Binary Operations

Czesław Byliński¹ Warsaw University Białystok

Summary. In this paper we define binary and unary operations on domains. We also define the following predicates concerning the operations: ... is commutative, ... is associative, ... is the unity of ..., and ... is distributive wrt A number of schemes useful in justifying the existence of the operations are proved.

The articles [3], [1], and [2] provide the notation and terminology for this paper. The arguments of the notions defined below are the following: f which is an object of the type Function; a, b which are objects of the type Any. The functor

with values of the type Any, is defined by

$$\mathbf{it} = f.\langle a, b \rangle.$$

One can prove the following proposition

(1) **for** f **being** Function **for** a,b **being** Any **holds** $f.(a,b) = f.\langle a,b\rangle$.

In the sequel A, B, C will denote objects of the type DOMAIN. The arguments of the notions defined below are the following: A, B, C which are objects of the type reserved above; f which is an object of the type Function of [A, B], C; a which is an object of the type Element of A; b which is an object of the type Element of B. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$f.(a,b)$$
 is Element of C .

The following proposition is true

(2) for
$$f1, f2$$
 being Function of $[A, B], C$ st for a being Element of A

¹Supported by RPBP.III-24.C1.

for b being Element of B holds f1.(a, b) = f2.(a, b)holds f1 = f2.

We now define two new modes. Let us consider A.

Unary_Operation of A stands for Function of A, A.

Binary_Operation of A stands for Function of [A, A], A.

We now state a proposition

(3) for f being Function of A, A holds f is Unary-Operation of A.

In the sequel u denotes an object of the type Unary_Operation of A. Next we state a proposition

(4) for f being Function of [A, A], A holds f is Binary Operation of A.

In the article we present several logical schemes. The scheme UnOpEx concerns a constant \mathcal{A} that has the type DOMAIN and a binary predicate \mathcal{P} and states that the following holds

ex u being Unary_Operation of \mathcal{A} st for x being Element of \mathcal{A} holds $\mathcal{P}[x, u.x]$ provided the parameters satisfy the following conditions:

- for x being Element of A ex y being Element of A st P[x, y],
- for x,y1,y2 being Element of \mathcal{A} st $\mathcal{P}[x,y1]$ & $\mathcal{P}[x,y2]$ holds y1=y2.

The scheme UnOpLambda concerns a constant \mathcal{A} that has the type DOMAIN and a unary functor \mathcal{F} yielding values of the type Element of \mathcal{A} and states that the following holds

ex u being Unary_Operation of \mathcal{A} st for x being Element of \mathcal{A} holds $u.x = \mathcal{F}(x)$

for all values of the parameters.

For simplicity we adopt the following convention: o, o' will have the type Binary_Operation of A; a, b, c, e, e1, e2 will have the type Element of A. Let us consider A, o, a, b. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$o.(a,b)$$
 is Element of A.

Now we present two schemes. The scheme BinOpEx concerns a constant \mathcal{A} that has the type DOMAIN and a ternary predicate \mathcal{P} and states that the following holds

ex o being Binary_Operation of \mathcal{A} st for a,b being Element of \mathcal{A} holds $\mathcal{P}[a,b,o.(a,b)]$ provided the parameters satisfy the following conditions:

- for x,y being Element of A ex z being Element of A st P[x,y,z],
- for x,y being Element of $\mathcal A$ for z1,z2 being Element of $\mathcal A$ st $\mathcal P[x,y,z1]$ & $\mathcal P[x,y,z2]$ holds z1=z2.

The scheme BinOpLambda concerns a constant \mathcal{A} that has the type DOMAIN and a binary functor \mathcal{F} yielding values of the type Element of \mathcal{A} and states that the following holds

ex
$$o$$
 being Binary_Operation of \mathcal{A}
st for a,b being Element of \mathcal{A} holds $o.(a,b) = \mathcal{F}(a,b)$

for all values of the parameters.

We now define three new predicates. Let us consider A, o. The predicate o is_commutative is defined by for a,b holds o.(a,b) = o.(b,a).

The predicate

o is associative is defined by for
$$a,b,c$$
 holds $o.(a,o.(b,c)) = o.(o.(a,b),c)$.

The predicate

$$o$$
 is_an_idempotentOp is defined by for a holds $o.(a, a) = a$.

Next we state three propositions:

- (5) o is_commutative **iff for** a,b **holds** o.(a,b) = o.(b,a),
- (6) o is associative **iff for** a,b,c **holds** o.(a,o.(b,c)) = o.(o.(a,b),c),
- (7) o is_an_idempotentOp iff for a holds o.(a, a) = a.

We now define two new predicates. Let us consider A, e, o. The predicate e is_a_left_unity_wrt o is defined by $\mathbf{for} \ a \ \mathbf{holds} \ o.(e, a) = a$.

The predicate

$$e$$
 is_a_right_unity_wrt o is defined by for a holds $o.(a, e) = a$.

Let us consider A, e, o. The predicate

e is_a_unity_wrt o is defined by e is_a_left_unity_wrt o & e is_a_right_unity_wrt o.

We now state a number of propositions:

(8)
$$e \text{ is_a_left_unity_wrt } o \text{ iff for } a \text{ holds } o.(e, a) = a,$$

- (9) $e \text{ is_a_right_unity_wrt } o \text{ iff for } a \text{ holds } o.(a, e) = a,$
- (10) e is_a_unity_wrt o iff e is_a_left_unity_wrt o & e is_a_right_unity_wrt o,
- (11) e is_a_unity_wrt o iff for a holds o.(e, a) = a & o.(a, e) = a,
- (12) o is_commutative **implies** (e is_a_unity_wrt o **iff for** a **holds** o.(e, a) = a),
- (13) o is_commutative **implies** (e is_a_unity_wrt o **iff for** a **holds** o.(a, e) = a),
- (14) o is_commutative implies (e is_a_unity_wrt o iff e is_a_left_unity_wrt o),
- (15) o is_commutative **implies** (e is_a_unity_wrt o **iff** e is_a_right_unity_wrt o),
- (16) o is_commutative implies (e is_a_left_unity_wrt o iff e is_a_right_unity_wrt o),
- (17) e1 is_a_left_unity_wrt o & e2 is_a_right_unity_wrt o implies e1 = e2,
- (18) e1 is_a_unity_wrt o & e2 is_a_unity_wrt o implies e1 = e2.

Let us consider A, o. Assume that the following holds

 $\mathbf{ex}\,e\,\mathbf{st}\,\,e$ is _a_unity_wrt o.

The functor

the unity wrt o,

with values of the type Element of A, is defined by

it is_a_unity_wrt o.

One can prove the following proposition

(19)
$$(\mathbf{ex} \, e \, \mathbf{st} \, e \, \mathbf{is_a_unity_wrt} \, o)$$

implies for e holds e = the_unity_wrt o iff e is_a_unity_wrt o.

We now define two new predicates. Let us consider A, o', o. The predicate

o' is_left_distributive_wrt o

is defined by

for
$$a,b,c$$
 holds $o'.(a,o.(b,c)) = o.(o'.(a,b),o'.(a,c)).$

The predicate

o' is_right_distributive_wrt o

is defined by

for
$$a,b,c$$
 holds $o'.(o.(a,b),c) = o.(o'.(a,c),o'.(b,c)).$

Let us consider A, o', o. The predicate

o' is_distributive_wrt o

is defined by

o' is_left_distributive_wrt o & o' is_right_distributive_wrt o.

We now state several propositions:

(20)
$$o'$$
 is_left_distributive_wrt o iff for a,b,c holds $o'.(a,o.(b,c)) = o.(o'.(a,b),o'.(a,c)),$

(21)
$$o'$$
 is_right_distributive_wrt o iff for a,b,c holds $o'.(o.(a,b),c) = o.(o'.(a,c),o'.(b,c)),$

(22) o' is_distributive_wrt o iff o' is_left_distributive_wrt o & o' is_right_distributive_wrt o,

(23)
$$o'$$
 is_distributive_wrt o iff for a,b,c holds $o'.(a,o.(b,c)) = o.(o'.(a,b),o'.(a,c)) & o'.(o.(a,b),c) = o.(o'.(a,c),o'.(b,c)),$

(24)
$$o'$$
 is_commutative **implies** (o' is_distributive_wrt o **iff for** a,b,c **holds** o' . $(a,o.(b,c)) = o.(o'.(a,b),o'.(a,c))$),

(25)
$$o'$$
 is_commutative **implies** (o' is_distributive_wrt o **iff for** a,b,c **holds** $o'.(o.(a,b),c) = o.(o'.(a,c),o'.(b,c))),$

(26) o' is_commutative implies (o' is_distributive_wrt o iff o' is_left_distributive_wrt o),

(27) o' is_commutative implies (o' is_distributive_wrt o iff o' is_right_distributive_wrt o),

(28) o' is_commutative implies (o' is_right_distributive_wrt o iff o' is_left_distributive_wrt o).

Let us consider A, u, o. The predicate

 $u \text{ is_distributive_wrt } o \qquad \text{is defined by} \qquad \textbf{for } a, b \textbf{ holds } u.(o.(a,b)) = o.((u.a),(u.b)).$

The following proposition is true

(29) u is_distributive_wrt o iff for a,b holds u.(o.(a,b)) = o.((u.a),(u.b)).

References

- [1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

Received April 14, 1989