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Summary. Some further theorems concerning probability, among
them the equivalent definition of probability are discussed, followed by
notions of independence of events and conditional probability and basic
theorems on them.

MML Identifier: PROB 2.

The notation and terminology used in this paper have been introduced in the
following papers: [8], [2], [4], [3], [6], [5], [9], [7], and [1]. For simplicity we
adopt the following convention: Omega denotes a non-empty set, f denotes
a function, m, n denote natural numbers, r, r1, r2, r3 denote real numbers,
seq, seq1 denote sequences of real numbers, Sigma denotes a σ-field of subsets
of Omega, ASeq, BSeq denote sequences of subsets of Sigma, P , P1 denote
probabilities on Sigma, and A, B, C, A1, A2, A3 denote events of Sigma. One
can prove the following propositions:

(1) (r − r1) + r2 = (r + r2) − r1.

(2) r ≤ r1 if and only if r < r1 or r = r1.

(3) For all r, r1, r2 such that 0 < r and r1 ≤ r2 holds r1

r ≤ r2

r .

(4) For all r, r1, r2, r3 such that r 6= 0 and r1 6= 0 holds r3

r1
= r2

r if and only
if r3 · r = r2 · r1.

(5) If seq is convergent and for every n holds seq1(n) = r − seq(n), then
seq1 is convergent and lim seq1 = r − lim seq.

(6) A∩Omega = A and Omega∩A = A and A∩ΩSigma = A and ΩSigma∩
A = A.

(7) If B misses C, then A ∩ B misses A ∩ C and B ∩ A misses C ∩ A.

The scheme SeqEx concerns a unary functor F and states that:
there exists f such that dom f = � and for every n holds f(n) = F(n)
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for all values of the parameter.
Let us consider Omega, Sigma, ASeq, n. Then ASeq(n) is an event of

Sigma.

Let us consider Omega, Sigma, ASeq. The functor
⋂

ASeq yielding an event
of Sigma is defined by:

⋂
ASeq = Intersection ASeq.

One can prove the following propositions:

(8)
⋂

ASeq = Intersection ASeq.

(9) For every B, ASeq there exists BSeq such that for every n holds
BSeq(n) = ASeq(n) ∩ B.

(10) For all B, ASeq, BSeq such that ASeq is nonincreasing and for every
n holds BSeq(n) = ASeq(n) ∩ B holds BSeq is nonincreasing.

(11) For every function f from Sigma into � and for all ASeq, n holds
(f · ASeq)(n) = f(ASeq(n)).

(12) For all ASeq, BSeq, B such that for every n holds BSeq(n) = ASeq(n)∩
B holds (Intersection ASeq) ∩ B = Intersection BSeq.

(13) For all P , P1 such that for every A holds P (A) = P1(A) holds P = P1.

(14) For every Omega and for every sequence ASeq of subsets of Omega
holds ASeq is nonincreasing if and only if for every n holds ASeq(n+1) ⊆
ASeq(n).

(15) For every sequence ASeq of subsets of Omega holds ASeq is nonde-
creasing if and only if for every n holds ASeq(n) ⊆ ASeq(n + 1).

(16) For all sequences ASeq, BSeq of subsets of Omega such that for every
n holds ASeq(n) = BSeq(n) holds ASeq = BSeq.

(17) For every sequence ASeq of subsets of Omega holds ASeq is nonin-
creasing if and only if Complement ASeq is nondecreasing.

Let us consider Omega, Sigma, ASeq. The functor ASeqc yields a sequence
of subsets of Sigma and is defined by:

ASeqc = Complement ASeq.

The following proposition is true

(18) ASeqc = Complement ASeq.

Let us consider Omega, Sigma, ASeq. We say that ASeq is pairwise disjoint
if and only if:

for all m, n such that m 6= n holds ASeq(m) misses ASeq(n).

We now state a number of propositions:

(19) ASeq is pairwise disjoint if and only if for all m, n such that m 6= n
holds ASeq(m) misses ASeq(n).

(20) Let P be a function from Sigma into � . Then P is a probability on
Sigma if and only if the following conditions are satisfied:

(i) for every A holds 0 ≤ P (A),
(ii) P (Omega) = 1,
(iii) for all A, B such that A misses B holds P (A ∪ B) = P (A) + P (B),
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(iv) for every ASeq such that ASeq is nondecreasing holds P · ASeq is
convergent and lim(P · ASeq) = P (Union ASeq).

(21) P ((A ∪ B) ∪ C) = (((P (A) + P (B)) + P (C)) − ((P (A ∩ B) + P (B ∩
C)) + P (A ∩ C))) + P ((A ∩ B) ∩ C).

(22) P (A \ A ∩ B) = P (A) − P (A ∩ B).

(23) For all P , A, B holds P (A ∩ B) ≤ P (B) and P (A ∩ B) ≤ P (A).

(24) For all P , A, B, C such that C = Bc holds P (A) = P (A∩B)+P (A∩C).

(25) For all P , A, B holds (P (A) + P (B)) − 1 ≤ P (A ∩ B).

(26) For all P , A holds P (A) = 1 − P (ΩSigma \ A).

(27) For all P , A holds P (A) < 1 if and only if 0 < P (ΩSigma \ A).

(28) For all P , A holds P (ΩSigma \ A) < 1 if and only if 0 < P (A).

We now define two new predicates. Let us consider Omega, Sigma, P , A,
B. We say that A and B are independent w.r.t P if and only if:

P (A ∩ B) = P (A) · P (B).
Let us consider C. We say that A, B and C are independent w.r.t P if and only
if:
(i) P ((A ∩ B) ∩ C) = (P (A) · P (B)) · P (C),
(ii) P (A ∩ B) = P (A) · P (B),
(iii) P (A ∩ C) = P (A) · P (C),
(iv) P (B ∩ C) = P (B) · P (C).

We now state a number of propositions:

(29) A and B are independent w.r.t P if and only if P (A∩B) = P (A)·P (B).

(30) A, B and C are independent w.r.t P if and only if the following condi-
tions are satisfied:

(i) P ((A ∩ B) ∩ C) = (P (A) · P (B)) · P (C),
(ii) P (A ∩ B) = P (A) · P (B),

(iii) P (A ∩ C) = P (A) · P (C),
(iv) P (B ∩ C) = P (B) · P (C).

(31) For all A, B, P holds A and B are independent w.r.t P if and only if
B and A are independent w.r.t P .

(32) For all A, B, C, P holds A, B and C are independent w.r.t P if and only
if P ((A∩B)∩C) = (P (A)·P (B))·P (C) and A and B are independent w.r.t
P and B and C are independent w.r.t P and A and C are independent
w.r.t P .

(33) For all A, B, C, P such that A, B and C are independent w.r.t P holds
B, A and C are independent w.r.t P .

(34) For all A, B, C, P such that A, B and C are independent w.r.t P holds
A, C and B are independent w.r.t P .

(35) A and ∅Sigma are independent w.r.t P .

(36) A and ΩSigma are independent w.r.t P .

(37) For all A, B, P such that A and B are independent w.r.t P holds A
and ΩSigma \ B are independent w.r.t P .
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(38) For all A, B, P such that A and B are independent w.r.t P holds
ΩSigma \ A and ΩSigma \ B are independent w.r.t P .

(39) For all A, B, C, P such that A and B are independent w.r.t P and A
and C are independent w.r.t P and B misses C holds A and B ∪ C are
independent w.r.t P .

(40) For all P , A, B such that A and B are independent w.r.t P and P (A) <
1 and P (B) < 1 holds P (A ∪ B) < 1.

Let us consider Omega, Sigma, P , B. Let us assume that 0 < P (B). The
functor P(P/B) yielding a probability on Sigma is defined by:

for every A holds (P(P/B))(A) = P (A∩B)
P (B) .

Next we state a number of propositions:

(41) For all P , B such that 0 < P (B) for every A holds P(P/B)(A) =
P (A∩B)

P (B) .

(42) For all P , B, A such that 0 < P (B) holds P (A∩B) = P(P/B)(A)·P (B).

(43) For all P , A, B, C such that 0 < P (A ∩ B) holds P ((A ∩ B) ∩ C) =
(P (A) · P(P/A)(B)) · P(P/(A ∩ B))(C).

(44) For all P , A, B, C such that C = Bc and 0 < P (B) and 0 < P (C)
holds P (A) = P(P/B)(A) · P (B) + P(P/C)(A) · P (C).

(45) Given P , A, A1, A2, A3. Suppose A1 misses A2 and A3 = (A1∪A2)c and
0 < P (A1) and 0 < P (A2) and 0 < P (A3). Then P (A) = (P(P/A1)(A) ·
P (A1) + P(P/A2)(A) · P (A2)) + P(P/A3)(A) · P (A3).

(46) For all P , A, B such that 0 < P (B) holds P(P/B)(A) = P (A) if and
only if A and B are independent w.r.t P .

(47) For all P , A, B such that 0 < P (B) and P (B) < 1 and P(P/B)(A) =
P(P/(ΩSigma \ B))(A) holds A and B are independent w.r.t P .

(48) For all P , A, B such that 0 < P (B) holds (P (A)+P (B))−1
P (B) ≤ P(P/B)(A).

(49) For all A, B, P such that 0 < P (A) and 0 < P (B) holds P(P/B)(A) =
P(P/A)(B)·P (A)

P (B) .

(50) Given B, A1, A2, P . Suppose 0 < P (B) and A2 = A1
c and 0 < P (A1)

and 0 < P (A2). Then

(i) P(P/B)(A1) = P(P/A1)(B)·P (A1)
P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2) ,

(ii) P(P/B)(A2) = P(P/A2)(B)·P (A2)
P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2) .

(51) Given B, A1, A2, A3, P . Suppose 0 < P (B) and 0 < P (A1) and
0 < P (A2) and 0 < P (A3) and A1 misses A2 and A3 = (A1 ∪A2)c. Then

(i) P(P/B)(A1) = P(P/A1)(B)·P (A1)
(P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2))+P(P/A3)(B)·P (A3) ,

(ii) P(P/B)(A2) = P(P/A2)(B)·P (A2)
(P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2))+P(P/A3)(B)·P (A3) ,

(iii) P(P/B)(A3) = P(P/A3)(B)·P (A3)
(P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2))+P(P/A3)(B)·P (A3) .

(52) For all A, B, P such that 0 < P (B) holds 1−
P (ΩSigma\A)

P (B) ≤ P(P/B)(A).
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