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Université Catholique de Louvain

Kuratowski - Zorn Lemma
1

Wojciech A. Trybulec

Warsaw University

Grzegorz Bancerek

Warsaw University

Bia lystok

Summary. The goal of this article is to prove Kuratowski - Zorn
lemma. We prove it in a number of forms (theorems and schemes). We
introduce the following notions: a relation is a quasi (or partial, or linear)
order, a relation quasi (or partially, or lineary) orders a set, minimal and
maximal element in a relation, inferior and superior element of a relation,
a set has lower (or upper) Zorn property w.r.t. a relation. We prove basic
theorems concerning those notions and theorems that relate them to the
notions introduced in [6]. At the end of the article we prove some theorems
that belong rather to [7], [9] or [2].

MML Identifier: ORDERS 2.

The notation and terminology used here are introduced in the following articles:
[5], [3], [7], [9], [8], [2], [4], [6], and [1]. For simplicity we follow a convention: R,
P are relations, X, X1, X2, Y , Z are sets, O is an order in X, D, D1 are non-
empty sets, x, y are arbitrary, A is a poset, C is a chain of A, S is a subset of
A, and a, b are elements of A. In the article we present several logical schemes.
The scheme RelOnDomEx deals with a constant A that is a non-empty set, a
constant B that is a non-empty set and a binary predicate P and states that:

there exists R being a relation between A and B such that for every element
a of A for every element b of B holds 〈〈a, b〉〉 ∈ R if and only if P[a, b]
for all values of the parameters.

The scheme RelOnDomEx1 deals with a constant A that is a non-empty set
and a binary predicate P and states that:

there exists R being a relation on A such that for all elements a, b of A holds
〈〈a, b〉〉 ∈ R if and only if P[a, b]
for all values of the parameters.

One can prove the following propositions:

(1) dom O = X and rng O = X.
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(2) field O = X.

We now define three new predicates. Let us consider R. The predicate R is a
quasi order is defined by:

R is pseudo reflexive and R is transitive.
The predicate R is a partial order is defined by:

R is pseudo reflexive and R is transitive and R is antisymmetric.
The predicate R is a linear order is defined by:

R is pseudo reflexive and R is transitive and R is antisymmetric and R is
connected.

We now state a number of propositions:

(3) R is a quasi order if and only if R is pseudo reflexive and R is transitive.

(4) R is a partial order if and only if R is pseudo reflexive and R is transitive
and R is antisymmetric.

(5) R is a linear order if and only if R is pseudo reflexive and R is transitive
and R is antisymmetric and R is connected.

(6) If R is a quasi order, then R
�

is a quasi order.

(7) If R is a partial order, then R
�

is a partial order.

(8) If R is a linear order, then R
�

is a linear order.

(9) If R is well ordering relation, then R is a quasi order and R is a partial
order and R is a linear order.

(10) If R is a linear order, then R is a quasi order and R is a partial order.

(11) If R is a partial order, then R is a quasi order.

(12) O is a partial order.

(13) O is a quasi order.

(14) If O is connected, then O is a linear order.

(15) If R is a quasi order, then R |2 X is a quasi order.

(16) If R is a partial order, then R |2 X is a partial order.

(17) If R is a linear order, then R |2 X is a linear order.

(18) field((the order of A) |2 S) = S.

(19) If (the order of A) |2 S is a linear order, then S is a chain of A.

(20) (the order of A) |2 C is a linear order.

(21) � is a quasi order and � is a partial order and � is a linear order and �
is well ordering relation.

(22) △X is a quasi order and △X is a partial order.

We now define three new predicates. Let us consider R, X. The predicate R

quasi orders X is defined by:
R is reflexive in X and R is transitive in X.

The predicate R partially orders X is defined by:
R is reflexive in X and R is transitive in X and R is antisymmetric in X.

The predicate R linearly orders X is defined by:
R is reflexive in X and R is transitive in X and R is antisymmetric in X and

R is connected in X.
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The following propositions are true:

(23) R quasi orders X if and only if R is reflexive in X and R is transitive in
X.

(24) R partially orders X if and only if R is reflexive in X and R is transitive
in X and R is antisymmetric in X.

(25) R linearly orders X if and only if R is reflexive in X and R is transitive
in X and R is antisymmetric in X and R is connected in X.

(26) If R well orders X, then R quasi orders X and R partially orders X and
R linearly orders X.

(27) If R linearly orders X, then R quasi orders X and R partially orders X.

(28) If R partially orders X, then R quasi orders X.

(29) If R is a quasi order, then R quasi orders field R.

(30) If R quasi orders Y and X ⊆ Y , then R quasi orders X.

(31) If R quasi orders X, then R |2 X is a quasi order.

(32) If R is a partial order, then R partially orders field R.

(33) If R partially orders Y and X ⊆ Y , then R partially orders X.

(34) If R partially orders X, then R |2 X is a partial order.

(35) If R is a linear order, then R linearly orders field R.

(36) If R linearly orders Y and X ⊆ Y , then R linearly orders X.

(37) If R linearly orders X, then R |2 X is a linear order.

(38) If R quasi orders X, then R
�

quasi orders X.

(39) If R partially orders X, then R
�

partially orders X.

(40) If R linearly orders X, then R
�

linearly orders X.

(41) O quasi orders X.

(42) O partially orders X.

(43) If R partially orders X, then R |2 X is an order in X.

(44) If R linearly orders X, then R |2 X is an order in X.

(45) If R well orders X, then R |2 X is an order in X.

(46) If the order of A linearly orders S, then S is a chain of A.

(47) the order of A linearly orders C.

(48) △X quasi orders X and △X partially orders X.

We now define two new predicates. Let us consider R, X. The predicate X

has the upper Zorn property w.r.t. R is defined by:

for every Y such that Y ⊆ X and R |2 Y is a linear order there exists x such
that x ∈ X and for every y such that y ∈ Y holds 〈〈y, x〉〉 ∈ R.

The predicate X has the lower Zorn property w.r.t. R is defined by:

for every Y such that Y ⊆ X and R |2 Y is a linear order there exists x such
that x ∈ X and for every y such that y ∈ Y holds 〈〈x, y〉〉 ∈ R.

We now state several propositions:
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(49) X has the upper Zorn property w.r.t. R if and only if for every Y such
that Y ⊆ X and R |2 Y is a linear order there exists x such that x ∈ X

and for every y such that y ∈ Y holds 〈〈y, x〉〉 ∈ R.

(50) X has the lower Zorn property w.r.t. R if and only if for every Y such
that Y ⊆ X and R |2 Y is a linear order there exists x such that x ∈ X

and for every y such that y ∈ Y holds 〈〈x, y〉〉 ∈ R.

(51) If X has the upper Zorn property w.r.t. R, then X 6= ∅.

(52) If X has the lower Zorn property w.r.t. R, then X 6= ∅.

(53) X has the upper Zorn property w.r.t. R if and only if X has the lower
Zorn property w.r.t. R

�

.

(54) X has the upper Zorn property w.r.t. R
�

if and only if X has the lower
Zorn property w.r.t. R.

We now define four new predicates. Let us consider R, x. The predicate x is
maximal in R is defined by:

x ∈ field R and for no y holds y ∈ field R and y 6= x and 〈〈x, y〉〉 ∈ R.
The predicate x is minimal in R is defined by:

x ∈ field R and for no y holds y ∈ field R and y 6= x and 〈〈y, x〉〉 ∈ R.
The predicate x is superior of R is defined by:

x ∈ field R and for every y such that y ∈ field R and y 6= x holds 〈〈y, x〉〉 ∈ R.
The predicate x is inferior of R is defined by:

x ∈ field R and for every y such that y ∈ field R and y 6= x holds 〈〈x, y〉〉 ∈ R.

Next we state a number of propositions:

(55) x is maximal in R if and only if x ∈ field R and for no y holds y ∈ field R

and y 6= x and 〈〈x, y〉〉 ∈ R.

(56) x is minimal in R if and only if x ∈ field R and for no y holds y ∈ field R

and y 6= x and 〈〈y, x〉〉 ∈ R.

(57) x is superior of R if and only if x ∈ field R and for every y such that
y ∈ field R and y 6= x holds 〈〈y, x〉〉 ∈ R.

(58) x is inferior of R if and only if x ∈ field R and for every y such that
y ∈ field R and y 6= x holds 〈〈x, y〉〉 ∈ R.

(59) If x is inferior of R and R is antisymmetric, then x is minimal in R.

(60) If x is superior of R and R is antisymmetric, then x is maximal in R.

(61) If x is minimal in R and R is connected, then x is inferior of R.

(62) If x is maximal in R and R is connected, then x is superior of R.

(63) If x ∈ X and x is superior of R and X ⊆ field R and R is pseudo reflexive,
then X has the upper Zorn property w.r.t. R.

(64) If x ∈ X and x is inferior of R and X ⊆ field R and R is pseudo reflexive,
then X has the lower Zorn property w.r.t. R.

(65) x is minimal in R if and only if x is maximal in R
�

.

(66) x is minimal in R
�

if and only if x is maximal in R.

(67) x is inferior of R if and only if x is superior of R
�

.

(68) x is inferior of R
�

if and only if x is superior of R.
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(69) a is minimal in the order of A if and only if for every b holds b 6< a.

(70) a is maximal in the order of A if and only if for every b holds a 6< b.

(71) a is superior of the order of A if and only if for every b such that a 6= b

holds b < a.

(72) a is inferior of the order of A if and only if for every b such that a 6= b

holds a < b.

(73) If for every C there exists a such that for every b such that b ∈ C holds
b ≤ a, then there exists a such that for every b holds a 6< b.

(74) If for every C there exists a such that for every b such that b ∈ C holds
a ≤ b, then there exists a such that for every b holds b 6< a.

We now state several propositions:

(75) For all R, X such that R partially orders X and field R = X and X has
the upper Zorn property w.r.t. R there exists x such that x is maximal in
R.

(76) For all R, X such that R partially orders X and field R = X and X has
the lower Zorn property w.r.t. R there exists x such that x is minimal in
R.

(77) Given X. Suppose X 6= ∅ and for every Z such that Z ⊆ X and for
all X1, X2 such that X1 ∈ Z and X2 ∈ Z holds X1 ⊆ X2 or X2 ⊆ X1

there exists Y such that Y ∈ X and for every X1 such that X1 ∈ Z holds
X1 ⊆ Y . Then there exists Y such that Y ∈ X and for every Z such that
Z ∈ X and Z 6= Y holds Y 6⊆ Z.

(78) Given X. Suppose X 6= ∅ and for every Z such that Z ⊆ X and for
all X1, X2 such that X1 ∈ Z and X2 ∈ Z holds X1 ⊆ X2 or X2 ⊆ X1

there exists Y such that Y ∈ X and for every X1 such that X1 ∈ Z holds
Y ⊆ X1. Then there exists Y such that Y ∈ X and for every Z such that
Z ∈ X and Z 6= Y holds Z 6⊆ Y .

(79) Given X. Suppose X 6= ∅ and for every Z such that Z 6= ∅ and Z ⊆ X

and for all X1, X2 such that X1 ∈ Z and X2 ∈ Z holds X1 ⊆ X2 or
X2 ⊆ X1 holds

⋃
Z ∈ X. Then there exists Y such that Y ∈ X and for

every Z such that Z ∈ X and Z 6= Y holds Y 6⊆ Z.

(80) Given X. Suppose X 6= ∅ and for every Z such that Z 6= ∅ and Z ⊆ X

and for all X1, X2 such that X1 ∈ Z and X2 ∈ Z holds X1 ⊆ X2 or
X2 ⊆ X1 holds

⋂
Z ∈ X. Then there exists Y such that Y ∈ X and for

every Z such that Z ∈ X and Z 6= Y holds Z 6⊆ Y .

Now we present two schemes. The scheme Zorn Max concerns a constant A
that is a non-empty set and a binary predicate P and states that:

there exists x being an element of A such that for every element y of A such
that x 6= y holds not P[x, y]
provided the parameters satisfy the following conditions:

• for every element x of A holds P[x, x],
• for all elements x, y of A such that P[x, y] and P[y, x] holds x = y,
• for all elements x, y, z of A such that P[x, y] and P[y, z] holds P[x, z],
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• for every X such that X ⊆ A and for all elements x, y of A such
that x ∈ X and y ∈ X holds P[x, y] or P[y, x] there exists y being
an element of A such that for every element x of A such that x ∈ X

holds P[x, y].
The scheme Zorn Min deals with a constant A that is a non-empty set and a

binary predicate P and states that:
there exists x being an element of A such that for every element y of A such

that x 6= y holds not P[y, x]
provided the parameters satisfy the following conditions:

• for every element x of A holds P[x, x],
• for all elements x, y of A such that P[x, y] and P[y, x] holds x = y,
• for all elements x, y, z of A such that P[x, y] and P[y, z] holds P[x, z],
• for every X such that X ⊆ A and for all elements x, y of A such

that x ∈ X and y ∈ X holds P[x, y] or P[y, x] there exists y being
an element of A such that for every element x of A such that x ∈ X

holds P[y, x].
One can prove the following propositions:

(81) If R partially orders X and field R = X, then there exists P such that
R ⊆ P and P linearly orders X and field P = X.

(82) R ⊆ [: field R, field R :].

(83) If R is pseudo reflexive and X ⊆ field R, then field(R |2 X) = X.

(84) If R is reflexive in X, then R |2 X is pseudo reflexive.

(85) If R is transitive in X, then R |2 X is transitive.

(86) If R is antisymmetric in X, then R |2 X is antisymmetric.

(87) If R is connected in X, then R |2 X is connected.

(88) If R is connected in X and Y ⊆ X, then R is connected in Y .

(89) If R well orders X and Y ⊆ X, then R well orders Y .

(90) If R is connected, then R
�

is connected.

(91) If R is reflexive in X, then R
�

is reflexive in X.

(92) If R is transitive in X, then R
�

is transitive in X.

(93) If R is antisymmetric in X, then R
�

is antisymmetric in X.

(94) If R is connected in X, then R
�

is connected in X.

(95) (R |2 X)
�

= R
�

|2 X.

(96) R |2 ∅ = � .
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