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Summary. Definition of real sequence and operations on sequences
(multiplication of sequences and multiplication by a real number, addition,
subtraction, division and absolute value of sequence) are given.

MML Identifier: SEQ_1.

The notation and terminology used here are introduced in the following articles:
[4], [1], [3], and [2]. For simplicity we follow the rules: f will be a function, n
will be a natural number, r, p will be real numbers, and x will be arbitrary. We
now state a proposition

(1) =z is a natural number if and only if xz € N.

The mode sequence of real numbers, which widens to the type a function, is
defined by:

domit =N and rngit C R.

In the sequel seq, seqi, seqa, seqs, seq’, seqyr are sequences of real numbers.
Next we state three propositions:

(2)  f is a sequence of real numbers if and only if dom f = N and rng f C R.

(3)  f is a sequence of real numbers if and only if dom f = N and for every x
such that = € N holds f(x) is a real number.

(4)  fis a sequence of real numbers if and only if dom f = N and for every n
holds f(n) is a real number.

Let us consider seq, n. Then seq(n) is a real number.

Let us consider seq. The predicate seq is non-zero is defined by:

rng seq C R\ {0}.

One can prove the following propositions:

(5)  seq is non-zero if and only if rng seq C R\ {0}.

(6)  seqis non-zero if and only if for every x such that 2 € N holds seq(z) # 0.
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(7)  seq is non-zero if and only if for every n holds seq(n) # 0.
(8)  For all seq, seq; such that for every x such that € N holds seq(z) =
seqi(z) holds seq = seq.
(9) For all seq, seq: such that for every n holds seq(n) = seqi(n) holds
seq = seq;.
(10)  For every r there exists seq such that rng seq = {r}.

The scheme EzRealSeq concerns a unary functor F yielding a real number and
states that:
there exists seq such that for every n holds seq(n) = F(n)
for all values of the parameter.
We now define two new functors. Let us consider seq, seqa. The functor
seqi + seqq yields a sequence of real numbers and is defined by:
for every n holds (seq; + seqz)(n) = seqi(n) + seqa(n).
The functor seq; - seqo yielding a sequence of real numbers, is defined by:
for every n holds (seq; - seq2)(n) = seqi(n) - seqa(n).
The following two propositions are true:
(11)  seq = seq1 + seqq if and only if for every n holds seq(n) = seqi(n) +
seqa(n).
(12)  seq = seq; - seqq if and only if for every n holds seq(n) = seqi(n)-seqa(n).
Let us consider r, seq. The functor r - seq yielding a sequence of real numbers,
is defined by:
for every n holds (r - seq)(n) = r - seq(n).
One can prove the following proposition
(13)  seq =1 - seq if and only if for every n holds seq(n) = r - seqi(n).
Let us consider seq. The functor —seq yields a sequence of real numbers and
is defined by:
for every n holds (—seq)(n) = —seq(n).
We now state a proposition
(14)  seq = —seq; if and only if for every n holds seq(n) = —seqi(n).
Let us consider seqq, seqa. The functor seq; — seqs yields a sequence of real
numbers and is defined by:
seq — seqa = seqq + (—seqa).
We now state a proposition
(15)  seq = seqq — seqe if and only if seq = seq; + (—seqz).
Let us consider seq. Let us assume that seq is non-zero. The functor seq ™
yielding a sequence of real numbers, is defined by:
for every n holds (seq=1)(n) = (seq(n))~!.
One can prove the following proposition

(16)  If seq is non-zero, then seq; = seq™! if and only if for every n holds
seqi(n) = (seq(n))~".
Let us consider seqq, seq. Let us assume that seq is non-zero. The functor
sequ

eq yields a sequence of real numbers and is defined by:
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seq1 _ . -1
seq — S€qu-seq .

The following proposition is true

1

5¢9L if and only if seq = seqq - seqa ™.

seqa
Let us consider seq. The functor |seq| yielding a sequence of real numbers, is
defined by:

for every n holds |seq|(n) = |seq(n)|.

(17)  If seqy is non-zero, then seq =

The following propositions are true:

(18)  seq = |seq] if and only if for every n holds seq(n) = |seqi(n)|.
(19)  seq; + seqa = seqs + seq;.

(20)  (seq1 + seqa) + seqs = seq1 + (seqa + seqs).

(21)  seq; - seqa = seqs - seq;.

(22)  (seq; - seqq) - seqs = seqy - (seqa - seqs).

(23)  (seq1 + seqa) - seqs = seqy - seqs + seqs - seqs.

(24)  seqs - (seq1 + seqz) = seqs - seq1 + seq3 - seqa.

(25) —seq = (—1) - seq.

(26) 7 (seq1 - seqz) = (- seq1) - seqa.

(27)  r-(seqi - seqa) = seqq - (r - seqa).

(28)  (seq1 — seqq) - seqz = seqy - seq3 — seqa - S€q3.

(29)  seqs - seq1 — seqs - seqa = seqs - (seq1 — seqa).

(30) - (seqq + seqz) =1 - seqp + 1 - seqa.

(31) (r-p)-seg=r-(p-seq).

(32) r-(seqq —seqz) =1 -seqi —r - seqa.

(33)  If seq is non-zero, then r - 2L = =220t

(34)  seq1 — (seqz + seqs) = (seq1 — seqa) — seqs.

(35) 1-seq= seq.

(36) —(—seq) = seq.

(37)  seqr — (—seqa2) = seqq + seqa.

(38)  seq1 — (seqz — seqs) = (seq1 — seqa) + seqs.

(39)  seqi + (seqz — seqs) = (seqi + seqa) — seqs.

(40)  (—seq1) - seqa = —seq; - seqa and seq; - (—seqa) = —seq; - seqa.
(41)  If seq is non-zero, then seq™! is non-zero.

(42)  If seq is non-zero, then (seq™1)~! = seq.

(43)  seq is non-zero and seq; is non-zero if and only if seq - seq; is non-zero.
(44)  If seq is non-zero and seq; is non-zero, then seq~1-seq; ~! = (seq-seq)~!.
(45)  If seq is non-zero, then % - seq = seq.

(46)  If seq is non-zero and seq; is non-zero, then % . %211/ = %.
(47)  If seq is non-zero and seq; is non-zero, then -1 is non-zero.
(48)  If seq is non-zero and seq; is non-zero, then %_1 = %.
(49)  If seq is non-zero, then seqq - 2L = 2425201

seq seq
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If seq is non-zero and seq; is non-zero, then 352 = %
seqq

. _ . _ seqa __ seqa-seqi

If seq is non-zero and seq; is non-zero, then o = seasep

If r # 0 and seq is non-zero, then r - seq is non-zero.

If seq is non-zero, then —seq is non-zero.

If r # 0 and seq is non-zero, then (r - seq) ™t =r~1 - seq .
If seq is non-zero, then (—seq) ™! = (—1) - seq~ .

1 _ __seq1 __ —seéeqi seqi __ _ seqi
If seq is non-zero, then seq = “seq and Te = ey
i - seq | seqy  _ seqitseqy seqi _ seqy  _
If seq is non-zero, then seq T seq = wea and o e =
seq1—seqys
seq :
!
: _ I/ _ seq1 |, seqy __ seqi-seq’ +seqqs-seq
If seq is non-zero and seq’ is non-zero, then on T aed = seqsed
seqp _ seqy seql-seq’—seqlwseq
and seq seq’ T seq-seq’
seqys

seq
seq’
seqq

If seq is non-zero and seq’ is non-zero and seq; is non-zero, then

S€qq/-S€eqi

seq-seq’ *

|seq - seq'| = |seq| - |seq|.

If seq is non-zero, then |seq| is non-zero.
If seq is non-zero, then |seq|~! = [seq?|.

seq'| _ |sed/|
seq | = Tseql®

If seq is non-zero, then |

|- seq| = [r] - [seq].
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