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Summary. The paper contains a definition of topological space. The following

notions are defined: point of topological space, subset of topological space, subspace

of topological space, and continuous function.

The articles [5], [7], [6], [1], [4], [2], and [3] provide the terminology and notation for this

paper. We consider structures TopStruct, which are systems

〈〈carrier , topology〉〉

where carrier has the type DOMAIN, and topology has the type Subset-Family of

the carrier. In the sequel T has the type TopStruct. The mode

TopSpace ,

which widens to the type TopStruct, is defined by

the carrier of it ∈ the topology of it &

(for a being Subset-Family of the carrier of it

st a ⊆ the topology of it holds
⋃

a ∈ the topology of it)

& for a,b being Subset of the carrier of it

st a ∈ the topology of it & b ∈ the topology of it holds a ∩ b ∈ the topology of it .

We now state a proposition

(1) the carrier of T ∈ the topology of T &

(for a being Subset-Family of the carrier of T
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st a ⊆ the topology of T holds
⋃

a ∈ the topology of T )

& (for p,q being Subset of the carrier of T st

p ∈ the topology of T & q ∈ the topology of T

holds p ∩ q ∈ the topology of T )

implies T is TopSpace .

In the sequel T , S, GX will have the type TopSpace. Let us consider T .

Point of T stands for Element of the carrier of T.

The following proposition is true

(2) forx being Element of the carrier of T holds x is Point of T.

Let us consider T .

Subset of T stands for set of Point of T.

We now state a proposition

(3) forP being Subset of the carrier of T holds P is Subset of T.

In the sequel P , Q will have the type Subset of T ; p will have the type Point of

T . Let us consider T .

Subset-Family of T stands for Subset-Family of the carrier of T.

Next we state a proposition

(4) forF being Subset-Family of the carrier of T

holds F is Subset-Family of T.

In the sequel F will denote an object of the type Subset-Family of T . The scheme

SubFamEx1 concerns a constant A that has the type TopSpace and a unary predicate

P and states that the following holds

exF being Subset-Family of A st forB being Subset of A holds B ∈ F iff P [B]

for all values of the parameters.

One can prove the following propositions:

(5) ∅ ∈ the topology of T,

(6) the carrier of T ∈ the topology of T,

(7) for a being Subset-Family of T

st a ⊆ the topology of T holds
⋃

a ∈ the topology of T,
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(8) P ∈ the topology of T & Q ∈ the topology of T

implies P ∩ Q ∈ the topology of T.

We now define two new functors. Let us consider T . The functor

∅T,

with values of the type Subset of T , is defined by

it = ∅ the carrier of T.

The functor

Ω T,

with values of the type Subset of T , is defined by

it = Ω the carrier of T.

One can prove the following four propositions:

(9) ∅T = ∅ the carrier of T,

(10) Ω T = Ω the carrier of T,

(11) ∅(T ) = ∅,

(12) Ω (T ) = the carrier of T.

Let us consider T , P . The functor

P c ,

yields the type Subset of T and is defined by

it = P c .

Let us consider T , P , Q. Let us note that it makes sense to consider the following

functors on restricted areas. Then

P ∪ Q is Subset of T,

P ∩ Q is Subset of T,

P \ Q is Subset of T,

P −. Q is Subset of T.

The following propositions are true:

(13) p ∈ Ω (T ),

(14) P ⊆ Ω (T ),
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(15) P ∩ Ω (T ) = P,

(16) forA being set holds A ⊆ Ω (T ) implies A is Subset of T,

(17) P c = Ω (T ) \ P,

(18) P ∪ P c = Ω (T ),

(19) P ⊆ Q iff Q c ⊆ P c ,

(20) P = P c c ,

(21) P ⊆ Q c iff P ∩ Q = ∅,

(22) Ω (T ) \ (Ω (T ) \ P ) = P,

(23) P 6= Ω (T ) iff Ω (T ) \ P 6= ∅,

(24) Ω (T ) \ P = Q implies Ω (T ) = P ∪ Q,

(25) Ω (T ) = P ∪ Q & P ∩ Q = ∅ implies Q = Ω (T ) \ P,

(26) P ∩ P c = ∅(T ),

(27) Ω (T ) = (∅T ) c ,

(28) P \ Q = P ∩ Q c ,

(29) P = Q implies Ω (T ) \ P = Ω (T ) \ Q.

Let us consider T , P . The predicate

P is open is defined by P ∈ the topology of T.

One can prove the following proposition

(30) P is open iff P ∈ the topology of T.

Let us consider T , P . The predicate

P is closed is defined by Ω (T ) \ P is open .

One can prove the following proposition

(31) P is closed iff Ω (T ) \ P is open .

Let us consider T , P . The predicate

P is open closed is defined by P is open & P is closed .
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We now state a proposition

(32) P is open closed iff P is open & P is closed .

Let us consider T , F . Let us note that it makes sense to consider the following functor

on a restricted area. Then
⋃

F is Subset of T.

Let us consider T , F . Let us note that it makes sense to consider the following functor

on a restricted area. Then
⋂

F is Subset of T.

Let us consider T , F . The predicate

F is a cover of T is defined by Ω (T ) =
⋃

F.

The following proposition is true

(33) F is a cover of T iff Ω (T ) =
⋃

F.

Let us consider T . The mode

SubSpace of T,

which widens to the type TopSpace, is defined by

Ω (it) ⊆ Ω (T ) & forP being Subset of it holds P ∈ the topology of it

iff exQ being Subset of T st Q ∈ the topology of T & P = Q ∩ Ω (it).

Next we state two propositions:

(34) Ω (S) ⊆ Ω (T ) & (forP being Subset of S holds P ∈ the topology of S

iff exQ being Subset of T st Q ∈ the topology of T & P = Q ∩ Ω (S))

implies S is SubSpace of T,

(35) forV being SubSpace of T holds Ω (V ) ⊆ Ω (T ) & forP being Subset of V

holds P ∈ the topology of V

iff exQ being Subset of T st Q ∈ the topology of T & P = Q ∩ Ω (V ).

Let us consider T , P . Assume that the following holds

P 6= ∅(T ).

The functor

T | P,

with values of the type SubSpace of T , is defined by

Ω (it) = P.
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One can prove the following proposition

(36) P 6= ∅(T ) implies forS being SubSpace of T holds S = T | P iff Ω (S) = P.

Let us consider T , S.

map of T, S stands for Function of (the carrier of T ),(the carrier of S).

Next we state a proposition

(37) for f being Function of the carrier of T,the carrier of S

holds f is map of T, S.

In the sequel f has the type map of T , S; P1 has the type Subset of S. Let us

consider T , S, f , P . Let us note that it makes sense to consider the following functor on

a restricted area. Then

f ◦ P is Subset of S.

Let us consider T , S, f , P1. Let us note that it makes sense to consider the following

functor on a restricted area. Then

f -1 P1 is Subset of T.

Let us consider T , S, f . The predicate

f is continuous

is defined by

forP1 holds P1 is closed implies f -1 P1 is closed .

The following proposition is true

(38) f is continuous iff forP1 holds P1 is closed implies f -1 P1 is closed .

The scheme TopAbstr concerns a constant A that has the type TopSpace and a unary

predicate P and states that the following holds

exP being Subset of A st forx being Point of A holds x ∈ P iff P [x]

for all values of the parameters.

One can prove the following propositions:

(39) forX ′ being SubSpace of GX

forA being Subset of X ′ holds A is Subset of GX,

(40) forA being Subset of GX, x being Any st x ∈ A holds x is Point of GX,

(41) forA being Subset of GX st A 6= ∅(GX) exx being Point of GX st x ∈ A,

(42) Ω (GX) is closed ,
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(43) forX ′ being SubSpace of GX, B being Subset of X ′ holds

B is closed iff exC being Subset of GX st C is closed & C ∩ (Ω (X ′)) = B,

(44) forF being Subset-Family of GX st

F 6= ∅ & forA being Subset of GX st A ∈ F holds A is closed

holds
⋂

F is closed .

The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; A which is an object of the type Subset of GX . The functor

Cl A,

yields the type Subset of GX and is defined by

for p being Point of GX holds p ∈ it

iff forG being Subset of GX st G is open holds p ∈ G implies A ∩ G 6= ∅(GX).

We now state a number of propositions:

(45) forA being Subset of GX, p being Point of GX holds p ∈ Cl A

iff forC being Subset of GX st C is closed holds A ⊆ C implies p ∈ C,

(46) forA being Subset of GX exF being Subset-Family of GX st

(forC being Subset of GX holds C ∈ F iff C is closed & A ⊆ C)

& Cl A =
⋂

F,

(47) for

X ′ being SubSpace of GX, A being Subset of GX, A1 being Subset of X ′

st A = A1 holds Cl A1 = (Cl A) ∩ (Ω (X ′)),

(48) forA being Subset of GX holds A ⊆ Cl A,

(49) forA,B being Subset of GX st A ⊆ B holds Cl A ⊆ Cl B,

(50) forA,B being Subset of GX holds Cl (A ∪ B) = Cl A ∪ Cl B,

(51) forA,B being Subset of GX holds Cl (A ∩ B) ⊆ (Cl A) ∩ Cl B,

(52) forA being Subset of GX holds A is closed iff Cl A = A,

(53) forA being Subset of GX

holds A is open iff Cl (Ω (GX) \ A) = Ω (GX) \ A,

(54) forA being Subset of GX, p being Point of GX holds p ∈ Cl A iff

forG being Subset of GX

st G is open holds p ∈ G implies A ∩ G 6= ∅(GX).
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