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Summary. We define the sum of finite sequences of vectors in
vector space. Theorems concerning those sums are proved.

MML Identifier: VECTSP_3.

The terminology and notation used here have been introduced in the following
papers: [7], [2], [3], [5], [6], [4], and [1]. Let F be a field. An element of F' is an
element of the carrier of F.

For simplicity we follow a convention: x will be arbitrary, G; will denote a
field, a will denote an element of Gy, V will denote a vector space over G1, and

v, v1, V2, w, u will denote vectors of V. Let us consider G, V', . The predicate
x € V is defined by:

(Def.1)  x € the carrier of the carrier of V.

Next we state two propositions:

(1) 2 eV if and only if 2 € the carrier of the carrier of V.

(2) wveV.

We follow a convention: F', G, H will be finite sequences of elements of the
carrier of the carrier of V', f will be a function from N into the carrier of the
carrier of V', and 4, j, k, n will be natural numbers. Let us consider G4, V, f,
j. Then f(j) is a vector of V.

Let us consider G1, V', F. The functor ) F' yielding a vector of V' is defined
as follows:

(Def.2)  there exists f such that Y. F = f(len F') and f(0) = Oy and for all j,
v such that j <len F and v = F(j + 1) holds f(j + 1) = f(j) + v.

We now state a number of propositions:

(3) If there exists f such that u = f(len F) and f(0) = ©y and for all 7,
v such that j < len F and v = F(j + 1) holds f(j +1) = f(j) + v, then
u=>y F.
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(4) There exists f such that Y F = f(len F') and f(0) = Oy and for all 7,
v such that j <len F and v = F(j + 1) holds f(j + 1) = f(j) + v.
(5) 1If k € Segn and len F' = n, then F(k) is a vector of V.
(6) IflenF =lenG+1and G = F | Seg(lenG) and v = F(len F), then
YF=%G+w.
() Y(F~G)=>XF+>G.
(8) IflenF = lenG and len F = len H and for every k such that k €
Seg(len F') holds H (k) = miF' + m;G, then > H =Y F + > G.
(9) Iflen F =lenG and for all k, v such that k € Seg(len F') and v = G(k)
holds F(k) =a-v, then > F =a-Y G.
(10) Iflen F =lenG and for every k such that k € Seg(len F') holds G(k) =
a-mpF, then > G=a-> F.
(11) Iflen F =lenG and for all k, v such that k& € Seg(len F') and v = G(k)
holds F (k) = —v, then }_ FF = = G.
(12) Iflen F =lenG and for every k such that k € Seg(len F') holds G(k) =
—7mpF, then > G=—>"F.
(13) IflenF = lenG and len F = len H and for every k such that k €
Seg(len F') holds H (k) = miF' — m;G, then Y H =Y F -3 G.
(14) Ifrng F =rngG and F is one-to-one and G is one-to-one, then > F =
> G.
(15)  For all F', G and for every permutation f of dom F' such that len F' =
len G and for every i such that ¢ € dom G holds G(i) = F(f(i)) holds

S F=YG.

(16)  For every permutation f of dom F such that G = F-f holds > F = > G.
(17) > Ethe carrier of the carrier of V = Oy
(18) > {(v) =w.

(19) > {v,u) =v+u.

(20) > {v,u,w) = (v+u) + w.

(21) @ >"€the carrier of the carrier of V = Ov.
(22) a-Y(v)=a-wv.

(23) a-Y(v,u)=a-v+a-u.

(24) a-Y(v,u,w)=(a-v+a-u)+a-w.
(25) = 3" €the carrier of the carrier of V = OV
(26) —>(v) =—w.

27 =X (v,u) =(—v) —u.

(28) —> (v,u,w) = ((—v) —u) —w.

(29)  X(v,w) =3 (w,v).

(30)  X(v,w) = 3(v) + X(w).

(31) X(6v,0v)=06y.

(32) > (Oy,v) =vand > (v,0y) =v.
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(33) > (v,—v) = Oy and > (—v,v) = Oy.

34) Y (v,—w)=v—wand Y (—w,v) =v—w.

(35) Y (-v,—w)=—(v+w) and > (—w, —v) = —(v+ w).

(36) 2w, v,w) = (3o(uw) + 22{v)) + Xo(w).

37 S{u,v,w) =Y (u,v) +w.

(38) S (u,v,w) =Y (v,w) +u

(39) S {u,v,w) =Y (u,w) + v.

(40) S (u,v,w) =Y (u, w,v).

(41) S {u,v,w) = Y (v, u, w).

(42) S (u,v,w) =Y (v, w,u).

(43) Y (u,v,w) =Y (w,u,v).

(44) S (u,v,w) = > (w,v,u).

(45)  >(Ov,0y,0y) =06y

(46) > (Oy,0y,v) =v and > (Oy,v,0y) =v and > (v, Oy, Oy) = v.

47) Y (Oy,u,v) =u+wvand Y (u,v,0y) =u+v and > (u, Oy, v) = u+wv.
(48) Iflen F =0, then > F = Oy.

(49) Iflen F =1, then >  F = F(1).

(50) Iflen F =2 and vy = F(1) and vo = F(2), then Y F = vy + vsa.

(51) IflenF =3 and v; = F(1) and vy = F(2) and v = F(3), then > F =

(Ul + vg) + .
(52) v—v=0y.
(53)  —(v+w)=(-v)+ (-w).
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