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Summary. The second part of considerations concerning groups
and fields. It includes a definition and properties of commutative field
F' as a structure defined by: the set, a support of F, containing two
different elements, by two binary operations +r, -7 on this set, called
addition and multiplication, and by two elements from the support of F,
0r being neutral for addition and 1 being neutral for multiplication.
This structure is named a field if (the support of F', +, Or) and (the
support of F, -p, 1p) are commutative groups and multiplication has
the property of left-hand and right-hand distributivity with respect to
addition. It is demonstrated that the field F' satisfies the definition of a
field in the axiomatic approach.

MML Identifier: REALSET2.

The articles [4], [2], [3], and [1] provide the notation and terminology for this
paper. A field structure is said to be a field if:

(Def.1)  there exists an at least 2-elements set A and there exists a binary op-
eration o1 of A and there exists an element n; of A and there exists a
binary operation oy of A preserving A \ {n;} and there exists an element
ng of A\ single(n) such that it = field(A, 01, 02,n1,n2) and group(A4, o1,
np) is a group and for every non-empty set B and for every binary oper-
ation P of B and for every element e of B such that B = A\ single(n)
and e = ng and P = 02 |,, A holds group(B, P,e) is a group and for all
elements z, y, z of A holds o2({x, 01({y, 2)))) = 01({o2({x, y}), 02({x, 2))))
and 05({01 ((z, ), 2)) = 01 ({02({x, 2)), 02({ 2)))).

Next we state the proposition

(1) Let F be a field structure. Then F is a field if and only if there exists an
at least 2-elements set A and there exists a binary operation o7 of A and
there exists an element nq of A and there exists a binary operation o2 of A
preserving A \ {n1} and there exists an element ns of A\ single(n;) such
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that F' = field(A4, 01,02,n1,n2) and group(A,o1,n1) is a group and for
every non-empty set B and for every binary operation P of B and for every
element e of B such that B = A\ single(n;) and e = ny and P =03 [, A
holds group(B, P,e) is a group and for all elements z, y, z of A holds
02({z,01({y, 2)))) = o1({02({z,9)), 02({x, 2})}) and 02({01({z,y}),2)) =
o1({o2({z, 2}), 02({y, 2))))-

Let F be a field. The supportof F' yielding an at least 2-elements set is

defined by:

(Def.2)  there exists a binary operation o; of the supportof F' and there ex-
ists an element nq of the supportof F' and there exists a binary op-
eration o9 of the supportof F' preserving the supportof F' \ {ni} and
there exists an element ny of (thesupportof F') \ single(ni) such that
F = field(the support of F, 01, 09,11, n2).

The following proposition is true

(2) For every field F' and for every at least 2-elements set A holds A =
the support of F' if and only if there exists a binary operation o; of A and
there exists an element ny of A and there exists a binary operation o9 of
A preserving A \ {n1} and there exists an element ng of A\ single(n;)
such that F' = field(A, o1, 02,n1,n32).

Let F be a field. The functor 4+ yielding a binary operation of the
support of F'
is defined as follows:

(Def.3)  there exists an element ny of the support of F' and there exists a binary
operation o9 of the supportof F' preserving the supportof F' \ {n1} and
there exists an element ng of thesupportof F'\ single(ni) such that F' =
field(the support of F, +p, 02,n1,n2).

Next we state the proposition

(3) For every field F' and for every binary operation o1 of the support of F
holds 01 = +F if and only if there exists an element n of the support of F’
and there exists a binary operation oo of the support of F' preserving the
support of F' \ {n1} and there exists an element ny of thesupportof F'\
single(ny) such that F' = field(the support of F, 01, 02,11, n2).

Let F' be a field. The functor O yielding an element of the support of F' is

defined by:

(Def.4)  there exists a binary operation oo of the supportof F' preserving the
supportof F' \ {0p} and there exists an element ns of thesupportof F'\
single(0r) such that F' = field(the support of F,+p, 02,0p, n2).

Next we state the proposition

(4)  For every field F' and for every element my of the supportof F' holds
n1 = Op if and only if there exists a binary operation o9 of the support of F’
preserving the supportof F' \ {ni} and there exists an element no of
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the support of F'\ single(ny) such that F' = field(the support of F, + p, 02,
ni, ’I’LQ).
Let F' be a field. The functor - g yields a binary operation of the support of F'
preserving the supportof F' \ {0 }and is defined as follows:
(Def.5)  there exists an element ng of thesupportof F' \ single(Og) such that
F = field(the supportof F, +p,-r, 0, n2).

We now state the proposition

(5) For every field F' and for every binary operation oy of the support of F
preserving the supportof F''\ {0z} holds 0y = - if and only if there exists
an element ny of thesupport of F'\ single(0g) such that
F = field(the support of F, +p, 02,05, n9).

Let F be a field. The functor 1p yielding an element of thesupportof F'\

single(0r) is defined as follows:
(Def.6) F = field(thesupportof F,+p, -r,0p, 1F).

The following propositions are true:

(6)  For every field F' and for every element ns of the support of F'\single(0r)
holds ny = 1 if and only if F' = field(the supportof F,+ g, r,0p, n2).

(7)  For every field F holds F' = field(the supportof F, +p,-p,0p, 1p).

(8)  For every field F' holds group(the supportof F, 4+ p,0F) is a group.

(9) For every field F' and for every non-empty set B and for every bi-
nary operation P of B and for every element e of B such that B =
thesupport of F'\ single(0r) and e = 1r and P = -p |g,, thesupport of F'
holds group(B, P, e) is a group.

(10) Let F be a field. Let z, y, z be elements of the supportof F. Then

i) rz,+r(y2)))) = +r((-r({z,9)), ({2, 2)))),
(i) r(+r(z,)),2)) = +r((r({z,2)), - F({y,2))))-

(11)  For every field F' and for all elements a, b, ¢ of the support of F' holds
+F(<+F(<a7 b))? C)) = +F(<a7 +F(<b7 C))))

(12)  For every field F and for all elements a, b of the supportof F' holds
+r({a,0)) = +r((b, a)).

(13)  For every field F' and for every element a of the supportof F' holds
+r({a,0r)) =a and +r({0p,a)) = a.

(14) For every field F' and for every element a of the supportof F' there
exists an element b of the supportof F' such that +p({a,b)) = 0p and
+F(<b, a)) = OF.

Let F' be an at least 2-elements set. A set is said to be a one-element subset

of F if:

(Def.7)  there exists an element x of F' such that it = single(x).

We now state the proposition

(15)  For every at least 2-elements set F' and for every one-element subset A
of F holds F'\ A is a non-empty set.
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Let F' be an at least 2-elements set, and let A be a one-element subset of F'.
Then F'\ A is a non-empty set.
The following proposition is true
(16)  For every at least 2-elements set F' and for every element x of F' holds
single(x) is a one-element subset of F.
Let F' be an at least 2-elements set, and let x be an element of /. Then
single(x) is a one-element subset of F'.
The following propositions are true:
(20)2 For every field F' and for all elements a, b, ¢ of thesupportof F' '\
single(0p) holds - ({-r({a, b)), c)) = -r({a,-r({b,c}))).
(21)  For every field F' and for all elements a, b of the support of F'\ single(0 )
holds -p({a, b)) = - ({b, a)).
(22)  For every field F' and for every element a of the support of F'\ single(0 r)
holds -rp({a,1r)) = a and -p({1p,a)) = a.
(23)  For every field F' and for every element a of
thesupport of F' \ single(0r)
there exists an element b of the support of F'\single(0 ) such that - 7({a, b))
1F and -F(<b, a)) = 1F-
Let F' be a field. The functor —F yielding a function from the support of F'
into the support of F' is defined by:

(Def.8)  for every element x of the supportof F' holds + g ({z, —p(z))) = 0p.

One can prove the following propositions:
(24) For every field F' and for every element x of the supportof F' holds
+r({z, —p(z))) = Op.
(25)  For every field F' and for every function S from the supportof F' into

the supportof F' holds S = —F if and only if for every element x of the
support of F' holds +g({z,S(z))) = Op.

(26)  For every field F' and for every element z of the supportof F' and for
every element y of the supportof F' such that +p({z,y)) = Op holds

y=—r(z)
(27)  For every field F' and for every element x of the supportof F' holds
r=—p(=r(z)).

(28)  For every field F' and for all elements a, b of the supportof F' holds
+r({a,b)) is an element of the supportof F' and -r({a,b)) is an element
of the supportof F' and —p(a) is an element of the support of F.

(29) For every field F' and for all elements a, b, ¢ of the support of F' holds
F({a, +r({b, —r () = +r({r({a; b)), —r(-F({a;c}))}).

(30)  For every field F' and for all elements a, b, ¢ of the support of F' holds
F({(+r((a, —r(0))),¢)) = +r({-r({a,c)), —r(-r({b:c)))))-

2The propositions (17)-(19) became obvious.
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(31) For every field F' and for every element a of the supportof F' holds
-#({a,0r)) = 0p.

(32)  For every field F' and for every element a of the supportof F' holds
'F(<0F,CL>) = OF.

(33) For every field F' and for all elements a, b of the supportof F' holds
—r(r({(a,0))) = -r({a, = (D)))-

(34)  For every field F holds -p({1r,0r)) = Op.

(35)  For every field F holds -p({(Op,1r)) = Op.

(36) For every field F' and for all elements a, b of the supportof F' holds
-#({a, b)) is an element of the support of F'.

(37)  For every field F' and for all elements a, b, ¢ of the support of F' holds
F((-r({a,0)),0)) = -r({a, r({b,)))).

(38) For every field F' and for all elements a, b of the supportof F' holds
-r({a,0)) = -r((b,a)).

(39) For every field F' and for every element a of the supportof F' holds
r({a,1p)) =a and -p({(1p,a)) = a.

Let F be a field. The functor }1 yielding a function from thesupportof F'\
single(0) into thesupport of I\ single(0r) is defined by:

(Def.9)  for every element x of the support of F\single(0r) holds - ({z, ' (z))) =
1r.

One can prove the following propositions:

(40)  For every field F' and for every element x of the support of F'\single(0r)
holds -r({(z, 7' (2))) = 1.

(41)  For every field F' and for every function S from thesupportof F' \
single(0x) into the support of F\single(0r) holds S = 7' if and only if for
every element x of the support of F'\ single(0r) holds -r({x, S(z))) = 1F.

(42)  For every field F' and for every element z of
thesupport of F' \ single(0f)
and for every element y of the support of F'\single(0) such that -p({z,y)) =
17 holds y = 7'(z).

(43)  For every field F and for every element z of the support of F'\single(0 )
holds = = ' (3! (z)).

(44)  For every field F and for all elements a, b of the support of F'\ single(0 )
holds -z ({a, b)) is an element of thesupport of F'\ single(07) and '(a) is
an element of the support of F'\ single(0r).

(45)  For every field F' and for all elements a, b, ¢ of the supportof F' such
that +r({a,b)) = +r({a,c)) holds b = c.

(46)  For every field F' and for every element a of the support of F'\ single(0 )
and for all elements b, ¢ of the support of F' such that - p({a, b)) = -p({a, c))
holds b = c.
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Filters - Part 1

Grzegorz Bancerek!
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Biatystok

Summary. Filters of a lattice, maximal filters (ultrafilters), op-
eration to create a filter generating by an element or by a nonempty set
of elements of the lattice are discussed. Besides, there are introduced
implicative lattices such that for every two elements there is an element
being pseudo-complement of them. Some facts concerning these concepts
are presented too, i.e. for any proper filter there exists an ultrafilter
consists it.

MML Identifier: FILTER_O.

The articles [3], [1], [4], [7], [5], [6], and [2] provide the notation and terminology
for this paper. We adopt the following convention: L is a lattice, p, p1, q, q1, 7,
ry1 are elements of the carrier of L, and x is arbitrary. Let F be a non-empty
set, and let p be an element of E. Then {p} is a non-empty subset of E.

Let E be a non-empty set, and let D1, Do be non-empty subsets of E. Then
D1 U Dy is a non-empty subset of F.

The following propositions are true:

(1) IfpCgq thenrUpCrUgand pUr CgUr and pUr C rU g and
rUpCqlr.

IfpCr,thenpNgCrand gMpCr.
fpCr, thenpCgllr and pE riug.
If pEp1and ¢ E q1, then plig C p1 Ugr and pUgq & g1 Ups.

2
3

Tt
—_ = D D O

IfpCprand ¢ C g1, then pMgCEpi Mg and pMg E ¢q Mpq.

6 IfpCErandgCr, then plgC .

7) IfrCpandrCq,thenr Cplg.

Let us consider L. A non-empty subset of the carrier of L is said to be a
filter of L if:

!Supported by RPBP I11-24.C1.
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(Def.1) pe€it and g € it if and only if pMq € it.
One can prove the following two propositions:
(8)  For every non-empty subset D of the carrier of L holds D is a filter of
L if and only if for all p, g holds p € D and ¢ € D if and only if pfg € D.
(9)  For every non-empty subset D of the carrier of L holds D is a filter of
L if and only if for all p, ¢ such that p € D and ¢ € D holds pMq € D
and for all p, ¢ such that p € D and p C ¢ holds ¢ € D.

In the sequel H, F' are filters of L. We now state several propositions:

(10) Ifpe H,thenpUqge Hand qUp € H.

(11)  There exists p such that p € H.

(12) If L is an upper bound lattice, then T € H.

(13) If L is an upper bound lattice, then {T 1} is a filter of L.
(14)  If {p} is a filter of L, then L is an upper bound lattice.
(15)  The carrier of L is a filter of L.

Let us consider L. The functor [L] yields a filter of L and is defined by:
(Def.2)  [L] = the carrier of L.
One can prove the following proposition
(16)  [L] = the carrier of L.

Let us consider L, p. The functor [p] yields a filter of L and is defined as
follows:

(Def.3)  [p]={q:pCq}.

One can prove the following four propositions:

A7) [pl={q:pEq}

(18) g € [p|] if and only if p C g.

(19) pe[pland pUq € [p] and qUp € [p].

(20) If L is a lower bound lattice, then [L] = [L].

Let us consider L, F. We say that F' is ultrafilter if and only if:
(Def.4)  F # the carrier of L and for every H such that F¥ C H and H # the
carrier of L holds FF = H.
One can prove the following four propositions:

(21)  F is ultrafilter if and only if F' # the carrier of L and for every H such
that ' C H and H # the carrier of L holds F' = H.

(22) If L is a lower bound lattice, then for every F' such that F' # the carrier
of L there exists H such that F' C H and H is ultrafilter.

(23)  If there exists r such that p M r # p, then [p] # the carrier of L.
(24) If L is a lower bound lattice and p # L1, then there exists H such that
p € H and H is ultrafilter.

In the sequel D is a non-empty subset of the carrier of L. Let us consider L,
D. The functor [D] yields a filter of L and is defined by:
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(Def.5) D C [D] and for every F such that D C F holds [D] C F.

One can prove the following two propositions:
(25) D C [D] and for every F such that D C F holds [D] C F.
(26) [F]=F.
In the sequel Dy, D5 will be non-empty subsets of the carrier of L. We now
state several propositions:
(27) If D1 C D5, then [Dl] - [Dg]
(28) [[D]] € [D].
(29) If pe D, then [p] C [D].
(30) If D = {p}, then [D] = [p].
(31) If L is a lower bound lattice and L € D, then [D] = [L] and [D] = the
carrier of L.

(32) If L is a lower bound lattice and L € F, then F' = [L] and F' = the
carrier of L.

31

Let us consider L, F. We say that F' is prime if and only if:
(Def.6) pUge Fifandonlyifp e Forqe F.

One can prove the following two propositions:

(33)  F'is prime if and only if for all p, ¢ holds plUg € F if and only if p € F
orq€kF.

(34) If L is a boolean lattice, then for all p, ¢ holds p M (p° U ¢) C ¢ and for
every r such that pMr C ¢ holds » C p® U gq.

A lattice is called a implicative lattice if:
(Def.7)  for every elements p, ¢ of the carrier of it there exists an element r of
the carrier of it such that pMr C ¢ and for every element ry of the carrier
of it such that pMrq C ¢ holds r1 C 7.
One can prove the following proposition

(35) L is a implicative lattice if and only if for every p, ¢ there exists r such
that pMr E ¢ and for every r1 such that prqy E ¢ holds r1 C 7.

Let us consider L, p, q. Let us assume that L is a implicative lattice. The
functor p = ¢ yields an element of the carrier of L and is defined as follows:

(Def.8) pM(p= q) C q and for every r such that pMr C ¢ holds r C p = q.

The following proposition is true

(36) If L is a implicative lattice, then for all p, ¢, r holds r = p = ¢ if and
only if pMr C ¢ and for every ry such that pMry C ¢ holds 1 C r.

In the sequel I will denote a implicative lattice and ¢ will denote an element
of the carrier of I. The following three propositions are true:

(37) I is an upper bound lattice.
(38) i=i=Ty.
(39) I is a distributive lattice.

815
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In the sequel B is a boolean lattice and F4, Hy are filters of B. Next we state
the proposition
(40) B is a implicative lattice.
We see that the implicative lattice is a distributive lattice.

For simplicity we follow the rules: I will be a implicative lattice, 4, j, k will
be elements of the carrier of I, D3 will be a non-empty subset of the carrier of
I, and F5 will be a filter of I. The following propositions are true:

(41) Ifi € Fy and i = j € Fy, then j € Fb.
(42) If j € F5, then i = j € F5.
Let us consider L, Dy, Dy. The functor Dy M D5 yielding a non-empty subset
of the carrier of L is defined as follows:
(Def9) D1|_|D2:{p|_|q:p€D1/\q€D2}.
Next we state four propositions:
(43) D1 Dy ={pMq:p€ Dy Aqé€ Dy}
(44) Ifpe Dy and g € Dy, then pfig € D1 M Dy and ¢Mp € Dy M Do.
(45) If © € Dy M Dy, then there exist p, ¢ such that x = pMq and p € D,
and g € Ds.
(46) D1 Dy =Dy M Dy.
Let L be a distributive lattice, and let F3, Fy be filters of L. Then F31 Fy
is a filter of L.

Let L be a boolean lattice, and let F3, Fy be filters of L. Then F3 M Fy is a
filter of L.

One can prove the following propositions:
(47) [Dl U Dg] = [[Dl] U Dg] and [Dl U Dg] = [Dl @] [DQH
(48) [FUH]={r:V,[pNq¢ErApecFAqec Hl}.
(49) FCFMNHand HCFNH.
(50) [FUH]=I[FNH]
In the sequel F3, Fy are filters of I. The following four propositions are true:
(51) [FgUF4] = F3MFy.
(52) [F1UH1]:F1|_|H1.
(563) If j € [Ds U{i}], then i = j € [Ds].
(54) Hfi=jeFyand j= k€ F,, theni =k € F;.
In the sequel a, b, ¢ will denote elements of the carrier of B. One can prove
the following propositions:
(55) a=b=a‘Lb.
(56) aCbifand only if aMb® = Lp.
(57)  Fy is ultrafilter if and only if F} # the carrier of B and for every a holds
a € Fyora® e F.
(58) Fy # [B] and Fj is prime if and only if F} is ultrafilter.
(59) If Fy is ultrafilter, then for every a holds a € Fy if and only if a© ¢ Fj.
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(60) If a # b, then there exists F; such that F} is ultrafilter but a € F; and
b¢ Frora¢ Fy and b € Fy.
In the sequel o1, 09 are binary operations on F. Let us consider L, F'. The
functor Ly yielding a lattice is defined as follows:
(Def.10)  there exist 01, 02 such that o; = (the join operation of L) | | F, F'] and
02 = (the meet operation of L) | [ F, F'] and L = (F,01,02).
In the sequel K is a lattice. Next we state a number of propositions:
(61) K = Lp if and only if there exist o1, oy such that o; = (the join
operation of L) | [ F, F'] and 0o = (the meet operation of L) | [ F, F']
and K = (F,01,09).
(62) Ly =L.
(63)  The carrier of Ly = F and the join operation of Ly = (the join opera-
tion of L) | [ F, F'] and the meet operation of Ly = (the meet operation
of L) | | F, F'{.
(64) For all p, g and for all elements p’, ¢’ of the carrier of Ly such that
p=p and g=¢ holds pUUg=p' Uq¢ and plg=9p'1¢.
(65) For all p, g and for all elements p’, ¢’ of the carrier of Ly such that
p=p and ¢ = ¢’ holds p C ¢ if and only if p’ C ¢'.
If L is an upper bound lattice, then Ly is an upper bound lattice.
If L is a modular lattice, then Lg is a modular lattice.

(=}
oo

If L is a distributive lattice, then Lg is a distributive lattice.

D
=)

If L is a implicative lattice, then Ly is a implicative lattice.
Ly is a lower bound lattice.

Lo =P

If L is an upper bound lattice, then To, =Tr

~
R =

N N N AN N N N N
EN| EN{
w @)

~— — N N~ Y N Y ' —

If L is an upper bound lattice, then L, is a bound lattice.

If L is a complemented lattice and L is a modular lattice, then Ly, is a
complemented lattice.

(75)  If L is a boolean lattice, then Ly, is a boolean lattice.

Let us consider L, p, g. The functor p < ¢ yielding an element of the carrier
of L is defined by:

(Def1l) p&eqg=p=qMNqg=p.
Next we state three propositions:
(76) peqg=p=qNqg=p.
(77) peqg=qep.
(78) Ifiw jeFrand jo ke Fy theni e ke Fy.
Let us consider L, F'. The functor =f yielding a binary relation is defined
as follows:

(Def.12)  field = C the carrier of L and for all p, ¢ holds (p, ¢) € = if and only
ifpeqgelF.
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In the sequel R will denote a binary relation. We now state several proposi-
tions:

(79) R = =p if and only if field R C the carrier of L and for all p, ¢ holds
(p,q) € Rifand only if p<= q € F.

80 =p is a binary relation on the carrier of L.

81

82

83

84

If L is a implicative lattice, then = is reflexive in the carrier of L.
=p is symmetric in the carrier of L.
If L is a implicative lattice, then =p is transitive in the carrier of L.

N N N N N
~— — — ~— ~—

If L is a implicative lattice, then = is an equivalence relation of the
carrier of L.

(85) If L is a implicative lattice, then field =p = the carrier of L.

Let us consider I, F5. Then =, is an equivalence relation of the carrier of
1.

Let us consider B, F;. Then =p, is an equivalence relation of the carrier of
B

Let us consider L, F, p, ¢q. The predicate p =p ¢ is defined by:

(Def13) pegqeF.
Next we state several propositions:

86
8
88
89
90

p=r qif and only if p < g € F.

p =F q if and only if (p,q) € =p.

i =p, ¢ and a =f, a.

If p=p q, then ¢ =p p.

Ifi =p, j and j =p, k, then i =g, k but if a =p, b and b =g, ¢, then
a =p, C

3

A~ N N N
~— — — ' —
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Wojciech A. Trybulec
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Summary. Notions of group and abelian group are introduced.
The power of an element of a group, order of group and order of an
element of a group are defined. Basic theorems concerning those notions
are presented.

MML Identifier: GROUP_1.

The notation and terminology used in this paper are introduced in the following
articles: [6], [7], [9], [2], [3], [5], [12], [11], [1], [8], [4], [10], and [13]. We follow
the rules: z is arbitrary, m, n are natural numbers, and ¢, j are integers. Let
N be a non-empty subset of R, and let D be a non-empty set, and let f be a
function from N into D, and let n be an element of N. Then f(n) is an element
of D.

Let D be a non-empty set, and let N be a non-empty subset of R, and let E
be a non-empty set, and let f be a function from [ D, N { into F, and let h be
an element of D, and let n be an element of N. Then f(h, n) is an element of
E.

Let us consider i. Then |i| is a natural number.

We consider half group structures which are systems

(a carrier, an operation),
where the carrier is a non-empty set and the operation is a binary operation on
the carrier. In the sequel S denotes a half group structure. Let us consider S.
An element of S is an element of the carrier of S.

In the sequel r, s, s1, s2, t will be elements of S. Let us consider S, z. The
predicate x € S is defined as follows:

(Def.1)  x € the carrier of S.
The following propositions are true:

(1) =z € S if and only if z € the carrier of S.
(2) ses.

© 1990 Fondation Philippe le Hodey
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(3) Ifx €S, then x is an element of S.

Let us consider S, si, so. The functor sq - sy yielding an element of S is
defined by:

(Def.2) 51 - s9 = (the operation of S)(s1, s2).

One can prove the following proposition

(4)  s1-s2 = (the operation of S)(s1, $2).

A half group structure is called a group if:

(Det.3) (i) for all elements f, g, h of it holds (f-g)-h=f-(g-h),
(ii)  there exists an element e of it such that for every element h of it holds
h-e = h and e-h = h and there exists an element g of it such that h-g =€
and g-h=e.

We now state three propositions:

(5) If for all r, s, ¢t holds (r-s) -t =r-(s-t) and there exists ¢ such that
for every sy holds sy -t = s; and t - s; = s1 and there exists s, such that
$1-89 =t and sy - s; =t, then S is a group.

(6) If for all r, s, ¢t holds (r-s)-t =r-(s-t) and for all r, s holds there
exists ¢ such that r -t = s and there exists ¢ such that ¢ - r = s, then S is
a group.

(7)) (R,+g) is a group.

We follow a convention: G denotes a group and e, f, g, h denote elements of

G. Next we state two propositions:

@) (h-g)-f=h-(g-])
(9)  There exists e such that for every h holds h-e = h and e - h = h and
there exists g such that h-g=cand g-h =ce.

Let us consider G. The functor 14 yielding an element of G is defined by:
(Defd) h-(lg) =hand (1g)-h = h.
One can prove the following two propositions:
(10) If for every h holds h-e =h and e - h = h, then e = 1.
(11) h-(lg)=hand (1g)-h=h.
Let us consider G, h. The functor h~! yields an element of G and is defined
as follows:
(Def.5)  h-(h7')=1g and (h71)-h = 1g.
One can prove the following propositions:
(12) Ifh-g=1gand g-h = 1¢g, then g = h~L.
(13) h-hl=1lgand h™' h=1g.
(14) Ifh-g=h-forg-h=f-h,theng=f.
(15) Ifh-g=hor g-h=h,then g =1g.
(16)  (1e)™' = 1le-
(17) Ifh '=g! then h=g.
( ) If =1 = 1g, then h = 14.
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) (' =h
) Ifh-g=1lgorg-h=1g,then h=g 'and g=h"!
) h-f=gifandonlyif f=h"1g
) f-h=gifandonlyif f=g-h"!
23)  There exists f such that g- f = h.
) There exists f such that f-g=nh
) (h-g)t=g7"n7h
) g-h=h-gifandonlyif (¢g-h)~! = g_1 h_1
) g-h=h-gifandonlyif g=!-h=! =h~
28) g-h=h-gifandonlyif g-h~ ! =h"
In the sequel u is a unary operation on the carrier of G. Let us consider G.
The functor -51 yields a unary operation on the carrier of G and is defined by:
(Def.6) -g'(h) =h7L

We now state several propositions:

(29)  If for every h holds u(h) = h~!, then u = -5*.

30) -g'(h)=h""

(31)  The operation of G is associative.

(32) 1¢ is a unity w.r.t. the operation of G.

(33) Lthe operation of G — 1lg.

(34)  The operation of G has a unity.

(35) 61 is an inverse operation w.r.t. the operation of G.
(36) The operation of G has an inverse operation.

(37)  Theinverseoperation w.r.t. (the operation of G) = -5'.

Let us consider G. The functor power; yields a function from [ the carrier
of G, N{ into the carrier of G and is defined by:

(Def.7)  powerg(h, 0) = 1¢ and for every n holds power(h, n+1) = powerg(h,
n) - h.
In the sequel H is a function from [ the carrier of G, N into the carrier of
G. We now state three propositions:
(38)  If for every h holds H(h, 0) = 1¢ and for every n holds H(h, n+1) =
H(h, n) - h, then H = power,;.
(39) powerg(h, 0) = 1¢.
(40)  powerg(h, n+ 1) = powerg(h, n) - h.
Let us consider G, n, h. The functor A" yields an element of G and is defined
as follows:
(Def.8) A" = powerg(h, n).
We now state a number of propositions:
(41) A" = powerg(h, n).
42) (1g)" =1g.

823
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43) KW =1q.

44)  h' = h.

45)  h®>=nh-h.

46) h3=(h-h)-h.

N
\]

h? = 1¢ if and only if =% = h.
Rt = ™. B™ and AT = p™ . A
"t = p" . h and h*T! = h- A" and A" = A" - h and BT = h - B".
R = (h™)™.
(R = (k)=
Ifg-h=h-g,theng-h" =h"-g.
Ifg-h=nh-g, then g"-h"™ =h" - g".
Ifg-h=~h-g, then (g-h)" =g"-h"™
Let us consider G, i, h. The functor h’ yielding an element of G is defined
by:
(Def.9) k' =Rl if 0 <4, h* = (W)=, otherwise.
The following propositions are true:
If 0 <4, then h' = hlil,
If 0 £ 4, then h? = (hl1)~1.
If i < 0, then h? = (hl1)~1.
If i = n, then h* = h".

o e s e N e N N S e e e e
Ut Ot Ot Ot U =
=W N~ O O
N’ N e e e e e e e N N N

(O SIS GL BG)
0 ~J O Ot

(55)

(56)

(57)

(58) |

(59) If i =0, then h' = 1.

(60) If i <0, then h* = (Rlh)~1,

(61) (1G)i =1g.

(62) h7t=hn""

(63) AT =h'-hI.

(64) A"t =h"- R

(65) At =h'.p™.

(66) hitl=hi-hand hitt =h-hJ and K1 = hI - h and KT = h - b
(67)  h¥I = (R%)I.

(68)  h™I = (h™)I.

(69)  A'™ = (R')™.

(70) A~ =(hH)~"L

(71) A" = (k™)L

(12)  (h71)" = (")~

(73) TIfg-h=h-g, then (g-h)' =g - h'.
(74) Ifg-h=h-g, then g'-hi = h - g'.
(75) Ifg-h=h-g, then g" - h/ =h' - g".
(76) If g-h=h-g, then g' - h™ = h™ - g
(77) Ifg-h=h-g,then g-h' =h'-g.
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Let us consider GG, h. We say that h is of order O if and only if:
(Def.10)  if A" = 1¢, then n = 0.
We now state two propositions:
(78)  his of order 0 if and only if for every n such that b = 15 holds n = 0.
(79)  1¢ is not of order 0.

Let us consider G, h. The functor ord(h) yields a natural number and is
defined by:

(Def.11)  ord(h) = 0 if h is of order 0, h"4") = 15 and ord(h) # 0 and for every
m such that h™ = 1 and m # 0 holds ord(h) < m, otherwise.
One can prove the following propositions:

(80)  If h is not of order 0 and h"™ = 15 and m # 0 and for every n such that
h™ =1¢ and n # 0 holds m < n, then m = ord(h).

85) If ord(h) =1, then h = 14.
86) If h™ = 1¢, then ord(h) | n.

Let us consider G. The functor Ord(G) yielding a cardinal number is defined
as follows:

(Def.12)  Ord(G) = the carrier of G.
We now state the proposition

(87)  Ord(G) = the carrier of G.

We now define two new predicates. Let us consider G. We say that G is
finite if and only if:

(Def.13)  the carrier of G is finite.
We say that G is infinite if and only if G is not finite.
The following proposition is true
(88) @ is finite if and only if the carrier of G is finite.

Let us consider G. Let us assume that G is finite. The functor ord(G)
yielding a natural number is defined by:

(Def.14)  ord(G) = card (the carrier of G).

Next we state two propositions:
(89) If G is finite, then ord(G) = card (the carrier of G).
(90) If G is finite, then ord(G) > 1.
A group is called an Abelian group if:
(Def.15)  for all elements a, b of it holds a-b=1b- a.
We now state two propositions:
(91) If for all h, g holds h-g = g - h, then G is an Abelian group.

(81)  h is of order 0 if and only if ord(h) = 0.

(82)  hordh) =14,

(83) If h is not of order 0 and h"™ = 1 and m # 0, then ord(h) < m.
(84) ord(lg) =1.

(85)

(86)
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(R,+g) is an Abelian group.

In the sequel A is an Abelian group and a, b are elements of A. One can
prove the following propositions:

(93)
94)
5)
96)
7)

Ne)

A~~~ I~
Ne)

a-b=">b-a.
(a-b)"t=a"t b1
(a-b)" =a™-b"

)
(a-b)' =a' b
(The carrier of A, the operation of A, -Zl, 14) is an Abelian group.

In the sequel B denotes an Abelian group. We now state two propositions:

(98)
(99)

(The carrier of B, the addition of B) is an Abelian group.
-1 <0.
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The Divisibility of Integers and Integer

Relatively Primes !
Rafal Kwiatek Grzegorz Zwara
Nicolaus Copernicus University Warsaw University
Torun Bialystok

Summary. We introduce the following notions: 1)the least com-
mon multiple of two integers (lem(3, j)), 2)the greatest common divisor
of two integers (gcd(i,7)), 3)the relative prime integer numbers, 4)the
prime numbers. A few facts concerning the above items, among them a
so-called Foundamental Theorem of Arithmetic, are introduced.

MML Identifier: INT_2.

The papers [2], [1], and [3] provide the terminology and notation for this paper.
In the sequel a, b will be natural numbers. Next we state several propositions:

lem(a, b) = lem(b, a).

ged(a,b) = ged(b, a).

0| a if and only if a = 0.

a =0 or b =0 if and only if lem(a,b) = 0.
a =0 and b= 0 if and only if gcd(a,b) = 0.
a-b=1lem(a,b) - ged(a,b).

We follow the rules: m, n are natural numbers and a, b, ¢, a1, by are integers.
Let us consider n. The functor +n yields an integer and is defined by:

(Def.1)

+n =n.

Next we state a number of propositions:

7)

=~~~
oo

)
9)
(10)
(11)

+n =n.

—n is a natural number if and only if n = 0.
—1 is not a natural number.

+0 | a if and only if a = 0.
alaanda|—aand —a|a.

!Supported by RPBP.III-24.B5.
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(12) Ifa|b, thenalb-ec.

(13) Ifa|bandb|ec, thena|ec.

(14) a|bif and only if a | —b but a | b if and only if —a | b but a | b if and
only if —a | —b but a | —b if and only if —a | b.

(15) Ifa|bandb]|a,thena="bora= —b.
(16) a|+0and +1 |a and —1| a.

(17) Ifa|+lora|—1,thena=1ora=—1.
(18) Ifa=1lora=—1,thenal|+1anda|—1.
(19)  a=b(modc) if and only if ¢ | a — b.

(20)  |al is a natural number.

Let us consider a. Then |a| is a natural number.
We now state the proposition
(21)  a|bif and only if |a| | |b].
Let us consider a, b. The functor lem(a, b) yields an integer and is defined as
follows:
(Def.2)  lem(a,b) = lem(|al, |0]).

The following propositions are true:

(22)  lem(a,b) = lem(|al, |b]).

(23)  lem(a,b) is a natural number.

(24)  lem(a,b) = lem(b, a).

(25)  allem(a,b).

(26) b |lem(a,b).

(27)  For every c such that a | ¢ and b | ¢ holds lem(a, b) | c.

Let us consider a, b. The functor ged(a,b) yields an integer and is defined
by:
(Def.3)  ged(a, b) = ged(|al, [b]).

One can prove the following propositions:

(28)  ged(a,b) = ged(|al, [b]).

(29)  ged(a,b) is a natural number.

(30) ged(a,b) = ged(b, a).

(31)  ged(a,b) | a.

(32) ged(a,b) | b.

(33)  For every ¢ such that ¢ | a and ¢ | b holds ¢ | ged(a, b).
(34) a=0orb=0if and only if lem(a,b) = 0.

(35) a=0and b=0 if and only if ged(a,b) = 0.

Let us consider a, b. We say that a and b are relatively prime if and only if:
(Def4)  ged(a,b) = 1.
Next we state several propositions:
(36) a and b are relatively prime if and only if ged(a,b) = 1.
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(37) If a and b are relatively prime, then b and a are relatively prime.

(38) Ifa+# 0orb+#0, then there exist ay, by such that a = ged(a,b) - a; and
b = ged(a,b) - by and a; and by are relatively prime.

(39) If @ and b are relatively prime, then ged(c-a, ¢-b) = |c| and ged(c-a, b-c) =
le| and ged(a - ¢,c-b) =|c| and ged(a - ¢,b - ¢) = |¢].

(40) Ifc¢|a-band a and c are relatively prime, then ¢ | b.

(41) If a and c¢ are relatively prime and b and c are relatively prime, then
a - b and c are relatively prime.

In the sequel p, g, k, [ will denote natural numbers. Let us consider p. We
say that p is prime if and only if:

(Def.5)  p > 1 and for every n such that n | p holds n =1 or n = p.

The following proposition is true

(42)  p is prime if and only if p > 1 and for every n such that n | p holds
n=1orn=np.

Let us consider m, n. We say that m and n are relatively prime if and only
if:

(Def.6)  ged(m,n) = 1.

We now state several propositions:

(43)  m and n are relatively prime if and only if ged(m,n) = 1.

(44) 2 is prime.

(45)  There exists p such that p is prime.

(46)  There exists p such that p is not prime.

(47)  If p is prime and ¢ is prime, then p and ¢ are relatively prime or p = q.

In this article we present several logical schemes. The scheme Ind! concerns
a natural number A, and a unary predicate P, and states that:

for every k such that k > A holds P[k]
provided the parameters meet the following conditions:

o P[A],

e for every k such that k > A and P[k] holds P[k + 1].

The scheme Comp_Ind1 concerns a natural number A, and a unary predicate
P, and states that:

for every k such that & > A holds P[k]
provided the parameters have the following property:

e for every k such that & > A and for every n such that n > A and
n < k holds P[n] holds P[k].
Next we state the proposition

(48)  If I > 2, then there exists p such that p is prime and p | [.
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From Loops to Abelian Multiplicative
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Summary. Elementary axioms and theorems on the theory of
algebraic structures, taken from the book [4]. First a loop structure
(G,0,+) is defined and six axioms corresponding to it are given. Group
is defined by extending the set of axioms with (a+b)+c = a+(b+c). At the
same time an alternate approach to the set of axioms is shown and both
sets are proved to yield the same algebraic structure. A trivial example
of loop is used to ensure the existence of the modes being constructed.
A multiplicative group is contemplated, which is quite similar to the
previously defined additive group (called simply a group here), but is
supposed to be of greater interest in the future considerations of algebraic
structures. The final section brings a slightly more sophisticated structure
i.e: a multiplicative loop/group with zero: (G, -, 1,0). Here the proofs are
a more challenging and the above trivial example is replaced by a more
common (and comprehensive) structure built on the foundation of real
numbers.

MML Identifier: ALGSTR_1.

The notation and terminology used in this paper are introduced in the following
articles: [1], [2], and [3]. We consider loop structures which are systems

(a carrier, an addition, a zero),
where the carrier is a non-empty set, the addition is a binary operation on the
carrier, and the zero is an element of the carrier. In the sequel G; will denote
a loop structure. Let us consider G1. An element of GG1 is an element of the
carrier of G.

In the sequel a, b will denote elements of G1. Let us consider Gy, a, b. The
functor a + b yielding an element of G is defined as follows:

(Def.1)  a+ b= (the addition of G1)(a, b).

We now state the proposition

!Supported by RPBP.I11-24.C6.
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(1) a4+ b= (the addition of G1)(a, b).
Let us consider GG1. The functor Og, yielding an element of GG; is defined as

follows:

(Def.2)  0¢g, = the zero of Gj.

One can prove the following proposition
(2)  0Og, = the zero of G;.
Let x be arbitrary. The functor Extract(z) yielding an element of {z} is

defined by:

(Def.3)  Extract(z) = =.

One can prove the following proposition
(3)  For an arbitrary x holds Extract(z) = z.
The trivialloop a loop structure is defined as follows:

(Def.4)  thetrivialloop = ({0}, zo, Extract(0)).

One can prove the following three propositions:

(4) Thetrivialloop = ({0}, zo, Extract(0)).

(5) If ais an element of the trivialloop, then a = Othe trivialloop-

(6)  For all elements a, b of the trivialloop holds a + b = Ohe trivial loop-
A loop structure is called a loop if:

(Def.5) (i)  for every element a of it holds a + 03 = a,

(ii)  for every element a of it holds 0y + a = a,
(iii)  for every elements a, b of it there exists an element = of it such that
a+x =0,
(iv)  for every elements a, b of it there exists an element z of it such that
r+a=2>,
(v)  for all elements a, x, y of it such that a + z = a + y holds z = y,
(vi) for all elements a, x, y of it such that 2 +a =y + a holds = = y.
The following proposition is true
(7)  Let Gy be aloop structure. Then G is a loop if and only if the following
conditions are satisfied:
(i)  for every element a of G; holds a + 0g, = a,
(ii)  for every element a of G; holds O¢, + a = a,
(iii)  for every elements a, b of G; there exists an element x of G such that
a+x=0>b,
(iv)  for every elements a, b of G; there exists an element x of G such that
r+a=2>,
(v)  for all elements a, x, y of Gy such that a + z = a + y holds z =y,
(vi) for all elements a, x, y of Gy such that z +a =y + a holds z = y.
Let us note that it makes sense to consider the following constant. Then

the trivial loop is a loop.

A loop is called a group if:

(Def.6)  for all elements a, b, ¢ of it holds (a +b) + ¢ =a + (b + ¢).
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We now state the proposition
(8)  For every loop G; holds G is a group if and only if for all elements a,
b, c of Gy holds (a+b) +c=a+ (b+c).
We follow the rules: L will be a loop structure and a, b, ¢, z will be elements
of L. We now state the proposition
(9) L is a group if and only if for every a holds a + 07, = a and for every a
there exists = such that a +z = 0r, and for all a, b, ¢ holds (a +b) + ¢ =
a+ (b+c).
Let us note that it makes sense to consider the following constant. Then
the trivialloop is a group.
A group is called an Abelian group if:
(Def.7)  for all elements a, b of it holds a + b = b + a.

Next we state two propositions:

(10)  For every group G holds G is an Abelian group if and only if for all
elements a, b of G holds a +b = b+ a.

(11)  Lis an Abelian group if and only if the following conditions are satisfied:
(i) for every a holds a + 01, = a,
(ii) for every a there exists = such that a +z = 0p,
(iii) for all a, b, c holds (a +b) +c=a+ (b+c¢),

(iv) for all a, b holds a+b =10+ a.

Let L be a group, and let a be an element of L. The functor —a yielding an
element of L is defined by:

(Det.8) a+ (—a)=0r.
We now state the proposition
(12)  For every group L and for every element a of L holds a + (—a) = 0.
In the sequel G will denote a group and a, b will denote elements of G. One
can prove the following proposition
(13) a+ (—a)=0¢ and (—a) +a = 0g.
Let us consider G, a, b. The functor a — b yields an element of G and is
defined as follows:
(Def.9) a—b=a+ (-b).
Next we state the proposition
(14) a—b=a+ (D).
We consider mutiplicative loop structures which are systems
(a carrier, a multiplication, a unity),
where the carrier is a non-empty set, the multiplication is a binary operation
on the carrier, and the unity is an element of the carrier. In the sequel G is
a mutiplicative loop structure. Let us consider G1. An element of G is an
element of the carrier of GG7.

In the sequel a, b are elements of GG1. Let us consider G, a, b. The functor
a - b yields an element of (G; and is defined as follows:
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(Def.10) @ - b = (the multiplication of G1)(a, b).
One can prove the following proposition
(15)  a-b = (the multiplication of G1)(a, b).
Let us consider GG;. The functor 1g, yields an element of G; and is defined
by:
(Def.11)  1g, = the unity of G;.
One can prove the following proposition
(16) 1g, = the unity of G;.
The trivial multiplicativeloop a mutiplicative loop structure is defined as
follows:
(Def.12)  thetrivial multiplicative loop = ({0}, zo, Extract(0)).

The following propositions are true:
(17)  Thetrivial multiplicative loop = ({0}, zo, Extract(0)).
(18)  If a is an element of the trivial multiplicative loop, then
a = 1the trivial multiplicative loop *
(19) For all elements a, b of the trivial multiplicativeloop holds a - b =
1the trivial multiplicative loop -
A mutiplicative loop structure is said to be a multiplicative loop if:
(Def.13) (i)  for every element a of it holds a - (1) = a,
(ii)  for every element a of it holds (1) - a = a,
(iii)  for every elements a, b of it there exists an element x of it such that

a-x =b,
(iv)  for every elements a, b of it there exists an element z of it such that
r-a=0b,

(v) for all elements a, x, y of it such that a -z = a -y holds z =y,
(vi)  for all elements a, x, y of it such that z-a =y - a holds x = y.

We now state the proposition
(20) Let L be a mutiplicative loop structure. Then L is a multiplicative loop
if and only if the following conditions are satisfied:
(i) for every element a of L holds a- (11) = a,
(ii)  for every element a of L holds (11)-a = a,
(iii)  for every elements a, b of L there exists an element x of L such that

a-x =Db,
(iv)  for every elements a, b of L there exists an element z of L such that
T-a=>h,

(v) for all elements a, x, y of L such that a-2z = a -y holds z =y,
(vi) for all elements a, x, y of L such that z-a =y -a holds z = y.

Let us note that it makes sense to consider the following constant. Then
the trivial multiplicative loop is a multiplicative loop.

A multiplicative loop is said to be a multiplicative group if:
(Def.14)  for all elements a, b, ¢ of it holds (a-b)-c=a- (b-¢).
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One can prove the following proposition
(21)  For every multiplicative loop L holds L is a multiplicative group if and
only if for all elements a, b, ¢ of L holds (a-b)-c=a- (b-c).
We follow the rules: L is a mutiplicative loop structure and a, b, ¢, = are
elements of L. One can prove the following proposition
(22) L is a multiplicative group if and only if for every a holds a - (11) = a
and for every a there exists x such that a-x = 17 and for all a, b, ¢ holds
(a-b)-c=a-(b-c).
Let us note that it makes sense to consider the following constant. Then
the trivial multiplicative loop is a multiplicative group.
A multiplicative group is called a multiplicative Abelian group if:
(Def.15)  for all elements a, b of it holds a-b=1b- a.

The following propositions are true:
(23)  For every multiplicative group G holds G is a multiplicative Abelian
group if and only if for all elements a, b of G holds a-b=1b-a.
(24) L is amultiplicative Abelian group if and only if the following conditions
are satisfied:
(i) for every a holds a- (11) = a,
(ii)  for every a there exists x such that a-z =1p,
(iii) for all a, b, cholds (a-b)-c=a-(b-c),
(iv) forall a,bholdsa-b=5b-a.
Let L be a multiplicative group, and let a be an element of L. The functor
a~! yields an element of L and is defined by:
(Def.16)  a-(a™!) =1y.
The following proposition is true
(25)  For every multiplicative group L and for every element a of L holds
a-al=1p.
In the sequel G is a multiplicative group and a, b are elements of G. The
following proposition is true
(26) a-a'=1lganda ! a=1g.
Let us consider G, a, b. The functor 7 yields an element of G and is defined
by:
(Def.17) ¢ =a-b"t
One can prove the following proposition
(27) $=a-bt
We consider mutiplicative loop with zero structures which are systems
(a carrier, a multiplication, a unity, a zero),
where the carrier is a non-empty set, the multiplication is a binary operation
on the carrier, the unity is an element of the carrier, and the zero is an element
of the carrier. In the sequel G will be a mutiplicative loop with zero structure.
Let us consider G1. An element of G1 is an element of the carrier of G;.



838 MICHAL. MUZALEWSKI AND WOJCIECH SKABA

In the sequel a, b will denote elements of G1. Let us consider Gy, a, b. The
functor a - b yielding an element of GG1 is defined by:

(Def.18) @ - b = (the multiplication of G1)(a, b).

The following proposition is true
(28) a-b= (the multiplication of G1)(a, b).
Let us consider GG;. The functor 1g, yields an element of G; and is defined
as follows:
(Def.19)  1g, = the unity of Gj.

One can prove the following proposition
(29) 1@, = the unity of G;.
Let us consider GG;. The functor Og, yielding an element of GG; is defined as
follows:

(Def.20) 0O, = the zero of Gj.

One can prove the following proposition
(30)  0O¢g, = the zero of Gj.

The trivial multiplicative loopy a mutiplicative loop with zero structure is
defined by:

(Def.21)  the trivial multiplicative loopg = (R, -, 1,0).

One can prove the following three propositions:
(31)  Thetrivial multiplicative loopg = (R, ‘g, 1,0).
(32)  For all real numbers ¢, p such that ¢ # 0 there exists a real number y
such that p = ¢ - y.
(33)  For all real numbers ¢, p such that g # 0 there exists a real number y
such that p =y - q.
A mutiplicative loop with zero structure is called a multiplicative loop with
zero if:
(Def22) (1) Oit 75 1it7
(ii)  for every element a of it holds a - (1;) = a,
(iii)  for every element a of it holds (1j) - a = a,
(iv)  for all elements a, b of it such that a # 0j; there exists an element z of
it such that a -z = b,
(v) for all elements a, b of it such that a # 0j; there exists an element = of
it such that z-a = b,
(vi)  for all elements a, x, y of it such that a # 0;; holds if a-z = a -y, then

r=1y,
(vii)  for all elements a, z, y of it such that a # 0;; holds if - a = y - a, then
r=1Y,

(viii)  for every element a of it holds a - 0;; = O,
(ix) for every element a of it holds Oj - @ = Oj.

The following proposition is true
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(34) Let L be a mutiplicative loop with zero structure. Then L is a multi-
plicative loop with zero if and only if the following conditions are satisfied:
(i) Op# 1z,
(ii)  for every element a of L holds a- (11) = a,
(iii)  for every element a of L holds (11) - a = a,
(iv)  for all elements a, b of L such that a # 0f, there exists an element z of
L such that a-z =0,
(v) for all elements a, b of L such that a # 0, there exists an element = of
L such that x-a =,
(vi) for all elements a, x, y of L such that a # 0p holds if a-x = a -y, then

=Y,
(vii)  for all elements a, =, y of L such that a # 0r, holds if - a = y - a, then
r=1y,

(viii)  for every element a of L holds a -0, = 0p,
(ix) for every element a of L holds 0z -a = 0f.
Let us note that it makes sense to consider the following constant. Then
the trivial multiplicative loopg is a multiplicative loop with zero.

A multiplicative loop with zero is called a multiplicative group with zero if:
(Def.23)  for all elements a, b, ¢ of it holds (a-b) -c=a- (b-c).

One can prove the following proposition
(35)  For every multiplicative loop L with zero holds L is a multiplicative
group with zero if and only if for all elements a, b, ¢ of L holds (a-b)-c =
a-(b-c).
We follow a convention: L denotes a mutiplicative loop with zero structure
and a, b, ¢, z denote elements of L. One can prove the following proposition
(36) L is a multiplicative group with zero if and only if the following condi-
tions are satisfied:
) OL 7£ 1L7
) for every a holds a- (11) = a,
iii)  for every a such that a # 0f, there exists  such that a-z =1p,
) forall a, b, cholds (a-b)-c=a-(b-c),
) for every a holds a - 07, = 0p,
(vi)  for every a holds Or, - a = 0f.
Let us note that it makes sense to consider the following constant. Then
the trivial multiplicative loopg is a multiplicative group with zero.
A multiplicative group with zero is said to be a multiplicative commutative
group with zero if:

(Def.24)  for all elements a, b of it holds a-b=1b- a.

We now state two propositions:

(37)  For every multiplicative group L with zero holds L is a multiplicative
commutative group with zero if and only if for all elements a, b of L holds
a-b=>b-a.
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(38) L is a multiplicative commutative group with zero if and only if the
following conditions are satisfied:

1) 0L # 1L7
(ii) for every a holds a - (1) = a,
(iii)  for every a such that a # 0r, there exists x such that a -z =1y,
(iv) for all a, b, ¢ holds (a-b)-c=a-(b-c),
(v) for every a holds a -0, =0p,
(vi)  for every a holds O, - a = 0p,

(vii) for all @, b holds a-b=1"b"-a.
Let L be a multiplicative group with zero, and let a be an element of L. Let

us assume that a # 07. The functor a~! yielding an element of L is defined as
follows:

(Def.25)  a-(a™ %) =1p.
We now state the proposition

(39) For every multiplicative group L with zero and for every element a of
L such that a # 0f, holds a - al=1;.

In the sequel G will be a multiplicative group with zero and a, b will be
elements of G. One can prove the following proposition

(40) Ifa#0g,thena-a ! =1ganda™!-a=1g.
Let us consider G, a, b. Let us assume that b # Og. The functor ¢ yields an
element of G and is defined by:

(Def26) 4 =a-b"".
We now state the proposition
(41) Ifb+#0g, then $ =a b1
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Basic Properties of Rational Numbers

Andrzej Kondracki®
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Summary. A definition of rational numbers and some basic prop-
erties of them. Operations of addition, substraction, multiplication are
redefined for rational numbers. Functors numerator (num p) and denom-
inator (den p) (p is rational) are defined and some properties of them are
presented. Density of rational numbers is also given.

MML Identifier: RAT_1.

The notation and terminology used here are introduced in the following papers:
[4], [2], [1], [3], and [5]. For simplicity we follow the rules: x is arbitrary, a, b
are real numbers, k, k1, [, |1 are natural numbers, m, my, n, n; are integers,
and D is a non-empty set. Let us consider m. Then |m| is a natural number.
Let us consider k. Then |k| is a natural number.
The non-empty set Q is defined by:
(Def.1)  x € Qif and only if there exist m, n such that n # 0 and z = .

One can prove the following proposition
(1) D = Qif and only if for every x holds x € D if and only if there exist
m, n such that n # 0 and z = 7.
A real number is said to be a rational number if:
(Def.2) it is an element of Q.

We now state a number of propositions:

(2)  For every real number z holds z is a rational number if and only if x is
an element of Q.

(4)? Ifz €Q, then z € R.
(5) x is a rational number if and only if x € Q.

(6) « is a rational number if and only if there exist m, n such that n # 0
—_—m
and x = .
LSupported by RPBP.III-24.C1.
2The proposition (3) became obvious.
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7)  For every integer = holds x is a rational number.

(
(8)  For every natural number = holds x is a rational number.
(9) 1 is a rational number and 0 is a rational number.

1

(10) QCR
11) zca
(12) NCQ

In the sequel p, ¢ denote rational numbers. Next we state three propositions:
) Ifz= % and [ # 0, then x is a rational number.

(14) If z =7 and k # 0, then z is a rational number.

(15) Ifz=EX

Let us consider p, g. Then p-q is a rational number. Then p+ ¢ is a rational
number. Then p — ¢ is a rational number.

— and m # 0, then x is a rational number.

Let us consider p, m. Then p + m is a rational number. Then p — m is a
rational number. Then p - m is a rational number.

Let us consider m, p. Then m + p is a rational number. Then m — p is a
rational number. Then m - p is a rational number.

Let us consider p, k. Then p+k is a rational number. Then p—k is a rational
number. Then p - k is a rational number.

Let us consider k, p. Then k+p is a rational number. Then k—p is a rational
number. Then k - p is a rational number.

Let us consider p. Then —p is a rational number. Then |p| is a rational
number.

One can prove the following propositions:

—_
=2

For all p, ¢ such that g # 0 holds % is a rational number.

—_
N

If k # 0, then £ is a rational number.

—_
&3

If m # 0, then £ is a rational number.

—_
o

If p # 0, then % is a rational number and % is a rational number.

[\~
(=)

For every p such that p # 0 holds % is a rational number.
1

[\
—_
T D o T T N T

For every p such that p # 0 holds p~" is a rational number.
For all a, b such that a < b there exists p such that a < p and p < b.

a < b if and only if there exists p such that a < p and p < b.

N NN
=W N

For every p there exist m, k such that k # 0 and p = 7.

e e e e e R

[\)
at

For every p there exist m, k such that k # 0 and p = 7+ and for all n, [
such that [ # 0 and p = 7 holds k < [.

Let us consider p. The functor den p yielding a natural number is defined by:

(Def.3)  denp # 0 and there exists m such that p = -*— and for all n, k such

denp
that k& # 0 and p = 7 holds denp < k.

We now state the proposition
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(26) denp # 0 and there exists m such that p = Jonp and for all n, k such
that k # 0 and p = % holds denp < k.

Let us consider p. The functor num p yields an integer and is defined by:
(Def.4) nump =denp-p.
One can prove the following propositions:
27 0 < denp.

(27)

(28) 0 # denp.

(29) 1 <denp.

(30) 0<denp~l.

(31) 0 <denp.

(32) 0<denp~ !

(33)  0#denp!.

(34) 1>denpt.

(35) nump =denp-pand nump = p-denp.

(36) nump = 0 if and only if p = 0.

(37) p= %ﬁf and p =nump - denp~! and p = denp~! - nump.

(38) If p#0, then denp = %.

(39) If p= 7 and k # 0, then denp < k.

(40)  If p is an integer, then denp = 1 and nump = p.

(41)  If nump = p or denp = 1, then p is an integer.

(42) nump = p if and only if denp = 1.

(43)  If p is a natural number, then denp = 1 and nump = p.

(44) Ifnump =por denp =1 but 0 < p, then p is a natural number.

(45) 1 < denp if and only if p is not an integer.

(46) 1> denp~!if and only if p is not an integer.

(47)  nump = denp if and only if p = 1.

(48) nump = —denp if and only if p = —1.

(49) —nump = denp if and only if p = —1.

(50)  Suppose m # 0. Then p = ré‘;?ﬁ;” and p = r(;LOEl;)mT: and p = %z‘gsg
and p = r;,‘ﬁe’;?.

(51)  Suppose k # 0. Then p = rg;?}ff and p = ]g;‘l‘;?,f and p = ]Z'E‘é?; and

= Ty

(52)  Suppose p = = and n # 0 and my # 0. Then p = 77’::77:11 and p = 77’;1—”17’11
and p = L and p = Tk

(53)  Suppose p = T and | # 0 and m; # 0. Then p = Tﬁll and p = rl”;nrln
and p = %1177 and p = %Tll.

(54)  Suppose p = % and n # 0 and my # 0. Then p = iTnll and p = ;”—;ni
andp:% andp:%.
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(55)

(56)

(57)

(60)
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Suppose pl: % and l} # 0 and my # 0. Then p = lll.%ll and p = IT;nll
and p = M7= and p = ;-
Suppose p = 7+ and n # 0 and k # 0. Then p = ZZ—f andpzi’—f’”” and

p="f andp =77
Supposep:%andn;éOandk#O. Thenpzi—.kandp:%and
p:,ff'landp—,i:—n

n
Suppose p = % and I # 0 and k # 0. Then p = l—i and p = l’f—i and
p= ,f—lll and p = ]i—i

If kK # 0 and p = 7, then there exists [ such that m = nump - [ and
k=denp-l.

If p= 7 and n # 0, then there exists m1 such that m = nump-m; and
n=denp-m;.

For no [ holds 1 < [ and there exist m, k such that nump = m -l and
denp =~k -1

If p= 7 and k # 0 and for no [ holds 1 < [ and there exist m1, k1 such
that m =mq -l and k = kq - [, then k£ = denp and m = num p.

p < —1 if and only if nump < — denp.

p < —1 if and only if nump < — den p.

p < —1 if and only if denp < —num p.

p < —1 if and only if denp < —num p.

—1 < p if and only if —denp < num p.

p > —1 if and only if nump > — denp.

—1 < pif and only if —nump < den p.

p > —1 if and only if denp > — num p.

p < 1if and only if nump < denp.

p < 1if and only if nump < denp.

1 < p if and only if den p < num p.

p > 1 if and only if nump > denp.

p < 0 if and only if nump < 0.

p <0 if and only if nump < 0.

0 < p if and only if 0 < num p.

p > 0 if and only if nump > 0.

a < p if and only if a - denp < num p.

a < p if and only if a - denp < num p.

p < a if and only if nump < a - denp.

a > p if and only if a - denp > num p.

p = q if and only if denp = den ¢ and nump = numgq.
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(85) pr:%andn;éOandq::’;—11andm#O,thenp:qifandonlyif
m-npy =mjp-n.

(86) p < ¢ if and only if nump - deng < numgq - den p.

(87)  den(—p) = denp and num(—p) = —nump.

(88) O<pandqg= % if and only if num ¢ = den p and den ¢ = num p.
(89) p<O0andqg= % if and only if num ¢ = — den p and den ¢ = — num p.
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Basis of Real Linear Space

Wojciech A. Trybulec
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Summary. Notions of linear independence and dependence of set
of vectors, the subspace generated by a set of vectors and basis of real
linear space are introduced. Some theorems concerning those notion, are
proved.

MML Identifier: RLVECT_3.

The papers [6], [2], [1], [3], [11], [4], [10], [9], [5], [8], and [7] provide the notation
and terminology for this paper. For simplicity we follow a convention: x is
arbitrary, a, b are real numbers, V is a real linear space, W, Wy, Wy, W3 are
subspaces of V', v, v1, vy are vectors of V', A, B are subsets of the vectors of
V, L, Ly, Ly are linear combinations of V', [ is a linear combination of A, F,
G are finite sequences of elements of the vectors of V', f is a function from the
vectors of V into R, X, Y, Z are sets, M is a non-empty family of sets, and C;
is a choice function of M. One can prove the following four propositions:

(1) X(L1+L2) =3 L1+ Lo.

(2 X(-L)y=a- 3L

(3 X(-L)=-XL

4) XL —L)=3 L1 -3 Lo

We now define two new predicates. Let us consider V, A. We say that A is
linearly independent if and only if:

(Def.1)  for every [ such that Y1 = Oy holds support! = {).
We say that A is linearly dependent if and only if A is not linearly independent.
One can prove the following propositions:

(5) A is linearly independent if and only if for every [ such that Y 1 = Oy
holds support! = 0.

(6) If AC B and B is linearly independent, then A is linearly independent.
(7) If Ais linearly independent, then Oy ¢ A.
(8)  Dtne vectors of v is linearly independent.
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(9)  {v} is linearly independent if and only if v # Oy .
(10) {0y} is linearly dependent.
(11)  If {v1,v2} is linearly independent, then vy # Oy and vg # Oy .
(12)  {v,0y} is linearly dependent and {0y, v} is linearly dependent.
(13) vy # v9 and {v1,v9} is linearly independent if and only if vy # Oy and
for every a holds v1 # a - va.
(14) vy # vy and {v1,ve} is linearly independent if and only if for all a, b
such that a - vy +b- vy =0y holds a =0 and b = 0.
Let us consider V', A. The functor Lin(A) yields a subspace of V and is
defined by:
(Def.2)  the vectors of Lin(A) = {>"1}.
We now state four propositions:
(15) If the vectors of W = {3} 1}, then W = Lin(A).
(16)  The vectors of Lin(A) = {3} 1}.
(17)  z € Lin(A) if and only if there exists [ such that z = Y [.
(18) Ifxz € A, then x € Lin(A).

The following propositions are true:

N NN~
N = O ©

AN N N /N N /N /N /N /N
NN
S Ot W

N N e e e e S N

[\]
3

(28)

Lin(Dthe vectors of v) = Ov.

If Lin(A) = Oy, then A =0 or A= {0y}.

If A = the vectors of W, then Lin(A) = W.

If A = the vectors of V', then Lin(A) = V.

If A C B, then Lin(A) is a subspace of Lin(B).

If Lin(A) =V and A C B, then Lin(B) = V.

Lin(AU B) = Lin(A) + Lin(B).

Lin(A N B) is a subspace of Lin(A) N Lin(B).

If A is linearly independent, then there exists B such that A C B and

B is linearly independent and Lin(B) = V.

If Lin(A) = V, then there exists B such that B C A and B is linearly

independent and Lin(B) = V.

Let us consider V. A subset of the vectors of V is called a basis of V if:

(Def.3)

it is linearly independent and Lin(it) = V.

The following proposition is true

(29)

If A is linearly independent and Lin(A) = V, then A is a basis of V.

In the sequel I is a basis of V. Next we state a number of propositions:

30)
31)
32)
33)

A~~~ I/~ /—~

1 is linearly independent.

Lin(I) =V.

If A is linearly independent, then there exists I such that A C I.
If Lin(A) =V, then there exists I such that I C A.
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(34) If Z # () and Z is finite and for all X, Y such that X € Z and Y € Z
holds X CY or Y C X, then | Z € Z.

(35) If Q¢ M, then domCy = M and rngCy C |J M.

(36) x € Oy if and only if x = Oy .

(37) If W7 is a subspace of W3, then W1 N Ws is a subspace of Wi.
(38)

If W7 is a subspace of Wy and W7 is a subspace of W3, then W7 is a
subspace of Wy N Wi,

(39) If Wy is a subspace of W3 and Wy is a subspace of W3, then Wy 4+ Wy
is a subspace of W3s.

(40)  If W is a subspace of Wy, then W is a subspace of Wy + Ws.
(41) f-F-G)=(f-F)"(fG).
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Finite Sums of Vectors in Vector Space

Wojciech A. Trybulec
Warsaw University

Summary. We define the sum of finite sequences of vectors in
vector space. Theorems concerning those sums are proved.

MML Identifier: VECTSP_3.

The terminology and notation used here have been introduced in the following
papers: [7], [2], [3], [5], [6], [4], and [1]. Let F be a field. An element of F is an
element of the carrier of F.

For simplicity we follow a convention: x will be arbitrary, G; will denote a
field, a will denote an element of Gy, V will denote a vector space over G1, and

v, v1, v2, w, u will denote vectors of V. Let us consider G, V', . The predicate
x € V is defined by:

(Def.1)  x € the carrier of the carrier of V.

Next we state two propositions:

(1) 2 eV if and only if 2 € the carrier of the carrier of V.

(2) wveV.

We follow a convention: F', G, H will be finite sequences of elements of the
carrier of the carrier of V', f will be a function from N into the carrier of the
carrier of V', and 4, j, k, n will be natural numbers. Let us consider G4, V, f,
j. Then f(j) is a vector of V.

Let us consider G, V', F. The functor ) F' yielding a vector of V' is defined
as follows:

(Def.2)  there exists f such that Y. F = f(len F') and f(0) = Oy and for all j,
v such that j <len F and v = F(j + 1) holds f(j + 1) = f(j) + v.

We now state a number of propositions:

(3) If there exists f such that u = f(len F) and f(0) = ©y and for all 7,
v such that j < len F and v = F(j + 1) holds f(j +1) = f(j) + v, then
u=>y F.

© 1990 Fondation Philippe le Hodey
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(4) There exists f such that Y F = f(len F') and f(0) = Oy and for all 7,
v such that j <len F and v = F(j + 1) holds f(j + 1) = f(j) + v.
(5) 1If k € Segn and len F' = n, then F(k) is a vector of V.
(6) IflenF =lenG+1and G = F | Seg(lenG) and v = F(len F), then
NF=%G+w.
() Y(F~G)=>XF+>G.
(8) IflenF = lenG and len F = len H and for every k such that k €
Seg(len F') holds H (k) = miF' + 7;G, then > H =Y F + > G.
(9) Iflen F =lenG and for all k, v such that k € Seg(len F') and v = G(k)
holds F(k) =a-v, then > F =a-Y G.
(10) Iflen F =lenG and for every k such that k € Seg(len F') holds G(k) =
a-mpF, then > G=a-> F.
(11) Iflen F =lenG and for all k, v such that k& € Seg(len F') and v = G(k)
holds F (k) = —v, then }_ FF = — " G.
(12) Iflen F =lenG and for every k such that k € Seg(len F') holds G(k) =
—7mpF, then > G=—->"F.
(13) IflenF = lenG and len F = len H and for every k such that k €
Seg(len F') holds H (k) = miF' — m;G, then Y H =Y F - G.
(14) Ifrng F =rngG and F is one-to-one and G is one-to-one, then > F =
> G.
(15)  For all F', G and for every permutation f of dom F' such that len F' =
len G and for every i such that ¢ € dom G holds G(i) = F(f(i)) holds

S F=YG.

(16)  For every permutation f of dom F such that G = F-f holds > F = > G.
(17) > Ethe carrier of the carrier of V = Oy
(18) > (v) =w.

(19) > {v,u) =v+u.

(20) > {v,u,w) = (v+u) + w.

(21) @ >"€the carrier of the carrier of V = OV
(22) a-Y(v)=a-wv.

(23) a-Y(v,u)=a-v+a-u.

(24) a-Y(v,u,w)=(a-v+a-u)+a-w.
(25) = 3" €the carrier of the carrier of V = OV
(26) —>(v) =—w.

27 =X (v,u) =(—v) —u.

(28) —> (v,u,w) = ((—v) —u) —w.

(29)  X(v,w) =3 (w,v).

(30)  X(v,w) =3 (v) + X(w).

(31) X(6v,0y)=6y.

(32) > (Oy,v) =vand > (v,0y) =v.
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(33) > (v,—v) = Oy and > (—v,v) = Oy.

34) Y (v,—w)=v—wand Y (—w,v) =v—w.

(35) Y (-v,—w)=—(v+w) and > (—w, —v) = —(v+ w).

(36)  X(u,v,w) = (3(uw) + 22{v)) + Xo(w).

37 S{u,v,w) =Y (u,v) +w.

(38) S (u,v,w) =Y (v,w) +u

(39) > {u,v,w) =Y (u,w) + v.

(40) S (u,v,w) =Y (u, w,v).

(41) S (u,v,w) = Y (v, u, w).

(42) S (u,v,w) =Y (v, w,u).

(43) Y (u,v,w) =Y (w,u,v).

(44) S (u,v,w) = > (w,v,u).

(45)  >(Ov,0y,0y) =06y

(46) > (Oy,0y,v) =v and > (Oy,v,0y) =v and > (v, Oy, Oy) = v.

47) Y (Oy,u,v) =u+wvand Y (u,v,0y) =u+v and > (u, Oy, v) = u+wv.
(48) Iflen FF =0, then > F = Oy.

(49) Iflen F =1, then >  F = F(1).

(50) Iflen F =2 and v; = F(1) and vo = F(2), then Y F = vy + vs.

(51) IflenF =3 and v; = F(1) and vy = F(2) and v = F(3), then > F =

(Ul + vg) + .
(52) v—v=0y.
(53)  —(v+w)=(-v)+ (-w).
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Subgroup and Cosets of Subgroups

Wojciech A. Trybulec!
Warsaw University

Summary. We introduce notion of subgroup, coset of a subgroup,
sets of left and right cosets of a subgroup. We define multiplication of
two subset of a group, subset of reverse elemens of a group, intersection
of two subgroups. We define the notion of an index of a subgroup and
prove Lagrange theorem which states that in a finite group the order of
the group equals the order of a subgroup multiplied by the index of the
subgroup. Some theorems that belong rather to [1] are proved.

MML Identifier: GROUP_2.

The papers [9], [6], [3], [4], [1], [11], [10], [12], [5], [8], [7], and [2] provide the
notation and terminology for this paper. Let D be a non-empty set. Then 0 p
is a subset of D. Then Qp is a subset of D.

For simplicity we adopt the following convention: x is arbitrary, X, Y, Z
are sets, k is a natural number, G, G1, G5, G3 are groups, and a, b, g, g1, g2,
h are elements of G. Let us consider G. A subset of GG is a subset of the carrier

of G.

In the sequel A, B, C denote subsets of G. The following propositions are
true:

(1) Ifzxe A, thenzeG.

(2) Ifz € A, then z is an element of G.

(3) If G is finite, then A is finite.

Let us consider G, A. The functor A~! yielding a subset of G is defined by:
(Def.1) A-l={gl:gec A}

Next we state several propositions:

(4) Al={gt:gec A}

(5) x € A~!if and only if there exists g such that z = ¢g~! and g € A.

©6) {g}7'={s"}
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(M) A{g.h} ' ={g~"n 7"}
(8) (@the carrier of G)_l = @
(9) (che carrier of G)_l = the carrier of G.
(10) A # 0 if and only if A= # 0.
Let us consider GG, A, B. The functor A - B yielding a subset of G is defined

as follows:

(Det2) A-B={g-h:g€ ANhe€ B}.
One can prove the following propositions:
(11) A-B={g-h:9g€ ANhe€ B}.
(12) x € A- B if and only if there exist g, h such that z = g-h and g € A

and h € B.

A # 0 and B # () if and only if A- B # 0.

(A-B)-C=A-(B-0).

(A-B)"'=B"1. 471

A-(BUC)=A-BUA-C.

(AUB)-C=A-CUB-C.

A-(BNC)C((A-B)n(A-0).

(ANB)-CC(A-C)n(B-C).

q)tho carrier of G * A= @ and A - @thc carrier of G — @

If A+# 0, then Qne carrier of ¢ - A = the carrier of G and

A- che carrier of G —
the carrier of G.

(22)  {g}-{h}={g-h}.

( ) {9}'{91,92}:{9'91,9'92}-
(24) {9192} {9} ={91- 9,92 - g}-
(25)
(26)

= = = e
S O = W

e R e e N N SN
N = = =
S © 0o

— — — Y Y~ —

[\)
—_

{9:h} -{91,92} ={9-91,9- g2, h - g1, h - ga}.
If for all g1, g2 such that g1 € A and ¢go € A holds g1 - go € A and for
every g such that ¢ € A holds g~! € A, then A- A = A.

(27)  If for every g such that g € A holds g=! € A, then A~! = A.
(28) If for all a, b such that a € A and b € B holds a-b = b - a, then
A-B=B-A.
(29) If G is an Abelian group, then A- B = B - A.
(30) If G is an Abelian group, then (4. B)~! = A=1. B~1
We now define two new functors. Let us consider G, g, A. The functor g- A
yields a subset of G and is defined as follows:
(Def.3) g-A={g} A
The functor A - g yielding a subset of G is defined as follows:
(Defd) A-g=A-{g}.

Next we state a number of propositions:
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AN AN N N N N N N N N N/
=~ w
o [

I N i i N N N

(43)
(44)
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g-A={g} A

A-g=A-{g}

x € g- A if and only if there exists h such that x = ¢g- h and h € A.
x € A- g if and only if there exists h such that x = h-¢g and h € A.
(9-A)-B=g-(A-B).

(A-g)-B=A-(g9-B).

(A-B)-g=A-(B-g).

(g-h)-A=g-(h-A).

(9-A)-h=g-(A-h).

(A-g)-h=A-(g-h).

Dine carrier of ¢ - @ =0 and @ - Bine carrier of ¢ = 0.

Qihe carrier of ¢ - @ = the carrier of G and a - Qiphe carrier of ¢ = the carrier
of G.

(Ig)-A=Aand A-(1g) = A.
If G is an Abelian group, then g- A= A - g.

Let us consider G. A group is said to be a subgroup of G if:

(Def.5)

the carrier of it C the carrier of G and the operation of it = (the
operation of G) | | the carrier of it, the carrier of it ].

One can prove the following proposition

(45)

If the carrier of G; C the carrier of Gy and the operation of G; = (the
operation of G2) | | the carrier of Gy, the carrier of G ], then G is a
subgroup of G.

We follow the rules: I, H, Hy, Hy, H3 will be subgroups of G and h, hy, ho
will be elements of H. One can prove the following propositions:

(46)
(47)

48

v Ot Ot
N = O

N N N N N N N N N N S
ot Ot Ot Ut
S O s W

D D D D N T T T

(S
3

The carrier of H C the carrier of G.

The operation of H = (the operation of G) | | the carrier of H, the
carrier of H {.

If G is finite, then H is finite.

If x € H, then z € G.

heaG.

h is an element of G.

If hi = g1 and ho = go, then hq - hg = g1 - go.
lg =1¢.

1y, = 1H,.

1g € H.

1H1 € Ho.

If h =g, then h~! =g~ L.

‘5 =-g' I (the carrier of H).

If g1 € H and g9 € H, then g1 - g0 € H.
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(60) Ifge€ H,theng 'ecH.
(61) If A+ () and for all g1, g2 such that gy € A and g2 € Aholds g1-g2 € A

and for every ¢ such that g € A holds g~' € A, then there exists H such
that the carrier of H = A.

(62) If G is an Abelian group, then H is an Abelian group.
Let G be an Abelian group. We see that the subgroup of G is an Abelian
group.
We now state several propositions:
(63) G is a subgroup of G.
(64) If Gy is a subgroup of G2 and G is a subgroup of G1, then G; = Gj.

(65) If Gy is a subgroup of Gy and Gj is a subgroup of Gj, then Gy is a
subgroup of Gj.

(66) If the carrier of Hy C the carrier of Hs, then H; is a subgroup of Hs.

(67) If for every g such that g € H; holds g € Hy, then H; is a subgroup of
Hs.

(68) If the carrier of Hy = the carrier of Hs, then H; = Ho.

(69) If for every g holds g € H if and only if g € Ha, then Hy = H,.

Let us consider G, H1, Hs. Let us note that one can characterize the predicate
Hy = Hj by the following (equivalent) condition:

(Def.6)  for every g holds g € Hy if and only if g € Ho.
The following two propositions are true:
(70)  If the carrier of H = the carrier of G, then H = G.
(71)  If for every g holds g € H, then H = G.
Let us consider G. The functor {1} yields a subgroup of G and is defined
by:
(Def.7)  the carrier of {1} = {1¢}.

Let us consider G. The functor Q¢ yielding a subgroup of G is defined as
follows:

(Def.8) Qg =G.

The following propositions are true:

72) If the carrier of H = {1¢}, then H = {1}¢.
73)  The carrier of {1} = {1¢}.

) Qg =0G.

) {l}w = {l}c

{(Va = {1},

{1}¢ is a subgroup of H.

'
0 =

H is a subgroup of Qg.

-
<o

G is a subgroup of Qg.
{1}¢ is finite.

e e R R e e T
0] ~
(=) =)
— — Y~ Y~
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(81) ord({1}q) = 1.
(82) If H is finite and ord(H) = 1, then H = {1}¢.
(83)  Ord(H) < Ord(G).
(84) If G is finite, then ord(H) < ord(G).
(85)  If G is finite and ord(G) = ord(H), then H = G.
Let us consider G, H. The functor H yields a subset of G and is defined by:
(Def.9) H = the carrier of H.

The following propositions are true:

(86) H = the carrier of H.

(87) H #10.

(88) = € H if and only if x € H.

(89) Ifgy € H and go € H, then g1 - g2 € H.

(90) Ifge€ H, then g~ € H.

(91) H-H=H.

(92) H'=H.

(93) Hy _H_g iFg - Hy if and only if there exists H such that the carrier of
H = H, - H,.

(94) If G is an Abelian group, then there exists H such that the carrier of
H=H,- Hs.

Let us consider G, Hy, Hs. The functor Hy N Hy yields a subgroup of G and
is defined as follows:

(Def.10) the carrier of H; N Hy = H; N Ho.

One can prove the following propositions:
(95) If the carrier of H = Hy N Hy, then H = Hy N Ho.
(96)  The carrier of Hy N Hy = Hy N Ho.
(97) H = Hy N Hy if and only if the carrier of H = (the carrier of Hq)N
(the carrier of Hy).

(98) HyN Hy= HiN Hs.

(99) = € HyN H, if and only if z € Hy and = € Hs.
100) HNH=H.

101 H i NHy=HyNH;.

102 (HlﬁHg)ﬂHg :Hlﬁ(HgﬂHg).

{1}¢ N H = {1}¢ and H N {1}¢ = {1}c.

HNQqg=Hand QN H=H.

QeNQa =G.

Hq N Hy is a subgroup of Hy and Hi N Hy is a subgroup of Ho.
H, is a subgroup of Hs if and only if Hy N Hy = H.

If Hy is a subgroup of Hy, then Hy N Hg is a subgroup of Hs.

—
o
ot

[ [
o o
D w

T N N N N N~ N~
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(109) If Hy is a subgroup of Hy and Hj is a subgroup of Hs, then H; is a
subgroup of Hs N Hs.

(110)  If H; is a subgroup of Ha, then Hy N Hy is a subgroup of Hs N Hs.

(111)  If H; is finite or Hy is finite, then Hy N Hy is finite.

We now define two new functors. Let us consider G, H, A. The functor A-H
yielding a subset of G is defined as follows:

(Def11) A-H=A-H.
The functor H - A yields a subset of G and is defined as follows:
(Def.12) H-A=H-A.
One can prove the following propositions:
(112) A-H=A-H.
(113) H-A=H-A.
(114) x € A- H if and only if there exist g1, go such that z = g; - g2 and
g1 € Aand g0 € H.

(115) x € H - A if and only if there exist g1, g2 such that z = g; - g2 and
g1 € H and ¢ € A.

(A-B)-H
(A-H)-B=A-(H - B).
(H-A)-B=H-(A-B).
(A-Hy)-Hy=A-(H, - Hy).
(Hy-A)-Hy=H;-(A- Hy).
(Hy-H)-A=Hy-(Hy- A).

122) If G is an Abelian group, then A- H = H - A.

We now define two new functors. Let us consider G, H, a. The functor a- H
yielding a subset of GG is defined as follows:

(Def13) a-H=a-H.
The functor H - a yielding a subset of GG is defined by:
(Def.14) H-a=H -a.
The following propositions are true:
a-H=a-H.
H-a=H -a.
x € a- H if and only if there exists g such that t =a-g and g € H.

e e e e N N e
—_
—_
Ne)

~— — — N ~— —

= = e
DN NN
S O s W

x € H - a if and only if there exists g such that t =¢g-a and g € H.
(a-b)-H=a-(b-H).

(a-H)-b=a-(H-Db).

(H-a)-b=H-(a-b).

a€a-Handae€H -a.

a-H #0and H-a# 0.

(lg)-H=H and H - (1g) = H.

N N N N N N N N N
I N = T = N
W W N NN
_ O © 0

S e e e e N N N N N

—
w
[\



SUBGROUP AND COSETS OF SUBGROUPS 861

[
w
w

{1}¢-a={a} and a-{1}¢ = {a}.

a - Qg = the carrier of G and Q¢ - a = the carrier of G.
If G is an Abelian group, then a- H = H - a.

a€ Hifandonly ifa- H = H.
a-H=>b-Hifand only if b' - a € H.
a-H=10b-H if and only if a - H meets b- H.
(a-b)-HC (a-H)-(b-H).

(a-H)-(a'-H)yand HC (a~' - H)-(a-H).
2.HC(a-H) (a-H).

€ Hifand only if H -a = H.

ca=H- -bifand only if b-a~' € H.

-a = H -bif and only if H - a meets H - b.

ca)-bC (H-a)-(H-b).

ca)-(H-a Y)Y and HC (H-a™ 1) (H-a).
C(H-a) (H-a).
~(H10H2):(a~H1)ﬁ(a-H2).
(HlﬂHg)-a:(Hl-a)ﬂ(H2-a).

There exists H; such that the carrier of Hy = (a - Hy) -a™'.

SN N N N N N N NN NN NN NN NN NN N NN N/
— e N = T e Y =N
= W W W W w w
(@) © 00 J O Ut i~

S N e e e e e e e e e e e e e e S e e e S S N N
=

—
N
S

— — = = e
= = R
D =W N =

naiisw R N RSB S
N I

N~

n =

—_
N
3
Q

= e e e e
Ot Ot Ot O W=
W N = O O

Q

}_.
Tt
=

Ord(H) = a- H and Ord(H) = H - a.
If H is finite, then ord(H) = card(a - H) and ord(H) = card(H - a).
The scheme SubFamComp deals with a set A, a family B of subsets of A, a
family C of subsets of A, and a unary predicate P, and states that:
B=C
provided the parameters meet the following requirements:
o for every subset X of A holds X € B if and only if P[X],
e for every subset X of A holds X € C if and only if P[X].
We now define two new functors. Let us consider G, H. The left cosets of H
yielding a family of subsets of the carrier of G is defined as follows:

(Def.15) A € theleft cosets of H if and only if there exists a such that A =a- H.
The right cosets of H yielding a family of subsets of the carrier of G is defined
by:

(Def.16) A € theright cosets of H if and only if there exists a such that A = H -a.

— =
ot Ot
D Ot

In the sequel F' denotes a family of subsets of the carrier of G. One can prove
the following propositions:
(157)  If for every A holds A € F if and only if there exists a such that
A =a-H, then F' = theleft cosets of H.
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(158)  If for every A holds A € F if and only if there exists a such that
A= H -a, then F = theright cosets of H.

(159) A € theleft cosetsof H if and only if there exists a such that A =a- H.
(160) A € theright cosets of H if and only if there exists a such that A = H-a.

(161) If x € theleft cosetsof H or x € theright cosetsof H, then z is a subset
of G.

(162)  x € theleft cosetsof H if and only if there exists a such that x = a - H.
(163)  z € theright cosetsof H if and only if there exists a such that x = H - a.

(164) If G is finite, then the right cosets of H is finite and the left cosets of H
is finite.

(165)  H € theleft cosetsof H and H € theright cosets of H.
(166)  Theleft cosets of H ~ theright cosets of H.

(167)  U(Theleft cosetsof H) = the carrier of G and |J(theright cosetsof H) =
the carrier of G.

(168)  Theleft cosetsof {1}c = {{a}}.

(169)  Theright cosetsof {1} = {{a}}.

(170)  If theleft cosetsof H = {{a}}, then H = {1}¢.
(171)  If theright cosetsof H = {{a}}, then H = {1}.
(172)

Theleft cosets of Qg = { the carrier of G} and theright cosets of Q¢ = {
the carrier of G}.

(173)  If theleft cosetsof H = { the carrier of G}, then H = G.
(174)  If theright cosets of H = { the carrier of G}, then H = G.
Let us consider G, H. The functor |e : H| yielding a cardinal number is
defined by:
(Def.17)  |o: H| = theleft cosetsof H.
We now state the proposition

(175)  |e : H| = theleft cosetsof H and |e : H| = theright cosetsof H .

Let us consider G, H. Let us assume that the left cosets of H is finite. The
functor |e : H|y yielding a natural number is defined as follows:

(Def.18)  |o : H|y = card(theleft cosets of H).

Next we state the proposition
(176)  If the left cosetsof H is finite, then |e : H|y = card(the left cosets of H)
and |e : H|y = card(theright cosetsof H).
Let D be a non-empty set, and let d be an element of D. Then {d} is an
element of Fin D.

The following two propositions are true:
(177)  If G is finite, then ord(G) = ord(H) - | : H|y..
(178) If G is finite, then ord(H) | ord(G).

In the sequel J will denote a subgroup of H. One can prove the following
propositions:
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(179) If G is finite and I = J, then e : I|y = |o: J|y - | : H|y.

(180) |o: Qg|n = 1.

(181)  If the left cosetsof H is finite and |e : H|y =1, then H = G.

(182) |o: {1}¢| = Ord(G).

(183) If G is finite, then |o : {1}¢|v = ord(G).

(184) If G is finite and |o : H|y = ord(G), then H = {1}¢.

(185)  If the left cosets of H is finite and |e : H| = Ord(G), then G is finite and
H={1}c.

(186) If X is finite and for every Y such that ¥ € X holds Y is finite and
cardY = k and for every Z such that Z € X and Y # Z holds Y = Z
and Y misses Z, then card(lJ X) = k - card X.

(187) IfY is finite and X C Y and card X = cardY, then X =Y.
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Subspaces and Cosets of Subspaces in
Vector Space

Wojciech A. Trybulec!
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Summary. We introduce the notions of subspace of vector space
and coset of a subspace. We prove a number of theorems concerning those
notions. Some theorems that belong rather to [1] are proved.

MML Identifier: VECTSP_4.

The articles [3], [5], [2], [1], and [4] provide the terminology and notation for
this paper. For simplicity we adopt the following rules: G; will denote a field,
V, X, Y will denote vector spaces over Gy, u, v, v1, v9 will denote vectors of
V, a, b, ¢ will denote elements of G1, and z will be arbitrary. Let us consider
G1, V. A subset of V is a subset of the carrier of the carrier of V.

In the sequel Vi, V5, V3 denote subsets of V. Let us consider Gy, V, V;. We
say that Vj is linearly closed if and only if:

(Def.1)  for all v, u such that v € V; and u € V; holds v + u € Vj and for all a,
v such that v € V] holds a - v € V7.
The following propositions are true:

(1) If for all v, u such that v € V; and u € V; holds v + u € V; and for all
a, v such that v € V] holds a - v € Vi, then Vj is linearly closed.

(2) If V7 is linearly closed, then for all v, u such that v € V; and u € V}
holds v +u € V;.

(3)  If Vj is linearly closed, then for all a, v such that v € V; holds a-v € V;.
(4) If V; # () and V; is linearly closed, then Oy € V;.

(5)  If V4 is linearly closed, then for every v such that v € V; holds —v € V.
(6)

If V; is linearly closed, then for all v, v such that v € V; and u € V
holds v — u € Vj.

(7)  {Oy} is linearly closed.
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If the carrier of the carrier of V' = V7, then V; is linearly closed.

If V4 is linearly closed and Vj is linearly closed and V3 = {v +u : v €
Vi Au € Va}, then Vi is linearly closed.

If V1 is linearly closed and V5 is linearly closed, then Vi N Vs is linearly
closed.

Let us consider Gy, V. A vector space over (51 is said to be a subspace of V'

if:
(Def.2)

the carrier of the carrier of it C the carrier of the carrier of V and the
zero of the carrier of it = the zero of the carrier of V and the addition
of the carrier of it = (the addition of the carrier of V') | [ the carrier of
the carrier of it, the carrier of the carrier of it ] and the multiplication
of it = (the multiplication of V') | [ the carrier of G, the carrier of the
carrier of it ].

Next we state the proposition

(11)

If the carrier of the carrier of X C the carrier of the carrier of V
and the zero of the carrier of X = the zero of the carrier of V' and
the addition of the carrier of X = (the addition of the carrier of V') | |
the carrier of the carrier of X, the carrier of the carrier of X ] and the
multiplication of X = (the multiplication of V') | [ the carrier of G, the
carrier of the carrier of X ], then X is a subspace of V.

We adopt the following convention: W, Wy, W5 will be subspaces of V and
w, wy, wy will be vectors of W. Next we state a number of propositions:

(12)
(13)
(14)

(15)

AN AN N N N N N N N N S N
NN DN DNDNNNDNDNRE = = =
W J O T = W N~ O © 0 3D
M O N Y N N N

The carrier of the carrier of W C the carrier of the carrier of V.
The zero of the carrier of W = the zero of the carrier of V.

The addition of the carrier of W = (the addition of the carrier of
V) I} the carrier of the carrier of W, the carrier of the carrier of W .

The multiplication of W = (the multiplication of V') I [ the carrier of
G1, the carrier of the carrier of W .

If x € W7 and W7 is a subspace of Ws, then x € W,
If x € W, thenz € V.

w is a vector of V.

Ow = Oy.

Ow, = Ow,.

If wq = v and wy = u, then wy + w9 = v + u.
If w=w, thena-w=a-wv.

If w =wv, then —v = —w.

If wq = v and wy = u, then wq — w9 = v — u.
Oy e W.

@W1€W2.

Ow e V.
fueWandve W, then u4+veW.
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(29) IfveW,thena-velW.

(30) IfveW,then —ve W.

(31) IfueWandve W, thenu—veW.

(32) V is a subspace of V.

(33) If V is a subspace of X and X is a subspace of V, then V = X.
(34)

If V is a subspace of X and X is a subspace of Y, then V is a subspace
of Y.

(35) If the carrier of the carrier of Wy C the carrier of the carrier of W,
then W7 is a subspace of Ws.

(36) If for every v such that v € Wj holds v € Wy, then W is a subspace of

Ws.
(37) If the carrier of the carrier of W; = the carrier of the carrier of W,
then W7 = Wa.

(38) If for every v holds v € W if and only if v € Wy, then Wy = Wa.

(39) If the carrier of the carrier of W = the carrier of the carrier of V,
then W = V.

(40)  If for every v holds v € W, then W = V.
(41)  If the carrier of the carrier of W = Vi, then Vj is linearly closed.

(42)  If V4 # () and V; is linearly closed, then there exists W such that V; =
the carrier of the carrier of W.

Let us consider GG1, V. The functor Oy yielding a subspace of V is defined
by:
(Def.3)  the carrier of the carrier of Oy = {Oy }.
Let us consider GG, V. The functor Qy yields a subspace of V' and is defined
by:
(Defd) Qy =V.
The following propositions are true:
43)  The carrier of the carrier of Oy = {Oy }.

44)  If the carrier of the carrier of W = {©y}, then W = 0y .
45 Qy =V.
46 x € Oy if and only if x = Oy.
47 Ow = Oy.
Ow, = Oys,.

Oy is a subspace of V.

Ut
S O
O — T T N DD D T

Oy is a subspace of W.

(@)
—_

Oy, is a subspace of Ws.
W is a subspace of Qy/ .

N N N N N N N N N N N
o
oo

V' is a subspace of Qy/ .

Let us consider G1, V', v, W. The functor v + W yielding a subset of V is
defined by:
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(Def.5) v+W={v+u:uecW}.
Let us consider G, V, W. A subset of V' is said to be a coset of W if:
(Def.6)  there exists v such that it = v + W.

In the sequel B, C will denote cosets of W. The following propositions are
true:

ot
B

v+W={v4+u:ue W}
There exists v such that C = v + W.
If Vi =v+ W, then V; is a coset of W.

[SA )
S Ot

57) x € v+ W if and only if there exists u such that w € W and x = v 4 .
58 Oy € v+ W if and only if v € W.

59) wvev+W.

60 Oy + W = the carrier of the carrier of W.

61) v+ 0y = {v}.

(=]
[\S)

v + Qy = the carrier of the carrier of V.

Oy € v+ W if and only if v + W = the carrier of the carrier of W.

v € W if and only if v + W = the carrier of the carrier of W.

If v € W, then a - v+ W = the carrier of the carrier of W.

If a # 0¢, and a-v+ W = the carrier of the carrier of W, then v € W.
v € W if and only if (—v) + W = the carrier of the carrier of W.
uwe W ifand only if v+ W = (v+u) + W.

we W ifand only if v+ W = (v —u) + W.

veu+Wifand only if u+W =v+ W.
Ifuecvi+W and u € vg+ W, then v1 + W = vy + W.

Ifa#1g, anda-vev+ W, thenveW.
IfveW,thena-vev+ W.

IfveW,then —vev+ W.

u+vev+ Wifand only if u e W.
v—u€v+ Wifand only if u e W.

u € v+ W if and only if there exists vq such that v1 € W and u = v+wvy.
u € v+ W if and only if there exists vq such that v1 € W and u = v—w;.

There exists v such that v1 € v+ W and vy, € v+ W if and only if
v, — v € W.

AN N AN N N N N N N N N N N N N N N N N N N N N S N
o B e e B B BN BN BN BN B o) B o) B o) B ep R o) B e) R o))
© 00 ~J O UL b W N~ O © 00 g O Ut i W
R i N i s i N i S s N D A e

(80) Ifv+W = u+ W, then there exists vy such that v; € W and v+v; = w.
(81) Ifv+W = u+ W, then there exists vy such that v; € W and v—v; = u.
(82) v+ Wy =wv+ Wsif and only if Wy = Wh.

(83) If v+ Wi =u+ Wa, then W) = W,

In the sequel C7 denotes a coset of W7 and Cy denotes a coset of W5. One
can prove the following propositions:

(84)  There exists C such that v € C.
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C is linearly closed if and only if C' = the carrier of the carrier of W.
If Ch = Cy, then Wy = W,

{v} is a coset of Oy.

If V1 is a coset of Oy, then there exists v such that V3 = {v}.

The carrier of the carrier of W is a coset of .

oo oo o
© oo

The carrier of the carrier of V' is a coset of Qy .
If V1 is a coset of Qy, then Vi = the carrier of the carrier of V.
Oy € C if and only if C' = the carrier of the carrier of W.
ue Cifandonlyif C =u+W.
Ifu € Cand v € C, then there exists vq such that v; € W and u+v; = v.
Ifu € C and v € C, then there exists vq such that v; € W and u—v; = v.
There exists C' such that v; € C' and vy € C if and only if v; — vy € W.
97) Ifue BandueC,then B=C.

In the sequel w will denote a vector of V. One can prove the following
propositions:

(99)2 (u+v)—w=u+(v—w).

O O O e
FNENUCEN V] o
NG AN RN N NI N N NI AN N

AN N N N N N N N N N N N
Ne Ne
(@) =

(100)  —(=v) = .

(101) v—(u—w)=(v—u)+w.

(102) Ifv+wu=woru+v=uv,then u= Oy.
(103) (a—b)-v=a-v—">0-v.

(104) a—0g, =a.

(105) a—a=0¢g.

(106) a—(b—c)=(a—0b)+c.
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Operations on Subspaces in Vector Space

Wojciech A. Trybulec!
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Summary. Sum, direct sum and intersection of subspaces are
introduced. We prove some theorems concerning those notions and the
decomposition of vector onto two subspaces. Linear complement of a
subspace is also defined. We prove theorem that belong rather to [3].

MML Identifier: VECTSP_5.

The papers [2], [8], [9], [5], [3], [4], [6], [1], and [7] provide the terminology and
notation for this paper. For simplicity we adopt the following rules: G will
denote a field, V will denote a vector space over G, W, Wy, Wy, W3 will
denote subspaces of V', u, u1, ug, v, v1, v9 will denote vectors of V', and x will
be arbitrary. Let us consider G1, V, Wi, W5. The functor Wy + Wy yields a
subspace of V' and is defined by:

(Def.1)  the carrier of the carrier of Wi + Wo = {v+wu:v € Wy Au € Wa}.
Let us consider G, V', Wi, W5. The functor Wi N Ws yields a subspace of
V and is defined by:
(Def.2)  the carrier of the carrier of W, N Wy = (the carrier of the carrier of
W1)N (the carrier of the carrier of Ws).
We now state a number of propositions:
(1)  The carrier of the carrier of Wi + Wy = {v+u:v e Wi Au e Wa}.
(2) If the carrier of the carrier of W = {v +u:v € Wi Au € Wy}, then
W =W + Wa.
(3) The carrier of the carrier of W7 N Wy = (the carrier of the carrier of
W1)N (the carrier of the carrier of Ws).

(4) If the carrier of the carrier of W = (the carrier of the carrier of Wi)N
(the carrier of the carrier of Wy), then W = Wy N Wha.

(5) x € Wy + Wy if and only if there exist vy, vy such that v; € W; and
vy € Wy and x = v1 + vs.
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(6) IfveW;orwve Wy, then v e Wy + Wa.
(7) xe Wi NWsif and only if z € Wy and = € Ws.
8 WH+W=W.
(9) Wi+ Wy =Wy + Wi
(10) Wi+ Wy + W3) = (W1 + Wa) + Ws.
(11) W7 is a subspace of Wi + Wy and W is a subspace of Wy + Wj.
(12) Wi is a subspace of Wy if and only if Wi + Wy = Wh.
(13) Oy +W =W and W 4+ 0y = W.
(14) Oy +Qy =V and Qy +0y =V.
(15) Qu+W=Vand W+ Qy=V.
(16) Qy +Qy =V.
17) WnNWw=Ww.
(18)  WinWsy =Wy W
(19) Win(WynWs) = (Wi NWs)NWs.
(20) Wi N Wy is a subspace of Wy and Wy N Ws is a subspace of Wa.
(21) Wi is a subspace of Wy if and only if W1 N Wy = W7.
(22) If Wy is a subspace of Wy, then W1 N W3 is a subspace of Wy N Wi,
(23) If Wy is a subspace of W3, then Wy N Ws is a subspace of Wi.
(24) If W7 is a subspace of Wy and W7 is a subspace of W3, then W is a
subspace of Wy N Wi,
(25) Oy NW =0y and W N0y = Oy.
(26) 0y NQy =0y and Qy N0y = Oy
27) QyNW =W and WNQy =W.
(28) QyNQy =V.
(29) Wi N Wy is a subspace of Wy + Ws.
(30)  WiNWs+ Wy =W,
(31) Win (Wi + W) =Wi.
(32) WinNWy+ Wyn Wi is a subspace of Wy N (W7 + Ws).
(33) If Wy is a subspace of Wa, then Wo N (W +W3) = Wi N Wy + Wo N Ws.
(34)  Wo+ Wy N Wiy is a subspace of (Wy + W) N (Wa + Ws).
(35) If Wy is a subspace of Wa, then Wo+WiNW3 = (W1 +Ws)N(Wa+Ws).
(36) If Wy is a subspace of W3, then Wy + Wy N W5 = (Wy + W) N W.
(37) Wi+ Wy =W, if and only if W7 N Wy = W,
(38) If Wy is a subspace of Wy, then Wy + W3 is a subspace of Wy + Wi.
(39) If Wy is a subspace of Wy, then W is a subspace of Wy + Wj.
(40)  If Wy is a subspace of W3 and W5 is a subspace of W3, then Wy 4+ Wy

is a subspace of Wj.
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(41)  There exists W such that the carrier of the carrier of W = (the carrier
of the carrier of W7)U (the carrier of the carrier of W3) if and only if Wy
is a subspace of Wy or W5 is a subspace of Wj.

Let us consider G1, V. The functor Subspaces V' yielding a non-empty set is
defined as follows:

(Def.3)  for every z holds x € Subspaces V' if and only if = is a subspace of V.
In the sequel D denotes a non-empty set. The following three propositions
are true:

(42)  If for every x holds € D if and only if = is a subspace of V, then
D = Subspaces V.

(43)  x € SubspacesV if and only if z is a subspace of V.
(44) V& Subspaces V.
Let us consider Gy, V, Wy, Ws. We say that V is the direct sum of Wy and
Wo if and only if:
(Def.4) V =Wy + Wy and W7 N Wy = 0y.
Let us consider G1, V', W. A subspace of V' is said to be a linear complement
of W if:
(Def.5)  V is the direct sum of it and W.

We now state three propositions:
(45)  V is the direct sum of Wy and Wy if and only if V= W7 + W5 and
Wi N Wy = 0y.
(46) If V is the direct sum of Wy and Ws, then W is a linear complement
of WQ.
(47) If V is the direct sum of Wy and Ws, then W is a linear complement
of Wl.
In the sequel L denotes a linear complement of W. The following propositions
are true:

(48)  V is the direct sum of L and W and V is the direct sum of W and L.

(49) WH+L=Vand L+ W =V.

(50) WNL=0yand LNW = 0y.

(51) If V is the direct sum of Wy and Ws, then V is the direct sum of Wy
and Wj.

(52)  V is the direct sum of Oy and Qy and V is the direct sum of Qy and
Oy .

(53) W is a linear complement of L.
(54) Oy is a linear complement of Qy and Qy is a linear complement of Oy .

In the sequel Cy is a coset of W7 and C5 is a coset of Ws. We now state
several propositions:

(55) If C1NCy # 0, then C1 N Cy is a coset of Wy N Wh.
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(56)  V is the direct sum of W; and Ws if and only if for every Cq, Cy there
exists v such that C1 N Cy = {v}.

(57) Wi+ Wy = V if and only if for every v there exist vy, vy such that
vy € Wi and vg € Wy and v = vy + v9.

(58) If V is the direct sum of W7 and Wy and v = vy + v9 and v = uy + uy
and v1 € Wy and uqp € Wy and vo € Wy and ug € Wo, then v1 = u; and
V2 = U9.

(59)  Suppose V. = W; + Wy and there exists v such that for all vy, ve, uq,
ug such that v = v; + vo and v = uy + w9 and v1 € Wy and u; € Wy and
vy € Wy and ug € Wo holds v1 = w1 and v = ug. Then V is the direct
sum of Wy and Ws.

In the sequel ¢ will denote an element of | the carrier of the carrier of V,
the carrier of the carrier of V' |. Let us consider G1, V, t. Then t1 is a vector
of V. Then t9 is a vector of V.

Let us consider G1, V, v, Wy, W5. Let us assume that V is the direct sum
of W1 and Wy. The functor v < (W7, Ws) yielding an element of | the carrier
of the carrier of V, the carrier of the carrier of V'] is defined by:

(Def.6) v = (v (W1,W2))1+ (v (Wy,Ws))2 and (v < (W1, Ws))1 € W and
(U < (Wl,WQ))2 € Ws.

Next we state a number of propositions:

(60) If V is the direct sum of W7 and W5 and t1 + t2 = v and t1 € Wj and
to € Wy, then t =v < (Wl,WQ).

(61) If V is the direct sum of W7 and Wo, then (v < (W1,W2))1 + (v <
(Wl, W2))2 =.

(62) If V is the direct sum of Wy and Wy, then (v < (W7, Ws))1 € Wh.

(63) If V is the direct sum of W7 and Wy, then (v < (W71, W3))g € Wi.

(64) If V is the direct sum of Wy and W, then (v < (W1, Ws))1 = (v <
(W2, W1))2.

(65) If V is the direct sum of Wy and W, then (v < (W1, Ws))g = (v <
(W2, W1))1.

(66) Ifty +tg=wvandty € W andtg € L, thent =v < (W, L).

(67) (v (W.L))1+ (v (W,L)2=v.

(68) (v (W,L))1 € Wand (v (W,L))2 € L.

(69) (v (W, L)1 = (v (L, W))2.

(70) (v (W, L))2 = (v (L, W)).

In the sequel A1, Ay will be elements of Subspaces V. Let us consider Gy, V.

The functor SubJoin V' yields a binary operation on Subspaces V' and is defined
by:

(Def.7)  for all Ay, As, Wi, Wy such that A; = W; and Ay = Wy holds
(SubJoin V')(Ay, Ag) = W1 + Wh.

~— — ~— ~—
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Let us consider G1, V. The functor SubMeet V' yielding a binary operation
on SubspacesV is defined by:

(Def.8)  for all Ay, As, Wi, Wy such that A; = W; and As = Wy holds
(SubMeet V)(Al, Ag) =WinNnWs.
In the sequel o denotes a binary operation on Subspaces V. One can prove
the following propositions:
(71) If A1 = W1 and A2 = Wg, then SubJoin V(Al, Ag) = W1 + WQ.
(72) If for all Ay, As, Wy, Wo such that Ay = W; and Ay = W5 holds o( A4y,
Ag) = W1 + Wy, then o = SubJoin V.
(73) If Ay = W7 and Ay = Ws, then SubMeet V(Al, Ag) = Wi N Ws.
(74) If for all Ay, As, Wy, Wo such that Ay = Wy and Ay = W5 holds o(A4;,
Ay) = Wi N Wa, then o = SubMeet V.

(75)  (Subspaces V, SubJoin V, SubMeet V') is a lattice.
(76)  (Subspaces V, SubJoin V, SubMeet V) is a lower bound lattice.
(77)  (Subspaces V, SubJoin V, SubMeet V') is an upper bound lattice.
(78)  (Subspaces V, SubJoin V, SubMeet V') is a bound lattice.
(79)  (Subspaces V, SubJoin V, SubMeet V') is a modular lattice.
(80)  (Subspaces V, SubJoin V, SubMeet V') is a complemented lattice.
(81) v =w1 + v if and only if v1 = v — vs.
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Linear Combinations in Vector Space

Wojciech A. Trybulec!
Warsaw University

Summary. The notion of linear combination of vectors is intro-
duced as a function from the carrier of a vector space to the carrier of the
field. Definition of linear combination of set of vectors is also presented.
We define addition and substraction of combinations and multiplication
of combination by element of the field. Sum of finite set of vectors and
sum of linear combination is defined. We prove theorems that belong
rather to [5].

MML Identifier: VECTSP_6.

The articles [12], [4], [2], [1], [3], [11], [7], [6], [9], [5], [8], and [10] provide the
terminology and notation for this paper. Let D be a non-empty set. Then ()p
is a subset of D.

For simplicity we adopt the following rules: x will be arbitrary, ¢ will be a
natural number, G will be a field, V will be a vector space over G1, u, v, v1,
v, v3 will be vectors of V', a, b, ¢ will be elements of G, F, G will be finite
sequences of elements of the carrier of the carrier of V., A, B will be subsets of
V', and f will be a function from the carrier of the carrier of V' into the carrier
of GG1. Let us consider G1, V. A subset of V is called a finite subset of V if:

(Def.1) it is finite.
We now state the proposition
(1) Ais a finite subset of V' if and only if A is finite.
In the sequel S, T are finite subsets of V. Let us consider G1, V', S, T. Then
SUT is a finite subset of V. Then S N 7T is a finite subset of V. Then S\ T is
a finite subset of V. Then ST is a finite subset of V.
Let us consider G1, V. The functor Oy yields a finite subset of V' and is
defined as follows:
(Def.2) 0y = 0.

One can prove the following proposition
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(2) Oy =0.
Let us consider G1, V, T. The functor > T yields a vector of V' and is defined
as follows:

(Def.3)  there exists F' such that rng F' = T and F' is one-to-one and Y. 7' =Y F.

We now state two propositions:

(3) There exists F' such that rng F' = T and F' is one-to-one and Y T =
STF.

(4) IfrngF =T and F is one-to-one and v = Y F, then v = > T.

Let us consider G1, V', v. Then {v} is a finite subset of V.

Let us consider G, V, vy, vo. Then {v1,v2} is a finite subset of V.

Let us consider G1, V', vy, v9, v3. Then {v1,v9,v3} is a finite subset of V.

One can prove the following propositions:

(5)  X(0v) =Oy.
6) X{v}=v
(7)  If vy # vy, then > {vy,v2} = v1 + vo.
(8) If vy # v9 and vg # v3 and vy # v, then Y {vy, vy, v3} = (v1 + v2) + vs.
(9) If T misses S, then > (TUS)=>T+> S.
(10) >X(TuS)=CT+X95 ->(TnSs).
(11) X(TNS)=T+>S)—->(TUS).
(12) X(T\S)=2(TuS)-35.
(13)  X(T\S)=3XT-3(TnS).
(14) Y(T=S)=3(TUS)-X(TnNS).
(15)  2(T=5) =2(T\S)+ X(S\T).

Let us consider G1, V. An element of (the carrier of
Gl)the carrier of the carrier of V'

is called a linear combination of V' if:
(Def.4)  there exists T such that for every v such that v ¢ T holds it(v) = O¢;,
In the sequel K, L, Ly, Lo, L3 are linear combinations of V. Next we state
the proposition
(16)  There exists 1" such that for every v such that v ¢ T holds L(v) = O¢, .

In the sequel F is an element of (the carrier of Gy )the carrier of the carrier of V.

We now state the proposition

(17)  If there exists T  such that for every v such that v ¢ T holds E(v) = 0¢,,
then E is a linear combination of V.

Let us consider G, V, L. The functor support L yields a finite subset of V'
and is defined as follows:

(Def.5)  support L = {v: L(v) # 0¢, }-
The following propositions are true:
(18)  support L = {v : L(v) # 0¢, }-
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(19) =z € support L if and only if there exists v such that z = v and L(v) #
0c, -
(20) L(v) = 0¢, if and only if v ¢ support L.
Let us consider G, V. The functor Or,c, yielding a linear combination of V'
is defined as follows:
(Def.6)  supportOrc, = 0.

Next we state two propositions:
(21) L =0y, if and only if support L = {).
(22) Orcy, (v) = 0¢, -
Let us consider G1, V, A. A linear combination of V is said to be a linear
combination of A if:
(Def.7)  supportit C A.

One can prove the following proposition
(23) If support L C A, then L is a linear combination of A.
In the sequel | denotes a linear combination of A. Next we state several
propositions:
(24) supportl C A.
(25) If AC B, then [ is a linear combination of B.
(26)  Orc, is a linear combination of A.
(27)  For every linear combination | of Oipe carrier of the carrier of v holds [ =
Orc, -
(28) L is a linear combination of support L.

Let us consider G1, V, F, f. The functor f - F yields a finite sequence of
elements of the carrier of the carrier of V' and is defined by:

(Def.8) len(f - F) = lenF' and for every i such that i € dom(f - F) holds
(f- F)(i) = f(miF) - miF.
Next we state several propositions:
(29) len(f-F)=IenF.
(30)  For every ¢ such that i € dom(f - F') holds (f - F)(i) = f(miF) - m; F.
(31) If lenG = lenF' and for every i such that ¢ € dom G holds G(i) =
f(mF)-mF, then G = f - F.

(32) IfiedomF and v = F(i), then (f - F)(i) = f(v) - v.
(33)  f - Ethe carrier of the carrier of V = Ethe carrier of the carrier of V-
(34)  f-{v)=(f(v)-v).

(35) [ (vi,v2) = (f(v1) - v1, f(v2) - v2).

(36) - {v1,v2,03) = (f(v1) - v1, f(v2) - v2, f(v3) - v3).

(37)

f-(FG)=(f"
Let us consider G1, V,
as follows:

F)~(f-G).
L. The functor > L yielding a vector of V' is defined
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(Def.9)  there exists F' such that F' is one-to-one and rng F' = support L and
YL=3(L-F).
The following propositions are true:
(38)  There exists F' such that F' is one-to-one and rng F' = support L and

S L=Y(L-F).
(39) If F is one-to-one and rng F' = support L and v = Y (L - F'), then
u=>y L.

(40) A # 0 and A is linearly closed if and only if for every [ holds > 1 € A.
(41) > 0rc, = Oy.
(42)  For every linear combination ! of (the carrier of the carrier of v holds > 1 =
Oy.
(43)  For every linear combination [ of {v} holds > 1 =1(v) - v.
(44)  If v1 # vg, then for every linear combination [ of {vy,vs} holds > 1 =
l(’Ul) U1 + l(vg) c V2.
(45)  If support L = (), then >~ L = Oy.
(46)  If support L = {v}, then > L = L(v) - v.
(47)  If support L = {v1,v2} and vy # vy, then Y L = L(vy) - v1 + L(va) - va.
Let us consider Gy, V, Ly, Ly. Let us note that one can characterize the
predicate L1 = Ly by the following (equivalent) condition:
(Def.10)  for every v holds Lq(v) = La(v).
One can prove the following proposition
(48)  If for every v holds Lj(v) = La(v), then L; = Lo.

Let us consider Gy, V, L1, Lo. The functor L+ L4 yields a linear combination
of V and is defined as follows:

(Def.11)  for every v holds (L1 + L2)(v) = Li(v) + La(v).

Next we state several propositions:
(49)  If for every v holds L(v) = Li(v) + La(v), then L = Ly + Lo.
(50) (Ll + Lg)(v) = Ll(v) + LQ(U).
(51)  support(Lj + L) C support Ly U support Ls.
(52)

52 If Ly is a linear combination of A and L is a linear combination of A,

then L; + Lo is a linear combination of A.
(53) L1+ Lo= Lo+ L.
(54) Ly + (Ly+ L3) = (L1 + La) + Ls.
(55) L+ Orc, = L and O¢,, + L = L.

Let us consider G1, V, a, L. The functor a - L yielding a linear combination
of V is defined by:

(Def.12)  for every v holds (a - L)(v) = a - L(v).
The following propositions are true:
(56)  If for every v holds K(v) =a - L(v), then K =a - L.
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(57)  (a-L)(v) =a- L(v).

(58) If a # 0¢,, then support(a - L) = support L.

(59)  Og, - L =0rc, -

(60) If L is a linear combination of A, then a - L is a linear combination of
A.

61) (a+b)-L=a-L+b-L.

)
62) a-(L1+Ls)=a-L1+a- Ls.
) a-(b-L)=(a-b)-L.
64) (1g,)-L=L.
Let us consider G, V, L. The functor —L yields a linear combination of V
and is defined by:
(Def.13) —L=(-1¢,)- L.

The following propositions are true:

(65) —L=(-1¢,)- L.

(66) (=L)(v) = =L(v).

(67) If L1 + Ly = OLCv7 then Lo = —L;.

(68) support(—L) = support L.

(69) If L is a linear combination of A, then —L is a linear combination of A.
(70) —(—L)=L.

Let us consider G1, V, L1, Ly. The functor L1 — Lo yielding a linear combi-
nation of V is defined by:

(Def.14) Ly — Ly = L1 + (—Lo).
Next we state a number of propositions:
71) Ly — Ly = Ly + (—Lo).
72) (Ll — Lg)(’u) = Ll(?}) — LQ(U).
73)  support(L; — Ly) C support L1 U support Lo.
)

o~~~ o~

74 If L is a linear combination of A and Ls is a linear combination of A,
then L1 — Ly is a linear combination of A.

(75) L—L=0yc,.

(76)  >(L1+L2) => L1+ 3 Lo.

77y Y(a-L)y=a-> L.

(78) Y(~L)=-X L.

(79)  >X(L1 —L2) =3 L1 — 3 Lo

(80) (—1@,)-a= —a.

81) —1lg, # 0c;-

(82) —a=0g, —a.

83) —a=-(1g,)-a.

84) (a—=b)-c=a-c—b-c

(85) Ifa+b=0g, then b= —a.
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Basis of Vector Space

Wojciech A. Trybulec!
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Summary. We prove the existence of a basis of a vector space,
i.e., a set of vectors that generates the vector space and is linearly inde-
pendent. We also introduce the notion of a subspace generated by a set
of vectors and linear independence of set of vectors.

MML Identifier: VECTSP_7.

The terminology and notation used in this paper are introduced in the following
papers: [5], [2], [9], [4], [3], [6], [1], [10], [8], and [7]. For simplicity we follow the
rules: x will be arbitrary, G; will denote a field, a, b will denote elements of
G1, V will denote a vector space over G1, W will denote a subspace of V', v,
v1, vo will denote vectors of V', A, B will denote subsets of V', and [ will denote
a linear combination of A. We now define two new predicates. Let us consider
G1, V, A. We say that A is linearly independent if and only if:

(Def.1)  for every [ such that )1 = ©y holds support! = 0.
We say that A is linearly dependent if A is not linearly independent.
One can prove the following propositions:

(1) A is linearly independent if and only if for every [ such that > 1 = Oy
holds support! = 0.

(2) If AC B and B is linearly independent, then A is linearly independent.
(3) If A is linearly independent, then Oy ¢ A.

(4) wthe carrier of the carrier of V 18 hneaﬂy independent-

(5)  {v} is linearly independent if and only if v # Oy

(6) If {vy, vy} is linearly independent, then vy # Oy and ve # Oy .

(7)  {v,0Oy} is linearly dependent and {Oy,v} is linearly dependent.

(8) w1 # vy and {v1,v9} is linearly independent if and only if v # Oy and

for every a holds v1 # a - va.
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(9) wv1 # vy and {v1,v9} is linearly independent if and only if for all a, b
such that a-v; +b- vy = Oy holds a = 0g, and b = 0g, .
Let us consider G, V', A. The functor Lin(A) yields a subspace of V and is
defined by:

(Def.2)  the carrier of the carrier of Lin(A) = {3 1}.

The following propositions are true:
(10)  If the carrier of the carrier of W = {}_ 1}, then W = Lin(A).
(11)  The carrier of the carrier of Lin(A) = {>"1}.
(12) 2 € Lin(A) if and only if there exists [ such that x = > [.
(13) If z € A, then z € Lin(A).
The following propositions are true:

[a—
N

Lin(wthe carrier of the carrier of V) = Oy.

If Lin(A) = 0y, then A=0 or A= {Oy}.

If A = the carrier of the carrier of W, then Lin(A) = W.

If A = the carrier of the carrier of V', then Lin(A) = V.

If A C B, then Lin(A) is a subspace of Lin(B).

If Lin(A) =V and A C B, then Lin(B) = V.

Lin(AU B) = Lin(A) + Lin(B).

Lin(A N B) is a subspace of Lin(A4) N Lin(B).

If A is linearly independent, then there exists B such that A C B and
B is linearly independent and Lin(B) = V.

(23) If Lin(A) = V, then there exists B such that B C A and B is linearly
independent and Lin(B) = V.

Let us consider G, V. A subset of V is called a basis of V' if:
(Def.3) it is linearly independent and Lin(it) = V.

— = =
N O Ot

e e R e N T S
NN ==
— O ©

— O~ Y N Y Y

N
[\G)

We now state the proposition
(24) If A is linearly independent and Lin(A) = V, then A is a basis of V.
In the sequel I will denote a basis of V. We now state four propositions:

[\)
Ut
N

1 is linearly independent.

Lin(I) = V.

If A is linearly independent, then there exists I such that A C I.
If Lin(A) =V, then there exists I such that I C A.

A~ A/~ A/~
N NN
0 3 D
~— ~— —

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural num-
bers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[2] Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics,
1(1):153-164, 1990.



BASIS OF VECTOR SPACE

Eugeniusz Kusak, Wojciech Leonczuk, and Michal Muzalewski. Abelian
groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342,
1990.

Andrzej Trybulec. Domains and their Cartesian products. Formalized
Mathematics, 1(1):115-122, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathemat-
ics, 1(1):9-11, 1990.

Wojciech A. Trybulec. Finite sums of vectors in vector space. Formalized
Mathematics, 1(5):851-854, 1990.

Wojciech A. Trybulec. Linear combinations in vector space. Formalized
Mathematics, 1(5):877-882, 1990.

Wojciech A. Trybulec. Operations on subspaces in vector space. Formal-
ized Mathematics, 1(5):871-876, 1990.

Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics,
1(2):313-319, 1990.

Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space.
Formalized Mathematics, 1(5):865-870, 1990.

Received July 27, 1990

885



886



FORMALIZED MATHEMATICS
Vol.1,No.5, November-December 1990
Université Catholique de Louvain

Factorial and Newton coeffitients

Rafal Kwiatek!
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Torun

Summary. We define the following functions: exponential func-
tion (for natural exponent), factorial function and Newton coefficients.
We prove some basic properties of notions introduced. There is also a
proof of binominal formula. We prove also that ZZ:O (Z) =2".

MML Identifier: NEWTON.

The notation and terminology used in this paper have been introduced in the
following articles: [4], [7], [6], [2], [3], [1], and [5]. We adopt the following rules:
1, k, n, m, | denote natural numbers, a, b, x, y, z denote real numbers, and
F, G denote finite sequences of elements of R. One can prove the following
propositions:

(1)  For all z, y, z such that y # 0 and z # 0 holds % = %

(2) If k>, then k — [ is a natural number.

(3) Forall F, G such that len F' = len G and for every i such that i € dom F

holds F'(i) = G(i) holds F' = G.

(4)  For every n such that n > 1 holds 1 € Segn.

(5) For every n such that n > 1 holds Segn = ({1} U{k : 1 < kAk <

(6)  For every F holds len(a- F') =len F.

(7) n e dom@G if and only if n € dom(a - G).

Let us consider 4, x. Then i — x is a finite sequence of elements of R.

Let us consider z, n. The functor =™ yielding a real number is defined as
follows:

(Def.1) 2" =TI[(n+— x).

One can prove the following propositions:

!Supported by RPBP.III-24.B5.
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) 2" =TI(n— a).

(9)  For every z holds z° = 1.
(10)  For every z holds z! = .
(11)  For every n holds z"*! = 2™ . x and 2"*! = x . 2™
(12) (g =am g
(13)  ant™m = g". g™,
(14) (™)™ = ™™,
(15)  For every n holds 1" = 1.
(16)  For every n such that n > 1 holds 0" = 0.

Let us consider n. Then id,, is a finite sequence of elements of R.

Let us consider x. Then (z) is a finite sequence of elements of R. Let us
consider y. Then (x,y) is a finite sequence of elements of R.

Let us consider n. The functor n! yielding a real number is defined by:

(Def.2)  n!=T](idy).

We now state several propositions:

(17)  n!=TI3Gd,).

(18) ol =1.

(19) 1=1.

(20) 2!=2.

(21)  For every n holds (n+1)! = (n+1) - (n!) and (n+ 1)! = (n!) - (n+1).
(22)  For every n holds n! is a natural number.

(23)  For every n holds n! > 0.

(24)  For every n holds n! # 0.

(25)  For all n, k holds (n!) - (k!) # 0.

Let us consider k, n. The functor (Z) yielding a real number is defined as

follows:
!

(Def.3)  for every I such that [ = n — k holds () = o if n >k, () =0,

(kN-(h
otherwise.

We now state a number of propositions:

(26)  For every I such that | =n — k holds (}) = #'(l,) if and only if n > k
orif () =1, then n < k.

27 (p) =1

0

(28)  For every k such that k£ > 0 holds () = 0.

(29)  For every n holds (5) = 1.

(30)  For all n, k such that n > k for every [ such that [ = n — k holds

(o) = (-

(31)  For every n holds (7)) = 1.

(32) nFor al}l k, n such that k < n holds (}77) = (,7,) + (}) and (1}) =
(6) + ()
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(33)  For every n such that n > 1 holds () = n.

(34)  For all n, I such that n > 1 and I = n — 1 holds (7) = n.

(35)  For every n and for every k holds (}) is a natural number.

(36)  For all m, F such that m # 0 and len F = m and for all ¢, [ such that
i€ domF and I = (n+i) — 1 holds F(i) = () holds " F = (:}"7).

Let a, b be real numbers, and let n be a natural number. The functor
((5)a%", ..., ()a™b°) yields a finite sequence of elements of R and is defined as
follows:

(Def.4)  len((p)a’", ..., (1)a"°) = n+ 1 and for all 4, I, m such that i €

dom(()a’b™, ..., (7)a™°) and m =i — 1 and | = n — m holds
((©)a’", ..., (amt) (i) = ((3,) - a’) - ™
Next we state several propositions:
(37)  Given F. Then the following conditions are equivalent:
(i) lenF =n+1 and for all ¢, I, m such that i € dom F and m =i — 1
and [ =n —m holds F(i) = (() - a) - ™,
(i) F=(()a’",..., ()a"t’).
38)  {(g)a®®,..., ()a%®) = (1).
39) (a0, (D) (1) = a”
10) (D", ()a"tO)(n+1) =
41)  For every n holds (a + b)" = >
Let us consider n. The functor (({),..
ments of R and is defined by:

(Def.5)  len((g),...,(;)) = n+1 and for all 4, k such that i € dom((g),..., ()
and k=14 —1 holds ((f), .. ,("))(2)2(2‘)

n

(
(
( b
( ((§)a®t", ..., (1)a"e?).

) ylelds a finite sequence of ele-

We now state three propositions:
(42)  For every F holds len F' = n 4 1 and for all ¢, m such that i € dom F
and m =i — 1 holds F(i) = () if and only if F' = ((),..., ().
(43)  For every n holds ((f),..., (1)) = (({)1°1™,..., () 1"1°).

(44)  For every n holds 2" = Y°((¢), .-, (1))

n
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Summary. We introduce relations of orthogonality of vectors and
of orthogonality of segments (considered as pairs of vectors) in real linear
space of dimension two. This enables us to show an example of (in fact
anisotropic and satisfying theorem on three perpendiculars) metric affine
space (and plane as well). These two types of objects are defined formally
as ”"Mizar” modes. They are to be understood as structures consisting
of a point universe and two binary relations on segments - a parallelity
relation and orthogonality relation, satisfying appropriate axioms. With
every such structure we correlate a structure obtained as a reduct of
the given one to the parallelity relation only. Some relationships between
metric affine spaces and their affine parts are proved; they enable us to use
”affine” facts and constructions in investigating metric affine geometry.
We define the notions of line, parallelity of lines and two derived relations
of orthogonality: between segments and lines, and between lines. Some
basic properties of the introduced notions are proved.

MML Identifier: ANALMETR.

The articles [5], [1], [7], [6], [2], [3], and [4] provide the notation and terminology
for this paper. For simplicity we follow a convention: V denotes a real linear
space, u, u1, U, U, V1, U2, w, y denote vectors of V', a, ay, as, b, by, by denote
real numbers, and x, z are arbitrary. Let us consider V', w, y. We say that w,
y span the space if and only if:

(Def.1)  for every u there exist aj, as such that u = aj - w+ ay -y and for all a4,
asz such that a; - w + ag - y = Oy holds a; = 0 and ay = 0.
One can prove the following propositions:

(1)  For all w, y holds w, y span the space if and only if for every u there
exist a1, as such that u = a; - w + as - y and for all ay, as such that
a1 -w~+ a9 -y = 0y holds a; = 0 and as = 0.
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(2) If w, y span the space, then there exist a1, ag such that u = a-w+as-y.
(3) If w, y span the space and a; - w + as -y = Oy, then a; = 0 and as = 0.

Let us consider V, u, v, w, y. We say that u, v are orthogonal w.r.t. w, y if
and only if:

(Def.2)  there exist aj, ag, by, bg such that u = a;-w+ay-y andv =by-w+bs-y

and aj - by +ag - by = 0.

The following propositions are true:

(4)  For all u, v, w, y holds u, v are orthogonal w.r.t. w, y if and only if
there exist a1, a9, b1, by such that u =a1-w+ag-yand v =b;-w+by-y
and aj - by +ag - by = 0.

(5) For all w, y such that w, y span the space holds u, v are orthogonal

w.r.t. w, y if and only if for all aq, asg, b1, bg such that u = a1 -w+as -y

and v = by -w + by - y holds ay - by +ag - by = 0.

w, y are orthogonal w.r.t. w, y.
There exists V' and there exist w, y such that w, y span the space.
If u, v are orthogonal w.r.t. w, y, then v, u are orthogonal w.r.t. w, y.

If w, y span the space, then for all u, v holds u, Oy are orthogonal w.r.t.

w, y and Oy, v are orthogonal w.r.t. w, y.

(10)  If u, v are orthogonal w.r.t. w, y, then a - u, b- v are orthogonal w.r.t.
w, y.

(11)  If u, v are orthogonal w.r.t. w, y, then a - u, v are orthogonal w.r.t. w,
y and u, b- v are orthogonal w.r.t. w, y.

(12)  If w, y span the space, then for every u there exists v such that u, v are
orthogonal w.r.t. w, y and v # Oy.

(13) If w, y span the space and v, uy are orthogonal w.r.t. w, y and v, us
are orthogonal w.r.t. w, y and v # 0Oy, then there exist a, b such that
a-uy =b-us but a#0orb#0.

(14) If w, y span the space and u, vy are orthogonal w.r.t. w, y and u, vy

are orthogonal w.r.t. w, y, then w, v; + vy are orthogonal w.r.t. w, y and
u, v1] — Vg are orthogonal w.r.t. w, y.

(15)  If w, y span the space and u, u are orthogonal w.r.t. w, y, then u = Oy .

(16)  If w, y span the space and u, u; — ug are orthogonal w.r.t. w, y and uq,
ug — u are orthogonal w.r.t. w, y, then ug, u — u; are orthogonal w.r.t.
w, Y.

(17)  If w, y span the space and u # Oy, then there exists a such that v—a-u,
u are orthogonal w.r.t. w, y.

(18)  w,v 1 uy,v1 or u,v || vi,uy if and only if there exist a, b such that
a-(v—u)=">b-(vy —uy) but a#0 or b#0.

(19)  ({u,v), {ug,v1)) € A(I'y) if and only if there exist a, b such that a- (v —
u)=>b-(vy —uy) but a# 0 or b#0.
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Let us consider V, u, uy, v, v1, w, y. We say that u, ui, v and v; are
orthogonal w.r.t. w, y if and only if:

(Def.3)  wj —wu, v — v are orthogonal w.r.t. w, y.

One can prove the following proposition

(20)  For all u, uy, v, v1, w, y holds u, uj, v and v; are orthogonal w.r.t. w,
y if and only if u; — u, v1 — v are orthogonal w.r.t. w, ¥.

Let us consider V', w, y. The ortogonality determined by w,y in V' yielding a
binary relation on [ the vectors of V, the vectors of V' { is defined as follows:

(Def.4)  (x,z) € theortogonality determined by w, yinV if and only if there exist
u, ug, v, v1 such that x = (u,u1) and z = (v,v1) and u, uy, v and vy are
orthogonal w.r.t. w, y.

We now state the proposition
(21)  For every binary relation R on [ the vectors of V| the vectors of V|
holds R = the ortogonality determined by w, yinV if and only if for all x, z
holds (z, z) € R if and only if there exist u, uy, v, v1 such that x = (u, u1)
and z = (v,v1) and u, u1, v and vy are orthogonal w.r.t. w, y.
In the sequel p, p1, ¢, g1 will denote elements of the points of A(OASpace V).
We now state three propositions:
(22)  The points of A(OASpace V') = the vectors of V.
(23)  The congruence of A(OASpace V) = A(1I'y).
(24) If p=wand ¢ =v and p; = u; and ¢ = vy, then p,q || p1,¢ if and
only if there exist a, b such that a- (v —u) =b- (vy —uq) but a # 0 or
b # 0.
We consider metric affine structures which are systems
(points, a parallelity, an orthogonality),
where the points constitute a non-empty set, the parallelity is a binary relation
on [ the points,the points ], and the orthogonality is a binary relation on [ the
points, the points]. In the sequel P; will denote a metric-affine structure. We
now define two new predicates. Let us consider Py, and let a, b, ¢, d be elements
of the points of P;. The predicate a,b || ¢,d is defined as follows:

(Det.5)  {{a,b),{c,d)) € the parallelity of P;.
The predicate a,b L ¢, d is defined as follows:
(Det.6)  {{a,b),{c,d)) € the orthogonality of P;.

One can prove the following propositions:
(25)  For all elements a, b, ¢, d of the points of P; holds a,b || ¢,d if and only
if {{a,b), (c,d)) € the parallelity of P;.
(26)  For all elements a, b, ¢, d of the points of P; holds a,b L ¢,d if and only
if ({a,b), (c,d)) € the orthogonality of P;.
Let us consider V', w, y. Let us assume that w, y span the space. The functor
AMSp(V,w,y) yielding a metric-affine structure is defined by:
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(Def.7)  AMSp(V,w,y) = ( the vectors of
V, A(11'y), the ortogonality determined by w, y in V).

Next we state two propositions:
(27)  If w, y span the space, then P, = AMSp(V,w,y) if and only if P, =
the vectors of V, A(1]'y/), the ortogonality determined by w, y in V).

(28) If w, y span the space, then the points of AMSp(V,w,y) = the vectors
of V and the parallelity of AMSp(V,w,y) = A(1l'y) and the orthogo-
nality of AMSp(V,w,y) = the ortogonality determined by w, y in V.

Let us consider P;. The affinereductof P; yielding an affine structure is
defined by:

(Def.8)  theaffinereduct of P; = ( the points of P, the parallelity of P).

We now state two propositions:

(29) For every P; and for every A; being an affine structure holds 4y =
the affinereduct of P; if and only if A; = ( the points of Pj, the parallelity
of P1>.

(30) If w, y span the space, then
the affine reduct of AMSp(V, w,y) = A(OASpace V).

In the sequel p, p1, p2, q, q1, 7, r1, T2 denote elements of the points of
AMSp(V,w,y). One can prove the following propositions:
(31) If w, y span the space and p = v and p; = uy and ¢ = v and ¢q; = vy,
then p,q L p1,q if and only if u, v, u; and vy are orthogonal w.r.t. w, y.
(32) If w, y span the space and p = w and ¢ = v and p; = uy and ¢; = vy,
then p,q || p1,q1 if and only if there exist a, b such that a - (v —u) =
b-(vi —ui) but a # 0 or b # 0.
If w, y span the space and p,q L p1,q1, then p1,q1 L p,q.

W w
R

If w, y span the space and p,q L p1,q1, then p,q L q1,p1.
If w, y span the space, then for all p, ¢, r holds p,q L r,r.

N TN N
w W
S Ot
N N N N

If w, y span the space and p,p; L q,q1 and p,py || r,71, then p = py or
q,q1 L rry.
(37) If w, y span the space, then for every p, ¢, r there exists ry such that
p,q L r,ry and r # ryq.
(38) If w, y span the space and p,p1 L ¢,q1 and p,p; L r,ry, then p = py or
¢q | e
(39) If w, y span the space and p,q L r,71 and p,q L r, 7o, then p,q L ri,rs.
(40)  If w, y span the space and p,q L p,q, then p = q.
(41) If w, y span the space and p,q L p1,p2 and p1,q L po,p, then po,q L
p,p1.
(42) If w, y span the space and p # py, then for every ¢ there exists ¢; such
that p,p1 || p,q1 and p,p1 L q1,¢.
A metric-affine structure is called a metric affine space if:
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(Def.9) (i)  ( the points of it, the parallelity of it) is an affine space,

(ii)  for all elements a, b, ¢, d, p, q, r, s of the points of it holds if a,b L a, b,
then @ = b but a,b L ¢,c but if a,b L ¢,d, then a,b 1L d,c and ¢,d L a,b
but if a,b L p,q and a,b || , s, then p,q L r,s or a = b but if a,b L p,q
and a,b L p,s, then a,b L g, s,

(iii)  for all elements a, b, ¢ of the points of it such that a # b there exists
an element x of the points of it such that a,b || a,x and a,b L z,c,

(iv) for every elements a, b, ¢ of the points of it there exists an element x
of the points of it such that a,b | ¢,z and ¢ # x.

We now state two propositions:

(43)  Given P;. Then P; is a metric affine space if and only if the following
conditions are satisfied:

(i)  ( the points of P;, the parallelity of P;) is an affine space,

(ii)  for all elements a, b, ¢, d, p, g, r, s of the points of P; holds if a,b L a,b,
then ¢ = b but a,b L ¢,c but if a,b L ¢,d, then a,b L d,c and ¢,d L a,b
but if a,b L p,q and a,b || r, s, then p,q L r,s or a = b but if a,b L p,q
and a,b L p,s, then a,b L g, s,

(iii)  for all elements a, b, ¢ of the points of P; such that a # b there exists
an element x of the points of P; such that a,b || a,z and a,b L z,c,

(iv)  for every elements a, b, ¢ of the points of P; there exists an element x
of the points of P; such that a,b L ¢,z and ¢ # «x.

(44)  If w, y span the space, then AMSp(V,w,y) is a metric affine space.
A metric-affine structure is said to be a metric affine plane if:

(Def.10) (i)  ( the points of it, the parallelity of it) is an affine plane,
(ii)  for all elements a, b, ¢, d, p, q, r, s of the points of it holds if a,b L a, b,
then @ = b but a,b L ¢,c but if a,b L ¢,d, then a,b 1L d,c and ¢,d L a,b
but if a,b L p,q and a,b || , s, then p,q L r,s or a = b but if a,b L p,q
and a,b L 7, s, then p,q || r,s or a = b,
(iii)  for every elements a, b, ¢ of the points of it there exists an element x
of the points of it such that a,b | ¢,z and ¢ # x.

Next we state four propositions:

(45)  Given P;. Then P; is a metric affine plane if and only if the following
conditions are satisfied:
(i)  ( the points of P;, the parallelity of P;) is an affine plane,

(ii)  for all elements a, b, ¢, d, p, g, r, s of the points of P; holds if a,b L a,b,
then ¢ = b but a,b L ¢,c but if a,b L ¢,d, then a,b L d,c and ¢,d L a,b
but if a,b L p,q and a,b || r, s, then p,q L r,s or a = b but if a,b L p,q
and a,b L r, s, then p,q || r,s or a = b,

(iii)  for every elements a, b, ¢ of the points of P; there exists an element x
of the points of P; such that a,b L ¢,z and ¢ # «x.

(46)  If w, y span the space, then AMSp(V,w,y) is a metric affine plane.

(47)  For an arbitrary = holds z is an element of the points of P; if and only
if z is an element of the points of the affinereduct of P;.
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(48)  For all elements a, b, ¢, d of the points of P; and for all elements a’, ¥/,
c, d of the points of the affinereduct of P; such that a = @’ and b = ¥/
and ¢ = ¢ and d = d’ holds a,b || ¢,d if and only if a’, b’ || ¢, d’.
Let P; be a metric affine space. Then the affine reduct of P; is an affine space.
Let P; be a metric affine plane. Then the affine reduct of P; is an affine plane.
The following proposition is true
(49)  For every metric affine plane P; holds P; is a metric affine space.
We see that the metric affine plane is a metric affine space.
The following two propositions are true:

(50)  For every metric affine space P; such that the affinereduct of P; is an
affine plane holds P; is a metric affine plane.

(51)  Let P; be a metric-affine structure. Then P is a metric affine plane if
and only if the following conditions are satisfied:

(i)  there exist elements a, b of the points of P; such that a # b,

(ii)  for all elements a, b, ¢, d, p, q, , s of the points of P; holds a,b || b,a
and a,b || ¢,c but if a,b || p,q and a,b || r, s, then p,q || r,s or a = b but
if a,b || a,c, then b,a || b,c and there exists an element x of the points of
Py such that a,b || ¢,z and a,c || b,z and there exist elements z, y, z of
the points of Py such that z,y Jt z, z and there exists an element x of the
points of P; such that a,b || ¢,z and ¢ # x but if a,b || b,d and b # a,
then there exists an element z of the points of P; such that ¢,b || b,z and
¢,a | d,x butifa,b L a,b, thena =band a,b L ¢,cbutifa,b L c,d, then
a,b L d,cand ¢,d L a,bbutifa,b L p,qanda,b| rs, then p,g L r sor
a="bbut if a,b L p,q and a,b L r,s, then p,q || r,s or a = b and there
exists an element x of the points of P; such that a,b L ¢,z and ¢ # x but
if a,b}f ¢,d, then there exists an element x of the points of P; such that
a,b || a,x and ¢,d || ¢, z.

In the sequel z, a, b, ¢, d, p, ¢ will denote elements of the points of P;. Let

us consider Py, a, b, c. The predicate L(a, b, ¢) is defined as follows:
(Def.11)  a,b || a,c.
We now state the proposition
(52)  For every P; and for all a, b, ¢ holds L(a, b, ¢) if and only if a,b || a, c.
Let us consider P, a, b. The functor Line(a, b) yielding a subset of the points
of P; is defined by:
(Def.12)  for every element = of the points of P; holds x € Line(a, b) if and only
if L(a, b, z).
In the sequel A, K, M denote subsets of the points of P;. The following
proposition is true
(563) A = Line(a,b) if and only if for every x holds € A if and only if
L(a,b, ).
Let us consider P;, A. We say that A is a line if and only if:
(Def.13)  there exist a, b such that a # b and A = Line(a, b).
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Next we state several propositions:

(54) A is a line if and only if there exist a, b such that a # b and A =
Line(a, b).

(55)  For every metric affine space P; and for all elements a, b, ¢ of the points
of P; and for all elements a’, b, ¢ of the points of the affine reduct of P;
such that @ = o’ and b = b’ and ¢ = ¢ holds L(a,b,c) if and only if
L(d, b, ).

(56)  For every metric affine space P; and for all elements a, b of the points
of P, and for all elements a’, b’ of the points of the affine reduct of P; such
that a = o/ and b = V' holds Line(a,b) = Line(a’, ).

(57)  For an arbitrary X holds X is a subset of the points of P; if and only
if X is a subset of the points of the affine reduct of P;.

(58)  For every metric affine space P, and for every subset X of the points
of P, and for every subset Y of the points of the affinereduct of P; such
that X =Y holds X is a line if and only if YV is a line.

Let us consider P, a, b, K. The predicate a,b 1 K is defined as follows:
(Def.14)  there exist p, ¢ such that p # ¢ and K = Line(p, ¢) and a,b L p,q.

Let us consider Py, K, M. The predicate K 1 M is defined by:
(Def.15)  there exist p, ¢ such that p # ¢ and K = Line(p, ¢q) and p,q L M.

Let us consider Py, K, M. The predicate K || M is defined by:

(Def.16)  there exist a, b, ¢, d such that a # b and ¢ # d and K = Line(a,b) and
M = Line(c,d) and a,b || ¢,d.

One can prove the following propositions:

(59) For all a, b, K holds a,b L K if and only if there exist p, ¢ such that
p # q and K = Line(p,q) and a,b L p,q.

(60) For all K, M holds K L M if and only if there exist p, ¢ such that
p # q and K = Line(p,q) and p,q L M.

(61)  For all K, M holds K || M if and only if there exist a, b, ¢, d such that
a # b and ¢ # d and K = Line(a,b) and M = Line(c,d) and a,b || ¢, d.

(62) Ifa,b L K, then K is a line but if K | M, then K is a line and M is
a line.

(63) K L M if and only if there exist a, b, ¢, d such that a # b and ¢ # d
and K = Line(a,b) and M = Line(c,d) and a,b L ¢, d.

(64)  For every metric affine space P; and for all subsets M, N of the points
of P; and for all subsets M’, N’ of the points of the affinereduct of P;
such that M = M’ and N = N’ holds M || N if and only if M’ || N'.

We adopt the following rules: P; denotes a metric affine space, A, K, M, N
denote subsets of the points of P, and a, b, ¢, d, p, q, r, s denote elements of
the points of P;. The following propositions are true:

(65) If K is a line, then a,a 1L K.
(66) Ifa,b Ll K buta,b]| cdorcdl] abanda##b,thenc,d L K.
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D
Q

Ifa,b 1l K, then b,a L K.

If K || M, then M || K.

Ifr,s L Kbut K || Mor M| K, then r,s L M.

If K 1 M,then M | K.

Ifae Kandbe K and a,b 1. K, then a = b.

If K is a line, then K } K.
IfK1MorML1LKbut K| NorN| K,then M L Nand N L M.
If K|| N, then K £ N.

Ifae Kandbe K and ¢,d 1. K, then ¢,d 1 a,b and a,b L ¢, d.
Ifae Kand b€ K and a # b and K is a line, then K = Line(a, b).

Ifa € Kand b € K and a # b and K is a line but a,b L ¢,d or
c,d L a,b, then ¢,d 1 K.

(78) Ifae Mandbe Mandce Nandd e N and M L N, then a,b L ¢, d.

(79) IfpeMandpe Nanda € M andbe N and a # b and a € K and
be Kand AL M and A 1 N and K is a line, then A | K.
(80) b,c L a,aand a,a L b,cand b,c| a,a and a,a | b,c.
(81) Ifa,b| ¢ d, then a,b || d,c and b,a || ¢,d and b,a || d,c and ¢,d || a,b
and ¢,d || b,a and d, ¢ || a,b and d, ¢ || b, a.
(82)  Suppose that
(i) p#a
(i)  p,q | a,b and p,q || ¢,d or p,q || a,b and ¢,d || p,q or a,b || p,q and
¢,d || p,qgorad| pgandp,ql ecd.
Then a,b || ¢, d.
(83) Ifa,bLlecd thena,b L dcandb,a Ll c,dandb,a L d,candc,d L a,b
and ¢,d L b,a and d,c L a,b and d,c L b,a.

(84)  Suppose that
i) pr#q
(i)  p,q | a,band p,q L ¢,d or p,q | ¢,d and p,q L a,bor p,q || a,b and
¢,d L p,qorpq| ¢,dand ab L p,gorabl| pqgandc,d L pgqor
e,d || p,g and a,b L p,q or a,b || p,q and p,q L ¢,d or ¢,d || p,q and
p,q L a,b.
Then a,b L c,d.

We follow the rules: P; is a metric affine plane, K, M, N are subsets of
the points of P;, and z, a, b, ¢, d, p, q are elements of the points of P;. The
following propositions are true:

(85)  Suppose that
i) pr#q
(i) p,gLa,band p,qLc,dorp,qglabandc,dl pqorab L p,qand
c,d Lp,gora,b Ll pqgandp,qLcd.
Then a,b || ¢, d.
(86) Ifae Mandbe M and a #b and M is a line and c € N and d € N
and ¢ # d and N is a line and a,b || ¢,d, then M || N.

N = S O
_ O ©

e R N e N e e e
~N N N
S O = W N

O N N N N

~
~J
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87) IHK1MorML1LKbutK_LNorNLK,then M| Nand N || M.

(88) If M L N, then there exists p such that p € M and p € N.

(89) Ifa,b L c,d, then there exists p such that L(a,b,p) and L(c, d, p).

(90) If a,b L K, then there exists p such that L(a,b,p) and p € K.

(91)  There exists « such that a,z L p,q and L(p, ¢, x).

(92) If K is a line, then there exists = such that a,x L K and z € K.
ererences

Ref

rzysztof Hryniewiecki. Basic properties of real numbers. Formalize

1] K f Hryniewiecki. Basi i f real b F lized
Mathematics, 1(1):35-40, 1990.

[2] Henryk Oryszczyszyn and Krzysztof Prazmowski. Analytical ordered affine
spaces. Formalized Mathematics, 1(3):601-605, 1990.

[3] Henryk Oryszczyszyn and Krzysztof Prazmowski. Ordered affine spaces
defined in terms of directed parallelity - part I. Formalized Mathematics,
1(3):611-615, 1990.

[4] Henryk Oryszczyszyn and Krzysztof Prazmowski. Parallelity and lines in
affine spaces. Formalized Mathematics, 1(3):617-621, 1990.

[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathemat-
ics, 1(1):9-11, 1990.

[6] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathemat-
ics, 1(2):291-296, 1990.

[7] Edmund Woronowicz. Relations and their basic properties. Formalized

Mathematics, 1(1):73-83, 1990.

Received August 10, 1990

899



900



FORMALIZED MATHEMATICS
Vol.1,No.5, November-December 1990
Université Catholique de Louvain

Projective Spaces - part 11

Wojciech Leoniczuk! Krzysztof Prazmowski?
Warsaw University Warsaw University
Biatystok Biatystok

Summary. Distinction is made among several types of many di-
mensional projective spaces - at least three dimensional and exactly three-
dimensional projective structures. We prove that analytical projective
spaces defined over appropiate real linear spaces may serve as examples
of the introduced classes of projective spaces. Corresponding subclasses
of Fano projective structures are distinguished. Note that in projective
geometry the axiom which assures that the dimension is not greater than
three can be formulated as the statement: there exists a plane which
intersects every line.
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The terminology and notation used in this paper have been introduced in the
following articles: [1], [4], [2], and [3]. We follow a convention: V will be a real
linear space, p, q, T, s, u, v, w, y, w1, v1 will be vectors of V', and a, b, ¢, d, ay,
b1, c¢1 will be real numbers. The following two propositions are true:

(1)  Suppose that

(i) for every w there exist a, b, ¢, d such that w = ((a-p+b-q)+c-r)+d-s,
(ii)  for all a, b, ¢, d such that ((a-p+b-q)+c-r)+d-s=0y holdsa =0
and b=0and ¢ =0 and d = 0.
Then for all u, v such that u is a proper vector and v is a proper vector
there exist y, w such that u, v and w are lineary dependent and ¢, r and
y are lineary dependent and p, w and y are lineary dependent and y is a
proper vector and w is a proper vector.

(2)  Suppose for all a, b, aq, by such that ((a-u+b-v)+ay-ui)+by-v; =0y
holds a = 0 and b =0 and a7 = 0 and b1 = 0. Then for no y holds y is a
proper vector and u, v and y are lineary dependent and w1, v1 and y are
lineary dependent.
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We adopt the following rules: V' will be a non-trivial real linear space, u, v,
w, y, wy will be vectors of V', and p, p1, q, 91, 92, g3, 7, 71, T2, r3 Will be elements
of the points of the projective spaceover V. We now state two propositions:

(3)  If there exist p, ¢, r such that p, ¢ and r are not collinear, then for all
P, q such that p # ¢ there exists r such that p, ¢ and r are not collinear.

(4)  Suppose that

(i)  there exist y, u, v, w such that for every w; there exist a, b, a1, by such
that w1 = ((a-y+0b-u)+ay -v)+ by -w and for all a, b, aj, by such that
((a-y+b-u)+ay-v)+by-w=0y holds a =0 and b =0 and a; = 0 and
b1 =0.
Then there exist p, q1, g2 such that p, g1 and ¢ are not collinear and for
every 71, Ty there exist g3, r3 such that r1, ro and r3 are collinear and ¢,
g2 and g3 are collinear and p, r3 and g3 are collinear.

Next we state the proposition

(5)  Suppose that
(i)  there exist p, g, r such that p, ¢ and r are not collinear,

(ii)  for every p, ¢ there exists r such that p # r and ¢ # r and p, ¢ and r
are collinear,

(ili)  there exist p, g1, g2 such that p, g1 and g2 are not collinear and for
every 71, Ty there exist g3, r3 such that r1, 7o and 73 are collinear and ¢,
g2 and g3 are collinear and p, r3 and g3 are collinear.

Then for every p, p1, q, q1, r2 there exist r, r1 such that p, ¢ and r are
collinear and pq, ¢; and r{ are collinear and r9, r and r; are collinear.

In the sequel u, v, w, y, uy, v1, wy will be vectors of V. Next we state three
propositions:
(6) Suppose that
(i)  there exist y, u, v, w such that for every w; there exist a, b, ¢, ¢; such
that w1 = ((a-y+b-u)+c-v)+c1 -w and for all a, b, ar, by such that
((a-y+b-u)+ay-v)+by-w=0y holdsa=0and b =0 and a; = 0 and
b1 =0.
Then for every p, p1, q, q1, r2 there exist r, r1 such that p, ¢ and r are
collinear and p1, ¢ and rq are collinear and r9, r and ry are collinear.

(7)  Suppose there exist u, v, uy, v; such that for all a, b, a1, by such that
((a-u+b-v)+a;-u;)+by-v; =0y holdsa=0and b=0 and a; =0
and by = 0. Then there exist p, p1, ¢, ¢1 such that for no r holds p, py
and r are collinear and ¢, ¢; and 7 are collinear.

(8)  Suppose that

(i)  there exist u, v, uj, v1 such that for every w there exist a, b, a1, by
such that w = ((a-u+b-v)+ay-uy)+ by -vy and for all a, b, aj, by such
that ((a-u+b-v)+ay-u)+by-v; =0y holds a =0 and b = 0 and
a1 =0 and b; =0.

Then
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(ii)  for every p, p1, q, q1, T2 there exist r, r; such that p, ¢ and r are
collinear and p1, ¢; and rqy are collinear and 79, r and rq are collinear,
(iii)  for every p, ¢ there exists r such that p # r and ¢ # r and p, ¢ and r
are collinear,

(iv)  there exist p, ¢, r such that p, ¢ and r are not collinear,

(v)  there exist p, p1, ¢, ¢1 such that for no r holds p, p; and r are collinear
and ¢, g1 and 7 are collinear.

A projective space defined in terms of collinearity is called an at least 3
dimensional projective space defined in terms of collinearity if:

(Def.1)  there exist elements p, p1, ¢, q1 of the points of it such that for no
element r of the points of it holds p, p; and r are collinear and ¢, ¢; and
r are collinear.

We now state three propositions:

(9)  For every projective space C defined in terms of collinearity holds C is
an at least 3 dimensional projective space defined in terms of collinearity
if and only if there exist elements p, p1, ¢, ¢1 of the points of C such that
for no element r of the points of C; holds p, p; and r are collinear and ¢,
g1 and r are collinear.

(10)  If there exist u, v, u, v; such that for all a, b, ay, by such that ((a -
u+b-v)+ay-u)+b-v; =0y holdsa =0and b =0 and a3 = 0
and b; = 0, then the projectivespaceover V' is an at least 3 dimensional
projective space defined in terms of collinearity.

(11)  Let C; be a collinearity structure. Then C is an at least 3 dimensional
projective space defined in terms of collinearity if and only if the following
conditions are satisfied:

(i) for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, g and ¢ are collinear,

(ii)  for all elements p, q, r, 1, ro of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and rq are collinear and p, ¢ and ro are
collinear holds r, 1 and ry are collinear,

(ili)  for every elements p, ¢ of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  for all elements p, p1, p2, r, r1 of the points of Cy such that p, p; and
r are collinear and p1, po and 71 are collinear there exists an element ro
of the points of Cy such that p, ps and ry are collinear and r, 1 and 7o
are collinear,

(v)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element r of the points of C holds p, p; and r are collinear and ¢, ¢; and
r are collinear.

An at least 3 dimensional projective space defined in terms of collinearity is
said to be a Fanoian at least 3 dimensional projective space defined in terms of
collinearity if:
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(Def.2)  Let py, r9, q, m1, q1, P, © be elements of the points of it . Suppose p1,

ro and ¢ are collinear and rq, ¢; and ¢ are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, ¢; and 7 are collinear and
ro, r1 and r are collinear and p, ¢ and r are collinear. Then p1, 2 and ¢;
are collinear or p1, ro and r1 are collinear or p1, r1 and ¢ are collinear or
ro, 71 and ¢p are collinear.

One can prove the following propositions:

(12)  Let Cy be an at least 3 dimensional projective space defined in terms of
collinearity. Then C] is a Fanoian at least 3 dimensional projective space
defined in terms of collinearity if and only if for all elements p1, r2, ¢, r1,
q1, p, r of the points of Cy such that p;, ro and ¢ are collinear and rq,
¢q1 and ¢ are collinear and pq, r; and p are collinear and r9, ¢; and p are
collinear and pq, ¢; and r are collinear and ry, 1 and r are collinear and
p, g and r are collinear holds py, ro and g; are collinear or pi, o and rq
are collinear or pq, 71 and ¢ are collinear or ro, 1 and ¢ are collinear.

(13)  If there exist u, v, uy, vy such that for all a, b, aj, by such that ((a -
u+b-v)+ay-uy)+by-vy =0y holds a =0 and b =0 and a; = 0 and
b1 = 0, then the projective space over V is a Fanoian at least 3 dimensional
projective space defined in terms of collinearity.

(14) Let C; be a collinearity structure. Then C} is a Fanoian at least 3
dimensional projective space defined in terms of collinearity if and only if
the following conditions are satisfied:

(i) for all elements p, g, r of the points of C; holds p, g and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, g, r, r1, ro of the points of C; such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and rq are collinear and p, ¢ and ro are
collinear holds r, r; and ry are collinear,

(iii)  for every elements p, q of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  for all elements p, p1, p2, r, r1 of the points of C; such that p, p; and
r are collinear and pq, po and 7y are collinear there exists an element ro
of the points of Cy such that p, ps and ry are collinear and r, 1 and 7o
are collinear,

(v) for all elements p1, r9, q, 71, q1, p, r of the points of C; such that pi,
r9 and ¢ are collinear and 71, ¢; and ¢ are collinear and p;, 1 and p are
collinear and r9, g1 and p are collinear and p1, ¢; and r are collinear and
r9, r1 and r are collinear and p, ¢ and r are collinear holds pi, r9 and ¢
are collinear or pq, o and rq are collinear or pq, 1 and ¢ are collinear or
r9, 11 and ¢ are collinear,

(vi)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element r of the points of C holds p, p; and r are collinear and ¢, ¢; and
r are collinear.

(15)  For every C; being a collinearity structure holds C; is a Fanoian at
least 3 dimensional projective space defined in terms of collinearity if and
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only if C7 is a Fanoian projective space defined in terms of collinearity
and there exist elements p, p1, ¢, g1 of the points of C7 such that for no
element r of the points of C'; holds p, p1 and r are collinear and ¢, ¢; and
r are collinear.

An at least 3 dimensional projective space defined in terms of collinearity is
called a 3 dimensional projective space defined in terms of collinearity if:

(Def.3)  for every elements p, p1, q, q1, 72 of the points of it there exist elements
r, r1 of the points of it such that p, ¢ and r are collinear and p1, ¢; and
r1 are collinear and ro, r and 71 are collinear.

The following propositions are true:

(16)  For every at least 3 dimensional projective space C defined in terms of
collinearity holds C1 is a 3 dimensional projective space defined in terms
of collinearity if and only if for every elements p, p1, q, g1, T2 of the points
of C'1 there exist elements r, 1 of the points of C; such that p, ¢ and r
are collinear and p1, g1 and r; are collinear and ro, 7 and ry are collinear.

(17)  Suppose that
(i)  there exist u, v, w, uj such that for all a, b, ¢, d such that ((a-u+b-
v)+c-w)+d-u; =0y holdsa=0and b=0and ¢ =0 and d = 0 and for
every y there exist a, b, ¢, d such that y = ((a-u+b-v) +c-w)+d-uj.
Then the projectivespaceover V is a 3 dimensional projective space de-
fined in terms of collinearity.

(18)  Let C be a collinearity structure. Then C} is a 3 dimensional projective
space defined in terms of collinearity if and only if the following conditions
are satisfied:

(i)  for all elements p, g, r of the points of C; holds p, g and p are collinear
and p, p and ¢ are collinear and p, g and ¢ are collinear,

(ii)  for all elements p, q, r, 1, ro of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and 7 are collinear and p, ¢ and o are
collinear holds r, 1 and ro are collinear,

(iii)  for every elements p, g of the points of C there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv) for all elements p, p1, p2, r, r1 of the points of Cy such that p, p; and
r are collinear and p1, po and ry are collinear there exists an element 79
of the points of C; such that p, po and ro are collinear and 7, r; and 79
are collinear,

(v)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element r of the points of C holds p, p; and r are collinear and ¢, ¢; and
r are collinear,

(vi) for every elements p, p1, ¢, g1, 2 of the points of C; there exist elements
r, r1 of the points of C7 such that p, ¢ and r are collinear and p1, ¢1 and
r1 are collinear and r9, r and rq are collinear.

A 3 dimensional projective space defined in terms of collinearity is called a
Fanoian 3 dimensional projective space defined in terms of collinearity if:
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(Def.4)  Let py, r9, q, m1, q1, P, © be elements of the points of it . Suppose p1,
ro and ¢ are collinear and rq, ¢; and ¢ are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, ¢; and 7 are collinear and
ro, r1 and r are collinear and p, ¢ and r are collinear. Then p1, 2 and ¢;
are collinear or p1, ro and r1 are collinear or p1, r1 and ¢ are collinear or
ro, 71 and ¢p are collinear.

We now state four propositions:

(19)  Let C; be a 3 dimensional projective space defined in terms of collinear-
ity. Then C7 is a Fanoian 3 dimensional projective space defined in terms
of collinearity if and only if for all elements py, r2, q, 71, g1, p,  of the
points of C7 such that py, ro and ¢ are collinear and r1, ¢; and ¢ are
collinear and pq, r1 and p are collinear and r2, q; and p are collinear and
p1, q1 and r are collinear and 7o, 1 and r are collinear and p, ¢ and r are
collinear holds pq, r3 and ¢; are collinear or py, 9 and r; are collinear or
p1, 71 and ¢ are collinear or r9, r; and ¢; are collinear.

(20)  Suppose that
(i)  there exist u, v, w, uy such that for all a, b, ¢, d such that ((a-u+b-
v)+c-w)+d-u; =0y holdsa=0and b=0and ¢ =0 and d = 0 and for
every y there exist a, b, ¢, d such that y = ((a-u+b-v) +c-w)+d-uj.
Then the projectivespaceover V' is a Fanoian 3 dimensional projective
space defined in terms of collinearity.

(21)  Let Cy be a collinearity structure. Then C; is a Fanoian 3 dimensional
projective space defined in terms of collinearity if and only if the following
conditions are satisfied:

(i) for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and q are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, g, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, g and 71 are collinear and p, ¢ and ro are
collinear holds r, 1 and ry are collinear,

(iii)  for every elements p, q of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv) for all elements p, p1, p2, r, r1 of the points of Cy such that p, p; and
r are collinear and p1, po and ry are collinear there exists an element 79
of the points of C7 such that p, po and ro are collinear and 7, r; and 79
are collinear,

(v)  for all elements p1, r9, q, r1, q1, p, r of the points of C; such that pi,
r9 and ¢ are collinear and 71, ¢; and ¢ are collinear and p;, 1 and p are
collinear and r5, g1 and p are collinear and p1, ¢; and r are collinear and
r9, r1 and r are collinear and p, ¢ and r are collinear holds pi, 9 and ¢
are collinear or pq, ro and rq are collinear or py, 1 and ¢ are collinear or
r9, 11 and ¢ are collinear,

(vi)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element r of the points of C'; holds p, p1 and 7 are collinear and ¢, ¢; and
r are collinear,
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(vii)  for every elements p, p1, q, q1, r2 of the points of C there exist elements
r, r1 of the points of C7 such that p, ¢ and r are collinear and p1, ¢1 and
rq1 are collinear and ro, r and 71 are collinear.

(22) For every C; being a collinearity structure holds C; is a Fanoian 3
dimensional projective space defined in terms of collinearity if and only if
(1 is a Fanoian at least 3 dimensional projective space defined in terms of
collinearity and for every elements p, p1, q, q1, 2 of the points of C there
exist elements r, r; of the points of C; such that p, ¢ and r are collinear
and p1, ¢1 and 71 are collinear and ro, 7 and 71 are collinear.
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Summary. In the classes of projective spaces, defined in terms of
collinearity, introduced in the article [3], we distinguish the subclasses of
Desarguesian projective structures. As examples of these types of objects
we consider analytical projective spaces defined over suitable real linear
spaces; analytical counterpart of the Desargues Axiom is proved without
any assumption on the dimension of the underlying linear space.
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The articles [1], [4], [2], and [3] provide the notation and terminology for this
paper. We adopt the following rules: V will denote a real linear space, o, p, p1,
D2, P3, ¢, q1, G2, g3, T, 71, T2, 3 Will denote vectors of V', and a, b, ¢, a1, b1, as,
co will denote real numbers. Let us consider V', py, ps, p3. We say that pq, po
and p3 are proper vectors if and only if:

(Def.1)  pj is a proper vector and po is a proper vector and p3 is a proper vector.

Next we state the proposition
(1)  p1, p2 and ps are proper vectors if and only if p; is a proper vector and
po is a proper vector and ps is a proper vector.
Let us consider V', p1, p2, ps3, 71, 72, 3. We say that py, ps, p3, 1, 2, and
r3 lie on a triangle if and only if:

(Def.2)  p1, p2 and rs3 are lineary dependent and py, ps and 7o are lineary de-
pendent and po, ps and r; are lineary dependent.

Next we state the proposition

(2)  p1, p2, p3, 71, T2, and 73 lie on a triangle if and only if p1, p and r3 are
lineary dependent and p1, p3 and ro are lineary dependent and po, ps and
ry are lineary dependent.
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Let us consider Va 0, P1, P2, P3, 41, 42, 43- We say that 0, P1, P2, P3, 41, 42,
and g3 are perspective if and only if:

(Def.3) o, p1 and ¢ are lineary dependent and o, ps and ¢ are lineary dependent
and o, p3 and g3 are lineary dependent.

The following propositions are true:

(3) o, p1, P2, D3, @1, q2, and g3 are perspective if and only if o, p; and ¢;
are lineary dependent and o, py and ¢o are lineary dependent and o, p3
and g3 are lineary dependent.

(4)  Suppose o, p; and ¢ are lineary dependent and o and p; are not propor-
tional and o and ¢; are not proportional and p; and g; are not proportional
and o, p1 and ¢ are proper vectors. Then there exist ai, b; such that
b1-qg1 =04 a1 -p; and a1 # 0 and by # 0 and there exist az, co such that
g1 =co-0+as-p; and cg # 0 and ag # 0.

If p, g and r are lineary dependent and p and ¢ are not proportional and
p, g and r are proper vectors, then there exist a, b such that r = a-p+b-q.

—~ —~
(=) (S
SN— SN—

Suppose that

o0 is a proper vector,

p1, p2 and p3 are proper vectors,
q1, g2 and g3 are proper vectors,

—
e T~
ewbiiy er b

—~

)
)
)
iv) 71, ro and 73 are proper vectors,
(V) o, p1. P2, P3, q1, G2, and g3 are perspective,
(vi) o and ¢ are not proportional,
(vii) o and ¢y are not proportional,
(viii) o and g3 are not proportional,
(ix) p1 and ¢ are not proportional,
(x) pe2 and g9 are not proportional,
(xi) ps3 and g3 are not proportional,
(xii) o, p1 and py are not lineary dependent,
(xiii) o, p1 and ps are not lineary dependent,
(xiv) o, p2 and p3 are not lineary dependent,
(xv)  p1, P2, P3, T1, T2, and r3 lie on a triangle,
(xvi)  q1, g2, g3, 71, T2, and r3 lie on a triangle.

Then r1, 79 and r3 are lineary dependent.

We adopt the following rules: V will be a non-trivial real linear space
and o, p1, P2, P3, 41, G2, q3, T1, T2, r3 will be elements of the points of the
projective space over V. The following proposition is true

(7)  Suppose that

(1) o 7é q1,
(i)  p1# @,
(iii) o # qo,
(iv)  p2 # qo,
(v) o#ags,
(vi)  p3 # g3,



In the sequel u, v, w, y will denote vectors of V. A projective space defined
in terms of collinearity is said to be a Desarguesian projective space defined in

PROJECTIVE SPACES - PART III

o, p1 and py are not collinear,
o, p1 and p3 are not collinear,
0, p2 and p3 are not collinear,
p1, p2 and 73 are collinear,
q1, g2 and r3 are collinear,
p2, p3 and 71 are collinear,
q2, q3 and rq are collinear,
p1, p3 and 7o are collinear,
q1, q3 and ro are collinear,

o, p1 and ¢ are collinear,

0, p2 and o are collinear,

0, p3 and q3 are collinear.

Then r1, 79 and r3 are collinear.

terms of collinearity if:

(Def.4)

Let o, p1, p2, P3, 1, q2, q3, T1, T2, T3 be elements of the points of it .
Suppose that

O#le
P17 q1,
O#CI%
P2 # G2,
0 # g3,

p3 # 43,
0, p1 and py are not collinear,

o, p1 and p3 are not collinear,
0, p2 and p3 are not collinear,
p1, p2 and 73 are collinear,
q1, g2 and r3 are collinear,
p2, p3 and 71 are collinear,
q2, q3 and rq are collinear,
p1, p3 and 7o are collinear,
q1, q3 and ro are collinear,

0, p1 and ¢ are collinear,

0, p2 and o are collinear,

0, p3 and q3 are collinear.

Then r1, 79 and r3 are collinear.

We now state three propositions:

(8)

Let (1 be a projective space defined in terms of collinearity. Then Cy
is a Desarguesian projective space defined in terms of collinearity if and
only if for all elements o, p1, p2, pP3, q1, q2, q3, 71, 72, T3 of the points of
C1 such that o # ¢1 and p; # ¢1 and o # g2 and ps # ¢2 and o0 # q3
and p3 # g3 and o, p; and po are not collinear and o, p; and p3 are not
collinear and o, po and p3 are not collinear and p1, p2 and r3 are collinear

911
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and q1, g2 and rg are collinear and ps, ps and rq are collinear and g2, g3
and 71 are collinear and pq, p3 and ro are collinear and ¢1, g3 and r9 are
collinear and o, p; and ¢ are collinear and o, ps and g9 are collinear and
o, p3 and g3 are collinear holds r1, ro and r3 are collinear.

(9) If there exist u, v, w such that for all a, b, ¢ such that (a-u+b-v)+c-w =
Oy holds a =0 and b = 0 and ¢ = 0, then the projective spaceover V is a
Desarguesian projective space defined in terms of collinearity.

(10)  Let C; be a collinearity structure. Then C is a Desarguesian projective
space defined in terms of collinearity if and only if the following conditions
are satisfied:

(i) for all elements p, q, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, g and 7 are collinear and p, ¢ and ro are
collinear holds r, r; and 7o are collinear,

(ii)  for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(iii)  for all elements p, p1, p2, 7, 71 of the points of Cy such that p, p; and
r are collinear and pq, po and 7y are collinear there exists an element ro
of the points of Cy such that p, ps and ry are collinear and r, 1 and 7o
are collinear,

(iv)  for every elements p, g of the points of C there exists an element r of
the points of C7 such that p # r and ¢ # r and p, ¢ and r are collinear,

(v)  there exist elements p, g, r of the points of C; such that p, ¢ and r are
not collinear,

(vi)  for all elements o, p1, p2, P3, q1, G2, g3, 71, T2, T3 Oof the points of Cy such
that o # q1 and p; # q1 and 0 # ¢ and p2 # g2 and o # g3 and p3 # g3
and o, p; and ps are not collinear and o, p; and ps are not collinear and
0, p2 and ps are not collinear and py, po and rg are collinear and ¢, ¢
and rg are collinear and ps, p3 and ry are collinear and g2, q3 and r; are
collinear and pq, p3 and r9 are collinear and ¢q, g3 and ry are collinear
and o, p; and ¢ are collinear and o, po and ¢ are collinear and o, p3 and
q3 are collinear holds 71, o and 73 are collinear.

A Fanoian projective space defined in terms of collinearity is called a Fano-
Desarguesian projective space defined in terms of collinearity if:

(Def.5)  Let o, p1, p2, P3, q1, G2, q3, 71, T2, 73 be elements of the points of it .
Suppose that

i) o#a,
() p1#ar,
(il) o # g,
(iv)  p2 # qo,
(v) o#gs,
(vi)  p3 # g3,
(vii) o, p1 and pg are not collinear,
(viii) o, p1 and p3 are not collinear,
(ix) o, p2 and p3 are not collinear,
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0, p2 and o are collinear,
o, p3 and g3 are collinear.
Then r1, 79 and r3 are collinear.

(x)  p1, p2 and r3 are collinear,
(xi)  q1, g2 and r3 are collinear,
(xii)  p2, p3 and r; are collinear,

(xiii) g9, g3 and ry are collinear,
(xiv)  p1, p3 and ro are collinear,
(xv)  q1, g3 and 79 are collinear,
(xvi) o, p1 and ¢ are collinear,
)
)

One can prove the following propositions:

(11) Let Cy be a Fanoian projective space defined in terms of collinear-
ity. Then C is a Fano-Desarguesian projective space defined in terms of
collinearity if and only if for all elements o, p1, p2, P3, q1, 92, q3, r1, T2, '3
of the points of Cy such that o # ¢; and p; # ¢1 and 0 # g2 and py # ¢o
and o # q3 and p3 # g3 and o, p; and py are not collinear and o, p; and
p3 are not collinear and o, po and ps are not collinear and pq, ps and r3
are collinear and q1, g2 and r3 are collinear and ps, ps and rq are collinear
and g2, g3 and r1 are collinear and pi, ps and ro are collinear and ¢1, g3
and 7o are collinear and o, p; and g1 are collinear and o, po and ¢y are
collinear and o, p3 and g3 are collinear holds 71, 79 and 73 are collinear.

(12)  If there exist u, v, w such that for all a, b, ¢ such that (a-u+b-v)+c-w =
Oy holds a = 0 and b = 0 and ¢ = 0, then the projective spaceover V is a
Fano-Desarguesian projective space defined in terms of collinearity.

(13) Let C; be a collinearity structure. Then C is a Fano-Desarguesian
projective space defined in terms of collinearity if and only if the following
conditions are satisfied:

(i) for all elements p, q, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and 71 are collinear and p, ¢ and ro are
collinear holds r, 1 and ro are collinear,

(ii)  for all elements p, ¢, r of the points of C; holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(iii)  for all elements p, p1, pe, r, r1 of the points of C; such that p, p; and
r are collinear and p1, po and ry are collinear there exists an element 79
of the points of C; such that p, po and ro are collinear and r, r; and 79
are collinear,

(iv)  for every elements p, g of the points of C there exists an element r of
the points of C such that p # r and ¢ # r and p, ¢ and r are collinear,

(v)  there exist elements p, ¢, r of the points of C such that p, ¢ and r are
not collinear,

(vi) for all elements p1, r2, q, 71, q1, p, r of the points of C; such that py,
ro and ¢ are collinear and r1, ¢; and g are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, ¢; and r are collinear and
ro, r1 and r are collinear and p, ¢ and r are collinear holds pq, 7o and ¢
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are collinear or p1, ro and r1 are collinear or p1, r1 and ¢ are collinear or
ro, r1 and g1 are collinear,

(vii)  for all elements o, p1, p2, P3, q1, G2, g3, 71, T2, T3 of the points of Cy such
that o # q1 and p; # q1 and 0 # ¢ and p2 # g2 and o # g3 and p3 # g3
and o, p; and ps are not collinear and o, p; and ps are not collinear and
0, po and ps are not collinear and py, po and r3g are collinear and ¢, g
and rg are collinear and po, p3 and ry are collinear and g2, q3 and r; are
collinear and p1, p3 and ro are collinear and ¢y, g3 and ry are collinear
and o, p; and ¢ are collinear and o, po and ¢ are collinear and o, p3 and
q3 are collinear holds 71, 7o and 73 are collinear.

(14) Let C; be a collinearity structure. Then C; is a Fano-Desarguesian
projective space defined in terms of collinearity if and only if the following
conditions are satisfied:

(i)  C} is a Desarguesian projective space defined in terms of collinearity,

(ii)  for all elements p1, 72, q, 71, q1, p, T of the points of Cy such that pq,
ro and ¢ are collinear and r1, ¢; and g are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, ¢; and r are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, 7o and ¢
are collinear or p1, ro and r1 are collinear or p1, r1 and ¢; are collinear or
ro, 71 and ¢ are collinear.

A projective plane defined in terms of collinearity is called a Desarguesian
projective plane defined in terms of collinearity if:
(Def.6) Let o, p1, p2, p3, q1, 92, g3, T1, T2, '3 be elements of the points of it .
Suppose that

(1) o 7é q1,
(i) p1# a,
(i) o0 # g2,
(iv)  p2 # qo,
(v)  o#as,
(vi)  p3s # g3,
(vii) o, p1 and pg are not collinear,
(viii) o, p1 and ps are not collinear,
(ix) o, p2 and ps are not collinear,
(x)  p1, p2 and r3 are collinear,
(xi)  q1, g2 and r3 are collinear,
(xii)  pe, ps and ry are collinear,
(xiii) g9, g3 and ry are collinear,
(xiv)  p1, p3 and 79 are collinear,
(xv)  q1, g3 and 7y are collinear,
(xvi) o, p1 and ¢ are collinear,
(xvil) o, p2 and ¢y are collinear,
(xviii) o, ps and g3 are collinear.

Then r1, 79 and r3 are collinear.

We now state four propositions:
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(15)  Let C; be a projective plane defined in terms of collinearity. Then Cy
is a Desarguesian projective plane defined in terms of collinearity if and
only if for all elements o, p1, po2, 3, q1, q2, q3, 71, 72, T3 of the points of
C1 such that o # ¢1 and p; # ¢1 and o0 # ¢2 and ps # ¢2 and 0 # g3
and p3 # g3 and o, p; and po are not collinear and o, p; and p3 are not
collinear and o, po and p3 are not collinear and p1, p2 and r3 are collinear
and q1, g2 and rg are collinear and ps, p3 and rq are collinear and g2, g3
and 71 are collinear and pq, p3 and ro are collinear and ¢1, g3 and r9 are
collinear and o, p; and ¢; are collinear and o, po and ¢o are collinear and
o, p3 and g3 are collinear holds 71, r9 and r3 are collinear.

(16)  Suppose that
(i)  there exist u, v, w such that for all a, b, ¢ such that (a-u+b-v)+cw = 0y
holds a = 0 and b = 0 and ¢ = 0 and for every y there exist a, b, ¢ such
that y = (a-u+b-v)+c-w.
Then the projectivespaceover V' is a Desarguesian projective plane de-
fined in terms of collinearity.

(17)  Let C; be a collinearity structure. Then C is a Desarguesian projective
plane defined in terms of collinearity if and only if the following conditions
are satisfied:

(i)  for all elements p, q, r, r1, 79 of the points of C; such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and rq are collinear and p, ¢ and ro are
collinear holds r, 1 and ry are collinear,

(ii)  for all elements p, ¢, r of the points of C; holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(iii)  for every elements p, g of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  there exist elements p, ¢, r of the points of Cy such that p, g and r are
not collinear,

(v)  for every elements p, p1, q, ¢1 of the points of C there exists an element
r of the points of Cy such that p, p; and r are collinear and ¢, ¢; and r
are collinear,

(vi) for all elements o, p1, p2, P3, q1, G2, g3, 71, T2, T3 of the points of Cy such
that o # q1 and p; # q1 and 0 # ¢ and p2 # g2 and o # g3 and p3 # g3
and o, p; and ps are not collinear and o, p; and p3 are not collinear and
0, po and ps are not collinear and py, po» and rg are collinear and ¢, ¢
and rg are collinear and ps, p3 and rq are collinear and g2, q3 and r; are
collinear and pq, p3 and r9 are collinear and ¢q, q3 and ry are collinear
and o, p; and ¢ are collinear and o, ps and g9 are collinear and o, p3 and
g3 are collinear holds 71, ro and r3 are collinear.

(18)  For every C; being a collinearity structure holds C is a Desarguesian
projective plane defined in terms of collinearity if and only if C is a
Desarguesian projective space defined in terms of collinearity and for every
elements p, p1, q, q1 of the points of C] there exists an element r of the
points of C4 such that p, p; and r are collinear and ¢, g1 and r are collinear.
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A Fanoian projective plane defined in terms of collinearity is called a Fano-
Desarguesian projective plane defined in terms of collinearity if:

(Def.7)  Let o, p1, p2, p3, q1, 92, g3, T1, T2, '3 be elements of the points of it .
Suppose that

i) o#a,
(i) p1# q,
(i) o # qa,
(iv)  p2# qo,
(v)  o#as,
(vi)  p3 # a3,
(vii) o, p1 and py are not collinear,
(viii) o, p1 and p3 are not collinear,
(ix) o, p2 and ps3 are not collinear,
(x)  p1, p2 and r3 are collinear,
(xi) @1, g2 and r3 are collinear,
(xii)  pe, ps and 7y are collinear,
(xiii) g2, g3 and 7 are collinear,
(xiv)  p1, p3 and ro are collinear,
(xv)  q1, g3 and 7y are collinear,
(xvi) o, p1 and ¢ are collinear,
(xvil) o, p2 and ¢o are collinear,
)

0, ps and q3 are collinear.
Then r1, 9 and r3 are collinear.

One can prove the following propositions:

(19) Let Cy be a Fanoian projective plane defined in terms of collinear-
ity. Then C7 is a Fano-Desarguesian projective plane defined in terms of
collinearity if and only if for all elements o, p1, p2, P3, q1, 92, 43, T1, 72, '3
of the points of Cy such that o # ¢; and p; # ¢1 and 0 # g2 and py # ¢o
and o # q3 and p3 # g3 and o, p; and py are not collinear and o, p; and
p3 are not collinear and o, po and ps are not collinear and py, ps and r3
are collinear and q1, g2 and r3 are collinear and ps, ps and rq are collinear
and ¢, g3 and rq are collinear and pq, ps and 7y are collinear and ¢, g3
and 79 are collinear and o, p; and ¢; are collinear and o, ps and ¢y are
collinear and o, p3 and g3 are collinear holds r1, r5 and r3 are collinear.

(20)  Suppose that

(i)  there exist u, v, w such that for all a, b, ¢ such that (a-u+b-v)+cw = 0y
holds ¢ = 0 and b = 0 and ¢ = 0 and for every y there exist a, b, ¢ such
that y = (a-u+b-v)+c-w.

Then the projectivespaceover V is a Fano-Desarguesian projective plane
defined in terms of collinearity.

(21) Let C; be a collinearity structure. Then C; is a Fano-Desarguesian
projective plane defined in terms of collinearity if and only if the following
conditions are satisfied:
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(i) for all elements p, q, r, r1, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and 71 are collinear and p, ¢ and 7o are
collinear holds r, 1 and ro are collinear,

(ii)  for all elements p, ¢, r of the points of C; holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(iii)  for every elements p, g of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  there exist elements p, ¢, r of the points of Cy such that p, g and r are
not collinear,

(v) for every elements p, p1, q, ¢1 of the points of C there exists an element
r of the points of Cy such that p, p; and r are collinear and ¢, ¢; and r
are collinear,

(vi) for all elements p1, r2, q, r1, q1, p, r of the points of C; such that py,
ro and ¢ are collinear and r1, ¢; and g are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, q; and r are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, 7o and ¢
are collinear or pq, ro and rq are collinear or py, 1 and ¢ are collinear or
r9, 71 and ¢ are collinear,

(vii)  for all elements o, p1, p2, P3, q1, G2, g3, 71, T2, T3 of the points of C such
that o # q1 and p; # q1 and 0 # ¢ and p2 # g2 and o # g3 and p3 # g3
and o, p; and ps are not collinear and o, p; and p3 are not collinear and
0, po and ps are not collinear and py, po and rg are collinear and ¢, g
and rg are collinear and ps, p3 and rq are collinear and g2, q3 and r; are
collinear and p1, p3 and ro are collinear and ¢q, q3 and ry are collinear
and o, p; and ¢ are collinear and o, ps and g9 are collinear and o, p3 and
g3 are collinear holds 71, ro and r3 are collinear.

(22) Let C; be a collinearity structure. Then C is a Fano-Desarguesian
projective plane defined in terms of collinearity if and only if the following
conditions are satisfied:

(i) (4 is a Desarguesian projective plane defined in terms of collinearity,

(ii)  for all elements pi, 72, q, 71, q1, p, r of the points of Cy such that pq,
ro and ¢ are collinear and r1, ¢; and g are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, q; and r are collinear and
r9, r1 and r are collinear and p, ¢ and r are collinear holds pi, r9 and ¢
are collinear or pq, ro and rq are collinear or py, 1 and ¢ are collinear or
r9, 11 and ¢ are collinear.

(23)  For every C] being a collinearity structure holds
Gy
is a Fano-Desarguesian projective plane defined in terms of collinearity if
and only if C is a Fano-Desarguesian projective space defined in terms
of collinearity and for every elements p, p1, ¢, g1 of the points of C; there
exists an element r of the points of C'; such that p, p; and r are collinear
and ¢, g1 and 7 are collinear.



918 WOJCIECH LEONCZUK et al.

References

[1] Czestaw Bylinski. Functions and their basic properties. Formalized Math-
ematics, 1(1):55-65, 1990.

[2] Wojciech Leoriczuk and Krzysztof Prazmowski. A construction of analytical
projective space. Formalized Mathematics, 1(4):761-766, 1990.

[3] Wojciech Leoriczuk and Krzysztof Prazmowski. Projective spaces - part I.
Formalized Mathematics, 1(4):767-776, 1990.

[4] Wojciech Skaba. The collinearity structure. Formalized Mathematics,

1(4):657-659, 1990.

Received August 10, 1990



FORMALIZED MATHEMATICS
Vol.1,No.5, November-December 1990
Université Catholique de Louvain

Projective Spaces - part IV

Wojciech Leoniczuk! Krzysztof Prazmowski?
Warsaw University Warsaw University
Bialystok Bialystok

Summary. A continuation of [4]. In the classes of projective
spaces, defined in terms of collinearity, introduced in the article [3], we
distinguish the subclasses of Desarguesian projective structures. As ex-
amples of these objects we consider analytical projective spaces defined
over suitable real linear spaces.

MML Identifier: ANPROJ_5.

The notation and terminology used here have been introduced in the following
papers: [1], [5], [2], [3], and [4]. We adopt the following convention: a, b, ¢, d
denote real numbers, V denotes a non-trivial real linear space, and u, v, w, y, u1
denote vectors of V. An at least 3 dimensional projective space defined in terms
of collinearity is said to be a Desarguesian at least 3 dimensional projective
space defined in terms of collinearity if:

(Def.1)  Let o, p1, p2, P3, q1, G2, q3, 71, T2, 73 be elements of the points of it .
Suppose that

(1) o 7é q1,
(i) p1 #q,
(iii) o # g2,
(iv)  p2 # o,
(v) o#ags,
(vi)  p3# gs,
(vii) o, p1 and ps are not collinear,
(viii) o, p1 and ps are not collinear,
(ix) o, p2 and p3 are not collinear,
(x)  p1, p2 and r3 are collinear,
(xi)  q1, g2 and r3 are collinear,

pa2, p3 and rq are collinear,
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) q2, g3 and ry are collinear,

) p1, ps and ry are collinear,

) q1, g3 and rg are collinear,
(xvi) o, p1 and ¢ are collinear,

) o, p2 and g9 are collinear,

) o, ps and g3 are collinear.
Then r1, 79 and r3 are collinear.

The following propositions are true:

(1) Let Cy be an at least 3 dimensional projective space defined in terms of
collinearity. Then C'; is a Desarguesian at least 3 dimensional projective
space defined in terms of collinearity if and only if for all elements o, p1,
P2, P3; q1, 42, 3, T1, T2, T3 of the points of Cy such that o # g1 and p1 # 1
and o # g2 and ps # ¢2 and o0 # q3 and p3 # g3 and o, p; and py are
not collinear and o, p; and p3g are not collinear and o, po and p3 are not
collinear and pq, po and rg are collinear and ¢1, g2 and rg are collinear
and po, p3 and rq are collinear and g9, g3 and rq are collinear and p1, p3
and 7o are collinear and ¢q1, g3 and r9 are collinear and o, p; and ¢; are
collinear and o, po and gy are collinear and o, p3 and g3 are collinear holds
r1, 19 and rg are collinear.

(2)  If there exist u, v, w, u; such that for all a, b, ¢, d such that ((a - u+
b-v)+c-w)+d-u; =0y holdsa=0and b=0and ¢c=0and d =0,
then the projectivespaceover V is a Desarguesian at least 3 dimensional
projective space defined in terms of collinearity.

(3) Let C; be a collinearity structure. Then C; is a Desarguesian at least
3 dimensional projective space defined in terms of collinearity if and only
if the following conditions are satisfied:

(i) for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, g, r, r1, ro of the points of C; such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and ;1 are collinear and p, ¢ and ro are
collinear holds r, r; and 7o are collinear,

(iii)  for every elements p, q of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  for all elements p, py, p2, r, r1 of the points of C; such that p, p; and
r are collinear and pq, po and 7y are collinear there exists an element ro
of the points of Cy such that p, ps and ry are collinear and r, 1 and 7o
are collinear,

(v)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element 7 of the points of C'; holds p, p1 and 7 are collinear and ¢, ¢; and
r are collinear,

(vi) for all elements o, p1, p2, ps3, q1, 92, q3, 1, T2, r'3 of the points of Cy such
that o # q1 and p1 # q1 and 0 # g2 and p2 # g2 and o # g3 and p3 # ¢3
and o, p; and py are not collinear and o, p; and p3 are not collinear and
o, p2 and p3 are not collinear and p1, p2 and rg are collinear and ¢, ¢o
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and 73 are collinear and po, p3 and ry are collinear and ¢o, g3 and r1 are
collinear and p1, p3 and r9 are collinear and ¢1, g3 and ro are collinear
and o, p; and ¢; are collinear and o, ps and ¢o are collinear and o, p3 and
g3 are collinear holds 71, r9 and r3 are collinear.

For every Cy being a collinearity structure holds C is a Desarguesian
at least 3 dimensional projective space defined in terms of collinearity
if and only if Cy is a Desarguesian projective space defined in terms of
collinearity and there exist elements p, p1, ¢, ¢1 of the points of Cy such
that for no element r of the points of C; holds p, p; and r are collinear
and ¢, g1 and r are collinear.

A Fanoian at least 3 dimensional projective space defined in terms of collinear-
ity is called a Fano-Desarguesian at least 3 dimensional projective space defined
in terms of collinearity if:

(Def.2)

Let o, p1, p2, P3, 1, 2, q3, T1, T2, T3 be elements of the points of it .
Suppose that

0 # q1,
P17 q1,
0 # q2,
P2 # G2,
0 # g3,

P3 # 43,
0, p1 and py are not collinear,

o, p1 and p3 are not collinear,

0, p2 and p3 are not collinear,

p1, p2 and 73 are collinear,

q1, g2 and r3 are collinear,

p2, p3 and 71 are collinear,

q2, q3 and rq are collinear,

p1, p3 and 7o are collinear,

q1, q3 and ro are collinear,

o, p1 and ¢ are collinear,

0, p2 and o are collinear,

o, p3 and g3 are collinear.
Then r1, 9 and r3 are collinear.

We now state several propositions:

(5)

Let C7 be a Fanoian at least 3 dimensional projective space defined in
terms of collinearity. Then C is a Fano-Desarguesian at least 3 dimen-
sional projective space defined in terms of collinearity if and only if for all
elements o, p1, p2, P3, 41, 92, q3, 71, T2, T3 of the points of C; such that
o # qp and py # q1 and o0 # g2 and p2 # g2 and o # g3 and p3 # g3 and
o, p1 and po are not collinear and o, p; and p3 are not collinear and o, po
and ps are not collinear and pq, ps and 73 are collinear and ¢, g2 and rg
are collinear and ps, p3 and r1 are collinear and g2, g3 and r1 are collinear
and p1, p3 and 79 are collinear and ¢1, g3 and r9 are collinear and o, py
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and ¢ are collinear and o, po and g9 are collinear and o, p3 and q3 are
collinear holds r1, 7o and rg are collinear.

(6)  If there exist u, v, w, uy such that for all a, b, ¢, d such that ((a-u+b-
v)+c-w)+d-u; =0y holdsa=0and b=0 and ¢ =0 and d = 0, then
the projective spaceover V is a Fano-Desarguesian at least 3 dimensional
projective space defined in terms of collinearity.

(7)  Let C; be a collinearity structure. Then C; is a Fano-Desarguesian at
least 3 dimensional projective space defined in terms of collinearity if and
only if the following conditions are satisfied:

(i)  for all elements p, g, r of the points of C; holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, g, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, g and 7 are collinear and p, ¢ and o are
collinear holds r, r; and 7o are collinear,

(ili)  for every elements p, ¢ of the points of C; there exists an element r of
the points of C7 such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  for all elements p, p1, p2, r, r1 of the points of C; such that p, p; and
r are collinear and pq, po and 7y are collinear there exists an element ro
of the points of Cy such that p, ps and ry are collinear and r, 1 and 7o
are collinear,

(v) for all elements p1, r2, q, r1, q1, p, r of the points of C; such that pi,
r9 and ¢ are collinear and 71, ¢; and ¢ are collinear and p;, 1 and p are
collinear and r5, g1 and p are collinear and p1, ¢; and r are collinear and
r9, r1 and r are collinear and p, ¢ and r are collinear holds pi, 9 and ¢
are collinear or pq, ro and r; are collinear or py, 1 and ¢ are collinear or
r9, 11 and ¢ are collinear,

(vi)  there exist elements p, p1, ¢, ¢1 of the points of C7 such that for no
element r of the points of C'; holds p, p1 and 7 are collinear and ¢, ¢; and
r are collinear,

(vii)  for all elements o, p1, p2, P3, q1, 92, q3, 1, T'2, r'3 of the points of Cy such
that o # ¢q1 and p1 # q1 and 0 # g2 and p2 # g2 and o # ¢3 and p3 # q3
and o, p; and py are not collinear and o, p; and p3 are not collinear and
0, p2 and p3 are not collinear and p1, p2 and rg are collinear and q1, ¢o
and 73 are collinear and po, p3 and rq are collinear and ¢o, g3 and r; are
collinear and pq, p3 and ro are collinear and ¢1, g3 and ro are collinear
and o, p; and ¢; are collinear and o, p2 and g9 are collinear and o, p3 and
g3 are collinear holds r1, ro and r3 are collinear.

(8)  Let C; be a collinearity structure. Then Cy is a Fano-Desarguesian at
least 3 dimensional projective space defined in terms of collinearity if and
only if the following conditions are satisfied:

(i) 1y is a Desarguesian at least 3 dimensional projective space defined in
terms of collinearity,

(ii)  for all elements p1, 72, q, 71, q1, p, T of the points of Cy such that pq,
ro and ¢ are collinear and r1, ¢; and g are collinear and p1, 1 and p are
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collinear and 9, q; and p are collinear and p1, ¢ and r are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, 7o and ¢
are collinear or p1, ro and r1 are collinear or p1, r1 and ¢; are collinear or
ro, 71 and ¢ are collinear.

For every C' being a collinearity structure holds
Cq
is a Fano-Desarguesian at least 3 dimensional projective space defined in
terms of collinearity if and only if C is a Fano-Desarguesian projective
space defined in terms of collinearity and there exist elements p, p1, ¢, g1
of the points of C'; such that for no element r of the points of Cy holds p,
p1 and r are collinear and ¢, ¢; and r are collinear.

A 3 dimensional projective space defined in terms of collinearity is called a
Desarguesian 3 dimensional projective space defined in terms of collinearity if:

(Def.3)

Let o, p1, p2, P3, q1, q2, q3, T1, T2, T3 be elements of the points of it .
Suppose that
o 7é qi1,
P1# @,
o 7& q2,
P2 # 42,
0 # g3,

p3 # 43,
o, p1 and py are not collinear,

0, p1 and p3 are not collinear,

0, p2 and p3 are not collinear,

p1, p2 and r3 are collinear,

q1, g2 and r3 are collinear,

p2, p3 and 71 are collinear,

q2, q3 and rq are collinear,

p1, p3 and 7o are collinear,

q1, q3 and ro are collinear,

o, p1 and ¢ are collinear,

0, p2 and o are collinear,

o, p3 and g3 are collinear.
Then r1, 9 and r3 are collinear.

We now state four propositions:

(10)

Let C; be a 3 dimensional projective space defined in terms of collinear-
ity. Then C is a Desarguesian 3 dimensional projective space defined in
terms of collinearity if and only if for all elements o, p1, p2, p3, ¢1, ¢2, g3,
r1, 12, 13 of the points of C7 such that o # ¢; and p; # ¢1 and o # ¢» and
P2 # g2 and o # q3 and p3 # g3 and o, p; and po are not collinear and
o, p1 and p3 are not collinear and o, ps and p3 are not collinear and p1,
po and r3 are collinear and ¢q, g2 and rg are collinear and po, p3 and 7
are collinear and ¢o, g3 and 71 are collinear and pq, p3 and ro are collinear
and ¢1, g3 and 79 are collinear and o, p; and ¢ are collinear and o, po
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and g9 are collinear and o, p3 and g3 are collinear holds rq, 72 and r3 are
collinear.

(11)  Suppose that
(i)  there exist u, v, w, uy such that for all a, b, ¢, d such that ((a-u+b-
v)+c-w)+d-u; =0y holdsa=0and b=0and ¢ =0 and d = 0 and for
every y there exist a, b, ¢, d such that y = ((a-u+b-v) +c-w)+d-uj.
Then the projectivespaceover V is a Desarguesian 3 dimensional projec-
tive space defined in terms of collinearity.

(12)  Let Cy be a collinearity structure. Then C is a Desarguesian 3 dimen-
sional projective space defined in terms of collinearity if and only if the
following conditions are satisfied:

(i) for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, q, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, g and 7 are collinear and p, ¢ and ro are
collinear holds r, r; and 7o are collinear,

(iii)  for every elements p, q of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  for all elements p, p1, p2, r, r1 of the points of C; such that p, p; and
r are collinear and pq, po and 7y are collinear there exists an element ro
of the points of Cy such that p, ps and ry are collinear and r, 1 and 7o
are collinear,

(v)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element r of the points of C holds p, p; and r are collinear and ¢, ¢; and
r are collinear,

(vi) for every elements p, p1, ¢, g1, 2 of the points of C; there exist elements
r, r1 of the points of C7 such that p, ¢ and r are collinear and p1, ¢1 and
r1 are collinear and ro, r and 71 are collinear,

(vii)  for all elements o, p1, p2, p3, q1, 92, q3, 1, T2, r'3 of the points of Cy such
that o # ¢q1 and p1 # q1 and 0 # g2 and p2 # g2 and o # ¢3 and p3 # q3
and o, p; and py are not collinear and o, p; and p3 are not collinear and
o, p2 and p3 are not collinear and p1, p2 and rg are collinear and q1, ¢o
and 73 are collinear and po, p3 and rq are collinear and ¢o, g3 and r; are
collinear and pq, p3 and r9 are collinear and ¢1, g3 and ro are collinear
and o, p; and ¢; are collinear and o, p2 and g9 are collinear and o, p3 and
g3 are collinear holds r1, ro and r3 are collinear.

(13)  For every C; being a collinearity structure holds C; is a Desarguesian
3 dimensional projective space defined in terms of collinearity if and only
if C1 is a Desarguesian at least 3 dimensional projective space defined in
terms of collinearity and for every elements p, p1, ¢, q1, 2 of the points
of C there exist elements r, 1 of the points of C; such that p, ¢ and r
are collinear and p1, g1 and rq are collinear and ro, r and 71 are collinear.

A Fanoian 3 dimensional projective space defined in terms of collinearity is
called a Fano-Desarguesian 3 dimensional projective space defined in terms of
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collinearity if:

(Def.4)  Let o, p1, p2, P3, q1, 92, g3, T1, T2, '3 be elements of the points of it .
Suppose that

i) o#a,
(11) p1 75 q1,
(i) 0% g,
(iv)  p2 # @,
(v)  o#as
(vi)  p3s # g3,
(vii) o, p1 and ps are not collinear,
(viii) o, p1 and p3 are not collinear,
(ix) o, p2 and ps3 are not collinear,
(x)  p1, p2 and r3 are collinear,
(xi)  q1, g2 and r3 are collinear,
(xii)  p2, p3 and r; are collinear,
(xiii) g2, g3 and 71 are collinear,
(xiv)  p1, p3 and ro are collinear,
(xv)  q1, g3 and 79 are collinear,
(xvi) o, p1 and ¢ are collinear,
(xvil) o, p2 and g2 are collinear,
(xviii) o, p3 and g3 are collinear.

Then 71, 9 and r3 are collinear.

We now state several propositions:

(14) Let Cy be a Fanoian 3 dimensional projective space defined in terms
of collinearity. Then C is a Fano-Desarguesian 3 dimensional projective
space defined in terms of collinearity if and only if for all elements o, p1,
D2, P3, 41, G2, 43, 1, T2, T3 of the points of C such that o # ¢y and p; # ¢1
and 0 # ¢ and ps # g2 and o # g3 and p3 # g3 and o, p; and po are
not collinear and o, p; and p3 are not collinear and o, po and p3 are not
collinear and p1, ps and r3 are collinear and ¢, g2 and r3 are collinear
and po, p3 and rq are collinear and ¢s, g3 and r are collinear and pq, p3
and r9 are collinear and ¢y, g3 and r9 are collinear and o, p; and ¢ are
collinear and o, po and ¢y are collinear and o, p3 and g3 are collinear holds
r1, 12 and rg are collinear.

(15)  Suppose that

(i)  there exist u, v, w, uj such that for all a, b, ¢, d such that ((a-u+b-
v)+c-w)+d-u; =0y holdsa=0and b =0and ¢ =0 and d = 0 and for
every y there exist a, b, ¢, d such that y = ((a-u+b-v)+c-w)+d-uj.
Then the projectivespaceover V' is a Fano-Desarguesian 3 dimensional
projective space defined in terms of collinearity.

(16) Let C; be a collinearity structure. Then C; is a Fano-Desarguesian 3
dimensional projective space defined in terms of collinearity if and only if
the following conditions are satisfied:
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(i) for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, q, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, g and 7 are collinear and p, ¢ and o are
collinear holds r, r; and 7o are collinear,

(ili)  for every elements p, ¢ of the points of C; there exists an element r of
the points of C7 such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv) for all elements p, p1, p2, r, r1 of the points of Cy such that p, p; and
r are collinear and p1, po and ry are collinear there exists an element 79
of the points of C; such that p, po and ro are collinear and 7, r; and 79
are collinear,

(v)  for all elements p1, r2, q, 71, q1, p, r of the points of C; such that pq,
ro and ¢ are collinear and r1, ¢; and ¢ are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, ¢; and r are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, o and ¢
are collinear or p1, ro and 71 are collinear or p1, r1 and ¢; are collinear or
ro, r1 and g1 are collinear,

(vi)  there exist elements p, p1, ¢, ¢1 of the points of C7 such that for no
element r of the points of C'; holds p, p1 and 7 are collinear and ¢, ¢; and
r are collinear,

(vii)  for every elements p, p1, ¢, q1, 2 of the points of C; there exist elements
r, r1 of the points of C7 such that p, ¢ and r are collinear and p1, ¢1 and
r1 are collinear and ro, r and 71 are collinear,

(viii)  for all elements o, p1, p2, P3, ¢1, G2, g3, T'1, T2, T3 of the points of C such
that o # ¢q1 and p1 # q1 and 0 # g2 and p2 # g2 and o # ¢3 and p3 # q3
and o, p; and ps are not collinear and o, p; and ps are not collinear and
0, p2 and ps are not collinear and py, po and rg are collinear and q1, g
and rg are collinear and po, p3 and ry are collinear and g2, q3 and r are
collinear and p1, p3 and ro are collinear and ¢y, g3 and ry are collinear
and o, p; and ¢ are collinear and o, po and ¢ are collinear and o, p3 and
q3 are collinear holds 71, o and 73 are collinear.

(17)  Let Cy be a collinearity structure. Then C; is a Fano-Desarguesian 3
dimensional projective space defined in terms of collinearity if and only if
the following conditions are satisfied:

(i) (1 is a Desarguesian 3 dimensional projective space defined in terms
of collinearity,

(ii)  for all elements p1, 72, q, 71, q1, p, T of the points of Cy such that pq,
ro and ¢ are collinear and r1, ¢; and ¢ are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, ¢; and r are collinear and
r9, r1 and r are collinear and p, ¢ and r are collinear holds pi, 9 and ¢
are collinear or pq, o and r; are collinear or py, 1 and ¢ are collinear or
r9, 11 and ¢ are collinear.

(18)  For every C being a collinearity structure holds
Gy
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is a Fano-Desarguesian 3 dimensional projective space defined in terms of
collinearity if and only if C'; is a Fano-Desarguesian at least 3 dimensional
projective space defined in terms of collinearity and for every elements p,
P1, 4, q1, T2 of the points of C there exist elements r, r1 of the points of
(' such that p, ¢ and r are collinear and p1, ¢1 and r; are collinear and
ro, 7 and rq are collinear.
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Summary. In the classes of projective spaces, defined in terms
of collinearity, introduced in the article [3], we distinguish the subclasses
of Pappian projective structures. As examples of these objects we con-
sider analytical projective spaces defined over suitable real linear spaces;
analytical counterpart of the Pappus Axiom is proved without any as-
sumption on the dimension of the underlying linear space.

MML Identifier: ANPROJ_6.

The terminology and notation used in this paper are introduced in the following
papers: [1], [5], [2], [3], and [4]. We follow a convention: V will denote a real
linear space, o, p1, p2, P3, 41, g2, g3, 71, T2, T3 will denote vectors of V', and a,
b, ¢ will denote real numbers. Let us consider V', o, p1, p2, P3, 41, G2, q3. We

say that o, p1, p2, p3, q1, ¢2, and g3 lie on an angle if and only if:
(Def.1) o, p1 and ¢; are not lineary dependent and o, p; and py are lineary
dependent and o, p; and p3 are lineary dependent and o, ¢; and ¢o are

lineary dependent and o, ¢; and g3 are lineary dependent.

One can prove the following proposition

(1) o, p1, p2, P3, q1, g2, and g3 lie on an angle if and only if o, p; and ¢; are
not lineary dependent and o, p; and po are lineary dependent and o, pq
and p3 are lineary dependent and o, q; and g9 are lineary dependent and
0, q1 and q3 are lineary dependent.

Let us consider V', o, p1, p2, p3, q1, q2, q3. We say that o, p1, p2, 3, q1, g2,

g3 are half-mutually not proportional if and only if:
(Def.2) o0 and py are not proportional and o and p3 are not proportional and o
and g9 are not proportional and o and g3 are not proportional and p; and
po are not proportional and p; and p3 are not proportional and ¢; and

LSupported by RPBP.II1-24.C6.
2Supported by RPBP.I11-24.C2.

© 1990 Fondation Philippe le Hodey
929 ISSN 0777-4028



930 WoJciECcH LEONCZUK et al.

g2 are not proportional and ¢; and g3 are not proportional and po and p3
are not proportional and g2 and g3 are not proportional.

Next we state two propositions:
(2) o, p1, P2, P3, 41, g2, g3 are half-mutually not proportional if and only if
the following conditions are satisfied:

o and po are not proportional,

o and ps are not proportional,

o and g9 are not proportional,

—. N
e e~
= e e

o~

v) o and g3 are not proportional,
p1 and po are not proportional,
(vi)  p1 and ps are not proportional,
(vil) ¢ and g9 are not proportional,

q1 and q3 are not proportional,
po and p3 are not proportional,
g2 and g3 are not proportional.

—
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—-

—~

= =
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Suppose that
o is a proper vector,
p1, p2 and ps are proper vectors,
q1, g2 and g3 are proper vectors,
r1, ro and 73 are proper vectors,
0, P1, P2, P3; 41, 42, and q3 lie on an anglev
0, P1, P2, P3, 41, G2, q3 are half-mutually not proportional,
p1, g2 and rg are lineary dependent,
q1, p2 and rg are lineary dependent,
p1, q3 and ro are lineary dependent,
p3, q1 and ro are lineary dependent,
p2, q3 and rq are lineary dependent,
p3, g2 and ry are lineary dependent.
Then 71, r9 and r3 are lineary dependent.

o
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We adopt the following convention: V will denote a non-trivial real linear
space and o, p1, P2, P3, q1, 92, 43, T'1, T2, r3 will denote elements of the points of
the projective space over V. The following proposition is true

(4)  Suppose that

(i) o#p2,
(ii) o#ps,
(iii)  p2 # p3,
(iv)  p1 # p2,
(v)  p1# ps,
(vi) 0 # qo,
(vil) o # gs,
(vili) g2 # g3,
(ix) @1 # g,
(x) a1 # g3,
(xi) o, p1 and ¢ are not collinear,
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(xii) o, p1 and p9 are collinear,
(xiii 0, p1 and p3 are collinear,
(xiv 0, g1 and g9 are collinear,
(xv) o, q1 and g3 are collinear,

p1, g2 and r3 are collinear,
q1, p2 and r3 are collinear,
p1, g3 and ry are collinear,

%
»
2=

. —- .
— N

(

(xix)  ps3, q1 and ry are collinear,
(xx)  p2, g3 and ry are collinear,
(xxi)  ps, g2 and ry are collinear.

Then r1, 9 and r3 are collinear.

In the sequel u, v, w, y are vectors of V. A projective space defined in
terms of collinearity is said to be a Pappian projective space defined in terms of
collinearity if:

(Def.3)  Let o, p1, p2, P3, q1, G2, q3, 71, T2, 73 be elements of the points of it .
Suppose that

(i) o#pa,

(i) o # ps,

(iii)  p2 # ps,

((iV; p1 i P2,

v b1 7+ D3,

(Vi)  o#aq,
(vii) o gs,
(vil)) g2 # gs,

(ix) @ # g,

x) @ # g,

(xi) o, p1 and ¢ are not collinear,
(xii) o, p1 and pg are collinear,
(xiii) o, p1 and p3 are collinear,
(xiv) o, q1 and g9 are collinear,
(xv) o, q1 and g3 are collinear,
(xvi)  p1, g2 and r3 are collinear,

(xvil) ¢, p2 and r3 are collinear,

(xviil)  p1, g3 and 79 are collinear,

(xix)  ps3, 1 and ry are collinear,

(xx)  p2, g3 and ry are collinear,
i)

p3, g2 and ry are collinear.
Then r1, 79 and r3 are collinear.

We now state three propositions:

(5) Let C; be a projective space defined in terms of collinearity. Then Cy
is a Pappian projective space defined in terms of collinearity if and only if
for all elements o, p1, p2, P3, q1, 92, g3, T1, T2, r3 of the points of C7 such

that o # p2 and o # p3 and pa # p3 and p1 # p2 and p; # p3 and 0 # q2
and o # q3 and ¢ # q3 and q1 # ¢2 and ¢1 # g3 and o, p; and ¢; are not
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collinear and o, p; and ps are collinear and o, p; and ps are collinear and
o, q1 and ¢o are collinear and o, ¢; and ¢3 are collinear and p1, g2 and rg
are collinear and ¢q, p2 and r3 are collinear and p1, g3 and ro are collinear
and p3, ¢1 and ro are collinear and p2, g3 and r; are collinear and p3, ¢o
and rq are collinear holds r1, ro and r3 are collinear.

(6)  If there exist u, v, w such that for all a, b, ¢ such that (a-u+b-v)+c-w =
Oy holds a = 0 and b = 0 and ¢ = 0, then the projective spaceover V is a
Pappian projective space defined in terms of collinearity.

(7)  Let C be a collinearity structure. Then C is a Pappian projective space
defined in terms of collinearity if and only if the following conditions are
satisfied:

(i) for all elements p, q, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, g and 71 are collinear and p, ¢ and o are
collinear holds r, r; and 7o are collinear,

(ii)  for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(iii)  for all elements p, p1, p2, r, r1 of the points of C; such that p, p; and
r are collinear and p1, po and ry are collinear there exists an element 79
of the points of C; such that p, po and ro are collinear and r, r; and 79
are collinear,

(iv)  for every elements p, ¢ of the points of C there exists an element r of
the points of C7 such that p # r and ¢ # r and p, ¢ and r are collinear,

(v)  there exist elements p, g, r of the points of C; such that p, ¢ and r are
not collinear,

(vi) for all elements o, p1, p2, P3, ¢1, 92, q3, 71, T2, r3 of the points of C;
such that o # ps and o # p3 and ps # p3 and p; # p2 and p; # p3 and

0# q2 and 0 # g3 and g2 # g3 and q1 # ¢2 and q1 # g3 and o, p; and
g1 are not collinear and o, p; and py are collinear and o, p; and p3 are

collinear and o, ¢q; and ¢o are collinear and o, g; and g3 are collinear and
p1, g2 and rg are collinear and ¢q, p2 and r3 are collinear and p1, g3 and 7
are collinear and p3, ¢; and ro are collinear and p2, g3 and r1 are collinear
and ps3, g2 and 71 are collinear holds r1, ro and r3 are collinear.

A Fanoian projective space defined in terms of collinearity is said to be a

Fano-Pappian projective space defined in terms of collinearity if:

(Def.4)  Let o, p1, p2, P3, q1, 2, q3, 71, T2, 73 be elements of the points of it .

Suppose that

(i) o#p2,
(ii) o#ps,
(iii)  p2 # p3,
(iv)  p1 # p2,
(v)  p1# ps,
(VI) o 7é q2,
(vii) o # gs,
(viil) g2 # g3,
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(ix) @ # g,

(x) @ #as,

(xi) o, p; and ¢ are not collinear,
(xii) o, p1 and p9 are collinear,
(xiii) o, p1 and p3 are collinear,
(xiv) 0, ¢1 and g¢o are collinear,
(xv) o, q1 and g3 are collinear,
(xvi)  p1, g2 and r3 are collinear,

(xvil)  ¢1, p2 and r3 are collinear,
(xviil)  p1, g3 and 79 are collinear,
(xix)  ps3, q1 and ry are collinear,

(xx)  p2, g3 and ry are collinear,

(xxi)  ps3, g2 and 71 are collinear.

Then r1, 9 and r3 are collinear.

We now state four propositions:

(8)  Let Cy be a Fanoian projective space defined in terms of collinearity.
Then C is a Fano-Pappian projective space defined in terms of collinearity
if and only if for all elements o, p1, p2, P3, 91, 92, ¢3, 71, T2, 3 of the points
of C7 such that o # ps and o # p3 and ps # ps and py # ps and py # p3

and 0 # g2 and o # g3 and g2 # ¢3 and q1 # ¢2 and q1 # g3 and o, p;
and g1 are not collinear and o, p; and ps are collinear and o, p; and p3

are collinear and o, q; and ¢ are collinear and o, ¢; and g3 are collinear
and p1, g2 and r3 are collinear and ¢, p2 and rg are collinear and p1, g3
and 79 are collinear and ps, ¢; and r9 are collinear and po, g3 and r1 are
collinear and p3, g2 and r are collinear holds 71, ro and r3 are collinear.

(9)  If there exist u, v, w such that for all a, b, ¢ such that (a-u+b-v)+c-w =
Oy holds a = 0 and b = 0 and ¢ = 0, then the projective spaceover V is a
Fano-Pappian projective space defined in terms of collinearity.

(10)  Let C1 be a collinearity structure. Then C is a Fano-Pappian projective
space defined in terms of collinearity if and only if the following conditions
are satisfied:

(i)  for all elements p, q, r, r1, r9 of the points of C; such that p # ¢ and
p, g and r are collinear and p, ¢ and rq are collinear and p, ¢ and ro are
collinear holds r, 1 and ry are collinear,

(ii)  for all elements p, g, r of the points of C holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, g and ¢ are collinear,

(iii)  for all elements p, p1, p2, 7, 71 of the points of Cy such that p, p; and
r are collinear and p1, po and ry are collinear there exists an element 79
of the points of C; such that p, po and ro are collinear and 7, r; and 79
are collinear,

(iv)  for every elements p, g of the points of C there exists an element r of
the points of C such that p # r and ¢ # r and p, ¢ and r are collinear,

(v)  there exist elements p, ¢, r of the points of C such that p, ¢ and r are
not collinear,
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(vi) for all elements p1, r2, q, r1, q1, p, r of the points of C; such that pq,
ro and ¢ are collinear and r1, ¢; and ¢ are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, ¢; and r are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, o and ¢;
are collinear or p1, ro and r1 are collinear or p1, r1 and ¢; are collinear or
ro, r1 and g1 are collinear,

(vii)  for all elements o, p1, p2, P3, ¢1, G2, g3, r1, T2, T3 of the points of Cy
such that o # po and o # ps and ps # p3 and p; # p2 and p; # ps and

0 # qz and 0 # g3 and g2 # g3 and ¢1 # ¢2 and ¢1 # g3 and o, p1 and
q1 are not collinear and o, p; and ps are collinear and o, p; and p3 are

collinear and o, q; and ¢o are collinear and o, ¢; and g3 are collinear and
p1, g2 and rg are collinear and ¢q;, ps and rg are collinear and p1, g3 and r9
are collinear and p3, g; and r9 are collinear and ps, g3 and rq are collinear
and p3, g2 and r; are collinear holds r1, 9 and r3 are collinear.

(11)  Let C7 be a collinearity structure. Then C is a Fano-Pappian projective
space defined in terms of collinearity if and only if the following conditions
are satisfied:

(i) C} is a Pappian projective space defined in terms of collinearity,

(ii)  for all elements p1, r2, q, 71, q1, p, r of the points of C such that py,
r9 and ¢ are collinear and 71, ¢; and ¢ are collinear and p;, 1 and p are
collinear and r3, g1 and p are collinear and p1, ¢; and 7 are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, 7o and ¢
are collinear or p1, ro and 71 are collinear or p1, r1 and ¢; are collinear or
ro, 71 and ¢p are collinear.

A projective plane defined in terms of collinearity is called a Pappian pro-
jective plane defined in terms of collinearity if:

(Def.5)  Let o, p1, p2, p3, q1, 92, g3, T1, T2, '3 be elements of the points of it .
Suppose that

(i)  o#pa,

(i) o # ps,

(iii)  p2 # ps,

(iv)  p1 # p2,

(v)  p1#ps,

(VI) o 7é q2,

(vii) o # gs,

(viil) g2 # g3,

(IX) q1 7£ qz,

(x) @ # g3,

(xi) o, p1 and ¢ are not collinear,
(xii) o, p1 and py are collinear,
(xiii) o, p1 and p3 are collinear,
(xiv) o, q1 and g2 are collinear,
(xv) o, q1 and g3 are collinear,
(xvi)  p1, g2 and r3 are collinear,
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(xvil)  ¢1, p2 and r3 are collinear,
(xviii)  p1, g3 and rg are collinear,
(xix)  ps3, 1 and ry are collinear,
(xx)  p2, g3 and ry are collinear,
(xxi)  p3, g2 and ry are collinear.

Then 71, 9 and r3 are collinear.

We now state four propositions:

(12)  Let C; be a projective plane defined in terms of collinearity. Then C;
is a Pappian projective plane defined in terms of collinearity if and only if
for all elements o, p1, p2, P3, q1, 92, q3, T1, T2, r3 of the points of C7 such
that o # pe and o # p3 and py # p3 and p; # p2 and p; # p3 and 0 # q2
and o # q3 and ¢ # q3 and ¢1 # ¢2 and g1 # g3 and o, p; and ¢; are not
collinear and o, p; and ps are collinear and o, p; and ps are collinear and
o, q1 and g9 are collinear and o, q; and g3 are collinear and p1, g2 and rg
are collinear and ¢q, p2 and r3 are collinear and p1, g3 and ro are collinear
and p3, ¢1 and ro are collinear and p2, g3 and r; are collinear and p3, ¢o
and 71 are collinear holds 71, ro and r3 are collinear.

(13)  Suppose that
(i)  there exist u, v, w such that for all a, b, ¢ such that (a-u+b-v)+cw = 0y
holds a = 0 and b = 0 and ¢ = 0 and for every y there exist a, b, ¢ such
that y = (a-u+b-v)+c-w.
Then the projective spaceover V' is a Pappian projective plane defined in
terms of collinearity.

(14)  Let Cy be a collinearity structure. Then C is a Pappian projective plane
defined in terms of collinearity if and only if the following conditions are
satisfied:

(i)  for all elements p, q, r, r1, r9 of the points of C; such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and rq are collinear and p, ¢ and ro are
collinear holds r, 1 and ry are collinear,

(ii)  for all elements p, g, r of the points of C holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, g and ¢ are collinear,

(iii)  for every elements p, g of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  there exist elements p, g, r of the points of C such that p, ¢ and r are
not collinear,

(v) for every elements p, p1, q, ¢1 of the points of C there exists an element
r of the points of Cy such that p, p; and r are collinear and ¢, ¢g; and r
are collinear,

(vi) for all elements o, p1, p2, P3, q1, 92, q3, 71, T2, r3 of the points of C;
such that o # ps and o # p3 and ps # p3 and p; # p2 and p; # p3 and

0 # gz and 0 # g3 and g2 # g3 and q1 # g2 and q1 # g3 and o, p; and
g1 are not collinear and o, p; and py are collinear and o, p; and p3 are

collinear and o, ¢; and g9 are collinear and o, q; and ¢3 are collinear and
p1, g2 and rg are collinear and ¢1, po and r3 are collinear and p1, g3 and 7
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are collinear and p3, ¢; and ro are collinear and p2, g3 and r1 are collinear
and ps3, g2 and 71 are collinear holds r1, ro and r3 are collinear.

For every C; being a collinearity structure holds C is a Pappian pro-
jective plane defined in terms of collinearity if and only if C'; is a Pappian
projective space defined in terms of collinearity and for every elements p,
1, q, q1 of the points of C there exists an element r of the points of Cy
such that p, p; and r are collinear and ¢, ¢; and r are collinear.

A Fanoian projective plane defined in terms of collinearity is called a Fano-
Pappian projective plane defined in terms of collinearity if:

(Def.6)

t
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Let o, p1, p2, P3, 1, q2, q3, T1, T2, T3 be elements of the points of it .
Suppose that

o #p%

0 # p3,

p2 # Ps3,
P1 # P2,
p1 # D3,
0 # q,

0 # g3,

Q2 7 43,
Q1 7 G2,

q1 7 ¢35
0, p1 and ¢ are not collinear,

o, p1 and ps are collinear,
0, p1 and p3 are collinear,
0, q1 and ¢o are collinear,
0, q1 and g3 are collinear,
p1, g2 and r3 are collinear,
q1, p2 and r3 are collinear,
p1, q3 and ro are collinear,
p3, q1 and ro are collinear,
pa2, g3 and ry are collinear,
p3, q2 and rq are collinear.
Then r1, 9 and r3 are collinear.

We now state several propositions:

(16)

Let C7 be a Fanoian projective plane defined in terms of collinearity.
Then C is a Fano-Pappian projective plane defined in terms of collinearity
if and only if for all elements o, p1, p2, p3, q1, g2, g3, 71, T2, T3 of the points
of C1 such that o # py and o # p3 and ps # p3 and p1 # p2 and p1 # p3

and 0 # qo and 0 # g3 and g2 # g3 and q1 # ¢2 and q1 # g3 and o, p
and ¢ are not collinear and o, p; and ps are collinear and o, p; and p3

are collinear and o, g1 and ¢ are collinear and o, ¢; and g3 are collinear
and p1, g2 and r3 are collinear and ¢, p2 and rg are collinear and p1, g3
and 79 are collinear and ps, ¢; and r9 are collinear and po, g3 and ri are
collinear and p3, g2 and rq are collinear holds r1, o and r3 are collinear.
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(17)  Suppose that
(i)  there exist u, v, w such that for all a, b, ¢ such that (a-u+b-v)+cw = 0y
holds ¢ = 0 and b = 0 and ¢ = 0 and for every y there exist a, b, ¢ such
that y=(a-u+b-v)+c-w.
Then the projectivespaceover V' is a Fano-Pappian projective plane de-
fined in terms of collinearity.

(18)  Let C be a collinearity structure. Then C is a Fano-Pappian projective
plane defined in terms of collinearity if and only if the following conditions
are satisfied:

(i) for all elements p, q, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and 71 are collinear and p, ¢ and o are
collinear holds r, 1 and ro are collinear,

(ii)  for all elements p, ¢, r of the points of C; holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(iii)  for every elements p, g of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  there exist elements p, g, r of the points of C such that p, ¢ and r are
not collinear,

(v) for every elements p, p1, q, ¢1 of the points of C there exists an element
r of the points of Cy such that p, p; and r are collinear and ¢, ¢; and r
are collinear,

(vi)  for all elements p1, 9, ¢, 71, q1, p,  of the points of C; such that p;,
r9 and ¢ are collinear and 71, ¢; and ¢ are collinear and p;, 1 and p are
collinear and rs9, g1 and p are collinear and p1, ¢; and r are collinear and
r9, r1 and r are collinear and p, ¢ and r are collinear holds pi, r9 and ¢
are collinear or pq, o and r; are collinear or py, 1 and ¢ are collinear or
r9, 11 and ¢ are collinear,

(vii)  for all elements o, p1, p2, P3, q1, q2, q3, T1, T2, r3 of the points of C;
such that o # ps and o # p3 and ps # p3 and p; # p2 and p; # p3 and
0# q2 and 0 # g3 and g2 # g3 and q1 # ¢2 and q1 # g3 and o, p; and
g1 are not collinear and o, p; and py are collinear and o, p; and p3 are
collinear and o, ¢; and g9 are collinear and o, q; and ¢3 are collinear and
p1, g2 and rg are collinear and ¢1, p2 and r3 are collinear and p1, g3 and 7
are collinear and p3, ¢; and ro are collinear and ps, g3 and r1 are collinear
and ps, g2 and 71 are collinear holds r1, ro and r3 are collinear.

(19)  Let C7 be a collinearity structure. Then C is a Fano-Pappian projective
plane defined in terms of collinearity if and only if the following conditions
are satisfied:

(i) C} is a Pappian projective plane defined in terms of collinearity,

(ii)  for all elements pi, 72, q, 71, q1, p, r of the points of Cy such that pq,
ro and ¢ are collinear and r1, ¢; and ¢ are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, q; and r are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, 7o and ¢
are collinear or p1, ro and 71 are collinear or p1, r1 and ¢ are collinear or
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ro, 71 and ¢p are collinear.

(20)  For every C being a collinearity structure holds C; is a Fano-Pappian

projective plane defined in terms of collinearity if and only if C; is a
Fano-Pappian projective space defined in terms of collinearity and for
every elements p, p1, q, g1 of the points of C; there exists an element r
of the points of C; such that p, p; and r are collinear and ¢, ¢; and r are
collinear.
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Summary. The article is a continuation of [4]. In the classes
of projective spaces, defined in terms of collinearity, introduced in the
article [3], we distinguish the subclasses of Pappian projective structures.
As examples of these types of objects we consider analytical projective
spaces defined over suitable real linear spaces.

MML Identifier: ANPROJ_7.

The terminology and notation used in this paper have been introduced in the
following articles: [1], [5], [2], [3], and [4]. We adopt the following rules: a, b, c,
d will be real numbers, V will be a non-trivial real linear space, and u, v, w,
y, u1 will be vectors of V. An at least 3 dimensional projective space defined
in terms of collinearity is said to be a Pappian at least 3 dimensional projective
space defined in terms of collinearity if:

(Def.1)  Let o, p1, p2, P3, q1, 2, q3, 71, T2, 73 be elements of the points of it .

Suppose that

(1) o 7é D2,

(i) o # ps,

(ili)  p2 # ps,

(iv)  p1# p2,

(v)  p1#Dps,

(VI) o 7é q2,
(vil) o # gs,
(viil) g2 # g3,

(ix) @1 # o,

(x) @ # g,

(xi) o, p1 and ¢ are not collinear,
(xii) o, p1 and p9 are collinear,
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o, p1 and ps are collinear,
0, q1 and ¢o are collinear,
0, q1 and g3 are collinear,
p1, g2 and rg are collinear,
q1, p2 and r3 are collinear,
p1, g3 and r9 are collinear,
p3, g1 and r9 are collinear,
P2, q3 and rq are collinear,

—~
"
=

—~
»
<
. =SS :
— O N N

p3, q2 and rq are collinear.
Then r1, 79 and r3 are collinear.

We now state four propositions:

(1) Let Cy be an at least 3 dimensional projective space defined in terms of
collinearity. Then C' is a Pappian at least 3 dimensional projective space
defined in terms of collinearity if and only if for all elements o, p1, p2, p3,
q1, G2, q3, T1, T2, r3 of the points of C7 such that o # ps and o # p3 and
p2 # p3 and p1; # pz and p; # p3 and 0 # g2 and o # g3 and g2 # g3 and
q1 # q2 and q1 # g3 and o, p1 and ¢; are not collinear and o, p; and po
are collinear and o, p; and ps are collinear and o, ¢; and ¢o are collinear
and o, q1 and g3 are collinear and pq, g2 and r3 are collinear and ¢, po
and 73 are collinear and p1, g3 and r9 are collinear and ps, ¢1 and r9 are
collinear and po, g3 and 71 are collinear and p3, g2 and r; are collinear
holds r1, o and r3 are collinear.

(2)  If there exist u, v, w, uy such that for all a, b, ¢, d such that ((a-u+b-
v)+c-w)+d-u; =0y holdsa=0and b=0 and ¢ =0 and d = 0, then
the projectivespace over V is a Pappian at least 3 dimensional projective
space defined in terms of collinearity.

(3) Let C7 be a collinearity structure. Then C; is a Pappian at least 3
dimensional projective space defined in terms of collinearity if and only if
the following conditions are satisfied:

(i) for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and q are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, g, r, r1, ro of the points of C; such that p # ¢ and
p, g and r are collinear and p, ¢ and r are collinear and p, ¢ and ro are
collinear holds r, r; and ry are collinear,

(iii)  for every elements p, q of the points of C; there exists an element r of
the points of Cy such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  for all elements p, p1, p2, r, r1 of the points of C; such that p, p; and
r are collinear and p1, po and 7y are collinear there exists an element ro
of the points of Cy such that p, ps and ry are collinear and r, 1 and 7o
are collinear,

(v)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element 7 of the points of C'; holds p, p1 and 7 are collinear and ¢, ¢; and
r are collinear,
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(vi) for all elements o, p1, p2, P3, q1, 92, q3, 71, T2, r3 of the points of C;
such that o # ps and o # p3 and ps # p3 and p; # p2 and p; # p3 and

0# q2 and 0 # g3 and g2 # g3 and q1 # ¢2 and q1 # g3 and o, p; and
q1 are not collinear and o, p; and py are collinear and o, p; and p3 are

collinear and o, ¢q; and ¢o are collinear and o, g; and g3 are collinear and
p1, g2 and rg are collinear and ¢i, po and r3 are collinear and p1, g3 and 7
are collinear and p3, ¢; and ro are collinear and ps, g3 and r1 are collinear
and ps, g2 and 71 are collinear holds r1, ro and r3 are collinear.

(4)  For every Cy being a collinearity structure holds C; is a Pappian at
least 3 dimensional projective space defined in terms of collinearity if and
only if (1 is a Pappian projective space defined in terms of collinearity
and there exist elements p, p1, ¢, q1 of the points of Cy such that for no
element r of the points of C holds p, p; and r are collinear and ¢, ¢; and
r are collinear.

A Fanoian at least 3 dimensional projective space defined in terms of collinear-

ity is called a Fano-Pappian at least 3 dimensional projective space defined in
terms of collinearity if:

(Def.2)  Let o, p1, p2, p3, q1, 92, g3, T1, T2, '3 be elements of the points of it .
Suppose that

p1, g2 and r3 are collinear,
q1, p2 and r3 are collinear,

N/_\
>
S. 2

—~

(1) o 7é D2,
(ii) o # ps,
(iii)  p2 # ps,
((iV; p1 i P2,
v b1 7+ D3,
(VI) o 7é q2,
(vii) o # gs,
(viii) g2 # g3,
(ix) @1 # g,
(x) @ #as,
(xi) o, p1 and ¢ are not collinear,
(xii) o, p1 and py are collinear,
(xiii) o, p1 and p3 are collinear,
(xiv) o, ¢1 and g2 are collinear,
(xv) o0, q1 and g3 are collinear,
1)
)
(xviii)  p1, g3 and rg are collinear,
(xix)  ps3, q1 and ry are collinear,
(xx)  p2, g3 and ry are collinear,
(xxi)  ps, g2 and ry are collinear.

Then r1, 9 and r3 are collinear.

One can prove the following propositions:

(5) Let C; be a Fanoian at least 3 dimensional projective space defined in
terms of collinearity. Then C; is a Fano-Pappian at least 3 dimensional
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projective space defined in terms of collinearity if and only if for all el-
ements o, p1, P2, P3, 41, q2, 43, ™1, T2, T3 of the points of C7 such that
0 # p2 and o # p3 and py # p3 and p; # p2 and p1 # p3 and o # g2 and
0 # g3 and g2 # g3 and q1 # g2 and ¢1 # g3 and o, p; and ¢ are not
collinear and o, p; and py are collinear and o, p; and p3 are collinear and
o, q1 and ¢o are collinear and o, ¢; and g3 are collinear and p1, g2 and rg
are collinear and ¢q, p2 and r3 are collinear and p1, g3 and ro are collinear
and p3, ¢1 and ro are collinear and ps2, g3 and r1 are collinear and p3, ¢o
and rq are collinear holds 71, ro and r3 are collinear.

(6)  If there exist u, v, w, u; such that for all a, b, ¢, d such that ((a - u+
b-v)+c-w)+d-u =0y holdsa=0and b=0and ¢c=0and d =0,
then the projective spaceover V is a Fano-Pappian at least 3 dimensional
projective space defined in terms of collinearity.

(7)  Let C1 be a collinearity structure. Then C is a Fano-Pappian at least
3 dimensional projective space defined in terms of collinearity if and only
if the following conditions are satisfied:

(i)  for all elements p, g, r of the points of C; holds p, g and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, g, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, g and 71 are collinear and p, ¢ and o are
collinear holds r, r; and 7o are collinear,

(ili)  for every elements p, ¢ of the points of C; there exists an element r of
the points of C7 such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  for all elements p, p1, p2, r, r1 of the points of C; such that p, p; and
r are collinear and pq, po and 7y are collinear there exists an element ro
of the points of Cy such that p, ps and ry are collinear and r, 1 and 7o
are collinear,

(v)  for all elements p1, r2, q, 1, q1, p, r of the points of C; such that pq,
r9 and ¢ are collinear and 71, ¢; and ¢ are collinear and p;, 1 and p are
collinear and r9, g1 and p are collinear and p1, ¢; and r are collinear and
r9, r1 and r are collinear and p, ¢ and r are collinear holds pi, 9 and ¢
are collinear or pq, ro and rq are collinear or py, 1 and ¢ are collinear or
r9, 11 and ¢ are collinear,

(vi)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element r of the points of C'; holds p, p1 and 7 are collinear and ¢, ¢; and
r are collinear,

(vii)  for all elements o, p1, p2, P3, ¢1, G2, g3, r'1, T2, T3 of the points of Cy
such that o # ps and o # p3 and ps # p3 and p; # p2 and p; # p3 and

0 # qa and 0 # g3 and g2 # g3 and q1 # g2 and q1 # g3 and o, p; and
q1 are not collinear and o, p; and py are collinear and o, p; and p3 are

collinear and o, ¢; and g9 are collinear and o, q; and ¢3 are collinear and
p1, g2 and rg are collinear and ¢q, p2 and r3 are collinear and p1, g3 and 7
are collinear and p3, ¢; and ro are collinear and p2, g3 and r1 are collinear
and ps3, g2 and 71 are collinear holds r1, ro and r3 are collinear.
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(8) Let C7 be a collinearity structure. Then C; is a Fano-Pappian at least
3 dimensional projective space defined in terms of collinearity if and only
if the following conditions are satisfied:

(i) Cyis aPappian at least 3 dimensional projective space defined in terms
of collinearity,

(ii)  for all elements pi, 72, q, 71, q1, p, r of the points of Cy such that pq,
ro and ¢ are collinear and r1, ¢; and g are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, q; and r are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, 7o and ¢
are collinear or p1, ro and 71 are collinear or p1, r1 and ¢ are collinear or
r9, 11 and ¢ are collinear.

(9)  For every Cy being a collinearity structure holds C; is a Fano-Pappian
at least 3 dimensional projective space defined in terms of collinearity
if and only if Cy is a Fano-Pappian projective space defined in terms of
collinearity and there exist elements p, p1, ¢, g1 of the points of C7 such
that for no element r of the points of C; holds p, p; and r are collinear
and ¢, g1 and r are collinear.

A 3 dimensional projective space defined in terms of collinearity is called a
Pappian 3 dimensional projective space defined in terms of collinearity if:
(Def.3)  Let o, p1, p2, P3, q1, G2, q3, 71, T2, 73 be elements of the points of it .
Suppose that

P1, q2 and r3 are collinear,
q1, p2 and r3 are collinear,

N/—\
>
S 2

—~

(i) o#p2,
(i) o # ps,
(iil)  p2 # ps,
(iv)  p1# p2,
(V) p1#ps,
(Vi)  o#aq,
(vii) o gs,
(vil)) g2 # gs,
(ix) @ # g,
(x) @ #as,
(xi) o, p1 and ¢ are not collinear,
(xii) o, p1 and p9 are collinear,
(xiii) o, p1 and p3 are collinear,
(xiv) 0, ¢1 and ¢o are collinear,
(xv) o, q1 and g3 are collinear,
y
)
(xviii)  p1, g3 and rg are collinear,
(xix)  ps3, q1 and ry are collinear,
(xx)  p2, g3 and ry are collinear,
(xxi)  ps, g2 and ry are collinear.

Then r1, 79 and r3 are collinear.

The following four propositions are true:
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(10)  Let Cy be a 3 dimensional projective space defined in terms of collinear-
ity. Then C is a Pappian 3 dimensional projective space defined in terms
of collinearity if and only if for all elements o, p1, p2, p3, q1, 2, q3, 71,
rg, T3 of the points of (7 such that o # ps and o # p3 and py # p3 and
p1 # p2 and p1 # p3 and 0 # g2 and o # g3 and g2 # g3 and g1 # g2 and
q1 # q3 and o, p1 and ¢; are not collinear and o, p; and ps are collinear
and o, p; and p3 are collinear and o, g1 and ¢o are collinear and o, ¢
and g3 are collinear and p1, g2 and r3 are collinear and ¢1, p2 and rg are
collinear and p1, g3 and 79 are collinear and p3, g1 and ro are collinear
and po, g3 and rq are collinear and p3, g2 and 71 are collinear holds 71, 7o
and r3 are collinear.

(11)  Suppose that
(i)  there exist u, v, w, u; such that for all a, b, ¢, d such that ((a-u+b-
v)+c-w)+d-u; =0y holdsa=0and b=0and ¢ =0 and d = 0 and for
every y there exist a, b, ¢, d such that y = ((a-u+b-v) +c-w)+d-uj.
Then the projectivespaceover V is a Pappian 3 dimensional projective
space defined in terms of collinearity.

(12)  Let Cy be a collinearity structure. Then C; is a Pappian 3 dimensional
projective space defined in terms of collinearity if and only if the following
conditions are satisfied:

(i)  for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, g, r, r1, r9 of the points of C; such that p # ¢ and
p, ¢ and r are collinear and p, ¢ and rq are collinear and p, ¢ and ro are
collinear holds r, 1 and ry are collinear,

(ili)  for every elements p, ¢ of the points of C; there exists an element r of
the points of C7 such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv)  for all elements p, p1, p2, r, r1 of the points of C; such that p, p; and
r are collinear and pq, po and 7y are collinear there exists an element ro
of the points of C7 such that p, po and ro are collinear and r, r; and 79
are collinear,

(v)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element r of the points of C; holds p, p; and r are collinear and ¢, ¢; and
r are collinear,

(vi) for every elements p, p1, ¢, g1, 2 of the points of C; there exist elements
r, r1 of the points of C7 such that p, ¢ and r are collinear and p1, ¢1 and
r1 are collinear and ro,  and 71 are collinear,

(vii)  for all elements o, p1, p2, P3, ¢1, 92, q3, 71, T2, r3 of the points of C;
such that o # ps and o # p3 and ps # p3 and p; # p2 and p; # p3 and

0# q2 and 0 # g3 and g2 # g3 and q1 # ¢2 and q1 # g3 and o, p; and
g1 are not collinear and o, p; and py are collinear and o, p; and p3 are

collinear and o, ¢q; and ¢o are collinear and o, g; and g3 are collinear and
p1, g2 and r3 are collinear and ¢q, p2 and r3 are collinear and p1, g3 and 7
are collinear and p3, ¢1 and ro are collinear and po, g3 and r1 are collinear
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and ps3, g2 and 71 are collinear holds r1, ro and r3 are collinear.

(13)  For every C; being a collinearity structure holds C; is a Pappian 3
dimensional projective space defined in terms of collinearity if and only if
(' is a Pappian at least 3 dimensional projective space defined in terms
of collinearity and for every elements p, p1, g, g1, 72 of the points of C
there exist elements r, 1 of the points of Cy such that p, ¢ and r are
collinear and p1, ¢; and ry are collinear and 79, r and rq are collinear.

A Fanoian 3 dimensional projective space defined in terms of collinearity
is called a Fano-Pappian 3 dimensional projective space defined in terms of
collinearity if:

(Def.4)  Let o, p1, p2, P3, q1, 92, g3, T1, T2, '3 be elements of the points of it .
Suppose that

(1) o 7é D2,

(i) o # ps,

(ii)  p2 # ps,

(iv)  p1# pa,

(V) p1#ps,

(Vi)  o#aq,

(vii) o # gs,

(viii) g2 # g3,

(ix) @1 # g,

(x) @ #as,

(xi) o, p; and ¢ are not collinear,
(xii) o, p1 and py are collinear,
(xiii) o, p1 and p3 are collinear,
(xiv) o, q1 and g2 are collinear,
(xv) o, q1 and g3 are collinear,
(xvi)  p1, g2 and r3 are collinear,

(xvil) ¢, p2 and 73 are collinear,

(xviii)  p1, g3 and rg are collinear,

(xix)  ps3, q1 and ry are collinear,

(xx)  p2, g3 and ry are collinear,
i)

p3, q2 and rq are collinear.
Then r1, 9 and r3 are collinear.

The following propositions are true:

(14)  Let C be a Fanoian 3 dimensional projective space defined in terms of
collinearity. Then C; is a Fano-Pappian 3 dimensional projective space
defined in terms of collinearity if and only if for all elements o, p1, p2, p3,
q1, G2, q3, T1, T2, r3 of the points of C7 such that o # ps and o # p3 and
p2 # p3 and p1 # pz and p; # p3 and 0 # g2 and o # g3 and g2 # g3 and
q1 # q2 and q1 # g3 and o, p; and ¢; are not collinear and o, p; and po
are collinear and o, p; and ps are collinear and o, ¢; and ¢o are collinear
and o, q1 and g3 are collinear and p1, g2 and r3 are collinear and ¢, po
and 73 are collinear and pq, g3 and r9 are collinear and ps, ¢1 and r9 are
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collinear and po, g3 and 71 are collinear and p3, g2 and r1 are collinear
holds r1, o and r3 are collinear.

(15)  Suppose that
(i)  there exist u, v, w, uj such that for all a, b, ¢, d such that ((a-u+b-
v)+c-w)+d-u; =0y holdsa=0and b=0and ¢ =0 and d = 0 and for
every y there exist a, b, ¢, d such that y = ((a-u+b-v)+c-w)+d-uj.
Then the projective space over V' is a Fano-Pappian 3 dimensional projec-
tive space defined in terms of collinearity.

(16) Let Cy be a collinearity structure. Then C is a Fano-Pappian 3 dimen-
sional projective space defined in terms of collinearity if and only if the
following conditions are satisfied:

(i)  for all elements p, g, r of the points of Cy holds p, ¢ and p are collinear
and p, p and ¢ are collinear and p, ¢ and ¢ are collinear,

(ii)  for all elements p, g, r, 71, 72 of the points of Cy such that p # ¢ and
p, ¢ and r are collinear and p, g and 7 are collinear and p, ¢ and o are
collinear holds r, r; and 7o are collinear,

(ili)  for every elements p, ¢ of the points of C; there exists an element r of
the points of C7 such that p # r and ¢ # r and p, ¢ and r are collinear,

(iv) for all elements p, p1, p2, r, r1 of the points of Cy such that p, p; and
r are collinear and p1, po and ry are collinear there exists an element 79
of the points of C7 such that p, po and ro are collinear and 7, r; and 79
are collinear,

(v)  for all elements p1, r2, q, 71, q1, p, r of the points of C; such that pq,
ro and ¢ are collinear and r1, ¢; and g are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, ¢; and r are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, o and ¢
are collinear or p1, ro and r1 are collinear or p1, r1 and ¢ are collinear or
ro, r1 and ¢q1 are collinear,

(vi)  there exist elements p, p1, ¢, ¢1 of the points of C; such that for no
element r of the points of C'; holds p, p1 and 7 are collinear and ¢, ¢; and
r are collinear,

(vii)  for every elements p, p1, ¢, q1, 2 of the points of C; there exist elements
r, r1 of the points of C7 such that p, ¢ and r are collinear and p1, ¢1 and
r1 are collinear and ro,  and 71 are collinear,

(viii)  for all elements o, p1, p2, P3, q1, G2, q3, 71, T2, T3 of the points of Cy
such that o # ps and o # p3 and ps # p3 and p; # p2 and p; # p3 and

0# q2 and 0 # g3 and g2 # g3 and q1 # ¢2 and q1 # g3 and o, p; and
q1 are not collinear and o, p; and py are collinear and o, p; and p3 are

collinear and o, ¢; and ¢o are collinear and o, g; and ¢q3 are collinear and
p1, g2 and rg are collinear and ¢q;, ps and rg are collinear and p1, g3 and r9
are collinear and p3, ¢; and r9 are collinear and ps, q3 and rq are collinear
and p3, g2 and r; are collinear holds r1, 9 and r3 are collinear.

(17)  Let Cy be a collinearity structure. Then C is a Fano-Pappian 3 dimen-
sional projective space defined in terms of collinearity if and only if the
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following conditions are satisfied:

(i) C7 is a Pappian 3 dimensional projective space defined in terms of
collinearity,

(ii)  for all elements pi, 72, ¢, 71, q1, p, r of the points of Cy such that pq,
ro and ¢ are collinear and r1, ¢; and g are collinear and p1, 1 and p are
collinear and 9, q; and p are collinear and p1, q; and r are collinear and
ro, 71 and r are collinear and p, ¢ and r are collinear holds p1, 7o and ¢
are collinear or p1, ro and r1 are collinear or p1, r1 and ¢; are collinear or
ro, 71 and ¢ are collinear.

(18)  For every C7 being a collinearity structure holds C is a Fano-Pappian
3 dimensional projective space defined in terms of collinearity if and only
if C4 is a Fano-Pappian at least 3 dimensional projective space defined in
terms of collinearity and for every elements p, p1, ¢, q1, 2 of the points
of C'1 there exist elements r, 1 of the points of C; such that p, ¢ and r
are collinear and pq, g1 and rq are collinear and ro, r and 71 are collinear.
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Summary. Some fundamental notions of the theory of Petri nets
are described in Mizar formalism. A Petri net is defined as a triple of the
form (places, transitions, flow) with places and transitions being disjoint
sets and flow being a relation included in places X transitions.

MML Identifier: NET_1.

The notation and terminology used here have been introduced in the following
articles: [1], and [2]. In the sequel z, y will be arbitrary. We consider nets which
are systems

(places, transitions, a flow relation),
where the places constitute a set, the transitions constitute a set, and the flow
relation is a binary relation. In the sequel N is a net. Let IV be a net. We say
that N is a Petri net if and only if:

(Def.1)  (the places of N)N (the transitions of N) = () and the flow relation of
N C [ the places of N, the transitions of N ] U [ the transitions of N,
the places of N .

Let N be a net. The functor Elements(/V) yielding a set is defined as follows:
(Def.2)  Elements(NN) = (the places of N)U (the transitions of N).

We now state several propositions:
(1)  For every N and for every z such that Elements(N) # () holds z is an
element of Elements(/N) if and only if z € Elements(NV).

(2)  For every N and for every x such that the places of N # ) holds x is
an element of the places of N if and only if € the places of N.

!Supported by RPBP.I1I-24.C1.
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(3)  For every N and for every x such that the transitions of N # () holds
x is an element of the transitions of IV if and only if € the transitions
of N.

(4)  For every N holds the places of N C Elements(V).

(5)  For every N holds the transitions of N C Elements(NV).

Let N be a net. A set is said to be an element of N if:
(Det.3) it = Elements(N).

Next we state several propositions:

(6) For every N and for every x holds = € Elements(N) if and only if x €
the places of N or z € the transitions of N.

(7)  For every N and for every x such that Elements(N) # () holds if z is
an element of Elements(/N), then x is an element of the places of N or x
is an element of the transitions of V.

(8)  For every N and for every = such that = is an element of the places of
N and the places of N # () holds z is an element of Elements(V).

(9) For every N and for every x such that x is an element of the transitions
of N and the transitions of N # ) holds x is an element of Elements(N).

(10) (0,0, @) is a Petri net.
A net is said to be a Petri net if:
(Def.4) it is a Petri net.

We now state several propositions:

(11)  For every Petri net N holds it is not true that: x € the places of N and
x € the transitions of V.

(12)  For every Petri net N and for all x, y such that (z,y) € the flow relation
of N and z € the transitions of N holds y € the places of N.

(13)  For every Petri net N and for all z, y such that (x,y) € the flow relation
of N and y € the transitions of N holds = € the places of N.

(14)  For every Petri net N and for all x, y such that (z,y) € the flow relation
of N and z € the places of N holds y € the transitions of V.

(15)  For every Petri net N and for all z, y such that (z,y) € the flow relation
of N and y € the places of N holds x € the transitions of N.

We now define two new predicates. Let N be a Petri net, and let us consider
x, y. We say that x is a pre-element of y in N if and only if:

(Def.5)  (y,x) € the flow relation of N and z € the transitions of N.
We say that x is a post-element of y in IV if and only if:
(Def.6)  (z,y) € the flow relation of N and z € the transitions of N.
We now define two new functors. Let N be a net, and let  be an element
of Elements(/N). The functor Pre(N,x) yielding a set is defined by:

(Def.7)  y € Pre(N,z) if and only if y € Elements(/N) and (y,z) € the flow
relation of V.
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The functor Post(V, x) yielding a set is defined by:
(Def.8) y € Post(N,x) if and only if y € Elements(N) and (z,y) € the flow
relation of V.
Next we state several propositions:

(16)  For every Petri net N and for every element x of Elements(N) holds
Pre(N,z) C Elements(V).

(17)  For every Petri net N and for every element x of Elements(/N) holds
Pre(N, z) € 2Blements(N)

(18)  For every Petri net N and for every element x of Elements(/N) holds
Post(N, ) C Elements(V).

(19)  For every Petri net N and for every element x of Elements(/N) holds
POSt(N, SC) c 2Elcmcnts(N).

(20)  For every Petri net N and for every element y of Elements(/N) such
that y € the transitions of N holds x € Pre(N,y) if and only if y is a
pre-element of x in V.

(21)  For every Petri net N and for every element y of Elements(/N) such
that y € the transitions of N holds = € Post(N,y) if and only if y is a
post-element of z in V.

Let N be a Petri net, and let  be an element of Elements(N). Let us assume
that Elements(IN) # (. The functor enter(N, z) yielding a set is defined by:

(Def.9) if x € the places of N, then enter(N,x) = {x} but if x € the transitions
of N, then enter(N,z) = Pre(NV, z).
We now state three propositions:
(22)  For every Petri net NV and for every element x of Elements(/N) such that
Elements(N) # 0 holds enter(N,x) = {z} or enter(N,z) = Pre(N, z).
(23)  For every Petri net N and for every element x of Elements(/N) such
that Elements(N) # () holds enter(N, z) C Elements(N).

(24)  For every Petri net N and for every element x of Elements(N) such
that Elements(N) # (0 holds enter(N, ;) € 2Flements(N)

Let N be a Petri net, and let  be an element of Elements(N). Let us assume
that Elements(NN) # (. The functor exit(V, z) yields a set and is defined by:

(Def.10)  if = € the places of N, then exit(N,z) = {z} but if x € the transitions
of N, then exit(N, z) = Post(N, x).
We now state three propositions:
(25)  For every Petri net N and for every element x of Elements(/N) such
that Elements(NN) # () holds exit(N,z) = {x} or exit(N,z) = Post(N, z).
(26)  For every Petri net N and for every element x of Elements(N) such
that Elements(N) # () holds exit(N, z) C Elements(N).

(27)  For every Petri net N and for every element z of Elements(/N) such
that Elements(N) # (0 holds exit(N, z) € 2Flements(N)
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Let N be a Petri net, and let = be an element of Elements(N). Let us
assume that Elements(N) # (). The functor field(V, z) yielding a set is defined
as follows:

(Def.11)  field(V, z) = enter(N, z) U exit(N, x).

We now define two new functors. Let N be a net, and let x be an element
of the transitions of N. The functor Prec(V, x) yielding a set is defined by:
(Def.12)  y € Prec(N,x) if and only if y € the places of N and (y,z) € the flow

relation of .
The functor Postc(N, z) yielding a set is defined as follows:
(Def.13)  y € Postc(V, x) if and only if y € the places of N and (z,y) € the flow
relation of N.

We now define two new functors. Let IV be a Petri net, and let X be a set.
Let us assume that X C Elements(/V). The functor Entr(NV, X) yields a set and
is defined by:
(Def.14) € Entr(N,X) if and only if z € 2Flements(N) anqd there exists an
element y of Elements(/V) such that y € X and = = enter(V,y).
The functor Ext(N, X) yielding a set is defined by:
(Def.15) 2 € Ext(N, X) if and only if - € 2Flements(V) and there exists an element
y of Elements(N) such that y € X and x = exit(V,y).

Next we state two propositions:
(28)  For every Petri net N and for every element x of Elements(/N) and for
every set X such that Elements(N) # () and X C Elements(N) and z € X
holds enter(N, z) € Entr(N, X).
(29)  For every Petri net N and for every element x of Elements(/N) and for
every set X such that Elements(N) # () and X C Elements(N) and z € X
holds exit(N,z) € Ext(N, X).
We now define two new functors. Let IV be a Petri net, and let X be a set.
Let us assume that X C Elements(/N). The functor Input(N, X) yields a set
and is defined by:

(Def.16)  Input(N, X) = [JEntr(N, X).
The functor Output(N, X) yielding a set is defined by:
(Def.17)  Output(N, X) = JExt(N, X).
The following four propositions are true:

(30)  For every Petri net N and for every x and for every set X such that
Elements(N) # () and X C Elements(N) holds x € Input(V, X) if and
only if there exists an element y of Elements(N) such that y € X and
x € enter(N, y).

(31)  For every Petri net N and for every x and for every set X such that
Elements(N) # () and X C Elements(N) holds 2 € Output(V, X) if and
only if there exists an element y of Elements(N) such that y € X and
x € exit(NV,y).
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(32) Let N be a Petri net. Then for every subset X of Elements(/N) and for
every element z of Elements(N) such that Elements(N) # 0 holds = €
Input(N, X) if and only if 2 € X and = € the places of N or there exists
an element y of Elements(/N) such that y € X and y € the transitions of
N and y is a pre-element of x in N.

(33) Let N be a Petri net. Then for every subset X of Elements(N) and
for every element z of Elements(/N) such that Elements(N) # @ holds
x € Output(N, X) if and only if z € X and x € the places of N or
there exists an element y of Elements(/NV) such that y € X and y € the
transitions of NV and y is a post-element of z in V.
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Summary. Theorems that were not proved in [8] and in [9] are
discussed. In the article we define notion of conjugation for elements,
subsets and subgroups of a group. We define the classes of conjugation.
Normal subgroups of a group and normalizator of a subset of a group or
of a subgroup are introduced. We also define the set of all subgroups of
a group. An auxiliary theorem that belongs rather to [1] is proved.

MML Identifier: GROUP_3.

The papers [3], [10], [5], [2], [8], [9], [6], [4], and [7] provide the notation and
terminology for this paper. For simplicity we follow a convention: =z, y are
arbitrary, X denotes a set, G denotes a group, a, b, ¢, d, g, h denote elements

of G,

A, B, C, D denote subsets of G, H, Hy, Hy, H3 denote subgroups of G,

n denotes a natural number, and 7 denotes an integer. Next we state a number
of propositions:

(1)

=~ A~ N S N~
© 00 ~J O O = W N
S e e e e N N N N N N

—
—
= O

—~
[
[\

(a-b)-b'=aand (a-b7')-b=aand (b~'-b)-a=aand (b-b"')-a=a
and a-(b-b™') =aand a-(b~'-b) =aand b~ !-(b-a) = aand b-(b~'-a) = a.
G is an Abelian group if and only if the operation of G is commutative.
{1}¢ is an Abelian group.
fACBand CC D,then A-CCB-D.
IfACB,thena-ACa-Band A-aC B -a.
If Hy is a subgroup of Hs, then a- Hy C a- Hy and Hy-a C Hy - a.
a-H={a} H.
H-a=H-{a}.
(a-A)-H=a-(A-H
(A-a)- H=A-(a-H
(a-H)-A=a-(H-A).
(A-H)-a=A-(H-a).

~— — —
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(13) (H-a)-A=H:(a-A).
(14) (H-A)-a=H-(A-a).
(15) (Hl-a)-ngﬂl-(a-Hg).
Let us consider G. The functor SubGr G yielding a non-empty set is defined
by:
(Def.1) x € SubGrG if and only if x is a subgroup of G.

In the sequel D denotes a non-empty set. Next we state four propositions:

(16)  If for every x holds x € D if and only if x is a subgroup of G, then
D = SubGrG.

(17)  x € SubGrG if and only if z is a subgroup of G.
(18) G € SubGrG.
(19) If G is finite, then SubGr G is finite.

Let us consider G, a, b. The functor a® yielding an element of G is defined
as follows:

(Def.2) ab= (b"'-a)-b.

One can prove the following propositions:

20) a*=(b"'-a)-band a® =01 (a-b).
21 If a9 = b9, then a = b.

22 (1g)* = 1¢.

23 If a® = 1, then a = 1¢.

24 a'é = a.

25 a® = a.

26) (a®)"'=aand (a7!)*=a"L.

27) a®=aifandonlyifa-b=10b-a.

(a-b)9 =a¥-bI.
(@) = ao,
b

[\
Ne)

30)  ((a")")"' =aand ((a")7")" =

31) a’=cifand only if a = (c?)~ 1.
32)  (a7)’"=(a")!

33)  (a")’ = (a”)".

34)  (a')’ = (ab).

AN N N N N N N N N N N N N N /S /N
w [\
ot [0/e)

N N N N i D i N

w
(=)

If G is an Abelian group, then a® = a.
If for all a, b holds a® = a, then G is an Abelian group.

Let us consider G, A, B. The functor AP yielding a subset of G is defined
as follows:

(Def.3) AB ={g":g€ ANhe B}.
We now state a number of propositions:
(37) AB={¢":9c ANhe B)}.



CLASSES OF CONJUGATION. NORMAL SUBGROUPS 957

(38) x € AP if and only if there exist g, h such that 2 = g” and g € A and
h € B.

(39) AB £ if and only if A # 0 and B # 0.
(40) ABC (B! -A)-B.

(41) (A-B)¢ C A®. BC.

(42) (AB)C = ABC,

(43)  (A7HP =(AP)"L.

(44)  {a} = {a"}.

(45) {a}{b’c} = {ab, a‘}.

(46)  {a, b}{c} = {a% b°}.

(

47 {a,b}e? = {ac a?, b, b},
We now define two new functors. Let us consider G, A, g. The functor A9
yields a subset of G and is defined as follows:
(Def.4) A9 = Ald},
The functor g# yields a subset of G' and is defined by:
(Det5) g% = {g}*.
Next we state a number of propositions:
48) A9 = Aldh,

(48)

(49) g% ={g}".

(50) x € A9 if and only if there exists h such that x = hY and h € A.
(51)  x € g4 if and only if there exists h such that z = ¢ and h € A.
(52) g*C (A" -g)- A

(53)  (AB)9 = AB9,

(54) (A9)B = A9,

(55) (¢M)F =g*P

(56) (Aa)b — A@ b

(57) (aA)b = g4b

(58) (ab)A = gb4

(59) AI=(g7'-A)-g.

(60) (A-B)*C A°- Be.

(61) Al =4

(62) If A#0, then (1g)4 = {1g}.

(63)  ((A)")"'=Aand ((4)71)" = A.

(64) A= BYif and only if B = (A49)71.

(65) G is an Abelian group if and only if for all A, B such that B # () holds

AB = A,
(66) G is an Abelian group if and only if for all A, g holds A9 = A.
(67) G is an Abelian group if and only if for all A, g such that A # () holds
A
9% ={g}-
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Let us consider G, H, a. The functor H® yielding a subgroup of G is defined

by:
(Def.6)

a

the carrier of H* = H'.

The following propositions are true:

NN NN NN Ygo o
TR WN RO D ®

0 OO0 0 00 00 O I
U i W N = O © 0o

AN N N N N N AN AN AN N N N AN AN AN N /N N
o ~J
(=) ~
O N O e N N N N N N N e N N

If the carrier of Hy = H", then H; = H°.
The carrier of H* = H”.

x € H® if and only if there exists g such that x = g% and g € H.
The carrier of H* = (a~!- H) - a.

(Ha)b — Ha-b‘

H'¢ =H.

((H*))™ = H and ((H?)")* = H.

Hy = HY if and only if Hy = (H{) L.

(Hy N H9)* = H{NHS.

Ord(H) = Ord(H?).

H is finite if and only if H? is finite.

If H is finite, then ord(H) = ord(H*?).

{1}e = {1}e-

If H* = {1}¢, then H = {1}¢.
Qe =G.

If H* = G, then H = G.
le: H| = |e: H?|.

If the left cosets of H is finite, then e : H|y = |o : H%|y.
If G is an Abelian group, then for all H, a holds H® = H.

Let us consider G, a, b. We say that a and b are conjugated if and only if:

(Def.7)

there exists g such that a = b9.

We now state several propositions:

87
8

co
~— — — Y ~—

9
90
91

A~ I~ N/~
0]

(92)
(93)

a and b are conjugated if and only if there exists g such that a = b9.

a and b are conjugated if and only if there exists g such that b = a9.

a and a are conjugated.

If a and b are conjugated, then b and a are conjugated.

If a and b are conjugated and b and ¢ are conjugated, then a and ¢ are

conjugated.

If a and 1¢ are conjugated or 15 and a are conjugated, then a = 1.

afle = {b: a and b are conjugated }.

Let us consider G, a. The functor a® yielding a subset of G is defined by:

(Def.8)

a® = af’e.

We now state several propositions:

(94)

a® = a'c.
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(95) x € a® if and only if there exists b such that b = x and a and b are

conjugated.
(96) a € b® if and only if a and b are conjugated.
(97) a9 €a®.
(98) ae€a®.
(99) Ifa€b®, then b€ a®.
(100)  a® =1b* if and only if a® meets b°.
(101) a® ={lg} if and only if a = 1¢.
(102) a*-A=A-a".

Let us consider G, A, B. We say that A and B are conjugated if and only if:
(Detf.9)  there exists g such that A = BY.

We now state several propositions:
(103) A and B are conjugated if and only if there exists g such that A = BY.
(104) A and B are conjugated if and only if there exists g such that B = AY.
(105) A and A are conjugated.

(106)
(107)

107

If A and B are conjugated, then B and A are conjugated.

If A and B are conjugated and B and C are conjugated, then A and C
are conjugated.
(108)  {a} and {b} are conjugated if and only if a and b are conjugated.
(109) If A and H; are conjugated, then there exists Hy such that the carrier
of H2 = A.
Let us consider G, A. The functor A® yielding a family of subsets of the
carrier of G is defined as follows:
(Def.10)  A®* ={B: A and B are conjugated }.

The following propositions are true:
(110) A* ={B: A and B are conjugated }.
(111) x € A*® if and only if there exists B such that x = B and A and B are
conjugated.

112 If x € A®, then x is a subset of G.

113) A € B°® if and only if A and B are conjugated.
114) A9 € A°.

115) A€ A°.

If A€ B®, then B € A°.
A® = B* if and only if A® meets B®.
{a}* ={{b} : bea*}.
If G is finite, then A® is finite.
Let us consider G, Hy, Hy. We say that H; and H, are conjugated if and
only if:
(Def.11)  there exists g such that H; = HY.

N TN N N N N N T/
— =
(S —
~N O

N’ N e e e N N N

[
[ -
© oo
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The following propositions are true:
(120) H; and H are conjugated if and only if there exists g such that Hy; =
HY.
(121)  H; and Hs are conjugated if and only if there exists g such that Hy =
HY.
(122)  H; and H; are conjugated.
(123) If Hy and Hj are conjugated, then Hy and H; are conjugated.

(124) If Hy and Hj are conjugated and Hy and Hjs are conjugated, then H
and Hj are conjugated.

In the sequel L denotes a subset of SubGrG. Let us consider G, H. The
functor H*® yielding a subset of SubGr G is defined as follows:

(Def.12) x € H® if and only if there exists H; such that = Hy and H and H;
are conjugated.
One can prove the following propositions:

(125)  If for every x holds = € L if and only if there exists H such that x = H
and H; and H are conjugated, then L = H7.

(126) x € Hy if and only if there exists Hy such that x = Hy and Hy and Hy
are conjugated.

(127) If x € H®, then x is a subgroup of G.

(128)  H; € H3 if and only if H; and Hy are conjugated.

(129) HY € H°.

(130) H e H*.

(131) If Hy; € H3, then Hy € HY.

(132) H} = HJ if and only if H} meets HJ.

(133) If G is finite, then H* is finite.

(134)  H; and Hj are conjugated if and only if H; and Hj are conjugated.

Let us consider G. A subgroup of G is called a normal subgroup of G if:
(Def.13)  for every a holds it* = it.

One can prove the following proposition
(135)  If for every a holds H = H®, then H is a normal subgroup of G.

In the sequel N, Ny, Ny will denote ha normal subgroups of G. We now
state a number of propositions:

136) N%=N.

137)  {1}¢ is a normal subgroup of G and Q¢ is a normal subgroup of G.
N1 N Ny is a normal subgroup of G.

If G is an Abelian group, then H is a normal subgroup of G.

H is a normal subgroup of G if and only if for every a holds a-H C H -a.

(

(

(138)

(139)

(140)  H is a normal subgroup of G if and only if for every a holds a-H = H -a.
(141)

(142)  H is a normal subgroup of G if and only if for every a holds H-a C a-H.
(143)

H is a normal subgroup of G if and only if for every A holds A-H = H-A.
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(144)  H is a normal subgroup of G if and only if for every a holds H is a
subgroup of H®.

(145)  H is a normal subgroup of G if and only if for every a holds H® is a
subgroup of H.

(146)  H is a normal subgroup of G if and only if H®* = {H}.

(147)  H is a normal subgroup of G if and only if for every a such that a € H
holds a® C H.

(148) N W=, W
(149)  There exists N such that the carrier of N = N - No.
(150)  Theleft cosetsof N = theright cosets of V.

(151)

151)  If the left cosetsof H is finite and |e : H|y = 2, then H is a normal
subgroup of G.

Let us consider G, A. The functor N(A) yielding a subgroup of G is defined
by:
(Def.14)  the carrier of N(A) = {h: A" = A}.
We now state several propositions:
(152)  If the carrier of H = {h: A" = A}, then H = N(A).
(153)  The carrier of N(A) = {h: A" = A}
(154) 2 € N(A) if and only if there exists h such that = h and A" = A.
(155) A® = |e:N(A)|.
(156) If A® is finite or the left cosetsof N(A) is finite, then card A®* = |e :
N(A)n -
(157)  a®* = |e : N({a})|.
(158)  If a® is finite or the left cosetsof N({a}) is finite, then carda® = |e :
N{a})ln -
Let us consider G, H. The functor N(H) yields a subgroup of G and is
defined as follows:
(Def.15) N(H) = N(H).
We now state several propositions:
(159) N(H) = N(H).
(160) € N(H) if and only if there exists h such that © = h and H" = H.
(161) H* =|e: N(H)|.
(162) If H* is finite or the left cosetsof N(H) is finite, then card H® = |e
N(H)|n -
(163) H is a normal subgroup of G if and only if N(H) = G.
(164) N({1}q)=G.
(165) N(Q¢g) =G.
(166) If X is finite and card X = 2, then there exist z, y such that x # y and
X ={z,y}.
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Replacing of Variables in Formulas of ZF

Theory

Grzegorz Bancerek!
Warsaw University
Biatystok

Summary. Part one is a supplement to papers [1], [2], and [3]. It
deals with concepts of selector functions, atomic, negative, conjunctive
formulas and etc., subformulas, free variables, satisfiability and models
(it is shown that axioms of the predicate and the quantifier calculus are
satisfied in an arbitrary set). In part two there are introduced notions of
variables occurring in a formula and replacing of variables in a formula.

MML Identifier: ZF_LANG1.

The terminology and notation used in this paper have been introduced in the
following articles: [9], [8], [5], [6], [4], [7], [1], and [2]. For simplicity we adopt
the following rules: p, p1, p2, q, 1, F', G, G1, Go, H, Hy, Hy will be ZF-formulae,
T, T1, T2, Y, Y1, Y2, 2, 21, 22, S, t will be variables, a will be arbitrary, and X
will be a set. Next we state a number of propositions:

(1)

= o~~~
© 00 ~J & O = W N
S e e e N N N N N N

—~
o

—~
—_
—_

Var(z=y) = « and Vars(z=y) = y.

Var(zey) = x and Vary(zey) = y.

Arg(—p) = p.

LeftArg(p A q) = p and RightArg(p A q) = g.
LeftArg(p V q) = p and RightArg(p V q) = q.
Antecedent(p = ¢) = p and Consequent(p = ¢q) = q.
LeftSide(p < ¢q) = p and RightSide(p < ¢) = q.
Bound(V;p) = = and Scope(V,p) = p.
Bound(3;p) = = and Scope(3;p) = p.
pVqg=-p=q.

IfV,yp =V.q, then = z and V,p = q.

!Supported by RPBP I11-24.C1.
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If 3, yp =d.q, then x = z and dyp = q.

V. is universal and Bound(V, 4p) = « and Scope(V, yp) = Vyp.

3,40 is existential and Bound(3;,,p) = x and Scope(3; yp) = Iyp.

Va,y,2P = Va(Vy(V2p)) and Vay.p = Vo (V.p).

If Vi, 4191 = Vs 4ep2, then 21 = x5 and y1 = y2 and p1 = pa.

If Vo 1,291 = Vao g 20D2, then 21 = z2 and y; = y2 and 21 = 22 and
p1 = p2.

If Vg -p = V:q, then x =t and V, .p = q.

If Vg yp=Visq, then x =t and y = s and V,p = q.

If 35, y1P1 = Jup,40P2, then 21 = x2 and y; = y2 and p1 = po.

Juy,2P = Jo(3y(3:p)) and Fpy2p = Fp 4 (32p).

If 34, 01,2021 = i yo,20D2, then 21 = z9 and y; = y2 and 2; = 22 and
p1 = p2.

If 3, y..p = 34q, then x =t and 3, .p = q.

If 3, y.p = 3i5q, then =t and y = s and J.,p = q.

Vz.y,2p is universal and Bound(V, , .p) =  and Scope(Vy y .p) =V, .p.

Jz.,y,2p is existential and Bound (3, . .p) = = and Scope(3z,y,.p) = Iy.2p-

If H is disjunctive, then LeftArg(H) = Arg(LeftArg(Arg(H))).

If H is disjunctive, then RightArg(H) = Arg(RightArg(Arg(H))).

If H is conditional, then Antecedent(H) = LeftArg(Arg(H)).

If H is conditional, then Consequent(H ) = Arg(RightArg(Arg(H))).

If H is biconditional, then LeftSide(H) = Antecedent(LeftArg(H)) and
LeftSide(H ) = Consequent(RightArg(H)).

If H is biconditional, then RightSide(H) = Consequent(LeftArg(H))
and RightSide(H) = Antecedent(RightArg(H)).

If H is existential, then Bound(H) = Bound(Arg(H)) and Scope(H) =
Arg(Scope(Arg(H))).

Arg(FV@G) = =FA—=G and Antecedent(FVG) = —F and Consequent(F'V
G) =G.

Arg(F = G)=F N-G.

LeftArg(F < G) = F = G and RightArg(F < G) =G = F.

Arg(3,H) =V,—H.

If H is disjunctive, then H is conditional and H is negative and Arg(H)

is conjunctive and LeftArg(Arg(H)) is negative and RightArg(Arg(H)) is
negative.

If H is conditional, then H is negative and Arg(H) is conjunctive and
RightArg(Arg(H)) is negative.

If H is biconditional, then H is conjunctive and LeftArg(H) is condi-
tional and RightArg(H) is conditional.
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(41) If H is existential, then H is negative and Arg(H) is universal and
Scope(Arg(H)) is negative.

(42) Tt is not true that: H is an equality and H is a membership or H is
negative or H is conjunctive or H is universal and it is not true that: H is
a membership and H is negative or H is conjunctive or H is universal and
it is not true that: H is negative and H is conjunctive or H is universal
and it is not true that: H is conjunctive and H is universal.

(43) If F is a subformula of G, then len F' < lenG.

(44)  Suppose F' is a proper subformula of G and G is a subformula of H
or I is a subformula of G and G is a proper subformula of H or F' is
a subformula of G and G is an immediate constituent of H or F' is an
immediate constituent of G and G is a subformula of H or F'is a proper
subformula of G and G is an immediate constituent of H or F is an
immediate constituent of G and G is a proper subformula of H. Then F
is a proper subformula of H.

(45)  H is not a proper subformula of H.

(46)  H is not an immediate constituent of H.

(47) It is not true that: G is a proper subformula of H and H is a subformula
of G.

(48) It is not true that: G is a proper subformula of H and H is a proper
subformula of G.

(49) It is not true that: G is a subformula of H and H is an immediate
constituent of G.

(50)  Itisnot true that: G is a proper subformula of H and H is an immediate
constituent of G.

(51) If =F is a subformula of H, then F is a proper subformula of H.

(52) If F AG is a subformula of H, then F' is a proper subformula of H and
G is a proper subformula of H.

(53) If V,H is a subformula of F', then H is a proper subformula of F.

(54) F A—G is a proper subformula of F' = G and F' is a proper subformula
of F' = G and —G is a proper subformula of FF = G and G is a proper
subformula of F' = G.

(55) —FA-G is a proper subformula of F'VG and —F' is a proper subformula
of F'V G and =G is a proper subformula of F'V G and F is a proper
subformula of F'V G and G is a proper subformula of F'V G.

(56) V,—H is a proper subformula of 3,H and —H is a proper subformula
of 4. H.

(57) G is a subformula of H if and only if G € Subformulae H.

(58) If G € Subformulae H, then Subformulae G C Subformulae H.

(59) H € Subformulae H.

(60)  Subformulae F' = G = (Subformulae F' U Subformulae G) U {-G, F' A

-G, F = G}.
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(61)  Subformulae F'VG = (Subformulae FF'USubformulae G)U{—=G,—F,—~F A
~G,FV G).
(62)  Subformulae F' < G = (Subformulae F' U Subformulae G) U {=G, F' A
-G, F = G,~F,GN-F,G= F,F & G}.
Free(z=y) = {z,y}.
Free(zey) = {x,y}.

S OO
U =~ W

Free(—p) = Freep.

(@)
(=)

p A q) = Freep U Free q.
V.p) = Freep \ {z}.

Free(p V q) = Free p U Freeq.
p=
=
ds

(
(
(
(
(
Free(p =
(
(
(v
(
(3

Free

D
J

Free

(@)
Qo

q) = Freep U Freeq.

-3
=

q) = Free p U Freeq.

p) = Freep \ {z}.
Free(Vy ,p) = Freep \ {z,y}.
Free(Vy,y,.p) = Freep \ {z,v, z}.
Free(3;,,p) = Freep \ {z,y}.
Free(3,,y..p) = Freep \ {z, v, z}.

The scheme ZF_Induction deals with a unary predicate P, and states that:

for every H holds P[H]
provided the parameter satisfies the following conditions:

e for all 1, x9 holds P[z1=x2] and Plxiexs],

e for every H such that P[H]| holds P[-H],

e for all Hy, Hy such that P[H;] and P[H2] holds P[H; N Hy],

e for all H, x such that P[H| holds P[V,H].

For simplicity we adopt the following rules: M, E will denote non-empty
families of sets, e will denote an element of E, m, m’ will denote elements of
M, f, g will denote functions from VAR into E, and v, v’ will denote functions
from VAR into M. Let us consider E, f, x, e. The functor f(%) yields a function
from VAR into F and is defined by:

Free

N
—_

Free

AN AN AN N N N N N N N N N N
~ N =
=W N =)

M N N N N Y~ N~

-3
(@)

(Def.1)  (f(%))(x) = e and for every y such that (f(%))(y) # f(y) holds x = y.

The following proposition is true
(76) g = f(%) if and only if g(x) = e and for every y such that g(y) # f(y)
holds = = y.
Let D, Dy, Dy be non-empty sets, and let f be a function from D into D;.
Let us assume that Dy C Dy. The functor D[f] yields a function from D into
D5 and is defined as follows:

(Def2)  Dalf] = f.

Next we state several propositions:

(77)  For all non-empty sets D, D1, Do and for every function f from D into
Dy such that D; C Dy holds Ds[f] = f.

(78)  (0(Z)(E) = v(Z) and o(;E5) = v.
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(19) 1oy, then (o(2)() = (0(Z)(E).

(80) M,v =V, H if and only if for every m holds M,v(.-) = H.

(81) M,v =V, H if and only if M,v() = V.H.

(82) M,v = 3. H if and only if there exists m such that M,v(:-) = H.

(83) M,v = 3, H if and only if M,v() = 3.H.

(84)  For all v, v’ such that for every z such that « € Free H holds v'(z) =

v(z) holds if M,v = H, then M,v' = H.
(85)  Free H is finite.

In the sequel ¢, j will denote natural numbers. The following propositions
are true:

(86) If x; = xj, then i = j.
87)  There exists ¢ such that =z = z;.

(

(88)  x is a natural number and x € N.

(89) M,v | x=x.

(90) M E z=x.

(91) M, v [~ xex.

(92) M }~ zex and M = ez

(93) M = z=y if and only if = y or there exists a such that {a} = M.

(94) M |= —xey if and only if z = y or for every X such that X € M holds
XNnM=0.

(95) If H is an equality, then M,v = H if and only if v(Vari(H)) =
v(Vara(H)).

(96) If H is a membership, then M,v = H if and only if v(Var;(H)) €
v(Vara(H)).

(97)  If H is negative, then M,v = H if and only if M,v = Arg(H).
(98) If H is conjunctive, then M,v = H if and only if M,v |= LeftArg(H)
and M, v = RightArg(H).
(99) If H is universal, then M,v | H if and only if for every m holds
M,U(Bo%d(m) = Scope(H).
(100)  If H is disjunctive, then M,v = H if and only if M, v = LeftArg(H) or
M, v |= RightArg(H).
(101) If H is conditional, then M,v = H if and only if if
M ,v |= Antecedent(H),
then M, v = Consequent(H ).
(102) If H is biconditional, then M,v = H if and only if M, v = LeftSide(H)
if and only if M,v = RightSide(H).
(103) If H is existential, then M,v = H if and only if there exists m such
that M,U(B()%d(m) = Scope(H).
(104) M = 3, H if and only if for every v there exists m such that M,v(-) =
H.

967
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(105) If M = H, then M =3,H.
(106) M [= H if and only if M =V, H.
(107) If M | H, then M =3, H.
(108) M |=H if and only if M =V, , . H.
(109) If M | H, then M |= 3, H.
(110) MooE@Peqd=>pP=qgadME(Peq=((p=q.
(111) MooE@P<eq=(¢=p and M (p&q) = (¢=p).
(112) ME@E=q9=((¢=r)=(p=r)).
(113) Ut M,vEp=qand M,v|=q=r, then M,v Ep=r.
(114) It MEp=gqand M Eq=r,then M Ep=r.
(115) Mo E{p@=>¢9A(g=>r)=pPp=>randME{pP=>q9A(qg=>r1)=

(p=r).

(116) M,vfEp= (¢=p)and M Fp= (¢ = p).

(117) MuykE@E=@g=r)=(=9=@=r)ad M@= (¢=
r)=(p=4q) = (p=r)).

(118) M,vEpAgq=pand M EpAqg=p.

(119) M,vEpAgq=qand M EpAqg=q.

(120) M,vEpAgq=qgApand M =pAqg=qAp.

(121) M,oEp=pApand M E=p=pAp.

(122) MouoE@E=q9=((p=>r)=pP=qAr)and M E(p=q) = (p=

r)= (p=qAT)).

(123) M,vEp=pVgand M Ep=pVq.

(124) MwEqg=pVgand M Eq=pVyq.

(125) M,vEpVg=qVpand M =EpVqg=qVp.

(126) M,vEp=pVpand M =p=pVp.

(127) Moo E@E=r)=(¢=r)=(@Ve=>r)and M =(p=r)= ((¢=

r)= (pVqg=r)).

(128) M,oE(@E=r)A(g=71)= (pVg=r)and M = (p=r)A(¢=71)=>
(pVg=r).

(129) M,vE(p= —~q) = (¢= —p) and M |= (p = ~q) = (¢ = —p).

(130) M,vE-p=(p=q) and M F-p= (p = q).

(131) MovE@=9¢gAp=-g9)=-pand M | (p=q)A(p= —q) = p.
(132) If M,v Ep= qand M,v |= p, then M,v | q.

(133) If M Ep= qand M [ p, then M = q.

(134) M,vE-(pAq)= -pV-gand M |F=(pAg) = —pV q.

(135) M,vE-pV-g=~(pAg)and M = —pV =g= =(pAq).

(136) M,vE-=(pVq) = -pA-gand M |=—=(pVq) = -pA-g.

(137) M,vE-pA=qg= =(pVq) and M | —pA-=qg= =(pVq).

(138) M = (V.H) = H.
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(139) M = H = (3,H).

(140)  If = ¢ Free Hy, then M |= (V,H; = Hs) = (Hy = (V;Ha)).
(141) If x ¢ Free Hy and M |= Hy = Ho, then M = H; = (V,H2).
(142)  If x ¢ Free Hy, then M = (V. H1 = Ha) = ((3.H1) = Ho).
(143) If x ¢ Free Hy and M |= Hy = Ha, then M |= (3, H;) = Ho.
(144) If M ': Hl = (vag), then M ': Hl = H2.

(145) I M |= (3,H)) = Ha, then M |= Hy = Ho.

(146) WFF C 2ENNT

Let us consider H. The functor Varg yields a set and is defined by:
(Det.3)  Varg =rngH \ {0,1,2,3,4}.

We now state a number of propositions:

(147)  Varg =rngH \ {0,1,2,3,4}.

(148) x#0and z # 1 and z # 2 and = # 3 and x # 4.
(149) =z ¢ {0,1,2,3,4}.

(150) If a € Vary, then a #0 and a # 1 and a # 2 and a # 3 and a # 4.
(151)  Varg_, = {z,y}.

(152)  Varge, = {z,y}.

(153)  Var_pg = Varg.

(154)  Vary,apg, = Varg, U Vargy,.

(155)  Vary,g = Varg U {z}.

(156)  Varg,vm, = Varg, U Varg,.

(157)  Varg,—pm, = Vargy, U Varg,.

(158)  Varg,em, = Varg, U Varg,.

(159)  Varg, gy = Varg U {z}.

(160)  Vary, ,g = Varg U {z,y}.

(161)  Varg, g = Vary U {z,y}.

(162)  Vary, ,.g = Vary U {mz,y, z}.

(163)  Varg, ,.g = Varg U {z,y, z}.

(164) Free H C Vary.

Let us consider H. Then Vary is a non-empty subset of VAR.
Let us consider H, x, y. The functor H (%) yields a function and is defined
by:
(Def.4)  dom(H(])) = domH and for every a such that a € dom H holds if

H(a) = x, then (H(}))(a) =y but if H(a) # z, then (H({))(a) = H(a).

One can prove the following propositions:
(165)  For every function f holds f = H(Z) if and only if dom f = dom H and

v
for every a such that a € dom H holds if H(a) = z, then f(a) =y but if
H(a) # z, then f(a) = H(a).
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(166) mlsz(Z—;) = z1=2 if and only if x1 # y1 and z2 # y; and z; = 21 and
zg =x9 or x1 = y1 and w9 # yp and z; = yo and 29 = x9 or 1 # y; and

T9 =y1 and z1 = x1 and 29 = yo or 1 = y; and z9 = y; and z; = yo and

22 = Y2
(167)  There exist 21, 2o such that l’lziﬂg(%) = 21=29.
(168) mler(Z—;) = z1€29 if and only if z1 # y; and z2 # y; and z; = z1 and

zg =x9 or x1 = y1 and w9 # yp and z; = yo and 29 = x9 or 1 # y; and
T9 =y1 and z1 = x1 and 29 = yo or 1 = y; and z9 = y; and z; = yo and
22 = Y2.
(169)  There exist 21, 22 such that xlezng(%) = 21€2.
(170)  —F = (-H)(3) if and only if F' = H ().
(171) H(%) € WFF.
Let us consider H, z, y. Then H(3) is a ZF-formula.
The following propositions are true:

172) Gy NGy = (Hy A H>)(3) if and only if Gy = Hy(F) and Ga = Hy().
173)  If z # @, then V.G = (V.H)({) if and only if G = H().

174)  ¥,G = (Y. H)(Z) if and only if G = H(Z).

175)  G1V Gy = (H1V Hp)(§) if and only if G1 = Hy(}) and G2 = Ha(3).
176)  Gi= G = (Hy = H>)(}) if and only if Gy = Hy(§) and G2 = Ha().
177)  Gi & Gy = (H1 & H)(y) if and only if G1 = Hy(§) and G2 = Ha(3).

—
EN|
o

If 2 # @, then 3,G = (3.H)({) if and only if G = H(3).
3G = (3. H)(3) if and only if G = H().
H is an equality if and only if H (%) is an equality.

— =
co o
=)

H is a membership if and only if H (%) is a membership.
H is negative if and only if H (%) is negative.

—
(0]
[\)

H is conjunctive if and only if H(%) is conjunctive.
H is universal if and only if H(7) is universal.

If H is negative, then Arg(H($)) = Arg(H)(3).

N TN TN N N N N N N N N N N N /N
[ —
Qo 0o ~J
=~ W Nej

N e e e e e e e T N T N N N N

[
oo
ot

186)  If H is conjunctive, then LeftArg(H(])) = LeftArg(H)(3) and
RightArg(H (7)) = RightArg(H)(7).

(187)  If H is universal, then Scope(H ()) = Scope(H)() but if Bound(H) =
x, then Bound(H({)) = y but if Bound(H) # =, then Bound(H(3)) =
Bound(H).

(188)  H is disjunctive if and only if H () is disjunctive.

(189)  H is conditional if and only if H($) is conditional.

(190)  If H is biconditional, then H(%) is biconditional.

(191)  H is existential if and only if H (5) is existential.
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(192) If H is disjunctive, then LeftArg(H (
RightArg(H (7)) = RightArg(H)(7).

(193)  If H is conditional, then Antecedent(H (7)) = Antecedent(H)(7) and
Consequent(H (7)) = Consequent(H)(%).

(194)  If H is biconditional, then LeftSide(H (7)) = LeftSide(H)(}) and
RightSide(H (})) = RightSide(H)($).

(195)  If H is existential, then Scope(H ()) = Scope(H)(§) but if Bound(H) =

) = LeftArg(H)(%) and

<8

x, then Bound(H({)) = y but if Bound(H) # =, then Bound(H (%)) =
Bound(H).

(196) If z ¢ Vary, then H(]) = H.

(197) H(%)=H.

(198) If x # y, then = ¢ VarH(%).

(199) If x € Vary, then y € VarH(%).

(200)  If z #y, then (H(3))() = H(3).

(201) VarH(%) C (Varg \ {z}) U {y}.
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The Reflection Theorem

Grzegorz Bancerek!
Warsaw University
Biatystok

Summary. The goal is show that the reflection theorem holds.
The theorem is as usual in the Morse-Kelley theory of classes (MK). That
theory works with universal class which consists of all sets and every class
is a subclass of it. In this paper (and in another Mizar articles) we work in
Tarski-Grothendieck (T'G) theory (see [16]) which ensures the existence of
sets that have properties like universal class (i.e. this theory is stronger
than MK). The sets are introduced in [14] and some concepts of MK
are modeled. The concepts are: the class On of all ordinal numbers
belonging to the universe, subclasses, transfinite sequences of non-empty
elements of universe, etc. The reflection theorem states that if A¢ is an
increasing and continuous transfinite sequence of non-empty sets and class
A= UE con Ag, then for every formula H there is a strictly increasing
continuous mapping F' : On — On such that if 3¢ is a critical number of
F (ie. F(3x) =3c>0) and f € A},IAR7 then A, f = H= A, f = H.
The proof is based on [13]. Besides, in the article it is shown that every
universal class is a model of ZF set theory if w (the first infinite ordinal
number) belongs to it. Some propositions concerning ordinal numbers
and sequences of them are also present.

MML Identifier: ZF_REFLE.

The notation and terminology used in this paper have been introduced in the
following articles: [16], [15], [11], [12], [4], [5], [6], [10], [8], [1], [3], [9], [14], [2],
and [7]. In the sequel W is a universal class, H is a ZF-formula, z is arbitrary,
and X is a set. We now state several propositions:

(1) W = the axiom of extensionality.

2) W [= the axiom of pairs.

w

(2)

(3) W = the axiom of unions.

(4) Ifwe W, then W [= the axiom of infinity.
(5)

W = the axiom of power sets.

!Supported by RPBP I11-24.C1.
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(6) For every H such that {z¢,z1,z2} misses Free H holds
W = the axiom of substitution for H.

(7) Ifwe W, then W is a model of ZF.

For simplicity we follow the rules: E denotes a non-empty family of sets, F
denotes a function, f denotes a function from VAR into E, A, B, C denote
ordinal numbers, a, b denote ordinals of W, p; denotes a transfinite sequence of
ordinals of W, and H denotes a ZF-formula. Let us consider A, B. Let us note
that one can characterize the predicate A C B by the following (equivalent)
condition:

(Def.1)  for every C such that C € A holds C € B.

In this article we present several logical schemes. The scheme ALFA deals
with a non-empty set A, and a binary predicate P, and states that:
there exists F' such that dom F' = A and for every element d of A there
exists A such that A = F(d) and P[d, A] and for every B such that P[d, B]
holds A C B
provided the parameters meet the following condition:
e for every element d of A there exists A such that P[d, A].
The scheme ALFA’Universe deals with a universal class A, a non-empty set
B, and a binary predicate P, and states that:
there exists F' such that dom F' = B and for every element d of B there exists
an ordinal a of A such that a = F(d) and P[d, a] and for every ordinal b of A
such that P[d,b] holds a C b
provided the following condition is met:
e for every element d of B there exists an ordinal a of A such that
Pld, al.
One can prove the following proposition
(8) xis an ordinal of W if and only if x € On W.

In the sequel py is a sequence of ordinal numbers. Now we present three
schemes. The scheme OrdSeqOfUnivEz deals with a universal class A, and a
binary predicate P, and states that:

there exists a transfinite sequence p; of ordinals of A such that for every
ordinal a of A holds Pla, p1(a)]
provided the following conditions are satisfied:

e for all ordinals a, by, by of A such that Pla,b;] and P[a, b2] holds

by = b,
e for every ordinal a of A there exists an ordinal b of A such that
Pla, b].

The scheme UOS_FExist concerns a universal class A, an ordinal B of A, a
binary functor F yielding an ordinal of A, and a binary functor G yielding an
ordinal of A and states that:

there exists a transfinite sequence py of ordinals of A4 such that p1(04) = B
and for all ordinals a, b of A such that b = p1(a) holds p;(succa) = F(a,b) and
for every ordinal a of A and for every sequence ps of ordinal numbers such that
a # 04 and a is a limit ordinal number and po = p; | a holds p;(a) = G(a,p2)



THE REFLECTION THEOREM 975

for all values of the parameters.
The scheme Universe_Ind concerns a universal class A, and a unary predicate
P, and states that:
for every ordinal a of A holds PJal
provided the parameters have the following properties:
o Plo4],
e for every ordinal a of A such that P[a] holds P[succal,
e for every ordinal a of A such that a # 04 and a is a limit ordinal
number and for every ordinal b of A such that b € a holds P[b]
holds Pla].
Let f be a function, and let W be a universal class, and let ¢ be an ordinal
of W. The functor |, f yields a set and is defined as follows:

(Def2) U, f=UW I (f I Ra)).

We now state several propositions:

9 U f=UW T (fTRa))
(10)  For every transfinite sequence L and for every A holds L | Ry is a
transfinite sequence.

(11)  For every sequence L of ordinal numbers and for every A holds L | R 4
is a sequence of ordinal numbers.

12)  Upe is an ordinal number.

13)  U(X | p2) is an ordinal number.
14) OnRy = A

15) pa IRa=p2 | A

Let p1 be a sequence of ordinal numbers, and let W be a universal class, and
let @ be an ordinal of W. Then (J, p: is an ordinal of W.

Next we state the proposition

(
(
(
(

(17)%  For every transfinite sequence p; of ordinals of W holds |, p1 = U(p1 |
a) and J,(p1 1 a) =U(p1 | a).
Let W be a universal class, and let a, b be ordinals of W. Then a U b is an
ordinal of W.

Let us consider W. A non-empty family of sets is said to be a non-empty set
from W if:

(Def.3) it e W.

Let us consider W. A non-empty family of sets is said to be a subclass of W
if:
(Def.d) it CW.
Let us consider W. A transfinite sequence of elements of W is called a
transfinite sequence of non-empty sets from W if:
(Def.5) domit = OnW and @ ¢ rngit.

2The proposition (16) became obvious.
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We now state four propositions:

(18)
(19)
(20)

(21)

FE is a non-empty set from W if and only if £ € W.
FE is a subclass of W if and only if £ C W.

For every transfinite sequence T of elements of W holds T is a transfinite
sequence of non-empty sets from W if and only if domT = OnW and
0 ¢rngT.

For every non-empty set D from W holds D is a subclass of W.

Let us consider W, and let L be a transfinite sequence of non-empty sets

from

W. Then |JL is a subclass of W. Let us consider a. Then L(a) is a

non-empty set from W.

In the sequel L is a transfinite sequence of non-empty sets from W and f is
a function from VAR into L(a). Next we state several propositions:

NN
wW N
=

)
=~

N DN
N O
o D D

A~ N /N /N A/~ A/~
[\ [\]
o Ut

fXeWw, then X < W.

a € dom L.

L(a) CUL.

N ~ VAR and VAR = N.
U(On X) is an ordinal number.
sup X C succ(J(On X)).

If X € W, then supX € W.

The following proposition is true

(29)

Suppose w € W and for all a, b such that a € b holds L(a) C L(b)
and for every a such that a # 0 and a is a limit ordinal number holds
L(a) = U(L 1 a). Then for every H there exists p; such that p; is

increasing and p; is continuous and for every a such that pi(a) = a and
0 # a for every f holds L, L[f] E H if and only if L(a), f E H.
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Binary Operations on Finite Sequences
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Summary. We generalize the semigroup operation on finite se-
quences introduced in [6] for binary operations that have a unity or for
non-empty finite sequences.

MML Identifier: FINSOP_1.

The papers [9], [4], [5], [2], [3], [8], [6], [7], and [1] provide the notation and
terminology for this paper. For simplicity we adopt the following convention:
D denotes a non-empty set, d, di, do, ds denote elements of D, F, G, H
denote finite sequences of elements of D, f denotes a function from N into D,
g denotes a binary operation on D, k, n, [ denote natural numbers, and P
denotes a permutation of Seg(len F'). Let us consider D, n, d. Then n —— d is
a finite sequence of elements of D.

Let us consider D, F, g. Let us assume that g has a unity or len /' > 1. The
functor g ® F' yields an element of D and is defined by:

(Def.1) g ® F = 14 if g has a unity and len ' = 0, there exists f such that
f(1) = F(1) and for every n such that 0 # n and n < len F' holds
fn+1)=g(f(n), F(n+1)) and g © F = f(len F'), otherwise.

One can prove the following propositions:

(1) If g has a unity and len F' = 0, then ¢ ® F' = 1,.

(2) Suppose len F' > 1. Then there exists f such that f(1) = F(1) and for
every n such that 0 # n and n < len F' holds f(n+1) = g(f(n), F(n+1))
and g © F = f(len F).

(3)  Suppose len F' > 1 and there exists f such that f(1) = F(1) and for
every n such that 0 # n and n < len F' holds f(n+1) = g(f(n), F(n+1))
and d = f(len F). Then d=g® F.

(4)  If g has a unity or len F' > 1 but g is associative and g is commutative,
theng O F=g®F.

!Supported by RPBP.I11-24.C1
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(5) 1If g has a unity or len F' > 1, then ¢ © F' ™ (d) = g(g ® F, d).

(6) If g is associative but g has a unity or len F > 1 and len G > 1, then
gOF~"G=g(gOF, goG).

(7)  If g is associative but g has a unity or len F' > 1, then ¢ ® (d) ~ F = g(d,
goO F).

(8) If g is commutative and g is associative but g has a unity or len ' > 1
and G=F -P,thengoO F=9g0G.

(9) If g has a unity or len F' > 1 but g is associative and ¢ is commutative
and F' is one-to-one and G is one-to-one and rng F' = rng G, then gO F =
g G.

(10)  Suppose g is associative and ¢ is commutative but g has a unity or

len F > 1 and len F = len G and len F' = len H and for every k such that
k € Seg(len F') holds F(k) = ¢g(G(k), H(k)). Then g ©® F = g(g9 ® G,

gO H).
11 If g has a unity, then g ©ep = 1.
12) go(d)=d.

—_
w

g ©® (di,d2) = g(dy, da).
If g is commutative, then g ® (dy,d2) = g ® (da,dy).
9 © (d1,da, ds) = g(g(dy, d2), ds).
If g is commutative, then g ® (dq,ds,ds) = g ® (da,d1,ds).
gO (1—d)=d.
g6 (2— d) = g(d, d).
If g is associative but g has a unity or k£ # 0 and [ # 0, then g© (k+1 —
d)=g(g© (kr—d), g© (I d)).
(20)  If g is associative but g has a unity or k # 0 and [ # 0, then g® (k-1 —
d)=g©(— g0 (kr— d)).
(21) IflenF =1, then ¢ ® F = F(1).
(22) IflenF =2, then g F = g(F(1), F(2)).

[a—
N

= = =
o g O

e e N T N T N N2 N
—_ —_
Nej ot
S N e e e S S N N
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Finite Join and Finite Meet,
and Dual Lattices

Andrzej Trybulec!
Warsaw University
Biatystok

Summary. The concepts of finite join and finite meet in a lattice
are introduced. Some properties of the finite join are proved. After intro-
ducing the concept of dual lattice in view of dualism we obtain analogous
properties of the meet. We prove these properties of binary operations
in a lattice, which are usually included in axioms of the lattice theory.
We also introduce the concept of Heyting lattice (a bounded lattice with
relative pseudo-complements).

MML Identifier: LATTICE2.

The papers [10], [3], [4], [5], [8], [2], [11], [6], [9], [7], and [1] provide the notation
and terminology for this paper. For simplicity we adopt the following convention:
A denotes a set, C' denotes a non-empty set, B denotes a subset of A, x denotes
an element of A, and f, g denote functions from A into C'. The following
propositions are true:

(1) f1 B is a function from B into C'.

(2) dom(g | B)=B.

(3) f°B=(f1B)°B.

(4) Ifz e B, then (f | B)(z) = f(x).

(5) f I B =g | Bif and only if for every z such that x € B holds
g9(x) = f(z).

(6) For every set B holds f +- ¢ | B is a function from A into C.
() g B+ f=/.

(8)  For all functions f, g such that ¢ < f holds f +- g = f.

©) f+rfIB=/

(10)  If for every = such that € B holds g(z) = f(z), then f+-g | B=f.

!Supported by RPBP.I1I-24.C1.
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In the sequel B will denote a finite subset of A. We now state several propo-
sitions:
(11)  For every set X holds X is a finite subset of A if and only if X C A
and X is finite.
(12) gIB+f=f.
(13) dom(g | B) = B.
(14)  If for every z such that z € B holds g(z) = f(z), then f +-g | B = f.
(15) f°B=(f1B)°B.
(16) If f1B=g| B, then f°B=g°B.
Let D be a non-empty set, and let o, o’ be binary operations on D. We say
that o absorbs o' if and only if:
(Def.1)  for all elements xz, y of D holds o(x, o'(z, y)) = «.

In the sequel L will be a lattice structure. The following proposition is true

(17)  If the join operation of L is commutative and the join operation of L
is associative and the meet operation of L is commutative and the meet
operation of L is associative and the join operation of L absorbs the meet
operation of L and the meet operation of L absorbs the join operation of
L, then L is a lattice.

Let L be a lattice structure. The functor L° yields a lattice structure and is
defined by:

(Def.2)  L° = ( the carrier of L, the meet operation of L, the join operation of
L).
One can prove the following propositions:

(18)  The carrier of L = the carrier of L° and the join operation of L = the
meet operation of L° and the meet operation of L = the join operation
of L°.

(19) (L°)°=L.

We follow the rules: L will be a lattice and a, b, u, v will be elements of the
carrier of L. We now state a number of propositions:

(20
1
2
3
4

If for every v holds uMv = u, then v = L.

[\)

If for every v holds u v = v, then u = 1.

[\

If for every v holds (the join operation of L)(u, v) = v, then u = L.

[\

If for every v holds u U v = u, then v = T.

[\

If for every v holds u Mv = v, then u = T .

[\~
D

The join operation of L is idempotent.

[\)
J

The join operation of L is commutative.

[\

8
9
0

If the join operation of L has a unity, then L7 = 1¢he join operation of L-

[\

The join operation of L is associative.

AN AN N N /N N /N /S N
w [\]
ot

)
)
)
)
)
) If for every v holds (the meet operation of L)(u, v) = v, then u = T.
)
)
)
)
)

The meet operation of L is idempotent.
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The meet operation of L is commutative.
The meet operation of L is associative.

(31)

(32)

(33)  If the meet operation of L has a unity, then T 1 = 1the meet operation of L-
(34)  The join operation of L is distributive w.r.t. the join operation of L.
(35)

If L is a distributive lattice, then the join operation of L is distributive
w.r.t. the meet operation of L.

(36)  If the join operation of L is distributive w.r.t. the meet operation of L,
then L is a distributive lattice.

(37) If L is a distributive lattice, then the meet operation of L is distributive
w.r.t. the join operation of L.

(38)  If the meet operation of L is distributive w.r.t. the join operation of L,
then L is a distributive lattice.

(39) The meet operation of L is distributive w.r.t. the meet operation of L.
(40)  The join operation of L absorbs the meet operation of L.
(41)  The meet operation of L absorbs the join operation of L.

We now define two new functors. Let A be a non-empty set, and let L be a
lattice, and let B be a finite subset of A, and let f be a function from A into
the carrier of L. The functor |_|§3 f yields an element of the carrier of L and is
defined as follows:

(Def.3) LI f = (the join operation of L)- Y5 f.
The functor ﬂ% f yields an element of the carrier of L and is defined by:
(Def.4) [T, f = (the meet operation of L)- 3 p f.

We now state the proposition

(42)  For every non-empty set A and for every lattice L and for every finite
subset B of A and for every function f from A into the carrier of L holds
LI% f = (the join operation of L)- Y5 f.
For simplicity we adopt the following convention: A will be a non-empty
set, x will be an element of A, B will be a finite subset of A, and f, g will be
functions from A into the carrier of L. Next we state several propositions:

43) If z € B, then f(z) C |5 .
44)  If there exists x such that z € B and u C f(z), then u C | % f.
If for every x such that x € B holds f(z) = u and B # (), then |_|153 f=u.
If | |5 f C u, then for every z such that z € B holds f(z) C u.
If B # () and for every z such that x € B holds f(x) C u, then |_|153 fCu.
If B # () and for every z such that 2 € B holds f(z) C g(z), then
L f E Uk
(49) I B#Qand f I B=g !B, then |[5f=|]zg
(50) If B # 0, then v U | |5 f = LI%( (the join operation of L)°(v, f)).
Let L be a lattice. Then L° is a lattice.
We now state a number of propositions:

W
St

AAA/_\/_\/_\
IS
~N

T o =
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(51)  For every lattice L and for every finite subset B of A and for every
function f from A into the carrier of L and for every function f’ from A
into the carrier of L° such that f = f’ holds |5 f = [T5f" and [|5f =
s /"

(52)  For all elements a’, b" of the carrier of L° such that a = @’ and b =¥/
holds aMb=d" UV and aUb=da' NV

(53) If a C b, then for all elements a’, V' of the carrier of L° such that a = a’
and b =0 holds & C a'.

(54)  For all elements a’, b of the carrier of L° such that o’ C ¥ and a = d’

and b =t holds b C a.

If z € B, then [5f C f(=).

If there exists x such that z € B and f(x) C u, then [ J5f C w.

If for every x such that z € B holds f(x) = wand B # (), then [ |5 f = u.
If B # 0, then v [ 5 f = [T5( (the meet operation of L)°(v, f)).

If u C [ 5 f, then for every x such that € B holds u C f(x).

If B#Qand f| B=g| B, then [|3f = [T59.

If B # () and for every z such that x € B holdsu C f(x), thenu C [ ]5 f.
If B # () and for every z such that z € B holds f(z) C g(z), then

[Taf E Mo

(63)  For every lattice L holds L is a lower bound lattice if and only if L° is
an upper bound lattice.

AN SN N N N N N
S O O Ot Ot Ot Ot Ot
N R O © 00 J O Ot
N’ e e e N N N N

(64)  For every lattice L holds L is an upper bound lattice if and only if L°
is a lower bound lattice.

(65) L is a distributive lattice if and only if L° is a distributive lattice.

In the sequel L denotes a lower bound lattice, f, g denote functions from A
into the carrier of L, and u denotes an element of the carrier of L. The following
propositions are true:

17 is a unity w.r.t. the join operation of L.
The join operation of L has a unity.

If f1 B=g B, then I f =g
If for every x such that = € B holds f(x) C u, then |_]§3 fCu.
71)  If for every z such that x € B holds f(z) C g(x), then [_|fg fC [_|§3 qg.

In the sequel L will denote an upper bound lattice, f, g will denote functions
from A into the carrier of L, and u will denote an element of the carrier of L.
The following propositions are true:

)
)
68) L = Lthe join operation of L-
)
)

(72) Ty is a unity w.r.t. the meet operation of L.
73

(73)
(74) T L = 1the meet operation of L-
(75) If f1B=g B, then [Tzf = [Tzg.

The meet operation of L has a unity.
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(76)  If for every x such that # € B holds u C f(z), then u C [ 5 f.
(77)  If for every z such that = € B holds f(z) C g(z), then [ 5f C [ 59
(78)  For every lower bound lattice L holds L = T o.
(79)  For every upper bound lattice L holds T = L ..
A lower bound lattice is called a distributive lower bounded lattice if:
(Def.5) it is a distributive lattice.
In the sequel L will denote a distributive lower bounded lattice, f, g will

denote functions from A into the carrier of L, and u will denote an element of
the carrier of L. We now state four propositions:

(80)  The meet operation of L is distributive w.r.t. the join operation of L.

(81) (the meet operation of L)(u, | '3 f) = [U%( (the meet operation of
L)*(u, f))-

(82)  If for every x such that = € B holds g(z) = w1 f(x), then M |5 f =
Lk 9-

(83)  wn S f=5( (the meet operation of L)°(u, f)).

A lower bound lattice is said to be a Heyting lattice if:
(Def.6) it is a implicative lattice.

Next we state the proposition

(84)  For every lower bound lattice L holds L is a Heyting lattice if and only
if for every elements x, z of the carrier of L there exists an element y of
the carrier of L such that x My C z and for every element v of the carrier
of L such that zMwv C 2z holds v C y.

Let L be a lattice. We say that L is finite if and only if:
(Def.7)  the carrier of L is finite.

We now state several propositions:
(85)  For every lattice L holds L is finite if and only if L° is finite.
(86)  For every lattice L such that L is finite holds L is a lower bound lattice.

(87)  For every lattice L such that L is finite holds L is an upper bound
lattice.

(88)  For every lattice L such that L is finite holds L is a bound lattice.

(89)  For every distributive lattice L such that L is finite holds L is a Heyting
lattice.
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Consequences of the Reflection Theorem
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Biatystok

Summary. Some consequences of the reflection theorem are dis-
cussed. To formulate them the notions of elementary equivalence and
subsystems, and of models for a set of formulae are introduced. Besides,
the concept of cofinality of a ordinal number with second one is used.
The consequences of the reflection theorem (it is sometimes called the
Scott-Scarpellini lemma) are: (i) If A is a transfinite sequence as in
the reflection theorem (see [9]) and A = Ugeon Ag, then there is an in-
creasing and continuous mapping ¢ from On into On such that for every
critical number x the set A, is an elementary subsystem of A (A. < A).
(ii) There is an increasing continuous mapping ¢ : On — On such that
R. < V for each of its critical numbers x (V is the universal class and
On is the class of all ordinals belonging to V). (iii) There are ordinal
numbers « cofinal with w for which R, are models of ZF set theory. (iv)
For each set X from universe V there is a model of ZF M which belongs
to V and has X as an element.

MML Identifier: ZFREFLE1.

The articles [18], [14], [15], [19], [17], 8], [13], [5], [6], [1], [11], [4], [2], [7], [12],
[16], [3], [10], and [9] provide the terminology and notation for this paper. We
follow a convention: H, S will be ZF-formulae, X, Y will be sets, and e, v will

be arbitrary. Let M be a non-empty family of sets, and let F' be a subset of
WFF. The predicate M |= F' is defined by:

(Def.1)  for every H such that H € F holds M | H.
We now define two new predicates. Let M;, Ms be non-empty families of
sets. The predicate My = My is defined as follows:
(Def.2)  for every H such that Free H = () holds M; = H if and only if My = H.

Let us notice that this predicate is reflexive and symmetric. The predicate
M7 < M,y is defined as follows:
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(Def.3)  M; C M and for every H and for every function v from VAR into M;
holds M;,v |= H if and only if Ma, Ma[v] = H.

Let us observe that the predicate introduced above is reflexive.
The set Axyp is defined by:

(Def.4) e € Axgp if and only if e € WFF but e = the axiom of extensionality or
e = the axiom of pairs or e = the axiom of unions or e = the axiom of infinity
or e = theaxiom of powersets or there exists H such that {z¢,z1,22}
misses Free H and e = the axiom of substitution for H.

Let us note that it makes sense to consider the following constant. Then
Axyyp is a subset of WFF.

Let D be a non-empty set. Then () is a subset of D.

For simplicity we follow a convention: M, My, Ms will be non-empty families
of sets, f will be a function, F, Fy, F5 will be subsets of WFF, W will be a
universal class, a, b will be ordinals of W, A, B, C will be ordinal numbers,
L will be a transfinite sequence of non-empty sets from W, and py, 21 will be
transfinite sequences of ordinals of W. We now state a number of propositions:

1) M E dwrr.
) If Iy C Fy andM):Fg,thenM):Fl.
) IfM):FlandM):Fg,thenM):Flqu.
4) If M is a model of ZF, then M = Axzp.
) If M = Axyzp and M is transitive, then M is a model of ZF.
) There exists S such that Free S = () and for every M holds M | S if
and only if M = H.
(7) My = Ms if and only if for every H holds M; | H if and only if
M, = H.
(8) Mj = M> if and only if for every F holds M; |= F if and only if My = F.
(9) If My < My, then My = M.
(10)  If My is a model of ZF and M; = Ms and M> is transitive, then M is
a model of ZF.

In this article we present several logical schemes. The scheme Non UnigBound-
Func deals with a set A, a set B, and a binary predicate P, and states that:

there exists a function f such that dom f = A and rng f C B and for every
e such that e € A holds Ple, f(e)]
provided the following requirement is met:

e for every e such that e € A there exists u such that v € B and

Ple, ul.

The scheme NonUniqFuncEzx deals with a set A, and a binary predicate P,
and states that:

there exists a function f such that dom f = A and for every e such that
e € A holds Ple, f(e)]
provided the following condition is met:

e for every e such that e € A there exists u such that Ple, u].
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The following propositions are true:
11) IfXCWand X < W, then X € W.
) Ifdom f €W and g f C W, then rng f € W.
13) IfX~Y or X =V, then 2¥ ~ 2" and 2¥ =2V
) Let D be anon-empty set. Let Py be a function from D into (On W)OnW.
Suppose D < W and for every x1 such that x; € rng P} holds z; is
increasing and xp is continuous. Then there exists p; such that py is
increasing and p; is continuous and p; (0w ) = Oy and for every a holds
pi1(succa) = sup({p1(a)}Uuncurry P;°[ D, {succa} {) and for every a such
that a # Oy and a is a limit ordinal number holds p;(a) = sup(p: I a).
(15)  For every sequence p; of ordinal numbers such that p; is increasing
holds C + p; is increasing.
(16)  For every sequence x; of ordinal numbers holds (C+xz1) | A=C+x; |
A.
(17)  For every sequence p; of ordinal numbers such that p; is increasing and
p1 is continuous holds C' 4+ p; is continuous.

Let A, B be ordinal numbers. We say that A is cofinal with B if and only if:
(Def.5)  there exists a sequence z; of ordinal numbers such that domz; = B
and rngxy C A and z is increasing and A = sup x7.
Let us notice that the predicate defined above is reflexive.

In the sequel ps will be a sequence of ordinal numbers. We now state a
number of propositions:

(18)  If py is increasing and A C B and B € dom pa, then pa(A) C pa(B).
If e € rng ps, then e is an ordinal number.

(19)

(20)  rngps C supps.

(21) If Ais cofinal with B and B is cofinal with C, then A is cofinal with C'.
(22) If Ais cofinal with B, then B C A.

(23) If A is cofinal with B and B is cofinal with A, then A = B.

(24) If dompy # 0 and dom py is a limit ordinal number and ps is increasing

and A is the limit of po, then A is cofinal with dom po.
(25)  succ A is cofinal with 1.
(26) If A is cofinal with succ B, then there exists C' such that A = succC.

(27) If A is cofinal with B, then A is a limit ordinal number if and only if B
is a limit ordinal number.

(28) If A is cofinal with O, then A = 0.

(29)  OnW is not cofinal with a.

(30) If we W and p; is increasing and p; is continuous, then there exists b
such that a € b and p;y(b) = .

(31) If w € W and p; is increasing and p; is continuous, then there exists a
such that b € a and p;1(a) = a and a is cofinal with w.
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(32)  Suppose w € W and for all a, b such that a € b holds L(a) C L(b)
and for every a such that a # 0 and a is a limit ordinal number holds
L(a) = U(L | a). Then there exists p; such that p; is increasing and
p1 is continuous and for every a such that pi(a) = a and 0 # a holds
L(a) <UL.

(33) R,eW.

(34) If a # 0, then R, is a non-empty set from W.

(35) If w € W, then there exists p; such that p; is increasing and p; is
continuous and for all a, M such that pi(a) = a and 0 # a and M = R,
holds M < W.

(36) If w € W, then there exist b, M such that a € b and M = Ry, and
M<W.

(37) If w € W, then there exist a, M such that a is cofinal with w and
M =R, and M < W.

(38)  Suppose w € W and for all a, b such that a € b holds L(a) C L(b)
and for every a such that a # 0 and « is a limit ordinal number holds
L(a) = U(L | a). Then there exists p; such that p; is increasing and
p1 is continuous and for every a such that pj(a) = a and 0 # a holds
L(a)=UL.

(39) If w € W, then there exists p; such that p; is increasing and p; is
continuous and for all a, M such that pi(a) = a and 0 # a and M = R,

holds M = W.
(40) If w € W, then there exist b, M such that a € b and M = Ry, and
M=W.

(41) If w € W, then there exist a, M such that a is cofinal with w and
M=R,and M =W.

(42) If w € W, then there exist a, M such that a is cofinal with w and
M =R, and M is a model of ZF.

(43) If w € W and X € W, then there exists M such that X € M and
M € W and M is a model of ZF.
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