## Finite Sums of Vectors in Vector Space

Wojciech A. Trybulec Warsaw University

**Summary.** We define the sum of finite sequences of vectors in vector space. Theorems concerning those sums are proved.

MML Identifier: VECTSP\_3.

The terminology and notation used here have been introduced in the following papers: [7], [2], [3], [6], [6], [4], and [1]. Let F be a field. An element of F is an element of the carrier of F.

For simplicity we follow a convention: x will be arbitrary,  $G_1$  will denote a field, a will denote an element of  $G_1$ , V will denote a vector space over  $G_1$ , and  $v, v_1, v_2, w, u$  will denote vectors of V. Let us consider  $G_1, V, x$ . The predicate  $x \in V$  is defined by:

(Def.1)  $x \in \text{the carrier of the carrier of } V$ .

Next we state two propositions:

- (1)  $x \in V$  if and only if  $x \in$  the carrier of the carrier of V.
- (2)  $v \in V$ .

We follow a convention: F, G, H will be finite sequences of elements of the carrier of the carrier of V, f will be a function from  $\mathbb{N}$  into the carrier of the carrier of V, and i, j, k, n will be natural numbers. Let us consider  $G_1$ , V, f, f. Then f(j) is a vector of V.

Let us consider  $G_1$ , V, F. The functor  $\sum F$  yielding a vector of V is defined as follows:

(Def.2) there exists f such that  $\sum F = f(\ln F)$  and  $f(0) = \Theta_V$  and for all j, v such that  $j < \ln F$  and v = F(j+1) holds f(j+1) = f(j) + v.

We now state a number of propositions:

(3) If there exists f such that  $u = f(\ln F)$  and  $f(0) = \Theta_V$  and for all j, v such that  $j < \ln F$  and v = F(j+1) holds f(j+1) = f(j) + v, then  $u = \sum F$ .

- (4) There exists f such that  $\sum F = f(\ln F)$  and  $f(0) = \Theta_V$  and for all j, v such that  $j < \ln F$  and v = F(j+1) holds f(j+1) = f(j) + v.
- (5) If  $k \in \operatorname{Seg} n$  and  $\operatorname{len} F = n$ , then F(k) is a vector of V.
- (6) If len F = len G + 1 and  $G = F \upharpoonright \text{Seg}(\text{len } G)$  and v = F(len F), then  $\sum F = \sum G + v$ .
- (7)  $\sum (F \cap G) = \sum F + \sum G$ .
- (8) If len F = len G and len F = len H and for every k such that  $k \in \text{Seg}(\text{len } F)$  holds  $H(k) = \pi_k F + \pi_k G$ , then  $\sum H = \sum F + \sum G$ .
- (9) If len F = len G and for all k, v such that  $k \in \text{Seg}(\text{len } F)$  and v = G(k) holds  $F(k) = a \cdot v$ , then  $\sum F = a \cdot \sum G$ .
- (10) If len F = len G and for every k such that  $k \in \text{Seg}(\text{len } F)$  holds  $G(k) = a \cdot \pi_k F$ , then  $\sum G = a \cdot \sum F$ .
- (11) If len F = len G and for all k, v such that  $k \in \text{Seg}(\text{len } F)$  and v = G(k) holds F(k) = -v, then  $\sum F = -\sum G$ .
- (12) If len F = len G and for every k such that  $k \in \text{Seg}(\text{len } F)$  holds  $G(k) = -\pi_k F$ , then  $\sum G = -\sum F$ .
- (13) If len F = len G and len F = len H and for every k such that  $k \in \text{Seg}(\text{len } F)$  holds  $H(k) = \pi_k F \pi_k G$ , then  $\sum H = \sum F \sum G$ .
- (14) If rng  $F = \operatorname{rng} G$  and F is one-to-one and G is one-to-one, then  $\sum F = \sum G$ .
- (15) For all F, G and for every permutation f of dom F such that len F = len G and for every i such that  $i \in \text{dom } G$  holds G(i) = F(f(i)) holds  $\sum F = \sum G$ .
- (16) For every permutation f of dom F such that  $G = F \cdot f$  holds  $\sum F = \sum G$ .
- (17)  $\sum \varepsilon_{\text{the carrier of the carrier of }V} = \Theta_V.$
- (18)  $\sum \langle v \rangle = v$ .
- (19)  $\sum \langle v, u \rangle = v + u$ .
- (20)  $\sum \langle v, u, w \rangle = (v+u) + w.$
- (21)  $a \cdot \sum \varepsilon_{\text{the carrier of the carrier of } V} = \Theta_V.$
- $(22) a \cdot \sum \langle v \rangle = a \cdot v.$
- (23)  $a \cdot \sum \langle v, u \rangle = a \cdot v + a \cdot u.$
- (24)  $a \cdot \sum \langle v, u, w \rangle = (a \cdot v + a \cdot u) + a \cdot w.$
- (25)  $-\sum \varepsilon_{\text{the carrier of the carrier of }V} = \Theta_V.$
- $(26) -\sum \langle v \rangle = -v.$
- $(27) -\sum \langle v, u \rangle = (-v) u.$
- $(28) -\sum \langle v, u, w \rangle = ((-v) u) w.$
- (29)  $\sum \langle v, w \rangle = \sum \langle w, v \rangle$ .
- (30)  $\sum \langle v, w \rangle = \sum \langle v \rangle + \sum \langle w \rangle.$
- (31)  $\sum \langle \Theta_V, \Theta_V \rangle = \Theta_V.$
- (32)  $\sum \langle \Theta_V, v \rangle = v \text{ and } \sum \langle v, \Theta_V \rangle = v.$

- $\sum \langle v, -v \rangle = \Theta_V$  and  $\sum \langle -v, v \rangle = \Theta_V$ . (33)
- $\sum \langle v, -w \rangle = v w$  and  $\sum \langle -w, v \rangle = v w$ . (34)
- $\sum \langle -v, -w \rangle = -(v+w)$  and  $\sum \langle -w, -v \rangle = -(v+w)$ . (35)
- $\sum \langle u, v, w \rangle = (\sum \langle u \rangle + \sum \langle v \rangle) + \sum \langle w \rangle.$ (36)
- $\sum \langle u, v, w \rangle = \sum \langle u, v \rangle + w.$ (37)
- $\sum \langle u, v, w \rangle = \sum \langle v, w \rangle + u.$ (38)
- (39) $\sum \langle u, v, w \rangle = \sum \langle u, w \rangle + v.$
- $\sum \langle u, v, w \rangle = \sum \langle u, w, v \rangle.$ (40)
- $\sum \langle u, v, w \rangle = \sum \langle v, u, w \rangle.$ (41)
- $\sum \langle u, v, w \rangle = \sum \langle v, w, u \rangle.$ (42)
- $\sum \langle u, v, w \rangle = \sum \langle w, u, v \rangle.$ (43)
- $\sum \langle u, v, w \rangle = \sum \langle w, v, u \rangle.$ (44)
- $\sum \langle \Theta_V, \Theta_V, \Theta_V \rangle = \Theta_V.$ (45)
- $\sum \langle \Theta_V, \Theta_V, v \rangle = v$  and  $\sum \langle \Theta_V, v, \Theta_V \rangle = v$  and  $\sum \langle v, \Theta_V, \Theta_V \rangle = v$ . (46)
- $\sum \langle \Theta_V, u, v \rangle = u + v$  and  $\sum \langle u, v, \Theta_V \rangle = u + v$  and  $\sum \langle u, \Theta_V, v \rangle = u + v$ . (47)
- If len F = 0, then  $\sum F = \Theta_V$ . (48)
- (49)If len F = 1, then  $\sum F = F(1)$ .
- (50)If len F = 2 and  $v_1 = F(1)$  and  $v_2 = F(2)$ , then  $\sum F = v_1 + v_2$ .
- If len F=3 and  $v_1=F(1)$  and  $v_2=F(2)$  and v=F(3), then  $\sum F=$ (51) $(v_1+v_2)+v$ .
- $v v = \Theta_V$ . (52)
- -(v+w) = (-v) + (-w).(53)

## References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(**1**):153–164, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(**3**):575–579, 1990.

[7] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received July 12, 1990