B, C, D, X, Y have the type

set; x, v, z, 1, 2, x3, x4, x5, 6, 7, 8 have the type Any; f has the type Function;
n has the type Nat. The following propositions are true:

(1) Ais finite iff ex p being FinSequence st rngp = A,
(2) for p being FinSequence holds rng pis_finite ,
(3) Segn isfinite,

(4) () is_finite ,

(5) {z} isfinite,

(6) {z,y} isfinite,

(7) {z,y, 2} is_finite

(8) {z1,22,23,24} is finite ,

(9) {z1,22,23,24,25} is_finite ,
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(10) {x1,22,23,24,25,26} is_finite

(11) {x1,22,23,24,25,26,27} is_finite

(12) {z1,22,23,24,25,26,27,28} is_finite ,

(13) A C B & Bis finite implies Ais_finite,

(14) Ais_finite & Bis_finite implies A U Bis_finite,
(15) Ais_ finite implies A N Bis_finite & B N Ais finite,
(16) Ais finite implies A \ Bis_finite,

(17) Ais_finite implies f © Ais finite,

(18) Ais_finite implies for X being Subset-Family of A st X # () exz being set
st x € X & for B being set st B € X holds z C B implies B = .

The scheme Finite deals with a constant A that has the type set and a unary predicate
P and states that the following holds

PlA]

provided the parameters satisfy the following conditions:

. A s finite ,
. P,
. for z,B being set st z € A & B C A & P[B] holds P[B U {x}].

We now state several propositions:

(19) Ais finite & Bis_finite implies [ A, B]is_finite,
(20) Aisfinite & Bis_finite & C'is_finite implies [A, B, C]is finite,
(21) Ais finite & Bis_finite & C'is_finite & D is_finite

implies [ A, B, C, D] is finite,

(22) B # () & [ A, B]isfinite implies A is_finite,

(23) A # 0 & [ A, B]isfinite implies B is_finite,

(24) Ajis_finite iff bool A is_finite,

(25) Ais_finite & (for X st X € A holds X is_finite) iff UAis_ﬁnite,
(26) dom f is_finite implies rng f is_finite,

(27) Y C g f & f ! Yis_finite implies Y is_finite .
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Graphs of Functions.
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Summary. The graph of a function is defined in [1]. In this paper the graph of
a function is redefined as a Relation. Operations on functions are interpreted as the
corresponding operations on relations. Some theorems about graphs of functions
are proved.

The terminology and notation used in this paper have been introduced in the following
papers: [2], [3], [1], and [4]. For simplicity we adopt the following convention: X, X1,
X2,Y, Y1, Y2 denote objects of the type set; z, zl, 22, y, y1, y2, z denote objects of
the type Any; f, f1, f2, g, g1, g2, h, hl denote objects of the type Function. Let
us consider f. Let us note that it makes sense to consider the following functor on a
restricted area. Then

graph f is Relation .

Next we state a number of propositions:

(1) for R being Relation st
for z,yl,y2 st (x,yl) € R & (x,y2) € R holds yl = y2 ex f st graph f = R,

(2) y € rng f iff exx st (x,y) € graph f,
(3) domgraph f = dom f & rnggraph f = rng f,
(4) graph f C [dom f,rng f{,

(5) (for z,y holds (z,y) € graph f1 iff (x,y) € graph f2) implies f1 = f2,
(6) for G being set st G C graph f ex g st graphg = G,

(7) graph f C graph g implies dom f C domg & rng f C rngg,
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(8) graph f C graphg iff dom f C dom g & for z st 2 € dom f holds f.z = g.x,

(9) dom f = dom g & graph f C graph g implies f = g,
(10) (z,2) € graph (g - f) iff exy st (x,y) € graph f & (y,z) € graphg,
(11) (graph f) - (graph g) = graph (g - f),

(12) (x,z) € graph (g - f) implies (z, f.z) € graph f & (f.x,z) € graphg,
(13) graph h C graph f
implies graph (¢ - h) C graph (¢ - f) & graph (h-g) C graph(f - g),
(14) graph g2 C graph gl & graph f2 C graph f1
implies graph (¢2 - f2) C graph (g1 - f1),

(15) ex f st graph f = {(z,y)},

(16) graph f = {(z,y)} implies f.z =y,

(17) graph f = {(z,y)} implies dom f = {z} & g f = {y},
(18) dom f = {z} implies graph f = {(z, f.2)},

(19) (ex f st graph f = {(z1,y1),(x2,y2)}) iff (21 = 22 implies y1 = y2),

(20) ex f st graph f = 0,

(21) graph f = () implies dom f = () & rng f = 0),

(22) g f = § or dom f = () implies graph f = 0,

(23) rng f Ndom g = () implies graph (g - f) = 0,

(24) graphg = ) implies graph (¢ - f) = 0 & graph (f - g) =0,
(25) f is_one-to-one

iff for z1,22,y st (x1,y) € graph f & (22,y) € graph f holds z1 = x2,

(26) graphg C graph f & fis_one-to-one implies g is_one-to-one,
(27) (ex g st graph g = graph f N X) & ex g st graph g = X Ngraph f,
(28) graph h = graph f N graphg

implies domh C dom f Ndom g & rngh C rng f Nrng g,

(29) graphh = graph f Ngraphg & = € domh implies h.x = f.z & h.z = g.x,
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(f is_one-to-one or g is_one-to-one) & graph h = graph f N graph g

implies h is_one-to-one,
dom f Ndom g = () implies ex h st graph h = graph f U graph g,

graph f C graphh & graphg C graphh
implies ex h1 st graph hl = graph f U graph g,

graphh = graph (f) U graph (g)
implies domh = dom f Udom g & rngh = rng f Urng g,

x € dom f & graph h = graph f U graph g implies h.x = f.z,
x € dom g & graph h = graph f U graph g implies h.z = g.x,
x € dom h & graph h = graph f U graph g implies h.z = f.z or h.x = g.x,

f is_one-to-one
& gis_one-to-one & graph h = graph f U graphg & rng f Nmgg = ()

implies h is_one-to-one,
ex g st graph g = graph (f) \ X,
(x,y) € graphid (X) iff v e X &z =y,
graphid X = A X,
x € X iff (z,z) € graphid (X),

(x,y) € graph (f -1d (X)) iff z € X & (x,y) € graph f,
(z,y) € graph (id (Y) - f) iff (z,y) € graph f &y €Y,
graph (f -id (X)) C graph f & graph (id (X) - f) € graph (f),
graphid () = 0,
graph f = () implies f is_one-to-one,

f is_one-to-one implies for 2,y holds (y, ) € graph (f ') iff (x,y) € graph f,
f is_one-to-one implies graph (f ') = (graph f)~,
graph f = () implies graph (f ') = 0,

(z,y) € graph (f | X) iff v € X & (x,y) € graph f,
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(51) graph (f | X) = (graph f) [ X,
(52) redomf &z e Xiff (z, f.x) € graph (f | X),
(53) graph (f | X) C graph f,

(54) graph ((f | X) - h) C graph(f - h) & graph (g - (f | X)) C graph (g - f),

(55) graph (f | X) = graph (f) N [X, g f{,
(56) X CY implies graph (f [ X) € graph (f [ Y),
(57) graph f1 C graph f2 implies graph (f1| X) C graph (f2 | X),

(58) graph f1 C graph f2 & X1 C X2 implies graph (f1| X1) C graph (f2 | X2),

(59) graph (f [ (X UY')) = graph (f | X) Ugraph (f|Y),
(60) graph (f [ (X NY')) = graph (f | X) Ngraph (f |Y),
(61) graph (f [ (X \'Y)) = graph (f | X) \ graph (f | V),
(62) graph (f[0) =90,

(63) graph f = () implies graph (f | X) = 0,

(64) graph g C graph f implies f | domg = g,

(65) (z,y) € graph (Y | f) iffy € Y & (z,y) € graph f,
(66) graph (Y| f) =Y | (graph f),

(67) wedomf& f.x €Y iff (z, f.x) € graph (Y | f),
(68) graph (Y| f) C graph (f),

(69) graph ((Y'[ f) - h) C graph (f - h) & graph (g - (Y| f)) C graph(g- f),

(70) graph (Y | f) = graph (f) N fdom f,Y],
(71) X CY implies graph (X | f) C graph (Y| f),
(72) graph f1 C graph f2 implies graph (Y| f1) C graph (Y | f2),

(73) graph f1 C graph f2 & Y1 C Y2 implies graph (Y1 | f1) C graph (Y2 | f2),
(74) graph (X UY) [ f) = graph (X | f) U graph (Y| f),

(75) graph (X NY) | f) = graph (X | f) Ngraph (Y| f),
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(76) graph (X \Y) | f) = graph (X | f) \ graph (Y| f),

(77) graph (0| f) = 0,

(78) graph f = () implies graph (Y | f) = 0,

(79) graph g C graph f & fis_one-to-one impliesrngg | f = g,
(80) ye f°Xiffexzst (z,y) € graph f & x € X,

(81) f° X = (graph f) ° X,

(82) graph f = () implies f ° X = 0,

(83) graph f1 C graph f2 implies f1° X C f2° X,

(84) graph f1 C graph f2 & X1 C X2 implies f1° X1 C f2° X2,
(85) r€ f 1Y iffexyst (z,y) € graph f & y € Y,

(86) f7Y = (graph f) 'Y,

(87) r€ fYiff (x,f.x) € graph f & f.x €Y,

(88) graph f = () implies f 'Y = 0,

(89) graph f1 C graph f2 implies f1 'Y C f271Y,

(90) graph f1 C graph f2 & Y1 C Y2 implies f1 Y1 C f2°1v2.
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Summary. In this paper we define binary and unary operations on domains.
We also define the following predicates concerning the operations: ... is commu-
tative, ... is associative, ... is the unity of ..., and ... is distributive wrt .... A
number of schemes useful in justifying the existence of the operations are proved.

The articles [3], [1], and [2] provide the notation and terminology for this paper. The
arguments of the notions defined below are the following: f which is an object of the
type Function; a, b which are objects of the type Any. The functor

f-(a,b),
with values of the type Any, is defined by
it = f.{(a,b).
One can prove the following proposition
(1) for f being Function for a,b being Any holds f.(a,b) = f.{(a,b).

In the sequel A, B, C will denote objects of the type DOMAIN. The arguments
of the notions defined below are the following: A, B, C' which are objects of the type
reserved above; f which is an object of the type Function of [ A, B], C; a which is an

object of the type Element of A; b which is an object of the type Element of B. Let
us note that it makes sense to consider the following functor on a restricted area. Then

f-(a,b) is Element of C.

The following proposition is true
(2) for f1,f2 being Function of [A, B],C st
for a being Element of A
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for b being Element of B holds f1.(a,b) = f2.(a,b)
holds f1 = f2.
We now define two new modes. Let us consider A.

Unary_Operation of A stands for Function of A, A.

Binary_Operation of A stands for Function of [ 4, A],A.
We now state a proposition

(3) for f being Function of A, A holds f is Unary_Operation of A.

In the sequel w denotes an object of the type Unary_Operation of A. Next we
state a proposition

4) for f being Function of [ A, A],A holds f is Binary_Operation of A.

In the article we present several logical schemes. The scheme UnOpEx concerns a
constant A that has the type DOMAIN and a binary predicate P and states that the
following holds

ex u being Unary_Operation of A st for x being Element of A holds Pz, u.x]

provided the parameters satisfy the following conditions:

. for 2 being Element of A ex y being Element of A st Pz, y],
. for z,y1,y2 being Element of A st P[z,y1] & P[z, y2] holds y1 = y2.

The scheme UnOpLambda concerns a constant A that has the type DOMAIN and a
unary functor F yielding values of the type Element of A and states that the following
holds

ex u being Unary_Operation of A st for z being Element of A holds u.x = F(z)

for all values of the parameters.
For simplicity we adopt the following convention: o, o’ will have the type Binary_Operation
of A; a, b, c, e, el, e2 will have the type Element of A. Let us consider A, o, a, b. Let

us note that it makes sense to consider the following functor on a restricted area. Then

o.(a,b) is Element of A.

Now we present two schemes. The scheme BinOpFEx concerns a constant A that has
the type DOMAIN and a ternary predicate P and states that the following holds

ex o being Binary_Operation of A
st for a,b being Element of .4 holds P[a,b,0.(a,b)]
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provided the parameters satisfy the following conditions:

. for 2,y being Element of A ex z being Element of A st P|x, y, 2],

° for z,y being Element of A
for 21,22 being Element of A st P[z,y, z1] & P|x,y, 22| holds z1 = 22.

The scheme BinOpLambda concerns a constant A that has the type DOMAIN and a

binary functor F yielding values of the type Element of A and states that the following
holds

ex o being Binary_Operation of A

st for a,b being Element of A holds o.(a,b) = F(a,b)

for all values of the parameters.

We now define three new predicates. Let us consider A, o. The predicate

ois_commutative is defined by for a,b holds o.(a,b) = 0.(b, a).
The predicate
ois_associative is defined by for a,b,c holds o.(a,0.(b,c)) = 0.(0.(a,b),c).
The predicate
ois_an_idempotentOp is defined by for a holds 0.(a,a) = a.

Next we state three propositions:

(5) ois_commutative iff for a,b holds o.(a,b) = 0.(b, a),
(6) ois_associative iff for a,b,c holds 0.(a,0.(b,¢)) = 0.(0.(a,b),c),
(7) ois_an_idempotentOp iff for a holds o.(a,a) = a.

We now define two new predicates. Let us consider A, e, o. The predicate
e is_a_left_unity_wrt o is defined by for a holds o.(e,a) = a.
The predicate
e is_a_right_unity_wrt o is defined by fora holds o.(a,e) = a.
Let us consider A, e, o. The predicate
e is_a_unity_wrt o is defined by e is_a_left_unity_wrt o & e is_a_right_unity_wrt o.
We now state a number of propositions:

(8) e is_a_left_unity_wrt o iff for a holds o.(e, a) = a,
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9) e is_a_right_unity_wrt o iff for a holds o.(a, e) = q,
(10) e is_a_unity_wrt o iff e is_a_left_unity_wrt o & e is_a_right_unity_wrt o,
(11) e is_a_unity_wrt o iff for a holds o.(e,a) = a & 0.(a, e) = a,

(12)  ois_commutative implies (e is_a_unity_wrt o iff for a holds o.(e, a) = a),
(13)  ois_commutative implies (e is_a_unity_wrt o iff for @ holds o.(a, €) = a),
(14) ois_commutative implies (e is_a_unity_wrt o iff e is_a_left_unity_wrt o),
(15)  ois_commutative implies (e is_a_unity_wrt o iff e is_a_right_unity_wrt o),
(16) ois_commutative implies (e is_a_left_unity_wrt o iff e is_a_right_unity_wrt o),
(17) el is_a_left_unity_wrt o & €2 is_a_right_unity_wrt o implies el = €2,
(18) el is_a_unity_wrt o & €2 is_a_unity_wrt o implies el = e2.

Let us consider A, o. Assume that the following holds

ex e st e is_a_unity_wrt o.

The functor

the_unity_wrt o,
with values of the type Element of A, is defined by

it is_a_unity_wrt o.

One can prove the following proposition
(19) (ex e st e is_a_unity_wrt o)
implies for e holds e = the_unity_wrt o iff e is_a_unity_wrt o.
We now define two new predicates. Let us consider A, o', 0. The predicate

o' is_left_distributive_wrt o

is defined by
for a,b,c holds o'.(a,0.(b,c)) = 0.(0".(a,b),0 .(a,c)).
The predicate
o' is_right_distributive_wrt o
is defined by
for a,b,c holds o'.(0.(a,b),c) = 0.(0o".(a, c),0 . (b, c)).
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Let us consider A, o', 0. The predicate

o' is_distributive_wrt o

is defined by
o' is_left_distributive_wrt o & o’ is_right_distributive_wrt o.

We now state several propositions:

(20) o' is_left_distributive_wrt o
iff for a,b,c holds o' .(a, 0.(b,c)) = 0.(0.(a,b),0’ .(a,c)),

(21) o' is_right_distributive_wrt o
iff for a,b,c holds o’.(0.(a,b),c) = 0.(0'.(a, c),0’ . (b, c)),

(22) o' is_distributive_wrt o

iff o’ is_left_distributive_wrt o & o’ is_right_distributive_wrt o,

(23) o' is_distributive_wrt o iff for a,b,c holds
o' .(a,0.(b,c)) = 0.(d".(a,b),0 .(a,c)) & o' .(0.(a,b),c) = 0.(d".(a,c),0".(b, ),

(24) o’ is_.commutative implies (o’ is_distributive_wrt o

iff for a,b,c holds o' .(a, 0.(b,c)) = 0.(0.(a,b),0’ .(a,c))),

(25) o' is_.commutative implies (o’ is_distributive_wrt o

iff for a,b,c holds o'.(0.(a,b),c) = 0.(0'.(a,c),0’.(b,c))),

(26) o' is_commutative

implies (o' is_distributive_wrt o iff o’ is_left_distributive_wrt o),

(27) o' is_.commutative

implies (0’ is_distributive_wrt o iff o’ is_right_distributive_wrt o),

(28) o' is_.commutative

implies (o’ is_right_distributive_wrt o iff o’ is_left_distributive_wrt o).

Let us consider A, u, o. The predicate

u is_distributive_wrt o is defined by for a,b holds u.(0.(a,b)) = o0.((u.a),(u.b)).

The following proposition is true

(29) u is_distributive_wrt o iff for a,b holds u.(0.(a, b)) = 0.((u.a),(u.b)).
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Summary. The article includes theorems concerning properties of relations
defined as a subset of the Cartesian product of two sets (mode Relation of X,Y
where XY are sets). Some notions, introduced in [3] such as domain, codomain,
field of a relation, composition of relations, image and inverse image of a set under
a relation are redefined.

The articles [1], [2], and [3] provide the terminology and notation for this paper. For
simplicity we adopt the following convention: A, B, X, X1, Y, Y1, Z will denote
objects of the type set; a, x, y will denote objects of the type Any. Let us consider
X, Y. The mode

Relation of XY,

which widens to the type Relation, is defined by
it C[X,Y].
The following proposition is true

(1) for R being Relation holds R C [ X, Y] iff R is Relation of X,Y.

In the sequel P, R will denote objects of the type Relation of X, Y. The following

propositions are true:

(2) A C Rimplies A C [ X,Y],

(3) A C [X,Y] implies A is Relation of XY,
4) A C R implies A is Relation of XY
(5) [X,Y] is Relation of XY,

1Supported by RPBP I11.24 C1
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(6) a € Rimpliesexz,ysta= (z,y) &z e X &yey,
(7) (z,y) € Rimpliesz € X &y €Y,
(8) z € X &y €Y implies {(z,y)} is Relation of X, Y,

(9) for R being Relation st dom R C X holds R is Relation of X, rng R,
(10) for R being Relation st rng R C Y holds R is Relation of dom R,Y

(11) for R being Relation
st dom R C X & rng R C Y holds R is Relation of X, Y

(12) domRC X &mgRCY,

(13) dom R C X1 implies R is Relation of X1,Y,
(14) rng R C Y1 implies R is Relation of X, Y1,
(15) X C X1 implies R is Relation of X1,Y,

(16) Y C Y1 implies R is Relation of X, Y1,

(17) X C X1&Y CYl1implies R is Relation of X1,Y1.

Let us consider X, Y, P, R. Let us note that it makes sense to consider the following

functors on restricted areas. Then

PUR is Relation of XY,

PNR is Relation of XY,
P\R is Relation of X, Y.
We now state a proposition
(18) RN[X,Y]=R.
Let us consider X, Y, R. Let us note that it makes sense to consider the following
functors on restricted areas. Then

dom R is Subset of X

rmg R is Subset of Y.
Next we state several propositions:

(19) field R C X UY,

(20) for R being Relation holds R is Relation of dom R,rng R,
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(21) dom R C X1 & rng R C Y1 implies R is Relation of X1,Y1,
(22) (forz st x € X exy st (z,y) € R) iff dom R = X,
(23) (forysty € Yexaxst (z,y) € R)iff rngR=Y.

Let us consider X, Y, R. Let us note that it makes sense to consider the following
functor on a restricted area. Then

R is Relation of Y, X.
The arguments of the notions defined below are the following: X, Y, Z which are
objects of the type reserved above; P which is an object of the type Relation of X, Y’

R which is an object of the type Relation of Y, Z. Let us note that it makes sense to
consider the following functor on a restricted area. Then

P-R is Relation of X, Z.

One can prove the following propositions:

(24) dom (R") =rmgR & rmg (R") = dom R,
(25) @ is Relation of XY,

(26) R is Relation of ,Y implies R = 0,
(27) R is Relation of X, () implies R = 0,
(28) AX C X, X],

(29) A X is Relation of X, X,

(30) A AC Rimplies A Cdom R & A C rng R,
(31) A X C Rimplies X =dom R & X CrngR,
(32) AY C RimpliesY CdomR & Y =rngR.

Let us consider X, Y, R, A. Let us note that it makes sense to consider the following

functor on a restricted area. Then

R|A is Relation of X, Y.

Let us consider X, Y, B, R. Let us note that it makes sense to consider the following
functor on a restricted area. Then

B|R is Relation of X, Y.

The following four propositions are true:

(33) R| X1 is Relation of X1,Y,
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(34) X C X1implies R| X1 =R,
(35) Y1| R is Relation of X, Y1,
(36) Y CYlimpliesY1| R =R.

Let us consider X, Y, R, A. Let us note that it makes sense to consider the following

functors on restricted areas. Then

R° A is Subset of Y,

R'A is Subset of X.

Next we state three propositions:

(37) R°ACY &R 1TACK,
(38) R°X =mgR& R'Y =domR,
(39) R°(R1'Y)=mgR& R (R°X)=domR.

The scheme Rel_On_Set_Ez deals with a constant A that has the type set, a constant
B that has the type set and a binary predicate P and states that the following holds

ex R being Relation of A,B st for z,y holds (z,y) € Riff x € A& y € B & Pz, 3]

for all values of the parameters.

Let us consider X.

Relation of X stands for Relation of X, X.

We now state three propositions:

(40) for R being Relation of X, X holds R C [ X, X] iff R is Relation of X
(41) [X, X is Relation of X,
(42) for R being Relation of X, X holds R is Relation of X.

In the sequel R denotes an object of the type Relation of X.  One can prove the
following propositions:

(43) A X is Relation of X,
(44) A X C Rimplies X =domR & X =rmgR,
(45) R (AX)=R& (AX)-R=R.

For simplicity we adopt the following convention: D, D1, D2, E, F denote objects
of the type DOMAIN; R denotes an object of the type Relation of D, E; z denotes
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an object of the type Element of D; y denotes an object of the type Element of F.
We now state a proposition

(46) AD#Q.

Let us consider D, E, R. Let us note that it makes sense to consider the following

functors on restricted areas. Then
dom R is Element of bool D,
rng R is Element of bool E.
Next we state several propositions:
(47) for x being Element of D
holds z € dom R iff ex y being Element of E st (z,y) € R,
(48) for y being Element of F
holds y € rng R iff ex « being Element of D st (z,y) € R,
(49) for x being Element of D
holds = € dom R implies exy being Element of F st y € rng R,
(50) for y being Element of F

holds y € rng R implies ex x being Element of D st x € dom R,

(51) for P being Relation of D, F, R being Relation of E, F’
for x being Element of D, z being Element of F’
holds (z,z) € P - R iff exy being Element of E st (z,y) € P & (y,2) € R.

Let us consider D, E, R, D1. Let us note that it makes sense to consider the following

functors on restricted areas. Then
R° D1 is Element of bool E,
R D1 is Element of bool D.
We now state two propositions:
(52) y € R° D1 iff ex x being Element of D st (z,y) € R & x € DI,
(53) r € R™' D2 iff exy being Element of E st (z,y) € R & y € D2.

The scheme Rel On_Dom_FEx concerns a constant 4 that has the type DOMAIN, a
constant B that has the type DOMAIN and a binary predicate P and states that the
following holds

ex R being Relation of A,B st for z being Element of A,y being Element of B
holds (z,y) e Riff x € A& y € B & Pz, y]

for all values of the parameters.
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Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union
and difference. This condition is equivalent to being closed under symmetric dif-
ference and one of the following operations: union, intersection or difference. We
introduce the set of all finite subsets of a set A, denoted by Fin A. The mode Finite
Subset of a set A is introduced with the mother type: Element of Fin A. In con-
sequence, “Finite Subset of ...” is an elementary type, therefore one may use such
types as “set of Finite Subset of A”, “[(Finite Subset of A), Finite Subset of A]”,
and so on. The article begins with some auxiliary theorems that belong really to
[5] or [1] but are missing there. Moreover, bool A is redefined as a SET DOMAIN,
for an arbitrary set A.

The articles [4], [5], [3], and [2] provide the notation and terminology for this paper. In
the sequel X, Y will denote objects of the type set.  The following propositions are

true:

(1) X misses Y impliess X \Y =X &Y\ X =Y,

(2) X misses Y implies (X UY)\Y =X & (XUY)\X =Y,
(3) XUY=X-(YV\X),

(4) XUy =X=Y=XnY,

(5) X\Y=X-(XnY),

(6) XNY=X-Y = (XUY),

(7) (for x being set st x € X holds z € V) implies X C Y.

'Supported by RPBP.I11-24.C1.
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Let us consider X. Let us note that it makes sense to consider the following functor

on a restricted area. Then

bool X is SET_DOMAIN.

The following proposition is true

(8) for Y being Element of bool X holds Y C X.

The mode
BOOLE_DOMAIN,

which widens to the type SET_DOMAIN, is defined by

for XY being Element of it holds X UY € it & X \ Y € it.

The following proposition is true
9) for A being SET_DOMAIN holds A is BOOLE_DOMAIN
iff for XY being Element of A holds X UY € A& X \Y € A.

In the sequel A will denote an object of the type BOOLE_DOMAIN. One can
prove the following propositions:

(10) XeA&Y eAimpliesXUY e A& X\Y € A,
(11) X is Element of A & Y is Element of A implies X UY is Element of A,
(12) X is Element of A & Y is Element of A implies X \ Y is Element of A.

The arguments of the notions defined below are the following: A which is an object
of the type reserved above; X, Y which are objects of the type Element of A. Let us
note that it makes sense to consider the following functors on restricted areas. Then

XUY is Element of A,

X\Y is Element of A.
The following propositions are true:

(13) X is Element of A & Y is Element of A implies X NY is Element of A,
(14) X is Element of A & Y is Element of A implies X — Y is Element of A,

(15) for A being SET_DOMAIN st
for XY being Element of Aholds X ~ Y e A& X\Y € A
holds A is BOOLE_DOMAIN,
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(16) for A being SET_DOMAIN st
for XY being Element of Aholds X ~Y € A& XNY €A
holds A is BOOLE_DOMAIN,

(17) for A being SET_DOMAIN st
for XY being Element of Aholds X ~Y € A& XUY €A
holds A is BOOLE_DOMAIN.

The arguments of the notions defined below are the following: A which is an object
of the type reserved above; X, Y which are objects of the type Element of A. Let us
note that it makes sense to consider the following functors on restricted areas. Then

xXny is Element of A,

XY is Element of A.

We now state four propositions:

(18) 0eA,
(19) () is Element of A,
(20) bool A is BOOLE_DOMAIN

(21) for A,B being BOOLE_DOMAIN holds AN B is BOOLE_DOMAIN.

In the sequel A, B will denote objects of the type set. Let us consider A. The
functor
Fin A,

with values of the type BOOLE_DOMALIN, is defined by

for X being set holds X € it iff X C A & X is_finite.

The following propositions are true:

(22) B € FinAiff B C A & Bisfinite,
(23) A C B implies Fin A C Fin B,
(24) Fin (A N B) = Fin A N Fin B,
(25) Fin A UFin B C Fin (AU B),
(26) Fin A C bool A,

(27) Ais_finite implies Fin A = bool 4,

(28) Fin = {0}.
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Let us consider A.

Finite_Subset of A stands for Element of Fin A.

Next we state a proposition

(29) for X being Element of Fin A holds X is Finite_Subset of A.

The arguments of the notions defined below are the following: A which is an object
of the type reserved above; X, Y which are objects of the type Finite_Subset of A. Let

us note that it makes sense to consider the following functors on restricted areas. Then

XuYy is Finite_Subset of A,

XnY is Finite_Subset of A,
X\Y is Finite_Subset of A,
XY is Finite_Subset of A.

One can prove the following propositions:

(30) for X being Finite_Subset of A holds X is_finite,
(31) for X being Finite_Subset of A holds X C A,

(32) for X being Finite_Subset of A holds X is Subset of A,
(33) () is Finite_Subset of A,

(34) Ais finite implies for X being Subset of A holds X is Finite_Subset of A.
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Summary. The article includes schemes of defining by structural induction,
and definitions and theorems related to: the set of variables which have free occur-
rences in a ZF-formula, the set of all valuations of variables in a model, the set of all
valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula
in a model by a valuation, the validity of a ZF-formula in a model, the axioms of
ZF-language, the model of the ZF set theory.

The articles [6], [7], [3], [1], [4], [5], and [2] provide the notation and terminology for this
paper. For simplicity we adopt the following convention: H, H’ will have the type
ZF-formula; x, y, z will have the type Variable; a, b, ¢ will have the type Any; A, X
will have the type set. In the article we present several logical schemes. The scheme
ZFsch_ex deals with a binary functor F, a binary functor G, a unary functor H, a binary
functor Z, a binary functor J and a constant 4 that has the type ZF-formula, and states
that the following holds

exa,A st (for z,y holds (z=y,F(x,y)) € A& (xey,G(z,y)) € A) & (A,a) € A&
for H.a st (H,a) € A holds (H is_a_equality implies a = F(Var, H,Vars H)) &
(H is_a_membership implies a = G(Var; H,Vara H)) &

(H isnegative implies ex b st a = H(b) & (the_argument_of H,b) € A) &

(H is_conjunctive implies ex b,c
st a = Z(b, ¢) & (the left_argument_of H,b) € A & (the_right_argument_of H,c) € A)
& (H is_universal

implies ex b,z st = bound_-in H & a = J(z,b) & (the_scope_of H,b) € A)

for all values of the parameters.
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The scheme ZFsch_uniq deals with a binary functor F, a binary functor G, a unary
functor H, a binary functor Z, a binary functor 7, a constant A that has the type
ZF-formula, a constant B and a constant C and states that the following holds

B=C

provided the parameters satisfy the following conditions:

e ex Ast (forz,y holds (z=y,F(x,y)) € A& (zey,G(z,y)) € A) & (A,B) e A
& for H,a st (H,a) € A holds
(H is_a_equality implies a = F(Vary H,Vary H)) &
(H is_.a_membership implies a = G(Var; H,Vars H)) &
(H isnegative implies ex b st a = H(b) & (the_argument_of H,b) € A) &
(H is_conjunctive implies ex b,c st a = Z(b, ¢)
& (the_left_argument_of H,b) € A & (the_right_argument_of H,c) € A)
& (H is_universal

implies ex b,z st x = bound_in H & a = J(z,b) & (the_scope_of H,b) € A),

o ex A st (forz,y holds (x=y,F(z,y)) € A& (rey,G(z,y)) € A) & (AC) € A
& for H,a st (H,a) € A holds
(H is_a_equality implies a = F(Vary H,Vary H)) &
(H is_a_membership implies a = G(Vary H,Vary H)) &
(H is_negative implies ex b st a = H(b) & (the_argument_of H,b) € A) &
(H is_conjunctive implies ex b,c st a = Z(b, ¢)
& (the left_argument_of H,b) € A & (the_right_argument_of H,c) € A)
& (H is_universal

implies ex b,z st x = bound_in H & a = J(z,b) & (the_scope_of H,b) € A).

The scheme ZFsch_result deals with a binary functor F, a binary functor G, a unary
functor H, a binary functor Z, a binary functor 7, a constant A that has the type
ZF-formula and a unary functor K and states that the following holds

(Ais_a_equality implies K(A) = F(Var; A, Vary A)) &
(Ais_a_membership implies K (A) = G(Vary A, Vars A)) &
(Ais_negative implies K(A) = H(/(the_argument_of A))) &
(Ais_conjunctive implies for a,b st
a = K(the_ left_argument_of A) & b = KC(the_right_argument_of A)
holds £(A) = Z(a, b))

& (Ais_universal implies K(A) = J(bound_in A,KC(the_scope_of A)))
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provided the parameters satisfy the following condition:

o for H',a holds a = K(H') iff ex A st
(for z,y holds (z=y,F(z,y)) € A& (xey,G(z,y)) € A) & (H a) e A&
for H,a st (H,a) € A holds (H is_a_equality implies a = F(Var; H,Vary H))
& (H is_a_membership implies a = G(Var; H,Vars H)) &
(H isnegative implies ex b st o = H(b) & (the_argument_of H,b) € A) &
(H is_conjunctive implies ex b,c st a = Z(b, ¢)
& (the_ left_argument_of H,b) € A & (the_right_argument_of H,c) € A)
& (H is_universal

implies ex b, st = bound_in H & a = J(z,b) & (the_scope_of H,b) € A).

The scheme ZFsch_property concerns a binary functor F, a binary functor G, a unary
functor H, a binary functor Z, a binary functor J, a unary functor I, a constant A4 that
has the type ZF-formula and a unary predicate P and states that the following holds

PIE(A)]
provided the parameters satisfy the following conditions:

. for H',a holds a = K(H') iff ex A st
(for z,y holds (z=y,F(z,y)) € A& (xey,G(z,y)) € A) & (H a) e A&
for H,a st (H,a) € A holds (H is_a_equality implies a = F(Var; H,Vary H))
& (H is_a_membership implies a = G(Var; H,Vars H)) &
(H isnegative implies ex b st o = H(b) & (the_argument_of H,b) € A) &
(H is_conjunctive implies ex b,c st a = Z(b, ¢)
& (the_ left_argument_of H,b) € A & (the_right_argument_of H,c) € A)
& (H is_universal

implies exb,x st x = bound_in H & a = J(z,b) & (the_scope_of H,b) € A),

. for z,y holds P[F(z,y)] & P[G(z,y)],
. for a st P|a] holds P[H(a)],

. for a,b st Pla] & P[b] holds P[Z(a, b)),
. for a,z st P[a] holds P[J (z, a))].

Let us consider H. The functor
Free H,



194 (GRZEGORZ BANCEREK

yields the type Any and is defined by
ex A st (for z,y holds (z=y,{z,y}) € A& (x ey {z,y}) € A) & (H,it) € A &
for H',a st (H',a) € A holds (H'is_a_equality implies a = {Var; H',Varo H'}) &
(H'is_a_membership implies a = {Var; H' ,\Vars H'}) &
(H' is_negative implies ex b st a = b & (the_argument_of H',b) € A) &
(H' is_conjunctive implies ex b,c
sta= U{b, c} & (the_left_argument_of H',b) € A & (the_right_argument_of H',c) € A)
& (H'is_universal
implies ex b,z st = bound_in H' & a = (U{b}) \ {z} & (the_scope_of H',b) € A).

Let us consider H. Let us note that it makes sense to consider the following functor
on a restricted area. Then

Free H is set of Variable.

One can prove the following proposition
(1) for H holds (H is_a_equality implies Free H = {Var, H,Vars H}) &
(H is_a_membership implies Free H = {Var; H,Varo H}) &
(H is_negative implies Free H = Free the_argument_of H) &
(H is_conjunctive implies
Free H = Freethe_left_argument_of H U Free the_right_argument_of H)
& (H is_universal implies Free H = (Free the_scope_of H) \ {bound_in H}).

Let D have the type SET_DOMAIN. The functor
VAL D,

with values of the type DOMAIN, is defined by

a € it iff a is Function of VAR ,D.

The arguments of the notions defined below are the following: D1 which is an object
of the type SET_DOMAIN; f which is an object of the type Function of VAR, D1;
x which is an object of the type reserved above. Let us note that it makes sense to
consider the following functor on a restricted area. Then

f.x is Element of D1.

For simplicity we adopt the following convention: FE will denote an object of the
type SET_DOMAIN; f, g will denote objects of the type Function of VAR, F; vl,
v2, v3, v4, v5 will denote objects of the type Element of VAL E. Let us consider H,
E. The functor

St (H, E),



MODELS AND SATISFIABILITY 195

yields the type Any and is defined by

ex A st
(for z,y holds (x=y,{ vl : for f st f =vl holds f.x = f.y}) € A
& (rey{v2:for fst f=v2holds f.x € f.y}) € A)
& (H,it) € A & for H',a st (H',a) € A holds
(H'is_a_equality
implies a = {v3 : for f st f = v3 holds f.(Vary H') = f.(Vars H') })
&
(H' is_a_membership
implies a = {v4 : for f st f = v4 holds f.(Var; H') € f.(Vars H') })
& (H'is_negative implies exb st a = (VAL E) \ U{b} & (the_argument_of H',b) € A)
&
(H' is_conjunctive implies ex b,c st a = (U{b}) N U{c}

& (the_left_argument_of H' b) € A & (the_right_argument_of H',c) € A)
& (H'is_universal implies ex b,z st z = bound.in H' &
a={v5:
for X, fst X=0b& f =15
holds f € X & forgst fory st g.y # f.yholds z =y holds g € X }
& (the_scope_of H' b) € A).

Let us consider H, E. Let us note that it makes sense to consider the following
functor on a restricted area. Then

St (H, E) is Subset of VAL E.

We now state a number of propositions:

(2) forz,y,f holds f.x = f.yiff f € St (x=y,E),
(3) forz,y,f holds f.x € f.yiff f € St(z ey,FE),
(4) for H,f holds not f € St (H, E) iff f € St (- H,E),

(5) for H.H',f holds f € St (H,E) & f € St(H',E) iff f € St (H A H'|E),
(6) for z,H,f holds
f€St(H,E) & (for g st fory st g.y # f.y holds x = y holds g € St (H, E))
iff feSt(V(x,H),E),

(7) H is_a_equality
implies for f holds f.(Vary H) = f.(Vary H) iff f € St (H, E),
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(8) H is_a_membership
implies for f holds f.(Vary H) € f.(Varo H) iff f € St (H, E),

9) H is_negative
implies for f holds not f € St (the_argument_of H,FE) iff f € St (H, E),

(10) H is_conjunctive implies for f holds
f € St (the_left_argument_of H,F) & f € St (the_right_argument_of H,F)
iff f € St (H, F),

(11) H is_universal implies for f holds
f € St (the_scope_of H,E) & (for g
st fory st g.y # f.y holds bound_in H = y holds g € St (the_scope_of H,E))
iff f € St(H, E).
The arguments of the notions defined below are the following: D which is an object

of the type SET_DOMAIN; f which is an object of the type Function of VAR, D; H

which is an object of the type reserved above. The predicate

D fEH is defined by feSt(H, D).

Next we state a number of propositions:

(12) forE,fax,yholds E, f Ex=yiff f.x = f.y,

(13) forE fayholds E, f Exeyiff f.x € f.y,

(14) forE,fH holds E, f = H iff notFE, f = - H,

(15) for E,fHH holds E,f F HANH ifE,fEH&E,fEH',
(16) for E,f,H,x holds

E fE=EV(z,H)iff forgst foryst g.y # f.y holds z =y holds FE, g = H,
(17) forE,f HH holds E,f E HVH ifE,f=Hor E,f = H,
(18)  forE,f,HH holds E, f = H = H'iff (E, f = H implies E, f = H'),
(19) for E,f,H,H holds E, f = H < H'iff (E, f = Hiff B, f = H'),

(20) for E.f,H,x holds
E fE3(z,H)iffexgst (forystg.y# f.yholdsz =y) & E,g E H,

(21) for E,f.x
for e being Element of Fexgst g.x =e & forzst z 22 holds g.z = f.z,
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(22) E. fEV(xy H)
iff forgstforzstg.2# f.zholdsz =zory=2holds F,g F H,

iffexgst (forzstg.z# f.zholdsx=zory=2)& E,g = H.
Let us consider E, H. The predicate

EEH is defined by for f holds E, f = H.

One can prove the following propositions:
(24) EEHifffor fholds E, f = H,
(25) EEV(x,H)If EEH.

We now define five new functors. The constant the_axiom_of_extensionality has the
type ZF-formula, and is defined by

it=V(£0,£1V(£2£2e£0=E82e£1)=¢£0=£1).
The constant the_axiom_of_pairs has the type ZF-formula, and is defined by
it =V (€0,61,3(E2V (£33 €26 (€3=€0V EB=£1)))).
The constant the_axiom_of_unions has the type ZF-formula, and is defined by
it=V(£0,3(E1V(€2,£2e¢€1=3(£3,£2e£3NE3€£0)))).
The constant the_axiom_of_infinity has the type ZF-formula, and is defined by
it=3(£0,
€1,€1€€0AY(£2,£2€£0=T(£3,63eE0NE3=E62AV (E4,64e£2=E4€E3)))).
The constant the_axiom_of_power_sets has the type ZF-formula, and is defined by
it=V(£0,3(E1,V(£2,£2ef1 &V (£3£3el2=E3€£0)))).
Let H have the type ZF-formula. Assume that the following holds
{£0,£1,£2} misses Free H.
The functor
the_axiom_of_substitution_for H,
with values of the type ZF-formula, is defined by
it =
V(£3,3(E0V(E4,H < E4=£0)))=>V(€1,3(62,V(£4,64e€2<T(€3,£3e£1 N H)))).
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We now state several propositions:

(26) the_axiom_of_extensionality =V (£0,£1,V(£2,£2€£0&£2e¢81)=£0=£1),

(27)  the_axiom_of_pairs =V (£0,£1,3(£2,V(£3,£3€e£2< (£3=£0V E3=£1)))),

(28) the_axiom_of_unions
=V(£0,3(1,V(£2£2e£1 =3 (£3,£2e£3NE3£0)))),

(29) the_axiom_of_infinity = 3(£0,£1,£1e {0 AV (€2,

€2€£0=>3(€3,£3eE0NE3=E62AV (€4, 4e2=E4¢€£3)))),

(30) the_axiom_of_power_sets

=V(£0,3({1V(£2£2e{1 = V(£3,£3€£2=(3€£0)))),

(31) {£0,£1,£2} misses Free H implies the_axiom_of_substitution_for H =
v(£3,3(£0,
V(€4 H & E4-€0)) =V (€13 (E2V (€4,£4 e €20 I(E3E3 £ 1A H)))),

Let us consider E. The predicate

FEis_a_model_of _ZF

is defined by

Eis_e-transitive & E |= the_axiom_of_pairs & E = the_axiom_of_unions &
E = the_axiom of_infinity & E = the_axiom_of_power _sets
& for H st {£0,£1,£ 2} misses Free H holds E |= the_axiom_of_substitution_for H.

The following proposition is true

(32) Eis_a_model of ZF iff Fis_e-transitive & E |= the_axiom_of_pairs &
E = the_axiom_of_unions & F = the_axiom_of_infinity &
E = the_axiom_of power sets & for H
st {£0,£1,£2} misses Free H holds E |= the_axiom_of_substitution_for H.
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The Contraction Lemma
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Summary. The article includes the proof of the contraction lemma which
claims that every class in which the axiom of extensionality is valid is isomorphic
with a transitive class. In this article the isomorphism (wrt membership relation)
of two sets is defined. It is based on [6].

The articles [7], [8], [4], [1], [5], [3], and [2] provide the terminology and notation for this
paper. For simplicity we adopt the following convention: X, Y, Z denote objects of
the type set; x, y denote objects of the type Any; E denotes an object of the type
SET_DOMAIN; A, B, C denote objects of the type Ordinal; L denotes an object of
the type Transfinite-Sequence; f denotes an object of the type Function; d, d1, d’
denote objects of the type Element of E. Let us consider E, A. The functor

M,u (Ea A)v

with values of the type set, is defined by

exLstit={d:fordlstdl e dexBstBecdomlL & dl EU{L.B}}&domL:A
&forBst Be A
holds L.B={dl :fordstd € dlexC st C € dom(L|B) & d € U{L|B.C}}.

One can prove the following propositions:

(1) M, (E,A)={d:fordlstdledexBst Be A&dleM,(E,B)},

(2) not (exdl st d1 € d) iff d € M, (E,0),
(3) dNECM,(E,A)iffde M, (E,succA),
(4) A C Bimplies M, (E,A) C M, (E, B),
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(5) exAstde M, (E,A),
(6) d €d&deM, (E,A)

impliesd' € M, (E,A) & exBst Be A& d €M, (E,B),

(7) M, (E,A) C B,
(8) exAst E=M, (E,A),
(9) ex f st dom f = F & ford holds f.d = f ° d.

Let us consider f, X, Y. The predicate
f is_€-isomorphism_of X, Y
is defined by
dom f =X & rng f =Y & fis_one-to-one & for z,y

stre X&yeXholds(exZstZ=y&aecZ)iffexZst fiy=2& f.xeZ

Next we state a proposition
(10) f is_e-isomorphism_of X, Y iff dom f = X & rng f =Y & fis_one-to-one &

forzystre X &yeX
holds(exZst Z=y &z c Z)ifexZst f.y=2& f.x e Z.

Let us consider X, Y. The predicate

X, Y are_e-isomorphic is defined by ex f st f is_€-isomorphism_of X,Y.
Next we state two propositions:

(11) X, Y are_e-isomorphic iff ex f st f is_€-isomorphism_of XY,

(12) dom f = E & (ford holds f.d = f © d) implies rng f is_c-transitive .

In the sequel wu, v, w will denote objects of the type Element of . Next we state

two propositions:
(13) FE = the_axiom_of_extensionality

implies for u,v st for w holds w € v iff w € v holds u = v,

(14) E = the_axiom_of_extensionality

implies ex X st X is_e-transitive & F, X are_&-isomorphic.
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Summary. This article is based on “Foundations of Geometry” by Karol
Borsuk and Wanda Szmielew ([1]). The fourth axiom of incidence is weakened.
In [1] it has the form for any plane there exist three non-collinear points in the
plane and in the article for any plane there exists one point in the plane. The
original axiom is proved. The article includes: theorems concerning collinearity
of points and coplanarity of points and lines, basic theorems concerning lines and
planes, fundamental existence theorems, theorems concerning intersection of lines
and planes.

The articles [3], [2], and [4] provide the terminology and notation for this paper. We

consider structures IncStruct, which are systems

{(Points, Lines , Planes, Inc; , Incs , Incs )

where Points, Lines, Planes have the type DOMAIN, Inc; has the type Relation of
the Points, the Lines, Incy has the type Relation of the Points, the Planes, and Incg
has the type Relation of the Lines, the Planes. We now define three new modes. Let
S have the type IncStruct.

POINT of S stands for Element of the Points of S.

LINE of S stands for Element of the Lines of S.
PLANE of S stands for Element of the Planes of S.

In the sequel S will have the type IncStruct; A will have the type Element of
the Points of S; L will have the type Element of the Lines of S; P will have the type
Element of the Planes of S.  The following propositions are true:

(1) A is POINT of S,

(2) L is LINE of S,
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(3) P is PLANE of S.

For simplicity we adopt the following convention: A, B, C, D will denote objects of
the type POINT of S; L will denote an object of the type LINE of S; P will denote
an object of the type PLANE of S; F, G will denote objects of the type Subset of
the Points of S. The arguments of the notions defined below are the following: S which
is an object of the type reserved above; A which is an object of the type POINT of S;
L which is an object of the type LINE of S. The predicate

Aon L is defined by (A, L) € thelnc; of S.

The arguments of the notions defined below are the following: S which is an object
of the type reserved above; A which is an object of the type POINT of S; P which is
an object of the type PLANE of S. The predicate

Aon P is defined by (A, P) € thelnc, of S.

The arguments of the notions defined below are the following: S which is an object
of the type reserved above; L which is an object of the type LINE of S; P which is an
object of the type PLANE of S. The predicate

LonP is defined by (L, P) € thelncs of S.

The arguments of the notions defined below are the following: S which is an object
of the type reserved above; F which is an object of the type set of POINT of S; L
which is an object of the type LINE of S. The predicate

FonlL is defined by for A being POINT of S st A € F holds A on L.

The arguments of the notions defined below are the following: S which is an object
of the type reserved above; F' which is an object of the type set of POINT of S; P
which is an object of the type PLANE of S. The predicate

FonP is defined by for Ast A € F holds A on P.

The arguments of the notions defined below are the following: S which is an object
of the type reserved above; F' which is an object of the type set of POINT of S. The
predicate

Fis linear is defined by exL st FonlL.

The arguments of the notions defined below are the following: S which is an object
of the type reserved above; F' which is an object of the type set of POINT of S. The
predicate

Fis_planar is defined by ex P st Fon P.

Next we state a number of propositions:

4) Aon Liff (A,L) € thelnc, of S,
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(5) Aon Piff (A, P) € thelnc, of S,
(6) Lon Piff (L, P) € thelncs of S,
(7) FonLiffforAst Ac Fholds Aon L,
(8) Fon P iff for Ast A€ F holds Aon P,
9) Fis linear iff ex L st F' on L,
(10) Fis_planar iff ex P st F on P,
(11) {A,B}onLiff Aon L& Bon L,
(12) {A,B,CtonLif Aon L& Bon L& Con L,
(13) {A,B}on Piff Aon P & B on P,
(14) {A,B,C}onPiff Aon P& Bon P & C on P,
(15) {A,B,C,D}on Piff Aon P& Bon P& C on P & D on P,
(16) G C F & F on L implies G on L,
(17) G C F & F on P implies G on P,
(18) FonL& Aon Liff FU{A}on L,
(19) FonP& Aon Piff FU{A} on P,
(20) FUGonLiff FonL & Gon L,
(21) FUGonPiff Fon P& Gon P,
(22) G C F & Fis linear implies G is_linear,
(23) G C F & Fis_planar implies G is_planar .
The mode
IncSpace,

which widens to the type IncStruct, is defined by

(for L being LINE of it ex A,B being POINT of it st A # B & {A,B}on L) &
(for A,B being POINT of it ex L being LINE of it st {A,B} on L) &
(for A,B being POINT of it, K,L being LINE of it
st A#B& {A,Blon K & {A,B} on L holds K = L)
& (for P being PLANE of it ex A being POINT of it st Aon P) &
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(for A,B,C being POINT of it ex P being PLANE of it st {A, B,C} on P) &
(for A,B,C being POINT of it, P,Q being PLANE of it
st not {A, B, C}is linear & {A,B,C} on P & {A,B,C} on Q holds P = Q)
&
(for L being LINE of it, P being PLANE of it
st ex A,B being POINT of it st A # B & {A,B} on L & {4, B} on P holds L on P)
&
(for A being POINT of it, P, being PLANE of it
st Aon P & A on @ ex B being POINT of it st A# B& Bon P & Bon(Q)
& (ex A,B,C,D being POINT of it st not {4, B, C, D} is_planar) &
for A being POINT of it, L being LINE of it, P being PLANE of it
st Aon L & L on P holds A on P.

The following proposition is true

(24) (for L being LINE of S ex A,B being POINT of S st A # B & {A,B} on L)
& (for A,B being POINT of S ex L being LINE of S st {A,B}on L) &
(for A,B being POINT of S, K,L being LINE of S
st AZB& {A,B}on K & {A,B} on L holds K = L)

& (for P being PLANE of S ex A being POINT of S st Aon P) &
(for A,B,C being POINT of S ex P being PLANE of S st {A, B,C} on P)
&

(for A,B,C being POINT of S, P,Q being PLANE of S
st not {A, B,C}is linear & {A,B,C} on P & {A,B,C} on Q holds P = Q)
&

(for L being LINE of S, P being PLANE of S st
ex A,B being POINT of Sst A# B & {A,B}on L & {A,B} on P
holds L on P)

&

(for A being POINT of S, P, being PLANE of S
st Aon P & A on @ ex B being POINT of Sst A# B& Bon P & BonQ)
& (ex A,B,C,D being POINT of S st not {A, B, C, D} is_planar) & (
for A being POINT of S, L being LINE of S, P being PLANE of S
st Aon L & L on P holds A on P)

implies S is IncSpace.
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For simplicity we adopt the following convention: S will denote an object of the type
IncSpace; A, B, C', D will denote objects of the type POINT of S; K, L, L1, L2 will
denote objects of the type LINE of S; P, @ will denote objects of the type PLANE
of S; F will denote an object of the type Subset of the Points of S.  The following

propositions are true:

(25) exA,Bst A# B& {A,B}on L,

(26) exLst{A,B}onlL,

(27) A#B&{A,B}on K & {A,B} on L implies K = L,
(28) exAst Aon P,

(29) exPst {A,B,C} on P,

(30) mnot{A,B,C}islinear & {A,B,C} on P & {A, B,C} on @ implies P = Q,

(31) (ex A, Bst A# B& {A,B}on L & {A, B} on P) implies L on P,
(32) Aon P& Aon @ impliesex Bst A% B& Bon P& BonQ,
(33) ex A,B,C,D st not {A, B,C, D} is_planar,

(34) Aon L & L on P implies A on P,

(35) Fon L& Lon P implies F on P,

(36) {4, A, B} is_linear,

(37) {A, A, B,C}is_planar,

(38) {A, B,C}is linear implies { A, B, C, D} is_planar,

(39) A+# B& {A,B} on L & notC on L implies not {A, B, C}is_linear,

(40) not {A, B,C}islinear & {A, B,C} on P & not D on P
implies not {A, B, C, D} is_planar,

(41) not (ex P st K on P & L on P) implies K # L,

(42) not (ex Pst Lon P & L1on P & L2 on P)

& (exAst Aon L & Aon L1 & Aon L2)
implies L # L1,

(43) Llon P& L2on P& notLon P & L1 # L2
impliesnotex@ st Lon Q & L1on Q & L2 on Q,

209
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(44) exPst Aon P& Lon P,

(45) (ex Ast Aon K & Aon L) impliesex P st K on P & L on P,
(46) A # B implies ex L st for K holds {A,B} on K iff K = L,
(47) not {4, B, C}is linear

implies ex P st for @ holds {A,B,C} on Q iff P = Q,
(48) not A on L implies ex P st for Q holds A on Q & L on Q iff P = Q,

(49) K#L&(exAst Aon K & Aon L)
implies ex P st for @ holds K on Q & Lon Q iff P = Q.
Let us consider S, A, B. Assume that the following holds
A # B.
The functor
Line (A, B),
with values of the type LINE of S, is defined by
{A,B} onit.

Let us consider S, A, B, C. Assume that the following holds
not {4, B, C}is linear.
The functor
Plane (4, B, C),
yields the type PLANE of S and is defined by
{A,B,C}onit.

Let us consider S, A, L. Assume that the following holds

not Aon L.

The functor
Plane (A, L),

with values of the type PLANE of S, is defined by

Aonit & Lonit.

Let us consider .S, K, L. Assume that the following holds

K+ L.
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Moreover we assume that

exAst Aon K & Aon L.

The functor
Plane (K, L),

with values of the type PLANE of S, is defined by

Konit& Lonit.

Next we state a number of propositions:

(50) A # B implies {A, B} on Line (4, B),
(51) A# B & {A,B} on K implies K = Line (4, B),
(52) not {A, B, C} is_ linear implies {4, B, C'} on Plane (A4, B, C),

(53) not {A, B, C}islinear & {A, B,C} on Q implies @ = Plane (4, B, C),

(54) not A on L implies A on Plane (A, L) & L on Plane (4, L),
(55) notAon L & Aon @ & L on @ implies Q = Plane (A4, L),
(56) K#L&(exAst Aon K & Aon L)

implies K on Plane (K, L) & L on Plane (K, L),

(57) A # B implies Line (A, B) = Line (B, A),

(58) not {A, B, C} is_linear implies Plane (4, B, C') = Plane (A, C, B),
(59) not {A, B, C}is linear implies Plane (A, B, C') = Plane (B, A, C),
(60) not {A, B, C} is_linear implies Plane (4, B, C') = Plane (B, C, A),
(61) not {A, B, C}is_linear implies Plane (4, B, C') = Plane (C, A, B),
(62) not {A, B, C}is_linear implies Plane (4, B, C') = Plane (C, B, A),
(63) K#L&(exAst Aon K& AonL)& KonQ & Lon Q

implies @) = Plane (K, L),
(64) K #L& (exAst Aon K & A on L) implies Plane (K, L) = Plane (L, K),
(65) A # B & C on Line (4, B) implies {A, B, C}is_linear,
(66) A=#B&A#C&{A,B,C}islinear implies Line (A, B) = Line (4, C),

(67)  not{A, B,C}islinear implies Plane (A4, B, C') = Plane (C, Line (4, B)),
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not {A, B, C}is_linear & D on Plane (4, B, C)
implies {A, B, C, D} is_planar,
notCon L & {A,B} on L & A # B implies Plane (C, L) = Plane (4, B, C),

not {A, B, C}is_linear
implies Plane (A, B, C') = Plane (Line (4, B),Line (4, C)),

ex A,B,C st {A,B,C} on P & not {A, B,C}is linear,
ex A,B,C,D st Aon P & not {A, B,C, D} is_planar,
exBst A#B& Bon L,

A # B implies exC st C on P & not {A, B, C}is_linear,
not {A, B, C} is_linear implies ex D st not { A, B, C, D} is_planar,
ex B,C' st {B,C} on P & not {A, B,C}is_linear,

A # B implies ex C,D st not {A, B,C, D} is_planar,
ex B,C,D st not {A, B,C, D} is_planar,
exLstnotAon L & L on P,

Aon Pimpliesex L,L1,L2 st L1 # L2
&Llon P& IL2on P& not Lon P& Aon L & Aon L1 & A on L2,

exL,L1,L2
st Aon L& Aon L1 & Aon L2 & notexPst Lon P& Llon P & L2on P,

ex P st Aon P & not L on P,
exAst Aon P & not Aon L,
ex K st notex Pst Lon P & K on P,
exPQstP#Q& LonP & LonQ,
K #L&{A B} on K & {A, B} on L implies A = B,
notLon P& {A,B} onL & {A, B} on P implies A = B,

P # @ implies not (ex A st Aon P & A on Q)
or ex L st for B holds Bon P & Bon Q iff Bon L.
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Summary. A lattice is defined as an algebra on a nonempty set with binary
operations join and meet which are commutative and associative, and satisfy the
absorption identities. The following kinds of lattices are considered: distributive,
modular, bounded (with zero and unit elements), complemented, and Boolean (with
complement). The article includes also theorems which immediately follow from
definitions.

The terminology and notation used in this paper are introduced in the papers [1] and
[2]. The scheme BooleDomBinOpLam deals with a constant .4 that has the type
BOOLE_DOMAIN and a binary functor F yielding values of the type Element of A
and states that the following holds

ex o being Binary_Operation of .4

st for a,b being Element of A holds o.(a,b) = F(a,b)

for all values of the parameters.

We consider structures LattStr, which are systems

{(carrier, join , meet))

where carrier has the type DOMAIN, and join, meet have the type Binary_Operation
of the carrier. In the sequel G has the type LattStr; p, g, r have the type Element
of thecarrier of G.  We now define two new functors. Let us consider G, p, q. The
functor

rUg,
yields the type Element of the carrier of G and is defined by

it = (thejoin of G).(p, q).

1Supported by RPBP.I11-24.C1.
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The functor
plig,
with values of the type Element of the carrier of G, is defined by

it = (themeet of G).(p, q).
The following propositions are true:
(1) pUq = (thejoin of G).(p, q),
(2) pMq = (themeet of G).(p, q).

Let us consider G, p, q. The predicate

pCyq is defined by plUq=gq.

We now state a proposition
(3) pEqiffplg=gq.
The mode
Lattice,
which widens to the type LattStr, is defined by
(for a,b being Element of the carrier of it holds a Ub=bUa) &
(for a,b,c being Element of the carrier of it holds a U (bU¢) = (a b)) L ¢) &
(for a,b being Element of the carrier of it holds (aMb) Ub=10) &
(for a,b being Element of the carrier of it holds aMb=0Ma) &
(for a,b,c being Element of the carrier of it holds a M (bM¢) = (aMb) Me)
& for a,b being Element of the carrier of it holds a M (a L b) = a.

One can prove the following proposition
(4) (forp,qholds plUg=qUp)& (forp,q,r holdsplU (¢Ur) = (pUq)Ur) &
(for p,q holds (pMq) U g = q) & (forp,g holds pMg = gMp)
& (forp,g,r holds pM (¢Mr) = (pMq) M) & (for p,g holds pM (pUq) =p)
implies G is Lattice.
In the sequel L hasthe type Lattice; a, b, c have the type Element of the carrier of L.

One can prove the following propositions:

(5) alb=>bUa,
(6) aflb=>bMNa,

(7) al(bUc)=(aUb)Uc,
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(8) afl(bMec) = (amMb)Mec,

(9) (@nb)Ub=b& bU (aMb)=b&bU (bMa)=b& (bMa)Lb=b,

(10)  an(@Ub) =a& (@aUb)Na=a& (bUa)Na=a&an(bLa)=a.
The mode

Distributive_Lattice,
which widens to the type Lattice, is defined by

for a,b,c being Element of the carrier of it holds a M (bU¢) = (aMb) U (aMc).

Next we state a proposition
(11) (fora,b,c holds aM (bll¢c) = (aMb) U (aM¢))

implies L is Distributive_Lattice.

The mode
Modular_Lattice,

which widens to the type Lattice, is defined by

for a,b,c being Element of the carrier of it st a C cholds a Ll (bM¢) = (ab) Me.

One can prove the following proposition
(12) (forab,cst a C choldsall (bMe) = (aUb)Me)

implies L is Modular_Lattice.

The mode
Lower_Bound_Lattice,

which widens to the type Lattice, is defined by
ex ¢ being Element of the carrier of it
st for a being Element of the carrier of it holds cMa = c.
Next we state a proposition

(13) (ex ¢ st for a holds cMa = ¢) implies L is Lower_Bound_Lattice .

The mode
Upper_Bound_Lattice,

which widens to the type Lattice, is defined by

ex ¢ being Element of the carrier of it

st for a being Element of the carrier of it holds clLla = c.
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One can prove the following proposition

(14) (ex ¢ st fora holds cU a = ¢) implies L is Upper_Bound_Lattice .

The mode
Bound_Lattice

which widens to the type Lattice, is defined by

it is Lower_Bound_Lattice & it is Upper_Bound_Lattice.

Next we state a proposition
(15) L is Lower_Bound_Lattice & L is Upper_Bound_Lattice
implies L is Bound_Lattice.
Let us consider L. Assume that the following holds

excst fora holdscMa =c.

The functor
1L,

yields the type Element of the carrier of L and is defined by
itMa=1it.
Let L have the type Lower_Bound_Lattice. Let us note that it makes sense to consider
the following functor on a restricted area. Then

1L is Element of the carrier of L.

Let us consider L. Assume that the following holds

excst fora holdsclla = c.

The functor
TL,

with values of the type Element of the carrier of L, is defined by
itla =it.
Let L have the type Upper_Bound_Lattice. Let us note that it makes sense to consider
the following functor on a restricted area. Then

TL is Element of the carrier of L.

Let L have the type Bound_Lattice. Let us note that it makes sense to consider the
following functors on restricted areas. Then

1L is Element of the carrier of L,
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TL is Element of the carrier of L.
Let us consider L, a, b. Assume that the following holds

L is Bound_Lattice .

The predicate

a is_a_complement_of b is defined by aldb=TL&aMNb=1L.

The mode

Lattice_with_Complement ,
which widens to the type Bound_Lattice, is defined by
for b being Element of the carrier of it

ex a being Element of the carrier of it st a is_a_complement_of b.

The mode

Boolean_Lattice,
which widens to the type Lattice_with_Complement, is defined by

it is Distributive_Lattice .

The following propositions are true:

(16) alb=>biffalb=aq,

(17) ala=a,

(18) ala=a,

(19) for L holds (fora,b,cholds aM (bUc¢) = (aMb) U (aMc))

iff for a,b,c holds a U (bM¢) = (aUb) M (aUc),

(20) aCbiffalb=0,
(21) aCbhiffanb = a,
(22) aCalb,

(23) albL a,

(24) alC a,

(25) aCb& b cimpliesa C c,
(26) aC b& bC aimplies a = b,

(27) a CbimpliesalcC bMeg,
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(28) a C bimpliescMa C cMb,

(29) (fora,b,c holds (aMb) U (bMNec) U (cMa) =(aUb)M(bUc)M(cUa))

implies L is Distributive_Lattice .

In the sequel L denotes an object of the type Distributive_Lattice; a, b, ¢ de-

note objects of the type Element of the carrier of L. One can prove the following
propositions:
(30) for L holds (fora,b,c holds a1 (bUc¢) = (a1 b) U (aMc))

& fora,b,c holds (bUc)Ma= (bMa)U (cMNa),

(31) for L holds (for a,b,c holds a U (bM¢) = (a Ub) M (aUc))
& fora,b,c holds (bMc)Ua= (bUa)M(cUa),

(32) cMa=cNb& clUa=cUbimpliesa =1,
(33) afNec=bMc&alc=>bUcimpliesa =b,
(34) (aub)n(dbUc)N(cla)=(aNb)u(bNec)U(cMa),
(35) L is Modular_Lattice .

In the sequel L has the type Modular_Lattice; a, b, ¢ have the type Element of

thecarrier of L. One can prove the following two propositions:

(36) a C cimpliesa U (bMc¢) = (aUb) Me,
(37) cCaimpliesan (bUc) = (aMb)Uec.

In the sequel L has the type Lower_Bound_Lattice; a, ¢ have the type Element of

thecarrier of L.  We now state four propositions:

(38) excst fora holds cMa = ¢,
(39) lLua=a&allL=aq,
(40) LLNa=1L&anlL=1L,
(41) 1 LCa.

In the sequel L denotes an object of the type Upper_Bound_Lattice; a, ¢ denote

objects of the type Element of thecarrier of L.  The following four propositions are
true:
(42) excst fora holds cUa = ¢,

(43) TLMNa=a&alTL=a,
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(44) TLUa=TL&aUTL=TL,
(45) aC TL.

In the sequel L has the type Lattice_with_Complement; a, b have the type Element

of the carrier of L. One can prove the following proposition

(46) exa st a is_a_complement_of b.

In the sequel L has the type Lattice. The arguments of the notions defined below
are the following: L which is an object of the type reserved above; x which is an object

of the type Element of the carrier of L. Assume that the following holds

L is Boolean_Lattice .

The functor

z°,

yields the type Element of the carrier of L and is defined by

it is_a_complement_of x.

The arguments of the notions defined below are the following: L which is an object of
the type Boolean_Lattice; x which is an object of the type Element of the carrier of L.
Let us note that it makes sense to consider the following functor on a restricted area.
Then

z© is Element of the carrier of L.

In the sequel L will denote an object of the type Boolean_Lattice; a, b will denote
objects of the type Element of thecarrier of L.  We now state several propositions:

(47) a°Ma=1L&aMNa®= 1L,
(48) a°Ua=TL&ala®=TL,
(49) a‘ =a,

(50) (amb)¢=a°Ube,

(51) (aUb)¢=a°mbe,

(52) bMNa=1LifbCa®,
(53) a C bimpliesb® C a®.

In the sequel L will have the type Bound_Lattice; a, b will have the type Element

of the carrier of L.  We now state three propositions:

(54) L is Lower_Bound_Lattice & L is Upper_Bound_Lattice,
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(55) a is_a_complement of biff aUb=TL & aNb= 1L,
(56) (forbexa st a is_a_complement_of b) implies L is Lattice_with_Complement .

In the sequel L has the type Lattice_with_Complement. One can prove the
following proposition

(57) L is Distributive_Lattice implies L is Boolean_Lattice .

In the sequel L has the type Boolean_Lattice. The following two propositions are

true:

(58) L is Lattice_with_Complement ,
(59) L is Distributive_Lattice .
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Summary. The paper contains a definition of topological space. The following
notions are defined: point of topological space, subset of topological space, subspace
of topological space, and continuous function.

The articles [5], [7], [6], [1], [4], [2], and [3] provide the terminology and notation for this

paper. We consider structures TopStruct, which are systems

{(carrier , topology))
where carrier has the type DOMAIN, and topology has the type Subset-Family of
the carrier. In the sequel T has the type TopStruct. The mode

TopSpace,

which widens to the type TopStruct, is defined by

the carrier of it € the topology of it &
(for a being Subset-Family of the carrier of it
st a C the topology of it holds U a € the topology of it)
& for a,b being Subset of the carrier of it
st a € thetopology of it & b € the topology of it holds a N b € the topology of it .

We now state a proposition

(1) the carrier of T' € the topology of T' &
(for a being Subset-Family of the carrier of T
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st a C the topology of T" holds U a € thetopology of T')
& (for p,q being Subset of the carrier of T' st
p € thetopology of T' & ¢q € thetopology of T’
holds p N ¢ € the topology of T')
implies T is TopSpace.
In the sequel T, .S, GX will have the type TopSpace. Let us consider 7.

Point of " stands for Element of the carrier of T

The following proposition is true

(2) for x being Element of the carrier of 7" holds x is Point of 7.

Let us consider T'.

Subset of T stands for set of Point of T'.

We now state a proposition

(3) for P being Subset of the carrier of 7" holds P is Subset of T

In the sequel P, @ will have the type Subset of T'; p will have the type Point of
T. Let us consider T

Subset-Family of T' stands for Subset-Family of the carrier of T

Next we state a proposition

(4) for F' being Subset-Family of the carrier of T’
holds F' is Subset-Family of 7.

In the sequel F' will denote an object of the type Subset-Family of . The scheme
SubFamFEzx1 concerns a constant A that has the type TopSpace and a unary predicate
P and states that the following holds

ex F being Subset-Family of A st for B being Subset of A holds B € F iff P[B]

for all values of the parameters.

One can prove the following propositions:

(5) () € thetopology of T,
(6) the carrier of T € the topology of T,
(7) for a being Subset-Family of T

st a C the topology of T" holds U a € thetopology of T
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(8) P € thetopology of T' & @) € thetopology of T
implies P N Q € the topology of T.
We now define two new functors. Let us consider T'. The functor
0T,
with values of the type Subset of T, is defined by
it = () the carrier of T.

The functor
QT,

with values of the type Subset of T, is defined by

it = Qthecarrier of 7.

One can prove the following four propositions:

(9) 0T = ( the carrier of T,
(10) QT = Qthecarrier of T
(11) W(T) =0,

(12) Q(T') = the carrier of T

Let us consider T', P. The functor
Pe,
yields the type Subset of T and is defined by
it=P°.
Let us consider 7', P, (). Let us note that it makes sense to consider the following

functors on restricted areas. Then

PUQ is Subset of T

PNQ is Subset of T

P\Q is Subset of T,

P-Q is Subset of T'.
The following propositions are true:

(13) p € Q(T),

(14) P CQ(T),
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(15) PNQ(T) =P,
(16) for A being set holds A C Q (T) implies A is Subset of T,
(17) Pc=Q(T)\ P,
(18) PUPc=Q(T),
(19) PCQiffQ°C P,
(20) P=P°°
(21) PCQciffPNQ =0,
(22) QT)\(QT)\P) =P,
(23) PA£QM)IFQ(T)\ P #0,
(24) Q(T)\ P=QimpliesQ(T)=PUQ,
(25) QT)=PUQ&PNQ=0impliesQ =Q(T)\ P,
(26) PNP°=0(T),
(27) QT) = (01)°,
(28) P\Q=PNQ°,
(29) P=Qimplies Q(T)\ P =Q(T)\ Q.

Let us consider T', P. The predicate

Pis_open is defined by P € thetopology of T

One can prove the following proposition
(30) Pis_open iff P € thetopology of T.

Let us consider T', P. The predicate

Pis_closed is defined by Q(T)\ Pis_open.

One can prove the following proposition

(31) Pis_closed iff Q (T) \ Pis_open.

Let us consider T', P. The predicate

Pis_open_closed is defined by Pis_open & Pis_closed.
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We now state a proposition

(32) Pis_open_closed iff Pis_open & Pis_closed.

Let us consider T, F'. Let us note that it makes sense to consider the following functor
on a restricted area. Then

U F is Subset of T

Let us consider T, F'. Let us note that it makes sense to consider the following functor
on a restricted area. Then

ﬂ F is Subset of T

Let us consider T', F'. The predicate
Fis_a_cover_of T' is defined by Q(T) = U F.

The following proposition is true

(33) Fis_a_coverof T iff Q(T) = J F.

Let us consider T'. The mode

SubSpace of T

which widens to the type TopSpace, is defined by
Q(it) € Q(T) & for P being Subset of it holds P € the topology of it
iff ex @ being Subset of T' st ) € thetopology of T & P = Q N Q (it).
Next we state two propositions:

(34)  Q(5) CQ(T) & (for P being Subset of S holds P € the topology of S
iff ex @ being Subset of T' st @) € thetopology of T & P = QNN (S))
implies S is SubSpace of T,

(35) forV being SubSpace of T holds 2 (V) C Q (T") & for P being Subset of V'
holds P € thetopology of V'
iff ex Q being Subset of T' st @) € the topology of T & P =Q N Q (V).

Let us consider 7', P. Assume that the following holds
P #£0(T).

The functor
T|P,

with values of the type SubSpace of T, is defined by
Q(it) = P.
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One can prove the following proposition
(36) P # (0(T) implies for S being SubSpace of T holds S =T | P iff Q (S) = P.
Let us consider T, S.

map of T, S stands for Function of (the carrier of T'),(the carrier of S).

Next we state a proposition
(37) for f being Function of the carrier of T the carrier of S
holds f is map of T', S.

In the sequel f has the type map of 7', S; P1 has the type Subset of S. Let us
consider T', S, f, P. Let us note that it makes sense to consider the following functor on
a restricted area. Then

feP is Subset of S.

Let us consider T, S, f, P1. Let us note that it makes sense to consider the following
functor on a restricted area. Then

ftP1 is Subset of T.
Let us consider T', S, f. The predicate
f is_continuous
is defined by
for P1 holds Plis_closed implies f ~! P1is_closed.

The following proposition is true

(38) f is_continuous iff for P1 holds P1is_closed implies f ! Plis_closed.

The scheme TopAbstr concerns a constant 4 that has the type TopSpace and a unary
predicate P and states that the following holds

ex P being Subset of A st for x being Point of A holds = € P iff P[x]

for all values of the parameters.

One can prove the following propositions:

(39) for X’ being SubSpace of GX
for A being Subset of X’ holds A is Subset of G X,

(40) for A being Subset of GX, z being Any st x € A holds z is Point of GX,
(41) for A being Subset of GX st A # 0(GX) exz being Point of GX st x € A,

(42) Q(GX)is_closed,
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(43) for X’ being SubSpace of GX, B being Subset of X’ holds

Bis_closed iff ex C' being Subset of GX st Cis_closed & C N (2 (X')) = B

3

(44) for F' being Subset-Family of GX st
F # () & for A being Subset of GX st A € F holds Ais_closed
holds ﬂ Fis_closed.

The arguments of the notions defined below are the following: GX which is an object
of the type TopSpace; A which is an object of the type Subset of GX. The functor

ClA,

yields the type Subset of GX and is defined by
for p being Point of GX holds p € it
iff for G being Subset of GX st Gis_open holds p € G implies AN G # (GX).
We now state a number of propositions:

(45) for A being Subset of GX, p being Point of GX holdsp € C1 A
iff for C being Subset of GX st C'is_closed holds A C C implies p € C,

(46) for A being Subset of GX ex F' being Subset-Family of GX st
(for C being Subset of GX holds C € F iff C'is_closed & A C C)
& ClA=(F,
(47) for

X' being SubSpace of GX, A being Subset of GX, Al being Subset of X’
st A = Al holds C1A1 = (C1 A) N (2 (X")),

(48) for A being Subset of GX holds A C Cl 4,

(49) for A,B being Subset of GX st A C B holds Cl1 A C Cl B,
(50) for A,B being Subset of GX holds C1(AU B) = ClAUCI B,
(51) for A,B being Subset of GX holds C1(AN B) C (Cl1A)NClB,
(52) for A being Subset of GX holds Ais_closed iff C1A = A,
(53) for A being Subset of GX

holds Ais_open iff C1 (2 (GX)\ A) = Q(GX) \ 4,

(54) for A being Subset of GX, p being Point of GX holds p € Cl A iff
for G being Subset of GX
st Gis_open holds p € G implies AN G # (GX).

229
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Mirostaw Wysocki Agata Darmochwal!
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Bialystok Bialystok

Summary. The article contains some theorems about open and closed sets.
The following topological operations on sets are defined: closure, interior and fron-
tier. The following notions are introduced: dense set, boundary set, nowheredense
set and set being domain (closed domain and open domain), and some basic facts
concerning them are proved.

The papers [4], [5], [3], [1], and [2] provide the notation and terminology for this paper.
For simplicity we adopt the following convention: TS denotes an object of the type
TopSpace; x denotes an object of the type Any; P, @, G denote objects of the type
Subset of T'S; p denotes an object of the type Point of T'S. One can prove the

following propositions:

(1) 2 € P implies z is Point of T'S,
(2) PUQTS=QTS & QTSUP =QTS,
(3) PNQTS=P& QTSNP =P,
(4) PNOTS =0TS & 0TSNP=0TS,
(5) Pc=QTS\P,
(6) P ¢ = (P qua Subset of the carrier of T'S) ¢,
(7) pc PCiffnotp c P,
(8) (QTS)° = 0TS,
9) QTS =0TS)°,
(10) (P) =P,

1Supported by RPBP.I11-24.C1.
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PUP =QTS&P°UP=QTS,
PNPC=0TS& P NP =0TS,
(PUQ)=(P)N(QF),
(PNQ)°=(P)U(QF),
PCQiffQ°C P®,
P\Q=PNQ",
(P\Q)° = P°UQ,
PCQfimpliesQ C P°,
P°¢CQimpliesQ° C P,
PCQifPNnQ° =1,
P°=(Q°implies P = Q,
(TS is_closed ,

CL(0TS) = 0TS,
PCClP,

P C Q implies C1P C ClQ,
ClI(ClP)=ClP,
Cl(QTS)=QTS,
QTSis_closed,
Pis_closed iff P €is_open,
Pis_open iff P “is_closed,
Qis_closed & P C Q implies C1P C Q,
ClP\ ClQ C CL(P\ Q),
Cl(PNQ)CClPNCIQ,
Pis_closed & Qis_closed implies C1(PNQ)=CIPNClQ,

Pis_closed & @ is_closed implies P N Q is_closed ,



(36)
(37)
(38)
(39)
(40)

(41)
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Pis_closed & Qis_closed implies P U Q) is_closed ,
Pis_open & @ is_open implies P U ) is_open,

Pis_open & @ is_open implies P N Q) is_open,

p € C1 P iff for G st Gis_open holds p € G implies PN G # 0,

Q is_open implies Q N CIP C C1(Q N P),

Q is_open implies C1 (Q N CIP) = C1(Q N P).

Let us consider TS, P. The functor

Int P,

yields the type Subset of T'S and is defined by

it = (CL(P))°.

One can prove the following propositions:

(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)

(56)

Int P = (C1P°)°,
Int (QTS)=QTS,
Int P C P,

Int (Int P) = Int P,
IntPNInt@Q =Int (PN Q),
Int (0T'S) = 0TS,

P C @ implies Int P C Int Q,
Int PUInt@Q C Int (P U Q),
Int (P\ @) CInt P\ Int Q,
Int Pis_open,

(TS is_open,
QTSis_open,
reIntPiffex@ st Qisopen& Q C P& x € Q,
Pis_open iff Int P = P,

Qis_open & @ C P implies @ C Int P,
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(59)
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Pis_ open iff forx holds z € Piffex@Q st Qisopen & Q C P & z € Q,
Cl (Int P) = Cl (Int (C1 (Int P))),

Pis_open implies Cl (Int (C1 P)) = C1 P.

Let us consider TS, P. The functor

Fr P,

yields the type Subset of T'S and is defined by

it = ClPNCl(PO).

We now state a number of propositions:

(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)

(77)

Fr P = CIP N CL(P®),
peFrPiffforQ st Qisopen& pe Qholds PNQ #0D & P°NQ # 0,
FrP =Fr(P°),

Fr P CClP,

Fr P = Cl(PS)NPU(CLP\ P),
ClP=PUFRP,
Fr(PNQ)CFrPUFrQ,

Fr(PUQ) CFrPUFrQ,

Fr (Fr P) CFr P,

Pis_closed implies Fr P C P,

FrPUFrQ =F(PUQ)UFr(PNQ)U(FrPNFraQ),
Fr (Int P) C Fr P,

Fr(ClP)CFr P,

Int PNFrP =0,

IntP=P\FrP,

Fr (Fr (Fr P)) = Fr (Fr P),

Pisopen iff Fr P =CIP\ P,

Pis_closed iff Fr P = P\ Int P.



SUBSETS OF TOPOLOGICAL SPACES

Let us consider T'S, P. The predicate

Pis_dense is defined by ClP=QTS.

We now state several propositions:

(78) Pis.dense iff CLP = Q TS,
(79) Pis_dense & P C (Q implies Q is_dense,
(80) Pis_dense iff for Q st Q # 0 & Qis_open holds PN Q # 0,

(81) Pis_dense implies for @ holds @ is_open implies C1Q = C1(Q N P),
(82) Pis_dense & Q) is_dense & @ is_open implies P N @ is_dense.

Let us consider T'S, P. The predicate

Pis_boundary is defined by PCis_dense.

Next we state several propositions:

(83) Pis_boundary iff P “is_dense,

(84) Pis_boundary iff Int P = §),

(85)  Pis_boundary & Qis_boundary & @ is_closed implies P U @ is_boundary ,
(86) Pis_boundary iff for Q st Q C P & Qis_open holds Q = 0,

(87) Pis_closed implies (P is_boundary iff for @
st Q#0& QisopenexGst G C Q& G # 0 & Gis.open & PNG = (),

(88) Pis_boundary iff P C Fr P.

Let us consider T'S, P. The predicate

P is_nowheredense is defined by Cl Pis_boundary .

One can prove the following propositions:

(89) Pis_nowheredense iff Cl Pis_boundary,

(90)  Pisnowheredense & @ is_.nowheredense implies P U () is_nowheredense,,
(91) Pis_nowheredense implies P ©is_dense,

(92) Pis_nowheredense implies P is_boundary,

(93) Q@ is_boundary & @ is_closed implies () is_nowheredense,
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(94)
(95)
(96)
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Pis_closed implies (P is_.nowheredense iff P = Fr P),
Pis_open implies Fr P is_nowheredense,
Pis_closed implies Fr P is_nowheredense,

Pis_open & Pis_nowheredense implies P = ().

We now define three new predicates. Let us consider T'S, P. The predicate

Pis.domain  is defined by  Int(Cl1P) C P & P C Cl(Int P).

The predicate

Pis_closed_domain is defined by P = Cl(Int P).

The predicate

Pis_open_domain is defined by P =1Int (CLP).

The following propositions are true:

(98)

(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)
(110)

(111)

Pis_domain iff Int (C1P) C P & P C Cl(Int P),
Pis_closed_domain iff P = Cl (Int P),
Pis_open_domain iff P = Int (Cl P),

Pis_open_domain iff P ¢is_closed_domain,
Pis_closed_domain implies Fr (Int P) = Fr P,
Pis_closed_domain implies Fr P C Cl (Int P),

Pis_open_domain implies Fr P = Fr (C1 P) & Fr (C1P) = C1 P\ P,
Pis_open & Pis_closed implies (P is_closed_domain iff P is_open_domain),
Pis_closed & P is_domain iff Pis_closed_domain,

Pis_open & Pis_domain iff Pis_open_domain,
Pis_closed_domain & @ is_closed_domain implies P U @Q is_closed_domain ,
Pis_open_domain & @ is_open_domain implies P N @ is_open_domain ,
P is_domain implies Int (Fr P) = 0,

Pis_domain implies Int Pis_domain & Cl P is_domain .
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Summary. The following notions are defined: separated sets, connected
spaces, connected sets, components of a topological space, the component of a
point. The definition of the boundary of a set is also included. The singleton of a
point of a topological space is redefined as a subset of the space. Some theorems
about these notions are proved.

The articles [3], [4], [1], [2], and [5] provide the notation and terminology for this paper.
For simplicity we adopt the following convention: GX, GY will have the type TopSpace;
A, Al, B, B1, C will have the type Subset of GX. The arguments of the notions defined
below are the following: GX which is an object of the type TopSpace; A, B which are
objects of the type Subset of GX. The predicate

A, B are_separated is defined by ClANB=0(GX) & ANCIB = 0(GX).

The following propositions are true:

(1) A, B are_separated implies B, A are_separated ,
(2) A, B are_separated implies AN B = )(GX),
(3) Q(GX)=AUB & Ais_closed & Bis_closed & AN B = §(GX)

implies A, B are_separated ,

(4) Q(GX)=AUB & Ais_open & Bis.open & AN B = )(GX)

implies A, B are_separated ,

(5) Q(GX)=AUB & A, B areseparated

implies Ais_open_closed & Bis_open_closed,

1Supported by RPBP.I11-24.C1.
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(6) for X’
being SubSpace of GX, P1,Q1 being Subset of GX, P,Q being Subset of X’
st P = P1 & Q = Q1 holds P, Q are_separated implies P1,Q1 are_separated ,
(7) for X’
being SubSpace of GX, P,Q being Subset of GX, P1,Q1 being Subset of X’
st P=P1l&Q=Q1&PUQCQ((X)
holds P, Q) are_separated implies P1,Q1 are_separated ,

(8) A, B are_separated & A1 C A & B1 C B implies Al,B1 are_separated ,
(9) A, Bareseparated & A, C are_separated implies A, B U C are_separated ,

(10) Ais_closed & Bis_closed or Ais_open & Bis_open
implies A\ B,B \ Aare_separated.

Let GX have the type TopSpace. The predicate

G X is_connected

is defined by

for A,B being Subset of GX
st Q(GX) = AU B & A, Bareseparated holds A = )(GX) or B = 0(GX).

One can prove the following propositions:

(11) G X is_connected iff for A,B being Subset of GX st
QGX)=AUB& A+#0(GX) & B # 0(GX) & Ais_closed & Bis_closed
holds AN B # 0(GX),

(12) G X is_connected iff for A,B being Subset of GX st
QGX)=AUB& A#0(GX) & B # 0(GX) & Ais_open & Bis_open
holds AN B # H(GX),

(13) GX is_connected iff for A being Subset of GX
st AZAD(GX) & A#Q(GX) holds (ClLA)NCL(Q(GX)\ A) # 0(GX),
(14) G X is_connected iff for A being Subset of GX
st Ais_open_closed holds A = )(GX) or A = Q (GX),

(15) for F' being map of GX,GY st
Fis_continuous & F ° (2 (GX)) = Q(GY) & GX is_connected
holds GY is_connected .
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The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; A which is an object of the type Subset of GX. The predicate

Ais_connected is defined by GX | Ais_connected .

One can prove the following propositions:
(16) A # )(GX) implies (A is_connected iff for P,QQ being Subset of GX
st A= PuUQ & P,Q are_separated holds P = §(GX) or Q = B(GX)),
(17) Ais_connected & A C BUC & B, C areseparated implies A C Bor A C C,

(18) Ais_connected & Bis_connected & not A, B are_separated

implies A U B is_connected
(19) C #0(GX) & Cis_connected & C C A & A C CI1C implies Ais_connected ,
(20) A # 0(GX) & Ais_connected implies Cl Ais_connected ,

(21) GX is_connected
& A #B(GX) & Ais_connected & Q (GX)\ A= BUC & B, C are_separated
implies A U Bis_connected & A U C'is_connected ,

(22) Q(GX)\ A= BUC & B,C areseparated & Ais_closed
implies A U Bis_closed & A U C'is_closed,

(23) Cis_connected & CNA # 0(GX) & C\ A # 0(GX)
implies C NFr A # 0(GX),

(24) for X’ being SubSpace of GX, A being Subset of GX, B being Subset of X’
st A #0(GX) & A = B holds Ais_connected iff Bis_connected,

25 AN B #((GX) & Ais_closed & Bis_closed implies
(25) # p
(AU Bis_connected & A N Bis_connected

implies Ais_connected & Bis_connected),

(26) for F' being Subset-Family of GX st
(for A being Subset of GX st A € F holds Ais_connected) &
ex A being Subset of GX st A £ W(GX)& A€ F &
for B being Subset of GX st B € F' & B # A holds not A, B are_separated
holds U Fis_connected

(27) for F' being Subset-Family of GX st
(for A being Subset of GX st A € F holds Ais_connected) & ﬂ F#0(GX)

holds U F'is_connected ,
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(28) Q (GX)is_connected iff GX is_connected .

The arguments of the notions defined below are the following: GX which is an object
of the type TopSpace; x which is an object of the type Point of GX. Let us note that

it makes sense to consider the following functor on a restricted area. Then

{z} is Subset of GX.

We now state a proposition

(29) for = being Point of GX holds {z} is_connected .

The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; =z, y which are objects of the type Point of GX. The predicate

x,y are_joined

is defined by

ex C being Subset of GX st C'is_connected & v € C & y € C.

We now state four propositions:
(30) (exx being Point of GX st for y being Point of GX holds z, y are_joined)

implies GX is_connected ,

(31) (exz being Point of GX st for y being Point of GX holds z, y are_joined)
iff for x,y being Point of GX holds z, y are_joined ,

(32) (for z,y being Point of GX holds z, y are_joined) implies GX is_connected ,

(33) for x being Point of GX, F' being Subset-Family of GX st
for A being Subset of GX holds A € F iff Ais_connected & = € A
holds F # ().

The arguments of the notions defined below are the following: GX which is an object
of the type TopSpace; A which is an object of the type Subset of GX. The predicate

A is_a_component_of GX

is defined by

Ais_connected

& for B being Subset of GX st Bis_connected holds A C B implies A = B.

The following propositions are true:

(34) A is_a_component_of GX implies A # ((GX),
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(35) A is_a_component_of GX implies Ais_closed,

(36) Ais_a_component_of GX & B is_a_component_of GX
implies A = B or (A # B implies A, B are_separated),

(37) Ais_a_component_of GX & B is_a_component_of GX
implies A = B or (A # B implies AN B = §(GX)),

(38) C'is_connected implies for S being Subset of GX
st S is_a_component_of GX holds C NS =()(GX)or C C S.

The arguments of the notions defined below are the following: GX which is an object
of the type TopSpace; A, B which are objects of the type Subset of GX. The
predicate

B is_a_component_of A
is defined by

ex B1 being Subset of GX | A st B1 = B & Bl is_a_component_of (GX | 4).

We now state a proposition

(39) GX is_connected & A # Q (GX)
& A+ W(GX) & Ais_connected & C' is_a_component_of (2 (GX) \ A)
implies (2 (GX) \ C)is_connected .

The arguments of the notions defined below are the following: GX which is an object
of the type TopSpace; x which is an object of the type Point of GX. The functor

sklx,

with values of the type Subset of GX, is defined by

ex I being Subset-Family of GX
st (for A being Subset of GX holds A € F iff Ais_connected & x € A) & U F=it.

In the sequel z has the type Point of GX. One can prove the following propositions:

(40) x € sklax,

(41) skl x is_connected ,

(42) C'is_connected implies (sklz C C implies C = sklx),

(43) A is_a_component_of GX iff ex x being Point of GX st A = skluz,

(44) A is_.a_component_of GX & = € A implies A = sklz,
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(45) for S being Subset of GX
st S = skl for p being Point of GX st p # x & p € S holds sklp = 5,

(46) for F' being Subset-Family of GX st
for A being Subset of GX holds A € F iff A is_.a_component_of GX
holds F is_a_cover_of GX,

(47) A, Bareseparated iff C1AN B =0(GX) & ANCIB = )(GX),

(48) G X is_connected iff for A,B being Subset of GX
st Q(GX) = AU B & A, Bareseparated holds A = )(GX) or B = §(GX),

(49) Ais_connected iff GX | Ais_connected,

(50) A is_a_component_of GX iff Ais_connected
& for B being Subset of GX st Bis_connected holds A C B implies A = B,

(51) B is_a_component_of A iff
ex B1 being Subset of GX | A st Bl = B & B1 is_a_component_of (GX | A),

(52) B = sklz iff ex F being Subset-Family of GX st
(for A being Subset of GX holds A € F iff Ais_connected & x € A)
&|JF=B.
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Summary. We define the following mappings: the characteristic function of a
subset of a set, the inclusion function (injection or embedding), the projections from
a Cartesian product onto its arguments and diagonal function (inclusion of a set into
its Cartesian square). Some operations on functions are also defined: the products
of two functions (the complex function and the more general product-function),
the function induced on power sets by the image and inverse-image. Some simple
propositions related to the introduced notions are proved.

The terminology and notation used in this paper are introduced in the following papers:
[3], [4], [1], and [2]. For simplicity we adopt the following convention: =z, y, z, z1, 22
denote objects of the type Any; A, B,V, X, X1, X2,Y,Y1, Y2 Z denote objects of
the type set; C, C1, C2, D, D1, D2 denote objects of the type DOMAIN. We now

state several propositions:

(1) ACY impliesid A = (idY) | A4,
(2) for f,g being Function st X C dom (g - f) holds f ° X C domg,
(3) for f,g being Function

st X Cdom f & f° X C domg holds X C dom (g - f),

4) for f,g being Function
st Y Crng(g- f) & gis_one-to-one holds ¢ ' Y C rng f,

(5) for f,g being Function st Y Crngg & ¢ 'Y C rng f holds Y C rng (g - f).

1Supported by RPBP.I11-24.C1.
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In the article we present several logical schemes. The scheme FuncEx_3 concerns a
constant 4 that has the type set, a constant B that has the type set and a ternary
predicate P and states that the following holds

ex f being Function
st dom f = [AB] & forz,y st x € A& y € Bholds Plz,y, f.(z,y)]
provided the parameters satisfy the following conditions:

o foray,zlz2stxe A&ye B& Plx,y, 21] & Plz,y, 22] holds z1 = 22,
. forzystz e A&y e Bexzst Plz,y,z].

The scheme Lambda_3 concerns a constant A that has the type set, a constant B
that has the type set and a binary functor F and states that the following holds

ex [ being Function

st dom f = [AB] & forz,yst c € A& y € Bholds f.(z,y) = F(z,y)

for all values of the parameters.
We now state a proposition
(6) for f,g being Function st
dom f = [X,Y]
&domg=[X,Y]&forz,ystx € X &y €Y holds f.{x,y) = g.(z,y)
holds f = g.

Let f have the type Function. The functor
°f,
yields the type Function and is defined by
dom it = booldom f & for X st X € booldom f holds it.X = f° X.

The following propositions are true:

(7) for f,g being Function holds g = © f
iff dom g = booldom f & for X st X € booldom f holds g.X = f ° X,

(8) for f being Function st X € dom (° f) holds (° f).X = f ° X,
9) for f being Function holds (° f).0 = 0,

(10) for f being Function holds rng (° f) C boolrng f,

(11) for f being Function

holdsY € (°f)° Aiffex X st X cdom (P f) & X € A& Y = (° f). X,
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(12) for f being Function holds (° f)° A C boolrng f,
(13) for f being Function holds (° f) ' B C bool dom f,
(14) for f being Function of X, D holds (° f) "' B C bool X,
(15) for f being Function holds U((O A CF® (U A),

(16) for f being Function st A C booldom f holds f ° (U A) = U((O A,
(17) for f being Function of X, D st A C bool X holds f ° (U A) = U((o ) ° A,
(18) for f being Function holds U((O fAtB)yc ! (U B),

(19) for f being Function st B C boolrng f holds f ™! (U B) = U((O B,
(20) for f,g being Function holds ® (g - f) =°g¢-° f,

(21) for f being Function holds © f is Function of bool dom f,bool rng f,

(22) for f being Function of X, Y
st Y = () implies X = () holds ° f is Function of bool X,bool Y.

The arguments of the notions defined below are the following: X, D which are
objects of the type reserved above; f which is an object of the type Function of X, D.
Let us note that it makes sense to consider the following functor on a restricted area.
Then

°f is Function of bool X bool D.

Let f have the type Function. The functor
T
yields the type Function and is defined by

dom it = boolrng f & forY st Y € boolrng f holds it.Y = f ' Y.

We now state a number of propositions:

(23) for g,f being Function holds
g="!fiffdomg = boolrng f & forY st Y € boolrng f holds g.Y = f 'Y,

(24) for f being Function st Y € dom (! f) holds ("' f).Y = f 'Y,
(25) for f being Function holds rng ("! f) C bool dom f,
(26) for f being Function

holds X € (" f)° AiffexY stY cdom (' f) &Y € A& X = (1 f).Y,
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(27) for f being Function holds ("' f) © B C bool dom f,
(28) for f being Function holds (" f) ™% A C bool rng f,
(29) for f being Function holds LJ(('1 H°B)C (U B),

(30) for f being Function st B C boolrng f holds U(('l H°B)=f" (U B),
(31) for f being Function holds U(('l i tAcre (U A),

(32) for f being Function
st A C booldom f & f is_one-to-one holds LJ(('1 HtA)=r° (U A),

(33) for f being Function holds (™' f)° B C (° f) ™' B,
(34) for f being Function st f is_one-to-one holds (' f)° B = (° f) ™ B,

(35) for f being Function, A being set

st A C booldom f holds (" f) ™ AC (° f)° A,
(36) for f being Function, A being set

st fis_one-to-one holds (° f)° A C ("' f) ! A,
(37) for f being Function, A being set

st f is_one-to-one & A C booldom f holds (! )™t A = (° f) ° A,
(38) for f,g being Function st gis_one-to-one holds ™ (¢- f) ="' f-"yg,
(39) for f being Function holds "' f is Function of boolrng f,bool dom f.
Let us consider A, X. The functor
X (4, X),

yields the type Function and is defined by
domit = X
& for x st x € X holds (z € Aimpliesit.x = 1) & (notz € A implies it.x = 0).

We now state a number of propositions:
(40) for f being Function holds f = x (A4, X) iff dom f = X & forx
st z € X holds (x € A implies f.x = 1) & (notz € A implies f.x = 0),

(41) ACX &z € Aimplies x (A, X).z =1,

(42) reX &x(A,X).x=1impliesz € A,
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(43) z € X \ Aimplies x (A4, X).2 =0,

(44) xe€X & x(A,X).z=0implies notz € A,

(45) x € X implies x (0,X).2 =0,

(46) x € X implies x (X, X).x =1,

(47) ACX&BCX&x(A X)=x(B,X)implies A = B,
(48) g x (4, X) € {0,1},

(49) for f being Function of X, {0,1} holds f = x (f ™ {1},X).

Let us consider A, X. Let us note that it makes sense to consider the following

functor on a restricted area. Then

x (A, X) is Function of X, {0,1}.

One can prove the following propositions:

(50) for d being Element of D holds x (4,D).d=1iff d € A,
(51) for d being Element of D holds x (4, D).d =0 iff notd € A.

The arguments of the notions defined below are the following: Y which is an object
of the type reserved above; A which is an object of the type Subset of Y. The functor

incl A,

yields the type Function of A, Y and is defined by

it =id A.
We now state several propositions:
(52) for A being Subset of Y holds incl A = id A,
(53) for A being Subset of Y holds incl A = (idY) | 4,
(54) for A being Subset of Y holds domincl A = A & rngincl A = A,
(55) for A being Subset of Y st € A holds (incl A).x = z,
(56) for A being Subset of Y st € A holds incl (A).z € Y.

We now define two new functors. Let us consider X, Y. The functor

1 (X,Y),
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with values of the type Function, is defined by

domit =[X,Y] & forz,yst z € X &y € Y holds it.(z,y) = .

The functor
T (X, Y),

yields the type Function and is defined by

domit = [X,Y] & forz,yst z € X &y € Y holds it.(z,y) = .

Next we state several propositions:
(57) for f being Function holds f = m; (X,Y)
iffdomf=[X,Y]&forz,ystx € X &y €Y holds f.(x,y) =z,

(58) for f being Function holds f = w3 (X,Y)
iffdomf=[X,Y]&forz,ystx € X &y €Y holds f.(z,y) =y,

(59) mgm (X,Y) C X,
(60) Y # () implies rngm; (X,Y) = X,
(61) g (X,Y) CY,
(62) X # () implies rngm (X,Y) =Y.

Let us consider X, Y. Let us note that it makes sense to consider the following
functors on restricted areas. Then

m (X,Y) is Function of [ X, Y], X,

m (X,Y) is Function of [ X,Y],Y.
We now state two propositions:
(63) for d1 being Element of D1
for d2 being Element of D2 holds m (D1,D2).(d1,d2) = d1,

(64) for d1 being Element of D1
for d2 being Element of D2 holds 73 (D1,D2).(d1,d2) = d2.

Let us consider X. The functor
6 X,

with values of the type Function, is defined by

domit = X & forz st z € X holds it.x = (z, z).
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The following two propositions are true:

(65) for f being Function
holds f =6 X iff dom f = X & forz st © € X holds f.x = (z,z),

(66) rmgd X C [X, X].

Let us consider X. Let us note that it makes sense to consider the following functor

on a restricted area. Then

5 X is Function of X, [ X, X 1.

Let f, g have the type Function. The functor
(£, 9),

with values of the type Function, is defined by

domit = dom f Ndom g & for z st x € dom it holds it.z = (f.z,9.x).

We now state a number of propositions:

(67) for f,g,fg being Function holds fg = [(f, 9]
iff dom fg = dom f Ndom g & for z st x € dom fg holds fg.x = (f.xz,g9.2),

(68)  for f,g being Function st « € dom f Ndom g holds [ f,g).2 = (f.z,9.2),

(69) for f,g being Function
stdom f = X & domg =X & 2 € X holds [ f,g)].2 = (f.z,9.2),

(70) for f,g being Function st dom f = X & dom g = X holds dom [ f,g)] = X,
(71) for f,g being Function holds rng|(f, g)] C [rng f,rng g1,

(72) for f,g being Function st dom f =domg & mg f CY & mgg C Z
holds m, (Y, Z) - (f,9) = f & m2 (Y, Z) - [ f,9) = 9.

(73) [(71—1 (X7 Y)77r2 (Xa Y))] =id [X7 Y]a

(74) for f,g,h,k being Function
st dom f = dom g & domk = domh & [(f,g) = [k,h) holds f =k & g = h,

(75) for f,g,h being Function holds [[f - h,g - h)] = [f,g) - h,
(76) for f,g being Function holds [f,g)] ° A C [f ° A,g ° Al

(77) for f,g being Function holds [ f,¢)] ' [B,C]=f"'Bng™C,
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(78) for f being Function of X, Y for g being Function of X, Z st
(Y = 0 implies X = () & (Z = () implies X = ()
holds [(f, g) is Function of X, }Y, Z].
The arguments of the notions defined below are the following: X, D1, D2 which are
objects of the type reserved above; f1 which is an object of the type Function of X,
D1; f2 which is an object of the type Function of X, D2. Let us note that it makes

sense to consider the following functor on a restricted area. Then
[f1,f2) is Function of X, [D1,D2].

We now state several propositions:

(79) for f1 being Function of C, D1 for f2 being Function of C, D2
for ¢ being Element of C holds [(f1,f2).c = (f1.c,f2.¢),
(80) for f being Function of X, Y for g being Function of X, Z st
(Y = () implies X = 0) & (Z = () implies X = @) holds rng|(f, g)] C }Y, Z1,
(81) for f being Function of X,Y for g being Function of X, Z st
(Y = () implies X = 0) & (Z = () implies X = ()
holds m (Y, Z2) - [ f,g)] = f & m2 (Y. Z) - [f, 9) = 9,
(82) for f being Function of X, D1 for g being Function of X, D2
holds 71 (D1,D2) - [ f,9)] = f & m2 (D1,D2) - [ f, 9] = g,
(83) for f1,f2 being Function of X, Y for g1,¢92 being Function of X, Z st
(Y = () implies X = () & (Z = 0 implies X = 0) & [f1,91) = [(f2,92)
holds f1 = f2 & g1 = ¢2,
(84) for f1,f2 being Function of X, D1 for g1,¢g2 being Function of X, D2
st [(f1,91] = [(f2,92] holds f1 = f2 & g1 = g2.
Let f, g have the type Function. The functor
tf, 91,
yields the type Function and is defined by
dom it = [dom f,dom g]
& forx,y st « € dom f & y € dom g holds it.(z,y) = (f.x,9.y).
The following propositions are true:

(85)  for f,g,fg being Function holds fg = [f, g] iff dom fg = [dom f,dom g]
& forx,y st € dom f & y € domg holds fg.(x,y) = (f.z,9.v),
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(86) for f,g being Function, z,y
st (z,y) € [dom f,dom g] holds [f, g].(x,y) = (f.x,9.v),

(87) for f,g being Function
holds [ £, g] = [ - m1 (dom f,dom g),g - 75 (dom f.dom g)},

(88) for f,g being Function holds rng[f, g] = [rng f,rng g1,

(89) for f,g being Function
st dom f = X & domg = X holds (f,g)] = [f, 9] (6 X),

(90) fd X,idY] = id [X, Y],

(91) for f,g,h,k being Function holds [ f, h] - [(g, k) = [f - g,h - k),
(92) for f,g,h.k being Function holds [ f, h] - [g,k] = [f - g,h - K],
(93) for f,g being Function holds [ f,¢] ° [B,C]=[f° B,g° C1,
(94) for f,g being Function holds [ f,g] ' [B,C] =}f " B,g™ C],
(95) for f being Function of X,Y for g being Function of V, Z st

(Y = 0 implies X =0) & (Z = () implies V = ()
holds [ f, g] is Function of [ X, V],[Y, Z].

The arguments of the notions defined below are the following: X1, X2, D1, D2 which
are objects of the type reserved above; f1 which is an object of the type Function of
X1, D1; f2 which is an object of the type Function of X2, D2. Let us note that it

makes sense to consider the following functor on a restricted area. Then

Ef1,£2]  is  Function of [X1,X2],tD1,D2].

One can prove the following propositions:

(96) for f1 being Function of C'1,D1 for f2 being Function of C2,D2
for c1 being Element of C1
for ¢2 being Element of C2 holds [f1,f2].(cl,c2) = (f1.c1,f2.¢2),

(97) for f1 being Function of X1,Y'1 for 2 being Function of X2,Y2 st
(Y1 =0 implies X1 =0) & (Y2 = () implies X2 = ()
holds [ f1,f2] = [[f1-m (X1,X2),f2 7 (X1,X2)),

(98) for f1 being Function of X1,D1 for f2 being Function of X2,D2
holds [f1,f2] = [([f1-m (X1,X2),f2 7 (X1,X2)],
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(99) for f1 being Function of X, Y1 for f2 being Function of X, Y2 st
(Y1 =0 implies X = 0) & (Y2 = () implies X = )

(100) for f1 being Function of X, D1
for f2 being Function of X, D2 holds [[f1,f2)] = [f1,£2] - (6 X).
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