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Summary. Basic operations in the set of partial functions which
map a domain to the set of all real numbers are introduced. They in-
clude adition, substraction, multiplication, division, multipication by a
real number and also module. Main properties of these operations are
proved. A definition of the partial function bounded on a set (bounded
below and bounded above) is presented. There are theorems showing the
laws of conservation of totality and boundeness for operations of partial
functions. The characteristic function of a subset of a domain as a partial
function is redefined and a few properties are proved.

MML Identifier: RFUNCT_1.

The papers [6], [3], [1], [7], [5], [2], and [4] provide the terminology and notation
for this paper. For simplicity we follow the rules: X, Y will be sets, C will be
a non-empty set, ¢ will be an element of C, f, f1, f2, f3, g, g1 will be partial
functions from C to R, and r, r1, p, p1 will be real numbers. We now state two
propositions:

1) (-)t=-L

(2) If0<pandO0<randp<p;andr <ry, thenp-r <pj-rs.

We now define four new functors. Let us consider C, fi1, fo. The functor
f1 + f2 yields a partial function from C' to R and is defined as follows:

dom(f1 + f2) = dom f; Ndom fy and for every ¢ such that ¢ € dom(f; + f2)
holds (f1 + f2)(¢) = fi(c) + fa(c).
The functor f; — fo yielding a partial function from C' to R is defined as follows:

dom(f1 — f2) = dom f; Ndom fy and for every ¢ such that ¢ € dom(f; — f2)
holds (f1 — f2)(c) = fi(c) — fa(c).
The functor fi ¢ fo yielding a partial function from C to R is defined by:
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dom(f1 ¢ fa) = dom fi; N'dom fy and for every ¢ such that ¢ € dom(f; ¢ f2)
holds (f1 ¢ f2)(c) = fi(c) - fa(c).
The functor % yielding a partial function from C' to R is defined by:

dom % = dom f; N (dom f5 \ fs -1 {0}) and for every ¢ such that ¢ € dom %
holds %(C) = fi(c) - (f2(c)) ™"

Let us consider C, f, r. The functor r ¢ f yields a partial function from C
to R and is defined by:
dom(re f) = dom f and for every ¢ such that ¢ € dom(ro f) holds (ro f)(c) =
r- f(e).
We now define three new functors. Let us consider C, f. The functor |f]|
yields a partial function from C' to R and is defined by:
dom |f| = dom f and for every ¢ such that ¢ € dom |f| holds |f|(c) = |f(c)].
The functor — f yields a partial function from C' to R and is defined by:
dom(—f) = dom f and for every ¢ such that ¢ € dom(—f) holds (—f)(c) =
—f(e).
TI{(E f)unctor % yielding a partial function from C to R is defined by:
dom% =dom f\ f ~1 {0} and for every ¢ such that c € dom% holds %(c) =
(f(e))"
One can prove the following propositions:
(3) f= fi+ f2if and only if dom f = dom f; Ndom f5 and for every ¢ such
that ¢ € dom f holds f(c) = fi(c) + fa(c).
(4)  f= fi— foif and only if dom f = dom f; Ndom f5 and for every ¢ such
that ¢ € dom f holds f(c) = fi(c) — fa(c).
(5) f= fio fyif and only if dom f = dom f; Ndom f; and for every ¢ such
that ¢ € dom f holds f(c) = fi(c) - f2(c).
6) f= % if and only if dom f = dom f1 N (dom fo\ f2 =1 {0}) and for every
c such that ¢ € dom f holds f(c) = fi(c) - (fac)) ™.
(7) f =ro f1if and only if dom f = dom f; and for every ¢ such that
¢ € dom f holds f(c) =71 fi1(c).
(8) f = |f1| if and only if dom f = dom f; and for every ¢ such that
¢ € dom f holds f(c) = |f1(c)|.
(9) f = —f1 if and only if dom f = dom f; and for every ¢ such that
¢ € dom f holds f(c) = —fi(c).
(10) f1 = % if and only if dom f; = dom f \ f ~! {0} and for every c such
that ¢ € dom f; holds f1(c) = (f(c))~!.
dom% C domg and domg N (domg\ g ' {0}) = domg\ g ~* {0}.

(11)

(12)  dom(f10f2)\ (f1of2) 7" {0} = (dom f1\ f1 7 {0})N(dom f2\ fo ~' {0}).
(13) If c € dom %, then f(c) # 0.
(14)
(15)

+ {0} =0.
[fI {0} = f ' {0} and (—f) 7" {0} = f ' {0}
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dom + = dom(f | dom %)
7

If r # 0, then (ro f) =1 {0} = f ~1 {0}.
fit+fa=fot f1.
(fitf)+fs=f+(f2+1fs)
fiofa= fao f1.

(fiofa)o fs= fio(fao f3)
(fitfo)ofs=fiofs+ faof
fso(fi+ f2) = fao fi+ fz0 fo
ro(fiofa) = (rofi)o fo
ro(fiof2) = fio(rofa).
(fi—fa)ofs=fiofs— fao fa.
f3o fi—fasofa= fzo(fi — f2)
ro(fitfo)=rofitrofa
(r-p)of=ro(pof).
ro(fi—fo)=rofi—rofo
fi—fo=(=1)o(fa— f1)
fi—(fe+ f3) = (fi— f2) — f3.
lof=f.

fi—(fa—f3)=(fi— fo) + f3.
fi+ (fa—f3) = (f1 + f2) — f3.
[f1o fol = [fil o [fal.

o fl=lrlo|f]
—f=(=1ef.
—(=f =1

fi—fa=fi+ (=fa2).
fi—(=f2)=fi+ fa
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(51) }% _ ! fdznf
) gofi=ub
om -
(53) % bk 8
(54) —5 = —7f and i = —5,
69 fudp =ttt g =tk
o0 gt
(57) % %
(58) -2 = heggpel,
(59)  |4= {3t
(60 (i+ )1 X=Ff1 X+f2[Xand(f1+f2)[X:f1[X+f2and

)

(i+f)IX=fi+f2l

(61) (f1<>f2) X—fl X<>f2[Xand(f1<>f2)[X:f1[Xofgand
(f1<>f2)fX=f1<>f2fX

(62) (/)1 X=—fIXand X =5 and [f[ 1 X =|fTX].

(63) (f1—f2)TX:f1fX—fzfXaHd(fl—fz)fX:ﬁfX—fzand
(fi=f)I1 X=Ff—-fol

(64) % X = ?{? and fl [X = flfr;( and % X =

(65) (rof)1 X=rof]
(66)  f1 is total and fo is total if and only if f1 + fo is total but f; is total
and fy is total if and only if f; — fo is total but fy is total and f5 is total
if and only if f; o fo is total.

f is total if and only if r ¢ f is total.

f is total if and only if — f is total.

f is total if and only if |f] is total.

% is total if and only if f ~! {0} = 0 and f is total.

f1 is total and fo ~' {0} = () and f> is total if and only if % is total.
If f1 is total and fo is total, then (fi1 + f2)(c¢) = fi(c) + f2(c) and
(f1 = f2)(c) = fi(e) = fa(e) and (f1 0 f2)(c) = fi(c) - fa(c).

f1
fa1 X

S O
oo
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(73) If f is total, then (ro f)(c) =7 f(c).

(74) If f is total, then (—f)(c) = —f(c) and |f|(c) = |f(c)].
(75) If % is total, then %(c) = (f(e)~h

(76) If fi is total and f—12 is total, then %(c) = fi1(c) - (f2(c)) ™t

Let us consider X, C. Then Xx ¢ is a partial function from C to R.
Next we state a number of propositions:
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(77)  f =Xx, if and only if dom f = C and for every c holds if ¢ € X, then
fle) =1Dbutif ¢ ¢ X, then f(c) =0.

(78)  Xx,c is total.

(79) ce X ifand only if Xx c(c) =1

(80) c¢¢ X if and only if Xx c(c) = 0.

(81) ceC\ X if and only if Xx c(c) =0.

(52) Xpole) =0,

(83) Xccle) =1.

(84) Xx,c(c) # 1if and only if Xx c(c) = 0.
(85) If XNY =0, then Xx ¢ + Xy,c = Xxuv.C-
(

86) Xx,coXyc=Xxnv,C-
We now define two new predicates. Let us consider C, f, Y. We say that f
is upper bounded on Y if and only if:
there exists r such that for every ¢ such that ¢ € Y Ndom f holds f(c) <r.
We say that f is lower bounded on Y if and only if:
there exists r such that for every ¢ such that ¢ € Y Ndom f holds r < f(c).

Let us consider C', f, Y. We say that f is bounded on Y if and only if:
f is upper bounded on Y and f is lower bounded on Y.

The following propositions are true:

(87)  f is upper bounded on Y if and only if there exists r such that for every
¢ such that ¢ € Y N'dom f holds f(c) <r.

(88)  f is lower bounded on Y if and only if there exists r such that for every
¢ such that ¢ € Y Ndom f holds r < f(c).

(89)  f is bounded on Y if and only if f is upper bounded on Y and f is
lower bounded on Y.

(90)  f is bounded on Y if and only if there exists r such that for every c
such that ¢ € Y Ndom f holds |f(c)| < r.

(91) If Y C X and f is upper bounded on X, then f is upper bounded on
Y but if Y C X and f is lower bounded on X, then f is lower bounded
onY butif Y C X and f is bounded on X, then f is bounded on Y.

(92) If f is upper bounded on X and f is lower bounded on Y, then f is
bounded on X NY.

(93) If X Ndom f = {), then f is bounded on X.
(94) If0=r, then ro f is bounded on Y.

(95) If f is upper bounded on Y and 0 < r, then r ¢ f is upper bounded on
Y but if f is upper bounded on Y and r < 0, then r ¢ f is lower bounded
onY.

(96) If f is lower bounded on Y and 0 < r, then r ¢ f is lower bounded on
Y but if f is lower bounded on Y and r < 0, then r ¢ f is upper bounded
onY.

(97) If f is bounded on Y, then r ¢ f is bounded on Y.
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(98) | f] is lower bounded on X.

(99) If f is bounded on Y, then |f| is bounded on Y and —f is bounded on
Y

(100)  If fy is upper bounded on X and fs is upper bounded on Y, then fi+ fo
is upper bounded on X NY but if f; is lower bounded on X and fs is
lower bounded on Y, then fi + f5 is lower bounded on X N'Y but if f;
is bounded on X and f> is bounded on Y, then f; + fo is bounded on
XxnY.

(101) If f1 is bounded on X and f; is bounded on Y, then f; ¢ fo is bounded
on X NY and f; — fy is bounded on X NY.

(102) If f is upper bounded on X and f is upper bounded on Y, then f is
upper bounded on X UY.

(103) If f is lower bounded on X and f is lower bounded on Y, then f is
lower bounded on X UY'.

(104) If f is bounded on X and f is bounded on Y, then f is bounded on
XUY.

(105) If f; is a constant on X and fo is a constant on Y, then f; + fo is a
constant on X NY and f; — fo is a constant on X NY and f1¢ fy is a
constant on X NY.

(106) If f is a constant on Y, then po f is a constant on Y.

(107)  If f is a constant on Y, then |f| is a constant on Y and — f is a constant
onY.

(108) If f is a constant on Y, then f is bounded on Y.

(109) If f is a constant on Y, then for every r holds r ¢ f is bounded on Y
and — f is bounded on Y and |f| is bounded on Y.

(110)  If f; is upper bounded on X and fs is a constant on Y, then fi + f5
is upper bounded on X NY but if f; is lower bounded on X and f5 is
a constant on Y, then f; + fy is lower bounded on X NY but if f; is
bounded on X and f5 is a constant on Y, then f; + fo is bounded on
XnY.
(111) (i)  If fy is upper bounded on X and fs is a constant on Y, then f; — f5
is upper bounded on X NY,
(ii)  if fy is lower bounded on X and fs is a constant on Y, then f; — fs is
lower bounded on X NY,
(iii)  if f1 is bounded on X and f5 is a constant on Y, then f; — f5 is bounded
on X NY and fo — f1 is bounded on X NY and f; ¢ f5 is bounded on
XnY.

References

[1] Czestaw Byliniski. Basic functions and operations on functions. Formalized
Mathematics, 1(1):245-254, 1990.



PARTIAL FUNCTIONS FROM A DOMAIN TO THE SET ...

Czestaw Bylinski. Partial functions. Formalized Mathematics, 1(2):357—
367, 1990.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized
Mathematics, 1(1):35-40, 1990.

Jarostaw Kotowicz. Partial functions from a domain to a domain. Formal-
ized Mathematics, 1(4):697-702, 1990.

Jan Popiolek. Some properties of functions modul and signum. Formalized
Mathematics, 1(2):263-264, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathemat-
ics, 1(1):9-11, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67—
71, 1990.

Received May 27, 1990

709



