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Summary. The text includes theorems concerning properties of subsets, and

some operations on sets. The functions yielding improper subsets of a set, i.e. the

empty set and the set itself are introduced. Functions and predicates introduced

for sets are redefined. Some theorems about enumerated sets are proved.

The articles [2], [3], and [1] provide the terminology and notation for this paper. In

the sequel E, X denote objects of the type set; x denotes an object of the type Any.

One can prove the following propositions:

(1) E 6= ∅ implies (x is Element of E iff x ∈ E),

(2) x ∈ E implies x is Element of E,

(3) X is Subset of E iff X ⊆ E.

We now define two new functors. Let us consider E. The functor

∅E,

yields the type Subset of E and is defined by

it = ∅.

The functor

Ω E,

with values of the type Subset of E, is defined by

it = E.

We now state two propositions:

(4) ∅ is Subset of X,
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(5) X is Subset of X.

In the sequel A, B, C denote objects of the type Subset of E. Next we state

several propositions:

(6) x ∈ A implies x is Element of E,

(7) (forx being Element of E holds x ∈ A implies x ∈ B) implies A ⊆ B,

(8) (for x being Element of E holds x ∈ A iff x ∈ B) implies A = B,

(9) x ∈ A implies x ∈ E,

(10) A 6= ∅ iff exx being Element of E st x ∈ A.

Let us consider E, A. The functor

A c ,

yields the type Subset of E and is defined by

it = E \ A.

Let us consider B. Let us note that it makes sense to consider the following functors on

restricted areas. Then

A ∪ B is Subset of E,

A ∩ B is Subset of E,

A \ B is Subset of E,

A −. B is Subset of E.

One can prove the following propositions:

(11) x ∈ A ∩ B implies x is Element of A & x is Element of B,

(12) x ∈ A ∪ B implies x is Element of A or x is Element of B,

(13) x ∈ A \ B implies x is Element of A,

(14) x ∈ A −. B implies x is Element of A or x is Element of B,

(15) (forx being Element of E holds x ∈ A iff x ∈ B or x ∈ C)

implies A = B ∪ C,

(16) (for x being Element of E holds x ∈ A iff x ∈ B & x ∈ C)

implies A = B ∩ C,

(17) (forx being Element of E holds x ∈ A iff x ∈ B & notx ∈ C)

implies A = B \ C,
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(18) (forx being Element of E holds x ∈ A iff not (x ∈ B iff x ∈ C))

implies A = B −. C,

(19) ∅E = ∅,

(20) Ω E = E,

(21) ∅E = (Ω E) c ,

(22) ΩE = (∅E) c ,

(23) A c = E \ A,

(24) A c c = A,

(25) A ∪ A c = Ω E & A c ∪ A = Ω E,

(26) A ∩ A c = ∅E & A c ∩ A = ∅E,

(27) A ∩ ∅E = ∅E & ∅E ∩ A = ∅E,

(28) A ∪ Ω E = Ω E & Ω E ∪ A = Ω E,

(29) (A ∪ B) c = A c ∩ B c ,

(30) (A ∩ B) c = A c ∪ B c ,

(31) A ⊆ B iff B c ⊆ A c ,

(32) A \ B = A ∩ B c ,

(33) (A \ B) c = A c ∪ B,

(34) (A −. B) c = A ∩ B ∪ A c ∩ B c ,

(35) A ⊆ B c implies B ⊆ A c ,

(36) A c ⊆ B implies B c ⊆ A,

(37) ∅E ⊆ E,

(38) A ⊆ A c iff A = ∅E,

(39) A c ⊆ A iff A = Ω E,

(40) X ⊆ A & X ⊆ A c implies X = ∅,

(41) (A ∪ B) c ⊆ A c & (A ∪ B) c ⊆ B c ,
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(42) A c ⊆ (A ∩ B) c & B c ⊆ (A ∩ B) c ,

(43) A misses B iff A ⊆ B c ,

(44) A misses B c iff A ⊆ B,

(45) A misses A c ,

(46) A misses B & A c misses B c implies A = B c ,

(47) A ⊆ B & C misses B implies A ⊆ C c ,

(48) (for a being Element of A holds a ∈ B) implies A ⊆ B,

(49) (forx being Element of E holds x ∈ A) implies E = A,

(50) E 6= ∅ implies forA,B

holds A = B c iff forx being Element of E holds x ∈ A iff notx ∈ B,

(51) E 6= ∅ implies forA,B

holds A = B c iff forx being Element of E holds notx ∈ A iff x ∈ B,

(52) E 6= ∅ implies forA,B

holds A = B c iff forx being Element of E holds not (x ∈ A iff x ∈ B),

(53) x ∈ A c implies notx ∈ A.

In the sequel x1, x2, x3, x4, x5, x6, x7, x8 will have the type Element of X . One

can prove the following propositions:

(54) X 6= ∅ implies {x1} is Subset of X,

(55) X 6= ∅ implies {x1,x2} is Subset of X,

(56) X 6= ∅ implies {x1,x2,x3} is Subset of X,

(57) X 6= ∅ implies {x1,x2,x3,x4} is Subset of X,

(58) X 6= ∅ implies {x1,x2,x3,x4,x5} is Subset of X,

(59) X 6= ∅ implies {x1,x2,x3,x4,x5,x6} is Subset of X,

(60) X 6= ∅ implies {x1,x2,x3,x4,x5,x6,x7} is Subset of X,

(61) X 6= ∅ implies {x1,x2,x3,x4,x5,x6,x7,x8} is Subset of X.

In the sequel x1, x2, x3, x4, x5, x6, x7, x8 denote objects of the type Any. We

now state several propositions:

(62) x1 ∈ X implies {x1} is Subset of X,
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(63) x1 ∈ X & x2 ∈ X implies {x1,x2} is Subset of X,

(64) x1 ∈ X & x2 ∈ X & x3 ∈ X implies {x1,x2,x3} is Subset of X,

(65) x1 ∈ X & x2 ∈ X & x3 ∈ X & x4 ∈ X implies {x1,x2,x3,x4} is Subset of X,

(66) x1 ∈ X & x2 ∈ X & x3 ∈ X & x4 ∈ X & x5 ∈ X

implies {x1,x2,x3,x4,x5} is Subset of X,

(67) x1 ∈ X & x2 ∈ X & x3 ∈ X & x4 ∈ X & x5 ∈ X & x6 ∈ X

implies {x1,x2,x3,x4,x5,x6} is Subset of X,

(68) x1 ∈ X & x2 ∈ X & x3 ∈ X & x4 ∈ X & x5 ∈ X & x6 ∈ X & x7 ∈ X

implies {x1,x2,x3,x4,x5,x6,x7} is Subset of X,

(69) x1 ∈ X

& x2 ∈ X & x3 ∈ X & x4 ∈ X & x5 ∈ X & x6 ∈ X & x7 ∈ X & x8 ∈ X

implies {x1,x2,x3,x4,x5,x6,x7,x8} is Subset of X.

The scheme Subset Ex concerns a constant A that has the type set and a unary

predicate P and states that the following holds

exX being Subset of A st for x holds x ∈ X iff x ∈ A & P [x]

for all values of the parameters.
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