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Summary. In this paper we define binary and unary operations on domains.

We also define the following predicates concerning the operations: . . . is commu-

tative, . . . is associative, . . . is the unity of . . ., and . . . is distributive wrt . . .. A

number of schemes useful in justifying the existence of the operations are proved.

The articles [3], [1], and [2] provide the notation and terminology for this paper. The

arguments of the notions defined below are the following: f which is an object of the

type Function; a, b which are objects of the type Any. The functor

f .(a, b),

with values of the type Any, is defined by

it = f .〈a, b〉.

One can prove the following proposition

(1) for f being Function for a,b being Any holds f .(a, b) = f .〈a, b〉.

In the sequel A, B, C will denote objects of the type DOMAIN. The arguments

of the notions defined below are the following: A, B, C which are objects of the type

reserved above; f which is an object of the type Function of [:A, B:], C; a which is an

object of the type Element of A; b which is an object of the type Element of B. Let

us note that it makes sense to consider the following functor on a restricted area. Then

f .(a, b) is Element of C.

The following proposition is true

(2) for f1,f2 being Function of [:A, B:],C st

for a being Element of A
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for b being Element of B holds f1.(a, b) = f2.(a, b)

holds f1 = f2.

We now define two new modes. Let us consider A.

Unary Operation of A stands for Function of A, A.

Binary Operation of A stands for Function of [:A, A:],A.

We now state a proposition

(3) for f being Function of A, A holds f is Unary Operation of A.

In the sequel u denotes an object of the type Unary Operation of A. Next we

state a proposition

(4) for f being Function of [:A, A:],A holds f is Binary Operation of A.

In the article we present several logical schemes. The scheme UnOpEx concerns a

constant A that has the type DOMAIN and a binary predicate P and states that the

following holds

exu being Unary Operation of A st for x being Element of A holds P [x, u.x]

provided the parameters satisfy the following conditions:

• forx being Element of A ex y being Element of A st P [x, y],

• forx,y1,y2 being Element of A st P [x, y1] & P [x, y2] holds y1 = y2.

The scheme UnOpLambda concerns a constant A that has the type DOMAIN and a

unary functor F yielding values of the type Element of A and states that the following

holds

exu being Unary Operation of A st forx being Element of A holds u.x = F(x)

for all values of the parameters.

For simplicity we adopt the following convention: o, o′ will have the type Binary Operation

of A; a, b, c, e, e1, e2 will have the type Element of A. Let us consider A, o, a, b. Let

us note that it makes sense to consider the following functor on a restricted area. Then

o.(a, b) is Element of A.

Now we present two schemes. The scheme BinOpEx concerns a constant A that has

the type DOMAIN and a ternary predicate P and states that the following holds

ex o being Binary Operation of A

st for a,b being Element of A holds P [a, b, o.(a, b)]
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provided the parameters satisfy the following conditions:

• forx,y being Element of A ex z being Element of A st P [x, y, z],

• forx,y being Element of A

for z1,z2 being Element of A st P [x, y, z1] & P [x, y, z2] holds z1 = z2.

The scheme BinOpLambda concerns a constant A that has the type DOMAIN and a

binary functor F yielding values of the type Element of A and states that the following

holds

ex o being Binary Operation of A

st for a,b being Element of A holds o.(a, b) = F(a, b)

for all values of the parameters.

We now define three new predicates. Let us consider A, o. The predicate

o is commutative is defined by for a,b holds o.(a, b) = o.(b, a).

The predicate

o is associative is defined by for a,b,c holds o.(a, o.(b, c)) = o.(o.(a, b),c).

The predicate

o is an idempotentOp is defined by for a holds o.(a, a) = a.

Next we state three propositions:

(5) o is commutative iff for a,b holds o.(a, b) = o.(b, a),

(6) o is associative iff for a,b,c holds o.(a, o.(b, c)) = o.(o.(a, b),c),

(7) o is an idempotentOp iff for a holds o.(a, a) = a.

We now define two new predicates. Let us consider A, e, o. The predicate

e is a left unity wrt o is defined by for a holds o.(e, a) = a.

The predicate

e is a right unity wrt o is defined by for a holds o.(a, e) = a.

Let us consider A, e, o. The predicate

e is a unity wrt o is defined by e is a left unity wrt o & e is a right unity wrt o.

We now state a number of propositions:

(8) e is a left unity wrt o iff for a holds o.(e, a) = a,
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(9) e is a right unity wrt o iff for a holds o.(a, e) = a,

(10) e is a unity wrt o iff e is a left unity wrt o & e is a right unity wrt o,

(11) e is a unity wrt o iff for a holds o.(e, a) = a & o.(a, e) = a,

(12) o is commutative implies (e is a unity wrt o iff for a holds o.(e, a) = a),

(13) o is commutative implies (e is a unity wrt o iff for a holds o.(a, e) = a),

(14) o is commutative implies (e is a unity wrt o iff e is a left unity wrt o),

(15) o is commutative implies (e is a unity wrt o iff e is a right unity wrt o),

(16) o is commutative implies (e is a left unity wrt o iff e is a right unity wrt o),

(17) e1 is a left unity wrt o & e2 is a right unity wrt o implies e1 = e2,

(18) e1 is a unity wrt o & e2 is a unity wrt o implies e1 = e2.

Let us consider A, o. Assume that the following holds

ex e st e is a unity wrt o.

The functor

the unity wrt o,

with values of the type Element of A, is defined by

it is a unity wrt o.

One can prove the following proposition

(19) (ex e st e is a unity wrt o)

implies for e holds e = the unity wrt o iff e is a unity wrt o.

We now define two new predicates. Let us consider A, o′, o. The predicate

o′ is left distributive wrt o

is defined by

for a,b,c holds o′ .(a, o.(b, c)) = o.(o′ .(a, b),o′ .(a, c)).

The predicate

o′ is right distributive wrt o

is defined by

for a,b,c holds o′ .(o.(a, b),c) = o.(o′ .(a, c),o′ .(b, c)).
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Let us consider A, o′, o. The predicate

o′ is distributive wrt o

is defined by

o′ is left distributive wrt o & o′ is right distributive wrt o.

We now state several propositions:

(20) o′ is left distributive wrt o

iff for a,b,c holds o′ .(a, o.(b, c)) = o.(o′ .(a, b),o′ .(a, c)),

(21) o′ is right distributive wrt o

iff for a,b,c holds o′ .(o.(a, b),c) = o.(o′ .(a, c),o′ .(b, c)),

(22) o′ is distributive wrt o

iff o′ is left distributive wrt o & o′ is right distributive wrt o,

(23) o′ is distributive wrt o iff for a,b,c holds

o′ .(a, o.(b, c)) = o.(o′ .(a, b),o′ .(a, c)) & o′ .(o.(a, b),c) = o.(o′ .(a, c),o′ .(b, c)),

(24) o′ is commutative implies (o′ is distributive wrt o

iff for a,b,c holds o′ .(a, o.(b, c)) = o.(o′ .(a, b),o′ .(a, c))),

(25) o′ is commutative implies (o′ is distributive wrt o

iff for a,b,c holds o′ .(o.(a, b),c) = o.(o′ .(a, c),o′ .(b, c))),

(26) o′ is commutative

implies (o′ is distributive wrt o iff o′ is left distributive wrt o),

(27) o′ is commutative

implies (o′ is distributive wrt o iff o′ is right distributive wrt o),

(28) o′ is commutative

implies (o′ is right distributive wrt o iff o′ is left distributive wrt o).

Let us consider A, u, o. The predicate

u is distributive wrt o is defined by for a,b holds u.(o.(a, b)) = o.((u.a),(u.b)).

The following proposition is true

(29) u is distributive wrt o iff for a,b holds u.(o.(a, b)) = o.((u.a),(u.b)).
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