
Preface

We offer to our Readers Volume 2 of mathematical papers which are abstracts
of Mizar articles to be found in the Main Mizar Library (MML). They are usually
published in the order in which they have been approved for MML. A careful
Reader may note that our publication has several peculiarities due to two facts.
First, it is an endeavour to make a machine translation into English. Secondly,
changes in the PC Mizar system and continually updated MML influence the
quality of the texts published and the topical value of the papers. Hence, first,
the standard of English is not always satisfactory. Secondly, the quality of the
papers is very closely related to what is actually taking place in MML. Originally,
obvious theorems (relative to the power of Checker) were not identified. As the
system PC Mizar was developing, some theorems became obvious. It is likewise
with repeated theorems (which accounts for the footnotes in the text of the type
”The proposition (k) was either repeated or obvious”). Those theorems can be
classed in two groups. The first includes accidental repetitions: the author
did not know that such a theorem was already included in MML and proved
it again. There were few such cases. The other includes some 500 eliminated
theorems because they were so-called definitional theorems. The authors wrote
those theorems because previously it had not been possible directly to refer to
definitions.

The Readers are also requested to note that in the present issue we have
changed the formats of certain operations. The operation symbol of the removal
of n initial terms from a sequence has been changed from

�
into ↑ (see [2] and

[1]). Likewise, the operation symbol of the multiplication of real functions � has
been removed (see [1]).

Roman Matuszewski

References

[1] Jaros law Kotowicz. The limit of a real function at infinity. Formalized Mathematics,

2(1):17–28, 1991.

[2] Jaros law Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786,

1990.

1



2



FORMALIZED MATHEMATICS

Vol.2,No.1, January–February 1991
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The articles [9], [8], [11], [3], [1], [10], [7], [4], [2], [5], and [6] provide the notation
and terminology for this paper. In the sequel F1 will denote a field structure.
Let us consider F1. A scalar of F1 is an element of the carrier of F1.

In the sequel x, y will denote scalars of F1. Let us consider F1, x, y. The
functor x− y yields a scalar of F1 and is defined as follows:

(Def.1) x− y = x+ (−y).

In the sequel F denotes a field. A field structure is called a ring if:

(Def.2) Let x, y, z be scalars of it . Then

(i) x+ y = y + x,

(ii) (x+ y) + z = x+ (y + z),

(iii) x+ 0it = x,

(iv) x+ (−x) = 0it,

(v) x · (1it) = x,

(vi) (1it) · x = x,

(vii) x · (y + z) = x · y + x · z,
(viii) (y + z) · x = y · x+ z · x.

The following proposition is true

1Supported by RPBP.III-24.C6.
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(1) The following conditions are equivalent:
(i) for all scalars x, y, z of F1 holds x+y = y+x and (x+y)+z = x+(y+z)

and x+ 0F1 = x and x+ (−x) = 0F1 and x · (1F1) = x and (1F1) · x = x
and x · (y + z) = x · y + x · z and (y + z) · x = y · x+ z · x,

(ii) F1 is a ring.

In the sequel R is a ring and x, y, z are scalars of R. Next we state several
propositions:

(2) x+ y = y + x.

(3) (x+ y) + z = x+ (y + z).

(4) x+ 0R = x.

(5) x+ (−x) = 0R.

(6) x · (1R) = x and (1R) · x = x.

(7) x · (y + z) = x · y + x · z and (y + z) · x = y · x+ z · x.

A ring is called an associative ring if:

(Def.3) for all scalars x, y, z of it holds (x · y) · z = x · (y · z).
The following proposition is true

(8) For all scalars x, y, z of R holds (x · y) · z = x · (y · z) if and only if R
is an associative ring.

In the sequel R will denote an associative ring and x, y, z will denote scalars
of R. One can prove the following proposition

(9) (x · y) · z = x · (y · z).
An associative ring is said to be a commutative ring if:

(Def.4) for all scalars x, y of it holds x · y = y · x.

One can prove the following proposition

(10) If for all scalars x, y of R holds x · y = y · x, then R is a commutative
ring.

In the sequel R will denote a commutative ring and x, y will denote scalars
of R. The following proposition is true

(11) x · y = y · x.

A commutative ring is said to be an integral domain if:

(Def.5) 0it 6= 1it and for all scalars x, y of it such that x · y = 0it holds x = 0it

or y = 0it.

We now state two propositions:

(12) If 0R 6= 1R and for all x, y such that x · y = 0R holds x = 0R or y = 0R,
then R is an integral domain.

(13) F is an integral domain.

In the sequel R denotes an integral domain and x, y denote scalars of R. The
following propositions are true:

(14) 0R 6= 1R.

(15) If x · y = 0R, then x = 0R or y = 0R.
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An associative ring is called a skew field if:

(Def.6) for every scalar x of it holds if x 6= 0it, then there exists a scalar y of it
such that x · y = 1it but 0it 6= 1it.

In the sequel R denotes an associative ring. The following proposition is true

(16) If for every scalar x of R holds if x 6= 0R, then there exists a scalar y of
R such that x · y = 1R but 0R 6= 1R, then R is a skew field.

In the sequel S1 will denote a skew field and x, y will denote scalars of S1.
The following propositions are true:

(17) If x 6= 0S1 , then there exists y such that x · y = 1S1 .

(18) 0S1 6= 1S1 .

(19) F is a skew field.

We see that the field is a skew field.

In the sequel R is a ring and x, y, z are scalars of R. Next we state a number
of propositions:

(20) x− y = x+ (−y).

(21) −0R = 0R.

(22) x+ y = z if and only if x = z− y but x+ y = z if and only if y = z−x.

(23) x− 0R = x and 0R − x = −x.

(24) If x+ y = x+ z, then y = z but if x+ y = z + y, then x = z.

(25) −(x+ y) = (−x) + (−y).

(26) x · 0R = 0R and 0R · x = 0R.

(27) −(−x) = x.

(28) (−x) · y = −x · y.

(29) x · (−y) = −x · y.

(30) (−x) · (−y) = x · y.

(31) x · (y − z) = x · y − x · z.
(32) (x− y) · z = x · z − y · z.
(33) (x+ y)− z = x+ (y − z).
(34) x = 0R if and only if −x = 0R.

(35) x− (y + z) = (x− y)− z.
(36) x− (y − z) = (x− y) + z.

(37) x− x = 0R and (−x) + x = 0R.

(38) For every x, y there exists z such that x = y + z and x = z + y.

In the sequel S1 denotes a skew field and x, y, z denote scalars of S1. We
now state four propositions:

(39) If x · y = 1S1 , then x 6= 0S1 and y 6= 0S1 .

(40) If x 6= 0S1 , then there exists y such that y · x = 1S1 .

(41) If x · y = 1S1 , then y · x = 1S1 .

(42) If x · y = x · z and x 6= 0S1 , then y = z.
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Let us consider S1, x. Let us assume that x 6= 0S1 . The functor x−1 yielding
a scalar of S1 is defined by:

(Def.7) x · (x−1) = 1S1 .

Let us consider S1, x, y. Let us assume that y 6= 0S1 . The functor x
y yielding

a scalar of S1 is defined by:

(Def.8) x
y = x · y−1.

One can prove the following propositions:

(43) If x 6= 0S1 , then x · x−1 = 1S1 and x−1 · x = 1S1 .

(44) If y 6= 0S1 , then x
y = x · y−1.

(45) If x · y = 1S1 , then x = y−1 and y = x−1.

(46) If x 6= 0S1 and y 6= 0S1 , then x−1 · y−1 = (y · x)−1.

(47) If x · y = 0S1 , then x = 0S1 or y = 0S1 .

(48) If x 6= 0S1 , then x−1 6= 0S1 .

(49) If x 6= 0S1 , then (x−1)−1 = x.

(50) If x 6= 0S1 , then
1S1
x = x−1 and

1S1
x−1 = x.

(51) If x 6= 0S1 , then x · 1S1
x = 1S1 and

1S1
x · x = 1S1 .

(52) If x 6= 0S1 , then x
x = 1S1 .

(53) If y 6= 0S1 and z 6= 0S1 , then x
y = x·z

y·z .

(54) If y 6= 0S1 , then −x
y = −x

y and x
−y = −x

y .

(55) If z 6= 0S1 , then x
z + y

z = x+y
z and x

z −
y
z = x−y

z .

(56) If y 6= 0S1 and z 6= 0S1 , then x
y
z

= x·z
y .

(57) If y 6= 0S1 , then x
y · y = x.

Let us consider F1. We consider left module structures over F1 which are
systems

〈a carrier, a left multiplication〉,
where the carrier is an Abelian group and the left multiplication is a function
from [: the carrier of F1, the carrier of the carrier :] into the carrier of the carrier.

In the sequel L1 denotes a left module structure over F1. We now define two
new modes. Let us consider F1, L1. A scalar of L1 is a scalar of F1.

A vector of L1 is an element of the carrier of L1.

Let us consider F1. We consider right module structures over F1 which are
systems

〈a carrier, a right multiplication〉,
where the carrier is an Abelian group and the right multiplication is a function
from [: the carrier of the carrier, the carrier of F1 :] into the carrier of the carrier.

In the sequel R1 will denote a right module structure over F1. We now define
two new modes. Let us consider F1, R1. A scalar of R1 is a scalar of F1.

A vector of R1 is an element of the carrier of R1.
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Let us consider F1. We consider bimodule structures over F1 which are
systems
〈a carrier, a left multiplication, a right multiplication〉,

where the carrier is an Abelian group, the left multiplication is a function from
[: the carrier of F1, the carrier of the carrier :] into the carrier of the carrier,
and the right multiplication is a function from [: the carrier of the carrier, the
carrier of F1 :] into the carrier of the carrier.

In the sequel B1 will denote a bimodule structure over F1. We now define
two new modes. Let us consider F1, B1. A scalar of B1 is a scalar of F1.

A vector of B1 is an element of the carrier of B1.

In the sequel R is a ring. Let us consider R. The functor AbGr(R) yields an
Abelian group and is defined by:

(Def.9) AbGr(R) = 〈 the carrier of R, the addition of R, the reverse-map of R,
the zero of R〉.

Next we state the proposition

(58) AbGr(R) = 〈 the carrier of R, the addition of R, the reverse-map of R,
the zero of R〉.

Let us consider R. The functor LeftModMult(R) yielding a function from [:
the carrier of R, the carrier of AbGr(R) :] into the carrier of AbGr(R) is defined
as follows:

(Def.10) LeftModMult(R) = the multiplication of R.

Next we state the proposition

(59) LeftModMult(R) = the multiplication of R.

Let us consider R. The functor LeftMod(R) yielding a left module structure
over R is defined as follows:

(Def.11) LeftMod(R) = 〈AbGr(R),LeftModMult(R)〉.
We now state the proposition

(60) LeftMod(R) = 〈AbGr(R),LeftModMult(R)〉.
In the sequel V will be a left module structure over R. Let us consider R, V ,

and let x be a scalar of R, and let v be a vector of V . The functor x · v yielding
a vector of V is defined as follows:

(Def.12) for every scalar x′ of V such that x′ = x holds x · v = (the left multipli-
cation of V )(x′, v).

The following proposition is true

(62)2 For every V being a left module structure over R and for every scalar
x of R and for every vector v of V and for every scalar x′ of V such that
x′ = x holds x · v = (the left multiplication of V )(x′, v).

Let us consider R. The functor RightModMult(R) yields a function from [:
the carrier of AbGr(R), the carrier of R :] into the carrier of AbGr(R) and is
defined as follows:

2The proposition (61) was either repeated or obvious.
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(Def.13) RightModMult(R) = the multiplication of R.

We now state the proposition

(63) RightModMult(R) = the multiplication of R.

Let us consider R. The functor RightMod(R) yielding a right module struc-
ture over R is defined as follows:

(Def.14) RightMod(R) = 〈AbGr(R),RightModMult(R)〉.
We now state the proposition

(64) RightMod(R) = 〈AbGr(R),RightModMult(R)〉.
In the sequel V will denote a right module structure over R. Let us consider

R, V , and let x be a scalar of R, and let v be a vector of V . The functor v · x
yielding a vector of V is defined as follows:

(Def.15) for every scalar x′ of V such that x′ = x holds v · x = (the right
multiplication of V )(v, x′).

We now state the proposition

(66)3 For every V being a right module structure over R and for every scalar
x of R and for every vector v of V and for every scalar x′ of V such that
x′ = x holds v · x = (the right multiplication of V )(v, x′).

Let us consider R. The functor BiMod(R) yielding a bimodule structure over
R is defined as follows:

(Def.16) BiMod(R) = 〈AbGr(R),LeftModMult(R),RightModMult(R)〉.
The following proposition is true

(67) BiMod(R) = 〈AbGr(R),LeftModMult(R),RightModMult(R)〉.
In the sequel V is a bimodule structure over R. Let us consider R, V , and

let x be a scalar of R, and let v be a vector of V . The functor x · v yields a
vector of V and is defined as follows:

(Def.17) for every scalar x′ of V such that x′ = x holds x · v = (the left multipli-
cation of V )(x′, v).

One can prove the following proposition

(69)4 For every V being a bimodule structure over R and for every scalar x
of R and for every vector v of V and for every scalar x′ of V such that
x′ = x holds x · v = (the left multiplication of V )(x′, v).

Let us consider R, V , and let x be a scalar of R, and let v be a vector of V .
The functor v · x yields a vector of V and is defined by:

(Def.18) for every scalar x′ of V such that x′ = x holds v · x = (the right
multiplication of V )(v, x′).

The following proposition is true

3The proposition (65) was either repeated or obvious.
4The proposition (68) was either repeated or obvious.
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(70) For every V being a bimodule structure over R and for every scalar x
of R and for every vector v of V and for every scalar x′ of V such that
x′ = x holds v · x = (the right multiplication of V )(v, x′).

In the sequel R will denote an associative ring. Next we state the proposition

(71) Let x, y be scalars of R. Let v, w be vectors of LeftMod(R). Then
x · (v+w) = x ·v+x ·w and (x+y) ·v = x ·v+y ·v and (x ·y) ·v = x · (y ·v)
and (1R) · v = v.

Let us consider R. A left module structure over R is called a left module
over R if:

(Def.19) Let x, y be scalars of R. Let v, w be vectors of it . Then x · (v + w) =
x · v + x · w and (x + y) · v = x · v + y · v and (x · y) · v = x · (y · v) and
(1R) · v = v.

We now state the proposition

(72) Let V be a left module structure over R. Then the following conditions
are equivalent:

(i) for all scalars x, y of R and for all vectors v, w of V holds x · (v+w) =
x · v + x · w and (x + y) · v = x · v + y · v and (x · y) · v = x · (y · v) and
(1R) · v = v,

(ii) V is a left module over R.

Let us consider R. Then LeftMod(R) is a left module over R.

For simplicity we adopt the following rules: R is an associative ring, x, y are
scalars of R, L2 is a left module over R, and v, w are vectors of L2. We now
state several propositions:

(73) x · (v + w) = x · v + x · w.

(74) (x+ y) · v = x · v + y · v.

(75) (x · y) · v = x · (y · v).

(76) (1R) · v = v.

(77) Let x, y be scalars of R. Let v, w be vectors of RightMod(R). Then
(v+w) ·x = v ·x+w ·x and v · (x+y) = v ·x+v ·y and v · (y ·x) = (v ·y) ·x
and v · (1R) = v.

Let us consider R. A right module structure over R is said to be a right
module over R if:

(Def.20) Let x, y be scalars of R. Let v, w be vectors of it . Then (v + w) · x =
v · x + w · x and v · (x + y) = v · x + v · y and v · (y · x) = (v · y) · x and
v · (1R) = v.

The following proposition is true

(78) Let V be a right module structure over R. Then the following conditions
are equivalent:

(i) for all scalars x, y of R and for all vectors v, w of V holds (v+w) ·x =
v · x + w · x and v · (x + y) = v · x + v · y and v · (y · x) = (v · y) · x and
v · (1R) = v,

(ii) V is a right module over R.
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Let us consider R. Then RightMod(R) is a right module over R.

For simplicity we follow the rules: R is an associative ring, x, y are scalars
of R, R2 is a right module over R, and v, w are vectors of R2. We now state
four propositions:

(79) (v +w) · x = v · x+ w · x.

(80) v · (x+ y) = v · x+ v · y.

(81) v · (y · x) = (v · y) · x.

(82) v · (1R) = v.

Let us consider R. A bimodule structure over R is said to be a bimodule
over R if:

(Def.21) Let x, y be scalars of R. Let v, w be vectors of it . Then
(i) x · (v + w) = x · v + x · w,

(ii) (x+ y) · v = x · v + y · v,
(iii) (x · y) · v = x · (y · v),
(iv) (1R) · v = v,
(v) (v + w) · x = v · x+ w · x,
(vi) v · (x+ y) = v · x+ v · y,

(vii) v · (y · x) = (v · y) · x,
(viii) v · (1R) = v,

(ix) x · (v · y) = (x · v) · y.

Next we state two propositions:

(83) Let V be a bimodule structure over R. Then the following conditions
are equivalent:

(i) for all scalars x, y of R and for all vectors v, w of V holds x · (v+w) =
x · v + x · w and (x + y) · v = x · v + y · v and (x · y) · v = x · (y · v) and
(1R) · v = v and (v + w) · x = v · x+ w · x and v · (x + y) = v · x+ v · y
and v · (y · x) = (v · y) · x and v · (1R) = v and x · (v · y) = (x · v) · y,

(ii) V is a bimodule over R.

(84) BiMod(R) is a bimodule over R.

Let us consider R. Then BiMod(R) is a bimodule over R.

For simplicity we follow the rules: R will be an associative ring, x, y will be
scalars of R, R2 will be a bimodule over R, and v, w will be vectors of R2. The
following propositions are true:

(85) x · (v + w) = x · v + x · w.

(86) (x+ y) · v = x · v + y · v.

(87) (x · y) · v = x · (y · v).

(88) (1R) · v = v.

(89) (v +w) · x = v · x+ w · x.

(90) v · (x+ y) = v · x+ v · y.

(91) v · (y · x) = (v · y) · x.

(92) v · (1R) = v.
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(93) x · (v · y) = (x · v) · y.
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The notation and terminology used in this paper are introduced in the following
papers: [5], [1], [2], [3], and [4]. We follow a convention: F1 will be an at least
3-dimensional projective space defined in terms of collinearity and a, a′, b, b′, c,
c′, d, d′, o, p, q, r, s, t, u, x will be elements of the points of F1. One can prove
the following propositions:

(1) If a, b and c are collinear, then b, c and a are collinear and c, a and b
are collinear and b, a and c are collinear and a, c and b are collinear and
c, b and a are collinear.

(2) If a 6= b and a, b and c are collinear and a, b and d are collinear, then
a, c and d are collinear.

(3) If p 6= q and a, b and p are collinear and a, b and q are collinear and p,
q and r are collinear, then a, b and r are collinear.

(4) If p 6= q, then there exists r such that p, q and r are not collinear.

(5) There exist q, r such that p, q and r are not collinear.

(6) If a, b and c are not collinear and a, b and b′ are collinear and a 6= b′,
then a, b′ and c are not collinear.

(7) If a, b and c are not collinear and a, b and d are collinear and a, c and
d are collinear, then a = d.

(8) If o, a and d are not collinear and o, d and d′ are collinear and a, d and
s are collinear and d 6= d′ and a′, d′ and s are collinear and o, a and a′

are collinear and o 6= a′, then s 6= d.

1Supported by RPBP.III-24.C6.
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Let us consider F1, a, b, c, d. We say that a, b, c, d are coplanar if and only
if:

(Def.1) there exists an element x of the points of F1 such that a, b and x are
collinear and c, d and x are collinear.

One can prove the following propositions:

(10)2 If a, b and c are collinear or b, c and d are collinear or c, d and a are
collinear or d, a and b are collinear, then a, b, c, d are coplanar.

(11) Suppose a, b, c, d are coplanar. Then b, c, d, a are coplanar and c, d,
a, b are coplanar and d, a, b, c are coplanar and b, a, c, d are coplanar
and c, b, d, a are coplanar and d, c, a, b are coplanar and a, d, b, c are
coplanar and a, c, d, b are coplanar and b, d, a, c are coplanar and c, a,
b, d are coplanar and d, b, c, a are coplanar and c, a, d, b are coplanar
and d, b, a, c are coplanar and a, c, b, d are coplanar and b, d, c, a are
coplanar and a, b, d, c are coplanar and a, d, c, b are coplanar and b, c,
a, d are coplanar and b, a, d, c are coplanar and c, b, a, d are coplanar
and c, d, b, a are coplanar and d, a, c, b are coplanar and d, c, b, a are
coplanar.

(12) If a, b and c are not collinear and a, b, c, p are coplanar and a, b, c, q
are coplanar and a, b, c, r are coplanar and a, b, c, s are coplanar, then
p, q, r, s are coplanar.

(13) If p, q and r are not collinear and a, b, c, p are coplanar and a, b, c, r
are coplanar and a, b, c, q are coplanar and p, q, r, s are coplanar, then
a, b, c, s are coplanar.

(14) If p 6= q and p, q and r are collinear and a, b, c, p are coplanar and a,
b, c, q are coplanar, then a, b, c, r are coplanar.

(15) If a, b and c are not collinear and a, b, c, p are coplanar and a, b, c, q are
coplanar and a, b, c, r are coplanar and a, b, c, s are coplanar, then there
exists x such that p, q and x are collinear and r, s and x are collinear.

(16) There exist a, b, c, d such that a, b, c, d are not coplanar.

(17) If p, q and r are not collinear, then there exists s such that p, q, r, s
are not coplanar.

(18) If a = b or a = c or b = c or a = d or b = d or d = c, then a, b, c, d are
coplanar.

(19) If a, b, c, o are not coplanar and o, a and a′ are collinear and a 6= a′,
then a, b, c, a′ are not coplanar.

(20) Suppose that
(i) a, b and c are not collinear,

(ii) a′, b′ and c′ are not collinear,
(iii) a, b, c, p are coplanar,
(iv) a, b, c, q are coplanar,
(v) a, b, c, r are coplanar,

2The proposition (9) was either repeated or obvious.
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(vi) a′, b′, c′, p are coplanar,
(vii) a′, b′, c′, q are coplanar,

(viii) a′, b′, c′, r are coplanar,
(ix) a, b, c, a′ are not coplanar.

Then p, q and r are collinear.

(21) Suppose that
(i) a 6= a′,
(ii) o, a and a′ are collinear,

(iii) a, b, c, o are not coplanar,
(iv) a′, b′ and c′ are not collinear,
(v) a, b and p are collinear,
(vi) a′, b′ and p are collinear,
(vii) b, c and q are collinear,

(viii) b′, c′ and q are collinear,
(ix) a, c and r are collinear,
(x) a′, c′ and r are collinear.

Then p, q and r are collinear.

(22) If a, b, c, d are not coplanar and a, b, c, o are coplanar and a, b and o
are not collinear, then a, b, d, o are not coplanar.

(23) If a, b, c, o are not coplanar and o, a and a′ are collinear and o, b and
b′ are collinear and o, c and c′ are collinear and o 6= a′ and o 6= b′ and
o 6= c′, then a′, b′ and c′ are not collinear and a′, b′, c′, o are not coplanar.

(24) Suppose that
(i) a, b, c, o are coplanar,
(ii) a, b, c, d are not coplanar,

(iii) a, b, d, o are not coplanar,
(iv) b, c, d, o are not coplanar,
(v) a, c, d, o are not coplanar,
(vi) o, d and d′ are collinear,
(vii) o, a and a′ are collinear,

(viii) o, b and b′ are collinear,
(ix) o, c and c′ are collinear,
(x) a, d and s are collinear,
(xi) a′, d′ and s are collinear,
(xii) b, d and t are collinear,

(xiii) b′, d′ and t are collinear,
(xiv) c, d and u are collinear,
(xv) o 6= a′,
(xvi) o 6= d′,
(xvii) d 6= d′,

(xviii) o 6= b′.
Then s, t and u are not collinear.

Let us consider F1, o, a, b, c. We say that o, a, b, and c constitute a
quadrangle if and only if:
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(Def.2) a, b and c are not collinear and o, a and b are not collinear and o, b and
c are not collinear and o, c and a are not collinear.

The following propositions are true:

(26)3 Suppose that
(i) o, a and b are not collinear,

(ii) o, b and c are not collinear,
(iii) o, a and c are not collinear,
(iv) o, a and a′ are collinear,
(v) o, b and b′ are collinear,
(vi) o, c and c′ are collinear,

(vii) a, b and p are collinear,
(viii) a′, b′ and p are collinear,

(ix) a 6= a′,
(x) b, c and r are collinear,
(xi) b′, c′ and r are collinear,

(xii) a, c and q are collinear,
(xiii) b 6= b′,
(xiv) a′, c′ and q are collinear,
(xv) o 6= a′,
(xvi) o 6= b′,

(xvii) o 6= c′.
Then r, q and p are collinear.

(27) For every at least 3-dimensional projective space C1 defined in terms of
collinearity holds C1 is a Desarguesian at least 3-dimensional projective
space defined in terms of collinearity.

We see that the at least 3-dimensional projective space defined in terms of
collinearity is a Desarguesian at least 3-dimensional projective space defined in
terms of collinearity.
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Summary. We introduce the halflines (open and closed), real se-
quences divergent to infinity (plus and minus) and the proper and im-
proper limit of a real function at infinity. We prove basic properties of
halflines, sequeces divergent to infinity and the limit of function at infin-
ity.

MML Identifier: LIMFUNC1.

The articles [14], [4], [1], [2], [12], [10], [5], [6], [11], [15], [3], [7], [8], [13], and [9]
provide the terminology and notation for this paper. For simplicity we follow
a convention: r, r1, r2, g, g1, g2 are real numbers, X is a subset of

�
, n, m,

k are natural numbers, s1, s2, s3 are sequences of real numbers, and f , f1, f2

are partial functions from
�

to
�
. Let us consider n, m. Then max(n,m) is a

natural number.

We now state four propositions:

(1) If 0 ≤ r1 and r1 < r2 and 0 < g1 and g1 ≤ g2, then r1 · g1 < r2 · g2.

(2) If r 6= 0, then (−r)−1 = −r−1.

(3) If r1 < r2 and r2 < 0 and 0 < g, then g
r2
< g

r1
.

(4) If r < 0, then r−1 < 0.

Let us consider r. We introduce the functor ]−∞, r[ as a synonym of HL(r).

We now define three new functors. Let us consider r. The functor ]−∞, r]
yielding a subset of

�
is defined as follows:

(Def.1) ]−∞, r] = {g : g ≤ r}.
The functor [r,+∞[ yields a subset of

�
and is defined as follows:

(Def.2) [r,+∞[ = {g : r ≤ g}.
The functor ]r,+∞[ yielding a subset of

�
is defined by:

(Def.3) ]r,+∞[ = {g : r < g}.
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One can prove the following propositions:

(5) X = ]−∞, r] if and only if X = {g : g ≤ r}.
(6) X = [r,+∞[ if and only if X = {g : r ≤ g}.
(7) X = ]r,+∞[ if and only if X = {g : r < g}.
(8) If r1 ≤ r2, then ]r2,+∞[ ⊆ ]r1,+∞[.

(9) If r1 ≤ r2, then [r2,+∞[ ⊆ [r1,+∞[.

(10) ]r,+∞[ ⊆ [r,+∞[.

(11) ]r, g[ ⊆ ]r,+∞[.

(12) [r, g] ⊆ [r,+∞[.

(13) If r1 ≤ r2, then ]−∞, r1[ ⊆ ]−∞, r2[.

(14) If r1 ≤ r2, then ]−∞, r1] ⊆ ]−∞, r2].

(15) ]−∞, r[ ⊆ ]−∞, r].
(16) ]g, r[ ⊆ ]−∞, r[.
(17) [g, r] ⊆ ]−∞, r].
(18) ]−∞, r[ ∩ ]g,+∞[ = ]g, r[.

(19) ]−∞, r] ∩ [g,+∞[ = [g, r].

(20) If r ≤ r1, then ]r1, r2[ ⊆ ]r,+∞[ and [r1, r2] ⊆ [r,+∞[.

(21) If r < r1, then [r1, r2] ⊆ ]r,+∞[.

(22) If r2 ≤ r, then ]r1, r2[ ⊆ ]−∞, r[ and [r1, r2] ⊆ ]−∞, r].
(23) If r2 < r, then [r1, r2] ⊆ ]−∞, r[.
(24)

� \]r,+∞[ = ]−∞, r] and
� \[r,+∞[ = ]−∞, r[ and

� \]−∞, r[ = [r,+∞[
and

� \ ]−∞, r] = ]r,+∞[.

(25)
� \ ]r1, r2[ = ]−∞, r1] ∪ [r2,+∞[ and

� \ [r1, r2] = ]−∞, r1[ ∪ ]r2,+∞[.

(26) If s1 is non-decreasing, then s1 is lower bounded but if s1 is non-
increasing, then s1 is upper bounded.

(27) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is non-
decreasing, then for every n holds s1(n) < 0.

(28) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is non-
increasing, then for every n holds 0 < s1(n).

(29) If s1 is convergent and 0 < lim s1, then there exists n such that for
every m such that n ≤ m holds 0 < s1(m).

(30) If s1 is convergent and 0 < lim s1, then there exists n such that for
every m such that n ≤ m holds lim s1

2 < s1(m).

We now define two new predicates. Let us consider s1. We say that s1 is
divergent to +∞ if and only if:

(Def.4) for every r there exists n such that for every m such that n ≤ m holds
r < s1(m).

We say that s1 is divergent to −∞ if and only if:

(Def.5) for every r there exists n such that for every m such that n ≤ m holds
s1(m) < r.
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Next we state a number of propositions:

(33)2 If s1 is divergent to +∞ or s1 is divergent to −∞, then there exists n
such that for every m such that n ≤ m holds s1 ↑m is non-zero.

(34) If s1 ↑ k is divergent to +∞, then s1 is divergent to +∞ but if s1 ↑ k is
divergent to −∞, then s1 is divergent to −∞.

(35) If s2 is divergent to +∞ and s3 is divergent to +∞, then s2 + s3 is
divergent to +∞.

(36) If s2 is divergent to +∞ and s3 is lower bounded, then s2+s3 is divergent
to +∞.

(37) If s2 is divergent to +∞ and s3 is divergent to +∞, then s2s3 is diver-
gent to +∞.

(38) If s2 is divergent to −∞ and s3 is divergent to −∞, then s2 + s3 is
divergent to −∞.

(39) If s2 is divergent to −∞ and s3 is upper bounded, then s2 + s3 is
divergent to −∞.

(40) If s1 is divergent to +∞ and r > 0, then rs1 is divergent to +∞ but if
s1 is divergent to +∞ and r < 0, then rs1 is divergent to −∞ but if s1 is
divergent to +∞ and r = 0, then rng(rs1) = {0} and rs1 is constant.

(41) If s1 is divergent to −∞ and r > 0, then rs1 is divergent to −∞ but if
s1 is divergent to −∞ and r < 0, then rs1 is divergent to +∞ but if s1 is
divergent to −∞ and r = 0, then rng(rs1) = {0} and rs1 is constant.

(42) If s1 is divergent to +∞, then −s1 is divergent to −∞ but if s1 is
divergent to −∞, then −s1 is divergent to +∞.

(43) If s1 is lower bounded and s2 is divergent to−∞, then s1−s2 is divergent
to +∞.

(44) If s1 is upper bounded and s2 is divergent to +∞, then s1 − s2 is
divergent to −∞.

(45) If s1 is divergent to +∞ and s2 is convergent, then s1 + s2 is divergent
to +∞.

(46) If s1 is divergent to −∞ and s2 is convergent, then s1 + s2 is divergent
to −∞.

(47) If for every n holds s1(n) = n, then s1 is divergent to +∞.

(48) If for every n holds s1(n) = −n, then s1 is divergent to −∞.

(49) If s2 is divergent to +∞ and there exists r such that r > 0 and for every
n holds s3(n) ≥ r, then s2s3 is divergent to +∞.

(50) If s2 is divergent to −∞ and there exists r such that 0 < r and for every
n holds s3(n) ≥ r, then s2s3 is divergent to −∞.

(51) If s2 is divergent to −∞ and s3 is divergent to −∞, then s2s3 is diver-
gent to +∞.

2The propositions (31)–(32) were either repeated or obvious.



20 Jaros law Kotowicz

(52) If s1 is divergent to +∞ or s1 is divergent to −∞, then |s1| is divergent
to +∞.

(53) If s1 is divergent to +∞ and s2 is a subsequence of s1, then s2 is
divergent to +∞.

(54) If s1 is divergent to −∞ and s2 is a subsequence of s1, then s2 is
divergent to −∞.

(55) If s2 is divergent to +∞ and s3 is convergent and 0 < lim s3, then s2s3

is divergent to +∞.

(56) If s1 is non-decreasing and s1 is not upper bounded, then s1 is divergent
to +∞.

(57) If s1 is non-increasing and s1 is not lower bounded, then s1 is divergent
to −∞.

(58) If s1 is increasing and s1 is not upper bounded, then s1 is divergent to
+∞.

(59) If s1 is decreasing and s1 is not lower bounded, then s1 is divergent to
−∞.

(60) If s1 is monotone, then s1 is convergent or s1 is divergent to +∞ or s1

is divergent to −∞.

(61) If s1 is divergent to +∞ or s1 is divergent to −∞ but s1 is non-zero,
then s1

−1 is convergent and lim s1
−1 = 0.

Next we state several propositions:

(62) If s1 is non-zero and s1 is convergent and lim s1 = 0 and there exists
k such that for every n such that k ≤ n holds 0 < s1(n), then s1

−1 is
divergent to +∞.

(63) If s1 is non-zero and s1 is convergent and lim s1 = 0 and there exists
k such that for every n such that k ≤ n holds s1(n) < 0, then s1

−1 is
divergent to −∞.

(64) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is non-
decreasing, then s1

−1 is divergent to −∞.

(65) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is non-
increasing, then s1

−1 is divergent to +∞.

(66) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is increasing,
then s1

−1 is divergent to −∞.

(67) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is decreasing,
then s1

−1 is divergent to +∞.

(68) If s2 is bounded but s3 is divergent to +∞ or s3 is divergent to −∞
and s3 is non-zero, then s2

s3
is convergent and lim s2

s3
= 0.

(69) If s1 is divergent to +∞ and for every n holds s1(n) ≤ s2(n), then s2

is divergent to +∞.

(70) If s1 is divergent to −∞ and for every n holds s2(n) ≤ s1(n), then s2

is divergent to −∞.
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We now define several new predicates. Let us consider f . We say that f is
convergent in +∞ if and only if:

(Def.6) for every r there exists g such that r < g and g ∈ dom f and there exists
g such that for every s1 such that s1 is divergent to +∞ and rng s1 ⊆
dom f holds f · s1 is convergent and lim(f · s1) = g.

We say that f is divergent in +∞ to +∞ if and only if:

(Def.7) for every r there exists g such that r < g and g ∈ dom f and for every
s1 such that s1 is divergent to +∞ and rng s1 ⊆ dom f holds f · s1 is
divergent to +∞.

We say that f is divergent in +∞ to −∞ if and only if:

(Def.8) for every r there exists g such that r < g and g ∈ dom f and for every
s1 such that s1 is divergent to +∞ and rng s1 ⊆ dom f holds f · s1 is
divergent to −∞.

We say that f is convergent in −∞ if and only if:

(Def.9) for every r there exists g such that g < r and g ∈ dom f and there exists
g such that for every s1 such that s1 is divergent to −∞ and rng s1 ⊆
dom f holds f · s1 is convergent and lim(f · s1) = g.

We say that f is divergent in −∞ to +∞ if and only if:

(Def.10) for every r there exists g such that g < r and g ∈ dom f and for every
s1 such that s1 is divergent to −∞ and rng s1 ⊆ dom f holds f · s1 is
divergent to +∞.

We say that f is divergent in −∞ to −∞ if and only if:

(Def.11) for every r there exists g such that g < r and g ∈ dom f and for every
s1 such that s1 is divergent to −∞ and rng s1 ⊆ dom f holds f · s1 is
divergent to −∞.

We now state a number of propositions:

(77)3 f is convergent in +∞ if and only if for every r there exists g such
that r < g and g ∈ dom f and there exists g such that for every g1 such
that 0 < g1 there exists r such that for every r1 such that r < r1 and
r1 ∈ dom f holds |f(r1)− g| < g1.

(78) f is convergent in −∞ if and only if for every r there exists g such
that g < r and g ∈ dom f and there exists g such that for every g1 such
that 0 < g1 there exists r such that for every r1 such that r1 < r and
r1 ∈ dom f holds |f(r1)− g| < g1.

(79) f is divergent in +∞ to +∞ if and only if for every r there exists g
such that r < g and g ∈ dom f and for every g there exists r such that
for every r1 such that r < r1 and r1 ∈ dom f holds g < f(r1).

(80) f is divergent in +∞ to −∞ if and only if for every r there exists g
such that r < g and g ∈ dom f and for every g there exists r such that
for every r1 such that r < r1 and r1 ∈ dom f holds f(r1) < g.

3The propositions (71)–(76) were either repeated or obvious.
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(81) f is divergent in −∞ to +∞ if and only if for every r there exists g
such that g < r and g ∈ dom f and for every g there exists r such that
for every r1 such that r1 < r and r1 ∈ dom f holds g < f(r1).

(82) f is divergent in −∞ to −∞ if and only if for every r there exists g
such that g < r and g ∈ dom f and for every g there exists r such that
for every r1 such that r1 < r and r1 ∈ dom f holds f(r1) < g.

(83) If f1 is divergent in +∞ to +∞ and f2 is divergent in +∞ to +∞ and
for every r there exists g such that r < g and g ∈ dom f1 ∩ dom f2, then
f1 + f2 is divergent in +∞ to +∞ and f1f2 is divergent in +∞ to +∞.

(84) If f1 is divergent in +∞ to −∞ and f2 is divergent in +∞ to −∞ and
for every r there exists g such that r < g and g ∈ dom f1 ∩ dom f2, then
f1 + f2 is divergent in +∞ to −∞ and f1f2 is divergent in +∞ to +∞.

(85) If f1 is divergent in −∞ to +∞ and f2 is divergent in −∞ to +∞ and
for every r there exists g such that g < r and g ∈ dom f1 ∩ dom f2, then
f1 + f2 is divergent in −∞ to +∞ and f1f2 is divergent in −∞ to +∞.

(86) If f1 is divergent in −∞ to −∞ and f2 is divergent in −∞ to −∞ and
for every r there exists g such that g < r and g ∈ dom f1 ∩ dom f2, then
f1 + f2 is divergent in −∞ to −∞ and f1f2 is divergent in −∞ to +∞.

(87) If f1 is divergent in +∞ to +∞ and for every r there exists g such
that r < g and g ∈ dom(f1 + f2) and there exists r such that f2 is lower
bounded on ]r,+∞[, then f1 + f2 is divergent in +∞ to +∞.

(88) If f1 is divergent in +∞ to +∞ and for every r there exists g such that
r < g and g ∈ dom(f1f2) and there exist r, r1 such that 0 < r and for
every g such that g ∈ dom f2 ∩ ]r1,+∞[ holds r ≤ f2(g), then f1f2 is
divergent in +∞ to +∞.

(89) If f1 is divergent in −∞ to +∞ and for every r there exists g such
that g < r and g ∈ dom(f1 + f2) and there exists r such that f2 is lower
bounded on ]−∞, r[, then f1 + f2 is divergent in −∞ to +∞.

(90) If f1 is divergent in −∞ to +∞ and for every r there exists g such that
g < r and g ∈ dom(f1f2) and there exist r, r1 such that 0 < r and for
every g such that g ∈ dom f2 ∩ ]−∞, r1[ holds r ≤ f2(g), then f1f2 is
divergent in −∞ to +∞.

(91) If f is divergent in +∞ to +∞ and r > 0, then rf is divergent in +∞
to +∞ but if f is divergent in +∞ to +∞ and r < 0, then rf is divergent
in +∞ to −∞ but if f is divergent in +∞ to −∞ and r > 0, then rf is
divergent in +∞ to −∞ but if f is divergent in +∞ to −∞ and r < 0,
then rf is divergent in +∞ to +∞.

(92) If f is divergent in −∞ to +∞ and r > 0, then rf is divergent in −∞
to +∞ but if f is divergent in −∞ to +∞ and r < 0, then rf is divergent
in −∞ to −∞ but if f is divergent in −∞ to −∞ and r > 0, then rf is
divergent in −∞ to −∞ but if f is divergent in −∞ to −∞ and r < 0,
then rf is divergent in −∞ to +∞.

(93) If f is divergent in +∞ to +∞ or f is divergent in +∞ to −∞, then
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|f | is divergent in +∞ to +∞.

(94) If f is divergent in −∞ to +∞ or f is divergent in −∞ to −∞, then
|f | is divergent in −∞ to +∞.

(95) If there exists r such that f is non-decreasing on ]r,+∞[ and f is not
upper bounded on ]r,+∞[ and for every r there exists g such that r < g
and g ∈ dom f , then f is divergent in +∞ to +∞.

(96) If there exists r such that f is increasing on ]r,+∞[ and f is not upper
bounded on ]r,+∞[ and for every r there exists g such that r < g and
g ∈ dom f , then f is divergent in +∞ to +∞.

(97) If there exists r such that f is non-increasing on ]r,+∞[ and f is not
lower bounded on ]r,+∞[ and for every r there exists g such that r < g
and g ∈ dom f , then f is divergent in +∞ to −∞.

(98) If there exists r such that f is decreasing on ]r,+∞[ and f is not lower
bounded on ]r,+∞[ and for every r there exists g such that r < g and
g ∈ dom f , then f is divergent in +∞ to −∞.

(99) If there exists r such that f is non-increasing on ]−∞, r[ and f is not
upper bounded on ]−∞, r[ and for every r there exists g such that g < r
and g ∈ dom f , then f is divergent in −∞ to +∞.

(100) If there exists r such that f is decreasing on ]−∞, r[ and f is not upper
bounded on ]−∞, r[ and for every r there exists g such that g < r and
g ∈ dom f , then f is divergent in −∞ to +∞.

(101) If there exists r such that f is non-decreasing on ]−∞, r[ and f is not
lower bounded on ]−∞, r[ and for every r there exists g such that g < r
and g ∈ dom f , then f is divergent in −∞ to −∞.

The following propositions are true:

(102) If there exists r such that f is increasing on ]−∞, r[ and f is not lower
bounded on ]−∞, r[ and for every r there exists g such that g < r and
g ∈ dom f , then f is divergent in −∞ to −∞.

(103) Suppose f1 is divergent in +∞ to +∞ and for every r there exists g such
that r < g and g ∈ dom f and there exists r such that dom f ∩ ]r,+∞[ ⊆
dom f1 ∩ ]r,+∞[ and for every g such that g ∈ dom f ∩ ]r,+∞[ holds
f1(g) ≤ f(g). Then f is divergent in +∞ to +∞.

(104) Suppose f1 is divergent in +∞ to −∞ and for every r there exists g such
that r < g and g ∈ dom f and there exists r such that dom f ∩ ]r,+∞[ ⊆
dom f1 ∩ ]r,+∞[ and for every g such that g ∈ dom f ∩ ]r,+∞[ holds
f(g) ≤ f1(g). Then f is divergent in +∞ to −∞.

(105) Suppose f1 is divergent in −∞ to +∞ and for every r there exists g such
that g < r and g ∈ dom f and there exists r such that dom f ∩ ]−∞, r[ ⊆
dom f1 ∩ ]−∞, r[ and for every g such that g ∈ dom f ∩ ]−∞, r[ holds
f1(g) ≤ f(g). Then f is divergent in −∞ to +∞.

(106) Suppose f1 is divergent in −∞ to −∞ and for every r there exists g such
that g < r and g ∈ dom f and there exists r such that dom f ∩ ]−∞, r[ ⊆
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dom f1 ∩ ]−∞, r[ and for every g such that g ∈ dom f ∩ ]−∞, r[ holds
f(g) ≤ f1(g). Then f is divergent in −∞ to −∞.

(107) If f1 is divergent in +∞ to +∞ and there exists r such that ]r,+∞[ ⊆
dom f ∩ dom f1 and for every g such that g ∈ ]r,+∞[ holds f1(g) ≤ f(g),
then f is divergent in +∞ to +∞.

(108) If f1 is divergent in +∞ to −∞ and there exists r such that ]r,+∞[ ⊆
dom f ∩ dom f1 and for every g such that g ∈ ]r,+∞[ holds f(g) ≤ f1(g),
then f is divergent in +∞ to −∞.

(109) If f1 is divergent in −∞ to +∞ and there exists r such that ]−∞, r[ ⊆
dom f ∩dom f1 and for every g such that g ∈ ]−∞, r[ holds f1(g) ≤ f(g),
then f is divergent in −∞ to +∞.

(110) If f1 is divergent in −∞ to −∞ and there exists r such that ]−∞, r[ ⊆
dom f ∩dom f1 and for every g such that g ∈ ]−∞, r[ holds f(g) ≤ f1(g),
then f is divergent in −∞ to −∞.

Let us consider f . Let us assume that f is convergent in +∞. The functor
lim+∞ f yielding a real number is defined by:

(Def.12) for every s1 such that s1 is divergent to +∞ and rng s1 ⊆ dom f holds
f · s1 is convergent and lim(f · s1) = lim+∞ f .

Let us consider f . Let us assume that f is convergent in −∞. The functor
lim−∞ f yields a real number and is defined by:

(Def.13) for every s1 such that s1 is divergent to −∞ and rng s1 ⊆ dom f holds
f · s1 is convergent and lim(f · s1) = lim−∞ f .

Next we state a number of propositions:

(111) If f is convergent in +∞, then lim+∞ f = g if and only if for every
s1 such that s1 is divergent to +∞ and rng s1 ⊆ dom f holds f · s1 is
convergent and lim(f · s1) = g.

(112) If f is convergent in −∞, then lim−∞ f = g if and only if for every
s1 such that s1 is divergent to −∞ and rng s1 ⊆ dom f holds f · s1 is
convergent and lim(f · s1) = g.

(113) If f is convergent in −∞, then lim−∞ f = g if and only if for every g1

such that 0 < g1 there exists r such that for every r1 such that r1 < r
and r1 ∈ dom f holds |f(r1)− g| < g1.

(114) If f is convergent in +∞, then lim+∞ f = g if and only if for every g1

such that 0 < g1 there exists r such that for every r1 such that r < r1

and r1 ∈ dom f holds |f(r1)− g| < g1.

(115) If f is convergent in +∞, then rf is convergent in +∞ and lim+∞(rf) =
r · (lim+∞ f).

(116) If f is convergent in +∞, then−f is convergent in +∞ and lim+∞(−f) =
− lim+∞ f .

(117) If f1 is convergent in +∞ and f2 is convergent in +∞ and for every
r there exists g such that r < g and g ∈ dom(f1 + f2), then f1 + f2 is
convergent in +∞ and lim+∞(f1 + f2) = lim+∞ f1 + lim+∞ f2.
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(118) If f1 is convergent in +∞ and f2 is convergent in +∞ and for every
r there exists g such that r < g and g ∈ dom(f1 − f2), then f1 − f2 is
convergent in +∞ and lim+∞(f1 − f2) = lim+∞ f1 − lim+∞ f2.

(119) If f is convergent in +∞ and f −1 {0} = ∅ and lim+∞ f 6= 0, then 1
f is

convergent in +∞ and lim+∞ 1
f = (lim+∞ f)−1.

(120) If f is convergent in +∞, then |f | is convergent in +∞ and lim+∞ |f | =
| lim+∞ f |.

(121) If f is convergent in +∞ and lim+∞ f 6= 0 and for every r there exists
g such that r < g and g ∈ dom f and f(g) 6= 0, then 1

f is convergent in

+∞ and lim+∞ 1
f = (lim+∞ f)−1.

(122) If f1 is convergent in +∞ and f2 is convergent in +∞ and for every r
there exists g such that r < g and g ∈ dom(f1f2), then f1f2 is convergent
in +∞ and lim+∞(f1f2) = (lim+∞ f1) · (lim+∞ f2).

(123) If f1 is convergent in +∞ and f2 is convergent in +∞ and lim+∞ f2 6= 0

and for every r there exists g such that r < g and g ∈ dom f1

f2
, then f1

f2
is

convergent in +∞ and lim+∞
f1

f2
= lim+∞ f1

lim+∞ f2
.

(124) If f is convergent in−∞, then rf is convergent in−∞ and lim−∞(rf) =
r · (lim−∞ f).

(125) If f is convergent in−∞, then−f is convergent in−∞ and lim−∞(−f) =
− lim−∞ f .

(126) If f1 is convergent in −∞ and f2 is convergent in −∞ and for every
r there exists g such that g < r and g ∈ dom(f1 + f2), then f1 + f2 is
convergent in −∞ and lim−∞(f1 + f2) = lim−∞ f1 + lim−∞ f2.

(127) If f1 is convergent in −∞ and f2 is convergent in −∞ and for every
r there exists g such that g < r and g ∈ dom(f1 − f2), then f1 − f2 is
convergent in −∞ and lim−∞(f1 − f2) = lim−∞ f1 − lim−∞ f2.

(128) If f is convergent in −∞ and f −1 {0} = ∅ and lim−∞ f 6= 0, then 1
f is

convergent in −∞ and lim−∞ 1
f = (lim−∞ f)−1.

(129) If f is convergent in −∞, then |f | is convergent in −∞ and lim−∞ |f | =
| lim−∞ f |.

(130) If f is convergent in −∞ and lim−∞ f 6= 0 and for every r there exists
g such that g < r and g ∈ dom f and f(g) 6= 0, then 1

f is convergent in

−∞ and lim−∞ 1
f = (lim−∞ f)−1.

(131) If f1 is convergent in −∞ and f2 is convergent in −∞ and for every r
there exists g such that g < r and g ∈ dom(f1f2), then f1f2 is convergent
in −∞ and lim−∞(f1f2) = (lim−∞ f1) · (lim−∞ f2).

(132) If f1 is convergent in −∞ and f2 is convergent in −∞ and lim−∞ f2 6= 0

and for every r there exists g such that g < r and g ∈ dom f1

f2
, then f1

f2
is

convergent in −∞ and lim−∞
f1

f2
= lim−∞ f1

lim−∞ f2
.

(133) If f1 is convergent in +∞ and lim+∞ f1 = 0 and for every r there exists
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g such that r < g and g ∈ dom(f1f2) and there exists r such that f2 is
bounded on ]r,+∞[, then f1f2 is convergent in +∞ and lim+∞(f1f2) = 0.

(134) If f1 is convergent in −∞ and lim−∞ f1 = 0 and for every r there exists
g such that g < r and g ∈ dom(f1f2) and there exists r such that f2 is
bounded on ]−∞, r[, then f1f2 is convergent in −∞ and lim−∞(f1f2) = 0.

(135) Suppose that
(i) f1 is convergent in +∞,

(ii) f2 is convergent in +∞,
(iii) lim+∞ f1 = lim+∞ f2,
(iv) for every r there exists g such that r < g and g ∈ dom f ,
(v) there exists r such that dom f1 ∩ ]r,+∞[ ⊆ dom f2 ∩ ]r,+∞[ and

dom f∩ ]r,+∞[ ⊆ dom f1∩ ]r,+∞[ or dom f2∩ ]r,+∞[ ⊆ dom f1∩ ]r,+∞[
and dom f ∩ ]r,+∞[ ⊆ dom f2 ∩ ]r,+∞[ but for every g such that g ∈
dom f ∩ ]r,+∞[ holds f1(g) ≤ f(g) and f(g) ≤ f2(g).
Then f is convergent in +∞ and lim+∞ f = lim+∞ f1.

(136) Suppose f1 is convergent in +∞ and f2 is convergent in +∞ and
lim+∞ f1 = lim+∞ f2 and there exists r such that ]r,+∞[ ⊆ (dom f1 ∩
dom f2)∩dom f and for every g such that g ∈ ]r,+∞[ holds f1(g) ≤ f(g)
and f(g) ≤ f2(g). Then f is convergent in +∞ and lim+∞ f = lim+∞ f1.

(137) Suppose that
(i) f1 is convergent in −∞,

(ii) f2 is convergent in −∞,
(iii) lim−∞ f1 = lim−∞ f2,
(iv) for every r there exists g such that g < r and g ∈ dom f ,
(v) there exists r such that dom f1 ∩ ]−∞, r[ ⊆ dom f2 ∩ ]−∞, r[ and

dom f∩]−∞, r[ ⊆ dom f1∩]−∞, r[ or dom f2∩]−∞, r[ ⊆ dom f1∩]−∞, r[
and dom f ∩ ]−∞, r[ ⊆ dom f2 ∩ ]−∞, r[ but for every g such that g ∈
dom f ∩ ]−∞, r[ holds f1(g) ≤ f(g) and f(g) ≤ f2(g).
Then f is convergent in −∞ and lim−∞ f = lim−∞ f1.

(138) Suppose f1 is convergent in −∞ and f2 is convergent in −∞ and
lim−∞ f1 = lim−∞ f2 and there exists r such that ]−∞, r[ ⊆ (dom f1 ∩
dom f2)∩dom f and for every g such that g ∈ ]−∞, r[ holds f1(g) ≤ f(g)
and f(g) ≤ f2(g). Then f is convergent in −∞ and lim−∞ f = lim−∞ f1.

(139) Suppose that
(i) f1 is convergent in +∞,

(ii) f2 is convergent in +∞,
(iii) there exists r such that dom f1 ∩ ]r,+∞[ ⊆ dom f2 ∩ ]r,+∞[ and for

every g such that g ∈ dom f1 ∩ ]r,+∞[ holds f1(g) ≤ f2(g) or dom f2 ∩
]r,+∞[ ⊆ dom f1∩ ]r,+∞[ and for every g such that g ∈ dom f2∩ ]r,+∞[
holds f1(g) ≤ f2(g).
Then lim+∞ f1 ≤ lim+∞ f2.

(140) Suppose that
(i) f1 is convergent in −∞,

(ii) f2 is convergent in −∞,
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(iii) there exists r such that dom f1 ∩ ]−∞, r[ ⊆ dom f2 ∩ ]−∞, r[ and for
every g such that g ∈ dom f1 ∩ ]−∞, r[ holds f1(g) ≤ f2(g) or dom f2 ∩
]−∞, r[ ⊆ dom f1∩ ]−∞, r[ and for every g such that g ∈ dom f2∩ ]−∞, r[
holds f1(g) ≤ f2(g).

Then lim−∞ f1 ≤ lim−∞ f2.

(141) If f is divergent in +∞ to +∞ or f is divergent in +∞ to −∞ but for
every r there exists g such that r < g and g ∈ dom f and f(g) 6= 0, then
1
f is convergent in +∞ and lim+∞ 1

f = 0.

We now state several propositions:

(142) If f is divergent in −∞ to +∞ or f is divergent in −∞ to −∞ but for
every r there exists g such that g < r and g ∈ dom f and f(g) 6= 0, then
1
f is convergent in −∞ and lim−∞ 1

f = 0.

(143) If f is convergent in +∞ and lim+∞ f = 0 and for every r there exists
g such that r < g and g ∈ dom f and f(g) 6= 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]r,+∞[ holds 0 ≤ f(g), then 1

f is
divergent in +∞ to +∞.

(144) If f is convergent in +∞ and lim+∞ f = 0 and for every r there exists
g such that r < g and g ∈ dom f and f(g) 6= 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]r,+∞[ holds f(g) ≤ 0, then 1

f is
divergent in +∞ to −∞.

(145) If f is convergent in −∞ and lim−∞ f = 0 and for every r there exists
g such that g < r and g ∈ dom f and f(g) 6= 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]−∞, r[ holds 0 ≤ f(g), then 1

f is
divergent in −∞ to +∞.

(146) If f is convergent in −∞ and lim−∞ f = 0 and for every r there exists
g such that g < r and g ∈ dom f and f(g) 6= 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]−∞, r[ holds f(g) ≤ 0, then 1

f is
divergent in −∞ to −∞.

(147) If f is convergent in +∞ and lim+∞ f = 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]r,+∞[ holds 0 < f(g), then 1

f is
divergent in +∞ to +∞.

(148) If f is convergent in +∞ and lim+∞ f = 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]r,+∞[ holds f(g) < 0, then 1

f is
divergent in +∞ to −∞.

(149) If f is convergent in −∞ and lim−∞ f = 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]−∞, r[ holds 0 < f(g), then 1

f is
divergent in −∞ to +∞.

(150) If f is convergent in −∞ and lim−∞ f = 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]−∞, r[ holds f(g) < 0, then 1

f is
divergent in −∞ to −∞.
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Université Catholique de Louvain

One-Side Limits of a Real Function at a

Point

Jaros law Kotowicz1

Warsaw University
Bia lystok

Summary. We introduce the left-side and the right-side limit of
a real function at a point. We prove a few properties of the operations
on the proper and improper one-side limits and show that Cauchy and
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The articles [15], [4], [1], [2], [13], [11], [5], [7], [12], [14], [3], [8], [9], [10], and [6]
provide the terminology and notation for this paper. For simplicity we adopt
the following convention: r, r1, r2, g, g1, x0 will be real numbers, n, k will be
natural numbers, s1 will be a sequence of real numbers, and f , f1, f2 will be
partial functions from

�
to

�
. We now state several propositions:

(1) If s1 is convergent and r < lim s1, then there exists n such that for
every k such that n ≤ k holds r < s1(k).

(2) If s1 is convergent and lim s1 < r, then there exists n such that for
every k such that n ≤ k holds s1(k) < r.

(3) If 0 < r2 and ]r1 − r2, r1[ ⊆ dom f , then for every r such that r < r1

there exists g such that r < g and g < r1 and g ∈ dom f .

(4) If 0 < r2 and ]r1, r1 + r2[ ⊆ dom f , then for every r such that r1 < r
there exists g such that g < r and r1 < g and g ∈ dom f .

(5) If for every n holds x0− 1
n+1 < s1(n) and s1(n) < x0 and s1(n) ∈ dom f ,

then s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f and rng s1 ⊆
dom f ∩ ]−∞, x0[.

(6) If for every n holds x0 < s1(n) and s1(n) < x0+ 1
n+1 and s1(n) ∈ dom f ,

then s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f and rng s1 ⊆
dom f ∩ ]x0,+∞[.
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We now define several new predicates. Let us consider f , x0. We say that f
is left convergent in x0 if and only if:

(Def.1) (i) for every r such that r < x0 there exists g such that r < g and
g < x0 and g ∈ dom f ,

(ii) there exists g such that for every s1 such that s1 is convergent and
lim s1 = x0 and rng s1 ⊆ dom f ∩ ]−∞, x0[ holds f · s1 is convergent and
lim(f · s1) = g.

We say that f is left divergent to +∞ in x0 if and only if:

(Def.2) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f and for every s1 such that s1 is convergent and lim s1 = x0

and rng s1 ⊆ dom f ∩ ]−∞, x0[ holds f · s1 is divergent to +∞.

We say that f is left divergent to −∞ in x0 if and only if:

(Def.3) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f and for every s1 such that s1 is convergent and lim s1 = x0

and rng s1 ⊆ dom f ∩ ]−∞, x0[ holds f · s1 is divergent to −∞.

We say that f is right convergent in x0 if and only if:

(Def.4) (i) for every r such that x0 < r there exists g such that g < r and
x0 < g and g ∈ dom f ,

(ii) there exists g such that for every s1 such that s1 is convergent and
lim s1 = x0 and rng s1 ⊆ dom f ∩ ]x0,+∞[ holds f · s1 is convergent and
lim(f · s1) = g.

We say that f is right divergent to +∞ in x0 if and only if:

(Def.5) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom f and for every s1 such that s1 is convergent and lim s1 = x0

and rng s1 ⊆ dom f ∩ ]x0,+∞[ holds f · s1 is divergent to +∞.

We say that f is right divergent to −∞ in x0 if and only if:

(Def.6) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom f and for every s1 such that s1 is convergent and lim s1 = x0

and rng s1 ⊆ dom f ∩ ]x0,+∞[ holds f · s1 is divergent to −∞.

We now state a number of propositions:

(7) f is left convergent in x0 if and only if the following conditions are
satisfied:

(i) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f ,
(ii) there exists g such that for every s1 such that s1 is convergent and

lim s1 = x0 and rng s1 ⊆ dom f ∩ ]−∞, x0[ holds f · s1 is convergent and
lim(f · s1) = g.

(8) f is left divergent to +∞ in x0 if and only if for every r such that r < x0

there exists g such that r < g and g < x0 and g ∈ dom f and for every s1

such that s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f ∩ ]−∞, x0[
holds f · s1 is divergent to +∞.
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(9) f is left divergent to −∞ in x0 if and only if for every r such that r < x0

there exists g such that r < g and g < x0 and g ∈ dom f and for every s1

such that s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f ∩ ]−∞, x0[
holds f · s1 is divergent to −∞.

(10) f is right convergent in x0 if and only if the following conditions are
satisfied:

(i) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom f ,

(ii) there exists g such that for every s1 such that s1 is convergent and
lim s1 = x0 and rng s1 ⊆ dom f ∩ ]x0,+∞[ holds f · s1 is convergent and
lim(f · s1) = g.

(11) f is right divergent to +∞ in x0 if and only if for every r such that x0 < r
there exists g such that g < r and x0 < g and g ∈ dom f and for every s1

such that s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f ∩ ]x0,+∞[
holds f · s1 is divergent to +∞.

(12) f is right divergent to−∞ in x0 if and only if for every r such that x0 < r
there exists g such that g < r and x0 < g and g ∈ dom f and for every s1

such that s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f ∩ ]x0,+∞[
holds f · s1 is divergent to −∞.

(13) f is left convergent in x0 if and only if the following conditions are
satisfied:

(i) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f ,
(ii) there exists g such that for every g1 such that 0 < g1 there exists r such

that r < x0 and for every r1 such that r < r1 and r1 < x0 and r1 ∈ dom f
holds |f(r1)− g| < g1.

(14) f is left divergent to +∞ in x0 if and only if the following conditions
are satisfied:

(i) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f ,
(ii) for every g1 there exists r such that r < x0 and for every r1 such that

r < r1 and r1 < x0 and r1 ∈ dom f holds g1 < f(r1).

(15) f is left divergent to −∞ in x0 if and only if the following conditions
are satisfied:

(i) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f ,
(ii) for every g1 there exists r such that r < x0 and for every r1 such that

r < r1 and r1 < x0 and r1 ∈ dom f holds f(r1) < g1.

(16) f is right convergent in x0 if and only if the following conditions are
satisfied:

(i) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom f ,

(ii) there exists g such that for every g1 such that 0 < g1 there exists r such
that x0 < r and for every r1 such that r1 < r and x0 < r1 and r1 ∈ dom f
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holds |f(r1)− g| < g1.

(17) f is right divergent to +∞ in x0 if and only if the following conditions
are satisfied:

(i) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom f ,

(ii) for every g1 there exists r such that x0 < r and for every r1 such that
r1 < r and x0 < r1 and r1 ∈ dom f holds g1 < f(r1).

(18) f is right divergent to −∞ in x0 if and only if the following conditions
are satisfied:

(i) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom f ,

(ii) for every g1 there exists r such that x0 < r and for every r1 such that
r1 < r and x0 < r1 and r1 ∈ dom f holds f(r1) < g1.

(19) If f1 is left divergent to +∞ in x0 and f2 is left divergent to +∞ in x0

and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f1 ∩ dom f2, then f1 + f2 is left divergent to +∞ in x0 and
f1f2 is left divergent to +∞ in x0.

(20) If f1 is left divergent to −∞ in x0 and f2 is left divergent to −∞ in x0

and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f1 ∩ dom f2, then f1 + f2 is left divergent to −∞ in x0 and
f1f2 is left divergent to +∞ in x0.

(21) If f1 is right divergent to +∞ in x0 and f2 is right divergent to +∞ in
x0 and for every r such that x0 < r there exists g such that g < r and
x0 < g and g ∈ dom f1 ∩ dom f2, then f1 + f2 is right divergent to +∞ in
x0 and f1f2 is right divergent to +∞ in x0.

(22) If f1 is right divergent to −∞ in x0 and f2 is right divergent to −∞ in
x0 and for every r such that x0 < r there exists g such that g < r and
x0 < g and g ∈ dom f1 ∩ dom f2, then f1 + f2 is right divergent to −∞ in
x0 and f1f2 is right divergent to +∞ in x0.

(23) If f1 is left divergent to +∞ in x0 and for every r such that r < x0 there
exists g such that r < g and g < x0 and g ∈ dom(f1 +f2) and there exists
r such that 0 < r and f2 is lower bounded on ]x0 − r, x0[, then f1 + f2 is
left divergent to +∞ in x0.

(24) Suppose that
(i) f1 is left divergent to +∞ in x0,

(ii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f1f2),
(iii) there exist r, r1 such that 0 < r and 0 < r1 and for every g such that

g ∈ dom f2 ∩ ]x0 − r, x0[ holds r1 ≤ f2(g).
Then f1f2 is left divergent to +∞ in x0.

(25) If f1 is right divergent to +∞ in x0 and for every r such that x0 < r
there exists g such that g < r and x0 < g and g ∈ dom(f1 + f2) and there
exists r such that 0 < r and f2 is lower bounded on ]x0, x0 + r[, then
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f1 + f2 is right divergent to +∞ in x0.

(26) Suppose that
(i) f1 is right divergent to +∞ in x0,
(ii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f1f2),
(iii) there exist r, r1 such that 0 < r and 0 < r1 and for every g such that

g ∈ dom f2 ∩ ]x0, x0 + r[ holds r1 ≤ f2(g).
Then f1f2 is right divergent to +∞ in x0.

(27) (i) If f is left divergent to +∞ in x0 and r > 0, then rf is left divergent
to +∞ in x0,

(ii) if f is left divergent to +∞ in x0 and r < 0, then rf is left divergent
to −∞ in x0,

(iii) if f is left divergent to −∞ in x0 and r > 0, then rf is left divergent
to −∞ in x0,

(iv) if f is left divergent to −∞ in x0 and r < 0, then rf is left divergent
to +∞ in x0.

(28) (i) If f is right divergent to +∞ in x0 and r > 0, then rf is right
divergent to +∞ in x0,

(ii) if f is right divergent to +∞ in x0 and r < 0, then rf is right divergent
to −∞ in x0,

(iii) if f is right divergent to −∞ in x0 and r > 0, then rf is right divergent
to −∞ in x0,

(iv) if f is right divergent to −∞ in x0 and r < 0, then rf is right divergent
to +∞ in x0.

(29) If f is left divergent to +∞ in x0 or f is left divergent to −∞ in x0,
then |f | is left divergent to +∞ in x0.

(30) If f is right divergent to +∞ in x0 or f is right divergent to −∞ in x0,
then |f | is right divergent to +∞ in x0.

(31) If there exists r such that 0 < r and f is non-decreasing on ]x0 − r, x0[
and f is not upper bounded on ]x0−r, x0[ and for every r such that r < x0

there exists g such that r < g and g < x0 and g ∈ dom f , then f is left
divergent to +∞ in x0.

(32) If there exists r such that 0 < r and f is increasing on ]x0 − r, x0[ and
f is not upper bounded on ]x0 − r, x0[ and for every r such that r < x0

there exists g such that r < g and g < x0 and g ∈ dom f , then f is left
divergent to +∞ in x0.

(33) If there exists r such that 0 < r and f is non-increasing on ]x0 − r, x0[
and f is not lower bounded on ]x0−r, x0[ and for every r such that r < x0

there exists g such that r < g and g < x0 and g ∈ dom f , then f is left
divergent to −∞ in x0.

(34) If there exists r such that 0 < r and f is decreasing on ]x0 − r, x0[ and
f is not lower bounded on ]x0 − r, x0[ and for every r such that r < x0

there exists g such that r < g and g < x0 and g ∈ dom f , then f is left
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divergent to −∞ in x0.

(35) If there exists r such that 0 < r and f is non-increasing on ]x0, x0 + r[
and f is not upper bounded on ]x0, x0+r[ and for every r such that x0 < r
there exists g such that g < r and x0 < g and g ∈ dom f , then f is right
divergent to +∞ in x0.

(36) If there exists r such that 0 < r and f is decreasing on ]x0, x0 + r[ and
f is not upper bounded on ]x0, x0 + r[ and for every r such that x0 < r
there exists g such that g < r and x0 < g and g ∈ dom f , then f is right
divergent to +∞ in x0.

(37) If there exists r such that 0 < r and f is non-decreasing on ]x0, x0 + r[
and f is not lower bounded on ]x0, x0 +r[ and for every r such that x0 < r
there exists g such that g < r and x0 < g and g ∈ dom f , then f is right
divergent to −∞ in x0.

Next we state several propositions:

(38) If there exists r such that 0 < r and f is increasing on ]x0, x0 + r[ and
f is not lower bounded on ]x0, x0 + r[ and for every r such that x0 < r
there exists g such that g < r and x0 < g and g ∈ dom f , then f is right
divergent to −∞ in x0.

(39) Suppose that
(i) f1 is left divergent to +∞ in x0,

(ii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f ,
(iii) there exists r such that 0 < r and dom f ∩ ]x0− r, x0[ ⊆ dom f1∩ ]x0−

r, x0[ and for every g such that g ∈ dom f ∩ ]x0−r, x0[ holds f1(g) ≤ f(g).
Then f is left divergent to +∞ in x0.

(40) Suppose that
(i) f1 is left divergent to −∞ in x0,

(ii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f ,
(iii) there exists r such that 0 < r and dom f ∩ ]x0− r, x0[ ⊆ dom f1∩ ]x0−

r, x0[ and for every g such that g ∈ dom f ∩ ]x0−r, x0[ holds f(g) ≤ f1(g).
Then f is left divergent to −∞ in x0.

(41) Suppose that
(i) f1 is right divergent to +∞ in x0,

(ii) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom f ,

(iii) there exists r such that 0 < r and dom f∩]x0, x0+r[ ⊆ dom f1∩]x0, x0+
r[ and for every g such that g ∈ dom f ∩ ]x0, x0 + r[ holds f1(g) ≤ f(g).
Then f is right divergent to +∞ in x0.

(42) Suppose that
(i) f1 is right divergent to −∞ in x0,

(ii) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom f ,
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(iii) there exists r such that 0 < r and dom f∩]x0, x0+r[ ⊆ dom f1∩]x0, x0+
r[ and for every g such that g ∈ dom f ∩ ]x0, x0 + r[ holds f(g) ≤ f1(g).
Then f is right divergent to −∞ in x0.

(43) If f1 is left divergent to +∞ in x0 and there exists r such that 0 < r
and ]x0−r, x0[ ⊆ dom f ∩dom f1 and for every g such that g ∈ ]x0−r, x0[
holds f1(g) ≤ f(g), then f is left divergent to +∞ in x0.

(44) If f1 is left divergent to −∞ in x0 and there exists r such that 0 < r
and ]x0−r, x0[ ⊆ dom f ∩dom f1 and for every g such that g ∈ ]x0−r, x0[
holds f(g) ≤ f1(g), then f is left divergent to −∞ in x0.

(45) If f1 is right divergent to +∞ in x0 and there exists r such that 0 < r
and ]x0, x0 +r[ ⊆ dom f ∩dom f1 and for every g such that g ∈ ]x0, x0 +r[
holds f1(g) ≤ f(g), then f is right divergent to +∞ in x0.

(46) If f1 is right divergent to −∞ in x0 and there exists r such that 0 < r
and ]x0, x0 +r[ ⊆ dom f ∩dom f1 and for every g such that g ∈ ]x0, x0 +r[
holds f(g) ≤ f1(g), then f is right divergent to −∞ in x0.

Let us consider f , x0. Let us assume that f is left convergent in x0. The
functor limx0

− f yields a real number and is defined by:

(Def.7) for every s1 such that s1 is convergent and lim s1 = x0 and rng s1 ⊆
dom f ∩ ]−∞, x0[ holds f · s1 is convergent and lim(f · s1) = limx0

− f .

Let us consider f , x0. Let us assume that f is right convergent in x0. The
functor limx0

+ f yields a real number and is defined by:

(Def.8) for every s1 such that s1 is convergent and lim s1 = x0 and rng s1 ⊆
dom f ∩ ]x0,+∞[ holds f · s1 is convergent and lim(f · s1) = limx0

+ f .

One can prove the following propositions:

(47) If f is left convergent in x0, then limx0
− f = g if and only if for every s1

such that s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f ∩ ]−∞, x0[
holds f · s1 is convergent and lim(f · s1) = g.

(48) If f is right convergent in x0, then limx0
+ f = g if and only if for every s1

such that s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f ∩ ]x0,+∞[
holds f · s1 is convergent and lim(f · s1) = g.

(49) If f is left convergent in x0, then limx0
− f = g if and only if for every

g1 such that 0 < g1 there exists r such that r < x0 and for every r1 such
that r < r1 and r1 < x0 and r1 ∈ dom f holds |f(r1)− g| < g1.

(50) If f is right convergent in x0, then limx0
+ f = g if and only if for every

g1 such that 0 < g1 there exists r such that x0 < r and for every r1 such
that r1 < r and x0 < r1 and r1 ∈ dom f holds |f(r1)− g| < g1.

(51) If f is left convergent in x0, then rf is left convergent in x0 and
limx0

−(rf) = r · (limx0
− f).

(52) If f is left convergent in x0, then −f is left convergent in x0 and
limx0

−(−f) = − limx0
− f .

(53) Suppose f1 is left convergent in x0 and f2 is left convergent in x0 and
for every r such that r < x0 there exists g such that r < g and g <
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x0 and g ∈ dom(f1 + f2). Then f1 + f2 is left convergent in x0 and
limx0

−(f1 + f2) = limx0
− f1 + limx0

− f2.

(54) Suppose f1 is left convergent in x0 and f2 is left convergent in x0 and
for every r such that r < x0 there exists g such that r < g and g <
x0 and g ∈ dom(f1 − f2). Then f1 − f2 is left convergent in x0 and
limx0

−(f1 − f2) = limx0
− f1 − limx0

− f2.

(55) If f is left convergent in x0 and f −1 {0} = ∅ and limx0
− f 6= 0, then 1

f

is left convergent in x0 and limx0
− 1
f = (limx0

− f)−1.

(56) If f is left convergent in x0, then |f | is left convergent in x0 and
limx0

− |f | = | limx0
− f |.

(57) Suppose f is left convergent in x0 and limx0
− f 6= 0 and for every r such

that r < x0 there exists g such that r < g and g < x0 and g ∈ dom f and
f(g) 6= 0. Then 1

f is left convergent in x0 and limx0
− 1
f = (limx0

− f)−1.

(58) Suppose f1 is left convergent in x0 and f2 is left convergent in x0 and
for every r such that r < x0 there exists g such that r < g and g < x0 and
g ∈ dom(f1f2). Then f1f2 is left convergent in x0 and limx0

−(f1f2) =
(limx0

− f1) · (limx0
− f2).

(59) Suppose f1 is left convergent in x0 and f2 is left convergent in x0 and
limx0

− f2 6= 0 and for every r such that r < x0 there exists g such that

r < g and g < x0 and g ∈ dom f1

f2
. Then f1

f2
is left convergent in x0 and

limx0
−
f1

f2
=

limx0
− f1

limx0
− f2

.

(60) If f is right convergent in x0, then rf is right convergent in x0 and
limx0

+(rf) = r · (limx0
+ f).

(61) If f is right convergent in x0, then −f is right convergent in x0 and
limx0

+(−f) = − limx0
+ f .

(62) Suppose f1 is right convergent in x0 and f2 is right convergent in x0

and for every r such that x0 < r there exists g such that g < r and
x0 < g and g ∈ dom(f1 + f2). Then f1 + f2 is right convergent in x0 and
limx0

+(f1 + f2) = limx0
+ f1 + limx0

+ f2.

(63) Suppose f1 is right convergent in x0 and f2 is right convergent in x0

and for every r such that x0 < r there exists g such that g < r and
x0 < g and g ∈ dom(f1 − f2). Then f1 − f2 is right convergent in x0 and
limx0

+(f1 − f2) = limx0
+ f1 − limx0

+ f2.

(64) If f is right convergent in x0 and f −1 {0} = ∅ and limx0
+ f 6= 0, then

1
f is right convergent in x0 and limx0

+
1
f = (limx0

+ f)−1.

(65) If f is right convergent in x0, then |f | is right convergent in x0 and
limx0

+ |f | = | limx0
+ f |.

(66) Suppose f is right convergent in x0 and limx0
+ f 6= 0 and for every r such

that x0 < r there exists g such that g < r and x0 < g and g ∈ dom f and
f(g) 6= 0. Then 1

f is right convergent in x0 and limx0
+

1
f = (limx0

+ f)−1.

(67) Suppose f1 is right convergent in x0 and f2 is right convergent in x0
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and for every r such that x0 < r there exists g such that g < r and
x0 < g and g ∈ dom(f1f2). Then f1f2 is right convergent in x0 and
limx0

+(f1f2) = (limx0
+ f1) · (limx0

+ f2).

(68) Suppose f1 is right convergent in x0 and f2 is right convergent in x0

and limx0
+ f2 6= 0 and for every r such that x0 < r there exists g such

that g < r and x0 < g and g ∈ dom f1

f2
. Then f1

f2
is right convergent in x0

and limx0
+
f1

f2
=

limx0
+ f1

limx0
+ f2

.

(69) Suppose f1 is left convergent in x0 and limx0
− f1 = 0 and for every

r such that r < x0 there exists g such that r < g and g < x0 and
g ∈ dom(f1f2) and there exists r such that 0 < r and f2 is bounded on
]x0 − r, x0[. Then f1f2 is left convergent in x0 and limx0

−(f1f2) = 0.

(70) Suppose f1 is right convergent in x0 and limx0
+ f1 = 0 and for every

r such that x0 < r there exists g such that g < r and x0 < g and
g ∈ dom(f1f2) and there exists r such that 0 < r and f2 is bounded on
]x0, x0 + r[. Then f1f2 is right convergent in x0 and limx0

+(f1f2) = 0.

(71) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is left convergent in x0,

(iii) limx0
− f1 = limx0

− f2,
(iv) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f ,
(v) there exists r such that 0 < r and for every g such that g ∈ dom f ∩

]x0−r, x0[ holds f1(g) ≤ f(g) and f(g) ≤ f2(g) but dom f1∩ ]x0−r, x0[ ⊆
dom f2 ∩ ]x0 − r, x0[ and dom f ∩ ]x0 − r, x0[ ⊆ dom f1 ∩ ]x0 − r, x0[ or
dom f2 ∩ ]x0 − r, x0[ ⊆ dom f1 ∩ ]x0 − r, x0[ and dom f ∩ ]x0 − r, x0[ ⊆
dom f2 ∩ ]x0 − r, x0[.
Then f is left convergent in x0 and limx0

− f = limx0
− f1.

(72) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is left convergent in x0,

(iii) limx0
− f1 = limx0

− f2,
(iv) there exists r such that 0 < r and ]x0 − r, x0[ ⊆ (dom f1 ∩ dom f2) ∩

dom f and for every g such that g ∈ ]x0 − r, x0[ holds f1(g) ≤ f(g) and
f(g) ≤ f2(g).
Then f is left convergent in x0 and limx0

− f = limx0
− f1.

(73) Suppose that
(i) f1 is right convergent in x0,
(ii) f2 is right convergent in x0,

(iii) limx0
+ f1 = limx0

+ f2,
(iv) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom f ,
(v) there exists r such that 0 < r and for every g such that g ∈ dom f ∩

]x0, x0 +r[ holds f1(g) ≤ f(g) and f(g) ≤ f2(g) but dom f1∩ ]x0, x0 +r[ ⊆
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dom f2 ∩ ]x0, x0 + r[ and dom f ∩ ]x0, x0 + r[ ⊆ dom f1 ∩ ]x0, x0 + r[ or
dom f2 ∩ ]x0, x0 + r[ ⊆ dom f1 ∩ ]x0, x0 + r[ and dom f ∩ ]x0, x0 + r[ ⊆
dom f2 ∩ ]x0, x0 + r[.

Then f is right convergent in x0 and limx0
+ f = limx0

+ f1.

(74) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is right convergent in x0,

(iii) limx0
+ f1 = limx0

+ f2,

(iv) there exists r such that 0 < r and ]x0, x0 + r[ ⊆ (dom f1 ∩ dom f2) ∩
dom f and for every g such that g ∈ ]x0, x0 + r[ holds f1(g) ≤ f(g) and
f(g) ≤ f2(g).

Then f is right convergent in x0 and limx0
+ f = limx0

+ f1.

(75) Suppose that

(i) f1 is left convergent in x0,

(ii) f2 is left convergent in x0,

(iii) there exists r such that 0 < r but dom f1∩ ]x0−r, x0[ ⊆ dom f2∩ ]x0−
r, x0[ and for every g such that g ∈ dom f1∩]x0−r, x0[ holds f1(g) ≤ f2(g)
or dom f2 ∩ ]x0 − r, x0[ ⊆ dom f1 ∩ ]x0 − r, x0[ and for every g such that
g ∈ dom f2 ∩ ]x0 − r, x0[ holds f1(g) ≤ f2(g).

Then limx0
− f1 ≤ limx0

− f2.

(76) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is right convergent in x0,

(iii) there exists r such that 0 < r but dom f1 ∩ ]x0, x0 + r[ ⊆ dom f2 ∩
]x0, x0 + r[ and for every g such that g ∈ dom f1 ∩ ]x0, x0 + r[ holds
f1(g) ≤ f2(g) or dom f2 ∩ ]x0, x0 + r[ ⊆ dom f1 ∩ ]x0, x0 + r[ and for every
g such that g ∈ dom f2 ∩ ]x0, x0 + r[ holds f1(g) ≤ f2(g).

Then limx0
+ f1 ≤ limx0

+ f2.

(77) If f is left divergent to +∞ in x0 or f is left divergent to −∞ in x0 but
for every r such that r < x0 there exists g such that r < g and g < x0 and
g ∈ dom f and f(g) 6= 0, then 1

f is left convergent in x0 and limx0
− 1
f = 0.

One can prove the following propositions:

(78) If f is right divergent to +∞ in x0 or f is right divergent to −∞ in
x0 but for every r such that x0 < r there exists g such that g < r and
x0 < g and g ∈ dom f and f(g) 6= 0, then 1

f is right convergent in x0 and

limx0
+

1
f = 0.

(79) If f is left convergent in x0 and limx0
− f = 0 and there exists r such that

0 < r and for every g such that g ∈ dom f ∩ ]x0 − r, x0[ holds 0 < f(g),
then 1

f is left divergent to +∞ in x0.

(80) If f is left convergent in x0 and limx0
− f = 0 and there exists r such that

0 < r and for every g such that g ∈ dom f ∩ ]x0 − r, x0[ holds f(g) < 0,
then 1

f is left divergent to −∞ in x0.
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(81) If f is right convergent in x0 and limx0
+ f = 0 and there exists r such

that 0 < r and for every g such that g ∈ dom f∩]x0, x0+r[ holds 0 < f(g),
then 1

f is right divergent to +∞ in x0.

(82) If f is right convergent in x0 and limx0
+ f = 0 and there exists r such

that 0 < r and for every g such that g ∈ dom f∩]x0, x0+r[ holds f(g) < 0,
then 1

f is right divergent to −∞ in x0.

(83) Suppose that
(i) f is left convergent in x0,
(ii) limx0

− f = 0,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f and f(g) 6= 0,
(iv) there exists r such that 0 < r and for every g such that g ∈ dom f ∩

]x0 − r, x0[ holds 0 ≤ f(g).
Then 1

f is left divergent to +∞ in x0.

(84) Suppose that
(i) f is left convergent in x0,
(ii) limx0

− f = 0,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f and f(g) 6= 0,
(iv) there exists r such that 0 < r and for every g such that g ∈ dom f ∩

]x0 − r, x0[ holds f(g) ≤ 0.
Then 1

f is left divergent to −∞ in x0.

(85) Suppose that
(i) f is right convergent in x0,
(ii) limx0

+ f = 0,
(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom f and f(g) 6= 0,
(iv) there exists r such that 0 < r and for every g such that g ∈ dom f ∩

]x0, x0 + r[ holds 0 ≤ f(g).
Then 1

f is right divergent to +∞ in x0.

(86) Suppose that
(i) f is right convergent in x0,
(ii) limx0

+ f = 0,
(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom f and f(g) 6= 0,
(iv) there exists r such that 0 < r and for every g such that g ∈ dom f ∩

]x0, x0 + r[ holds f(g) ≤ 0.
Then 1

f is right divergent to −∞ in x0.
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Summary. We define the notion of a subgroup generated by a set
of elements of a group and two closely connected notions, namely lattice
of subgroups and the Frattini subgroup. The operations on the lattice
are the intersection of subgroups (introduced in [18]) and multiplication
of subgroups, which result is defined as a subgroup generated by a sum of
carriers of the two subgroups. In order to define the Frattini subgroup and
to prove theorems concerning it we introduce notion of maximal subgroup
and non-generating element of the group (see page 30 in [6]). The Frattini
subgroup is defined as in [6] as an intersection of all maximal subgroups.
We show that an element of the group belongs to the Frattini subgroup
of the group if and only if it is a non-generating element. We also prove
theorems that should be proved in [1] but are not.

MML Identifier: GROUP 4.

The notation and terminology used here are introduced in the following articles:
[3], [13], [4], [11], [20], [10], [19], [8], [16], [5], [17], [2], [15], [18], [14], [12], [21],
[7], [9], and [1]. Let D be a non-empty set, and let F be a finite sequence of
elements of D, and let X be a set. Then F −X is a finite sequence of elements
of D.

In this article we present several logical schemes. The scheme SubsetD deals
with a non-empty set A, and a unary predicate P, and states that:
{d : P[d]}, where d is an element of A, is a subset of A

for all values of the parameters.
The scheme MeetSbgEx deals with a group A, and a unary predicate P, and

states that:
there exists a subgroup H of A such that the carrier of H =

⋂{A :
∨
K [A =

the carrier of K ∧ P[K]]}, where A is a subset of A, and K is a subgroup of A
provided the parameters have the following property:

1Supported by RPBP.III-24.C1

41
c© 1991 Fondation Philippe le Hodey

ISSN 0777–4028



42 Wojciech A. Trybulec

• there exists a subgroup H of A such that P[H].
For simplicity we adopt the following rules: X denotes a set, k, l, m, n

denote natural numbers, i, i1, i2, i3, j denote integers, G denotes a group, a,
b, c denote elements of G, A, B denote subsets of G, H, H1, H2, H3, K denote
subgroups of G, N1, N2 denote normal subgroups of G, h denotes an element
of H, F , F1, F2 denote finite sequences of elements of the carrier of G, and I,
I1, I2 denote finite sequences of elements of � . The scheme SubgrSep deals with
a group A, and a unary predicate P, and states that:

there exists X such that X ⊆ SubGrA and for every subgroup H of A holds
H ∈ X if and only if P[H]
for all values of the parameters.

Let i be an element of � . The functor @i yields an integer and is defined by:

(Def.1) @i = i.

We now state the proposition

(1) For every element i of � holds @i = i.

Let us consider i. The functor @i yielding an element of � is defined as
follows:

(Def.2) @i = i.

Next we state several propositions:

(2) @i = i.

(3) If a = h, then an = hn.

(4) If a = h, then ai = hi.

(5) If a ∈ H, then an ∈ H.

(6) If a ∈ H, then ai ∈ H.

Let us consider G, F . The functor
∏
F yielding an element of G is defined

as follows:

(Def.3)
∏
F = the operation of G� F .

Next we state a number of propositions:

(7)
∏
F = the operation of G� F .

(8)
∏

(F1
�
F2) =

∏
F1 ·

∏
F2.

(9)
∏

(F
� 〈a〉) =

∏
F · a.

(10)
∏

(〈a〉 �
F ) = a ·∏F .

(11)
∏
εthe carrier of G = 1G.

(12)
∏〈a〉 = a.

(13)
∏〈a, b〉 = a · b.

(14)
∏〈a, b, c〉 = (a · b) · c and

∏〈a, b, c〉 = a · (b · c).
(15)

∏
(n 7−→ a) = an.

(16)
∏

(F − {1G}) =
∏
F .

(17) If lenF1 = lenF2 and for every k such that k ∈ Seg(lenF1) holds
F2((lenF1 − k) + 1) = (πkF1)−1, then

∏
F1 = (

∏
F2)−1.
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(18) If G is an Abelian group, then for every permutation P of Seg(lenF1)
such that F2 = F1 · P holds

∏
F1 =

∏
F2.

(19) If G is an Abelian group and F1 is one-to-one and F2 is one-to-one and
rngF1 = rngF2, then

∏
F1 =

∏
F2.

(20) If G is an Abelian group and lenF = lenF1 and lenF = lenF2 and
for every k such that k ∈ Seg(lenF ) holds F (k) = πkF1 · πkF2, then∏
F =

∏
F1 ·

∏
F2.

(21) If rngF ⊆ H, then
∏
F ∈ H.

Let us consider G, I, F . Let us assume that lenF = len I. The functor F I

yields a finite sequence of elements of the carrier of G and is defined as follows:

(Def.4) len(F I) = lenF and for every k such that k ∈ Seg(lenF ) holds (F I)(k) =
πkF

@(πkI).

One can prove the following propositions:

(22) If lenF = len I and lenF1 = lenF and for every k such that k ∈
Seg(lenF ) holds F1(k) = πkF

@(πkI), then F1 = F I .

(23) If lenF = len I, then for every k such that k ∈ Seg(lenF ) holds
(F I)(k) = πkF

@(πkI).

(24) If lenF = len I, then len(F I) = lenF .

(25) If lenF1 = len I1 and lenF2 = len I2, then (F1
�
F2)I1 � I2 = F I11

�
F I22 .

(26) If lenF = len I and rngF ⊆ H, then
∏

(F I) ∈ H.

(27) εε �
the carrier of G = ε.

(28) 〈a〉〈@i〉 = 〈ai〉.
(29) 〈a, b〉〈@i,@j〉 = 〈ai, bj〉.
(30) 〈a, b, c〉〈@i1 ,@i2,@i3〉 = 〈ai1 , bi2 , ci3〉.
(31) F lenF 7−→@(+1) = F .

(32) F lenF 7−→@(+0) = lenF 7−→ 1G.

(33) If len I = n, then (n 7−→ 1G)I = n 7−→ 1G.

Let us consider G, A. The functor gr(A) yielding a subgroup of G is defined
as follows:

(Def.5) A ⊆ the carrier of gr(A) and for every H such that A ⊆ the carrier of
H holds gr(A) is a subgroup of H.

We now state a number of propositions:

(34) If A ⊆ the carrier of H1 and for every H2 such that A ⊆ the carrier of
H2 holds H1 is a subgroup of H2, then H1 = gr(A).

(35) A ⊆ the carrier of gr(A).

(36) If A ⊆ the carrier of H, then gr(A) is a subgroup of H.

(37) a ∈ gr(A) if and only if there exist F , I such that lenF = len I and
rngF ⊆ A and

∏
(F I) = a.

(38) If a ∈ A, then a ∈ gr(A).

(39) gr(∅the carrier of G) = {1}G.
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(40) gr(H) = H.

(41) If A ⊆ B, then gr(A) is a subgroup of gr(B).

(42) gr(A ∩B) is a subgroup of gr(A) ∩ gr(B).

(43) The carrier of gr(A) =
⋂{B :

∨
H [B = the carrier of H ∧A ⊆ H]}.

(44) gr(A) = gr(A \ {1G}).
We now define two new predicates. Let us consider G, a. We say that a is

non-generating if and only if:

(Def.6) for every A such that gr(A) = G holds gr(A \ {a}) = G.

a is generating stands for a is not non-generating.

We now state the proposition

(46)2 1G is non-generating.

Let us consider G, H. We say that H is maximal if and only if:

(Def.7) H 6= G and for every K such that H 6= K and H is a subgroup of K
holds K = G.

Next we state the proposition

(48)3 If H is maximal and a /∈ H, then gr(H ∪ {a}) = G.

Let us consider G. The functor Φ(G) yields a subgroup of G and is defined
as follows:

(Def.8) the carrier of Φ(G) =
⋂{A :

∨
H [A = the carrier of H∧ H is maximal

]} if there exists H such that H is maximal, Φ(G) = G, otherwise.

We now state several propositions:

(49) If there exists H such that H is maximal and the carrier of H =
⋂{A :∨

K [A = the carrier of K∧ K is maximal ]}, then H = Φ(G).

(50) If for every H holds H is not maximal, then Φ(G) = G.

(51) If there exists H such that H is maximal, then the carrier of Φ(G) =⋂{A :
∨
K [A = the carrier of K∧ K is maximal ]}.

(52) If there exists H such that H is maximal, then a ∈ Φ(G) if and only if
for every H such that H is maximal holds a ∈ H.

(53) If for every H holds H is not maximal, then a ∈ Φ(G).

(54) If H is maximal, then Φ(G) is a subgroup of H.

(55) The carrier of Φ(G) = {a : a is non-generating }.
(56) a ∈ Φ(G) if and only if a is non-generating.

Let us consider G, H1, H2. The functor H1 · H2 yielding a subset of G is
defined as follows:

(Def.9) H1 ·H2 = H1 ·H2.

The following propositions are true:

(57) H1 ·H2 = H1 ·H2 and H1 ·H2 = H1 ·H2 and H1 ·H2 = H1 ·H2.

2The proposition (45) was either repeated or obvious.
3The proposition (47) was either repeated or obvious.
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(58) H ·H = H.

(59) (H1 ·H2) ·H3 = H1 · (H2 ·H3).

(60) (a ·H1) ·H2 = a · (H1 ·H2).

(61) (H1 ·H2) · a = H1 · (H2 · a).

(62) (A ·H1) ·H2 = A · (H1 ·H2).

(63) (H1 ·H2) · A = H1 · (H2 · A).

(64) N1 ·N2 = N2 ·N1.

(65) If G is an Abelian group, then H1 ·H2 = H2 ·H1.

Let us consider G, H1, H2. The functor H1 tH2 yielding a subgroup of G is
defined as follows:

(Def.10) H1 tH2 = gr(H1 ∪H2).

One can prove the following propositions:

(66) H1 tH2 = gr(H1 ∪H2).

(67) a ∈ H1 tH2 if and only if there exist F , I such that lenF = len I and
rngF ⊆ H1 ∪H2 and a =

∏
(F I).

(68) H1 tH2 = gr(H1 ·H2).

(69) If H1 ·H2 = H2 ·H1, then the carrier of H1 tH2 = H1 ·H2.

(70) If G is an Abelian group, then the carrier of H1 tH2 = H1 ·H2.

(71) The carrier of N1 tN2 = N1 ·N2.

(72) N1 tN2 is a normal subgroup of G.

(73) H tH = H.

(74) H1 tH2 = H2 tH1.

(75) (H1 tH2) tH3 = H1 t (H2 tH3).

(76) {1}G tH = H and H t {1}G = H.

(77) ΩG tH = G and H tΩG = G.

(78) H1 is a subgroup of H1 tH2 and H2 is a subgroup of H1 tH2.

(79) H1 is a subgroup of H2 if and only if H1 tH2 = H2.

(80) If H1 is a subgroup of H2, then H1 is a subgroup of H2 tH3.

(81) If H1 is a subgroup of H3 and H2 is a subgroup of H3, then H1 tH2 is
a subgroup of H3.

(82) If H1 is a subgroup of H2, then H1 tH3 is a subgroup of H2 tH3.

(83) H1 ∩H2 is a subgroup of H1 tH2.

(84) (H1 ∩H2) tH2 = H2.

(85) H1 ∩ (H1 tH2) = H1.

(86) H1 tH2 = H2 if and only if H1 ∩H2 = H1.

In the sequel S1, S2 are elements of SubGrG and o is a binary operation on
SubGrG. Let us consider G. The functor SubJoinG yields a binary operation
on SubGrG and is defined by:
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(Def.11) for all S1, S2, H1, H2 such that S1 = H1 and S2 = H2 holds
(SubJoinG)(S1, S2) = H1 tH2.

Next we state two propositions:

(87) If for all S1, S2, H1, H2 such that S1 = H1 and S2 = H2 holds o(S1,
S2) = H1 tH2, then o = SubJoinG.

(88) If H1 = S1 and H2 = S2, then SubJoinG(S1, S2) = H1 tH2.

Let us consider G. The functor SubMeetG yields a binary operation on
SubGrG and is defined as follows:

(Def.12) for all S1, S2, H1, H2 such that S1 = H1 and S2 = H2 holds
(SubMeetG)(S1, S2) = H1 ∩H2.

One can prove the following two propositions:

(89) If for all S1, S2, H1, H2 such that S1 = H1 and S2 = H2 holds o(S1,
S2) = H1 ∩H2, then o = SubMeetG.

(90) If H1 = S1 and H2 = S2, then SubMeetG(S1, S2) = H1 ∩H2.

Let us consider G. The functor � G yielding a lattice is defined as follows:

(Def.13) � G = 〈SubGrG,SubJoinG,SubMeetG〉.
One can prove the following propositions:

(91) � G = 〈SubGrG,SubJoinG,SubMeetG〉.
(92) The carrier of � G = SubGrG.

(93) The join operation of � G = SubJoinG.

(94) The meet operation of � G = SubMeetG.

(95) � G is a lower bound lattice.

(96) � G is an upper bound lattice.

(97) � G is a bound lattice.

(98) ⊥ �
G

= {1}G.

(99) > �
G

= ΩG.

(100) nmod 2 = 0 or nmod 2 = 1.

(101) k · nmod k = 0 and k · nmod n = 0.

(102) If k > 1, then 1 mod k = 1.

(103) If k mod n = 0 and l = k −m · n, then l mod n = 0.

(104) If n 6= 0 and k mod n = 0 and l < n, then (k + l) mod n = l.

(105) If k mod n = 0 and l mod n = 0, then (k + l) mod n = 0.

(106) If n 6= 0 and k mod n = 0 and l mod n = 0, then (k + l) ÷ n =
(k ÷ n) + (l ÷ n).

(107) If k 6= 0, then k · n÷ k = n.
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[4] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.

[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.

[6] M. I. Kargapo low and J. I. Mierzlakow. Podstawy teorii grup. PWN, Warszawa, 1989.

[7] Rafa l Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative

primes. Formalized Mathematics, 1(5):829–832, 1990.

[8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.

[9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.

[10] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,

1(2):369–376, 1990.

[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.

[12] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.

[13] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,

1(5):979–981, 1990.

[14] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathe-

matics, 1(5):955–962, 1990.

[15] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.

[16] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. For-

malized Mathematics, 1(3):569–573, 1990.

[17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.

[18] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics,

1(5):855–864, 1990.

[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[20] Zinaida Trybulec and Halina Świe
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Summary. The article is to give a number of useful theorems con-
cerning equalities and inequalities in real numbers. Some of the theorems
are extentions of [1] theorems, others were found to be needed in practice.

MML Identifier: REAL 2.

The terminology and notation used here are introduced in the following articles:
[1], [3], [2], and [4]. In the sequel a, b, d, e will be real numbers. One can prove
the following propositions:

(1) If b+ a = b or a+ b = b or b− a = b, then a = 0.

(2) Suppose that
(i) a− b = 0 or a+ (−b) = 0 or (−b) + a = 0 or −a = −b or a− e = b− e

or a− e = b+ (−e) or a− e = (−e) + b or e−a = e− b or e−a = e+ (−b)
or e− a = (−b) + e.
Then a = b.

(3) If a = −b, then a+ b = 0 and b+ a = 0 and −a = b.

(4) If a+ b = 0 or b+ a = 0, then a = −b.
(5) (−a)− b = (−b)− a.

(6) −(a + b) = (−a) + (−b) and −(a + b) = (−b) + (−a) and −(a + b) =
(−b)− a and −(a+ b) = (−a)− b.

(7) a− b = (−b) + a.

(8) −(a− b) = (−a) + b and −(a− b) = b− a and −(a− b) = b+ (−a).

(9) −((−a) + b) = a − b and −((−a) + b) = a + (−b) and −((−a) + b) =
(−b) + a.

(10) (i) a+ b = −((−a)− b),
(ii) a+ b = −((−b)− a),

(iii) a+ b = −((−b) + (−a)),
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(iv) a+ b = −((−a) + (−b)),
(v) a+ b = a− (−b),
(vi) a+ b = b− (−a).

(11) If a+b = e or b+a = e, then a = e−b and a = e+(−b) and a = (−b)+e.

(12) If a = e−b or a = e+(−b) or a = (−b)+e, then a+b = e and b+a = e
and b = e− a.

(13) If a+ b = e+ d, then a− e = d− b and a− d = e− b and b− e = d− a
and b− d = e− a.

(14) If a− e = d− b, then a+ b = e+ d and a+ b = d+ e and b+ a = d+ e
and b+ a = e+ d.

(15) If a− b = e− d, then a− e = b− d.

(16) If a+ b = e− d or b+ a = e− d, then a+ d = e− b and d+ a = e− b.
(17) (i) a = a+ (b− b),

(ii) a = (a+ b)− b,
(iii) a = a+ (b+ (−b)),
(iv) a = (a+ b) + (−b),
(v) a = a− (b− b),
(vi) a = (a− b) + b,

(vii) a = a− (b+ (−b)),
(viii) a = a+ ((−b) + b),

(ix) a = (a+ (−b)) + b,
(x) a = b+ (a− b),
(xi) a = (b+ a)− b,

(xii) a = b+ (a+ (−b)),
(xiii) a = (b+ a) + (−b),
(xiv) a = b− (b− a),
(xv) a = (b− b) + a,
(xvi) a = (−b) + (a+ b),

(xvii) a = ((−b) + a) + b,
(xviii) a = (−b) + (b+ a),

(xix) a = ((−b) + b) + a,
(xx) a = (−b)− ((−a)− b),
(xxi) a = (−b)− ((−b)− a).

(18) a− (b− e) = a+ (e− b) and a+ (b− e) = (a+ b)− e.
(20)1 a+ ((−b)− e) = (a− b)− e and a− ((−b)− e) = (a+ b) + e.

(21) (a+b)+e = (a+e)+b and (a+b)+e = (b+e)+a and (a+b)+e = (e+a)+b
and (a+ b) + e = (e+ b) + a.

(22) (a+ b)− e = (a− e) + b and (a+ b)− e = (b− e) + a and (a+ b)− e =
((−e) + a) + b and (a+ b)− e = ((−e) + b) + a.

(23) (a−b)+e = (e−b)+a and (a−b)+e = ((−b)+a)+e and (a−b)+e =
((−b) + e) + a.

1The proposition (19) was either repeated or obvious.
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(24) (i) (a− b)− e = (a− e)− b,
(ii) (a− b)− e = ((−b) + a)− e,

(iii) (a− b)− e = ((−b)− e) + a,
(iv) (a− b)− e = ((−e) + a)− b,
(v) (a− b)− e = ((−e)− b) + a.

(25) ((−a) + b)− e = ((−e) + b)− a and ((−a) + b)− e = ((−e)− a) + b.

(26) (i) ((−a)− b)− e = ((−a)− e)− b,
(ii) ((−a)− b)− e = ((−b)− e)− a,

(iii) ((−a)− b)− e = ((−e)− a)− b,
(iv) ((−a)− b)− e = ((−e)− b)− a.

(27) (i) −((a+ b) + e) = ((−a)− b)− e,
(ii) −((a+ b)− e) = ((−a)− b) + e,

(iii) −((a− b) + e) = ((−a) + b)− e,
(iv) −(((−a) + b) + e) = (a− b)− e,
(v) −((a− b)− e) = ((−a) + b) + e,
(vi) −(((−a) + b)− e) = (a− b) + e,
(vii) −(((−a)− b) + e) = (a+ b)− e,

(viii) −(((−a)− b)− e) = (a+ b) + e.

(28) (i) a+ e = (a+ b) + (e− b),
(ii) a+ e = (b+ a) + (e− b),

(iii) a+ e = (a− b) + (e+ b),
(iv) a+ e = (a− b) + (b+ e),
(v) e+ a = (a+ b) + (e− b),
(vi) e+ a = (b+ a) + (e− b),
(vii) e+ a = (a− b) + (e+ b),

(viii) e+ a = (a− b) + (b+ e),
(ix) a+ e = (a+ b)− (b− e),
(x) a+ e = (b+ a)− (b− e),
(xi) e+ a = (b+ a)− (b− e),
(xii) e+ a = (a+ b)− (b− e).

(29) (i) a− e = (a− b)− (e− b),
(ii) a− e = (a− b) + (b− e),

(iii) a− e = (a+ b)− (e+ b),
(iv) a− e = (b+ a)− (e+ b),
(v) a− e = (b+ a)− (b+ e).

(30) If b 6= 0, then if a
b = 1 or a · b−1 = 1 or b−1 · a = 1, then a = b.

(31) If e 6= 0 and a
e = b

e , then a = b.

Next we state a number of propositions:

(32) If a · 1 = b · 1 or a · 1 = 1 · b or 1 · a = 1 · b or 1 · a = b · 1, then a = b.

(33) If a 6= 0 and b 6= 0, then if a−1 = b−1 or 1
a = 1

b or 1
a = b−1, then a = b.

(34) If b 6= 0 and a
b = −1, then a = −b and b = −a.

(35) If a · b = 1 or b · a = 1, then a = 1
b and a = b−1.
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(36) If b 6= 0, then if a = 1
b or a = b−1, then a · b = 1 and b · a = 1 and

a−1 = b and b = 1
a .

(37) If b 6= 0 but a · b = b or b · a = b, then a = 1.

(38) If b 6= 0 but a · b = −b or b · a = −b, then a = −1.

(39) If a 6= 0 and b 6= 0 and b
a = b, then a = 1.

(40) If a 6= 0 and b 6= 0 and b
a = −b, then a = −1.

(41) If a 6= 0, then 1
a 6= 0.

(42) If a 6= 0 and b 6= 0, then a · b−1 6= 0 and b−1 · a 6= 0 and a
b 6= 0 and

a−1 · b−1 6= 0 and 1
a·b 6= 0.

(43) 1
1 = 1 and 1−1 = 1 and 1

−1 = −1 and (−1)−1 = −1 and (−1) · (−1) = 1.

(44) a
1 = a and a · 1−1 = a and 1−1 · a = a.

(45) If a 6= 0, then −aa = −1 and a
−a = −1 and (−a)−1 = −a−1.

(46) If a 6= 0, then if a = a−1 or a = 1
a , then a = 1 or a = −1.

(47) Suppose a 6= 0 and b 6= 0. Then
(i) (a · b−1)−1 = a−1 · b,

(ii) (a · b−1)−1 = b · a−1,
(iii) (b−1 · a)−1 = b · a−1,
(iv) (b−1 · a)−1 = a−1 · b,
(v) (a−1 · b−1)−1 = a · b.

(48) If a 6= 0 and b 6= 0, then 1
a
b

= b
a and a

b
−1 = b

a .

(49) (i) (−a) · b = −b · a,
(ii) a · (−b) = −b · a,
(iii) (−a) · b = (−b) · a,
(iv) (−a) · (−b) = a · b,
(v) (−a) · (−b) = b · a,
(vi) −a · (−b) = a · b,

(vii) −a · (−b) = b · a,
(viii) −(−a) · b = a · b,

(ix) −(−a) · b = b · a.

(50) If b 6= 0, then a
b = 0 if and only if a = 0.

(51) If a 6= 0 and b 6= 0, then 1
a · 1

b = 1
a·b .

(52) If a 6= 0, then 1
1
a

= a.

(53) Suppose e 6= 0 and d 6= 0. Then
(i) a

e · bd = b·a
e·d ,

(ii) a
e · bd = b·a

d·e ,

(iii) a
e · bd = a·b

d·e ,

(iv) a
e · bd = a

d · be .
(54) If a 6= 0, then a · 1

a = 1.

(55) Suppose b 6= 0 and e 6= 0. Then
(i) a

b = a·e
e·b ,
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(ii) a
b = e·a

b·e ,
(iii) a

b = e·a
e·b ,

(iv) a
b =

a
e
b
e

,

(v) a
b = e · ab·e ,

(vi) a
b = e · ae·b ,

(vii) a
b = a

e·b · e,
(viii) a

b = a
b·e · e,

(ix) a
b = e ·

a
e
b ,

(x) a
b =

a
e
b · e,

(xi) a
b = a

e · eb .
(56) If b 6= 0, then a · 1

b = a
b and 1

b · a = a
b .

(57) If b 6= 0, then a
1
b

= a · b and a
1
b

= b · a.

(58) If b 6= 0, then − a
−b = a

b and −−ab = a
b and −a−b = a

b and −ab = a
−b .

(59) If e 6= 0, then a+b
e = b

e + a
e .

(60) Suppose e 6= 0 and d 6= 0. Then
(i) a

e + b
d = d·a+b·e

e·d ,

(ii) a
e + b

d = d·a+e·b
e·d ,

(iii) a
e + b

d = a·d+e·b
e·d ,

(iv) a
e + b

d = d·a+b·e
d·e ,

(v) a
e + b

d = d·a+e·b
d·e ,

(vi) a
e + b

d = a·d+e·b
d·e ,

(vii) a
e − b

d = d·a−b·e
e·d ,

(viii) a
e − b

d = d·a−e·b
e·d ,

(ix) a
e − b

d = a·d−e·b
e·d ,

(x) a
e − b

d = d·a−b·e
d·e ,

(xi) a
e − b

d = d·a−e·b
d·e ,

(xii) a
e − b

d = a·d−e·b
d·e .

(61) Suppose b 6= 0 and e 6= 0. Then
(i) a

b
e

= e·a
b ,

(ii) a
b
e

= a · eb ,
(iii) a

b
e

= e
b · a,

(iv) a
b
e

= e · ab ,

(v) a
b
e

= a
b · e.

(62) Suppose b 6= 0. Then
(i) a = a · bb ,
(ii) a = a·b

b ,

(iii) a = a · (b · 1
b ),

(iv) a = (a · b) · 1
b ,
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(v) a = a
b
b

,

(vi) a = a
b · b,

(vii) a = a
b· 1
b

,

(viii) a = a · ( 1
b · b),

(ix) a = (a · 1
b ) · b,

(x) a = b · ab ,
(xi) a = b·a

b ,

(xii) a = b · (a · 1
b ),

(xiii) a = (b · a) · 1
b ,

(xiv) a = b
b · a,

(xv) a = ( 1
b · b) · a,

(xvi) a = 1
b · (b · a),

(xvii) a = 1
b · (a · b),

(xviii) a = ( 1
b · a) · b.

The following propositions are true:

(63) For every a, b there exists e such that a = b− e.
(64) For all a, b such that a 6= 0 and b 6= 0 there exists e such that a = b

e .

(65) Suppose b 6= 0. Then
(i) a

b + e = a+e·b
b ,

(ii) a
b + e = a+b·e

b ,

(iii) a
b + e = b·e+a

b ,

(iv) a
b + e = e·b+a

b ,

(v) e+ a
b = e·b+a

b ,

(vi) e+ a
b = a+e·b

b ,

(vii) e+ a
b = a+b·e

b ,

(viii) e+ a
b = b·e+a

b .

(66) Suppose b 6= 0. Then
(i) a

b − e = a−e·b
b ,

(ii) a
b − e = a−b·e

b ,

(iii) e− a
b = e·b−a

b ,

(iv) e− a
b = b·e−a

b .

(67) Suppose b 6= 0 and e 6= 0. Then

(i)
a
b
e = a

b·e ,

(ii)
a
b
e = a

e·b ,

(iii)
a
b
e =

a
e
b ,

(iv)
a
b
e = 1

b · ae ,

(v)
a
b
e = a

e · 1
b ,

(vi)
a
b
e = 1

e · ab ,

(vii)
a
b
e = a

b · 1
e ,
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(viii) 1
e · ab = a

b·e ,

(ix) 1
e · ab = a

e·b ,
(x) a

b · 1
e = a

e·b ,
(xi) a

b · 1
e = a

b·e .

(68) Suppose b 6= 0. Then e · ab = e·a
b and e · ab = a·e

b and a
b · e = a·e

b and
a
b · e = e·a

b .

(69) (a · b) · e = (a · e) · b and (a · b) · e = (b · e) · a and (a · b) · e = (e · a) · b
and (a · b) · e = (e · b) · a.

(70) Suppose e 6= 0 and d 6= 0. Then

(i) a·b
e·d =

a
e
·b
d ,

(ii) a·b
e·d =

b·a
e
d ,

(iii) a·b
e·d =

b
e
·a
d ,

(iv) a·b
e·d =

a· b
e
d ,

(v) a·b
d·e =

a
e
·b
d ,

(vi) a·b
d·e =

b·a
e
d ,

(vii) a·b
d·e =

a· b
e
d ,

(viii) a·b
d·e =

b
e
·a
d .

(71) (−1) ·a = −a and a ·(−1) = −a and (−a) ·(−1) = a and (−1) ·(−a) = a
and −a = a

−1 and a = −a
−1 .

(72) If e 6= 0, then if a · e = b or e · a = b, then a = b
e .

(73) If e 6= 0 and a = b
e , then a · e = b and e · a = b.

(74) If a 6= 0 and e 6= 0 and a = b
e , then e = b

a .

(75) If e 6= 0 and d 6= 0, then if a · e = b · d or e · a = b · d or e · a = d · b or
a · e = d · b, then a

d = b
e .

(76) If e 6= 0 and d 6= 0 and a
d = b

e , then a · e = b · d and e · a = b · d and
e · a = d · b and a · e = d · b.

(77) If e 6= 0 and d 6= 0, then if a · e = b
d or e · a = b

d , then a · d = b
e and

d · a = b
e .

(78) Suppose b 6= 0. Then

(i) a · e = (a · b) · eb ,
(ii) a · e = (b · a) · eb ,

(iii) a · e = a
b · (e · b),

(iv) a · e = a
b · (b · e),

(v) e · a = (a · b) · eb ,
(vi) e · a = (b · a) · eb ,
(vii) e · a = a

b · (e · b),
(viii) e · a = a

b · (b · e).
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(79) Suppose b 6= 0 and e 6= 0. Then a · e = a·b
b
e

and a · e = b·a
b
e

and e · a = b·a
b
e

and e · a = a·b
b
e

.

(80) If b 6= 0, then a
b · e = e

b · a and a
b · e = (1

b · a) · e and a
b · e = (1

b · e) · a.

(81) (−a) · (−b) = a · b and (−a) · (−b) = b · a.

(82) If b 6= 0 and d 6= 0 and b 6= d and a
b = e

d , then a
b = a−e

b−d .

(83) Suppose b 6= 0 and d 6= 0 and b 6= −d and a
b = e

d . Then a
b = a+e

b+d and
a
b = e+a

b+d and a
b = e+a

d+b and a
b = a+e

d+b .

(84) (i) e · (a+ b) = a · e+ e · b,
(ii) e · (a+ b) = e · a+ b · e,
(iii) e · (a+ b) = a · e+ b · e,
(iv) (a+ b) · e = e · a+ b · e,
(v) (a+ b) · e = a · e+ e · b,
(vi) (a+ b) · e = e · a+ e · b,

(vii) e · (b+ a) = a · e+ e · b,
(viii) e · (b+ a) = e · a+ b · e,

(ix) e · (b+ a) = a · e+ b · e,
(x) (b+ a) · e = e · a+ b · e,
(xi) (b+ a) · e = a · e+ e · b,

(xii) (b+ a) · e = e · a+ e · b,
(xiii) (a+ b) · e = b · e+ a · e,
(xiv) e · (a+ b) = e · b+ e · a.

(85) (i) e · (a− b) = a · e− e · b,
(ii) e · (a− b) = e · a− b · e,
(iii) e · (a− b) = a · e− b · e,
(iv) (a− b) · e = e · a− b · e,
(v) (a− b) · e = a · e− e · b,
(vi) (a− b) · e = e · a− e · b,

(vii) (a− b) · e = (b− a) · (−e),
(viii) (a− b) · e = −(b− a) · e,

(ix) e · (a− b) = (−e) · (b− a),

(x) e · (a− b) = −e · (b− a).

(86) If a 6= 0, then if 1
a = 1 or a−1 = 1, then a = 1.

(87) If a 6= 0, then if 1
a = −1 or a−1 = −1, then a = −1.

(88) (i) 2 · a = a+ a,

(ii) a · 2 = a+ a,

(iii) 3 · a = (a+ a) + a,

(iv) a · 3 = (a+ a) + a,

(v) 4 · a = ((a+ a) + a) + a,

(vi) a · 4 = ((a+ a) + a) + a.

(89) a+a
2 = a and (a+a)+a

3 = a and ((a+a)+a)+a
4 = a and a+a

4 = a
2 .
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(90) (i) a
2 + a

2 = a,
(ii) (a3 + a

3 ) + a
3 = a,

(iii) ((a4 + a
4 ) + a

4 ) + a
4 = a,

(iv) a
4 + a

4 = a
2 .

(91) If b 6= 0, then a
2·b + a

2·b = a
b and ( a

3·b + a
3·b) + a

3·b = a
b .

(92) Suppose e 6= 0. Then
(i) a+ b = e · (ae + b

e),

(ii) b+ a = e · (ae + b
e),

(iii) b+ a = (ae + b
e) · e,

(iv) a+ b = (ae + b
e) · e.

(93) If e 6= 0, then a− b = e · ( ae − b
e) and a− b = (ae − b

e) · e.
One can prove the following propositions:

(94) Suppose e 6= 0. Then
(i) a+ b = a·e+b·e

e ,

(ii) a+ b = a·e+e·b
e ,

(iii) a+ b = e·a+e·b
e ,

(iv) a+ b = e·a+b·e
e ,

(v) b+ a = e·a+b·e
e ,

(vi) b+ a = e·a+e·b
e ,

(vii) b+ a = a·e+e·b
e ,

(viii) b+ a = a·e+b·e
e .

(95) Suppose e 6= 0. Then
(i) a− b = a·e−b·e

e ,

(ii) a− b = a·e−e·b
e ,

(iii) a− b = e·a−e·b
e ,

(iv) a− b = e·a−b·e
e .

(96) Suppose a 6= 0. Then
(i) a+ b = a · (1 + b

a),

(ii) a+ b = (1 + b
a ) · a,

(iii) a+ b = ( ba + 1) · a,

(iv) a+ b = a · ( ba + 1),

(v) b+ a = a · (1 + b
a),

(vi) b+ a = (1 + b
a ) · a,

(vii) b+ a = ( ba + 1) · a,

(viii) b+ a = a · ( ba + 1).

(97) If a 6= 0, then a− b = a · (1− b
a ) and a− b = (1− b

a ) · a.

(98) (a− b) · (e− d) = (b− a) · (d− e).
(99) (i) ((a+ b) + e) · d = (a · d+ b · d) + e · d,

(ii) d · ((a+ b) + e) = (d · a+ d · b) + d · e,
(iii) ((a+ b)− e) · d = (a · d+ b · d)− e · d,
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(iv) d · ((a+ b)− e) = (d · a+ d · b)− d · e,
(v) ((a− b) + e) · d = (a · d− b · d) + e · d,
(vi) d · ((a− b) + e) = (d · a− d · b) + d · e,

(vii) ((a− b)− e) · d = (a · d− b · d)− e · d,
(viii) d · ((a− b)− e) = (d · a− d · b)− d · e.

(100) Suppose d 6= 0. Then

(i) (a+b)+e
d = (ad + b

d) + e
d ,

(ii) (a+b)−e
d = (ad + b

d)− e
d ,

(iii) (a−b)+e
d = (ad − b

d) + e
d ,

(iv) (a−b)−e
d = (ad − b

d)− e
d .

(101) (i) (a+ b) · (e+ d) = ((a · e+ a · d) + b · e) + b · d,
(ii) (a+ b) · (e− d) = ((a · e− a · d) + b · e)− b · d,
(iii) (a− b) · (e+ d) = ((a · e+ a · d)− b · e)− b · d,
(iv) (a− b) · (e− d) = ((a · e− a · d)− b · e) + b · d.

(103)2 If a ≥ b, then a+ e ≥ e+ b and e+ a ≥ e+ b and e+ a ≥ b+ e.

(104) If a + e ≥ b + e or a + e ≥ e + b or e + a ≥ e + b or e + a ≥ b + e or
a− e ≥ b− e, then a ≥ b.

(105) Suppose that
(i) a− b ≤ 0 or a+ (−b) ≤ 0 or (−b) + a ≤ 0 or −a ≥ −b or b− a ≥ 0 or
b+ (−a) ≥ 0 or (−a) + b ≥ 0 or a− e ≤ b+ (−e) or a− e ≤ (−e) + b or
a+ (−e) ≤ b− e or (−e) + a ≤ b− e or e− a ≥ e− b.
Then a ≤ b.

(106) Suppose that
(i) a− b < 0 or a+ (−b) < 0 or (−b) + a < 0 or −a > −b or b− a > 0 or
b+ (−a) > 0 or (−a) + b > 0 or a− e < b+ (−e) or a− e < (−e) + b or
a+ (−e) < b− e or (−e) + a < b− e or e− a > e− b.
Then a < b.

(107) Suppose a ≤ b. Then a − b ≤ 0 and a + (−b) ≤ 0 and (−b) + a ≤ 0
and b − a ≥ 0 and b + (−a) ≥ 0 and (−a) + b ≥ 0 and −a ≥ −b and
e− a ≥ e− b.

(108) Suppose a < b. Then a − b < 0 and a + (−b) < 0 and (−b) + a < 0
and b − a > 0 and b + (−a) > 0 and (−a) + b > 0 and −a > −b and
e− a > e− b.

(109) If a ≤ −b, then a+ b ≤ 0 and b+ a ≤ 0 and −a ≥ b.
(110) If a < −b, then a+ b < 0 and b+ a < 0 and −a > b.

(111) If −a ≤ b, then b+ a ≥ 0 and a+ b ≥ 0 and a ≥ −b.
(112) If −b < a, then a+ b > 0 and b+ a > 0 and b > −a.

(113) If a+ b ≤ 0 or b+ a ≤ 0, then a ≤ −b.
(114) If a+ b < 0 or b+ a < 0, then a < −b.
(115) If a+ b ≥ 0 or b+ a ≥ 0, then a ≥ −b.

2The proposition (102) was either repeated or obvious.
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(116) If a+ b > 0 or b+ a > 0, then a > −b.
(117) Suppose b > 0. Then

(i) if a
b > 1, then a > b,

(ii) if a
b < 1, then a < b,

(iii) if a
b > −1, then a > −b and b > −a,

(iv) if a
b < −1, then a < −b and b < −a.

(118) Suppose b > 0. Then
(i) if a

b ≥ 1, then a ≥ b,
(ii) if a

b ≤ 1, then a ≤ b,
(iii) if a

b ≥ −1, then a ≥ −b and b ≥ −a,
(iv) if a

b ≤ −1, then a ≤ −b and b ≤ −a.

(119) Suppose b < 0. Then
(i) if a

b > 1, then a < b,
(ii) if a

b < 1, then a > b,
(iii) if a

b > −1, then a < −b and b < −a,
(iv) if a

b < −1, then a > −b and b > −a.

(120) Suppose b < 0. Then
(i) if a

b ≥ 1, then a ≤ b,
(ii) if a

b ≤ 1, then a ≥ b,
(iii) if a

b ≥ −1, then a ≤ −b and b ≤ −a,
(iv) if a

b ≤ −1, then a ≥ −b and b ≥ −a.

(121) If a ≥ 0 or a > 0 but b ≥ 0 or b > 0 or a ≤ 0 or a < 0 but b ≤ 0 or
b < 0, then a · b ≥ 0 and b · a ≥ 0.

(122) If a < 0 and b < 0 or a > 0 and b > 0, then a · b > 0.

(123) If a ≥ 0 or a > 0 but b ≤ 0 or b < 0 or a ≤ 0 or a < 0 but b ≥ 0 or
b > 0, then a · b ≤ 0 and b · a ≤ 0.

(124) If a > 0 and b < 0, then a · b < 0 and b · a < 0.

One can prove the following propositions:

(125) If a ≤ 0 and b < 0 or a ≥ 0 and b > 0, then a
b ≥ 0.

(126) If a ≥ 0 and b < 0 or a ≤ 0 and b > 0, then a
b ≤ 0.

(127) If a > 0 and b > 0 or a < 0 and b < 0, then a
b > 0.

(128) If a < 0 and b > 0, then a
b < 0 and b

a < 0.

(129) If a · b ≤ 0, then a ≥ 0 and b ≤ 0 or a ≤ 0 and b ≥ 0.

(131) 3 If a · b > 0, then a > 0 and b > 0 or a < 0 and b < 0.

(132) If a · b < 0, then a > 0 and b < 0 or a < 0 and b > 0.

(133) If b 6= 0 and a
b ≤ 0, then b > 0 and a ≤ 0 or b < 0 and a ≥ 0.

(134) If b 6= 0 and a
b ≥ 0, then b > 0 and a ≥ 0 or b < 0 and a ≤ 0.

(135) If b 6= 0 and a
b < 0, then b < 0 and a > 0 or b > 0 and a < 0.

(136) If b 6= 0 and a
b > 0, then b > 0 and a > 0 or b < 0 and a < 0.

3The proposition (130) was either repeated or obvious.
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(137) If a > 1 but b > 1 or b ≥ 1 or a < −1 but b < −1 or b ≤ −1, then
a · b > 1 and b · a > 1.

(138) If a ≥ 1 and b ≥ 1 or a ≤ −1 and b ≤ −1, then a · b ≥ 1.

(139) Suppose that
(i) 0 < a or 0 ≤ a but a < 1 but 0 < b or 0 ≤ b but b < 1 or b ≤ 1 or

0 > a or 0 ≥ a but a > −1 but 0 > b or 0 ≥ b but b > −1 or b ≥ −1.
Then a · b < 1 and b · a < 1.

(140) If 0 ≤ a and a ≤ 1 and 0 ≤ b and b ≤ 1 or 0 ≥ a and a ≥ −1 and 0 ≥ b
and b ≥ −1, then a · b ≤ 1.

(141) If e < 0 and a ≤ b or e > 0 and a ≥ b, then a
e ≥ b

e .

(142) If 0 < a and a < b or b < a and a < 0, then a
b < 1 and b

a > 1.

(143) If 0 < a and a ≤ b or b ≤ a and a < 0, then a
b ≤ 1 and b

a ≥ 1.

(144) If a > 0 and b > 1 or a < 0 and b < 1, then a · b > a and b · a > a.

(145) If a > 0 and b < 1 or a < 0 and b > 1, then a · b < a and b · a < a.

(146) If a > 0 or a ≥ 0 but b > 1 or b ≥ 1 or a < 0 or a ≤ 0 but b < 1 or
b ≤ 1, then a · b ≥ a and b · a ≥ a.

(147) If a > 0 or a ≥ 0 but b < 1 or b ≤ 1 or a < 0 or a ≤ 0 but b > 1 or
b ≥ 1, then a · b ≤ a and b · a ≤ a.

(148) a > 0 if and only if −a < 0 but a ≥ 0 if and only if −a ≤ 0 but a ≤ 0
if and only if −a ≥ 0.

(149) If a < 0, then 1
a < 0 and a−1 < 0 but if a > 0, then 1

a > 0.

(150) If a 6= 0, then if 1
a < 0, then a < 0 but if 1

a > 0, then a > 0.

(151) If 0 < a or b < 0 but a < b, then 1
a >

1
b .

(152) If 0 < a or b < 0 but a ≤ b, then 1
a ≥ 1

b .

(153) If a < 0 and b > 0, then 1
a <

1
b .

(154) If a 6= 0 and b 6= 0 but 1
b > 0 or 1

a < 0 and 1
a >

1
b , then a < b.

(155) If a 6= 0 and b 6= 0 but 1
b > 0 or 1

a < 0 and 1
a ≥ 1

b , then a ≤ b.
Next we state a number of propositions:

(156) If a 6= 0 and b 6= 0 and 1
a < 0 and 1

b > 0, then a < b.

(157) If a < −1, then 0 > 1
a and 1

a > −1.

(158) If a ≤ −1, then 0 > 1
a and 1

a ≥ −1.

(159) If −1 < a and a < 0, then 1
a < −1.

(160) If −1 ≤ a and a < 0, then 1
a ≤ −1.

(161) If 0 < a and a < 1, then 1
a > 1.

(162) If 0 < a and a ≤ 1, then 1
a ≥ 1.

(163) If 1 < a, then 0 < 1
a and 1

a < 1.

(164) If 1 ≤ a, then 0 < 1
a and 1

a ≤ 1.

(165) If b ≤ e− a, then a ≤ e− b but if b ≥ e− a, then a ≥ e− b.
(166) If b < e− a, then a < e− b but if b > e− a, then a > e− b.
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(167) If a+ b ≤ e+ d, then a− e ≤ d− b and e− a ≥ b− d and a− d ≤ e− b
and d− a ≥ b− e.

(168) If a+ b < e+ d, then a− e < d− b and e− a > b− d and a− d < e− b
and d− a > b− e.

(169) Suppose a − b ≤ e − d. Then a + d ≤ e + b and d + a ≤ e + b and
d+ a ≤ b+ e and a+ d ≤ b+ e and a− e ≤ b− d and e− a ≥ d− b and
b− a ≥ d− e.

(170) Suppose a − b < e − d. Then a + d < e + b and d + a < e + b and
d+ a < b+ e and a+ d < b+ e and a− e < b− d and e− a > d− b and
b− a > d− e.

(171) (i) If a+ b ≤ e−d or b+a ≤ e−d, then a+d ≤ e− b and d+a ≤ e− b,
(ii) if a+ b ≥ e− d or b+ a ≥ e− d, then a+ d ≥ e− b and d+ a ≥ e− b.

(172) (i) If a+ b < e−d or b+a < e−d, then a+d < e− b and d+a < e− b,
(ii) if a+ b > e− d or b+ a > e− d, then a+ d > e− b and d+ a > e− b.

(173) If a < 0, then b+ a < b and a+ b < b and b− a > b but if a+ b < b or
b+ a < b or b− a > b, then a < 0.

(174) If a ≤ 0, then b+ a ≤ b and a+ b ≤ b and b− a ≥ b but if b+ a ≤ b or
a+ b ≤ b or b− a ≥ b, then a ≤ 0.

(175) If a > 0, then b+ a > b and a+ b > b and b− a < b but if b+ a > b or
a+ b > b or b− a < b, then a > 0.

(176) If a ≥ 0, then b+ a ≥ b and a+ b ≥ b and b− a ≤ b but if b+ a ≥ b or
a+ b ≥ b or b− a ≤ b, then a ≥ 0.

(177) (i) If b > 0 but a · b ≤ e or b · a ≤ e, then a ≤ e
b ,

(ii) if b < 0 but a · b ≤ e or b · a ≤ e, then a ≥ e
b ,

(iii) if b > 0 but a · b ≥ e or b · a ≥ e, then a ≥ e
b ,

(iv) if b < 0 but a · b ≥ e or b · a ≥ e, then a ≤ e
b .

(178) (i) If b > 0 but a · b < e or b · a < e, then a < e
b ,

(ii) if b < 0 but a · b < e or b · a < e, then a > e
b ,

(iii) if b > 0 but a · b > e or b · a > e, then a > e
b ,

(iv) if b < 0 but a · b > e or b · a > e, then a < e
b .

(179) (i) If b > 0 and a ≥ e
b , then a · b ≥ e and b · a ≥ e,

(ii) if b > 0 and a ≤ e
b , then a · b ≤ e and b · a ≤ e,

(iii) if b < 0 and a ≥ e
b , then a · b ≤ e and b · a ≤ e,

(iv) if b < 0 and a ≤ e
b , then a · b ≥ e and b · a ≥ e.

(180) (i) If b > 0 and a > e
b , then a · b > e and b · a > e,

(ii) if b > 0 and a < e
b , then a · b < e and b · a < e,

(iii) if b < 0 and a > e
b , then a · b < e and b · a < e,

(iv) if b < 0 and a < e
b , then a · b > e and b · a > e.

(181) If for every a such that a > 0 holds b+ a ≥ e or for every a such that
a < 0 holds b− a ≥ e, then b ≥ e.

(182) If for every a such that a > 0 holds b− a ≤ e or for every a such that
a < 0 holds b+ a ≤ e, then b ≤ e.
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(183) If for every a such that a > 1 holds b · a ≥ e or for every a such that
0 < a and a < 1 holds b

a ≥ e, then b ≥ e.
(184) If for every a such that 0 < a and a < 1 holds b · a ≤ e or for every a

such that a > 1 holds b
a ≤ e, then b ≤ e.

(185) Suppose b > 0 and d > 0 or b < 0 and d < 0 but a ·d < e ·b or d ·a < e ·b
or d · a < b · e or a · d < b · e. Then a

b <
e
d .

(186) Suppose b > 0 and d < 0 or b < 0 and d > 0 but a ·d < e ·b or d ·a < e ·b
or d · a < b · e or a · d < b · e. Then a

b >
e
d .

The following propositions are true:

(187) Suppose b > 0 and d > 0 or b < 0 and d < 0 but a ·d ≤ e ·b or d ·a ≤ e ·b
or d · a ≤ b · e or a · d ≤ b · e. Then a

b ≤ e
d .

(188) Suppose b > 0 and d < 0 or b < 0 and d > 0 but a ·d ≤ e ·b or d ·a ≤ e ·b
or d · a ≤ b · e or a · d ≤ b · e. Then a

b ≥ e
d .

(189) Suppose b > 0 and d > 0 or b < 0 and d < 0 but a
b <

e
d . Then a ·d < e ·b

and d · a < e · b and d · a < b · e and a · d < b · e.
(190) Suppose b < 0 and d > 0 or b > 0 and d < 0 but a

b <
e
d . Then a ·d > e ·b

and d · a > e · b and d · a > b · e and a · d > b · e.
(191) Suppose b > 0 and d > 0 or b < 0 and d < 0 but a

b ≤ e
d . Then a ·d ≤ e ·b

and d · a ≤ e · b and d · a ≤ b · e and a · d ≤ b · e.
(192) Suppose b < 0 and d > 0 or b > 0 and d < 0 but a

b ≤ e
d . Then a ·d ≥ e ·b

and d · a ≥ e · b and d · a ≥ b · e and a · d ≥ b · e.
(193) Suppose b < 0 and d < 0 or b > 0 and d > 0. Then

(i) if a · b < e
d or b · a < e

d , then a · d < e
b and d · a < e

b ,
(ii) if a · b > e

d or b · a > e
d , then a · d > e

b and d · a > e
b .

(194) Suppose b < 0 and d > 0 or b > 0 and d < 0. Then
(i) if a · b < e

d or b · a < e
d , then a · d > e

b and d · a > e
b ,

(ii) if a · b > e
d or b · a > e

d , then a · d < e
b and d · a < e

b .

(195) Suppose b < 0 and d < 0 or b > 0 and d > 0. Then
(i) if a · b ≤ e

d or b · a ≤ e
d , then a · d ≤ e

b and d · a ≤ e
b ,

(ii) if a · b ≥ e
d or b · a ≥ e

d , then a · d ≥ e
b and d · a ≥ e

b .

(196) Suppose b < 0 and d > 0 or b > 0 and d < 0. Then
(i) if a · b ≤ e

d or b · a ≤ e
d , then a · d ≥ e

b and d · a ≥ e
b ,

(ii) if a · b ≥ e
d or b · a ≥ e

d , then a · d ≤ e
b and d · a ≤ e

b .

(197) Suppose 0 < a or 0 ≤ a but a < b or a ≤ b but 0 < e or 0 ≤ e and
e ≤ d. Then a · e ≤ b · d and a · e ≤ d · b and e · a ≤ d · b and e · a ≤ b · d.

(198) Suppose 0 > a or 0 ≥ a but a > b or a ≥ b but 0 > e or 0 ≥ e and
e ≥ d. Then a · e ≤ b · d and a · e ≤ d · b and e · a ≤ d · b and e · a ≤ b · d.

(199) Suppose 0 < a but a ≤ b or a < b and 0 < e and e < d or 0 > a but
a ≥ b or a > b and 0 > e and e > d. Then a · e < b · d and a · e < d · b and
e · a < d · b and e · a < b · d.

(200) If e > 0 but a > 0 or b < 0 and a < b, then e
a >

e
b .

(201) If e > 0 or e ≥ 0 but a > 0 or b < 0 and a ≤ b, then e
a ≥ e

b .
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(202) If e < 0 but a > 0 or b < 0 and a < b, then e
a <

e
b .

(203) If e < 0 or e ≤ 0 but a > 0 or b < 0 and a ≤ b, then e
a ≤ e

b .

Next we state the proposition

(204) For all subsets X, Y of
�

such that X 6= ∅ and Y 6= ∅ and for all a, b
such that a ∈ X and b ∈ Y holds a ≤ b there exists d such that for every
a such that a ∈ X holds a ≤ d and for every b such that b ∈ Y holds
d ≤ b.
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Summary. The concept of countable sets is introduced and there
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[12], [13], [18], [14], [17], [4], and [6] provide the terminology and notation for
this paper. For simplicity we follow the rules: X, Y are sets, D is a non-empty
set, m, n, n1, n2, n3, m2, m1 are natural numbers, A, B are ordinal numbers,
L, K, M , N are cardinal numbers, x is arbitrary, and f is a function. Next we
state a number of propositions:

(1) X is finite if and only if X is finite.

(2) X is finite if and only if X < ℵ0.

(3) If X is finite, then X ∈ ℵ0 and X ∈ ω.

(4) X is finite if and only if there exists n such that X = n .

(5) succA \ {A} = A.

(6) If A ≈ ord(n), then A = ord(n).

(7) A is finite if and only if A ∈ ω.

(8) A is not finite if and only if ω ⊆ A.

(9) M is finite if and only if M ∈ ℵ0.

(10) M is finite if and only if M < ℵ0.

(11) M is not finite if and only if ℵ0 ⊆M .

(12) M is not finite if and only if ℵ0 ≤M .

(13) If N is finite and M is not finite, then N < M and N ≤M .
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(14) X is not finite if and only if there exists Y such that Y ⊆ X and

Y = ℵ0.

(15) ω is not finite and � is not finite.

(16) ℵ0 is not finite.

(17) X = ∅ if and only if X = 0.

(18) M 6= 0 if and only if 0 < M .

(19) 0 ≤M .

(20) X = Y if and only if X+ = Y +.

(21) M = N if and only if N+ = M+.

(22) N < M if and only if N+ ≤M .

(23) N < M+ if and only if N ≤M .

(24) 0 < M if and only if 1 ≤M .

(25) 1 < M if and only if 2 ≤M .

(26) If M is finite but N ≤M or N < M , then N is finite.

(27) A is a limit ordinal number if and only if for all B, n such that B ∈ A
holds B + ord(n) ∈ A.

(28) A+succ ord(n) = succA+ord(n) and A+ord(n+1) = succA+ord(n).

(29) There exists n such that A · succ 1 = A+ ord(n).

(30) If A is a limit ordinal number, then A · succ 1 = A.

(31) If ω ⊆ A, then 1 +A = A.

Next we state a number of propositions:

(32) If M is not finite, then ord(M) is a limit ordinal number.

(33) If M is not finite, then M +M = M .

(34) If M is not finite but N ≤ M or N < M , then M + N = M and
N +M = M .

(35) If X is not finite but X ≈ Y or Y ≈ X, then X ∪Y ≈ X and X ∪ Y =

X .

(36) If X is not finite and Y is finite, then X ∪ Y ≈ X and X ∪ Y = X .

(37) If X is not finite but Y < X or Y ≤ X , then X ∪ Y ≈ X and

X ∪ Y = X .

(38) If M is finite and N is finite, then M +N is finite.

(39) If M is not finite, then M +N is not finite and N +M is not finite.

(40) If M is finite and N is finite, then M ·N is finite.

(41) If K < L and M < N or K ≤ L and M < N or K < L and M ≤ N or
K ≤ L and M ≤ N , then K +M ≤ L+N and M +K ≤ L+N .

(42) If M < N or M ≤ N , then K +M ≤ K +N and K +M ≤ N +K and
M +K ≤ K +N and M +K ≤ N +K.

Let us consider X. We say that X is countable if and only if:

(Def.1) X ≤ ℵ0.
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One can prove the following propositions:

(43) If X is finite, then X is countable.

(44) ω is countable and � is countable.

(45) X is countable if and only if there exists f such that dom f = � and
X ⊆ rng f .

(46) If Y ⊆ X and X is countable, then Y is countable.

(47) If X is countable and Y is countable, then X ∪ Y is countable.

(48) If X is countable, then X ∩ Y is countable and Y ∩X is countable.

(49) If X is countable, then X \ Y is countable.

(50) If X is countable and Y is countable, then X−. Y is countable.

The scheme Lambda2N deals with a binary functor F yielding a natural
number and states that:

there exists a function f from [: � , � :] into � such that for all n, m holds
f(〈〈n,m〉〉) = F(n,m)
for all values of the parameter.

In the sequel r will denote a real number. Next we state the proposition

(51) r 6= 0 or n = 0 if and only if rn 6= 0.

Let m, n be natural numbers. Then mn is a natural number.

One can prove the following propositions:

(52) If 2n1 · (2 ·m1 + 1) = 2n2 · (2 ·m2 + 1), then n1 = n2 and m1 = m2.

(53) [: � , � :] ≈ � and � = [: � , � :] .

(54) ℵ0 · ℵ0 = ℵ0.

(55) If X is countable and Y is countable, then [:X, Y :] is countable.

(56) D1 ≈ D and D1 = D .

We now state a number of propositions:

(57) [:Dn, Dm :] ≈ Dn+m and [:Dn, Dm :] = Dn+m .

(58) If D is countable, then Dn is countable.

(59) If dom f ≤ M and for every x such that x ∈ dom f holds f(x) ≤ N ,

then
⋃
f ≤M ·N .

(60) If X ≤ M and for every Y such that Y ∈ X holds Y ≤ N , then⋃
X ≤M ·N .

(61) For every f such that dom f is countable and for every x such that
x ∈ dom f holds f(x) is countable holds

⋃
f is countable.

(62) If X is countable and for every Y such that Y ∈ X holds Y is countable,
then

⋃
X is countable.

(63) For every f such that dom f is finite and for every x such that x ∈ dom f
holds f(x) is finite holds

⋃
f is finite.

(64) If X is finite and for every Y such that Y ∈ X holds Y is finite, then⋃
X is finite.
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(65) If D is countable, then D∗ is countable.

(66) ℵ0 ≤ D∗ .

Now we present three schemes. The scheme FraenCoun1 deals with a unary
functor F , and a unary predicate P, and states that:
{F(n) : P[n]} is countable

for all values of the parameters.
The scheme FraenCoun2 concerns a binary functor F , and a binary predicate

P, and states that:
{F(n1, n2) : P[n1, n2]} is countable

for all values of the parameters.
The scheme FraenCoun3 concerns a ternary functor F , and a ternary predi-

cate P, and states that:
{F(n1, n2, n3) : P[n1, n2, n3]} is countable

for all values of the parameters.
The following propositions are true:

(67) ℵ0 · n ≤ ℵ0 and n · ℵ0 ≤ ℵ0.

(68) If K < L and M < N or K ≤ L and M < N or K < L and M ≤ N or
K ≤ L and M ≤ N , then K ·M ≤ L ·N and M ·K ≤ L ·N .

(69) If M < N or M ≤ N , then K ·M ≤ K · N and K ·M ≤ N ·K and
M ·K ≤ K ·N and M ·K ≤ N ·K.

(70) If K < L and M < N or K ≤ L and M < N or K < L and M ≤ N or
K ≤ L and M ≤ N , then K = 0 or KM ≤ LN .

(71) If M < N or M ≤ N , then K = 0 or KM ≤ KN and MK ≤ NK .

(72) M ≤M +N and N ≤M +N .

(73) If N 6= 0, then M ≤M ·N and M ≤ N ·M .

(74) If K < L and M < N , then K +M < L+N and M +K < L+N .

(75) If K +M < K +N , then M < N .

(76) If X + Y = X and Y < X , then X \ Y = X .

One can prove the following propositions:

(77) If M is not finite, then M ·M = M .

(78) If M is not finite and 0 < N but N ≤M or N < M , then M ·N = M
and N ·M = M .

(79) If M is not finite but N ≤ M or N < M , then M · N ≤ M and
N ·M ≤M .

(80) If X is not finite, then [:X, X :] ≈ X and [:X, X :] = X .

(81) If X is not finite and Y is finite and Y 6= ∅, then [:X, Y :] ≈ X and

[:X, Y :] = X .

(82) If K < L and M < N , then K ·M < L ·N and M ·K < L ·N .

(83) If K ·M < K ·N , then M < N .

(84) If X is not finite, then X = ℵ0 · X .
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(85) If X 6= ∅ and X is finite and Y is not finite, then Y · X = Y .

(86) If D is not finite and n 6= 0, then Dn ≈ D and Dn = D .

(87) If D is not finite, then D = D∗ .
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Summary. We define the proper and the improper limit of a real
function at a point. The main properties of the operations on the limit
of a function are proved. The connection between the one-side limits
and the limit of a function at a point are exposed. Equivalent Cauchy
and Heine characterizations of the limit of a real function at a point are
proved.

MML Identifier: LIMFUNC3.

The papers [17], [5], [1], [2], [3], [15], [13], [6], [8], [14], [18], [16], [4], [10],
[11], [12], [7], and [9] provide the notation and terminology for this paper. For
simplicity we adopt the following convention: r, r1, r2, g, g1, g2, x0 will be real
numbers, n, k will be natural numbers, s1 will be a sequence of real numbers,
and f , f1, f2 will be partial functions from

�
to

�
. The following propositions

are true:

(1) If rng s1 ⊆ dom f∩]−∞, x0[ or rng s1 ⊆ dom f∩]x0,+∞[, then rng s1 ⊆
dom f \ {x0}.

(2) Suppose for every n holds 0 < |x0 − s1(n)| and |x0 − s1(n)| < 1
n+1 and

s1(n) ∈ dom f . Then s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f
and rng s1 ⊆ dom f \ {x0}.

(3) Suppose s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f \ {x0}.
Then for every r such that 0 < r there exists n such that for every k such
that n ≤ k holds 0 < |x0− s1(k)| and |x0− s1(k)| < r and s1(k) ∈ dom f .

(4) If 0 < r, then ]x0 − r, x0 + r[ \ {x0} = ]x0 − r, x0[ ∪ ]x0, x0 + r[.

(5) Suppose 0 < r2 and ]x0 − r2, x0[ ∪ ]x0, x0 + r2[ ⊆ dom f . Then for all
r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that r1 < g1

and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and g2 ∈ dom f .
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(6) If for every n holds x0− 1
n+1 < s1(n) and s1(n) < x0 and s1(n) ∈ dom f ,

then s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f \ {x0}.
(7) If s1 is convergent and lim s1 = x0 and 0 < g, then there exists k such

that for every n such that k ≤ n holds x0− g < s1(n) and s1(n) < x0 + g.

(8) The following conditions are equivalent:

(i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom f and for every r such that x0 < r there exists g such that
g < r and x0 < g and g ∈ dom f .

We now define three new predicates. Let us consider f , x0. We say that f is
convergent in x0 if and only if:

(Def.1) (i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) there exists g such that for every s1 such that s1 is convergent and
lim s1 = x0 and rng s1 ⊆ dom f \ {x0} holds f · s1 is convergent and
lim(f · s1) = g.

We say that f is divergent to +∞ in x0 if and only if:

(Def.2) (i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) for every s1 such that s1 is convergent and lim s1 = x0 and rng s1 ⊆
dom f \ {x0} holds f · s1 is divergent to +∞.

We say that f is divergent to −∞ in x0 if and only if:

(Def.3) (i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) for every s1 such that s1 is convergent and lim s1 = x0 and rng s1 ⊆
dom f \ {x0} holds f · s1 is divergent to −∞.

The following propositions are true:

(9) f is convergent in x0 if and only if the following conditions are satisfied:

(i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) there exists g such that for every s1 such that s1 is convergent and
lim s1 = x0 and rng s1 ⊆ dom f \ {x0} holds f · s1 is convergent and
lim(f · s1) = g.

(10) f is divergent to +∞ in x0 if and only if the following conditions are
satisfied:
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(i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) for every s1 such that s1 is convergent and lim s1 = x0 and rng s1 ⊆
dom f \ {x0} holds f · s1 is divergent to +∞.

(11) f is divergent to −∞ in x0 if and only if the following conditions are
satisfied:

(i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) for every s1 such that s1 is convergent and lim s1 = x0 and rng s1 ⊆
dom f \ {x0} holds f · s1 is divergent to −∞.

(12) f is convergent in x0 if and only if the following conditions are satisfied:
(i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such

that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) there exists g such that for every g1 such that 0 < g1 there exists g2

such that 0 < g2 and for every r1 such that 0 < |x0−r1| and |x0−r1| < g2

and r1 ∈ dom f holds |f(r1)− g| < g1.

(13) f is divergent to +∞ in x0 if and only if the following conditions are
satisfied:

(i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) for every g1 there exists g2 such that 0 < g2 and for every r1 such that
0 < |x0 − r1| and |x0 − r1| < g2 and r1 ∈ dom f holds g1 < f(r1).

(14) f is divergent to −∞ in x0 if and only if the following conditions are
satisfied:

(i) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(ii) for every g1 there exists g2 such that 0 < g2 and for every r1 such that
0 < |x0 − r1| and |x0 − r1| < g2 and r1 ∈ dom f holds f(r1) < g1.

(15) f is divergent to +∞ in x0 if and only if f is left divergent to +∞ in
x0 and f is right divergent to +∞ in x0.

(16) f is divergent to −∞ in x0 if and only if f is left divergent to −∞ in
x0 and f is right divergent to −∞ in x0.

(17) Suppose that
(i) f1 is divergent to +∞ in x0,
(ii) f2 is divergent to +∞ in x0,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom f1 ∩ dom f2 and g2 < r2 and x0 < g2

and g2 ∈ dom f1 ∩ dom f2.
Then f1 + f2 is divergent to +∞ in x0 and f1f2 is divergent to +∞ in x0.
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(18) Suppose that
(i) f1 is divergent to −∞ in x0,

(ii) f2 is divergent to −∞ in x0,
(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that

r1 < g1 and g1 < x0 and g1 ∈ dom f1 ∩ dom f2 and g2 < r2 and x0 < g2

and g2 ∈ dom f1 ∩ dom f2.
Then f1 + f2 is divergent to −∞ in x0 and f1f2 is divergent to +∞ in x0.

(19) Suppose that
(i) f1 is divergent to +∞ in x0,

(ii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f1 + f2) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f1 + f2),

(iii) there exists r such that 0 < r and f2 is lower bounded on ]x0− r, x0[∪
]x0, x0 + r[.
Then f1 + f2 is divergent to +∞ in x0.

(20) Suppose that
(i) f1 is divergent to +∞ in x0,

(ii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f1f2) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f1f2),

(iii) there exist r, r1 such that 0 < r and 0 < r1 and for every g such that
g ∈ dom f2 ∩ (]x0 − r, x0[ ∪ ]x0, x0 + r[) holds r1 ≤ f2(g).
Then f1f2 is divergent to +∞ in x0.

(21) (i) If f is divergent to +∞ in x0 and r > 0, then rf is divergent to +∞
in x0,

(ii) if f is divergent to +∞ in x0 and r < 0, then rf is divergent to −∞
in x0,

(iii) if f is divergent to −∞ in x0 and r > 0, then rf is divergent to −∞
in x0,

(iv) if f is divergent to −∞ in x0 and r < 0, then rf is divergent to +∞
in x0.

(22) If f is divergent to +∞ in x0 or f is divergent to −∞ in x0, then |f | is
divergent to +∞ in x0.

(23) Suppose that
(i) there exists r such that 0 < r and f is non-decreasing on ]x0 − r, x0[

and f is non-increasing on ]x0, x0 + r[ and f is not upper bounded on
]x0 − r, x0[ and f is not upper bounded on ]x0, x0 + r[,

(ii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f .
Then f is divergent to +∞ in x0.

(24) Suppose that
(i) there exists r such that 0 < r and f is increasing on ]x0 − r, x0[ and
f is decreasing on ]x0, x0 + r[ and f is not upper bounded on ]x0 − r, x0[
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and f is not upper bounded on ]x0, x0 + r[,
(ii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such

that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f .
Then f is divergent to +∞ in x0.

(25) Suppose that
(i) there exists r such that 0 < r and f is non-increasing on ]x0 − r, x0[

and f is non-decreasing on ]x0, x0 + r[ and f is not lower bounded on
]x0 − r, x0[ and f is not lower bounded on ]x0, x0 + r[,

(ii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f .
Then f is divergent to −∞ in x0.

(26) Suppose that
(i) there exists r such that 0 < r and f is decreasing on ]x0 − r, x0[ and
f is increasing on ]x0, x0 + r[ and f is not lower bounded on ]x0 − r, x0[
and f is not lower bounded on ]x0, x0 + r[,

(ii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f .
Then f is divergent to −∞ in x0.

(27) Suppose that
(i) f1 is divergent to +∞ in x0,
(ii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such

that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(iii) there exists r such that 0 < r and dom f ∩ (]x0− r, x0[∪ ]x0, x0 + r[) ⊆
dom f1 ∩ (]x0− r, x0[∪ ]x0, x0 + r[) and for every g such that g ∈ dom f ∩
(]x0 − r, x0[ ∪ ]x0, x0 + r[) holds f1(g) ≤ f(g).
Then f is divergent to +∞ in x0.

(28) Suppose that
(i) f1 is divergent to −∞ in x0,
(ii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such

that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,

(iii) there exists r such that 0 < r and dom f ∩ (]x0− r, x0[∪ ]x0, x0 + r[) ⊆
dom f1 ∩ (]x0− r, x0[∪ ]x0, x0 + r[) and for every g such that g ∈ dom f ∩
(]x0 − r, x0[ ∪ ]x0, x0 + r[) holds f(g) ≤ f1(g).
Then f is divergent to −∞ in x0.

(29) Suppose that
(i) f1 is divergent to +∞ in x0,
(ii) there exists r such that 0 < r and ]x0 − r, x0[ ∪ ]x0, x0 + r[ ⊆ dom f ∩

dom f1 and for every g such that g ∈ ]x0 − r, x0[ ∪ ]x0, x0 + r[ holds
f1(g) ≤ f(g).
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Then f is divergent to +∞ in x0.

(30) Suppose that
(i) f1 is divergent to −∞ in x0,

(ii) there exists r such that 0 < r and ]x0 − r, x0[ ∪ ]x0, x0 + r[ ⊆ dom f ∩
dom f1 and for every g such that g ∈ ]x0 − r, x0[ ∪ ]x0, x0 + r[ holds
f(g) ≤ f1(g).
Then f is divergent to −∞ in x0.

Let us consider f , x0. Let us assume that f is convergent in x0. The functor
limx0f yields a real number and is defined by:

(Def.4) for every s1 such that s1 is convergent and lim s1 = x0 and rng s1 ⊆
dom f \ {x0} holds f · s1 is convergent and lim(f · s1) = limx0f .

The following propositions are true:

(31) If f is convergent in x0, then limx0f = g if and only if for every s1 such
that s1 is convergent and lim s1 = x0 and rng s1 ⊆ dom f \ {x0} holds
f · s1 is convergent and lim(f · s1) = g.

(32) Suppose f is convergent in x0. Then limx0f = g if and only if for every
g1 such that 0 < g1 there exists g2 such that 0 < g2 and for every r1 such
that 0 < |x0−r1| and |x0−r1| < g2 and r1 ∈ dom f holds |f(r1)−g| < g1.

(33) If f is convergent in x0, then f is left convergent in x0 and f is right
convergent in x0 and limx0

− f = limx0
+ f and limx0f = limx0

− f and
limx0f = limx0

+ f .

(34) If f is left convergent in x0 and f is right convergent in x0 and limx0
− f =

limx0
+ f , then f is convergent in x0 and limx0f = limx0

− f and limx0f =
limx0

+ f .

(35) If f is convergent in x0, then rf is convergent in x0 and limx0(rf) =
r · (limx0f).

(36) If f is convergent in x0, then −f is convergent in x0 and limx0(−f) =
−limx0f .

(37) Suppose that
(i) f1 is convergent in x0,

(ii) f2 is convergent in x0,
(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that

r1 < g1 and g1 < x0 and g1 ∈ dom(f1 + f2) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f1 + f2).
Then f1 + f2 is convergent in x0 and limx0(f1 + f2) = limx0f1 + limx0f2.

(38) Suppose that
(i) f1 is convergent in x0,

(ii) f2 is convergent in x0,
(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that

r1 < g1 and g1 < x0 and g1 ∈ dom(f1 − f2) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f1 − f2).
Then f1 − f2 is convergent in x0 and limx0(f1 − f2) = limx0f1 − limx0f2.
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(39) If f is convergent in x0 and f −1 {0} = ∅ and limx0f 6= 0, then 1
f is

convergent in x0 and limx0
1
f = (limx0f)−1.

(40) If f is convergent in x0, then |f | is convergent in x0 and limx0 |f | =
|limx0f |.

(41) Suppose that
(i) f is convergent in x0,
(ii) limx0f 6= 0,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f and f(g1) 6= 0 and f(g2) 6= 0.
Then 1

f is convergent in x0 and limx0
1
f = (limx0f)−1.

(42) Suppose that
(i) f1 is convergent in x0,
(ii) f2 is convergent in x0,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f1f2) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f1f2).
Then f1f2 is convergent in x0 and limx0(f1f2) = (limx0f1) · (limx0f2).

(43) Suppose that
(i) f1 is convergent in x0,
(ii) f2 is convergent in x0,

(iii) limx0f2 6= 0,
(iv) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such

that r1 < g1 and g1 < x0 and g1 ∈ dom f1

f2
and g2 < r2 and x0 < g2 and

g2 ∈ dom f1

f2
.

Then f1

f2
is convergent in x0 and limx0

f1

f2
=

limx0f1

limx0f2
.

(44) Suppose that
(i) f1 is convergent in x0,
(ii) limx0f1 = 0,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f1f2) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f1f2),

(iv) there exists r such that 0 < r and f2 is bounded on ]x0 − r, x0[ ∪
]x0, x0 + r[.
Then f1f2 is convergent in x0 and limx0(f1f2) = 0.

(45) Suppose that
(i) f1 is convergent in x0,
(ii) f2 is convergent in x0,

(iii) limx0f1 = limx0f2,
(iv) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such

that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f ,
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(v) there exists r such that 0 < r and for every g such that g ∈ dom f ∩
(]x0−r, x0[∪]x0, x0+r[) holds f1(g) ≤ f(g) and f(g) ≤ f2(g) but dom f1∩
(]x0 − r, x0[ ∪ ]x0, x0 + r[) ⊆ dom f2 ∩ (]x0 − r, x0[ ∪ ]x0, x0 + r[) and
dom f ∩ (]x0− r, x0[∪ ]x0, x0 + r[) ⊆ dom f1∩ (]x0− r, x0[∪ ]x0, x0 + r[) or
dom f2 ∩ (]x0 − r, x0[ ∪ ]x0, x0 + r[) ⊆ dom f1 ∩ (]x0 − r, x0[ ∪ ]x0, x0 + r[)
and dom f∩(]x0−r, x0[∪ ]x0, x0 +r[) ⊆ dom f2∩(]x0−r, x0[∪ ]x0, x0 +r[).
Then f is convergent in x0 and limx0f = limx0f1.

(46) Suppose that
(i) f1 is convergent in x0,

(ii) f2 is convergent in x0,
(iii) limx0f1 = limx0f2,
(iv) there exists r such that 0 < r and ]x0− r, x0[∪ ]x0, x0 + r[ ⊆ (dom f1∩

dom f2) ∩ dom f and for every g such that g ∈ ]x0 − r, x0[ ∪ ]x0, x0 + r[
holds f1(g) ≤ f(g) and f(g) ≤ f2(g).
Then f is convergent in x0 and limx0f = limx0f1.

(47) Suppose that
(i) f1 is convergent in x0,

(ii) f2 is convergent in x0,
(iii) there exists r such that 0 < r but dom f1∩ (]x0− r, x0[∪ ]x0, x0 + r[) ⊆

dom f2∩ (]x0− r, x0[∪ ]x0, x0 + r[) and for every g such that g ∈ dom f1∩
(]x0 − r, x0[ ∪ ]x0, x0 + r[) holds f1(g) ≤ f2(g) or dom f2 ∩ (]x0 − r, x0[ ∪
]x0, x0 + r[) ⊆ dom f1 ∩ (]x0 − r, x0[ ∪ ]x0, x0 + r[) and for every g such
that g ∈ dom f2 ∩ (]x0 − r, x0[ ∪ ]x0, x0 + r[) holds f1(g) ≤ f2(g).
Then limx0f1 ≤ limx0f2.

(48) Suppose that
(i) f is divergent to +∞ in x0 or f is divergent to −∞ in x0,

(ii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f and f(g1) 6= 0 and f(g2) 6= 0.
Then 1

f is convergent in x0 and limx0
1
f = 0.

(49) Suppose that
(i) f is convergent in x0,

(ii) limx0f = 0,
(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such

that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
g2 ∈ dom f and f(g1) 6= 0 and f(g2) 6= 0,

(iv) there exists r such that 0 < r and for every g such that g ∈ dom f ∩
(]x0 − r, x0[ ∪ ]x0, x0 + r[) holds 0 ≤ f(g).
Then 1

f is divergent to +∞ in x0.

(50) Suppose that
(i) f is convergent in x0,

(ii) limx0f = 0,
(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such

that r1 < g1 and g1 < x0 and g1 ∈ dom f and g2 < r2 and x0 < g2 and
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g2 ∈ dom f and f(g1) 6= 0 and f(g2) 6= 0,
(iv) there exists r such that 0 < r and for every g such that g ∈ dom f ∩

(]x0 − r, x0[ ∪ ]x0, x0 + r[) holds f(g) ≤ 0.
Then 1

f is divergent to −∞ in x0.

(51) If f is convergent in x0 and limx0f = 0 and there exists r such that
0 < r and for every g such that g ∈ dom f ∩ (]x0 − r, x0[ ∪ ]x0, x0 + r[)
holds 0 < f(g), then 1

f is divergent to +∞ in x0.

(52) If f is convergent in x0 and limx0f = 0 and there exists r such that
0 < r and for every g such that g ∈ dom f ∩ (]x0 − r, x0[ ∪ ]x0, x0 + r[)
holds f(g) < 0, then 1

f is divergent to −∞ in x0.
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Summary. The theorem on the proper and the improper limit of
a composition of real functions at a point, at infinity and one-side limits
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The terminology and notation used in this paper have been introduced in the
following articles: [17], [4], [1], [2], [15], [13], [5], [8], [14], [16], [3], [10], [11],
[12], [7], [9], and [6]. We follow a convention: r, r1, r2, g, g1, g2, x0 will be
real numbers and f1, f2 will be partial functions from

�
to

�
. The following

propositions are true:

(1) Let s be a sequence of real numbers. Then for every set X such that
rng s ⊆ dom(f2 · f1) ∩ X holds rng s ⊆ dom(f2 · f1) and rng s ⊆ X and
rng s ⊆ dom f1 and rng s ⊆ dom f1 ∩X and rng(f1 · s) ⊆ dom f2.

(2) For every sequence of real numbers s and for every set X such that
rng s ⊆ dom(f2 · f1) \ X holds rng s ⊆ dom(f2 · f1) and rng s ⊆ dom f1

and rng s ⊆ dom f1 \X and rng(f1 · s) ⊆ dom f2.

(3) If f1 is divergent in +∞ to +∞ and f2 is divergent in +∞ to +∞ and
for every r there exists g such that r < g and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in +∞ to +∞.

(4) If f1 is divergent in +∞ to +∞ and f2 is divergent in +∞ to −∞ and
for every r there exists g such that r < g and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in +∞ to −∞.

(5) If f1 is divergent in +∞ to −∞ and f2 is divergent in −∞ to +∞ and
for every r there exists g such that r < g and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in +∞ to +∞.
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(6) If f1 is divergent in +∞ to −∞ and f2 is divergent in −∞ to −∞ and
for every r there exists g such that r < g and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in +∞ to −∞.

(7) If f1 is divergent in −∞ to +∞ and f2 is divergent in +∞ to +∞ and
for every r there exists g such that g < r and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in −∞ to +∞.

(8) If f1 is divergent in −∞ to +∞ and f2 is divergent in +∞ to −∞ and
for every r there exists g such that g < r and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in −∞ to −∞.

(9) If f1 is divergent in −∞ to −∞ and f2 is divergent in −∞ to +∞ and
for every r there exists g such that g < r and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in −∞ to +∞.

(10) If f1 is divergent in −∞ to −∞ and f2 is divergent in −∞ to −∞ and
for every r there exists g such that g < r and g ∈ dom(f2 ·f1), then f2 ·f1

is divergent in −∞ to −∞.

(11) If f1 is left divergent to +∞ in x0 and f2 is divergent in +∞ to +∞
and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1), then f2 · f1 is left divergent to +∞ in x0.

(12) If f1 is left divergent to +∞ in x0 and f2 is divergent in +∞ to −∞
and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1), then f2 · f1 is left divergent to −∞ in x0.

(13) If f1 is left divergent to −∞ in x0 and f2 is divergent in −∞ to +∞
and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1), then f2 · f1 is left divergent to +∞ in x0.

(14) If f1 is left divergent to −∞ in x0 and f2 is divergent in −∞ to −∞
and for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1), then f2 · f1 is left divergent to −∞ in x0.

(15) If f1 is right divergent to +∞ in x0 and f2 is divergent in +∞ to +∞
and for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1), then f2 · f1 is right divergent to +∞ in x0.

(16) If f1 is right divergent to +∞ in x0 and f2 is divergent in +∞ to −∞
and for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1), then f2 · f1 is right divergent to −∞ in x0.

(17) If f1 is right divergent to −∞ in x0 and f2 is divergent in −∞ to +∞
and for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1), then f2 · f1 is right divergent to +∞ in x0.

(18) If f1 is right divergent to −∞ in x0 and f2 is divergent in −∞ to −∞
and for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1), then f2 · f1 is right divergent to −∞ in x0.

(19) Suppose that

(i) f1 is left convergent in x0,

(ii) f2 is left divergent to +∞ in limx0
− f1,
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(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds f1(r) < limx0
− f1.

Then f2 · f1 is left divergent to +∞ in x0.

(20) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is left divergent to −∞ in limx0

− f1,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds f1(r) < limx0
− f1.

Then f2 · f1 is left divergent to −∞ in x0.

(21) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is right divergent to +∞ in limx0

− f1,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds limx0
− f1 < f1(r).

Then f2 · f1 is left divergent to +∞ in x0.

(22) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is right divergent to −∞ in limx0

− f1,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds limx0
− f1 < f1(r).

Then f2 · f1 is left divergent to −∞ in x0.

(23) Suppose that
(i) f1 is right convergent in x0,
(ii) f2 is right divergent to +∞ in limx0

+ f1,
(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0, x0 + g[ holds limx0
+ f1 < f1(r).

Then f2 · f1 is right divergent to +∞ in x0.

(24) Suppose that
(i) f1 is right convergent in x0,
(ii) f2 is right divergent to −∞ in limx0

+ f1,
(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0, x0 + g[ holds limx0
+ f1 < f1(r).
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Then f2 · f1 is right divergent to −∞ in x0.

(25) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is left divergent to +∞ in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds f1(r) < limx0

+ f1.

Then f2 · f1 is right divergent to +∞ in x0.

(26) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is left divergent to −∞ in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds f1(r) < limx0

+ f1.

Then f2 · f1 is right divergent to −∞ in x0.

(27) If f1 is convergent in +∞ and f2 is left divergent to +∞ in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) < lim+∞ f1, then f2 · f1 is divergent in +∞ to +∞.

(28) If f1 is convergent in +∞ and f2 is left divergent to −∞ in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) < lim+∞ f1, then f2 · f1 is divergent in +∞ to −∞.

(29) If f1 is convergent in +∞ and f2 is right divergent to +∞ in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
lim+∞ f1 < f1(g), then f2 · f1 is divergent in +∞ to +∞.

(30) If f1 is convergent in +∞ and f2 is right divergent to −∞ in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
lim+∞ f1 < f1(g), then f2 · f1 is divergent in +∞ to −∞.

(31) If f1 is convergent in −∞ and f2 is left divergent to +∞ in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) < lim−∞ f1, then f2 · f1 is divergent in −∞ to +∞.

Next we state a number of propositions:

(32) If f1 is convergent in −∞ and f2 is left divergent to −∞ in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) < lim−∞ f1, then f2 · f1 is divergent in −∞ to −∞.
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(33) If f1 is convergent in −∞ and f2 is right divergent to +∞ in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
lim−∞ f1 < f1(g), then f2 · f1 is divergent in −∞ to +∞.

(34) If f1 is convergent in −∞ and f2 is right divergent to −∞ in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
lim−∞ f1 < f1(g), then f2 · f1 is divergent in −∞ to −∞.

(35) Suppose f1 is divergent to +∞ in x0 and f2 is divergent in +∞ to +∞
and for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2

and g2 ∈ dom(f2 · f1). Then f2 · f1 is divergent to +∞ in x0.

(36) Suppose f1 is divergent to +∞ in x0 and f2 is divergent in +∞ to −∞
and for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2

and g2 ∈ dom(f2 · f1). Then f2 · f1 is divergent to −∞ in x0.

(37) Suppose f1 is divergent to −∞ in x0 and f2 is divergent in −∞ to +∞
and for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2

and g2 ∈ dom(f2 · f1). Then f2 · f1 is divergent to +∞ in x0.

(38) Suppose f1 is divergent to −∞ in x0 and f2 is divergent in −∞ to −∞
and for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such
that r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2

and g2 ∈ dom(f2 · f1). Then f2 · f1 is divergent to −∞ in x0.

(39) Suppose that
(i) f1 is convergent in x0,

(ii) f2 is divergent to +∞ in limx0f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) 6= limx0f1.
Then f2 · f1 is divergent to +∞ in x0.

(40) Suppose that

(i) f1 is convergent in x0,
(ii) f2 is divergent to −∞ in limx0f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) 6= limx0f1.

Then f2 · f1 is divergent to −∞ in x0.

(41) Suppose that
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(i) f1 is convergent in x0,

(ii) f2 is right divergent to +∞ in limx0f1,
(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that

r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) > limx0f1.
Then f2 · f1 is divergent to +∞ in x0.

(42) Suppose that

(i) f1 is convergent in x0,
(ii) f2 is right divergent to −∞ in limx0f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) > limx0f1.
Then f2 · f1 is divergent to −∞ in x0.

(43) Suppose that
(i) f1 is right convergent in x0,

(ii) f2 is divergent to +∞ in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds f1(r) 6= limx0

+ f1.

Then f2 · f1 is right divergent to +∞ in x0.

(44) Suppose that
(i) f1 is right convergent in x0,

(ii) f2 is divergent to −∞ in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds f1(r) 6= limx0

+ f1.
Then f2 · f1 is right divergent to −∞ in x0.

(45) If f1 is convergent in +∞ and f2 is divergent to +∞ in lim+∞ f1 and
for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) 6= lim+∞ f1, then f2 · f1 is divergent in +∞ to +∞.

(46) If f1 is convergent in +∞ and f2 is divergent to −∞ in lim+∞ f1 and
for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) 6= lim+∞ f1, then f2 · f1 is divergent in +∞ to −∞.

(47) If f1 is convergent in −∞ and f2 is divergent to +∞ in lim−∞ f1 and
for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
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there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) 6= lim−∞ f1, then f2 · f1 is divergent in −∞ to +∞.

(48) If f1 is convergent in −∞ and f2 is divergent to −∞ in lim−∞ f1 and
for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) 6= lim−∞ f1, then f2 · f1 is divergent in −∞ to −∞.

(49) Suppose that
(i) f1 is convergent in x0,
(ii) f2 is left divergent to +∞ in limx0f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) < limx0f1.
Then f2 · f1 is divergent to +∞ in x0.

(50) Suppose that
(i) f1 is convergent in x0,
(ii) f2 is left divergent to −∞ in limx0f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) < limx0f1.
Then f2 · f1 is divergent to −∞ in x0.

(51) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is divergent to +∞ in limx0

− f1,

(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds f1(r) 6= limx0
− f1.

Then f2 · f1 is left divergent to +∞ in x0.

(52) Suppose that
(i) f1 is left convergent in x0,

(ii) f2 is divergent to −∞ in limx0
− f1,

(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds f1(r) 6= limx0
− f1.

Then f2 · f1 is left divergent to −∞ in x0.

(53) If f1 is divergent in +∞ to +∞ and f2 is convergent in +∞ and for
every r there exists g such that r < g and g ∈ dom(f2 · f1), then f2 · f1 is
convergent in +∞ and lim+∞(f2 · f1) = lim+∞ f2.
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(54) If f1 is divergent in +∞ to −∞ and f2 is convergent in −∞ and for
every r there exists g such that r < g and g ∈ dom(f2 · f1), then f2 · f1 is
convergent in +∞ and lim+∞(f2 · f1) = lim−∞ f2.

(55) If f1 is divergent in −∞ to +∞ and f2 is convergent in +∞ and for
every r there exists g such that g < r and g ∈ dom(f2 · f1), then f2 · f1 is
convergent in −∞ and lim−∞(f2 · f1) = lim+∞ f2.

(56) If f1 is divergent in −∞ to −∞ and f2 is convergent in −∞ and for
every r there exists g such that g < r and g ∈ dom(f2 · f1), then f2 · f1 is
convergent in −∞ and lim−∞(f2 · f1) = lim−∞ f2.

(57) If f1 is left divergent to +∞ in x0 and f2 is convergent in +∞ and for
every r such that r < x0 there exists g such that r < g and g < x0 and
g ∈ dom(f2 · f1), then f2 · f1 is left convergent in x0 and limx0

−(f2 · f1) =
lim+∞ f2.

(58) If f1 is left divergent to −∞ in x0 and f2 is convergent in −∞ and for
every r such that r < x0 there exists g such that r < g and g < x0 and
g ∈ dom(f2 · f1), then f2 · f1 is left convergent in x0 and limx0

−(f2 · f1) =
lim−∞ f2.

(59) If f1 is right divergent to +∞ in x0 and f2 is convergent in +∞ and for
every r such that x0 < r there exists g such that g < r and x0 < g and
g ∈ dom(f2 ·f1), then f2 ·f1 is right convergent in x0 and limx0

+(f2 ·f1) =
lim+∞ f2.

(60) If f1 is right divergent to −∞ in x0 and f2 is convergent in −∞ and for
every r such that x0 < r there exists g such that g < r and x0 < g and
g ∈ dom(f2 ·f1), then f2 ·f1 is right convergent in x0 and limx0

+(f2 ·f1) =
lim−∞ f2.

(61) Suppose that

(i) f1 is left convergent in x0,

(ii) f2 is left convergent in limx0
− f1,

(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0 − g, x0[ holds f1(r) < limx0

− f1.

Then f2 · f1 is left convergent in x0 and limx0
−(f2 · f1) = limlimx0

− f1
− f2.

(62) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is right convergent in limx0
+ f1,

(iii) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds limx0

+ f1 < f1(r).

Then f2 ·f1 is right convergent in x0 and limx0
+(f2 ·f1) = limlimx0

+ f1
+ f2.

One can prove the following propositions:
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(63) Suppose that
(i) f1 is left convergent in x0,
(ii) f2 is right convergent in limx0

− f1,
(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0 − g, x0[ holds limx0
− f1 < f1(r).

Then f2 · f1 is left convergent in x0 and limx0
−(f2 · f1) = limlimx0

− f1
+ f2.

(64) Suppose that
(i) f1 is right convergent in x0,
(ii) f2 is left convergent in limx0

+ f1,
(iii) for every r such that x0 < r there exists g such that g < r and x0 < g

and g ∈ dom(f2 · f1),
(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩

]x0, x0 + g[ holds f1(r) < limx0
+ f1.

Then f2 ·f1 is right convergent in x0 and limx0
+(f2 ·f1) = limlimx0

+ f1
− f2.

(65) Suppose f1 is convergent in +∞ and f2 is left convergent in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) < lim+∞ f1. Then f2 · f1 is convergent in +∞ and lim+∞(f2 · f1) =
limlim+∞ f1

− f2.

(66) Suppose f1 is convergent in +∞ and f2 is right convergent in lim+∞ f1

and for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
lim+∞ f1 < f1(g). Then f2 · f1 is convergent in +∞ and lim+∞(f2 · f1) =
limlim+∞ f1

+ f2.

(67) Suppose f1 is convergent in −∞ and f2 is left convergent in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) < lim−∞ f1. Then f2 · f1 is convergent in −∞ and lim−∞(f2 · f1) =
limlim−∞ f1

− f2.

(68) Suppose f1 is convergent in −∞ and f2 is right convergent in lim−∞ f1

and for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
lim−∞ f1 < f1(g). Then f2 · f1 is convergent in −∞ and lim−∞(f2 · f1) =
limlim−∞ f1

+ f2.

(69) Suppose f1 is divergent to +∞ in x0 and f2 is convergent in +∞ and
for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1). Then f2 · f1 is convergent in x0 and limx0(f2 · f1) =
lim+∞ f2.

(70) Suppose f1 is divergent to −∞ in x0 and f2 is convergent in −∞ and
for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
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r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1). Then f2 · f1 is convergent in x0 and limx0(f2 · f1) =
lim−∞ f2.

(71) Suppose f1 is convergent in +∞ and f2 is convergent in lim+∞ f1 and
for every r there exists g such that r < g and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]r,+∞[ holds
f1(g) 6= lim+∞ f1. Then f2 · f1 is convergent in +∞ and lim+∞(f2 · f1) =
limlim+∞ f1f2.

(72) Suppose f1 is convergent in −∞ and f2 is convergent in lim−∞ f1 and
for every r there exists g such that g < r and g ∈ dom(f2 · f1) and
there exists r such that for every g such that g ∈ dom f1 ∩ ]−∞, r[ holds
f1(g) 6= lim−∞ f1. Then f2 · f1 is convergent in −∞ and lim−∞(f2 · f1) =
limlim−∞ f1f2.

(73) Suppose that

(i) f1 is convergent in x0,

(ii) f2 is left convergent in limx0f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) < limx0f1.

Then f2 · f1 is convergent in x0 and limx0(f2 · f1) = limlimx0f1
− f2.

(74) Suppose that

(i) f1 is left convergent in x0,

(ii) f2 is convergent in limx0
− f1,

(iii) for every r such that r < x0 there exists g such that r < g and g < x0

and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0 − g, x0[ holds f1(r) 6= limx0

− f1.

Then f2 · f1 is left convergent in x0 and limx0
−(f2 · f1) = limlimx0

− f1f2.

(75) Suppose that

(i) f1 is convergent in x0,

(ii) f2 is right convergent in limx0f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds limx0f1 < f1(r).

Then f2 · f1 is convergent in x0 and limx0(f2 · f1) = limlimx0f1
+ f2.

(76) Suppose that

(i) f1 is right convergent in x0,

(ii) f2 is convergent in limx0
+ f1,
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(iii) for every r such that x0 < r there exists g such that g < r and x0 < g
and g ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
]x0, x0 + g[ holds f1(r) 6= limx0

+ f1.
Then f2 · f1 is right convergent in x0 and limx0

+(f2 · f1) = limlimx0
+ f1f2.

(77) Suppose that
(i) f1 is convergent in x0,
(ii) f2 is convergent in limx0f1,

(iii) for all r1, r2 such that r1 < x0 and x0 < r2 there exist g1, g2 such that
r1 < g1 and g1 < x0 and g1 ∈ dom(f2 · f1) and g2 < r2 and x0 < g2 and
g2 ∈ dom(f2 · f1),

(iv) there exists g such that 0 < g and for every r such that r ∈ dom f1 ∩
(]x0 − g, x0[ ∪ ]x0, x0 + g[) holds f1(r) 6= limx0f1.
Then f2 · f1 is convergent in x0 and limx0(f2 · f1) = limlimx0f1f2.
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Summary. This article is a continuation of [6]. We define a neigh-
bourhood of a point and a neighbourhood of a set and prove some facts
about them. Then the definitions of a locally connected space and a lo-
cally connected set are introduced. Some theorems on locally connected
spaces are given (based on [5]). We also define a quasi-component of a
point and prove some of its basic properties.

MML Identifier: CONNSP 2.

The papers [11], [10], [2], [13], [7], [1], [12], [9], [3], [8], [14], [6], and [4] provide
the terminology and notation for this paper. Let X be a topological space, and
let x be a point of X. A subset of X is called a neighborhood of x if:

(Def.1) x ∈ Int it.

Let X be a topological space, and let A be a subset of X. A subset of X is
called a neighborhood of A if:

(Def.2) A ⊆ Int it.

In the sequel X will denote a topological space, x will denote a point of X,
and A, U1 will denote subsets of X. We now state a number of propositions:

(2)2 A is a neighborhood of U1 if and only if U1 ⊆ IntA.

(3) For every x and for all subsets A, B of X such that A is a neighborhood
of x and B is a neighborhood of x holds A ∪B is a neighborhood of x.

(4) For every x and for all subsets A, B of X holds A is a neighborhood of
x and B is a neighborhood of x if and only if A∩B is a neighborhood of
x.

(5) For every subset U1 of X and for every point x of X such that U1 is
open and x ∈ U1 holds U1 is a neighborhood of x.

(6) For every subset U1 of X and for every point x of X such that U1 is a
neighborhood of x holds x ∈ U1.

1Supported by RPBP.III-24.C1
2The proposition (1) was either repeated or obvious.
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(7) For all U1, x such that U1 is a neighborhood of x there exists a subset
V of X such that V is a neighborhood of x and V is open and V ⊆ U1.

(8) For all U1, x holds U1 is a neighborhood of x if and only if there exists
a subset V of X such that V is open and V ⊆ U1 and x ∈ V .

(9) U1 is open if and only if for every x such that x ∈ U1 there exists a
subset A of X such that A is a neighborhood of x and A ⊆ U1.

(10) For every subset V of X holds V is a neighborhood of {x} if and only
if V is a neighborhood of x.

(11) For every subset B of X and for every point x of X � B and for every
subset A of X � B and for every subset A1 of X and for every point x1

of X such that B 6= ∅X and B is open and A is a neighborhood of x and
A = A1 and x = x1 holds A1 is a neighborhood of x1.

(12) For every subset B of X and for every point x of X � B and for every
subset A of X � B and for every subset A1 of X and for every point x1 of
X such that A1 is a neighborhood of x1 and A = A1 and x = x1 holds A
is a neighborhood of x.

(13) For all subsets A, B of X such that A is a component of X and A ⊆ B
holds A is a component of B.

(14) For every subspace X1 of X and for every point x of X and for every
point x1 of X1 such that x = x1 holds Component(x1) ⊆ Component(x).

Let X be a topological space, and let x be a point of X. We say that X is
locally connected in x if and only if:

(Def.3) for every subset U1 of X such that U1 is a neighborhood of x there exists
a subset V of X such that V is a neighborhood of x and V is connected
and V ⊆ U1.

Let X be a topological space. We say that X is locally connected if and only
if:

(Def.4) for every point x of X holds X is locally connected in x.

Let X be a topological space, and let A be a subset of X, and let x be a
point of X. We say that A is locally connected in x if and only if:

(Def.5) there exists a point x1 of X � A such that x1 = x and X � A is locally
connected in x1.

The following proposition is true

(17)3 A is locally connected in x if and only if there exists a point x1 of X � A
such that x1 = x and X � A is locally connected in x1.

Let X be a topological space, and let A be a subset of X. We say that A is
locally connected if and only if:

(Def.6) X � A is locally connected.

One can prove the following propositions:

3The propositions (15)–(16) were either repeated or obvious.
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(19)4 For every x holds X is locally connected in x if and only if for all subsets
V , S of X such that V is a neighborhood of x and S is a component of
V and x ∈ S holds S is a neighborhood of x.

(20) For every x holds X is locally connected in x if and only if for every
subset U1 of X such that U1 is open and x ∈ U1 there exists a point x1

of X � U1 such that x1 = x and x ∈ Int Component(x1).

(21) If X is locally connected, then for every subset S of X such that S is a
component of X holds S is open.

(22) If X is locally connected in x, then for every subset A of X such that
A is open and x ∈ A holds A is locally connected in x.

(23) If X is locally connected, then for every subset A of X such that A 6= ∅X
and A is open holds A is locally connected.

(24) X is locally connected if and only if for all subsets A, B of X such that
A 6= ∅X and A is open and B is a component of A holds B is open.

(25) If X is locally connected, then for every subset E of X and for every
subset C of X � E such that E 6= ∅X and C 6= ∅X 	 E and C is connected
and C is open there exists a subset H of X such that H is open and H is
connected and C = E ∩H.

(26) X is a T4 space if and only if for all subsets A, C of X such that A 6= ∅
and C 6= ΩX and A ⊆ C and A is closed and C is open there exists a
subset G of X such that G is open and A ⊆ G and G ⊆ C.

(27) Suppose X is locally connected and X is a T4 space. Let A, B be
subsets of X. Suppose A 6= ∅ and B 6= ∅ and A is closed and B is closed
and A ∩ B = ∅. Then if A is connected and B is connected, then there
exist subsets R, S of X such that R is connected and S is connected and
R is open and S is open and A ⊆ R and B ⊆ S and R ∩ S = ∅.

(28) For every point x of X and for every family F of subsets of X such that
for every subset A of X holds A ∈ F if and only if A is open closed and
x ∈ A holds F 6= ∅.

Let X be a topological space, and let x be a point of X. The

quasi-component of x

is a subset of X defined by:

(Def.7) there exists a family F of subsets of X such that for every subset A of
X holds A ∈ F if and only if A is open closed and x ∈ A and

⋂
F =

the quasi-component of x.

We now state several propositions:

(29) A = the quasi-component of x if and only if there exists a family F of
subsets of X such that for every subset A of X holds A ∈ F if and only
if A is open closed and x ∈ A and

⋂
F = A.

(30) x ∈ the quasi-component of x.

4The proposition (18) was either repeated or obvious.
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(31) If A is open closed and x ∈ A, then if A ⊆ the quasi-component of x,
then A = the quasi-component of x.

(32) The quasi-component of x is closed.

(33) Component(x) ⊆ the quasi-component of x.
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Université Catholique de Louvain

Construction of Finite Sequences over Ring

and Left-, Right-,

and Bi-Modules over a Ring 1

Micha l Muzalewski
Warsaw University

Bia lystok

Les law W. Szczerba
Siedlce University

Summary. This text includes definitions of finite sequences over
rings and left-, right-, and bi-module over a ring, treated as functions
defined for all natural numbers, but almost everywhere equal to zero.
Some elementary theorems are proved, in particular for each category of
sequences the schema of existence is proved. In all four cases, i.e for rings,
left-, right-, and bi-modules are almost exactly the same, hovewer we do
not know how to do the job in Mizar in a different way. The paper is
mostly based on [2]. In particular the notion of initial segment of natural
numbers is introduced which differs from that of [2] by starting with zero.
This proved to be more convenient for algebraic purposes.

MML Identifier: ALGSEQ 1.

The notation and terminology used in this paper are introduced in the following
papers: [8], [3], [5], [1], [4], [6], and [7]. We adopt the following rules: i, k,
l, m, n will be natural numbers and x will be arbitrary. We now state four
propositions:

(2)2 If m < n+ 1, then m < n or m = n.

(4)3 If k < 2, then k = 0 or k = 1.

(5) For every real number x holds x < x+ 1.

(7)4 If k < l and l ≤ k + 1, then l = k + 1.

Let us consider n. The functor PSeg n yields a set and is defined by:

(Def.1) PSegn = {k : k < n}.
1Supported by RPBP.III-24.C3
2The proposition (1) was either repeated or obvious.
3The proposition (3) was either repeated or obvious.
4The proposition (6) was either repeated or obvious.
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Let us consider n. Then PSegn is sets of natural numbers.

We now state a number of propositions:

(8) PSegn = {k : k < n}.
(9) If x ∈ PSegn, then x is a natural number.

(10) k ∈ PSeg n if and only if k < n.

(11) PSeg 0 = ∅ and PSeg 1 = {0} and PSeg 2 = {0, 1}.
(12) n ∈ PSeg(n+ 1).

(13) n ≤ m if and only if PSeg n ⊆ PSegm.

(14) If PSegn = PSegm, then n = m.

(15) If k ≤ n, then PSeg k = PSeg k∩PSegn and PSeg k = PSegn∩PSeg k.

(16) If PSeg k = PSeg k ∩ PSeg n or PSeg k = PSeg n ∩ PSeg k, then k ≤ n.

(17) PSegn ∪ {n} = PSeg(n+ 1).

In the sequel R is a field structure and x is a scalar of R. Let us consider R.
A function from � into the carrier of R is said to be an algebraic sequence of R
if:

(Def.2) there exists n such that for every i such that i ≥ n holds it(i) = 0R.

In the sequel p, q denote algebraic sequences of R. Next we state the propo-
sition

(19)5 dom p = � .

Let us consider R, p, k. We say that the length of p is at most k if and only
if:

(Def.3) for every i such that i ≥ k holds p(i) = 0R.

We now state the proposition

(20) the length of p is at most k if and only if for every i such that i ≥ k
holds p(i) = 0R.

Let us consider R, p. The functor len p yielding a natural number is defined
as follows:

(Def.4) the length of p is at most len p and for every m such that the length of
p is at most m holds len p ≤ m.

We now state several propositions:

(21) i = len p if and only if the length of p is at most i and for every m such
that the length of p is at most m holds i ≤ m.

(22) For every i such that i ≥ len p holds p(i) = 0R.

(23) If p(k) 6= 0R, then len p > k.

(24) If for every i such that i < k holds p(i) 6= 0R, then len p ≥ k.

(25) If len p = k + 1, then p(k) 6= 0R.

Let us consider R, p. The functor supportp yields sets of natural numbers
and is defined as follows:

5The proposition (18) was either repeated or obvious.
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(Def.5) supportp = PSeg(len p).

Next we state two propositions:

(26) For every y being sets of natural numbers holds y = supportp if and
only if y = PSeg(len p).

(27) k = len p if and only if PSeg k = supportp.

The scheme AlgSeqLambdaF concerns field structure A, a natural number B,
and a unary functor F yielding a scalar of A and states that:

there exists an algebraic sequence p of A such that len p ≤ B and for every
k such that k < B holds p(k) = F(k)
for all values of the parameters.

One can prove the following proposition

(28) If len p = len q and for every k such that k < len p holds p(k) = q(k),
then p = q.

The following proposition is true

(29) For every R such that the carrier of R 6= {0R} for every k there exists
an algebraic sequence p of R such that len p = k.

Let us consider R, x. The functor 〈x〉 yielding an algebraic sequence of R is
defined by:

(Def.6) len〈x〉 ≤ 1 and 〈x〉(0) = x.

One can prove the following propositions:

(30) p = 〈x〉 if and only if len p ≤ 1 and p(0) = x.

(31) p = 〈0R〉 if and only if len p = 0.

(32) p = 〈0R〉 if and only if supportp = ∅.
(33) 〈0R〉(i) = 0R.

(34) p = 〈0R〉 if and only if rng p = {0R}.
In the sequel R will be an associative ring and V will be a left module over

R. Let us consider R, V . The functor ΘV yields a vector of V and is defined
by:

(Def.7) ΘV = 0the carrier of V .

One can prove the following proposition

(35) ΘV = 0the carrier of V .

In the sequel x denotes a vector of V . Let us consider R, V . A function from
� into the carrier of the carrier of V is said to be an algebraic sequence of V if:

(Def.8) there exists n such that for every i such that i ≥ n holds it(i) = ΘV .

In the sequel p, q will denote algebraic sequences of V . The following propo-
sition is true

(37)6 dom p = � .

Let us consider R, V , p, k. We say that the length of p is at most k if and
only if:

6The proposition (36) was either repeated or obvious.
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(Def.9) for every i such that i ≥ k holds p(i) = ΘV .

We now state the proposition

(38) the length of p is at most k if and only if for every i such that i ≥ k
holds p(i) = ΘV .

Let us consider R, V , p. The functor len p yields a natural number and is
defined as follows:

(Def.10) the length of p is at most len p and for every m such that the length of
p is at most m holds len p ≤ m.

One can prove the following propositions:

(39) i = len p if and only if the length of p is at most i and for every m such
that the length of p is at most m holds i ≤ m.

(40) For every i such that i ≥ len p holds p(i) = ΘV .

(41) If p(k) 6= ΘV , then len p > k.

(42) If for every i such that i < k holds p(i) 6= ΘV , then len p ≥ k.

(43) If len p = k + 1, then p(k) 6= ΘV .

Let us consider R, V , p. The functor supportp yields sets of natural numbers
and is defined by:

(Def.11) supportp = PSeg(len p).

We now state two propositions:

(44) For every y being sets of natural numbers holds y = support p if and
only if y = PSeg(len p).

(45) k = len p if and only if PSeg k = support p.

The scheme AlgSeqLambdaLM deals with an associative ring A, a left module
B over A, a natural number C, and a unary functor F yielding a vector of B
and states that:

there exists an algebraic sequence p of B such that len p ≤ C and for every k
such that k < C holds p(k) = F(k)
for all values of the parameters.

The following proposition is true

(46) If len p = len q and for every k such that k < len p holds p(k) = q(k),
then p = q.

We now state the proposition

(47) For all R, V such that the carrier of the carrier of V 6= {ΘV } for every
k there exists an algebraic sequence p of V such that len p = k.

Let us consider R, V , x. The functor 〈x〉 yielding an algebraic sequence of
V is defined as follows:

(Def.12) len〈x〉 ≤ 1 and 〈x〉(0) = x.

One can prove the following propositions:

(48) p = 〈x〉 if and only if len p ≤ 1 and p(0) = x.

(49) p = 〈ΘV 〉 if and only if len p = 0.
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(50) p = 〈ΘV 〉 if and only if support p = ∅.
(51) 〈ΘV 〉(i) = ΘV .

(52) p = 〈ΘV 〉 if and only if rng p = {ΘV }.
In the sequel V will denote a right module over R. Let us consider R, V .

The functor ΘV yields a vector of V and is defined as follows:

(Def.13) ΘV = 0the carrier of V .

The following proposition is true

(53) ΘV = 0the carrier of V .

Let us consider R, V . The functor ΘV yields a vector of V and is defined as
follows:

(Def.14) ΘV = 0the carrier of V .

The following proposition is true

(54) ΘV = 0the carrier of V .

In the sequel x will denote a vector of V . Let us consider R, V . A function
from � into the carrier of the carrier of V is called an algebraic sequence of V
if:

(Def.15) there exists n such that for every i such that i ≥ n holds it(i) = ΘV .

In the sequel p, q will be algebraic sequences of V . We now state the propo-
sition

(56)7 dom p = � .

Let us consider R, V , p, k. We say that the length of p is at most k if and
only if:

(Def.16) for every i such that i ≥ k holds p(i) = ΘV .

Next we state the proposition

(57) the length of p is at most k if and only if for every i such that i ≥ k
holds p(i) = ΘV .

Let us consider R, V , p. The functor len p yields a natural number and is
defined by:

(Def.17) the length of p is at most len p and for every m such that the length of
p is at most m holds len p ≤ m.

Next we state several propositions:

(58) i = len p if and only if the length of p is at most i and for every m such
that the length of p is at most m holds i ≤ m.

(59) For every i such that i ≥ len p holds p(i) = ΘV .

(60) If p(k) 6= ΘV , then len p > k.

(61) If for every i such that i < k holds p(i) 6= ΘV , then len p ≥ k.

(62) If len p = k + 1, then p(k) 6= ΘV .

7The proposition (55) was either repeated or obvious.
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Let us consider R, V , p. The functor support p yielding sets of natural
numbers is defined by:

(Def.18) supportp = PSeg(len p).

The following propositions are true:

(63) For every y being sets of natural numbers holds y = support p if and
only if y = PSeg(len p).

(64) k = len p if and only if PSeg k = support p.

The scheme AlgSeqLambdaRM deals with an associative ring A, a right mod-
ule B over A, a natural number C, and a unary functor F yielding a vector of
B and states that:

there exists an algebraic sequence p of B such that len p ≤ C and for every k
such that k < C holds p(k) = F(k)

for all values of the parameters.

The following proposition is true

(65) If len p = len q and for every k such that k < len p holds p(k) = q(k),
then p = q.

One can prove the following proposition

(66) For all R, V such that the carrier of the carrier of V 6= {ΘV } for every
k there exists an algebraic sequence p of V such that len p = k.

Let us consider R, V , x. The functor 〈x〉 yielding an algebraic sequence of
V is defined by:

(Def.19) len〈x〉 ≤ 1 and 〈x〉(0) = x.

We now state several propositions:

(67) p = 〈x〉 if and only if len p ≤ 1 and p(0) = x.

(68) p = 〈ΘV 〉 if and only if len p = 0.

(69) p = 〈ΘV 〉 if and only if support p = ∅.
(70) 〈ΘV 〉(i) = ΘV .

(71) p = 〈ΘV 〉 if and only if rng p = {ΘV }.
In the sequel V is a bimodule over R. Let us consider R, V . The functor ΘV

yields a vector of V and is defined as follows:

(Def.20) ΘV = 0the carrier of V .

One can prove the following proposition

(72) ΘV = 0the carrier of V .

Let us consider R, V . The functor ΘV yields a vector of V and is defined as
follows:

(Def.21) ΘV = 0the carrier of V .

We now state the proposition

(73) ΘV = 0the carrier of V .
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In the sequel x will denote a vector of V . Let us consider R, V . A function
from � into the carrier of the carrier of V is said to be an algebraic sequence of
V if:

(Def.22) there exists n such that for every i such that i ≥ n holds it(i) = ΘV .

In the sequel p, q will be algebraic sequences of V . We now state the propo-
sition

(75)8 dom p = � .

Let us consider R, V , p, k. We say that the length of p is at most k if and
only if:

(Def.23) for every i such that i ≥ k holds p(i) = ΘV .

Next we state the proposition

(76) the length of p is at most k if and only if for every i such that i ≥ k
holds p(i) = ΘV .

Let us consider R, V , p. The functor len p yielding a natural number is
defined by:

(Def.24) the length of p is at most len p and for every m such that the length of
p is at most m holds len p ≤ m.

One can prove the following propositions:

(77) i = len p if and only if the length of p is at most i and for every m such
that the length of p is at most m holds i ≤ m.

(78) For every i such that i ≥ len p holds p(i) = ΘV .

(79) If p(k) 6= ΘV , then len p > k.

(80) If for every i such that i < k holds p(i) 6= ΘV , then len p ≥ k.

(81) If len p = k + 1, then p(k) 6= ΘV .

Let us consider R, V , p. The functor support p yielding sets of natural
numbers is defined by:

(Def.25) supportp = PSeg(len p).

We now state two propositions:

(82) For every y being sets of natural numbers holds y = supportp if and
only if y = PSeg(len p).

(83) k = len p if and only if PSeg k = supportp.

The scheme AlgSeqLambdaBM concerns an associative ring A, a bimodule B
over A, a natural number C, and a unary functor F yielding a vector of B and
states that:

there exists an algebraic sequence p of B such that len p ≤ C and for every k
such that k < C holds p(k) = F(k)
for all values of the parameters.

We now state the proposition

8The proposition (74) was either repeated or obvious.
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(84) If len p = len q and for every k such that k < len p holds p(k) = q(k),
then p = q.

The following proposition is true

(85) For all R, V such that the carrier of the carrier of V 6= {ΘV } for every
k there exists an algebraic sequence p of V such that len p = k.

Let us consider R, V , x. The functor 〈x〉 yields an algebraic sequence of V
and is defined by:

(Def.26) len〈x〉 ≤ 1 and 〈x〉(0) = x.

Next we state several propositions:

(86) p = 〈x〉 if and only if len p ≤ 1 and p(0) = x.

(87) p = 〈ΘV 〉 if and only if len p = 0.

(88) p = 〈ΘV 〉 if and only if support p = ∅.
(89) 〈ΘV 〉(i) = ΘV .

(90) p = 〈ΘV 〉 if and only if rng p = {ΘV }.
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Summary. Introduces notions of relations of tolerance, tolerance
set and neighbourhood of an element. The basic properties of relations
of tolerance are proved.
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The notation and terminology used here have been introduced in the following
papers: [2], [3], [4], [5], and [1]. We adopt the following rules: X, Y , Z denote
sets, x, y are arbitrary, and R denotes a relation between X and X. The
following propositions are true:

(1) field 
 = ∅.
(2) 
 is pseudo reflexive.

(3) 
 is symmetric.

(4) 
 is irreflexive.

(5) 
 is antisymmetric.

(6) 
 is asymmetric.

(7) 
 is connected.

(8) 
 is strongly connected.

(9) 
 is transitive.

Let us consider X. The functor ∇X yielding a relation between X and X is
defined by:

(Def.1) ∇X = [:X, X :].

Let us consider X, R, Y . Then R |2 Y is a relation between Y and Y .

The following propositions are true:

(10) For every relation R between X and X holds R = ∇X if and only if
R = [:X, X :].
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106 Krzysztof Hryniewiecki

(11) ∇X = [:X, X :].

(12) dom∇X = X.

(13) rng∇X = X.

(14) field∇X = X.

(15) For all x, y such that x ∈ X and y ∈ X holds 〈〈x, y〉〉 ∈ ∇X .

(16) For all x, y such that x ∈ field∇X and y ∈ field∇X holds 〈〈x, y〉〉 ∈ ∇X .

(17) ∇X is pseudo reflexive.

(18) ∇X is symmetric.

(19) ∇X is strongly connected.

(20) ∇X is transitive.

(21) ∇X is connected.

Let us consider X. A relation between X and X is said to be a tolerance of
X if:

(Def.2) it is pseudo reflexive and it is symmetric and field it = X.

In the sequel T , R denote tolerances of X. The following propositions are
true:

(23)2 For every tolerance R of X holds R is pseudo reflexive and R is sym-
metric and fieldR = X.

(24) For every tolerance T of X holds domT = X.

(25) For every tolerance T of X holds rng T = X.

(26) For every tolerance T of X holds fieldT = X.

(27) For every tolerance T of X holds x ∈ X if and only if 〈〈x, x〉〉 ∈ T .

(28) For every tolerance T of X holds T is reflexive in X.

(29) For every tolerance T of X holds T is symmetric in X.

(30) For every tolerance T of X such that 〈〈x, y〉〉 ∈ T holds 〈〈y, x〉〉 ∈ T .

(31) For every tolerance T of X and for all x, y such that 〈〈x, y〉〉 ∈ T holds
x ∈ X and y ∈ X.

(32) For every relation R between X and Y such that R is symmetric holds
R |2 Z is symmetric.

Let us consider X, T , and let Y be a subset of X. Then T |2 Y is a tolerance
of Y .

Next we state the proposition

(33) If Y ⊆ X, then T |2 Y is a tolerance of Y .

Let us consider X, and let T be a tolerance of X. A set is called a set of
mutually elements w.r.t. T if:

(Def.3) for all x, y such that x ∈ it and y ∈ it holds 〈〈x, y〉〉 ∈ T .

We now state the proposition

(34) ∅ is a set of mutually elements w.r.t. T .

2The proposition (22) was either repeated or obvious.
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Let us consider X, and let T be a tolerance of X. A set of mutually elements
w.r.t. T is called a tolerance class of T if:

(Def.4) for every x such that x /∈ it and x ∈ X there exists y such that y ∈ it
and 〈〈x, y〉〉 /∈ T .

Next we state a number of propositions:

(36)3 Y is a set of mutually elements w.r.t. T if and only if for all x, y such
that x ∈ Y and y ∈ Y holds 〈〈x, y〉〉 ∈ T .

(38)4 For every tolerance T of X such that ∅ is a tolerance class of T holds
T = 
 .

(39) 
 is a tolerance of ∅.
(40) For all x, y such that 〈〈x, y〉〉 ∈ T holds {x, y} is a set of mutually elements

w.r.t. T .

(41) For every x such that x ∈ X holds {x} is a set of mutually elements
w.r.t. T .

(42) For all Y , Z such that Y is a set of mutually elements w.r.t. T and Z
is a set of mutually elements w.r.t. T holds Y ∩ Z is a set of mutually
elements w.r.t. T .

(43) If Y is a set of mutually elements w.r.t. T , then Y ⊆ X.

(44) If Y is a tolerance class of T , then Y ⊆ X.

(45) For every set Y of mutually elements w.r.t. T there exists a tolerance
class Z of T such that Y ⊆ Z.

(46) For all x, y such that 〈〈x, y〉〉 ∈ T there exists a tolerance class Z of T
such that x ∈ Z and y ∈ Z.

(47) For every x such that x ∈ X there exists a tolerance class Z of T such
that x ∈ Z.

Let us consider X. Then 4X is a tolerance of X.

We now state three propositions:

(48) ∇X is a tolerance of X.

(49) T ⊆ ∇X .

(50) 4X ⊆ T .

The scheme ToleranceEx concerns a set A, and a binary predicate P, and
states that:

there exists a tolerance T of A such that for all x, y such that x ∈ A and
y ∈ A holds 〈〈x, y〉〉 ∈ T if and only if P[x, y]

provided the parameters satisfy the following conditions:

• for every x such that x ∈ A holds P[x, x],

• for all x, y such that x ∈ A and y ∈ A and P[x, y] holds P[y, x].
One can prove the following propositions:

3The proposition (35) was either repeated or obvious.
4The proposition (37) was either repeated or obvious.
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(51) For every Y there exists a tolerance T of
⋃
Y such that for every Z

such that Z ∈ Y holds Z is a set of mutually elements w.r.t. T .

(52) Let Y be a set. Let T , R be tolerances of
⋃
Y . Then if for all x, y holds

〈〈x, y〉〉 ∈ T if and only if there exists Z such that Z ∈ Y and x ∈ Z and
y ∈ Z and for all x, y holds 〈〈x, y〉〉 ∈ R if and only if there exists Z such
that Z ∈ Y and x ∈ Z and y ∈ Z, then T = R.

(53) For all tolerances T , R of X such that for every Z holds Z is a tolerance
class of T if and only if Z is a tolerance class of R holds T = R.

Let us consider X, and let T be a tolerance of X, and let us consider x. The
functor neighbourhood(x, T ) yielding a set is defined by:

(Def.5) for every y holds y ∈ neighbourhood(x, T ) if and only if 〈〈x, y〉〉 ∈ T .

One can prove the following propositions:

(54) For every tolerance T of X and for every x and for every set Y holds
Y = neighbourhood(x, T ) if and only if for every y holds y ∈ Y if and
only if 〈〈x, y〉〉 ∈ T .

(55) For every tolerance T of X holds y ∈ neighbourhood(x, T ) if and only
if 〈〈x, y〉〉 ∈ T .

(56) If x ∈ X, then x ∈ neighbourhood(x, T ).

(57) neighbourhood(x, T ) ⊆ X.

(58) For every Y such that for every set Z holds Z ∈ Y if and only if x ∈ Z
and Z is a tolerance class of T holds neighbourhood(x, T ) =

⋃
Y .

(59) For every Y such that for every Z holds Z ∈ Y if and only if x ∈ Z and
Z is a set of mutually elements w.r.t. T holds neighbourhood(x, T ) =

⋃
Y .

We now define two new functors. Let us consider X, and let T be a tolerance
of X. The functor TolSets T yields a set and is defined by:

(Def.6) for every Y holds Y ∈ TolSets T if and only if Y is a set of mutually
elements w.r.t. T .

The functor TolClasses T yields a set and is defined by:

(Def.7) for every Y holds Y ∈ TolClasses T if and only if Y is a tolerance class
of T .

The following propositions are true:

(60) For every set Y and for every tolerance T of X holds Y = TolSets T if
and only if for every Z holds Z ∈ Y if and only if Z is a set of mutually
elements w.r.t. T .

(61) For every tolerance T of X and for every Z holds Z ∈ TolSets T if and
only if Z is a set of mutually elements w.r.t. T .

(62) For every set Y and for every tolerance T of X holds Y = TolClasses T
if and only if for every Z holds Z ∈ Y if and only if Z is a tolerance class
of T .

(63) For every tolerance T of X holds Z ∈ TolClasses T if and only if Z is a
tolerance class of T .
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(64) If TolClassesR ⊆ TolClasses T , then R ⊆ T .

(65) For all tolerances T , R of X such that TolClasses T = TolClassesR
holds T = R.

(66)
⋃

(TolClasses T ) = X.

(67)
⋃

(TolSets T ) = X.

(68) If for every x such that x ∈ X holds neighbourhood(x, T ) is a set of
mutually elements w.r.t. T , then T is transitive.

(69) If T is transitive, then for every x such that x ∈ X holds
neighbourhood(x, T )
is a tolerance class of T .

(70) For every x and for every tolerance class Y of T such that x ∈ Y holds
Y ⊆ neighbourhood(x, T ).

(71) TolSetsR ⊆ TolSets T if and only if R ⊆ T .

(72) TolClasses T ⊆ TolSets T .

(73) If for every x such that x ∈ X holds
neighbourhood(x,R) ⊆ neighbourhood(x, T ),
then R ⊆ T .

(74) T ⊆ T · T .

(75) If T = T · T , then T is transitive.
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Summary. We construct a real normed space 〈V, ‖.‖〉, where V
is a real vector space and ‖.‖ is a norm. Auxillary properties of the
norm are proved. Next, we introduce the notion of sequence in the real
normed space. The basic operations on sequences (addition, substraction,
multiplication by real number) are defined. We study some properties of
sequences in the real normed space and the operations on them.

MML Identifier: NORMSP 1.

The notation and terminology used in this paper have been introduced in the
following papers: [5], [13], [16], [3], [4], [1], [2], [17], [11], [12], [9], [7], [8], [10],
[15], [14], and [6]. We consider normed structures which are systems
〈vectors, a norm〉,

where the vectors constitute a real linear space and the norm is a function from
the vectors of the vectors into

�
.

In the sequel X is a normed structure and a, b are real numbers. Let us
consider X. A point of X is an element of the vectors of the vectors of X.

In the sequel x denotes a point of X. Let us consider X, x. The functor ‖x‖
yields a real number and is defined as follows:

(Def.1) ‖x‖ = (the norm of X)(x).

A normed structure is said to be a real normed space if:

(Def.2) for all points x, y of it and for every a holds ‖x‖ = 0 if and only if
x = 0the vectors of it but ‖a · x‖ = |a| · ‖x‖ and ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We adopt the following rules: R1 is a real normed space and x, y, z, g are
points of R1. The following propositions are true:

(2)2 ‖x‖ = 0 if and only if x = 0the vectors of R1 .

1Supported by RPBP.III-24.C8
2The proposition (1) was either repeated or obvious.
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(3) ‖a · x‖ = |a| · ‖x‖.
(4) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
(5) ‖0the vectors of R1‖ = 0.

(6) ‖−x‖ = ‖x‖.
(7) ‖x− y‖ ≤ ‖x‖+ ‖y‖.
(8) 0 ≤ ‖x‖.
(9) ‖a · x+ b · y‖ ≤ |a| · ‖x‖+ |b| · ‖y‖.

(10) ‖x− y‖ = 0 if and only if x = y.

(11) ‖x− y‖ = ‖y − x‖.
(12) ‖x‖ − ‖y‖ ≤ ‖x− y‖.
(13) |‖x‖ − ‖y‖| ≤ ‖x− y‖.
(14) ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖.
(15) If x 6= y, then ‖x− y‖ 6= 0.

Let us consider R1. A subset of R1 is a subset of the vectors of the vectors
of R1.

Let us consider R1. A function is called a sequence of R1 if:

(Def.3) dom it = � and rng it ⊆ the vectors of the vectors of R1.

For simplicity we adopt the following rules: S, S1, S2, T are sequences of
R1, k, n, m are natural numbers, r is a real number, f is a function, and d is
arbitrary. We now state several propositions:

(17)3 f is a sequence of R1 if and only if dom f = � and for every d such that
d ∈ � holds f(d) is a point of R1.

(18) For all S, T such that for every n holds S(n) = T (n) holds S = T .

(19) For every x there exists S such that rngS = {x}.
(20) If there exists x such that for every n holds S(n) = x, then there exists

x such that rngS = {x}.
(21) If there exists x such that rngS = {x}, then for every n holds S(n) =

S(n+ 1).

(22) If for every n holds S(n) = S(n + 1), then for all n, k holds S(n) =
S(n+ k).

(23) If for all n, k holds S(n) = S(n+k), then for all n, m holds S(n) = S(m).

(24) If for all n, m holds S(n) = S(m), then there exists x such that for
every n holds S(n) = x.

(25) There exists S such that rngS = {0the vectors of R1}.
Let us consider R1, S. We say that S is constant if and only if:

(Def.4) there exists x such that for every n holds S(n) = x.

The following propositions are true:

(27)4 S is constant if and only if there exists x such that rngS = {x}.
3The proposition (16) was either repeated or obvious.
4The proposition (26) was either repeated or obvious.
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(28) For every n holds S(n) is a point of R1.

Let us consider R1, S, n. Then S(n) is a point of R1.

The scheme ExRNSSeq concerns a real normed space A and a unary functor
F yielding a point of A and states that:

there exists a sequence S of A such that for every n holds S(n) = F(n)
for all values of the parameters.

Let us consider R1, S1, S2. The functor S1 + S2 yielding a sequence of R1 is
defined as follows:

(Def.5) for every n holds (S1 + S2)(n) = S1(n) + S2(n).

One can prove the following proposition

(29) S = S1 + S2 if and only if for every n holds S(n) = S1(n) + S2(n).

Let us consider R1, S1, S2. The functor S1− S2 yielding a sequence of R1 is
defined as follows:

(Def.6) for every n holds (S1 − S2)(n) = S1(n)− S2(n).

The following proposition is true

(30) S = S1 − S2 if and only if for every n holds S(n) = S1(n)− S2(n).

Let us consider R1, S, x. The functor S − x yields a sequence of R1 and is
defined by:

(Def.7) for every n holds (S − x)(n) = S(n)− x.

Next we state the proposition

(31) T = S − x if and only if for every n holds T (n) = S(n)− x.

Let us consider R1, S, a. The functor a · S yields a sequence of R1 and is
defined by:

(Def.8) for every n holds (a · S)(n) = a · S(n).

We now state the proposition

(32) T = a · S if and only if for every n holds T (n) = a · S(n).

Let us consider R1, S. We say that S is convergent if and only if:

(Def.9) there exists g such that for every r such that 0 < r there exists m such
that for every n such that m ≤ n holds ‖S(n)− g‖ < r.

One can prove the following propositions:

(34)5 If S1 is convergent and S2 is convergent, then S1 + S2 is convergent.

(35) If S1 is convergent and S2 is convergent, then S1 − S2 is convergent.

(36) If S is convergent, then S − x is convergent.

(37) If S is convergent, then a · S is convergent.

Let us consider R1, S. The functor ‖S‖ yielding a sequence of real numbers
is defined by:

(Def.10) for every n holds ‖S‖(n) = ‖S(n)‖.
Next we state two propositions:

5The proposition (33) was either repeated or obvious.
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(38) ‖S‖ is a sequence of real numbers if and only if for every n holds
‖S‖(n) = ‖S(n)‖.

(39) If S is convergent, then ‖S‖ is convergent.

Let us consider R1, S. Let us assume that S is convergent. The functor limS
yielding a point of R1 is defined by:

(Def.11) for every r such that 0 < r there exists m such that for every n such
that m ≤ n holds ‖S(n)− (limS)‖ < r.

The following propositions are true:

(40) If S is convergent, then limS = g if and only if for every r such that
0 < r there exists m such that for every n such that m ≤ n holds ‖S(n)−
g‖ < r.

(41) If S is convergent and limS = g, then ‖S−g‖ is convergent and lim‖S−
g‖ = 0.

(42) If S1 is convergent and S2 is convergent, then lim(S1 + S2) = limS1 +
limS2.

(43) If S1 is convergent and S2 is convergent, then lim(S1 − S2) = limS1 −
limS2.

(44) If S is convergent, then lim(S − x) = limS − x.

(45) If S is convergent, then lim(a · S) = a · (limS).
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Summary. We prove some useful shemes of existence of real se-
quences, partial functions from a domain into a domain, partial functions
from a set to a set and functions from a domain into a domain. At the
begining we prove some related auxiliary theorems to the article [1].

MML Identifier: SCHEME1.

The notation and terminology used here are introduced in the following articles:
[9], [5], [1], [2], [3], [8], [6], [4], and [7]. We adopt the following convention: x,
y will be arbitrary, n, m will denote natural numbers, and r will denote a real
number. Next we state four propositions:

(1) For every n there exists m such that n = 2 ·m or n = 2 ·m+ 1.

(2) For every n there exists m such that n = 3 · m or n = 3 · m + 1 or
n = 3 ·m+ 2.

(3) For every n there exists m such that n = 4 · m or n = 4 · m + 1 or
n = 4 ·m+ 2 or n = 4 ·m+ 3.

(4) For every n there exists m such that n = 5 · m or n = 5 · m + 1 or
n = 5 ·m+ 2 or n = 5 ·m+ 3 or n = 5 ·m+ 4.

In this article we present several logical schemes. The scheme ExRealSubseq
concerns a sequence of real numbers A, and a unary predicate P, and states
that:

there exists a sequence of real numbers q such that q is a subsequence of A
and for every n holds P[q(n)] and for every n such that for every r such that
r = A(n) holds P[r] there exists m such that A(n) = q(m)
provided the following requirement is met:
• for every n there exists m such that n ≤ m and P[A(m)].

1Supported by RPBP.III-24.C8
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The scheme ExRealSeq2 deals with a unary functor F yielding a real number
and a unary functor G yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds s(2·n) =
F(n) and s(2 · n+ 1) = G(n)

for all values of the parameters.

The scheme ExRealSeq3 deals with a unary functor F yielding a real number,
a unary functor G yielding a real number, and a unary functor H yielding a real
number and states that:

there exists a sequence of real numbers s such that for every n holds s(3·n) =
F(n) and s(3 · n+ 1) = G(n) and s(3 · n+ 2) = H(n)

for all values of the parameters.

The scheme ExRealSeq4 deals with a unary functor F yielding a real number,
a unary functor G yielding a real number, a unary functor H yielding a real
number, and a unary functor I yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds s(4·n) =
F(n) and s(4 · n+ 1) = G(n) and s(4 · n+ 2) = H(n) and s(4 · n+ 3) = I(n)

for all values of the parameters.

The scheme ExRealSeq5 deals with a unary functor F yielding a real number,
a unary functor G yielding a real number, a unary functor H yielding a real
number, a unary functor I yielding a real number, and a unary functor J
yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds s(5·n) =
F(n) and s(5 · n + 1) = G(n) and s(5 · n + 2) = H(n) and s(5 · n + 3) = I(n)
and s(5 · n+ 4) = J (n)

for all values of the parameters.

The scheme PartFuncExD2 deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, and two unary predicates P and Q, and states that:

there exists a partial function f from A to B such that for every element c of
A holds c ∈ dom f if and only if P[c] or Q[c] and for every element c of A such
that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c], then f(c) = G(c)

provided the following condition is met:

• for every element c of A such that P[c] holds not Q[c].

The scheme PartFuncExD2’ concerns a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, and two unary predicates P and Q, and states that:

there exists a partial function f from A to B such that for every element c of
A holds c ∈ dom f if and only if P[c] or Q[c] and for every element c of A such
that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c], then f(c) = G(c)

provided the following requirement is met:

• for every element c of A such that P[c] and Q[c] holds F(c) = G(c).

The scheme PartFuncExD2” deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, and a unary predicate P, and states that:
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there exists a partial function f from A to B such that f is total and for
every element c of A such that c ∈ dom f holds if P[c], then f(c) = F(c) but if
not P[c], then f(c) = G(c)
for all values of the parameters.

The scheme PartFuncExD3 deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, a unary functor H yielding an element of B, and three unary
predicates P, Q, and R, and states that:

there exists a partial function f from A to B such that for every element c
of A holds c ∈ dom f if and only if P[c] or Q[c] or R[c] and for every element
c of A such that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c], then
f(c) = G(c) but if R[c], then f(c) = H(c)
provided the parameters satisfy the following condition:
• for every element c of A holds if P[c], then not Q[c] but if P[c],

then not R[c] but if Q[c], then not R[c].
The scheme PartFuncExD3’ concerns a non-empty set A, a non-empty set

B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, a unary functor H yielding an element of B, and three unary
predicates P, Q, and R, and states that:

there exists a partial function f from A to B such that for every element c
of A holds c ∈ dom f if and only if P[c] or Q[c] or R[c] and for every element
c of A such that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c], then
f(c) = G(c) but if R[c], then f(c) = H(c)
provided the following requirement is met:
• for every element c of A holds if P[c] and Q[c], then F(c) = G(c)

but if P[c] and R[c], then F(c) = H(c) but if Q[c] and R[c], then
G(c) = H(c).

The scheme PartFuncExD4 deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, a unary functor H yielding an element of B, a unary functor I
yielding an element of B, and four unary predicates P, Q, R, and S, and states
that:

there exists a partial function f from A to B such that for every element c
of A holds c ∈ dom f if and only if P[c] or Q[c] or R[c] or S[c] and for every
element c of A such that c ∈ dom f holds if P[c], then f(c) = F(c) but if Q[c],
then f(c) = G(c) but if R[c], then f(c) = H(c) but if S[c], then f(c) = I(c)
provided the parameters satisfy the following condition:
• for every element c of A holds if P[c], then not Q[c] but if P[c],

then not R[c] but if P[c], then not S[c] but if Q[c], then not R[c]
but if Q[c], then not S[c] but if R[c], then not S[c].

The scheme PartFuncExS2 deals with a set A, a set B, a unary functor F , a
unary functor G, and two unary predicates P and Q, and states that:

there exists a partial function f from A to B such that for every x holds
x ∈ dom f if and only if x ∈ A but P[x] or Q[x] and for every x such that
x ∈ dom f holds if P[x], then f(x) = F(x) but if Q[x], then f(x) = G(x)
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provided the parameters satisfy the following conditions:

• for every x such that x ∈ A holds if P[x], then not Q[x],

• for every x such that x ∈ A and P[x] holds F(x) ∈ B,

• for every x such that x ∈ A and Q[x] holds G(x) ∈ B.

The scheme PartFuncExS3 deals with a set A, a set B, a unary functor F , a
unary functor G, a unary functor H, and three unary predicates P, Q, and R,
and states that:

there exists a partial function f from A to B such that for every x holds
x ∈ dom f if and only if x ∈ A but P[x] or Q[x] or R[x] and for every x such
that x ∈ dom f holds if P[x], then f(x) = F(x) but if Q[x], then f(x) = G(x)
but if R[x], then f(x) = H(x)

provided the parameters meet the following conditions:

• for every x such that x ∈ A holds if P[x], then not Q[x] but if P[x],
then not R[x] but if Q[x], then not R[x],

• for every x such that x ∈ A and P[x] holds F(x) ∈ B,

• for every x such that x ∈ A and Q[x] holds G(x) ∈ B,

• for every x such that x ∈ A and R[x] holds H(x) ∈ B.

The scheme PartFuncExS4 deals with a set A, a set B, a unary functor
F , a unary functor G, a unary functor H, a unary functor I, and four unary
predicates P, Q, R, and S, and states that:

there exists a partial function f from A to B such that for every x holds
x ∈ dom f if and only if x ∈ A but P[x] or Q[x] or R[x] or S[x] and for
every x such that x ∈ dom f holds if P[x], then f(x) = F(x) but if Q[x], then
f(x) = G(x) but if R[x], then f(x) = H(x) but if S[x], then f(x) = I(x)

provided the parameters meet the following requirements:

• for every x such that x ∈ A holds if P[x], then not Q[x] but if P[x],
then not R[x] but if P[x], then not S[x] but if Q[x], then not R[x]
but if Q[x], then not S[x] but if R[x], then not S[x],

• for every x such that x ∈ A and P[x] holds F(x) ∈ B,
• for every x such that x ∈ A and Q[x] holds G(x) ∈ B,

• for every x such that x ∈ A and R[x] holds H(x) ∈ B,

• for every x such that x ∈ A and S[x] holds I(x) ∈ B.

The scheme PartFuncExC D2 concerns a non-empty set A, a non-empty set
B, a non-empty set C, a binary functor F yielding an element of C, a binary
functor G yielding an element of C, and two binary predicates P and Q, and
states that:

there exists a partial function f from [:A, B :] to C such that for every element
c of A and for every element d of B holds 〈〈c, d〉〉 ∈ dom f if and only if P[c, d]
or Q[c, d] and for every element c of A and for every element d of B such that
〈〈c, d〉〉 ∈ dom f holds if P[c, d], then f(〈〈c, d〉〉) = F(c, d) but if Q[c, d], then
f(〈〈c, d〉〉) = G(c, d)

provided the parameters meet the following requirement:

• for every element c of A and for every element d of B such that
P[c, d] holds not Q[c, d].
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The scheme PartFuncExC D3 concerns a non-empty set A, a non-empty set
B, a non-empty set C, a binary functor F yielding an element of C, a binary
functor G yielding an element of C, a binary functor H yielding an element of
C, and three binary predicates P, Q, and R, and states that:

there exists a partial function f from [:A, B :] to C such that for every element
c of A and for every element d of B holds 〈〈c, d〉〉 ∈ dom f if and only if P[c, d] or
Q[c, d] or R[c, d] and for every element c of A and for every element r of B such
that 〈〈c, r〉〉 ∈ dom f holds if P[c, r], then f(〈〈c, r〉〉) = F(c, r) but if Q[c, r], then
f(〈〈c, r〉〉) = G(c, r) but if R[c, r], then f(〈〈c, r〉〉) = H(c, r)

provided the following requirement is met:

• for every element c of A and for every element s of B holds if P[c, s],
then not Q[c, s] but if P[c, s], then not R[c, s] but if Q[c, s], then
not R[c, s].

The scheme PartFuncExC S2 concerns a set A, a set B, a set C, a binary
functor F , a binary functor G, and two binary predicates P and Q, and states
that:

there exists a partial function f from [:A, B :] to C such that for all x, y holds
〈〈x, y〉〉 ∈ dom f if and only if x ∈ A and y ∈ B but P[x, y] or Q[x, y] and for all
x, y such that 〈〈x, y〉〉 ∈ dom f holds if P[x, y], then f(〈〈x, y〉〉) = F(x, y) but if
Q[x, y], then f(〈〈x, y〉〉) = G(x, y)

provided the following conditions are met:

• for all x, y such that x ∈ A and y ∈ B holds if P[x, y], then not
Q[x, y],

• for all x, y such that x ∈ A and y ∈ B and P[x, y] holds F(x, y) ∈ C,
• for all x, y such that x ∈ A and y ∈ B and Q[x, y] holds G(x, y) ∈ C.
The scheme PartFuncExC S3 concerns a set A, a set B, a set C, a binary

functor F , a binary functor G, a binary functor H, and three binary predicates
P, Q, and R, and states that:

there exists a partial function f from [:A, B :] to C such that for all x, y holds
〈〈x, y〉〉 ∈ dom f if and only if x ∈ A and y ∈ B but P[x, y] or Q[x, y] or R[x, y]
and for all x, y such that 〈〈x, y〉〉 ∈ dom f holds if P[x, y], then f(〈〈x, y〉〉) = F(x, y)
but if Q[x, y], then f(〈〈x, y〉〉) = G(x, y) but if R[x, y], then f(〈〈x, y〉〉) = H(x, y)

provided the following conditions are met:

• for all x, y such that x ∈ A and y ∈ B holds if P[x, y], then
not Q[x, y] but if P[x, y], then not R[x, y] but if Q[x, y], then not
R[x, y],

• for all x, y such that x ∈ A and y ∈ B holds if P[x, y], then
F(x, y) ∈ C,

• for all x, y such that x ∈ A and y ∈ B holds if Q[x, y], then
G(x, y) ∈ C,

• for all x, y such that x ∈ A and y ∈ B holds if R[x, y], then
H(x, y) ∈ C.

The scheme ExFuncD3 concerns a non-empty set A, a non-empty set B, a
unary functor F yielding an element of B, a unary functor G yielding an element
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of B, a unary functor H yielding an element of B, and three unary predicates
P, Q, and R, and states that:

there exists a function f from A into B such that for every element c of A
holds if P[c], then f(c) = F(c) but if Q[c], then f(c) = G(c) but if R[c], then
f(c) = H(c)

provided the parameters satisfy the following conditions:

• for every element c of A holds if P[c], then not Q[c] but if P[c],
then not R[c] but if Q[c], then not R[c],

• for every element c of A holds P[c] or Q[c] or R[c].

The scheme ExFuncD4 concerns a non-empty set A, a non-empty set B, a
unary functor F yielding an element of B, a unary functor G yielding an element
of B, a unary functor H yielding an element of B, a unary functor I yielding an
element of B, and four unary predicates P, Q, R, and S, and states that:

there exists a function f from A into B such that for every element c of A
holds if P[c], then f(c) = F(c) but if Q[c], then f(c) = G(c) but if R[c], then
f(c) = H(c) but if S[c], then f(c) = I(c)

provided the following conditions are met:

• for every element c of A holds if P[c], then not Q[c] but if P[c],
then not R[c] but if P[c], then not S[c] but if Q[c], then not R[c]
but if Q[c], then not S[c] but if R[c], then not S[c],

• for every element c of A holds P[c] or Q[c] or R[c] or S[c].

The scheme FuncExC D2 deals with a non-empty set A, a non-empty set B,
a non-empty set C, a binary functor F yielding an element of C, a binary functor
G yielding an element of C, and a binary predicate P, and states that:

there exists a function f from [:A, B :] into C such that for every element c
of A and for every element d of B such that 〈〈c, d〉〉 ∈ dom f holds if P[c, d], then
f(〈〈c, d〉〉) = F(c, d) but if not P[c, d], then f(〈〈c, d〉〉) = G(c, d)

for all values of the parameters.

The scheme FuncExC D3 deals with a non-empty set A, a non-empty set B,
a non-empty set C, a binary functor F yielding an element of C, a binary functor
G yielding an element of C, a binary functor H yielding an element of C, and
three binary predicates P, Q, and R, and states that:

there exists a function f from [:A, B :] into C such that for every element c
of A and for every element d of B holds 〈〈c, d〉〉 ∈ dom f if and only if P[c, d] or
Q[c, d] or R[c, d] and for every element c of A and for every element d of B such
that 〈〈c, d〉〉 ∈ dom f holds if P[c, d], then f(〈〈c, d〉〉) = F(c, d) but if Q[c, d], then
f(〈〈c, d〉〉) = G(c, d) but if R[c, d], then f(〈〈c, d〉〉) = H(c, d)

provided the parameters have the following properties:

• for every element c of A and for every element d of B holds if P[c, d],
then not Q[c, d] but if P[c, d], then not R[c, d] but if Q[c, d], then
not R[c, d],

• for every element c of A and for every element d of B holds P[c, d]
or Q[c, d] or R[c, d].
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[2] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.

[3] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
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Summary. The article includes definitions and theorems which
are needed to define real exponent. The following notions are defined:
natural exponent, integer exponent and rational exponent.

MML Identifier: PREPOWER.

The terminology and notation used in this paper are introduced in the following
papers: [12], [15], [4], [10], [1], [2], [3], [9], [7], [8], [14], [11], [13], [6], and [5]. For
simplicity we follow the rules: a, b, c will be real numbers, m, n will be natural
numbers, k, l, i will be integers, p, q will be rational numbers, and s1, s2 will
be sequences of real numbers. The following propositions are true:

(2)2 If s1 is convergent and for every n holds s1(n) ≥ a, then lim s1 ≥ a.

(3) If s1 is convergent and for every n holds s1(n) ≤ a, then lim s1 ≤ a.

Let us consider a. The functor (aκ)κ∈ � yielding a sequence of real numbers
is defined as follows:

(Def.1) ((aκ)κ∈ � )(0) = 1 and for everym holds ((aκ)κ∈ � )(m+1) = ((aκ)κ∈ � )(m)·
a.

Next we state two propositions:

(4) For every sequence of real numbers s and for every a holds s = (aκ)κ∈ �
if and only if s(0) = 1 and for every m holds s(m+ 1) = s(m) · a.

(5) For every a such that a 6= 0 for every m holds (aκ)κ∈ � (m) 6= 0.

Let us consider a, n. The functor an� yields a real number and is defined by:

(Def.2) an� = (aκ)κ∈ � (n).

Next we state a number of propositions:

(6) an� = (aκ)κ∈ � (n).

1Supported by RPBP.III-24.C8
2The proposition (1) was either repeated or obvious.
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(7) an� · a = an+1� .

(8) 1n� = 1.

(9) an+m� = an� · am� .

(10) (a · b)n� = an� · bn� .

(11) an·m� = (an� )m� .

(12) If 0 6= a, then 0 6= an� .

(13) If 0 < a, then 0 < an� .

(14) If a 6= 0, then 1
a

n� = 1
an� .

(15) If a 6= 0, then b
a

n� =
bn�
an� .

(16) If n ≥ 1, then 0n� = 0.

(17) If 0 < a and a ≤ b, then an� ≤ bn� .

(18) If 0 ≤ a and a < b and 1 ≤ n, then an� < bn� .

(19) If a ≥ 1, then an� ≥ 1.

(20) If 1 ≤ a and 1 ≤ n, then a ≤ an� .

(21) If 1 < a and 2 ≤ n, then a < an� .

(22) If 0 < a and a ≤ 1 and 1 ≤ n, then an� ≤ a.

(23) If 0 < a and a < 1 and 2 ≤ n, then an� < a.

(24) If −1 < a, then (1 + a)n� ≥ 1 + n · a.

(25) If 0 < a and a < 1, then (1 + a)n� ≤ 1 + 3n� · a.

(26) If s1 is convergent and for every n holds s2(n) = (s1(n))m� , then s2 is
convergent and lim s2 = (lim s1)m� .

Let us consider n, a. Let us assume that 1 ≤ n. The functor rootn(a) yields
a real number and is defined as follows:

(Def.3) (rootn(a))n� = a and rootn(a) > 0 if a > 0, rootn(a) = 0 if a = 0.

Next we state a number of propositions:

(27) For all a, b, n such that 1 ≤ n holds if a > 0, then b = rootn(a) if and
only if bn� = a and b > 0 but if a = 0, then rootn(a) = 0.

(28) If a ≥ 0 and n ≥ 1, then (rootn(a))n� = a and rootn(an� ) = a.

(29) If n ≥ 1, then rootn(1) = 1.

(30) If a ≥ 0, then root1(a) = a.

(31) If a ≥ 0 and b ≥ 0 and n ≥ 1, then rootn(a · b) = rootn(a) · rootn(b).

(32) If a > 0 and n ≥ 1, then rootn( 1
a) = 1

rootn(a) .

(33) If a ≥ 0 and b > 0 and n ≥ 1, then rootn(ab ) = rootn(a)
rootn(b) .

(34) If a ≥ 0 and n ≥ 1 and m ≥ 1, then rootn(rootm(a)) = rootn·m(a).

(35) If a ≥ 0 and n ≥ 1 andm ≥ 1, then rootn(a)·rootm(a) = rootn·m(an+m� ).

(36) If 0 ≤ a and a ≤ b and n ≥ 1, then rootn(a) ≤ rootn(b).

(37) If a ≥ 0 and a < b and n ≥ 1, then rootn(a) < rootn(b).

(38) If a ≥ 1 and n ≥ 1, then rootn(a) ≥ 1 and a ≥ rootn(a).
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(39) If 0 ≤ a and a < 1 and n ≥ 1, then a ≤ rootn(a) and rootn(a) < 1.

(40) If a > 0 and n ≥ 1, then rootn(a)− 1 ≤ a−1
n .

(41) If a ≥ 0, then root2(a) =
√
a.

(42) For every sequence of real numbers s and for every a such that a > 0 and
for every n such that n ≥ 1 holds s(n) = rootn(a) holds s is convergent
and lim s = 1.

Let us consider a, k. Let us assume that a 6= 0. The functor ak
 yields a real
number and is defined as follows:

(Def.4) ak
 = a
|k|� if k ≥ 0, ak
 = (a

|k|� )−1 if k < 0.

We now state a number of propositions:

(43) If a 6= 0, then if k ≥ 0, then ak
 = a
|k|� but if k < 0, then ak
 = (a

|k|� )−1.

(44) If a 6= 0, then for every i such that i = 0 holds ai
 = 1.

(45) If a 6= 0, then for every i such that i = 1 holds ai
 = a.

(46) If a 6= 0 and i = n, then ai
 = an� .

(47) 1k
 = 1.

(48) If a 6= 0, then ak
 6= 0.

(49) If a > 0, then ak
 > 0.

(50) If a 6= 0 and b 6= 0, then (a · b)k
 = ak
 · bk
 .

(51) If a 6= 0, then a−k
 = 1
ak� .

(52) If a 6= 0, then 1
a

k
 = 1
ak� .

(53) If a 6= 0, then am−n
 =
am�
an� .

(54) If a 6= 0, then ak+l
 = ak
 · al
 .

(55) If a 6= 0, then (ak
 )l
 = ak·l
 .

(56) If a > 0 and n ≥ 1, then (rootn(a))k
 = rootn(ak
 ).

Let us consider a, p. Let us assume that a > 0. The functor ap� yielding a
real number is defined by:

(Def.5) ap
�

= rootden p(a
num p
 ).

We now state a number of propositions:

(57) If a > 0, then ap
�

= rootden p(a
num p
 ).

(58) If a > 0 and p = 0, then ap
�

= 1.

(59) If a > 0 and p = 1, then ap
�

= a.

(60) If a > 0 and p = n, then ap� = an� .

(61) If a > 0 and n ≥ 1 and p = n−1, then ap
�

= rootn(a).

(62) 1p� = 1.

(63) If a > 0, then ap� > 0.

(64) If a > 0, then ap� · aq� = ap+q� .

(65) If a > 0, then 1
ap� = a−p� .
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(66) If a > 0, then
ap�
aq� = ap−q� .

(67) If a > 0 and b > 0, then (a · b)p� = ap� · bp� .

(68) If a > 0, then 1
a
p� = 1

ap� .

(69) If a > 0 and b > 0, then a
b
p� =

ap�
bp� .

(70) If a > 0, then (ap� )q� = ap·q� .

(71) If a ≥ 1 and p ≥ 0, then ap� ≥ 1.

(72) If a ≥ 1 and p ≤ 0, then ap� ≤ 1.

(73) If a > 1 and p > 0, then ap� > 1.

(74) If a ≥ 1 and p ≥ q, then ap� ≥ aq� .

(75) If a > 1 and p > q, then ap
�
> aq

�
.

(76) If a > 0 and a < 1 and p > 0, then ap� < 1.

(77) If a > 0 and a ≤ 1 and p ≤ 0, then ap� ≥ 1.

A sequence of real numbers is called a rational sequence if:

(Def.6) for every n holds it(n) is a rational number.

Let s be a rational sequence, and let us consider n. Then s(n) is a rational
number.

Next we state two propositions:

(79)3 For every a there exists a rational sequence s such that s is convergent
and lim s = a and for every n holds s(n) ≤ a.

(80) For every a there exists a rational sequence s such that s is convergent
and lim s = a and for every n holds s(n) ≥ a.

Let us consider a, and let s be a rational sequence. Let us assume that a > 0.
The functor as� yields a sequence of real numbers and is defined as follows:

(Def.7) for every n holds (as� )(n) = a
s(n)� .

The following propositions are true:

(81) For every a and for every rational sequence s and for every s1 such that

a > 0 holds s1 = as� if and only if for every n holds s1(n) = a
s(n)� .

(82) For every rational sequence s and for every a such that s is convergent
and a > 0 holds as� is convergent.

(83) For all rational sequences s1, s2 and for every a such that s1 is con-
vergent and s2 is convergent and lim s1 = lim s2 and a > 0 holds as1� is
convergent and as2� is convergent and lim as1� = lim as2� .

Let us consider a, b. Let us assume that a > 0. The functor ab� yielding a
real number is defined by:

(Def.8) there exists a rational sequence s such that s is convergent and lim s = b
and as� is convergent and lim as� = ab� .

We now state a number of propositions:

3The proposition (78) was either repeated or obvious.
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(84) For all a, b, c such that a > 0 holds c = ab� if and only if there exists
a rational sequence s such that s is convergent and lim s = b and as� is
convergent and lim as� = c.

(85) If a > 0, then a0� = 1.

(86) If a > 0, then a1� = a.

(87) 1a� = 1.

(88) If a > 0, then ap� = ap� .

(89) If a > 0, then ab+c� = ab� · ac� .

(90) If a > 0, then a−c� = 1
ac� .

(91) If a > 0, then ab−c� =
ab�
ac� .

(92) If a > 0 and b > 0, then (a · b)c� = ac� · bc� .

(93) If a > 0, then 1
a
c� = 1

ac� .

(94) If a > 0 and b > 0, then a
b
c� =

ac�
bc� .

(95) If a > 0, then ab� > 0.

(96) If a ≥ 1 and c ≥ b, then ac� ≥ ab� .

(97) If a > 1 and c > b, then ac� > ab� .

(98) If a > 0 and a ≤ 1 and c ≥ b, then ac� ≤ ab� .

(99) If a ≥ 1 and b ≥ 0, then ab� ≥ 1.

(100) If a > 1 and b > 0, then ab� > 1.

(101) If a ≥ 1 and b ≤ 0, then ab� ≤ 1.

(102) If a > 1 and b < 0, then ab� < 1.

(103) If s1 is convergent and s2 is convergent and lim s1 > 0 and for every n
holds s1(n) > 0 and s2(n) = (s1(n))p

�
, then lim s2 = (lim s1)p

�
.

(104) If a > 0 and s1 is convergent and s2 is convergent and for every n holds

s2(n) = a
s1(n)� , then lim s2 = alim s1� .

(105) If a > 0, then (ab� )c� = ab·c� .
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Summary. We study connections between Major Desargues Ax-
iom and the transitivity of group of homotheties. A formal proof of the
theorem which establishes an equivalence of these two properties of affine
planes is given. We also study connections between the trapezium ver-
sion of Major Desargues Axiom and the existence of the shears in affine
planes. The article contains investigations on ”Scherungssatz”.

MML Identifier: HOMOTHET.

The papers [9], [1], [2], [10], [3], [4], [6], [7], [5], and [8] provide the terminology
and notation for this paper. For simplicity we adopt the following rules: A1 will
be an affine plane, a, b, o, p, p′, q, q′, x, y will be elements of the points of A1,
M , K will be subsets of the points of A1, and f will be a permutation of the
points of A1. We now state four propositions:

(1) Suppose that
(i) not L(o, a, p),
(ii) L(o, a, b),

(iii) L(o, a, x),
(iv) L(o, a, y),
(v) L(o, p, p′),
(vi) L(o, p, q),
(vii) L(o, p, q′),

(viii) p 6= q,
(ix) a 6= x,
(x) o 6= q,
(xi) o 6= x,
(xii) a, p ‖ b, p′,

(xiii) a, q ‖ b, q′,
(xiv) x, p ‖ y, p′,

1Supported by RPBP.III-24.C2
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(xv) A1 satisfies DES.

Then x, q ‖ y, q′.
(2) If for all o, a, b such that o 6= a and o 6= b and L(o, a, b) there exists f

such that f is a dilatation and f(o) = o and f(a) = b, then A1 satisfies
DES.

(3) If A1 satisfies DES, then for all o, a, b such that o 6= a and o 6= b
and L(o, a, b) there exists f such that f is a dilatation and f(o) = o and
f(a) = b.

(4) A1 satisfies DES if and only if for all o, a, b such that o 6= a and o 6= b
and L(o, a, b) there exists f such that f is a dilatation and f(o) = o and
f(a) = b.

Let us consider A1, f , K. We say that f is Sc K if and only if:

(Def.1) f is a collineation and K is a line and for every x such that x ∈ K holds
f(x) = x and for every x holds x, f(x) ‖ K.

One can prove the following propositions:

(5) If f is Sc K and f(p) = p and p /∈ K, then f = idthe points of A1 .

(6) If for all a, b, K such that a, b ‖ K and a /∈ K there exists f such that
f is Sc K and f(a) = b, then A1 satisfies TDES.

(7) Suppose that

(i) K ‖M ,

(ii) p ∈ K,

(iii) q ∈ K,

(iv) p′ ∈ K,

(v) q′ ∈ K,

(vi) A1 satisfies TDES,

(vii) a ∈M ,

(viii) b ∈M ,

(ix) x ∈M ,

(x) y ∈M ,

(xi) a 6= b,

(xii) q 6= p,

(xiii) p, a ‖ p′, x,

(xiv) p, b ‖ p′, y,

(xv) q, a ‖ q′, x.

Then q, b ‖ q′, y.

(8) If a, b ‖ K and a /∈ K and A1 satisfies TDES, then there exists f such
that f is Sc K and f(a) = b.

(9) A1 satisfies TDES if and only if for all a, b, K such that a, b ‖ K and
a /∈ K there exists f such that f is Sc K and f(a) = b.
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Summary. We introduce the notion of weak directed geometrical
bundle. We prove representation theorems for directed and weak directed
geometrical bundles which establish a one-to-one correspondence between
such structures and appropriate 2-divisible abelian groups. To this aim
we construct over an arbitrary weak directed geometrical bundle a group
defined entirely in terms of geometrical notions - the group of (abstract)
“free vectors”.

MML Identifier: AFVECT0.

The terminology and notation used here have been introduced in the following
articles: [8], [3], [4], [10], [11], [7], [5], [6], [1], [9], and [2]. An affine structure is
said to be a weak affine vector space if:

(Def.1) (i) there exist elements a, b of the points of it such that a 6= b,
(ii) for all elements a, b, c of the points of it such that a, b � c, c holds

a = b,
(iii) for all elements a, b, c, d, p, q of the points of it such that a, b � p, q

and c, d � p, q holds a, b � c, d,
(iv) for every elements a, b, c of the points of it there exists an element d

of the points of it such that a, b � c, d,
(v) for all elements a, b, c, a′, b′, c′ of the points of it such that a, b � a′, b′

and a, c � a′, c′ holds b, c � b′, c′,
(vi) for every elements a, c of the points of it there exists an element b of

the points of it such that a, b � b, c,

1Supported by RPBP.III-24.C3
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(vii) for all elements a, b, c, d of the points of it such that a, b � c, d holds
a, c � b, d.

We see that the space of free vectors is a weak affine vector space.

We adopt the following convention: A1 will be a weak affine vector space and
a, b, c, d, f , a′, b′, c′, d′, f ′, p, q, r, o will be elements of the points of A1. The
following propositions are true:

(2)2 a, b � a, b.

(3) a, a � a, a.

(4) If a, b � c, d, then c, d � a, b.

(5) If a, b � a, c, then b = c.

(6) If a, b � c, d and a, b � c, d′, then d = d′.
(7) For all a, b holds a, a � b, b.

(8) If a, b � c, d, then b, a � d, c.

(9) If a, b � c, d and a, c � b′, d, then b = b′.
(10) If b, c � b′, c′ and a, d � b, c and a, d′ � b′, c′, then d = d′.
(11) If a, b � a′, b′ and c, d � b, a and c, d′ � b′, a′, then d = d′.
(12) If a, b � a′, b′ and c, d � c′, d′ and b, f � c, d and b′, f ′ � c′, d′, then

a, f � a′, f ′.
(13) If a, b � a′, b′ and a, c � c′, b′, then b, c � c′, a′.

Let us consider A1, a, b. We say that a, b are in a maximal distance if and
only if:

(Def.2) a, b � b, a and a 6= b.

One can prove the following propositions:

(15)3 a, a are not in a maximal distance.

(16) There exist a, b such that a 6= b and a, b are not in a maximal distance.

(17) If a, b are in a maximal distance, then b, a are in a maximal distance.

(18) If a, b are in a maximal distance and a, c are in a maximal distance,
then b = c or b, c are in a maximal distance.

(19) If a, b are in a maximal distance and a, b � c, d, then c, d are in a
maximal distance.

Let us consider A1, a, b, c. We say that b is a midpoint of a, c if and only if:

(Def.3) a, b � b, c.

We now state a number of propositions:

(21)4 If b is a midpoint of a, c, then b is a midpoint of c, a.

(22) b is a midpoint of a, b if and only if a = b.

(23) b is a midpoint of a, a if and only if a = b or a, b are in a maximal
distance.

2The proposition (1) was either repeated or obvious.
3The proposition (14) was either repeated or obvious.
4The proposition (20) was either repeated or obvious.
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(24) There exists b such that b is a midpoint of a, c.

(25) If b is a midpoint of a, c and b′ is a midpoint of a, c, then b = b′ or b,
b′ are in a maximal distance.

(26) There exists c such that b is a midpoint of a, c.

(27) If b is a midpoint of a, c and b is a midpoint of a, c′, then c = c′.
(28) If b is a midpoint of a, c and b, b′ are in a maximal distance, then b′ is

a midpoint of a, c.

(29) If b is a midpoint of a, c and b′ is a midpoint of a, c′ and b, b′ are in a
maximal distance, then c = c′.

(30) If p is a midpoint of a, a′ and p is a midpoint of b, b′, then a, b � b′, a′.
(31) If p is a midpoint of a, a′ and q is a midpoint of b, b′ and p, q are in a

maximal distance, then a, b � b′, a′.
Let us consider A1, a, b. The functor PSym(a, b) yields an element of the

points of A1 and is defined as follows:

(Def.4) a is a midpoint of b, PSym(a, b).

One can prove the following propositions:

(32) PSym(p, a) = b if and only if p is a midpoint of a, b.

(33) PSym(p, a) = b if and only if a, p � p, b.

(34) p is a midpoint of a, PSym(p, a).

(35) PSym(p, a) = a if and only if a = p or a, p are in a maximal distance.

(36) PSym(p,PSym(p, a)) = a.

(37) If PSym(p, a) = PSym(p, b), then a = b.

(38) There exists a such that PSym(p, a) = b.

(39) a, b � PSym(p, b),PSym(p, a).

(40) a, b � c, d if and only if
PSym(p, a),PSym(p, b) � PSym(p, c),PSym(p, d).

(41) a, b are in a maximal distance if and only if PSym(p, a), PSym(p, b) are
in a maximal distance.

(42) b is a midpoint of a, c if and only if PSym(p, b) is a midpoint of
PSym(p, a), PSym(p, c).

(43) PSym(p, a) = PSym(q, a) if and only if p = q or p, q are in a maximal
distance.

(44) PSym(q,PSym(p,PSym(q, a))) = PSym(PSym(q, p), a).

(45) PSym(p,PSym(q, a)) = PSym(q,PSym(p, a)) if and only if p = q or p,
q are in a maximal distance or q, PSym(p, q) are in a maximal distance.

(46) PSym(p,PSym(q,PSym(r, a))) = PSym(r,PSym(q,PSym(p, a))).

(47) There exists d such that PSym(a,PSym(b,PSym(c, p))) = PSym(d, p).

(48) There exists c such that PSym(a,PSym(c, p)) = PSym(c,PSym(b, p)).

Let us consider A1, o, a, b. The functor Padd(o, a, b) yielding an element of
the points of A1 is defined as follows:
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(Def.5) o, a � b,Padd(o, a, b).

Next we state the proposition

(49) Padd(o, a, b) = c if and only if o, a � b, c.

Let us consider A1, o, a. The functor Pcom(o, a) yielding an element of the
points of A1 is defined as follows:

(Def.6) o is a midpoint of a, Pcom(o, a).

One can prove the following propositions:

(50) Pcom(o, a) = b if and only if o is a midpoint of a, b.

(51) Pcom(o, a) = b if and only if a, o � o, b.

Let us consider A1, o. The functor Padd o yielding a binary operation on the
points of A1 is defined as follows:

(Def.7) for all a, b holds (Padd o)(a, b) = Padd(o, a, b).

Let us consider A1, o. The functor Pcom o yielding a unary operation on the
points of A1 is defined as follows:

(Def.8) for every a holds (Pcom o)(a) = Pcom(o, a).

The following propositions are true:

(52) For every binary operation O on the points of A1 holds O = Padd o if
and only if for all a, b holds O(a, b) = Padd(o, a, b).

(53) For every unary operation O on the points of A1 holds O = Pcom o if
and only if for every a holds O(a) = Pcom(o, a).

Let us consider A1, o. The functor GroupVect(A1, o) yields a group structure
and is defined by:

(Def.9) GroupVect(A1, o) = 〈 the points of A1,Padd o,Pcom o, o〉.
The following two propositions are true:

(54) For every X being a group structure holds X = GroupVect(A1, o) if
and only if X = 〈 the points of A1,Padd o,Pcom o, o〉.

(55) For all A1, o holds the carrier of GroupVect(A1, o) = the points of A1

and the addition of GroupVect(A1, o) = Padd o and the reverse-map of
GroupVect(A1, o) = Pcom o and the zero of GroupVect(A1, o) = o.

In the sequel a, b, c will denote elements of GroupVect(A1, o). One can prove
the following propositions:

(56) For an arbitrary x holds x is an element of the points of A1 if and only
if x is an element of GroupVect(A1, o).

(57) For all elements a, b of GroupVect(A1, o) and for all elements a′, b′ of
the points of A1 such that a = a′ and b = b′ holds a + b = (Padd o)(a′,
b′).

(58) For every element a of GroupVect(A1, o) and for every element a′ of the
points of A1 such that a = a′ holds −a = (Pcom o)(a′).

(59) 0GroupVect(A1,o) = o.
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(60) For every uniquely 2-divisible group A2 and for all elements a, b of A2

and for all elements a′, b′ of the carrier of A2 such that a = a′ and b = b′

holds a+ b = a′#b′.
(61) a+ b = b+ a.

(62) (a+ b) + c = a+ (b+ c).

(63) a+ 0GroupVect(A1,o) = a.

(64) a+ (−a) = 0GroupVect(A1,o).

(65) GroupVect(A1, o) is an Abelian group.

Let us consider A1, o. Then GroupVect(A1, o) is an Abelian group.

In the sequel a, b will be elements of the carrier of GroupVect(A1, o). Next
we state the proposition

(66) For every a there exists b such that (the addition of GroupVect(A1, o))(b,
b) = a.

Let us consider A1, o. Then GroupVect(A1, o) is a 2-divisible group.

In the sequel A1 will denote a space of free vectors and o will denote an
element of the points of A1. One can prove the following proposition

(67) For every element a of the carrier of GroupVect(A1, o) such that (the
addition of
GroupVect(A1, o))(a, a) = 0GroupVect(A1,o)

holds a = 0GroupVect(A1,o).

Let us consider A1, o. Then GroupVect(A1, o) is a uniquely 2-divisible group.

A uniquely 2-divisible group is said to be a proper uniquely two divisible
group if:

(Def.10) there exist elements a, b of the carrier of it such that a 6= b.

The following proposition is true

(69)5 GroupVect(A1, o) is a proper uniquely two divisible group.

Let us consider A1, o. Then GroupVect(A1, o) is a proper uniquely two
divisible group.

Next we state the proposition

(70) For every proper uniquely two divisible group A2 holds Vectors(A2) is
a space of free vectors.

Let A2 be a proper uniquely two divisible group. Then Vectors(A2) is a space
of free vectors.

We now state two propositions:

(71) For every A1 and for every element o of the points of A1 holds A1 =
Vectors(GroupVect(A1, o)).

(72) For every A3 being an affine structure holds A3 is a space of free vectors
if and only if there exists a proper uniquely two divisible group A2 such
that A3 = Vectors(A2).

5The proposition (68) was either repeated or obvious.
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Let X, Y be group structures, and let f be a function from the carrier of X
into the carrier of Y . We say that f is an isomorphism of X and Y if and only
if:

(Def.11) f is one-to-one and rng f = the carrier of Y and for all elements a, b of
X holds f(a+ b) = f(a) + f(b) and f(0X) = 0Y and f(−a) = −f(a).

Let X, Y be group structures. We say that X, Y are isomorph if and only
if:

(Def.12) there exists a function f from the carrier of X into the carrier of Y such
that f is an isomorphism of X and Y .

In the sequel A2 will be a proper uniquely two divisible group and f will be a
function from the carrier of A2 into the carrier of A2. The following propositions
are true:

(75)6 Let o′ be an element of A2. Let o be an element of the points of
Vectors(A2). Suppose for every element x of A2 holds f(x) = o′ + x and
o = o′. Then for all elements a, b of A2 holds f(a + b) = (Padd o)(f(a),
f(b)) and f(0A2) = 0GroupVect(Vectors(A2),o) and f(−a) = (Pcom o)(f(a)).

(76) For every element o′ of A2 such that for every element b of A2 holds
f(b) = o′ + b holds f is one-to-one.

(77) For every element o′ of A2 and for every element o of the points of
Vectors(A2) such that for every element b of A2 holds f(b) = o′ + b and
o = o′ holds rng f = the carrier of GroupVect(Vectors(A2), o).

(78) For every proper uniquely two divisible group A2 and for every element
o′ of A2 and for every element o of the points of Vectors(A2) such that
o = o′ holds A2, GroupVect(Vectors(A2), o) are isomorph.
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Summary. The article is contituation of [6] and [5]. It deals with
concepts of variables occuring in a formula and free variables, replace-
ment of variables in a formula and definable functions. The goal is to
create a base of facts which are neccesary to show that every model of
ZF set theory is a good model, i.e. it is closed under fundamental set-
theoretical operations (union, intersection, Cartesian product ect.). The
base includes the facts concerning the composition and conditional sum
of two definable functions.

MML Identifier: ZFMODEL2.

The notation and terminology used here are introduced in the following articles:
[12], [1], [11], [8], [7], [10], [4], [9], [2], [3], [5], and [6]. For simplicity we follow a
convention: x, y, z, x1, x2, x3, x4 will denote variables, M will denote a non-
empty set, i, j will denote natural numbers, m, m1, m2, m3, m4 will denote
elements of M , H, H1, H2 will denote ZF-formulae, and v, v1, v2 will denote
functions from VAR into M . One can prove the following propositions:

(1) Free(H(xy )) ⊆ (FreeH \ {x}) ∪ {y}.
(2) If y /∈ VarH , then if x ∈ FreeH, then Free(H( xy )) = (FreeH \{x})∪{y}

but if x /∈ FreeH, then Free(H( xy )) = FreeH.

(3) VarH is finite.

(4) There exists i such that for every j such that xj ∈ VarH holds j < i
and there exists x such that x /∈ VarH .

(5) If x /∈ VarH , then M,v |= H if and only if M,v |= ∀xH.

(6) If x /∈ VarH , then M,v |= H if and only if M,v( xm ) |= H.

(7) Suppose x 6= y and y 6= z and z 6= x. Then ((v( x
m1

))( y
m2

))( z
m3

) =

((v( z
m3

))( y
m2

))( x
m1

) and ((v( x
m1

))( y
m2

))( z
m3

) = ((v( y
m2

))( z
m3

))( x
m1

).

(8) Suppose x1 6= x2 and x1 6= x3 and x1 6= x4 and x2 6= x3 and x2 6= x4

and x3 6= x4. Then
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(i) (((v( x1
m1

))( x2
m2

))( x3
m3

))( x4
m4

) = (((v( x2
m2

))( x3
m3

))( x4
m4

))( x1
m1

),

(ii) (((v( x1
m1

))( x2
m2

))( x3
m3

))( x4
m4

) = (((v( x3
m3

))( x4
m4

))( x1
m1

))( x2
m2

),

(iii) (((v( x1
m1

))( x2
m2

))( x3
m3

))( x4
m4

) = (((v( x4
m4

))( x2
m2

))( x3
m3

))( x1
m1

).

(9) (i) ((v( x1
m1

))( x2
m2

))(x1
m ) = (v( x2

m2
))(x1

m ),

(ii) (((v( x1
m1

))( x2
m2

))( x3
m3

))(x1
m ) = ((v( x2

m2
))( x3

m3
))(x1

m ),

(iii) ((((v( x1
m1

))( x2
m2

))( x3
m3

))( x4
m4

))(x1
m ) = (((v( x2

m2
))( x3

m3
))( x4

m4
))(x1

m ).

(10) If x /∈ FreeH, then M,v |= H if and only if M,v( xm ) |= H.

(11) Suppose x0 /∈ FreeH and M,v |= ∀x3(∃x0(∀x4H ⇔ x4=x0)). Then for
all m1, m2 holds fH [v](m1) = m2 if and only if M, (v( x3

m1
))( x4

m2
) |= H.

(12) If FreeH ⊆ {x3, x4} and M |= ∀x3(∃x0(∀x4H ⇔ x4=x0)), then fH [v] =
fH [M ].

(13) If x /∈ VarH , then M,v |= H( yx) if and only if M,v( y
v(x) ) |= H.

(14) If x /∈ VarH and M,v |= H, then M,v( x
v(y) ) |= H( yx).

(15) Suppose that
(i) x0 /∈ FreeH,

(ii) M,v |= ∀x3(∃x0(∀x4H ⇔ x4=x0)),
(iii) x /∈ VarH ,
(iv) y 6= x3,
(v) y 6= x4,
(vi) y /∈ FreeH,

(vii) x 6= x0,
(viii) x 6= x3,

(ix) x 6= x4.
Then

(x) x0 /∈ Free(H( yx)),
(xi) M,v( x

v(y) ) |= ∀x3(∃x0(∀x4(H( yx))⇔ x4=x0)),

(xii) fH [v] = fH( y
x

)[v( x
v(y) )].

(16) If x /∈ VarH , then M |= H( yx) if and only if M |= H.

(17) Suppose x0 /∈ FreeH1 and M,v1 |= ∀x3(∃x0(∀x4H1 ⇔ x4=x0)). Then
there exist H2, v2 such that for every j such that j < i and xj ∈ VarH2

holds j = 3 or j = 4 and x0 /∈ FreeH2 and M,v2 |= ∀x3(∃x0(∀x4H2 ⇔
x4=x0)) and fH1 [v1] = fH2 [v2].

(18) Suppose x0 /∈ FreeH1 and M,v1 |= ∀x3(∃x0(∀x4H1 ⇔ x4=x0)). Then
there exist H2, v2 such that FreeH1∩FreeH2 ⊆ {x3, x4} and x0 /∈ FreeH2

and M,v2 |= ∀x3(∃x0(∀x4H2 ⇔ x4=x0)) and fH1 [v1] = fH2 [v2].

In the sequel F , G are functions. One can prove the following propositions:

(19) If F is definable in M and G is definable in M , then F ·G is definable
in M .

(20) If x0 /∈ FreeH, then M,v |= ∀x3(∃x0(∀x4H ⇔ x4=x0)) if and only if for
every m1 there exists m2 such that for every m3 holds M, (v( x3

m1
))( x4

m3
) |=

H if and only if m3 = m2.
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(21) Suppose F is definable inM andG is definable inM and FreeH ⊆ {x3}.
Let F1 be a function. Then if domF1 = M and for every v holds if M,v |=
H, then F1(v(x3)) = F (v(x3)) but if M,v |= ¬H, then F1(v(x3)) =
G(v(x3)), then F1 is definable in M .

(22) If F is parametrically definable in M and G is parametrically definable
in M , then G · F is parametrically definable in M .

(23) Suppose that
(i) {x0, x1, x2} misses FreeH1,
(ii) M,v |= ∀x3(∃x0(∀x4H1 ⇔ x4=x0)),

(iii) {x0, x1, x2} misses FreeH2,
(iv) M,v |= ∀x3(∃x0(∀x4H2 ⇔ x4=x0)),
(v) {x0, x1, x2} misses FreeH,
(vi) x4 /∈ FreeH.

Let F1 be a function. Then if domF1 = M and for every m holds if
M,v(x3

m ) |= H, then F1(m) = fH1 [v](m) but if M,v(x3
m ) |= ¬H, then

F1(m) = fH2 [v](m), then F1 is parametrically definable in M .

(24) idM is definable in M .

(25) idM is parametrically definable in M .
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Summary. We develop the classical propositional calculus, follow-
ing [3].

MML Identifier: LUKASI 1.

The notation and terminology used here are introduced in the articles [1] and
[2]. We follow the rules: p, q, r, s are elements of CQC−WFF and X is a subset
of CQC−WFF. We now state a number of propositions:

(1) (p⇒ q)⇒ ((q ⇒ r)⇒ (p⇒ r)) ∈ Taut.

(2) If p⇒ q ∈ Taut, then (q ⇒ r)⇒ (p⇒ r) ∈ Taut.

(3) If p⇒ q ∈ Taut and q ⇒ r ∈ Taut, then p⇒ r ∈ Taut.

(4) p⇒ p ∈ Taut.

(5) q ⇒ (p⇒ q) ∈ Taut.

(6) ((p⇒ q)⇒ r)⇒ (q ⇒ r) ∈ Taut.

(7) q ⇒ ((q ⇒ p)⇒ p) ∈ Taut.

(8) (s⇒ (q ⇒ p))⇒ (q ⇒ (s⇒ p)) ∈ Taut.

(9) (q ⇒ r)⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ Taut.

(10) (q ⇒ (q ⇒ r))⇒ (q ⇒ r) ∈ Taut.

(11) (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ Taut.

(12) ¬VERUM⇒ p ∈ Taut.

(13) If q ∈ Taut, then p⇒ q ∈ Taut.

(14) If p ∈ Taut, then (p⇒ q)⇒ q ∈ Taut.

(15) If s⇒ (q ⇒ p) ∈ Taut, then q ⇒ (s⇒ p) ∈ Taut.

(16) If s⇒ (q ⇒ p) ∈ Taut and q ∈ Taut, then s⇒ p ∈ Taut.

(17) If s⇒ (q ⇒ p) ∈ Taut and q ∈ Taut and s ∈ Taut, then p ∈ Taut.
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(18) If q ⇒ (q ⇒ r) ∈ Taut, then q ⇒ r ∈ Taut.

(19) If p⇒ (q ⇒ r) ∈ Taut, then (p⇒ q)⇒ (p⇒ r) ∈ Taut.

(20) If p⇒ (q ⇒ r) ∈ Taut and p⇒ q ∈ Taut, then p⇒ r ∈ Taut.

(21) If p⇒ (q ⇒ r) ∈ Taut and p⇒ q ∈ Taut and p ∈ Taut, then r ∈ Taut.

(22) If p ⇒ (q ⇒ r) ∈ Taut and p ⇒ (r ⇒ s) ∈ Taut, then p ⇒ (q ⇒ s) ∈
Taut.

(23) p⇒ VERUM ∈ Taut.

(24) (¬p⇒ ¬q)⇒ (q ⇒ p) ∈ Taut.

(25) ¬(¬p)⇒ p ∈ Taut.

(26) (p⇒ q)⇒ (¬q ⇒ ¬p) ∈ Taut.

(27) p⇒ ¬(¬p) ∈ Taut.

(28) (¬(¬p)⇒ q)⇒ (p⇒ q) ∈ Taut and (p⇒ q)⇒ (¬(¬p)⇒ q) ∈ Taut.

(29) (p⇒ ¬(¬q))⇒ (p⇒ q) ∈ Taut and (p⇒ q)⇒ (p⇒ ¬(¬q)) ∈ Taut.

(30) (p⇒ ¬q)⇒ (q ⇒ ¬p) ∈ Taut.

(31) (¬p⇒ q)⇒ (¬q ⇒ p) ∈ Taut.

We now state a number of propositions:

(32) (p⇒ ¬p)⇒ ¬p ∈ Taut.

(33) ¬p⇒ (p⇒ q) ∈ Taut.

(34) p⇒ q ∈ Taut if and only if ¬q ⇒ ¬p ∈ Taut.

(35) If ¬p⇒ ¬q ∈ Taut, then q ⇒ p ∈ Taut.

(36) p ∈ Taut if and only if ¬(¬p) ∈ Taut.

(37) p⇒ q ∈ Taut if and only if p⇒ ¬(¬q) ∈ Taut.

(38) p⇒ q ∈ Taut if and only if ¬(¬p)⇒ q ∈ Taut.

(39) If p⇒ ¬q ∈ Taut, then q ⇒ ¬p ∈ Taut.

(40) If ¬p⇒ q ∈ Taut, then ¬q ⇒ p ∈ Taut.

(41) ` (p⇒ q)⇒ ((q ⇒ r)⇒ (p⇒ r)).

(42) If ` p⇒ q, then ` (q ⇒ r)⇒ (p⇒ r).

(43) If ` p⇒ q and ` q ⇒ r, then ` p⇒ r.

(44) ` p⇒ p.

(45) ` p⇒ (q ⇒ p).

(46) If ` p, then ` q ⇒ p.

(47) ` (s⇒ (q ⇒ p))⇒ (q ⇒ (s⇒ p)).

(48) If ` p⇒ (q ⇒ r), then ` q ⇒ (p⇒ r).

(49) If ` p⇒ (q ⇒ r) and ` q, then ` p⇒ r.

(50) ` p⇒ VERUM and ` ¬VERUM⇒ p.

(51) ` p⇒ ((p⇒ q)⇒ q).

(52) ` (q ⇒ (q ⇒ r))⇒ (q ⇒ r).

(53) If ` q ⇒ (q ⇒ r), then ` q ⇒ r.

(54) ` (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)).
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(55) If ` p⇒ (q ⇒ r), then ` (p⇒ q)⇒ (p⇒ r).

(56) If ` p⇒ (q ⇒ r) and ` p⇒ q, then ` p⇒ r.

(57) ` ((p⇒ q)⇒ r)⇒ (q ⇒ r).

(58) If ` (p⇒ q)⇒ r, then ` q ⇒ r.

(59) ` (p⇒ q)⇒ ((r ⇒ p)⇒ (r ⇒ q)).

(60) If ` p⇒ q, then ` (r ⇒ p)⇒ (r ⇒ q).

(61) ` (p⇒ q)⇒ (¬q ⇒ ¬p).
(62) ` (¬p⇒ ¬q)⇒ (q ⇒ p).

The following propositions are true:

(63) ` ¬p⇒ ¬q if and only if ` q ⇒ p.

(64) ` p⇒ ¬(¬p).
(65) ` ¬(¬p)⇒ p.

(66) ` ¬(¬p) if and only if ` p.
(67) ` (¬(¬p)⇒ q)⇒ (p⇒ q).

(68) ` ¬(¬p)⇒ q if and only if ` p⇒ q.

(69) ` (p⇒ ¬(¬q))⇒ (p⇒ q).

(70) ` p⇒ ¬(¬q) if and only if ` p⇒ q.

(71) ` (p⇒ ¬q)⇒ (q ⇒ ¬p).
(72) If ` p⇒ ¬q, then ` q ⇒ ¬p.
(73) ` (¬p⇒ q)⇒ (¬q ⇒ p).

(74) If ` ¬p⇒ q, then ` ¬q⇒ p.

(75) If X ` p⇒ q, then X ` (q ⇒ r)⇒ (p⇒ r).

(76) If X ` p⇒ q and X ` q ⇒ r, then X ` p⇒ r.

(77) X ` p⇒ p.

(78) If X ` p, then X ` q ⇒ p.

(79) If X ` p, then X ` (p⇒ q)⇒ q.

(80) If X ` p⇒ (q ⇒ r), then X ` q ⇒ (p⇒ r).

(81) If X ` p⇒ (q ⇒ r) and X ` q, then X ` p⇒ r.

(82) If X ` p⇒ (p⇒ q), then X ` p⇒ q.

(83) If X ` (p⇒ q)⇒ r, then X ` q ⇒ r.

(84) If X ` p⇒ (q ⇒ r), then X ` (p⇒ q)⇒ (p⇒ r).

(85) If X ` p⇒ (q ⇒ r) and X ` p⇒ q, then X ` p⇒ r.

(86) X ` ¬p⇒ ¬q if and only if X ` q ⇒ p.

(87) X ` ¬(¬p) if and only if X ` p.
(88) X ` p⇒ ¬(¬q) if and only if X ` p⇒ q.

(89) X ` ¬(¬p)⇒ q if and only if X ` p⇒ q.

(90) If X ` p⇒ ¬q, then X ` q ⇒ ¬p.
(91) If X ` ¬p⇒ q, then X ` ¬q ⇒ p.

(92) If X ` p⇒ ¬q and X ` q, then X ` ¬p.
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(93) If X ` ¬p⇒ q and X ` ¬q, then X ` p.
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Summary. We introduce the concept of n-dimensional complex
space. We prove a number of simple but useful theorems concerning ad-
dition, multiplication by scalars and similar basic concepts. We introduce
metric and topology. We prove that an n-dimensional complex space is a
Hausdorf space and that it is regular.

MML Identifier: COMPLSP1.

The articles [20], [16], [12], [1], [21], [5], [22], [7], [8], [3], [17], [11], [2], [18], [19],
[6], [4], [9], [10], [15], [14], and [13] provide the notation and terminology for
this paper. We follow the rules: k, n will be natural numbers, r, r ′, r1 will be
real numbers, and c, c′, c1, c2 will be elements of � . In this article we present
several logical schemes. The scheme FuncDefUniq concerns a non-empty set A,
a non-empty set B, and a unary functor F yielding an element of B and states
that:

for all functions f1, f2 from A into B such that for every element x of A holds
f1(x) = F(x) and for every element x of A holds f2(x) = F(x) holds f1 = f2

for all values of the parameters.
The scheme UnOpDefuniq deals with a non-empty set A and a unary functor

F yielding an element of A and states that:
for all unary operations u1, u2 on A such that for every element x of A holds

u1(x) = F(x) and for every element x of A holds u2(x) = F(x) holds u1 = u2

for all values of the parameters.
The scheme BinOpDefuniq deals with a non-empty setA and a binary functor

F yielding an element of A and states that:
for all binary operations o1, o2 on A such that for all elements a, b of A holds

o1(a, b) = F(a, b) and for all elements a, b of A holds o2(a, b) = F(a, b) holds
o1 = o2

for all values of the parameters.
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The binary operation + � on � is defined as follows:

(Def.1) for all c1, c2 holds + � (c1, c2) = c1 + c2.

The following propositions are true:

(1) + � is commutative.

(2) + � is associative.

(3) 0 � is a unity w.r.t. + � .

(4) 1+ � = 0 � .

(5) + � has a unity.

The unary operation − � on � is defined as follows:

(Def.2) for every c holds − � (c) = −c.
Next we state three propositions:

(6) − � is an inverse operation w.r.t. + � .

(7) + � has an inverse operation.

(8) The inverse operation w.r.t.+ � = − � .

The binary operation − � on � is defined by:

(Def.3) − � = + � ◦ (id � ,− � ).

The following proposition is true

(9) − � (c1, c2) = c1 − c2.

The binary operation · � on � is defined by:

(Def.4) for all c1, c2 holds · � (c1, c2) = c1 · c2.

The following propositions are true:

(10) · � is commutative.

(11) · � is associative.

(12) 1 � is a unity w.r.t. · � .

(13) 1· � = 1 � .

(14) · � has a unity.

(15) · � is distributive w.r.t. + � .

Let us consider c. The functor ·c� yields a unary operation on � and is defined
by:

(Def.5) ·c� = ·◦� (c, id � ).

We now state two propositions:

(16) ·c� (c′) = c · c′.
(17) ·c� is distributive w.r.t. + � .

The function | · | � from � into
�

is defined by:

(Def.6) for every c holds | · | � (c) = |c|.
In the sequel z, z1, z2 will be finite sequences of elements of � . We now

define two new functors. Let us consider z1, z2. The functor z1 + z2 yields a
finite sequence of elements of � and is defined by:
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(Def.7) z1 + z2 = +◦� (z1, z2).

The functor z1 − z2 yielding a finite sequence of elements of � is defined as
follows:

(Def.8) z1 − z2 = −◦� (z1, z2).

Let us consider z. The functor −z yielding a finite sequence of elements of
� is defined by:

(Def.9) −z = − � · z.
Let us consider c, z. The functor c · z yielding a finite sequence of elements

of � is defined by:

(Def.10) c · z = ·c� ·z.
Let us consider z. The functor |z| yields a finite sequence of elements of

�
and is defined as follows:

(Def.11) |z| = | · | � · z.
Let us consider n. The functor � n yielding a non-empty set of finite sequences

of � is defined by:

(Def.12) � n = � n .

We follow a convention: x, z, z1, z2, z3 will denote elements of � n and A, B
will denote subsets of � n . One can prove the following propositions:

(18) len z = n.

(19) For every element z of � 0 holds z = ε � .

(20) ε � is an element of � 0 .

(21) If k ∈ Seg n, then z(k) ∈ � .

(22) If k ∈ Seg n, then z(k) is an element of � .

(23) If for every k such that k ∈ Seg n holds z1(k) = z2(k), then z1 = z2.

Let us consider n, z1, z2. Then z1 + z2 is an element of � n .

Next we state three propositions:

(24) If k ∈ Seg n and c1 = z1(k) and c2 = z2(k), then (z1 + z2)(k) = c1 + c2.

(25) z1 + z2 = z2 + z1.

(26) z1 + (z2 + z3) = (z1 + z2) + z3.

Let us consider n. The functor 0n� yielding a finite sequence of elements of
� is defined by:

(Def.13) 0n� = n 7−→ 0 � .

Let us consider n. Then 0n� is an element of � n .

Next we state two propositions:

(27) If k ∈ Seg n, then 0n� (k) = 0 � .

(28) z + 0n� = z and z = 0n� + z.

Let us consider n, z. Then −z is an element of � n .

Next we state several propositions:

(29) If k ∈ Seg n and c = z(k), then (−z)(k) = −c.
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(30) z + (−z) = 0n� and (−z) + z = 0n� .

(31) If z1 + z2 = 0n� , then z1 = −z2 and z2 = −z1.

(32) −(−z) = z.

(33) If −z1 = −z2, then z1 = z2.

(34) If z1 + z = z2 + z or z1 + z = z + z2, then z1 = z2.

(35) −(z1 + z2) = (−z1) + (−z2).

Let us consider n, z1, z2. Then z1 − z2 is an element of � n .

Next we state a number of propositions:

(36) If k ∈ Seg n and c1 = z1(k) and c2 = z2(k), then (z1 − z2)(k) = c1 − c2.

(37) z1 − z2 = z1 + (−z2).

(38) z − 0n� = z.

(39) 0n� − z = −z.
(40) z1 − (−z2) = z1 + z2.

(41) −(z1 − z2) = z2 − z1.

(42) −(z1 − z2) = (−z1) + z2.

(43) z − z = 0n� .

(44) If z1 − z2 = 0n� , then z1 = z2.

(45) (z1 − z2)− z3 = z1 − (z2 + z3).

(46) z1 + (z2 − z3) = (z1 + z2)− z3.

(47) z1 − (z2 − z3) = (z1 − z2) + z3.

(48) (z1 − z2) + z3 = (z1 + z3)− z2.

(49) z1 = (z1 + z)− z.
(50) z1 + (z2 − z1) = z2.

(51) z1 = (z1 − z) + z.

Let us consider n, c, z. Then c · z is an element of � n .

One can prove the following propositions:

(52) If k ∈ Seg n and c′ = z(k), then (c · z)(k) = c · c′.
(53) c1 · (c2 · z) = (c1 · c2) · z.
(54) (c1 + c2) · z = c1 · z + c2 · z.
(55) c · (z1 + z2) = c · z1 + c · z2.

(56) 1 � · z = z.

(57) 0 � · z = 0n� .

(58) (−1 � ) · z = −z.
Let us consider n, z. Then |z| is an element of

� n .

Next we state four propositions:

(59) If k ∈ Seg n and c = z(k), then |z|(k) = |c|.
(60) |0n� | = n 7−→ 0.

(61) |−z| = |z|.
(62) |c · z| = |c| · |z|.
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Let z be a finite sequence of elements of � . The functor |z| yields a real
number and is defined by:

(Def.14) |z| =
√∑

(2|z|).
One can prove the following propositions:

(63) |0n� | = 0.

(64) If |z| = 0, then z = 0n� .

(65) 0 ≤ |z|.
(66) | − z| = |z|.
(67) |c · z| = |c| · |z|.
(68) |z1 + z2| ≤ |z1|+ |z2|.
(69) |z1 − z2| ≤ |z1|+ |z2|.
(70) |z1| − |z2| ≤ |z1 + z2|.
(71) |z1| − |z2| ≤ |z1 − z2|.
(72) |z1 − z2| = 0 if and only if z1 = z2.

(73) If z1 6= z2, then 0 < |z1 − z2|.
(74) |z1 − z2| = |z2 − z1|.
(75) |z1 − z2| ≤ |z1 − z|+ |z − z2|.

Let us consider n, and let A be an element of 2
� n

. We say that A is open if
and only if:

(Def.15) for every x such that x ∈ A there exists r such that 0 < r and for every
z such that |z| < r holds x+ z ∈ A.

Let us consider n, and let A be an element of 2
� n

. We say that A is closed
if and only if:

(Def.16) for every x such that for every r such that r > 0 there exists z such
that |z| < r and x+ z ∈ A holds x ∈ A.

We now state four propositions:

(76) For every element A of 2
� n

such that A = ∅ holds A is open.

(77) For every element A of 2
� n

such that A = � n holds A is open.

(78) For every family A1 of subsets of � n such that for every element A of
2

� n
such that A ∈ A1 holds A is open for every element A of 2

� n
such

that A =
⋃
A1 holds A is open.

(79) For all subsets A, B of � n such that A is open and B is open for every
element C of 2

� n
such that C = A ∩B holds C is open.

Let us consider n, x, r. The functor Ball(x, r) yielding a subset of � n is
defined by:

(Def.17) Ball(x, r) = {z : |z − x| < r}.
The following three propositions are true:

(80) z ∈ Ball(x, r) if and only if |x− z| < r.

(81) If 0 < r, then x ∈ Ball(x, r).
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(82) Ball(z1, r1) is open.

Now we present two schemes. The scheme SubsetFD deals with a non-empty
set A, a non-empty set B, a unary functor F yielding an element of B, and a
unary predicate P, and states that:
{F(x) : P[x]}, where x is an element of A, is a subset of B

for all values of the parameters.
The scheme SubsetFD2 deals with a non-empty set A, a non-empty set B,

a non-empty set C, a binary functor F yielding an element of C, and a binary
predicate P, and states that:
{F(x, y) : P[x, y]}, where x is an element of A, and y is an element of B, is

a subset of C
for all values of the parameters.

Let us consider n, x, A. The functor ρ(x,A) yielding a real number is defined
by:

(Def.18) for every X being sets of real numbers such that X = {|x− z| : z ∈ A}
holds ρ(x,A) = inf X.

Let us consider n, A, r. The functor Ball(A, r) yields a subset of � n and is
defined as follows:

(Def.19) Ball(A, r) = {z : ρ(z,A) < r}.
Next we state a number of propositions:

(83) If for every r′ such that r′ > 0 holds r + r′ > r1, then r ≥ r1.

(84) For every X being sets of real numbers and for every r such that X 6= ∅
and for every r′ such that r′ ∈ X holds r ≤ r′ holds inf X ≥ r.

(85) If A 6= ∅, then ρ(x,A) ≥ 0.

(86) If A 6= ∅, then ρ(x+ z,A) ≤ ρ(x,A) + |z|.
(87) If x ∈ A, then ρ(x,A) = 0.

(88) If x /∈ A and A 6= ∅ and A is closed, then ρ(x,A) > 0.

(89) If A 6= ∅, then |z1 − x|+ ρ(x,A) ≥ ρ(z1, A).

(90) z ∈ Ball(A, r) if and only if ρ(z,A) < r.

(91) If 0 < r and x ∈ A, then x ∈ Ball(A, r).

(92) If 0 < r, then A ⊆ Ball(A, r).

(93) If A 6= ∅, then Ball(A, r1) is open.

Let us consider n, A, B. The functor ρ(A,B) yields a real number and is
defined as follows:

(Def.20) for every X being sets of real numbers such that X = {|x − z| : x ∈
A ∧ z ∈ B} holds ρ(A,B) = inf X.

Let X, Y be sets of real numbers. The functor X + Y yields sets of real
numbers and is defined as follows:

(Def.21) X + Y = {r + r1 : r ∈ X ∧ r1 ∈ Y }.
Next we state several propositions:



Complex Spaces 157

(94) For all X, Y being sets of real numbers such that X 6= ∅ and Y 6= ∅
holds X + Y 6= ∅.

(95) For all X, Y being sets of real numbers such that X 6= ∅ and X is
lower bounded and Y 6= ∅ and Y is lower bounded holds X + Y is lower
bounded.

(96) For all X, Y being sets of real numbers such that X 6= ∅ and X is
lower bounded and Y 6= ∅ and Y is lower bounded holds inf(X + Y ) =
inf X + inf Y .

(97) For all X, Y being sets of real numbers such that Y is lower bounded
and X 6= ∅ and for every r such that r ∈ X there exists r1 such that
r1 ∈ Y and r1 ≤ r holds inf X ≥ inf Y .

(98) If A 6= ∅ and B 6= ∅, then ρ(A,B) ≥ 0.

(99) ρ(A,B) = ρ(B,A).

(100) If A 6= ∅ and B 6= ∅, then ρ(x,A) + ρ(x,B) ≥ ρ(A,B).

(101) If A ∩B 6= ∅, then ρ(A,B) = 0.

Let us consider n. The open subsets of � n constitute a family of subsets of
� n defined by:

(Def.22) the open subsets of � n = {A : A is open }, where A is an element of 2
� n

.

The following proposition is true

(102) For every element A of 2
� n

holds A ∈ the open subsets of � n if and only
if A is open.

Let us consider n. The n -dimensional complex space is a topological space
defined by:

(Def.23) then -dimensional complex space = 〈 � n , the open subsets of � n〉.
We now state two propositions:

(103) The topology of
then -dimensional complex space = the open subsets of � n .

(104) The carrier of then -dimensional complex space = � n .

In the sequel p denotes a point of the n -dimensional complex space and V
denotes a subset of the n -dimensional complex space. Next we state several
propositions:

(105) p is an element of � n .

(106) V is a subset of � n .

(107) For every subset A of � n holds A is a subset of the
n -dimensional complex space.

(108) For every subset A of � n such that A = V holds A is open if and only
if V is open.

(109) For every subset A of � n holds A is closed if and only if Ac is open.

(110) For every subset A of � n such that A = V holds A is closed if and only
if V is closed.

(111) The n -dimensional complex space is a T2 space.
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(112) The n -dimensional complex space is a T3 space.
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Summary. The article includes a continuation of the paper [2].
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The articles [8], [7], [5], [6], [3], [1], [2], and [4] provide the terminology and
notation for this paper. The following propositions are true:

(1) For every field F holds −F (0F ) = 0F .

(2) For every field F holds −1
F (1F ) = 1F .

(3) For every field F and for all elements a, b of the support of F holds
−F (+F (〈〈a,−F (b)〉〉)) = +F (〈〈b,−F (a)〉〉).

(4) For every field F and for all elements a, b of the support of F \single(0F )
holds −1

F (·F (〈〈a,−1
F (b)〉〉)) = ·F (〈〈b,−1

F (a)〉〉).
(5) For every field F and for all elements a, b of the support of F holds
−F (+F (〈〈a, b〉〉)) = +F (〈〈−F (a),−F (b)〉〉).

(6) For every field F and for all elements a, b of the support of F \single(0F )
holds −1

F (·F (〈〈a, b〉〉)) = ·F (〈〈−1
F (a),−1

F (b)〉〉).
(7) For every field F and for all elements a, b, c, d of the support of F holds

+F (〈〈a,−F (b)〉〉) = +F (〈〈c,−F (d)〉〉) if and only if +F (〈〈a, d〉〉) = +F (〈〈b, c〉〉).
(8) Let F be a field. Then for all elements a, c of the support of F and

for all elements b, d of the support of F \ single(0F ) holds ·F (〈〈a,−1
F (b)〉〉) =

·F (〈〈c,−1
F (d)〉〉) if and only if ·F (〈〈a, d〉〉) = ·F (〈〈b, c〉〉).

(9) For every field F and for all elements a, b of the support of F holds
·F (〈〈a, b〉〉) = 0F if and only if a = 0F or b = 0F .

(10) Let F be a field. Let a, b be elements of the support of F . Let c, d be
elements of the support of F \ single(0F ). Then
·F (〈〈·F (〈〈a,−1

F (c)〉〉), ·F (〈〈b,−1
F (d)〉〉)〉〉) = ·F (〈〈·F (〈〈a, b〉〉),−1

F (·F (〈〈c, d〉〉))〉〉).
(11) Let F be a field. Let a, b be elements of the support of F . Let c, d be

elements of the support of F \ single(0F ).
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Then +F (〈〈·F (〈〈a,−1
F (c)〉〉), ·F (〈〈b,−1

F (d)〉〉)〉〉) =

·F (〈〈+F (〈〈·F (〈〈a, d〉〉), ·F (〈〈b, c〉〉)〉〉),−1
F (·F (〈〈c, d〉〉))〉〉).

Let F be a field. The functor osf F yielding a binary operation of the support of F
is defined as follows:

(Def.1) for all elements x, y of the support of F holds
(osf F )(〈〈x, y〉〉) = +F (〈〈x,−F (y)〉〉).

The following propositions are true:

(12) For every field F and for every binary operation S of the support of F
holds S = osf F if and only if for all elements x, y of the support of F
holds S(〈〈x, y〉〉) = +F (〈〈x,−F (y)〉〉).

(13) For every field F and for all elements x, y of the support of F holds
osf F (〈〈x, y〉〉) = +F (〈〈x,−F (y)〉〉).

(14) For every field F and for every element x of the support of F holds
osf F (〈〈x, x〉〉) = 0F .

(15) For every field F and for all elements a, b, c of the support of F holds
·F (〈〈a, osf F (〈〈b, c〉〉)〉〉) = osf F (〈〈·F (〈〈a, b〉〉), ·F (〈〈a, c〉〉)〉〉).

(16) For every field F and for all elements a, b of the support of F holds
osf F (〈〈a, b〉〉) is an element of the support of F .

(17) For every field F and for all elements a, b, c of the support of F holds
·F (〈〈 osf F (〈〈a, b〉〉), c〉〉) = osf F (〈〈·F (〈〈a, c〉〉), ·F (〈〈b, c〉〉)〉〉).

(18) For every field F and for all elements a, b of the support of F holds
osf F (〈〈a, b〉〉) = −F (osf F (〈〈b, a〉〉)).

(19) For every field F and for all elements a, b of the support of F holds
osf F (〈〈−F (a), b〉〉) = −F (+F (〈〈a, b〉〉)).

(20) For every field F and for all elements a, b, c, d of the support of F holds
osf F (〈〈a, b〉〉) = osf F (〈〈c, d〉〉) if and only if +F (〈〈a, d〉〉) = +F (〈〈b, c〉〉).

(21) For every field F and for every element a of the support of F holds
osf F (〈〈0F , a〉〉) = −F (a).

(22) For every field F and for every element a of the support of F holds
osf F (〈〈a,0F 〉〉) = a.

(23) For every field F and for all elements a, b, c of the support of F holds
+F (〈〈a, b〉〉) = c if and only if osf F (〈〈c, a〉〉) = b.

(24) For every field F and for all elements a, b, c of the support of F holds
+F (〈〈a, b〉〉) = c if and only if osf F (〈〈c, b〉〉) = a.

(25) For every field F and for all elements a, b, c of the support of F holds
osf F (〈〈a, osf F (〈〈b, c〉〉)〉〉) = +F (〈〈 osf F (〈〈a, b〉〉), c〉〉).

(26) For every field F and for all elements a, b, c of the support of F holds
osf F (〈〈a,+F (〈〈b, c〉〉)〉〉) = osf F (〈〈 osf F (〈〈a, b〉〉), c〉〉).

Let F be a field. The functor ovf F yields a function from
the support of F#(the support of F \ single(0F ))
into the support of F and is defined as follows:
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(Def.2) for every element x of the support of F and for every element y of
the support of F \ single(0F ) holds (ovf F )(〈〈x, y〉〉) = ·F (〈〈x,−1

F (y)〉〉).
Next we state a number of propositions:

(27) Let F be a field. Then for every function D from
the support of F#(the support of F \ single(0F ))

into the support of F holds D = ovf F if and only if for every element x of
the support of F and for every element y of the support of F \ single(0F )
holds D(〈〈x, y〉〉) = ·F (〈〈x,−1

F (y)〉〉).
(28) For every field F and for every element x of the support of F and for

every element y of the support of F \ single(0F ) holds ovf F (〈〈x, y〉〉) =
·F (〈〈x,−1

F (y)〉〉).
(29) For every field F and for every element x of the support of F \single(0F )

holds ovf F (〈〈x, x〉〉) = 1F .

(30) For every field F and for every element a of the support of F and for
every element b of the support of F \ single(0F ) holds ovf F (〈〈a, b〉〉) is an
element of the support of F .

(31) For every field F and for all elements a, b of the support of F and for ev-
ery element c of the support of F \single(0F ) holds ·F (〈〈a, ovf F (〈〈b, c〉〉)〉〉) =
ovf F (〈〈·F (〈〈a, b〉〉), c〉〉).

(32) For every field F and for every element a of the support of F \single(0F )
holds ·F (〈〈a, ovf F (〈〈1F , a〉〉)〉〉) = 1F and ·F (〈〈 ovf F (〈〈1F , a〉〉), a〉〉) = 1F .

(34)1 For every field F and for all elements a, b of the support of F \single(0F )
holds ·F (〈〈a,−1

F (b)〉〉) = −1
F (·F (〈〈b,−1

F (a)〉〉)).
(35) For every field F and for all elements a, b of the support of F \single(0F )

holds ovf F (〈〈a, b〉〉) = −1
F (ovf F (〈〈b, a〉〉)).

(36) For every field F and for all elements a, b of the support of F \single(0F )
holds ovf F (〈〈−1

F (a), b〉〉) = −1
F (·F (〈〈a, b〉〉)).

(37) For every field F and for all elements a, c of the support of F and for
all elements b, d of the support of F \ single(0F ) holds ovf F (〈〈a, b〉〉) =
ovf F (〈〈c, d〉〉) if and only if ·F (〈〈a, d〉〉) = ·F (〈〈b, c〉〉).

(38) For every field F and for every element a of the support of F \single(0F )
holds ovf F (〈〈1F , a〉〉) = −1

F (a).

(39) For every field F and for every element a of the support of F holds
ovf F (〈〈a,1F 〉〉) = a.

(40) For every field F and for every element a of the support of F \single(0F )
and for all elements b, c of the support of F holds ·F (〈〈a, b〉〉) = c if and
only if ovf F (〈〈c, a〉〉) = b.

(41) For every field F and for all elements a, c of the support of F and for
every element b of the support of F \ single(0F ) holds ·F (〈〈a, b〉〉) = c if and
only if ovf F (〈〈c, b〉〉) = a.

1The proposition (33) was either repeated or obvious.
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(42) For every field F and for every element a of the support of F and for all
elements b, c of the support of F \ single(0F ) holds
ovf F (〈〈a, ovf F (〈〈b, c〉〉)〉〉) = ·F (〈〈 ovf F (〈〈a, b〉〉), c〉〉).

(43) For every field F and for every element a of the support of F and for all
elements b, c of the support of F \ single(0F ) holds ovf F (〈〈a, ·F (〈〈b, c〉〉)〉〉) =
ovf F (〈〈 ovf F (〈〈a, b〉〉), c〉〉).
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Summary. We introduce some properties of the least upper bound

and the greatest lower bound of the subdomain of
�

numbers, where
�

denotes the enlarged set of real numbers,
�

=
� ∪ {−∞,+∞}. The

paper contains definitions of majorant and minorant elements, bounded
from above, bounded from below and bounded sets, sup and inf of set,

for nonempty subset of
�

. We prove theorems describing the basic rela-
tionships among those definitions. The work is the first part of the series
of articles concerning the Lebesgue measure theory.

MML Identifier: SUPINF 1.

The terminology and notation used here have been introduced in the following
articles: [3], [1], and [2]. The constant +∞ is defined by:

(Def.1) +∞ =
�
.

The following propositions are true:

(1) +∞ =
�
.

(2) +∞ /∈ �
.

A positive infinite number is defined as follows:

(Def.2) it = +∞.

One can prove the following proposition

(4)1 +∞ is a positive infinite number.

The constant −∞ is defined as follows:

(Def.3) −∞ = { � }.
The following propositions are true:

(5) −∞ = { � }.
(6) −∞ /∈ �

.

1The proposition (3) was either repeated or obvious.
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A negative infinite number is defined as follows:

(Def.4) it = −∞.

One can prove the following proposition

(8)2 −∞ is a negative infinite number.

A Real number is defined as follows:

(Def.5) it ∈ � ∪ {−∞,+∞}.
One can prove the following propositions:

(10)3 For every real number x holds x is a Real number.

(11) For an arbitrary x such that x = −∞ or x = +∞ holds x is a Real
number.

Let us note that it makes sense to consider the following constant. Then +∞
is a Real number.

Let us note that it makes sense to consider the following constant. Then −∞
is a Real number.

Next we state the proposition

(14)4 −∞ 6= +∞.

Let x, y be Real numbers. The predicate x ≤ y is defined by:

(Def.6) there exist real numbers p, q such that p = x and q = y and p ≤ q or
there exists a positive infinite number q such that q = y or there exists a
negative infinite number p such that p = x.

Next we state several propositions:

(16)5 For all Real numbers x, y such that x is a real number and y is a real
number holds x ≤ y if and only if there exist real numbers p, q such that
p = x and q = y and p ≤ q.

(17) For every Real number x such that x ∈ �
holds x � −∞.

(18) For every Real number x such that x ∈ �
holds +∞ � x.

(19) +∞ � −∞.

(20) For every Real number x holds x ≤ +∞.

(21) For every Real number x holds −∞ ≤ x.

(22) For all Real numbers x, y such that x ≤ y and y ≤ x holds x = y.

(23) For every Real number x such that x ≤ −∞ holds x = −∞.

(24) For every Real number x such that +∞ ≤ x holds x = +∞.

The scheme SepR eal concerns a unary predicate P, and states that:
there exists a subset X of

� ∪ {−∞,+∞} such that for every Real number x
holds x ∈ X if and only if P[x]
for all values of the parameter.

2The proposition (7) was either repeated or obvious.
3The proposition (9) was either repeated or obvious.
4The propositions (12)–(13) were either repeated or obvious.
5The proposition (15) was either repeated or obvious.
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The set
�

is defined as follows:

(Def.7)
�

=
� ∪ {−∞,+∞}.

We now state several propositions:

(25)
�

=
� ∪ {−∞,+∞}.

(26)
�

is a non-empty set.

(27) For an arbitrary x holds x is a Real number if and only if x ∈ �
.

(28) For every Real number x holds x ≤ x.

(29) For all Real numbers x, y, z such that x ≤ y and y ≤ z holds x ≤ z.
Let us note that it makes sense to consider the following constant. Then

�
is a non-empty set.

Let x, y be Real numbers. The predicate x < y is defined by:

(Def.8) x ≤ y and x 6= y.

The following proposition is true

(31)6 For every Real number x such that x ∈ �
holds −∞ < x and x < +∞.

Let X be a non-empty subset of
�
. A Real number is said to be a majorant

of X if:

(Def.9) for every Real number x such that x ∈ X holds x ≤ it.

We now state two propositions:

(33)7 For every non-empty subset X of
�

holds +∞ is a majorant of X.

(34) For all non-empty subsets X, Y of
�

such that X ⊆ Y for every Real
number U1 such that U1 is a majorant of Y holds U1 is a majorant of X.

Let X be a non-empty subset of
�
. A Real number is said to be a minorant

of X if:

(Def.10) for every Real number x such that x ∈ X holds it ≤ x.

We now state four propositions:

(36)8 For every non-empty subset X of
�

holds −∞ is a minorant of X.

(37) For every non-empty subset X of
�

such that X =
�

holds +∞ is a
majorant of X.

(38) For every non-empty subset X of
�

such that X =
�

holds −∞ is a
minorant of X.

(39) For all non-empty subsets X, Y of
�

such that X ⊆ Y for every Real
number L1 such that L1 is a minorant of Y holds L1 is a minorant of X.

Let us note that it makes sense to consider the following constant. Then
�

is a non-empty subset of
�
.

One can prove the following propositions:

(41)9 +∞ is a majorant of
�
.

6The proposition (30) was either repeated or obvious.
7The proposition (32) was either repeated or obvious.
8The proposition (35) was either repeated or obvious.
9The proposition (40) was either repeated or obvious.
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(42) −∞ is a minorant of
�
.

Let X be a non-empty subset of
�
. We say that X is upper bounded if and

only if:

(Def.11) there exists a majorant U1 of X such that U1 ∈
�
.

The following two propositions are true:

(44)10 For all non-empty subsets X, Y of
�

such that X ⊆ Y holds if Y is
upper bounded, then X is upper bounded.

(45)
�

is not upper bounded.

Let X be a non-empty subset of
�
. We say that X is lower bounded if and

only if:

(Def.12) there exists a minorant L1 of X such that L1 ∈
�
.

The following two propositions are true:

(47)11 For all non-empty subsets X, Y of
�

such that X ⊆ Y holds if Y is
lower bounded, then X is lower bounded.

(48)
�

is not lower bounded.

Let X be a non-empty subset of
�
. We say that X is bounded if and only if:

(Def.13) X is upper bounded and X is lower bounded.

The following two propositions are true:

(50)12 For all non-empty subsets X, Y of
�

such that X ⊆ Y holds if Y is
bounded, then X is bounded.

(51) For every non-empty subset X of
�

there exists a non-empty subset Y
of

�
such that for every Real number x holds x ∈ Y if and only if x is a

majorant of X.

Let X be a non-empty subset of
�
. The functor X yields a non-empty subset

of
�

and is defined as follows:

(Def.14) for every Real number x holds x ∈ X if and only if x is a majorant of
X.

One can prove the following four propositions:

(52) For every non-empty subset X of
�

and for every non-empty subset Y
of

�
holds Y = X if and only if for every Real number x holds x ∈ Y if

and only if x is a majorant of X.

(53) For every non-empty subset X of
�

and for every Real number x holds
x ∈ X if and only if x is a majorant of X.

(54) For all non-empty subsets X, Y of
�

such that X ⊆ Y for every Real
number x such that x ∈ Y holds x ∈ X .

(55) For every non-empty subset X of
�

there exists a non-empty subset Y
of

�
such that for every Real number x holds x ∈ Y if and only if x is a

minorant of X.
10The proposition (43) was either repeated or obvious.
11The proposition (46) was either repeated or obvious.
12The proposition (49) was either repeated or obvious.
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Let X be a non-empty subset of
�
. The functor X yields a non-empty subset

of
�

and is defined by:

(Def.15) for every Real number x holds x ∈ X if and only if x is a minorant of
X.

We now state a number of propositions:

(56) For every non-empty subset X of
�

and for every non-empty subset Y
of

�
holds Y = X if and only if for every Real number x holds x ∈ Y if

and only if x is a minorant of X.

(57) For every non-empty subset X of
�

and for every Real number x holds
x ∈ X if and only if x is a minorant of X.

(58) For all non-empty subsets X, Y of
�

such that X ⊆ Y for every Real
number x such that x ∈ Y holds x ∈ X .

(59) For every non-empty subset X of
�

such that X is upper bounded and
X 6= {−∞} there exists a real number x such that x ∈ X and x 6= −∞.

(60) For every non-empty subset X of
�

such that X is lower bounded and
X 6= {+∞} there exists a real number x such that x ∈ X and x 6= +∞.

(62)13 For every non-empty subset X of
�

such that X is upper bounded and
X 6= {−∞} there exists a Real number U1 such that U1 is a majorant
of X and for every Real number y such that y is a majorant of X holds
U1 ≤ y.

(63) For every non-empty subset X of
�

such that X is lower bounded and
X 6= {+∞} there exists a Real number L1 such that L1 is a minorant
of X and for every Real number y such that y is a minorant of X holds
y ≤ L1.

(64) For every non-empty subset X of
�

such that X = {−∞} holds X is
upper bounded.

(65) For every non-empty subset X of
�

such that X = {+∞} holds X is
lower bounded.

(66) For every non-empty subset X of
�

such that X = {−∞} there exists
a Real number U1 such that U1 is a majorant of X and for every Real
number y such that y is a majorant of X holds U1 ≤ y.

(67) For every non-empty subset X of
�

such that X = {+∞} there exists
a Real number L1 such that L1 is a minorant of X and for every Real
number y such that y is a minorant of X holds y ≤ L1.

(68) For every non-empty subset X of
�

such that X is upper bounded there
exists a Real number U1 such that U1 is a majorant of X and for every
Real number y such that y is a majorant of X holds U1 ≤ y.

(69) For every non-empty subset X of
�

such that X is lower bounded there
exists a Real number L1 such that L1 is a minorant of X and for every
Real number y such that y is a minorant of X holds y ≤ L1.

13The proposition (61) was either repeated or obvious.
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(70) For every non-empty subset X of
�

such that X is not upper bounded
for every Real number y such that y is a majorant of X holds y = +∞.

(71) For every non-empty subset X of
�

such that X is not lower bounded
for every Real number y such that y is a minorant of X holds y = −∞.

(72) For every non-empty subset X of
�

there exists a Real number U1 such
that U1 is a majorant of X and for every Real number y such that y is a
majorant of X holds U1 ≤ y.

(73) For every non-empty subset X of
�

there exists a Real number L1 such
that L1 is a minorant of X and for every Real number y such that y is a
minorant of X holds y ≤ L1.

Let X be a non-empty subset of
�
. The functor supX yields a Real number

and is defined as follows:

(Def.16) supX is a majorant of X and for every Real number y such that y is a
majorant of X holds supX ≤ y.

The following propositions are true:

(74) For every non-empty subset X of
�

and for every Real number S holds
S = supX if and only if S is a majorant of X and for every Real number
y such that y is a majorant of X holds S ≤ y.

(75) For every non-empty subset X of
�

holds supX is a majorant of X and
for every Real number y such that y is a majorant of X holds supX ≤ y.

(76) For every non-empty subset X of
�

and for every Real number x such
that x ∈ X holds x ≤ supX.

Let X be a non-empty subset of
�
. The functor inf X yields a Real number

and is defined by:

(Def.17) infX is a minorant of X and for every Real number y such that y is a
minorant of X holds y ≤ inf X.

The following propositions are true:

(77) For every non-empty subset X of
�

and for every Real number S holds
S = inf X if and only if S is a minorant of X and for every Real number
y such that y is a minorant of X holds y ≤ S.

(78) For every non-empty subset X of
�

holds infX is a minorant of X and
for every Real number y such that y is a minorant of X holds y ≤ inf X.

(79) For every non-empty subset X of
�

and for every Real number x such
that x ∈ X holds inf X ≤ x.

(80) For every non-empty subset X of
�

and for every majorant x of X such
that x ∈ X holds x = supX.

(81) For every non-empty subset X of
�

and for every minorant x of X such
that x ∈ X holds x = inf X.

(82) For every non-empty subset X of
�

holds supX = infX and infX =
supX.
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(83) For every non-empty subset X of
�

such that X is upper bounded and
X 6= {−∞} holds supX ∈ �

.

(84) For every non-empty subset X of
�

such that X is lower bounded and
X 6= {+∞} holds inf X ∈ �

.

Let x be a Real number. Then {x} is a non-empty subset of
�
.

Let x, y be Real numbers. Then {x, y} is a non-empty subset of
�
.

We now state a number of propositions:

(85) For every Real number x holds sup{x} = x.

(86) For every Real number x holds inf{x} = x.

(87) sup{−∞} = −∞.

(88) sup{+∞} = +∞.

(89) inf{−∞} = −∞.

(90) inf{+∞} = +∞.

(91) For all non-empty subsets X, Y of
�

such that X ⊆ Y holds supX ≤
supY .

(92) For all Real numbers x, y and for every Real number a such that x ≤ a
and y ≤ a holds sup{x, y} ≤ a.

(93) For all Real numbers x, y holds if x ≤ y, then sup{x, y} = y but if
y ≤ x, then sup{x, y} = x.

(94) For all non-empty subsets X, Y of
�

such that X ⊆ Y holds inf Y ≤
inf X.

(95) For all Real numbers x, y and for every Real number a such that a ≤ x
and a ≤ y holds a ≤ inf{x, y}.

(96) For all Real numbers x, y holds if x ≤ y, then inf{x, y} = x but if y ≤ x,
then inf{x, y} = y.

(97) For every non-empty subset X of
�

and for every Real number x such
that there exists a Real number y such that y ∈ X and x ≤ y holds
x ≤ supX.

(98) For every non-empty subset X of
�

and for every Real number x such
that there exists a Real number y such that y ∈ X and y ≤ x holds
inf X ≤ x.

(99) For all non-empty subsets X, Y of
�

such that for every Real number x
such that x ∈ X there exists a Real number y such that y ∈ Y and x ≤ y
holds supX ≤ supY .

(100) For all non-empty subsets X, Y of
�

such that for every Real number y
such that y ∈ Y there exists a Real number x such that x ∈ X and x ≤ y
holds infX ≤ inf Y .

Let X, Y be non-empty subsets of
�
. Then X ∪ Y is a non-empty subset of�

.

One can prove the following propositions:
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(101) For all non-empty subsets X, Y of
�

and for every majorant U2 of X
and for every majorant U3 of Y holds sup{U2, U3} is a majorant of X∪Y .

(102) For all non-empty subsets X, Y of
�

and for every minorant L2 of X
and for every minorant L3 of Y holds inf{L2, L3} is a minorant of X ∪Y .

(103) For all non-empty subsets X, Y , S of
�

and for every majorant U2 of
X and for every majorant U3 of Y such that S = X ∩Y holds inf{U2, U3}
is a majorant of S.

(104) For all non-empty subsets X, Y , S of
�

and for every minorant L2 of X
and for every minorant L3 of Y such that S = X ∩ Y holds sup{L2, L3}
is a minorant of S.

(105) For all non-empty subsets X, Y of
�

holds

sup(X ∪ Y ) = sup{supX, supY }.
(106) For all non-empty subsetsX, Y of

�
holds inf(X∪Y ) = inf{inf X, inf Y }.

(107) For all non-empty subsets X, Y , S of
�

such that S = X ∩ Y holds
supS ≤ inf{supX, supY }.

(108) For all non-empty subsets X, Y , S of
�

such that S = X ∩ Y holds
sup{inf X, inf Y } ≤ inf S.

Let X be a non-empty set. A set is called a non-empty set of non-empty
subsets of X if:

(Def.18) it is a non-empty subset of 2X and for every set A such that A ∈ it
holds A is a non-empty set.

Let F be a non-empty set of non-empty subsets of
�
. The functor sup � F

yielding a non-empty subset of
�

is defined as follows:

(Def.19) for every Real number a holds a ∈ sup � F if and only if there exists a
non-empty subset A of

�
such that A ∈ F and a = supA.

We now state several propositions:

(110)14 For every non-empty set F of non-empty subsets of
�

and for every
non-empty subset S of

�
holds S = sup � F if and only if for every Real

number a holds a ∈ S if and only if there exists a non-empty subset A of�
such that A ∈ F and a = supA.

(111) For every non-empty set F of non-empty subsets of
�

and for every Real
number a holds a ∈ sup � F if and only if there exists a non-empty subset
A of

�
such that A ∈ F and a = supA.

(112) For every non-empty set F of non-empty subsets of
�

and for every
non-empty subset S of

�
such that S =

⋃
F holds supS is a majorant of

sup � F .

(113) For every non-empty set F of non-empty subsets of
�

and for every non-
empty subset S of

�
such that S =

⋃
F holds sup(sup � F ) is a majorant

of S.

14The proposition (109) was either repeated or obvious.
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(114) For every non-empty set F of non-empty subsets of
�

and for every
non-empty subset S of

�
such that S =

⋃
F holds supS = sup(sup � F ).

Let F be a non-empty set of non-empty subsets of
�
. The functor inf � F

yields a non-empty subset of
�

and is defined as follows:

(Def.20) for every Real number a holds a ∈ inf � F if and only if there exists a
non-empty subset A of

�
such that A ∈ F and a = inf A.

We now state several propositions:

(115) For every non-empty set F of non-empty subsets of
�

and for every
non-empty subset S of

�
holds S = inf � F if and only if for every Real

number a holds a ∈ S if and only if there exists a non-empty subset A of�
such that A ∈ F and a = inf A.

(116) For every non-empty set F of non-empty subsets of
�

and for every Real
number a holds a ∈ inf � F if and only if there exists a non-empty subset
A of

�
such that A ∈ F and a = inf A.

(117) For every non-empty set F of non-empty subsets of
�

and for every
non-empty subset S of

�
such that S =

⋃
F holds inf S is a minorant of

inf � F .

(118) For every non-empty set F of non-empty subsets of
�

and for every non-
empty subset S of

�
such that S =

⋃
F holds inf(inf � F ) is a minorant

of S.

(119) For every non-empty set F of non-empty subsets of
�

and for every
non-empty subset S of

�
such that S =

⋃
F holds inf S = inf(inf � F ).
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Summary. We introduce properties of a series of nonnegative
�

numbers, where
�

denotes the enlarged set of real numbers,
�

=
� ∪

{−∞,+∞}. The paper contains definitions of sup F and inf F , for F

being function, and a definition of a sumable subset of
�

. We prove the
basic theorems regarding the definitions mentioned above. The work is
the second part of a series of articles concerning the Lebesgue measure
theory.
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The notation and terminology used here are introduced in the following articles:
[6], [5], [2], [3], [4], and [1]. Let x, y be Real numbers. Let us assume that neither
x = +∞ and y = −∞ nor x = −∞ and y = +∞. The functor x+ y yielding a
Real number is defined by:

(Def.1) there exist real numbers a, b such that x = a and y = b and x+y = a+b
or x = +∞ and x + y = +∞ or y = +∞ and x + y = +∞ or x = −∞
and x+ y = −∞ or y = −∞ and x+ y = −∞.

Next we state four propositions:

(1) Let x, y be Real numbers. Suppose neither x = +∞ and y = −∞ nor
x = −∞ and y = +∞. Then

(i) there exist real numbers a, b such that x = a and y = b and x+y = a+b,
or

(ii) x = +∞ and x+ y = +∞, or
(iii) y = +∞ and x+ y = +∞, or
(iv) x = −∞ and x+ y = −∞, or
(v) y = −∞ and x+ y = −∞.

(2) For all Real numbers x, y and for all real numbers a, b such that x = a
and y = b holds x+ y = a+ b.
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(3) For every Real number x such that x 6= −∞ holds +∞+ x = +∞ and
x+ +∞ = +∞.

(4) For every Real number x such that x 6= +∞ holds −∞+ x = −∞ and
x+−∞ = −∞.

Let x, y be Real numbers. Let us assume that neither x = +∞ and y = +∞
nor x = −∞ and y = −∞. The functor x− y yielding a Real number is defined
by:

(Def.2) there exist real numbers a, b such that x = a and y = b and x−y = a−b
or x = +∞ and x − y = +∞ or y = +∞ and x − y = −∞ or x = −∞
and x− y = −∞ or y = −∞ and x− y = +∞.

We now state a number of propositions:

(5) Let x, y be Real numbers. Suppose neither x = +∞ and y = +∞ nor
x = −∞ and y = −∞. Then

(i) there exist real numbers a, b such that x = a and y = b and x−y = a−b,
or

(ii) x = +∞ and x− y = +∞, or
(iii) y = +∞ and x− y = −∞, or
(iv) x = −∞ and x− y = −∞, or
(v) y = −∞ and x− y = +∞.

(6) For all Real numbers x, y and for all real numbers a, b such that x = a
and y = b holds x− y = a− b.

(7) For every Real number x such that x 6= +∞ holds +∞− x = +∞ and
x−+∞ = −∞.

(8) For every Real number x such that x 6= −∞ holds −∞− x = −∞ and
x−−∞ = +∞.

(9) For all Real numbers x, s such that x + s = +∞ holds x = +∞ or
s = +∞.

(10) For all Real numbers x, s such that x + s = −∞ holds x = −∞ or
s = −∞.

(11) For all Real numbers x, s such that x − s = +∞ holds x = +∞ or
s = −∞.

(12) For all Real numbers x, s such that x − s = −∞ holds x = −∞ or
s = +∞.

(13) For all Real numbers x, s such that neither x = +∞ and s = −∞ nor
x = −∞ and s = +∞ and x+ s ∈ �

holds x ∈ �
and s ∈ �

.

(14) For all Real numbers x, s such that neither x = +∞ and s = +∞ nor
x = −∞ and s = −∞ and x− s ∈ �

holds x ∈ �
and s ∈ �

.

(15) Let x, y, s, t be Real numbers. Then if neither x = +∞ and s = −∞
nor x = −∞ and s = +∞ and neither y = +∞ and t = −∞ nor y = −∞
and t = +∞ and x ≤ y and s ≤ t, then x+ s ≤ y + t.

(16) Let x, y, s, t be Real numbers. Then if neither x = +∞ and t = +∞
nor x = −∞ and t = −∞ and neither y = +∞ and s = +∞ nor y = −∞
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and s = −∞ and x ≤ y and s ≤ t, then x− t ≤ y − s.
Let x be a Real number. The functor −x yields a Real number and is defined

by:

(Def.3) there exists a real number a such that x = a and −x = −a or x = +∞
and −x = −∞ or x = −∞ and −x = +∞.

We now state several propositions:

(17) For every Real number x and for every Real number z holds z = −x if
and only if there exists a real number a such that x = a and z = −a or
x = +∞ and z = −∞ or x = −∞ and z = +∞.

(18) For every Real number x holds there exists a real number a such that
x = a and −x = −a or x = +∞ and −x = −∞ or x = −∞ and
−x = +∞.

(19) For every Real number x and for every real number a such that x = a
holds −x = −a.

(20) For every Real number x holds if x = +∞, then −x = −∞ but if
x = −∞, then −x = +∞.

(21) For every Real number x holds −(−x) = x.

(22) For all Real numbers x, y holds x ≤ y if and only if −y ≤ −x.

(23) For all Real numbers x, y holds x < y if and only if −y < −x.

(24) For all Real numbers x, y such that x = y holds x ≤ y.

The Real number 0 � is defined by:

(Def.4) 0 � = 0.

We now state several propositions:

(25) 0 � = 0.

(26) For every Real number x holds x+ 0 � = x and 0 � + x = x.

(27) −∞ < 0 � and 0 � < +∞.

(28) For all Real numbers x, y, z such that 0 � ≤ z and 0 � ≤ x and y = x+ z
holds x ≤ y.

(29) For every real number x such that x ∈ � holds 0 ≤ x.

(30) For every Real number x such that x ∈ � holds 0 � ≤ x.

Let X, Y be non-empty subsets of
�
. Let us assume that neither −∞ ∈ X

and +∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y . The functor X + Y yielding a
non-empty subset of

�
is defined as follows:

(Def.5) for every Real number z holds z ∈ X + Y if and only if there exist Real
numbers x, y such that x ∈ X and y ∈ Y and z = x+ y.

We now state two propositions:

(31) For all non-empty subsets X, Y of
�

such that neither −∞ ∈ X and
+∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y for every Real number z holds
z ∈ X + Y if and only if there exist Real numbers x, y such that x ∈ X
and y ∈ Y and z = x+ y.
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(32) Let X, Y , Z be non-empty subsets of
�
. Then if neither −∞ ∈ X and

+∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y , then Z = X + Y if and only if for
every Real number z holds z ∈ Z if and only if there exist Real numbers
x, y such that x ∈ X and y ∈ Y and z = x+ y.

Let X be a non-empty subset of
�
. The functor −X yielding a non-empty

subset of
�

is defined as follows:

(Def.6) for every Real number z holds z ∈ −X if and only if there exists a Real
number x such that x ∈ X and z = −x.

Next we state a number of propositions:

(33) For every non-empty subset X of
�

and for every Real number z holds
z ∈ −X if and only if there exists a Real number x such that x ∈ X and
z = −x.

(34) For all non-empty subsets X, Z of
�

holds Z = −X if and only if for
every Real number z holds z ∈ Z if and only if there exists a Real number
x such that x ∈ X and z = −x.

(35) For every non-empty subset X of
�

holds −(−X) = X.

(36) For every non-empty subset X of
�

and for every Real number z holds
z ∈ X if and only if −z ∈ −X.

(37) For all non-empty subsets X, Y of
�

holds X ⊆ Y if and only if −X ⊆
−Y .

(38) For every Real number z holds z ∈ �
if and only if −z ∈ �

.

(39) Let X, Y be non-empty subsets of
�
. Then if neither −∞ ∈ X and

+∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y and neither supX = +∞ and
supY = −∞ nor supX = −∞ and supY = +∞, then sup(X + Y ) ≤
supX + supY .

(40) Let X, Y be non-empty subsets of
�
. Then if neither −∞ ∈ X and

+∞ ∈ Y nor +∞ ∈ X and −∞ ∈ Y and neither inf X = +∞ and inf Y =
−∞ nor inf X = −∞ and inf Y = +∞, then inf X + inf Y ≤ inf(X + Y ).

(41) For all non-empty subsets X, Y of
�

such that X is upper bounded and
Y is upper bounded holds sup(X + Y ) ≤ supX + supY .

(42) For all non-empty subsets X, Y of
�

such that X is lower bounded and
Y is lower bounded holds inf X + inf Y ≤ inf(X + Y ).

(43) For every non-empty subset X of
�

and for every Real number a holds
a is a majorant of X if and only if −a is a minorant of −X.

(44) For every non-empty subset X of
�

and for every Real number a holds
a is a minorant of X if and only if −a is a majorant of −X.

(45) For every non-empty subset X of
�

holds inf(−X) = − supX.

(46) For every non-empty subset X of
�

holds sup(−X) = − inf X.

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . Then rngF is a non-empty subset of
�
.

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let

F be a function from X into Y . The functor supF yielding a Real number is
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defined by:

(Def.7) supF = sup(rngF ).

The following proposition is true

(47) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds supF = sup(rngF ).

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let

F be a function from X into Y . The functor inf F yields a Real number and is
defined by:

(Def.8) inf F = inf(rngF ).

Next we state the proposition

(48) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds inf F = inf(rngF ).

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let

F be a function from X into Y , and let x be an element of X. Then F (x) is a
Real number.

The scheme FunctR ealEx concerns a non-empty set A, a set B, and a unary
functor F and states that:

there exists a function f from A into B such that for every element x of A
holds f(x) = F(x)
provided the parameters have the following property:
• for every element x of A holds F(x) ∈ B.
Let X be a non-empty set, and let Y , Z be non-empty subsets of

�
, and let

F be a function from X into Y , and let G be a function from X into Z. Let us
assume that neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z. The
functor F +G yields a function from X into Y + Z and is defined by:

(Def.9) for every element x of X holds (F +G)(x) = F (x) +G(x).

Next we state several propositions:

(49) Let X be a non-empty set. Let Y , Z be non-empty subsets of
�
. Sup-

pose neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z. Then for
every function F from X into Y and for every function G from X into Z
and for every function H from X into Y +Z holds H = F +G if and only
if for every element x of X holds H(x) = F (x) +G(x).

(50) Let X be a non-empty set. Then for all non-empty subsets Y , Z of
�

such that neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z for
every function F from X into Y and for every function G from X into Z
and for every element x of X holds (F +G)(x) = F (x) +G(x).

(51) For every non-empty set X and for all non-empty subsets Y , Z of
�

such that neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z for
every function F from X into Y and for every function G from X into Z
holds rng(F +G) ⊆ rngF + rngG.

(52) Let X be a non-empty set. Let Y , Z be non-empty subsets of
�
. Sup-

pose neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z. Then for
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every function F from X into Y and for every function G from X into Z
such that neither supF = +∞ and supG = −∞ nor supF = −∞ and
supG = +∞ holds sup(F +G) ≤ supF + supG.

(53) Let X be a non-empty set. Let Y , Z be non-empty subsets of
�
. Sup-

pose neither −∞ ∈ Y and +∞ ∈ Z nor +∞ ∈ Y and −∞ ∈ Z. Then for
every function F from X into Y and for every function G from X into
Z such that neither inf F = +∞ and inf G = −∞ nor inf F = −∞ and
infG = +∞ holds inf F + inf G ≤ inf(F +G).

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . The functor −F yielding a function from X into
−Y is defined by:

(Def.10) for every element x of X holds (−F )(x) = −F (x).

One can prove the following three propositions:

(54) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y and for every function G from X
into −Y holds G = −F if and only if for every element x of X holds
G(x) = −F (x).

(55) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds rng(−F ) = − rngF .

(56) For every non-empty set X and for every non-empty subset Y of
�

and for every function F from X into Y holds inf(−F ) = − supF and
sup(−F ) = − inf F .

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . We say that F is upper bounded if and only if:

(Def.11) supF < +∞.

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . We say that F is lower bounded if and only if:

(Def.12) −∞ < inf F .

Let X be a non-empty set, and let Y be a non-empty subset of
�
, and let F

be a function from X into Y . We say that F is bounded if and only if:

(Def.13) F is upper bounded and F is lower bounded.

We now state a number of propositions:

(60)1 For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds F is bounded if and only if
supF < +∞ and −∞ < inf F .

(61) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds F is upper bounded if and only
if −F is lower bounded.

1The propositions (57)–(59) were either repeated or obvious.
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(62) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds F is lower bounded if and only
if −F is upper bounded.

(63) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y holds F is bounded if and only if −F
is bounded.

(64) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y and for every element x of X holds
−∞ ≤ F (x) and F (x) ≤ +∞.

(65) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y and for every element x of X such
that Y ⊆ �

holds −∞ < F (x) and F (x) < +∞.

(66) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y and for every element x of X holds
inf F ≤ F (x) and F (x) ≤ supF .

(67) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y such that Y ⊆ �

holds F is upper
bounded if and only if supF ∈ �

.

(68) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y such that Y ⊆ �

holds F is lower
bounded if and only if inf F ∈ �

.

(69) For every non-empty set X and for every non-empty subset Y of
�

and
for every function F from X into Y such that Y ⊆ �

holds F is bounded
if and only if inf F ∈ �

and supF ∈ �
.

(70) For every non-empty set X and for all non-empty subsets Y , Z of
�

such that Y ⊆ �
and Z ⊆ �

for every function F1 from X into Y and for
every function F2 from X into Z such that F1 is upper bounded and F2

is upper bounded holds F1 + F2 is upper bounded.

(71) For every non-empty set X and for all non-empty subsets Y , Z of
�

such that Y ⊆ �
and Z ⊆ �

for every function F1 from X into Y and for
every function F2 from X into Z such that F1 is lower bounded and F2

is lower bounded holds F1 + F2 is lower bounded.

(72) For every non-empty set X and for all non-empty subsets Y , Z of
�

such that Y ⊆ �
and Z ⊆ �

for every function F1 from X into Y and
for every function F2 from X into Z such that F1 is bounded and F2 is
bounded holds F1 + F2 is bounded.

(73) There exists a function F from � into
�

such that F is one-to-one and
� = rngF and rngF is a non-empty subset of

�
.

A non-empty subset of
�

is called a denumerable set of larged real if:

(Def.14) there exists a function F from � into
�

such that it = rngF .

Next we state the proposition
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(75)2 � is a denumerable set of larged real.

A denumerable set of larged real is said to be a denumerable set of positive
larged real if:

(Def.15) for every Real number x such that x ∈ it holds 0 � ≤ x.

Let D be a denumerable set of larged real. A function from � into
�

is said
to be a numeration of D if:

(Def.16) D = rng it.

One can prove the following proposition

(78)3 For every denumerable set D of positive larged real and for every func-
tion F from � into

�
holds F is a numeration ofD if and only ifD = rngF .

Let N be a function from � into
�
, and let n be a natural number. Then

N(n) is a Real number.

We see that the Real number is an element of
�
.

The scheme RecFuncExR eal concerns a Real number A and a binary functor
F yielding a Real number and states that:

there exists a function F from � into
�

such that F (0) = A and for every
natural number n and for every Real number x such that x = F (n) holds F (n+
1) = F(n, x)
for all values of the parameters.

We now state the proposition

(79) For every denumerable set D of larged real and for every numeration
N of D there exists a function F from � into

�
such that F (0) = N(0)

and for every natural number n and for every Real number y such that
y = F (n) holds F (n+ 1) = y +N(n+ 1).

Let D be a denumerable set of larged real, and let N be a numeration of D.
The functor Ser(D,N) yields a function from � into

�
and is defined by:

(Def.17) Ser(D,N)(0) = N(0) and for every natural number n and for every
Real number y such that y = Ser(D,N)(n) holds Ser(D,N)(n + 1) =
y +N(n+ 1).

The following propositions are true:

(80) Let D be a denumerable set of larged real. Then for every numeration
N of D and for every function F from � into

�
holds F = Ser(D,N) if

and only if F (0) = N(0) and for every natural number n and for every
Real number y such that y = F (n) holds F (n+ 1) = y +N(n+ 1).

(81) For every denumerable set D of larged real and for every numeration N
of D holds Ser(D,N)(0) = N(0) and for every natural number n and for
every Real number y such that y = Ser(D,N)(n) holds Ser(D,N)(n+1) =
y +N(n+ 1).

(82) For every denumerable set D of positive larged real and for every nu-
meration N of D and for every natural number n holds 0 � ≤ N(n).

2The proposition (74) was either repeated or obvious.
3The propositions (76)–(77) were either repeated or obvious.
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(83) For every denumerable set D of positive larged real and for every nu-
meration N of D and for every natural number n holds Ser(D,N)(n) ≤
Ser(D,N)(n+ 1) and 0 � ≤ Ser(D,N)(n).

(84) For every denumerable set D of positive larged real and for every nu-
meration N of D and for all natural numbers n, m holds Ser(D,N)(n) ≤
Ser(D,N)(n+m).

Let D be a denumerable set of larged real. A non-empty subset of
�

is called
a set of series of D if:

(Def.18) there exists a numeration N of D such that it = rng Ser(D,N).

Let F be a function from � into
�
. Then rngF is a non-empty subset of

�
.

Let D be a denumerable set of positive larged real, and let N be a numeration
of D. The functor

∑
DN yields a Real number and is defined as follows:

(Def.19)
∑
D N = sup(rng Ser(D,N)).

One can prove the following propositions:

(86)4 For every denumerable set D of positive larged real and for every nu-
meration N of D and for every Real number s holds s =

∑
D N if and

only if s = sup(rng Ser(D,N)).

(87) For every denumerable set D of positive larged real and for every nu-
meration N of D holds

∑
DN = sup(rng Ser(D,N)).

Let D be a denumerable set of positive larged real, and let N be a numeration
of D. We say that D is N sumable if and only if:

(Def.20)
∑
D N ∈

�
.

One can prove the following proposition

(89)5 For every function F from � into
�

holds rngF is a denumerable set of
larged real.

Let F be a function from � into
�
. Then rngF is a denumerable set of larged

real.

Next we state the proposition

(90) For every function F from � into
�

holds F is a numeration of rngF .

Let F be a function from � into
�
. The functor SerF yields a function from

� into
�

and is defined by:

(Def.21) for every numeration N of rngF such that N = F holds SerF =
Ser(rngF,N).

We now state the proposition

(91) For every function F from � into
�

and for every numeration N of
rngF such that N = F holds SerF = Ser(rngF,N).

Let F be a function from � into
�
. We say that F is non-negative if and

only if:

4The proposition (85) was either repeated or obvious.
5The proposition (88) was either repeated or obvious.
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(Def.22) rngF is a denumerable set of positive larged real.

Let F be a function from � into
�
. Let us assume that F is non-negative.

The functor
∑
F yields a Real number and is defined by:

(Def.23)
∑
F = sup(rng SerF ).

The following propositions are true:

(93)6 For every function F from � into
�

such that F is non-negative holds∑
F = sup(rng SerF ).

(94) For every function F from � into
�

holds F is non-negative if and only
if for every natural number n holds 0 � ≤ F (n).

(95) For every function F from � into
�

and for every natural number n such
that F is non-negative holds SerF (n) ≤ SerF (n+ 1) and 0 � ≤ SerF (n).

(96) For every function F from � into
�

such that F is non-negative for all
natural numbers n, m holds SerF (n) ≤ SerF (n+m).

(97) For all functions F1, F2 from � into
�

such that F1 is non-negative
holds if for every natural number n holds F1(n) ≤ F2(n), then for every
natural number n holds SerF1(n) ≤ SerF2(n).

(98) For all functions F1, F2 from � into
�

such that F1 is non-negative holds
if for every natural number n holds F1(n) ≤ F2(n), then

∑
F1 ≤

∑
F2.

(99) For every function F from � into
�

holds SerF (0) = F (0) and for every
natural number n and for every Real number y such that y = SerF (n)
holds SerF (n+ 1) = y + F (n+ 1).

(100) For every function F from � into
�

such that F is non-negative holds if
there exists a natural number n such that F (n) = +∞, then

∑
F = +∞.

Let F be a function from � into
�
. Let us assume that F is non-negative.

We say that F is sumable if and only if:

(Def.24)
∑
F ∈ �

.

One can prove the following propositions:

(102)7 For every function F from � into
�

such that F is non-negative holds
if there exists a natural number n such that F (n) = +∞, then F is not
sumable.

(103) For all functions F1, F2 from � into
�

such that F1 is non-negative holds
if for every natural number n holds F1(n) ≤ F2(n), then if F2 is sumable,
then F1 is sumable.

(104) For all functions F1, F2 from � into
�

such that F1 is non-negative
holds if for every natural number n holds F1(n) ≤ F2(n), then if F1 is not
sumable, then F2 is not sumable.

(105) For every function F from � into
�

such that F is non-negative for
every natural number n such that for every natural number r such that
n ≤ r holds F (r) = 0 � holds

∑
F = SerF (n).

6The proposition (92) was either repeated or obvious.
7The proposition (101) was either repeated or obvious.
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(106) For every function F from � into
�

such that for every natural number
n holds F (n) ∈ �

for every natural number n holds SerF (n) ∈ �
.

(107) For every function F from � into
�

such that F is non-negative holds
if there exists a natural number n such that for every natural number k
such that n ≤ k holds F (k) = 0 � and for every natural number k such
that k ≤ n holds F (k) 6= +∞, then F is sumable.
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Toruń University

Micha l Muzalewski1

Warsaw University
Bia lystok

Summary. This paper contains the second part of the set of ar-
ticles concerning the theory of algebraic structures, based on the [9], pp.
9-12 (pages 4-6 of the English edition).

First the basic structure 〈F , +, ·, 1, 0〉 is defined. Following it the
consecutive structures are contemplated in detail, including double loop,
left quasi-field, right quasi-field, double sided quasi-field, skew field and
field. These structures are created by gradually augmenting the basic
structure with new axioms of commutativity, associativity, distributivity
etc. Each part of the article begins with the set of auxiliary theorems
related to the structure under consideration that are necessary for the
existence proof of each defined mode. Next the mode and proof of its
existence is included. If the current set of axioms may be replaced with a
different and equivalent one, the appropriate proof is performed following
the definition of that mode. With the introduction of double loop the
”−” function is defined. Some interesting features of this function are
also included.

MML Identifier: ALGSTR 2.

The terminology and notation used here have been introduced in the following
articles: [11], [10], [3], [4], [1], [2], [6], [5], [7], and [8]. We consider double loop
structures which are systems
〈a carrier, an addition, a multiplication, a unity, a zero〉,

where the carrier is a non-empty set, the addition is a binary operation on the
carrier, the multiplication is a binary operation on the carrier, the unity is an
element of the carrier, and the zero is an element of the carrier.

In the sequel G1 will be a double loop structure and L will be a double loop
structure. Let us consider G1. An element of G1 is an element of the carrier of
G1.

In the sequel a, b will denote elements of G1. Let us consider G1, a, b. The
functor a+ b yields an element of G1 and is defined by:
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(Def.1) a+ b = (the addition of G1)(a, b).

Let us consider G1, a, b. The functor a · b yields an element of G1 and is
defined by:

(Def.2) a · b = (the multiplication of G1)(a, b).

One can prove the following propositions:

(1) a+ b = (the addition of G1)(a, b).

(2) a · b = (the multiplication of G1)(a, b).

Let us consider G1. The functor 0G1 yielding an element of G1 is defined as
follows:

(Def.3) 0G1 = the zero of G1.

Let us consider G1. The functor 1G1 yields an element of G1 and is defined
as follows:

(Def.4) 1G1 = the unity of G1.

The following two propositions are true:

(3) 0G1 = the zero of G1.

(4) 1G1 = the unity of G1.

The double loop structure loop � is defined by:

(Def.5) loop � = 〈 �
,+ � , · � , 1, 0〉.

One can prove the following three propositions:

(5) loop � = 〈 �
,+ � , · � , 1, 0〉.

(6) For every real numbers q, p there exists a real number y such that
p = q + y.

(7) For every real numbers q, p there exists a real number y such that
p = y + q.

A double loop structure is said to be a double loop if:

(Def.6) (i) for every element a of it holds a+ 0it = a,
(ii) for every element a of it holds 0it + a = a,
(iii) for every elements a, b of it there exists an element x of it such that

a+ x = b,
(iv) for every elements a, b of it there exists an element x of it such that

x+ a = b,
(v) for all elements a, x, y of it such that a+ x = a+ y holds x = y,
(vi) for all elements a, x, y of it such that x+ a = y + a holds x = y,

(vii) 0it 6= 1it,
(viii) for every element a of it holds a · (1it) = a,

(ix) for every element a of it holds (1it) · a = a,
(x) for all elements a, b of it such that a 6= 0it there exists an element x of

it such that a · x = b,
(xi) for all elements a, b of it such that a 6= 0it there exists an element x of

it such that x · a = b,
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(xii) for all elements a, x, y of it such that a 6= 0it holds if a · x = a · y, then
x = y,

(xiii) for all elements a, x, y of it such that a 6= 0it holds if x · a = y · a, then
x = y,

(xiv) for every element a of it holds a · 0it = 0it,
(xv) for every element a of it holds 0it · a = 0it.

Let us note that it makes sense to consider the following constant. Then
loop � is a double loop.

Let L be a double loop, and let a be an element of L. The functor −a yielding
an element of L is defined as follows:

(Def.7) a+ (−a) = 0L.

Next we state the proposition

(9)2 For every double loop L and for every element a of L holds a+ (−a) =
0L.

Let L be a double loop, and let a, b be elements of L. The functor a − b
yielding an element of L is defined by:

(Def.8) a− b = a+ (−b).
We now state the proposition

(10) For every double loop L and for all elements a, b of L holds a − b =
a+ (−b).

A double loop is said to be a left quasi-field if:

(Def.9) (i) for all elements a, b, c of it holds (a+ b) + c = a+ (b+ c),
(ii) for all elements a, b of it holds a+ b = b+ a,

(iii) for all elements a, b, c of it holds a · (b+ c) = a · b+ a · c.
In the sequel a, b, c, x, y are elements of L. The following proposition is true

(12)3 L is a left quasi-field if and only if the following conditions are satisfied:
(i) for every a holds a+ 0L = a,
(ii) for every a there exists x such that a+ x = 0L,

(iii) for all a, b, c holds (a+ b) + c = a+ (b+ c),
(iv) for all a, b holds a+ b = b+ a,
(v) 0L 6= 1L,
(vi) for every a holds a · (1L) = a,
(vii) for every a holds (1L) · a = a,

(viii) for all a, b such that a 6= 0L there exists x such that a · x = b,
(ix) for all a, b such that a 6= 0L there exists x such that x · a = b,
(x) for all a, x, y such that a 6= 0L holds if a · x = a · y, then x = y,
(xi) for all a, x, y such that a 6= 0L holds if x · a = y · a, then x = y,
(xii) for every a holds a · 0L = 0L,

(xiii) for every a holds 0L · a = 0L,
(xiv) for all a, b, c holds a · (b+ c) = a · b+ a · c.

2The proposition (8) was either repeated or obvious.
3The proposition (11) was either repeated or obvious.
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We follow the rules: G will be a left quasi-field and a, b, x, y will be elements
of G. We now state several propositions:

(13) a+ (−a) = 0G and (−a) + a = 0G.

(14) a · (−b) = −a · b.
(15) −(−a) = a.

(16) (−1G) · (−1G) = 1G.

(17) a · (x− y) = a · x− a · y.

A double loop is called a right quasi-field if:

(Def.10) (i) for all elements a, b, c of it holds (a+ b) + c = a+ (b+ c),
(ii) for all elements a, b of it holds a+ b = b+ a,
(iii) for all elements a, b, c of it holds (b+ c) · a = b · a+ c · a.

In the sequel a, b, c, x, y are elements of L. One can prove the following
proposition

(19)4 L is a right quasi-field if and only if the following conditions are satisfied:
(i) for every a holds a+ 0L = a,

(ii) for every a there exists x such that a+ x = 0L,
(iii) for all a, b, c holds (a+ b) + c = a+ (b+ c),
(iv) for all a, b holds a+ b = b+ a,
(v) 0L 6= 1L,
(vi) for every a holds a · (1L) = a,

(vii) for every a holds (1L) · a = a,
(viii) for all a, b such that a 6= 0L there exists x such that a · x = b,

(ix) for all a, b such that a 6= 0L there exists x such that x · a = b,
(x) for all a, x, y such that a 6= 0L holds if a · x = a · y, then x = y,
(xi) for all a, x, y such that a 6= 0L holds if x · a = y · a, then x = y,

(xii) for every a holds a · 0L = 0L,
(xiii) for every a holds 0L · a = 0L,
(xiv) for all a, b, c holds (b+ c) · a = b · a+ c · a.

We adopt the following rules: G will be a right quasi-field and a, b, x, y will
be elements of G. We now state several propositions:

(20) a+ (−a) = 0G and (−a) + a = 0G.

(21) (−b) · a = −b · a.

(22) −(−a) = a.

(23) (−1G) · (−1G) = 1G.

(24) (x− y) · a = x · a− y · a.

In the sequel a, b, c, x, y will denote elements of L. A double loop is called
a double sided quasi-field if:

(Def.11) (i) for all elements a, b, c of it holds (a+ b) + c = a+ (b+ c),
(ii) for all elements a, b of it holds a+ b = b+ a,
(iii) for all elements a, b, c of it holds a · (b+ c) = a · b+ a · c,
(iv) for all elements a, b, c of it holds (b+ c) · a = b · a+ c · a.

4The proposition (18) was either repeated or obvious.
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Let us note that it makes sense to consider the following constant. Then
loop � is a double sided quasi-field.

The following propositions are true:

(26)5 L is a double sided quasi-field if and only if the following conditions are
satisfied:

(i) for every a holds a+ 0L = a,
(ii) for every a there exists x such that a+ x = 0L,

(iii) for all a, b, c holds (a+ b) + c = a+ (b+ c),
(iv) for all a, b holds a+ b = b+ a,
(v) 0L 6= 1L,
(vi) for every a holds a · (1L) = a,
(vii) for every a holds (1L) · a = a,

(viii) for all a, b such that a 6= 0L there exists x such that a · x = b,
(ix) for all a, b such that a 6= 0L there exists x such that x · a = b,
(x) for all a, x, y such that a 6= 0L holds if a · x = a · y, then x = y,
(xi) for all a, x, y such that a 6= 0L holds if x · a = y · a, then x = y,
(xii) for every a holds a · 0L = 0L,

(xiii) for every a holds 0L · a = 0L,
(xiv) for all a, b, c holds a · (b+ c) = a · b+ a · c,
(xv) for all a, b, c holds (b+ c) · a = b · a+ c · a.

(27) For every double sided quasi-field L holds L is a left quasi-field.

(28) For every double sided quasi-field L holds L is a right quasi-field.

We adopt the following rules: G will be a double sided quasi-field and a, b,
x, y will be elements of G. Next we state two propositions:

(29) a · (−b) = −a · b and (−b) · a = −b · a.

(30) a · (x− y) = a · x− a · y and (x− y) · a = x · a− y · a.

We see that the double sided quasi-field is a left quasi-field.

In the sequel a, b, c, x will be elements of L. A double sided quasi-field is
called a skew field if:

(Def.12) for all elements a, b, c of it holds (a · b) · c = a · (b · c).
Let us note that it makes sense to consider the following constant. Then

loop � is a skew field.

The following proposition is true

(32)6 L is a skew field if and only if the following conditions are satisfied:
(i) for every a holds a+ 0L = a,
(ii) for every a there exists x such that a+ x = 0L,

(iii) for all a, b, c holds (a+ b) + c = a+ (b+ c),
(iv) for all a, b holds a+ b = b+ a,
(v) 0L 6= 1L,
(vi) for every a holds a · (1L) = a,

5The proposition (25) was either repeated or obvious.
6The proposition (31) was either repeated or obvious.
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(vii) for every a such that a 6= 0L there exists x such that a · x = 1L,
(viii) for every a holds a · 0L = 0L,

(ix) for every a holds 0L · a = 0L,
(x) for all a, b, c holds (a · b) · c = a · (b · c),
(xi) for all a, b, c holds a · (b+ c) = a · b+ a · c,

(xii) for all a, b, c holds (b+ c) · a = b · a+ c · a.

A skew field is said to be a field if:

(Def.13) for all elements a, b of it holds a · b = b · a.

Let us note that it makes sense to consider the following constant. Then
loop � is a field.

The following proposition is true

(34)7 L is a field if and only if the following conditions are satisfied:
(i) for every a holds a+ 0L = a,

(ii) for every a there exists x such that a+ x = 0L,
(iii) for all a, b, c holds (a+ b) + c = a+ (b+ c),
(iv) for all a, b holds a+ b = b+ a,
(v) 0L 6= 1L,
(vi) for every a holds a · (1L) = a,

(vii) for every a such that a 6= 0L there exists x such that a · x = 1L,
(viii) for every a holds a · 0L = 0L,

(ix) for all a, b, c holds (a · b) · c = a · (b · c),
(x) for all a, b, c holds a · (b+ c) = a · b+ a · c,
(xi) for all a, b holds a · b = b · a.
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