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Summary. Some further theorems concerning probability, among
them the equivalent definition of probability are discussed, followed by
notions of independence of events and conditional probability and basic
theorems on them.

MML Identifier: PROB_2.

The notation and terminology used in this paper have been introduced in the
following papers: [8], [2], [4], [3], [6], [5], [9], [7], and [1]. For simplicity we
adopt the following convention: Omega denotes a non-empty set, f denotes
a function, m, n denote natural numbers, r, r1, ro, r3 denote real numbers,
seq, seq denote sequences of real numbers, Sigma denotes a o-field of subsets
of Omega, ASeq, BSeq denote sequences of subsets of Sigma, P, P; denote
probabilities on Sigma, and A, B, C, Ay, As, A3 denote events of Sigma. One
can prove the following propositions:

(1) (r—r)+r2=(r+ra) —11.

(2) r<ryifandonlyifr <ry or r =ry.

(3) For all r, r1, ro such that 0 < and r; <rp holds 7 < 2.

(4)  For all r, r1, ro, 73 such that r # 0 and r; # 0 holds :—i’ = 2 if and only
ifryg-r=mry9-r.
(5) If seq is convergent and for every n holds seqi(n) = r — seq(n), then

seqy is convergent and lim seq; = r — lim seq.
(6) ANOmega = A and OmeganNA = A and ANQgigma = A and Qgigma N
A=A

(7) If B misses C, then AN B misses ANC and BN A misses C'N A.
The scheme SeqEx concerns a unary functor F and states that:
there exists f such that dom f = N and for every n holds f(n) = F(n)
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for all values of the parameter.
Let us consider Omega, Sigma, ASeq, n. Then ASeq(n) is an event of
Sigma.
Let us consider Omega, Sigma, ASeq. The functor (| ASeq yielding an event
of Sigma is defined by:
() ASeq = Intersection ASeq.
One can prove the following propositions:
(8) ) ASeq = Intersection ASeq.
(9) For every B, ASeq there exists BSeq such that for every n holds
BSeq(n) = ASeq(n) N B.
(10)  For all B, ASeq, BSeq such that ASeq is nonincreasing and for every
n holds BSeq(n) = ASeq(n) N B holds BSeq is nonincreasing.
(11)  For every function f from Sigma into R and for all ASeq, n holds
(f - ASeq)(n) = f(ASeq(n)).
(12)  For all ASeq, BSeq, B such that for every n holds BSeq(n) = ASeq(n)N
B holds (Intersection ASeq) N B = Intersection BSeq.
(13)  For all P, P; such that for every A holds P(A) = P;(A) holds P = P.

(14)  For every Omega and for every sequence ASeq of subsets of Omega
holds ASeq is nonincreasing if and only if for every n holds ASeq(n+1) C
ASeq(n).

(15)  For every sequence ASeq of subsets of Omega holds ASeq is nonde-
creasing if and only if for every n holds ASeq(n) C ASeq(n + 1).

(16)  For all sequences ASeq, BSeq of subsets of Omega such that for every
n holds ASeq(n) = BSeq(n) holds ASeq = BSeq.

(17)  For every sequence ASeq of subsets of Omega holds ASeq is nonin-
creasing if and only if Complement ASeq is nondecreasing.

Let us consider Omega, Sigma, ASeq. The functor ASeq® yields a sequence
of subsets of Sigma and is defined by:
ASeq® = Complement ASeq.
The following proposition is true
(18)  ASeq® = Complement ASeq.

Let us consider Omega, Sigma, ASeq. We say that ASeq is pairwise disjoint
if and only if:
for all m, n such that m # n holds ASeq(m) misses ASeq(n).
We now state a number of propositions:
(19) ASeq is pairwise disjoint if and only if for all m, n such that m # n
holds ASeq(m) misses ASeq(n).
(20) Let P be a function from Sigma into R. Then P is a probability on
Sigma if and only if the following conditions are satisfied:
(i) for every A holds 0 < P(A),
(i) P(Omega) =1,
(iii)  for all A, B such that A misses B holds P(AU B) = P(A) + P(B),
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(iv)  for every ASeq such that ASeq is nondecreasing holds P - ASeq is
convergent and lim(P - ASeq) = P(Union ASeq).
(21) P((AUB)UC) = (((P(A) + P(B))+ P(C)) —((P(ANnB)+ P(BN
C)+PANC))+P(ANB)NC).

(22) P(A\ANB)=P(A)—P(ANDB).

(23) For all P, A, B holds P(ANB) < P(B) and P(ANB) < P(A).

(24) For all P, A, B, C such that C' = B° holds P(A) = P(ANB)+P(ANC).
(25)  For all P, A, B holds (P(A) + P(B)) —1 < P(ANB).

(26) For all P, A holds P(A) =1 — P(Qsigma \ 4).

(27)  For all P, A holds P(A) < 1 if and only if 0 < P(Qgigma \ 4).

(

28) For all P, A holds P(Qgigma \ A) < 1 if and only if 0 < P(A).
We now define two new predicates. Let us consider Omega, Sigma, P, A,
B. We say that A and B are independent w.r.t P if and only if:
P(ANB)=P(A)-P(B).

Let us consider C'. We say that A, B and C' are independent w.r.t P if and only

) P((AWB)WC) (P(A) - P(B)) - P(C),
(i) P(ANB)=P(A)- P(B),
iii) P(AWC) P(A) - P(C),

) P(BNC)=P(B)-P(C).
We now state a number of propositions:
(29) A and B are independent w.r.t P if and only if P(ANB) = P(A)-P(B).
(30) A, B and C are independent w.r.t P if and only if the following condi-
tions are satisfied:

(i) P((ANB)NC)=(P(A)-P(B))-P(C),
(i) P(ANB) = P(A)-P(B),
(iii)  P(ANC) = P(A)-P(C),
(iv)  P(BNC)=P(B)-P(C).

iv
(31) For all A, B, P holds A and B are independent w.r.t P if and only if
B and A are independent w.r.t P.

(32) Forall A, B, C, P holds A, B and C are independent w.r.t P if and only
if P((ANB)NC) = (P(A)-P(B))-P(C) and A and B are independent w.r.t
P and B and C are independent w.r.t P and A and C are independent
w.r.t P.

(33) Forall A, B, C, P such that A, B and C are independent w.r.t P holds
B, A and C are independent w.r.t P.

(34) For all A, B, C, P such that A, B and C are independent w.r.t P holds
A, C' and B are independent w.r.t P.

(35) A and 0gjgmq are independent w.r.t P.

(36) A and Qgigmq are independent w.r.t P.

(37) For all A, B, P such that A and B are independent w.r.t P holds A
and Qgigma \ B are independent w.r.t P.
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(38) For all A, B, P such that A and B are independent w.r.t P holds
Qsigma \ A and Qgjgmq \ B are independent w.r.t P.

(39) For all A, B, C, P such that A and B are independent w.r.t P and A
and C are independent w.r.t P and B misses C holds A and BU C are
independent w.r.t P.

(40)  For all P, A, B such that A and B are independent w.r.t P and P(A) <
1 and P(B) < 1holds P(AUB) <1

Let us consider Omega, Sigma, P, B. Let us assume that 0 < P(B). The
functor P(P/B) yielding a probability on Sigma is defined by:

for every A holds (P(P/B))(A) = szg])g).

Next we state a number of propositions:

(41)  For all P, B such that 0 < P(B) for every A holds P(P/B)(A) =
P(ANB)
P(B) -

(42)  Forall P, B, A such that 0 < P(B) holds P(ANB) = P(P/B)(A)-P(B).

(43) For all P, A, B, C such that 0 < P(AN B) holds P(ANB)NC) =
(P(A) - P(P/A)(B)) - P(P/(AN B))(C).

(44) For all P, A, B, C such that C = B and 0 < P(B) and 0 < P(C)
holds P(A) = P(P/B)(A) - P(B)+ P(P/C)(A) - P(C).

(45)  Given P, A, Ay, Ay, A3. Suppose A; misses As and Az = (A1UA9)¢ and
0 < P(A;) and 0 < P(A3) and 0 < P(A3). Then P(A) = (P(P/A1)(A) -
P(A1) +P(P/A3)(A) - P(Ag)) + P(P/A3)(A) - P(As3).

(46)  For all P, A, B such that 0 < P(B) holds P(P/B)(A) = P(A) if and
only if A and B are independent w.r.t P.

(47)  For all P, A, B such that 0 < P(B) and P(B) < 1 and P(P/B)(A) =
P(P/(sigma \ B))(A) holds A and B are independent w.r.t P.

(48)  Forall P, A, B such that 0 < P(B) holds ZEHEN=L < p(P/B)(A).

(49) For all A, B, P such that 0 < P(A) and 0 < P(B) holds P(P/B)(A) =
P(P/A;Eg;P(A) )

(50)  Given B, Ay, A, P. Suppose 0 < P(B) and Ay = A1° and 0 < P(4;)
and 0 < P(Az). Then
: P/A1)(B
() P(P/B)(A1) = sepraymy pO PP AaE
)

.. P(P/A2)(B)-P(A
(i) P(P/B)(A2) = prprymri e

(B)-P(Az2)”

(B)-P(A2)"
(51) Given B, Ay, A, A3, P. Suppose 0 < P(B) and 0 < P(A;) and
0 < P(A3) and 0 < P(As) and A; misses Ay and A3z = (A1 U A2)¢. Then

(i) P(P/B)(A;) = P(P/A1)(B)

L

P(A1)
(FCPTAYB POAR PR A2E) P PP AT B Py
.. P(P B).-P
(i) P(P/B)(4A2) = wrmmy (AlHPEP?Ag;EB; PEA§§)+P(P/A3)(B>~P<A3>’
P(P/A3)(B)-P(A
(i) P(P/B)(A3) = B PO TP (P /A (B) P(As)) TP (P A3 ) (B P(Aa)-

(52) Forall A, B, Psuch that 0 < P(B) holds 1— Z2%me\) < p(P/B)(A).
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