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Summary. Filters of a lattice, maximal filters (ultrafilters), op-
eration to create a filter generating by an element or by a nonempty set
of elements of the lattice are discussed. Besides, there are introduced
implicative lattices such that for every two elements there is an element
being pseudo-complement of them. Some facts concerning these concepts
are presented too, i.e. for any proper filter there exists an ultrafilter
consists it.

MML Identifier: FILTER_O.

The articles [3], [1], [4], [7], [5], [6], and [2] provide the notation and terminology
for this paper. We adopt the following convention: L is a lattice, p, p1, q, q1, T,
ry1 are elements of the carrier of L, and x is arbitrary. Let F be a non-empty
set, and let p be an element of E. Then {p} is a non-empty subset of E.

Let E be a non-empty set, and let D1, Do be non-empty subsets of E. Then
D1 U Dy is a non-empty subset of F.

The following propositions are true:

(1) IfpCgq thenrUpCrUgand pUr CgUr and pUr C rlUg and
rUpCqlr.

IfpCr,thenpNgCrand gMpCr.
fpEr, thenpCgllr and pE riug.
If pEp1and ¢ E q1, then pUg E p1 Ugr and pUg & q1 Ups.
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IfpCprand ¢ C g1, then pMgCEpi Mg and pMg E ¢q Mpq.

6 IfpErandgCr, then plgCr.

7) IfrCpandrCq,thenr Cplg.

Let us consider L. A non-empty subset of the carrier of L is said to be a
filter of L if:
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(Def.1) p€it and g € it if and only if pMq € it.
One can prove the following two propositions:
(8)  For every non-empty subset D of the carrier of L holds D is a filter of
L if and only if for all p, ¢ holds p € D and ¢ € D if and only if pfg € D.
(9)  For every non-empty subset D of the carrier of L holds D is a filter of
L if and only if for all p, ¢ such that p € D and ¢ € D holds pMq € D
and for all p, ¢ such that p € D and p C ¢ holds ¢ € D.

In the sequel H, F' are filters of L. We now state several propositions:

(10) Ifpe H,thenplUqge Hand qUp € H.

(11)  There exists p such that p € H.

(12) If L is an upper bound lattice, then T € H.

(13) If L is an upper bound lattice, then {T 1} is a filter of L.
(14)  If {p} is a filter of L, then L is an upper bound lattice.
(15)  The carrier of L is a filter of L.

Let us consider L. The functor [L] yields a filter of L and is defined by:
(Def.2)  [L] = the carrier of L.
One can prove the following proposition
(16)  [L] = the carrier of L.

Let us consider L, p. The functor [p] yields a filter of L and is defined as
follows:

(Det.3) [p]={q:pCq}.

One can prove the following four propositions:

a7 [pl={q:pEq}

(18) g € [p| if and only if p C g.

(19) pe[pland pUq € [p] and qUp € [p].

(20) If L is a lower bound lattice, then [L] = [L].

Let us consider L, F. We say that F' is ultrafilter if and only if:
(Def.4)  F # the carrier of L and for every H such that FF C H and H # the
carrier of L holds F = H.
One can prove the following four propositions:

(21)  F is ultrafilter if and only if F' # the carrier of L and for every H such
that £' C H and H # the carrier of L holds F' = H.

(22) If L is a lower bound lattice, then for every F' such that F' # the carrier
of L there exists H such that F' C H and H is ultrafilter.

(23)  If there exists r such that p M r # p, then [p] # the carrier of L.
(24) If L is a lower bound lattice and p # L1, then there exists H such that
p € H and H is ultrafilter.

In the sequel D is a non-empty subset of the carrier of L. Let us consider L,
D. The functor [D] yields a filter of L and is defined by:
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(Def.5) D C [D] and for every F such that D C F holds [D] C F.

One can prove the following two propositions:
(25) D C [D] and for every F such that D C F holds [D] C F.
(26) [F]=F.
In the sequel Dy, D5 will be non-empty subsets of the carrier of L. We now
state several propositions:
(27) If D1 C Do, then [Dl] - [Dg]
(28) [[D]] € [D].
(29) If p € D, then [p] C [D].
(30) If D = {p}, then [D] = [p].
(31) If L is a lower bound lattice and L € D, then [D] = [L] and [D] = the
carrier of L.

(32) If L is a lower bound lattice and L € F, then F' = [L] and F' = the
carrier of L.

Let us consider L, F. We say that F' is prime if and only if:
(Def.6) pUge Fifandonlyifp e Forqe€ F.

One can prove the following two propositions:

(33)  F'is prime if and only if for all p, ¢ holds plUg € F' if and only if p € F
orq€kF.

(34) If L is a boolean lattice, then for all p, ¢ holds pM (p° U ¢) C ¢ and for
every r such that pMr C ¢ holds » C p® U gq.

A lattice is called a implicative lattice if:
(Def.7)  for every elements p, g of the carrier of it there exists an element r of
the carrier of it such that pMr C ¢ and for every element ry of the carrier
of it such that pMrq C ¢ holds r1 C 7.
One can prove the following proposition

(35) L is a implicative lattice if and only if for every p, ¢ there exists r such
that pMr E ¢ and for every r1 such that plrqy E ¢ holds r; C 7.

Let us consider L, p, q. Let us assume that L is a implicative lattice. The
functor p = ¢ yields an element of the carrier of L and is defined as follows:

(Def.8)  pM(p= q) C q and for every r such that pMr C ¢ holds r C p = q.

The following proposition is true

(36) If L is a implicative lattice, then for all p, ¢, r holds » = p = ¢ if and
only if pMr C ¢ and for every ry such that pMry C ¢ holds 1 C r.

In the sequel I will denote a implicative lattice and ¢ will denote an element
of the carrier of I. The following three propositions are true:

(37) I is an upper bound lattice.
(38) i=i=Ty.
(39) I is a distributive lattice.
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In the sequel B is a boolean lattice and F4, Hy are filters of B. Next we state
the proposition
(40) B is a implicative lattice.
We see that the implicative lattice is a distributive lattice.

For simplicity we follow the rules: I will be a implicative lattice, 4, j, k will
be elements of the carrier of I, D3 will be a non-empty subset of the carrier of
I, and F5 will be a filter of I. The following propositions are true:

(41) Ifie€ Fy and i = j € Fy, then j € Fb.
(42) If j € F5, then i = j € F5.
Let us consider L, Dy, Dy. The functor Dy M D5 yielding a non-empty subset
of the carrier of L is defined as follows:
(Def9) D1|_|D2:{p|_|q:p€D1/\q€D2}.
Next we state four propositions:
(43) D1 Dy ={pMq:p€ Dy Aqé€ Ds}.
(44) Ifpe Dy and g € Dy, then pfg € D1 M Dy and ¢Mp € Dy M Do.
(45) If © € Dy M Dy, then there exist p, ¢ such that x = pMq and p € D,
and g € Ds.
(46) D11 Dy = Dy M Dy.
Let L be a distributive lattice, and let F3, Fy be filters of L. Then F31 Fy
is a filter of L.

Let L be a boolean lattice, and let F3, Fy be filters of L. Then F3 M Fy is a
filter of L.

One can prove the following propositions:
(47) [Dl U Dg] = [[Dl] U Dg] and [Dl U Dg] = [Dl @] [DQH
(48) [FUH]={r:V,[pNq¢ErApecFAqec Hl}.
(49) FCFMNHand HCFNH.
(50) [FUH]=I[FNH]
In the sequel F3, Fy are filters of I. The following four propositions are true:
(51) [FgUF4] = F3MFy.
(52) [F1UH1]:F1|_|H1.
(563) If j € [Ds U{i}], then i = j € [Ds].
(54) Hfi=jeFyand j= k€ F,, theni =k € F;.
In the sequel a, b, ¢ will denote elements of the carrier of B. One can prove
the following propositions:
(55) a=b=a‘Lld.
(56) aCbifand only if aMb® = Lp.
(57)  Fy is ultrafilter if and only if F} # the carrier of B and for every a holds
a € Fyora® e F.
(58) Fy # [B] and Fj is prime if and only if F} is ultrafilter.
(59) If Fy is ultrafilter, then for every a holds a € Fy if and only if a© ¢ Fj.
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(60) If a # b, then there exists Fy such that F} is ultrafilter but a € F; and
b¢ Frora¢ Fyand b € Fy.
In the sequel o1, 09 are binary operations on F. Let us consider L, F'. The
functor Ly yielding a lattice is defined as follows:
(Def.10)  there exist 01, 02 such that 0; = (the join operation of L) | [ F, F'] and
02 = (the meet operation of L) | [ F, F'{ and Lp = (F,01,02).
In the sequel K is a lattice. Next we state a number of propositions:
(61) K = Lp if and only if there exist o1, oy such that o; = (the join
operation of L) | [ F, F'] and 0o = (the meet operation of L) | [ F, F']
and K = (F,01,09).
(62) Ly =L.
(63)  The carrier of Ly = F and the join operation of Ly = (the join opera-
tion of L) | [ F, F'] and the meet operation of Ly = (the meet operation
of L) | | F, F'{.
(64) For all p, g and for all elements p’, ¢’ of the carrier of Lr such that
p=p and g=¢ holds plUg=p'Uq¢ and plg=9p'm¢.
(65)  For all p, g and for all elements p’, ¢’ of the carrier of Lr such that
p=p and ¢ = ¢’ holds p C ¢ if and only if p’ C ¢'.
If L is an upper bound lattice, then Ly is an upper bound lattice.
If L is a modular lattice, then Lg is a modular lattice.

(=)}
oo

If L is a distributive lattice, then Lg is a distributive lattice.

D
=)

If L is a implicative lattice, then L is a implicative lattice.
Ly is a lower bound lattice.

Lo =P

If L is an upper bound lattice, then Toy, =Tr

~
R =
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If L is an upper bound lattice, then L, is a bound lattice.

If L is a complemented lattice and L is a modular lattice, then Ly, is a
complemented lattice.

(75)  If L is a boolean lattice, then L, is a boolean lattice.

Let us consider L, p, g. The functor p < ¢ yielding an element of the carrier
of L is defined by:

(Def1l) p&eqg=p=qMNqg=p.
Next we state three propositions:
(76) peqg=p=qNqg=p.
(77) peqg=qep.
(78) Ifiw jeFrand jo ke Fy theni e ke Fy.
Let us consider L, F'. The functor =f yielding a binary relation is defined
as follows:

(Def.12)  field = C the carrier of L and for all p, ¢ holds (p, q) € = if and only
ifpeqgelF.
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In the sequel R will denote a binary relation. We now state several proposi-
tions:

(79) R = =p if and only if field R C the carrier of L and for all p, ¢ holds
(p,q) € Rif and only if p<= q € F.

80 =p is a binary relation on the carrier of L.

81

82

83

84

If L is a implicative lattice, then = is reflexive in the carrier of L.
=p is symmetric in the carrier of L.
If L is a implicative lattice, then =p is transitive in the carrier of L.

N N N N N
~— — — ~— ~—

If L is a implicative lattice, then =p is an equivalence relation of the
carrier of L.

(85) If L is a implicative lattice, then field =p = the carrier of L.

Let us consider I, F5. Then =p, is an equivalence relation of the carrier of
1.

Let us consider B, F;. Then =p, is an equivalence relation of the carrier of
B

Let us consider L, F, p, ¢. The predicate p =p ¢ is defined by:

(Def13) peqeF.
Next we state several propositions:

86
8
88
89
90

p=r qif and only if p < g € F.

p =F q if and only if (p,q) € =p.

i =p, ¢ and a =F, a.

If p=p q, then ¢ =p p.

Ifi =p, j and j =p, k, then i =, k but if a =p, b and b =g, ¢, then
a =p, C

J

A~ N N N
~— — — N~ —
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