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Summary. Notions of linear independence and dependence of set
of vectors, the subspace generated by a set of vectors and basis of real
linear space are introduced. Some theorems concerning those notion, are
proved.
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The papers [6], [2], [1], [3], [11], [4], [10], [9], [5], [8], and [7] provide the notation
and terminology for this paper. For simplicity we follow a convention: x is
arbitrary, a, b are real numbers, V is a real linear space, W , W1, W2, W3 are
subspaces of V , v, v1, v2 are vectors of V , A, B are subsets of the vectors of
V , L, L1, L2 are linear combinations of V , l is a linear combination of A, F ,
G are finite sequences of elements of the vectors of V , f is a function from the
vectors of V into � , X, Y , Z are sets, M is a non-empty family of sets, and C1

is a choice function of M . One can prove the following four propositions:

(1)
∑

(L1 + L2) =
∑

L1 +
∑

L2.

(2)
∑

(a · L) = a ·
∑

L.

(3)
∑

(−L) = −
∑

L.

(4)
∑

(L1 − L2) =
∑

L1 −
∑

L2.

We now define two new predicates. Let us consider V , A. We say that A is
linearly independent if and only if:

(Def.1) for every l such that
∑

l = 0V holds support l = ∅.

We say that A is linearly dependent if and only if A is not linearly independent.

One can prove the following propositions:

(5) A is linearly independent if and only if for every l such that
∑

l = 0V

holds support l = ∅.

(6) If A ⊆ B and B is linearly independent, then A is linearly independent.

(7) If A is linearly independent, then 0V /∈ A.

(8) ∅the vectors of V is linearly independent.
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(9) {v} is linearly independent if and only if v 6= 0V .

(10) {0V } is linearly dependent.

(11) If {v1, v2} is linearly independent, then v1 6= 0V and v2 6= 0V .

(12) {v, 0V } is linearly dependent and {0V , v} is linearly dependent.

(13) v1 6= v2 and {v1, v2} is linearly independent if and only if v2 6= 0V and
for every a holds v1 6= a · v2.

(14) v1 6= v2 and {v1, v2} is linearly independent if and only if for all a, b
such that a · v1 + b · v2 = 0V holds a = 0 and b = 0.

Let us consider V , A. The functor Lin(A) yields a subspace of V and is
defined by:

(Def.2) the vectors of Lin(A) = {
∑

l}.

We now state four propositions:

(15) If the vectors of W = {
∑

l}, then W = Lin(A).

(16) The vectors of Lin(A) = {
∑

l}.

(17) x ∈ Lin(A) if and only if there exists l such that x =
∑

l.

(18) If x ∈ A, then x ∈ Lin(A).

The following propositions are true:

(19) Lin(∅the vectors of V ) = 0V .

(20) If Lin(A) = 0V , then A = ∅ or A = {0V }.

(21) If A = the vectors of W , then Lin(A) = W .

(22) If A = the vectors of V , then Lin(A) = V .

(23) If A ⊆ B, then Lin(A) is a subspace of Lin(B).

(24) If Lin(A) = V and A ⊆ B, then Lin(B) = V .

(25) Lin(A ∪ B) = Lin(A) + Lin(B).

(26) Lin(A ∩ B) is a subspace of Lin(A) ∩ Lin(B).

(27) If A is linearly independent, then there exists B such that A ⊆ B and
B is linearly independent and Lin(B) = V .

(28) If Lin(A) = V , then there exists B such that B ⊆ A and B is linearly
independent and Lin(B) = V .

Let us consider V . A subset of the vectors of V is called a basis of V if:

(Def.3) it is linearly independent and Lin(it) = V .

The following proposition is true

(29) If A is linearly independent and Lin(A) = V , then A is a basis of V .

In the sequel I is a basis of V . Next we state a number of propositions:

(30) I is linearly independent.

(31) Lin(I) = V .

(32) If A is linearly independent, then there exists I such that A ⊆ I.

(33) If Lin(A) = V , then there exists I such that I ⊆ A.
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(34) If Z 6= ∅ and Z is finite and for all X, Y such that X ∈ Z and Y ∈ Z
holds X ⊆ Y or Y ⊆ X, then

⋃
Z ∈ Z.

(35) If ∅ /∈ M , then dom C1 = M and rng C1 ⊆
⋃

M .

(36) x ∈ 0V if and only if x = 0V .

(37) If W1 is a subspace of W3, then W1 ∩ W2 is a subspace of W3.

(38) If W1 is a subspace of W2 and W1 is a subspace of W3, then W1 is a
subspace of W2 ∩ W3.

(39) If W1 is a subspace of W3 and W2 is a subspace of W3, then W1 + W2

is a subspace of W3.

(40) If W1 is a subspace of W2, then W1 is a subspace of W2 + W3.

(41) f · (F � G) = (f · F ) � (f · G).
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