Preface

We offer to our Readers Volume 2 of mathematical papers which are abstracts
of Mizar articles to be found in the Main Mizar Library (MML). They are usually
published in the order in which they have been approved for MML. A careful
Reader may note that our publication has several peculiarities due to two facts.
First, it is an endeavour to make a machine translation into English. Secondly,
changes in the PC Mizar system and continually updated MML influence the
quality of the texts published and the topical value of the papers. Hence, first,
the standard of English is not always satisfactory. Secondly, the quality of the
papers is very closely related to what is actually taking place in MML. Originally,
obvious theorems (relative to the power of Checker) were not identified. As the
system PC Mizar was developing, some theorems became obvious. It is likewise
with repeated theorems (which accounts for the footnotes in the text of the type
"The proposition (k) was either repeated or obvious”). Those theorems can be
classed in two groups. The first includes accidental repetitions: the author
did not know that such a theorem was already included in MML and proved
it again. There were few such cases. The other includes some 500 eliminated
theorems because they were so-called definitional theorems. The authors wrote
those theorems because previously it had not been possible directly to refer to
definitions.

The Readers are also requested to note that in the present issue we have
changed the formats of certain operations. The operation symbol of the removal
of n initial terms from a sequence has been changed from ~ into T (see [2] and
[1]). Likewise, the operation symbol of the multiplication of real functions ¢ has
been removed (see [1]).
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Summary. Definitions of some classes of rings and left-, right-,

and bi-modules over a ring and some elementary theorems on rings and
skew fields.

MML Identifier: VECTSP_2.

The articles [9], [8], [11], [3], [1], [10], [7], [4], [2], [5], and [6] provide the notation
and terminology for this paper. In the sequel F; will denote a field structure.
Let us consider Fj. A scalar of Fj is an element of the carrier of F}.

In the sequel z, y will denote scalars of Fy. Let us consider Fy, z, y. The
functor x — y yields a scalar of [ and is defined as follows:

(Defl) xz—y=x+(—y).
In the sequel F' denotes a field. A field structure is called a ring if:
(Def.2)  Let x, y, z be scalars of it . Then

(i) z+y=y+ux,
(i) (z+y)+z=z+(y+2),
(iii) xz+ 0 = x,
(iv) =+ (—z) =0y,
(v) z-(1y) ==,
(vi) (1) -z ==,
(vi)) z-(y+z2)=z-y+z-z,

(vili) (y+2z2)-z=y-x+z-

The following proposition is true
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(1)  The following conditions are equivalent:

(i) for all scalars z, y, z of F} holds x4y = y+x and (z+y)+2z = x+(y+2)
and ¢ +0p, =z and v+ (—2) =0p, and z- (1) =z and (1p,) -z ==
andz-(y+z)=x-y+z-zand (y+z2)-x2=y-x+z2-z,

(il)  Fy is a ring.

In the sequel R is a ring and z, y, z are scalars of R. Next we state several
propositions:

(2) z+y=y+a

B) (@+y +z=z+(@y+2).

(4) z+0p=ux.

(6) x4+ (—x)=0g.

(6) z-(lgr)=zand (1g) -z ==x.

(1) z-(y+z)=z-y+z-zand (y+2)- =y -z+ 2.

A ring is called an associative ring if:
(Def.3)  for all scalars x, y, z of it holds (z-y) -z =z (y - 2).

The following proposition is true

(8) For all scalars x, y, z of R holds (z-y)-z=x-(y-z) if and only if R
is an associative ring.

In the sequel R will denote an associative ring and x, y, z will denote scalars
of R. One can prove the following proposition

9 (@y)-z=z-(y-2).
An associative ring is said to be a commutative ring if:

(Def.4)  for all scalars x, y of it holds z -y =y - «.

One can prove the following proposition
(10)  If for all scalars x, y of R holds x -y = y -z, then R is a commutative
ring.
In the sequel R will denote a commutative ring and z, y will denote scalars
of R. The following proposition is true
(11) z-y=y-=x.
A commutative ring is said to be an integral domain if:
(Def.5) 0y # 1 and for all scalars x, y of it such that - y = 03 holds x = 0y
or y = 0.
We now state two propositions:

(12) IfOgr # 1g and for all z, y such that -y = Og holds z = O or y = O,
then R is an integral domain.

(13)  F is an integral domain.

In the sequel R denotes an integral domain and z, y denote scalars of R. The
following propositions are true:

(14) O # 15
(15) Ifx-y=0g, then x =0g or y = Opy.
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An associative ring is called a skew field if:
(Def.6)  for every scalar z of it holds if x # 0j, then there exists a scalar y of it
such that z -y = 1t but Oy # 1i.
In the sequel R denotes an associative ring. The following proposition is true

(16)  If for every scalar x of R holds if x # O, then there exists a scalar y of
R such that -y = 1g but Or # 1g, then R is a skew field.

In the sequel S; will denote a skew field and z, y will denote scalars of S7.
The following propositions are true:

(17)  If x # Og,, then there exists y such that z -y = 1g,.
(18) 0g, # 1g,.
(19) F is a skew field.
We see that the field is a skew field.
In the sequel R is a ring and x, y, z are scalars of R. Next we state a number
of propositions:
(20) z-y=z+(-y).

(21) —0p = Op.

(22) z+4+y==zifandonlyifz =2—ybutz+y =z if and only if y = 2z — z.
(23) z—0gp=zandOp —x = —x.

(24) Ifzx+y=ax+z2 theny=2zbutifz+y=2z+y, then x = 2.
(25)  —(z+y)=(—z)+(-y)

(26) .CC‘ORZOR and0R~x:0R.

(27) —(—z)==.

(28)  (—z)-y=—z-y.

(29) @-(—y)=—z-y.

30)  (=z)-(-y)=z-y.

3l) z-(y—2)=x-y—a-z

32) (r—y)-z=xz-z2—y-=2.

(33) (x+y)—z=z+(y—2).

(34) x =0p if and only if —z = 0p.

(35) z—(y+2)=(z—y)—=

(36) z—(y—2)=(@—-y +=

(37) z—x=0gand (—z) +x =0pg.

(

38)  For every z, y there exists z such that z =y + z and z = z + y.

In the sequel S; denotes a skew field and z, y, z denote scalars of S;. We
now state four propositions:

(39) Ifx-y=1g, then x # 0g, and y # Og, .

(40) If x # Og,, then there exists y such that y -z = 1g,.
(41) Ifz-y=1g,theny- -z =1g,.
(42)

42) Ifz-y=z-zand xz # 0g,, then y = 2.
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Let us consider S7, z. Let us assume that = # 0g,. The functor 27! yielding
a scalar of Sy is defined by:

(Def.7)  z-(z7 1) =1g,.

Let us consider Si, x, y. Let us assume that y # 0g,. The functor £ yielding
. Y
a scalar of Sp is defined by:

(Def.8) =" y~L.

One can prove the following propositions:

(43) Ifx#0g,thenz- 27! =1g, and 271 2 = 1g,.
(44) If y # 0g,, then % =gy L

(45) Ifz-y=1g,thenz =y landy=a"1

(46) If x # 0g, and y # Og,, then x71 -y~ = (y - z)~L.
(47) Ifx-y=0g,, then z = 0g, or y = Og,.

(48) If x # Og,, then 71 # 0g, .

(49) If z # 0s,, then (z71)~! = .

(50) If z # Og,, then 1% =z~ ! and % =x

(51) Ifa?;é()sl,thenaf‘l%:lgl andl%-wzlgl.
(52) Ifx # 0g,, then £ = 1g,.

(53) Ify#0s, and z # Og,, then £ = 2=,

(54) If y # 0g,, then -4 = and 5 =2

(55) If z#0g,, then £ + ¥ =2t apd £ — ¥ = 22V,
(56) If y # 0g, and z # Og,, then § = %

(57)

(@)
g

Ify;é()sl,then%'y:m.

Let us consider F;. We consider left module structures over F; which are
systems

(a carrier, a left multiplication),
where the carrier is an Abelian group and the left multiplication is a function
from [ the carrier of F}, the carrier of the carrier ] into the carrier of the carrier.

In the sequel L denotes a left module structure over F;. We now define two
new modes. Let us consider F7, Li. A scalar of Lq is a scalar of Fy.

A vector of L is an element of the carrier of L.

Let us consider F;. We consider right module structures over F; which are
systems

(a carrier, a right multiplication),
where the carrier is an Abelian group and the right multiplication is a function
from [ the carrier of the carrier, the carrier of F | into the carrier of the carrier.

In the sequel Ry will denote a right module structure over 7. We now define
two new modes. Let us consider Fy, Ry. A scalar of Ry is a scalar of .

A vector of R; is an element of the carrier of Rj.



CONSTRUCTION OF RINGS AND LEFT-, RIGHT-, AND ... 7

Let us consider F};. We consider bimodule structures over F; which are
systems

(a carrier, a left multiplication, a right multiplication),
where the carrier is an Abelian group, the left multiplication is a function from
[ the carrier of Fj, the carrier of the carrier ] into the carrier of the carrier,
and the right multiplication is a function from | the carrier of the carrier, the
carrier of F) | into the carrier of the carrier.

In the sequel By will denote a bimodule structure over F};. We now define
two new modes. Let us consider Fy, By. A scalar of By is a scalar of F.

A vector of Bj is an element of the carrier of Bj.

In the sequel R is a ring. Let us consider R. The functor AbGr(R) yields an
Abelian group and is defined by:

(Def.9)  AbGr(R) = ( the carrier of R, the addition of R, the reverse-map of R,
the zero of R).

Next we state the proposition
(58)  AbGr(R) = ( the carrier of R, the addition of R, the reverse-map of R,
the zero of R).

Let us consider R. The functor LeftModMult(R) yielding a function from |
the carrier of R, the carrier of AbGr(R) ] into the carrier of AbGr(R) is defined
as follows:

(Def.10)  LeftModMult(R) = the multiplication of R.

Next we state the proposition
(59)  LeftModMult(R) = the multiplication of R.
Let us consider R. The functor LeftMod(R) yielding a left module structure
over R is defined as follows:
(Def.11)  LeftMod(R) = (AbGr(R), LeftModMult(R)).

We now state the proposition
(60)  LeftMod(R) = (AbGr(R), LeftModMult(R)).

In the sequel V' will be a left module structure over R. Let us consider R, V,
and let z be a scalar of R, and let v be a vector of V. The functor x - v yielding
a vector of V is defined as follows:

(Def.12)  for every scalar 2’ of V such that 2’ = x holds z - v = (the left multipli-
cation of V)(z/, v).
The following proposition is true
(62)2 For every V being a left module structure over R and for every scalar
x of R and for every vector v of V and for every scalar ' of V such that
2’ = x holds x - v = (the left multiplication of V)(z’, v).
Let us consider R. The functor RightModMult(R) yields a function from |
the carrier of AbGr(R), the carrier of R into the carrier of AbGr(R) and is
defined as follows:

2The proposition (61) was either repeated or obvious.
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(Def.13)  RightModMult(R) = the multiplication of R.

We now state the proposition
(63) RightModMult(R) = the multiplication of R.
Let us consider R. The functor RightMod(R) yielding a right module struc-
ture over R is defined as follows:
(Def.14)  RightMod(R) = (AbGr(R), RightModMult(R)).

We now state the proposition
(64) RightMod(R) = (AbGr(R), RightModMult(R)).
In the sequel V' will denote a right module structure over R. Let us consider

R, V, and let x be a scalar of R, and let v be a vector of V. The functor v - x
yielding a vector of V is defined as follows:

(Def.15)  for every scalar ' of V such that 2’ = z holds v -z = (the right
multiplication of V')(v, ).
We now state the proposition

(66)% For every V being a right module structure over R and for every scalar
x of R and for every vector v of V and for every scalar z’ of V' such that
2’ = z holds v - & = (the right multiplication of V')(v, z’).

Let us consider R. The functor BiMod(R) yielding a bimodule structure over
R is defined as follows:

(Def.16)  BiMod(R) = (AbGr(R), LeftModMult(R), RightModMult(R)).

The following proposition is true
(67) BiMod(R) = (AbGr(R), LeftModMult(R), RightModMult(R)).

In the sequel V is a bimodule structure over R. Let us consider R, V, and
let x be a scalar of R, and let v be a vector of V. The functor z - v yields a
vector of V' and is defined as follows:

(Def.17)  for every scalar 2’ of V such that 2’ = x holds z - v = (the left multipli-
cation of V)(2/, v).
One can prove the following proposition

(69)* For every V being a bimodule structure over R and for every scalar
of R and for every vector v of V and for every scalar z’ of V such that
2’ = z holds z - v = (the left multiplication of V')(z’, v).

Let us consider R, V, and let x be a scalar of R, and let v be a vector of V.
The functor v - x yields a vector of V and is defined by:

(Def.18)  for every scalar 2’ of V such that 2’ = z holds v - x = (the right
multiplication of V) (v, z’).

The following proposition is true

3The proposition (65) was either repeated or obvious.
4The proposition (68) was either repeated or obvious.
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(70)  For every V being a bimodule structure over R and for every scalar z
of R and for every vector v of V and for every scalar 2’ of V such that
2’ = x holds v - x = (the right multiplication of V')(v, x’).
In the sequel R will denote an associative ring. Next we state the proposition
(71)  Let x, y be scalars of R. Let v, w be vectors of LeftMod(R). Then
z-(vtw)=z-v+z-wand (x+y)-v=x-v+y-vand (x-y)-v=2x-(y-v)
and (1) -v =w.
Let us consider R. A left module structure over R is called a left module
over R if:
(Def.19)  Let x, y be scalars of R. Let v, w be vectors of it . Then z - (v + w) =
z-v+x-wand (x+y) - v=z-v+y-vand (z-y)-v==x-(y-v) and
(13) U =0.
We now state the proposition
(72)  Let V be a left module structure over R. Then the following conditions
are equivalent:
(i)  for all scalars x, y of R and for all vectors v, w of V holds z- (v +w) =
z-v+x-wand (t+y) - v=z-v+y-vand (z-y)-v==x-(y-v) and
(1R) U=,
(ii) V is a left module over R.
Let us consider R. Then LeftMod(R) is a left module over R.

For simplicity we adopt the following rules: R is an associative ring, x, y are
scalars of R, Ls is a left module over R, and v, w are vectors of Ls. We now
state several propositions:

73) z-(vtw) =z-v+z-w.

(

(14) (z+y) - v=x-v+y-v.

(75) (z-y)-v=z-(y-v).

(76) (1g)-v=w.

(77)  Let z, y be scalars of R. Let v, w be vectors of RightMod(R). Then

(v+w)-z=v-r+w-rzandv-(r+y)=v-z+v-yandv-(y-z) = (v-y)-x
and v- (1g) = v.
Let us consider R. A right module structure over R is said to be a right
module over R if:

(Def.20)  Let x, y be scalars of R. Let v, w be vectors of it . Then (v +w) -z =
vez+w-zandv-(r+y)=v-x+v-yandv-(y-z)= (v-y) 2z and
v-(1g) = .

The following proposition is true
(78)  Let V be aright module structure over R. Then the following conditions
are equivalent:

(i)  for all scalars z, y of R and for all vectors v, w of V holds (v+w) -z =
vezt+w-zandv-(r+y)=v-x+v-yandv-(y-z)= (v-y) zand
v-(1g) =,

(ii) V is a right module over R.
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Let us consider R. Then RightMod(R) is a right module over R.

For simplicity we follow the rules: R is an associative ring, x, y are scalars
of R, Ry is a right module over R, and v, w are vectors of Ro. We now state
four propositions:

(719) (v4w) - z=v-z+w-
(80) wv-(z+y) =v-x4v-y.
(81) v-(y-z)=(v-y) =
(82) wv-(1g) =wv.

Let us consider R. A bimodule structure over R is said to be a bimodule
over R if:

(Def.21)  Let x, y be scalars of R. Let v, w be vectors of it . Then

) z-(v+w)=z-v+x-w,
(i) (z4+y)-v=x-v+y-v,
(i) (z-y)-v=x-(y-v),
(iv) (1r)-v=v,

v) (wHw)-z=v-z+w- =z,
(vi) v-(z4+y)=v-x+uv-y,
(vii) v (y-z)=(v-y)- =,
(viii)  wv-(1g) =,

() 2 (0-y)=(@0)y

Next we state two propositions:

(83)  Let V be a bimodule structure over R. Then the following conditions
are equivalent:

(i)  for all scalars z, y of R and for all vectors v, w of V holds z - (v +w) =
z-v+z-wand (z+y) - v=z-v+y-vand (z-y)-v=2x-(y-v) and
(l1g)-v=wvand (v4+w) - z=v-z4+w-zandv-(z+y)=v-z4+0v-y
andv-(y-z)=@w-y)-zandv-(1g) =vand z-(v-y) = (x-v) -y,

(i) V is a bimodule over R.

(84) BiMod(R) is a bimodule over R.
Let us consider R. Then BiMod(R) is a bimodule over R.
For simplicity we follow the rules: R will be an associative ring, x, y will be
scalars of R, Ry will be a bimodule over R, and v, w will be vectors of Ry. The
following propositions are true:

(85) x-(v+w)=z-v+z- W
8) (z+y)-v=x-v+y-v.
(@-y)-v=1u-(y-v)

e d]
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(93) z-(v-y)=(z-v)- vy
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Summary. Proof of the Desargues theorem in Fanoian projective
at least 3-dimensional space.

MML Identifier: PROJDES1.

The notation and terminology used in this paper are introduced in the following
papers: [5], [1], [2], [3], and [4]. We follow a convention: F; will be an at least
3-dimensional projective space defined in terms of collinearity and a, a’, b, V', c,
d,d,d, o, p,q,r,s,t, u, x will be elements of the points of F. One can prove
the following propositions:

(1) If a, b and c are collinear, then b, ¢ and a are collinear and ¢, a and b
are collinear and b, a and ¢ are collinear and a, ¢ and b are collinear and
¢, b and a are collinear.

(2) Ifa+# band a, band c are collinear and a, b and d are collinear, then
a, ¢ and d are collinear.

(3) Ifp+#qand a, band p are collinear and a, b and ¢ are collinear and p,
q and r are collinear, then a, b and r are collinear.

(4) If p # q, then there exists r such that p, ¢ and r are not collinear.

(5)  There exist g, r such that p, ¢ and r are not collinear.

(6) If a, b and ¢ are not collinear and a, b and b’ are collinear and a # ¥/,
then a, b’ and ¢ are not collinear.

(7) If a, b and ¢ are not collinear and a, b and d are collinear and a, ¢ and
d are collinear, then a = d.

(8) If 0, a and d are not collinear and o, d and d’ are collinear and a, d and
s are collinear and d # d’ and o', d’ and s are collinear and o, a and a’
are collinear and o # a’, then s # d.

!Supported by RPBP.I11-24.C6.

© 1991 Fondation Philippe le Hodey
13 ISSN 0777-4028



14 EuGENIUSZ KUSAK

Let us consider Fi, a, b, ¢, d. We say that a, b, ¢, d are coplanar if and only
if:
(Def.1)  there exists an element z of the points of F such that a, b and x are
collinear and ¢, d and x are collinear.

One can prove the following propositions:

(10)2 If a, b and c are collinear or b, ¢ and d are collinear or ¢, d and a are
collinear or d, a and b are collinear, then a, b, ¢, d are coplanar.

(11)  Suppose a, b, ¢, d are coplanar. Then b, ¢, d, a are coplanar and ¢, d,
a, b are coplanar and d, a, b, ¢ are coplanar and b, a, ¢, d are coplanar
and ¢, b, d, a are coplanar and d, ¢, a, b are coplanar and a, d, b, ¢ are
coplanar and a, ¢, d, b are coplanar and b, d, a, ¢ are coplanar and ¢, a,
b, d are coplanar and d, b, ¢, a are coplanar and ¢, a, d, b are coplanar
and d, b, a, ¢ are coplanar and a, ¢, b, d are coplanar and b, d, ¢, a are
coplanar and a, b, d, ¢ are coplanar and a, d, ¢, b are coplanar and b, c,
a, d are coplanar and b, a, d, c are coplanar and ¢, b, a, d are coplanar
and ¢, d, b, a are coplanar and d, a, ¢, b are coplanar and d, ¢, b, a are
coplanar.

(12) If a, b and c are not collinear and a, b, ¢, p are coplanar and a, b, ¢, q
are coplanar and a, b, ¢, r are coplanar and a, b, ¢, s are coplanar, then
P, q, r, s are coplanar.

(13) If p, g and r are not collinear and a, b, ¢, p are coplanar and a, b, ¢, r
are coplanar and a, b, ¢, g are coplanar and p, g, r, s are coplanar, then
a, b, ¢, s are coplanar.

(14) If p # q and p, ¢ and r are collinear and a, b, ¢, p are coplanar and a,
b, ¢, q are coplanar, then a, b, ¢, r are coplanar.

(15) If a, band c are not collinear and a, b, ¢, p are coplanar and a, b, ¢, q are
coplanar and a, b, ¢, r are coplanar and a, b, ¢, s are coplanar, then there
exists x such that p, ¢ and x are collinear and 7, s and = are collinear.

(16)  There exist a, b, ¢, d such that a, b, ¢, d are not coplanar.

(17)  If p, ¢ and r are not collinear, then there exists s such that p, ¢, r, s
are not coplanar.

(18) Ifa=bora=corb=cora=dorb=dord=c, then a, b, ¢, d are
coplanar.

(19) If a, b, ¢, o are not coplanar and o, a and a’ are collinear and a # d’,
then a, b, ¢, a’ are not coplanar.

(20)  Suppose that
(i) @, band c are not collinear,
ii) d, b and ¢ are not collinear,
iii) a, b, ¢, p are coplanar,

) a, b, ¢, q are coplanar,

) a, b, c, rare coplanar,

2The proposition (9) was either repeated or obvious.
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) b, d, pare coplanar,
(vii) d', ¥, ¢, q are coplanar,

) d, b, rare coplanar,

) a,b,c, a’ are not coplanar.
Then p, ¢ and r are collinear.

—~
[\)
—_

~—

Suppose that
a#a,
/ .
0, a and a’ are collinear,
a, b, ¢, o are not coplanar,

S~
—_. o~
= e

—
—-
—-

—~
T
— e S e S e

iv) a, b and ¢ are not collinear,
a, b and p are collinear,
(vi) d, b and p are collinear,
(vii) b, ¢ and q are collinear,

b, ¢ and g are collinear,

a, c and r are collinear,

a’, ¢ and r are collinear.
Then p, ¢ and r are collinear.

—
—-
—-

G

(22) If a, b, ¢, d are not coplanar and a, b, ¢, o are coplanar and a, b and o
are not collinear, then a, b, d, o are not coplanar.

(23) If a, b, ¢, 0 are not coplanar and o, a and a are collinear and o, b and
b’ are collinear and o, ¢ and ¢’ are collinear and o # a’ and o # b and
0 # ¢, then d’, b’ and ¢ are not collinear and a’, V/, ¢/, 0 are not coplanar.

(24)  Suppose that

(1 a, b, ¢, o are coplanar,
a, b, ¢, d are not coplanar,
a, b, d, o are not coplanar,

S~
—
—-

)
ii)
)
iv) b, ¢, d, o are not coplanar,
(v) a,c,d, oare not coplanar,
(vi) o, d and d" are collinear,
(vii) o, a and o’ are collinear,
(viii) o, b and ¥’ are collinear,
(ix) o, cand ¢ are collinear,
(x) a,dand s are collinear,
(xi) d/, d and s are collinear,
(xii) b, d and t are collinear,
(xiii) b/, d’ and t are collinear,
(xiv) ¢, d and u are collinear,
(xv) o#d,
(xvi) o#d,
(xvil)) d#d,
(xviii) o #Vb.

Then s, t and u are not collinear.

Let us consider Fi, o, a, b, c. We say that o, a, b, and ¢ constitute a
quadrangle if and only if:

15
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(Def.2) @, b and c are not collinear and o, a and b are not collinear and o, b and
c are not collinear and o, ¢ and a are not collinear.

The following propositions are true:

(26)® Suppose that

(i) o, a and b are not collinear,
0, b and c are not collinear,
0, a and ¢ are not collinear,

S~
e
—-

—
—-
—-

—~

)
)

iv) o, a and o’ are collinear,

(v) o, band are collinear,
(vi) o, cand ¢ are collinear,
(vii)  a, b and p are collinear,

(viii)  d/, t/ and p are collinear,

(ix) a#d,

(x) b, cand r are collinear,
(xi) ¥, and r are collinear,
(xii) @, c and q are collinear,

(xiil) b0,

(xiv) d/, ¢ and q are collinear,
(xv) o#d,

(xvi) o#UV,

(xvil) o# (.

Then r, ¢ and p are collinear.

(27)  For every at least 3-dimensional projective space C defined in terms of
collinearity holds C; is a Desarguesian at least 3-dimensional projective
space defined in terms of collinearity.

We see that the at least 3-dimensional projective space defined in terms of
collinearity is a Desarguesian at least 3-dimensional projective space defined in
terms of collinearity.
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The Limit of a Real Function at Infinity
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Summary. We introduce the halflines (open and closed), real se-
quences divergent to infinity (plus and minus) and the proper and im-
proper limit of a real function at infinity. We prove basic properties of
halflines, sequeces divergent to infinity and the limit of function at infin-
ity.

MML Identifier: LIMFUNC1.

The articles [14], [4], [1], [2], (12], [10], [5], [6], [11], [15], 3], [7], [8], [13], and [9
provide the terminology and notation for this paper. For simplicity we follow
a convention: r, r1, T2, g, g1, go are real numbers, X is a subset of R, n, m,
k are natural numbers, si, s3, s3 are sequences of real numbers, and f, f1, fo
are partial functions from R to R. Let us consider n, m. Then max(n,m) is a
natural number.

We now state four propositions:

(1) If0<r and r; <rgand 0 < g; and g1 < go, then r1 - g1 < 19 - go.

(2) Ifr#0, then (—r)~!t = —r~L

(3) Ifri<mr andr2<0and0<g,then%<%.

(4) Ifr <0, then r—! <0.

Let us consider . We introduce the functor |—oo, 7| as a synonym of HL(r).

We now define three new functors. Let us consider r. The functor |—oo, r]
yielding a subset of R is defined as follows:

(Def.l)  |—oo,r]={g:9<r}.
The functor [r, +o00[ yields a subset of R and is defined as follows:
(Det.2)  [r,4o0[={g:r < g}
The functor |r, +o0o[ yielding a subset of R is defined by:
(Def.3)  r,+oo]={g:7 < g}.
!Supported by RPBP.ITI-24.C8
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One can prove the following propositions:
X =]—o0,r]if and only if X ={g:g <r}.
X = [r,4oo[ if and only if X = {g:7 < g}.
X =|r,4oo[if and only if X = {g:7 < g}.
If r1 < rg, then |re, +o00[ C |ry, +ool.
If r1 < rg, then [ro, +o00[ C [r1, +o0l.

S Ot

Qo

=~ A~~~
Nej ~

)
)
)
)
)
(10)  Jr,+oo[ C [r, +o0].
(11)  Jr,g[ € ]r, 4ool.
(12)  [r,g] € [r,4ool.
(13)  If ry < 7y, then |—o0,ri[ C |—o00,rs].
(14) If r; <9, then |—o0,r1] C |—00,79].
(15)  ]—o0,r[ C |—00,7].
(16)  Jg,r[ C ]—o0,7|
(17)  [g,r] € ]—o0,r].
(18)  ]—oo,r[N]g,+oo[ =]g,7[.
(19)  ]—oo,r]N[g,+o0[ = [g,7].
(20)  If r <y, then |ry,ro[ C |r,+oo] and [ry, 73] C [r,+o00].
(21) If r < rq, then [rq,r9] C |r, +ool.
(22) If ro <, then |ri, o[ C |—o0,r] and [r1,r2] C ]—o00,7].
(23) If ro <7, then [rq,r9] C]—o0,r].
(24)  R\]r,4+o0[ = |—o0,r] and R\[r, +00[ = |—o0, r[ and R\]|—o0, [ = [r, +00]
and R\ |—o0,7] = ]r +o0.
(25) R\ |ri,ra[ =]—00,r1] U[re, 400 and R\ [r1, 73] = |—o00,r1[ U]re, +00].

(26) If s; is non-decreasing, then s; is lower bounded but if s; is non-
increasing, then s; is upper bounded.

(27) If s1 is non-zero and sp is convergent and lims; = 0 and s; is non-
decreasing, then for every n holds s1(n) < 0.

(28) If sy is non-zero and sp is convergent and lims; = 0 and s; is non-
increasing, then for every n holds 0 < s1(n).

(29) If s; is convergent and 0 < lim s;, then there exists n such that for
every m such that n < m holds 0 < s1(m).

(30) If sy is convergent and 0 < lims;, then there exists n such that for
every m such that n < m holds hstl < s1(m).

We now define two new predicates. Let us consider s;. We say that s is
divergent to +oc if and only if:

(Def.4)  for every r there exists n such that for every m such that n < m holds

r < s1(m).
We say that sp is divergent to —oo if and only if:

(Def.5)  for every r there exists n such that for every m such that n < m holds

s1(m) <.
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Next we state a number of propositions:

(33)2 If sy is divergent to 400 or sy is divergent to —oo, then there exists n
such that for every m such that n < m holds s1 | m is non-zero.

(34) If s; Tk is divergent to 400, then s; is divergent to +o00 but if s1 T k is
divergent to —oo, then s; is divergent to —oo.

(35) If s9 is divergent to 400 and s3 is divergent to +oo, then sg + s3 is
divergent to 4o0.

(36)  If s9 is divergent to +o00 and s3 is lower bounded, then so+s3 is divergent
to +o0.

(37)  1If s9 is divergent to +o00 and s3 is divergent to +oo, then sos3 is diver-
gent to 4-o00.

(38) If s9 is divergent to —oo and s3 is divergent to —oo, then sg + s3 is
divergent to —oo.

(39) If s is divergent to —oo and s3 is upper bounded, then s; + s3 is
divergent to —oo.

(40)  If s is divergent to 400 and r > 0, then rs; is divergent to +oo but if
s1 is divergent to +o00 and r < 0, then rs; is divergent to —oo but if s; is
divergent to +o00 and r = 0, then rng(rs;) = {0} and rs; is constant.

(41)  If s is divergent to —oco and r > 0, then rsy is divergent to —oo but if
s1 is divergent to —oo and r < 0, then rsy is divergent to +oo but if s7 is
divergent to —oco and r = 0, then rng(rsy) = {0} and rs; is constant.

(42) If sp is divergent to 400, then —s; is divergent to —oo but if s; is
divergent to —oo, then —s; is divergent to +oo.

(43)  1If 51 is lower bounded and s; is divergent to —oo, then s1—s5 is divergent
to 4-o00.

(44) If s; is upper bounded and s is divergent to +oo, then s; — sg is
divergent to —oo.

(45)  If s; is divergent to +oo and sy is convergent, then s; + so is divergent
to +o0.

(46)  1If sq is divergent to —oo and s is convergent, then s; + s9 is divergent
to —oo.

(47)  If for every n holds s1(n) = n, then s; is divergent to +oo.
(48)  If for every m holds s1(n) = —n, then s is divergent to —oc.

(49)  If sy is divergent to +oo and there exists r such that » > 0 and for every
n holds s3(n) > r, then sys3 is divergent to +oco.

(50)  If sy is divergent to —oo and there exists r such that 0 < r and for every
n holds s3(n) > r, then sos3 is divergent to —oo.

(51)  If s9 is divergent to —oo and s3 is divergent to —oo, then sgs3 is diver-
gent to +o0.

2The propositions (31)—(32) were either repeated or obvious.
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If 57 is divergent to +oo or s is divergent to —oo, then |s1] is divergent
to +oo0.

If s1 is divergent to 400 and sy is a subsequence of sy, then s is
divergent to 4o00.

If s1 is divergent to —oo and so is a subsequence of sy, then so is
divergent to —oo.

If s5 is divergent to +oo and sg is convergent and 0 < lim s3, then sss3
is divergent to +oc.

If s1 is non-decreasing and s; is not upper bounded, then s; is divergent
to +oo0.

If s1 is non-increasing and s; is not lower bounded, then s; is divergent
to —o0.

If sq is increasing and sp is not upper bounded, then s; is divergent to
+00.

If s1 is decreasing and s; is not lower bounded, then sy is divergent to
—00.

If s; is monotone, then s; is convergent or s; is divergent to +oo or s;
is divergent to —oo.

If s1 is divergent to 400 or s; is divergent to —oo but sy is non-zero,
then s; ! is convergent and lim s;~! = 0.

Next we state several propositions:

(62)

If s1 is non-zero and sy is convergent and lim s; = 0 and there exists
k such that for every n such that k& < n holds 0 < si(n), then s;7 ! is
divergent to +4o00.

If s1 is non-zero and s; is convergent and lim s; = 0 and there exists
k such that for every n such that & < n holds si(n) < 0, then s;7! is
divergent to —oo.

If s1 is non-zero and s; is convergent and lims; = 0 and s is non-
decreasing, then s;~! is divergent to —oo.

If s1 is non-zero and sp is convergent and lims; = 0 and s; is non-
increasing, then s;~! is divergent to +oc.

If s1 is non-zero and sy is convergent and lim s; = 0 and s; is increasing,
then s; ! is divergent to —oc.

If s1 is non-zero and s is convergent and lim s; = 0 and s; is decreasing,
then s; ! is divergent to +oc.

If s9 is bounded but sz is divergent to +oo or sg is divergent to —oo
and s3 is non-zero, then ‘;—g is convergent and lim ‘;—g =0.

If s1 is divergent to +oo and for every n holds s1(n) < sa(n), then so
is divergent to +oc.

If s1 is divergent to —oo and for every n holds sa(n) < s1(n), then so
is divergent to —oo.
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We now define several new predicates. Let us consider f. We say that f is
convergent in +oo if and only if:

(Def.6)  for every r there exists g such that r < g and g € dom f and there exists
g such that for every s; such that s; is divergent to 400 and rngs; C
dom f holds f - s1 is convergent and lim(f - s1) = g.
We say that f is divergent in 400 to 400 if and only if:

(Def.7)  for every r there exists g such that r < g and g € dom f and for every
s1 such that sy is divergent to +oo and rngs; C dom f holds f - sy is
divergent to 4o0.

We say that f is divergent in 400 to —oo if and only if:

(Def.8)  for every r there exists g such that r < g and g € dom f and for every
s1 such that sy is divergent to +oo and rngs; C dom f holds f - sy is
divergent to —oo.

We say that f is convergent in —oo if and only if:

(Def.9)  for every r there exists g such that g < r and g € dom f and there exists
g such that for every s; such that s; is divergent to —oo and rngs; C
dom f holds f - s1 is convergent and lim(f - s1) = g.
We say that f is divergent in —oo to 400 if and only if:

(Def.10)  for every r there exists g such that g < r and g € dom f and for every
s1 such that sy is divergent to —oo and rngs; € dom f holds f - sy is
divergent to +o0.

We say that f is divergent in —oo to —oo if and only if:

(Def.11)  for every r there exists g such that g < r and g € dom f and for every
s1 such that sy is divergent to —oo and rngs; € dom f holds f - sy is
divergent to —oo.

We now state a number of propositions:

(77)%  f is convergent in +oo if and only if for every r there exists g such
that r < g and g € dom f and there exists g such that for every g; such
that 0 < g1 there exists r such that for every ri such that » < r1 and
r1 € dom f holds |f(r1) — g| < g1.

(78)  f is convergent in —oo if and only if for every r there exists g such
that ¢ < r and g € dom f and there exists g such that for every g1 such
that 0 < g1 there exists r such that for every r; such that r; < r and
r1 € dom f holds |f(r1) — g| < g1.

(79)  f is divergent in +oo to 400 if and only if for every r there exists g
such that r < g and g € dom f and for every g there exists r such that
for every r; such that » < 7y and r; € dom f holds g < f(r1).

(80)  f is divergent in +oo to —oo if and only if for every r there exists g
such that r < g and g € dom f and for every g there exists r such that
for every r; such that » < 7y and r; € dom f holds f(r1) < g.

3The propositions (71)—(76) were either repeated or obvious.
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(81)  f is divergent in —oo to +oo if and only if for every r there exists g
such that g < r and g € dom f and for every g there exists r such that
for every r1 such that r; < r and r1 € dom f holds g < f(r1).

(82)  f is divergent in —oo to —oo if and only if for every r there exists g
such that g < r and g € dom f and for every g there exists r such that
for every 71 such that r; < r and r; € dom f holds f(r1) < g.

(83) If fy is divergent in +oo to +00 and fo is divergent in +o0o to +o0o and
for every r there exists g such that » < g and ¢ € dom f; N dom fo, then
f1+ fo is divergent in 400 to +00 and f1 fo is divergent in 400 to +oo.

(84) If fy is divergent in +o0o0 to —oo and fs is divergent in +00 to —oo and
for every r there exists g such that » < g and g € dom f; Ndom f2, then
f1+ f2 is divergent in 400 to —oo and f1 fo is divergent in 400 to +oo.

(85) If fy is divergent in —oo to +o0 and fs is divergent in —oo to +oo and
for every r there exists g such that g < r and g € dom f; Ndom f3, then
f1+ f2 is divergent in —oo to +00 and f1 fo is divergent in —oo to +oo.

(86) If fy is divergent in —oo to —oo and fs is divergent in —oo to —oo and
for every r there exists g such that g < r and g € dom f; Ndom f2, then
f1+ fo is divergent in —oo to —oo and f1 fo is divergent in —oo to +o0.

(87) If f1 is divergent in +oo to +o0o and for every r there exists g such
that r < g and g € dom(f; + f2) and there exists r such that fo is lower
bounded on |r, +oc[, then f; + f3 is divergent in +00 to +o0c.

(88) If fi is divergent in +oo to 400 and for every r there exists g such that
r < g and g € dom(f1f2) and there exist r, r; such that 0 < r and for
every g such that g € dom fy N |ry,+oo[ holds r < fa(g), then fyfs is
divergent in +o00 to +o00.

(89) If f1 is divergent in —oo to 400 and for every r there exists g such
that g < r and g € dom(f; + f2) and there exists r such that fo is lower
bounded on |—oo, [, then f1 + fo is divergent in —oo to +oc.

(90)  If f; is divergent in —oo to 400 and for every r there exists g such that
g < r and g € dom(f1f2) and there exist r, r; such that 0 < r and for
every g such that g € dom fo N |—o0, 7] holds r < fa(g), then fifs is
divergent in —oo to +o0.

(91) If f is divergent in +o0 to +o0 and r > 0, then rf is divergent in +oo
to +o00 but if f is divergent in +o00 to 400 and r < 0, then rf is divergent
in +00 to —oo but if f is divergent in +00 to —oo and r > 0, then rf is
divergent in +00 to —oo but if f is divergent in +00 to —oo and r < 0,
then rf is divergent in +oo to 4o00.

(92) If f is divergent in —oo to +oo and 7 > 0, then rf is divergent in —oo
to 400 but if f is divergent in —oo to 400 and r < 0, then rf is divergent
in —oo to —oo but if f is divergent in —oo to —oo and 7 > 0, then 7f is
divergent in —oo to —oo but if f is divergent in —oo to —oo and r < 0,
then rf is divergent in —oo to +o0.

(93) If f is divergent in +oo to +oo or f is divergent in 400 to —oo, then
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|f| is divergent in +o00 to +o0.

(94) If f is divergent in —oo to +oo or f is divergent in —oo to —oo, then
|f| is divergent in —oo to +00.

(95)  If there exists r such that f is non-decreasing on |r,+oo[ and f is not
upper bounded on |r, +oo[ and for every r there exists g such that r < g
and g € dom f, then f is divergent in +o00 to +oo.

(96)  If there exists r such that f is increasing on |r, 400 and f is not upper
bounded on |r, +oo[ and for every r there exists g such that r < g and
g € dom f, then f is divergent in +o00 to +oo.

(97)  If there exists r such that f is non-increasing on |r,4+o0o[ and f is not
lower bounded on |r, +oo[ and for every r there exists g such that r < g
and g € dom f, then f is divergent in +o0o to —oo.

(98)  If there exists r such that f is decreasing on |r,4+o00[ and f is not lower
bounded on |r, +oo[ and for every r there exists g such that r < g and
g € dom f, then f is divergent in +o00 to —oo.

(99)  If there exists r such that f is non-increasing on |—oo,r[ and f is not
upper bounded on |—oo, r[ and for every r there exists g such that g < r
and g € dom f, then f is divergent in —oo to +oo0.

(100)  If there exists r such that f is decreasing on |—oco, r[ and f is not upper
bounded on |—oo,r| and for every r there exists g such that g < r and
g € dom f, then f is divergent in —oo to +oo.

(101)  If there exists r such that f is non-decreasing on |—oo,r[ and f is not
lower bounded on |—oo, r[ and for every r there exists g such that g < r
and g € dom f, then f is divergent in —oo to —oo.

The following propositions are true:

(102)  If there exists r such that f is increasing on |—oo,r[ and f is not lower
bounded on |—oo,r[ and for every r there exists g such that g < r and
g € dom f, then f is divergent in —oo to —oo.

(103)  Suppose f1 is divergent in +00 to +o00 and for every r there exists g such
that r < g and g € dom f and there exists r such that dom f N ]r, +o00[ C
dom f; N ]r,+o00| and for every g such that ¢ € dom f N ]r,+oo[ holds
fi(g) < f(g). Then f is divergent in +oo to +oc.

(104)  Suppose f1 is divergent in +00 to —oo and for every r there exists g such
that r < g and g € dom f and there exists r such that dom f N ]r, +o00[ C
dom f; N ]r,+o00| and for every g such that ¢ € dom f N ]r,+oo[ holds
f(g9) < fi(g). Then f is divergent in +oo to —oc.

(105)  Suppose f1 is divergent in —oo to +o00 and for every r there exists g such
that g < r and g € dom f and there exists r such that dom f N]—o0,r[ C
dom f; N |—oo,r[ and for every g such that g € dom f N ]—oo,r[ holds
fi(g) < f(g). Then f is divergent in —oo to +oc.

(106)  Suppose f1 is divergent in —oo to —oo and for every r there exists g such
that g < r and g € dom f and there exists r such that dom f N]—o0,r[ C

23
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dom f; N ]—oo,r[ and for every g such that g € dom f N |—oo,r[ holds
f(g) < fi(g). Then f is divergent in —oo to —oc.

(107)  If f; is divergent in 400 to +00 and there exists r such that |r, +-00[ C
dom f Ndom f; and for every g such that g € ]r, +o0o[ holds f1(g) < f(9),
then f is divergent in +o00 to +oc.

(108)  If fy is divergent in 400 to —oo and there exists 7 such that |r, +00|
dom f Ndom f; and for every g such that g € ]r, +o0o[ holds f(g) < f1(g),
then f is divergent in +o00 to —oc.

N

(109)  If f; is divergent in —oo to 400 and there exists 7 such that |—oo, [
dom f Ndom f; and for every g such that g € |—oo,r[ holds f1(g) < f(g
then f is divergent in —oo to +oc.

\/Iﬂ

(110)  If f; is divergent in —oo to —oo and there exists r such that |—oo, [ C
dom f Ndom f; and for every g such that g € |—oo,r[ holds f(g) < f1(g),
then f is divergent in —oo to —oo.
Let us consider f. Let us assume that f is convergent in +oo. The functor
limy  f yielding a real number is defined by:

(Def.12)  for every s; such that s; is divergent to 400 and rngs; € dom f holds
f - s1is convergent and lim(f - s1) = limy f.

Let us consider f. Let us assume that f is convergent in —oo. The functor
lim_, f yields a real number and is defined by:

(Def.13)  for every s; such that s; is divergent to —oo and rngs; C dom f holds
f - s1 is convergent and lim(f - s;) = lim_ f.
Next we state a number of propositions:

(111) If f is convergent in 4oo, then lim,, f = ¢ if and only if for every
s1 such that sq is divergent to +oo and rngs; C dom f holds f - sy is
convergent and lim(f - s1) = g.

(112) If f is convergent in —oo, then lim_, f = g if and only if for every
s1 such that sy is divergent to —oo and rngs; C dom f holds f - sy is
convergent and lim(f - s1) = g.

(113) If f is convergent in —oo, then lim_,, f = g if and only if for every g;
such that 0 < gy there exists r such that for every ry such that r; < r
and 1 € dom f holds |f(r1) — g| < g1-

(114) If f is convergent in +oo, then lim . f = g if and only if for every g;
such that 0 < gy there exists r such that for every r; such that r < r;
and 1 € dom f holds |f(r1) — g| < g1-

(115)  If f is convergent in 400, then r f is convergent in +o00 and lim 4 (rf) =
r: (hm-i-oo f)

(116)  If f is convergent in +oo, then — f is convergent in 400 and lim 4o (—f) =

(117)  If fy is convergent in +oo and fy is convergent in 400 and for every
r there exists g such that r < g and g € dom(f; + f2), then f1 + f5 is
convergent in 400 and lim o (f1 + f2) = lim o f1 + limy o fo.
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(118) If fy is convergent in +oo and fo is convergent in 4+oo and for every
r there exists g such that r < g and g € dom(f; — f2), then f; — f5 is
convergent in 400 and lim o (f1 — f2) = lim oo f1 — limy o fo.

(119)  If f is convergent in +oo and f ~! {0} = () and lim ., f # 0, then % is
convergent in 400 and lim+oo% = (limy o f)7 1.

(120)  If f is convergent in +oo, then | f| is convergent in +oo and lim, |f| =
| hm—l—oo f|

(121)  If f is convergent in +oo and lim,, f # 0 and for every r there exists
g such that r < g and g € dom f and f(g) # 0, then % is convergent in
+oo and lim % = (lim; o f)7 L.

(122) If fy is convergent in 400 and fo is convergent in +o0o and for every r
there exists g such that r < g and g € dom(f1f2), then fi fs is convergent
in +oo and lim oo (f1f2) = (lim oo f1) - (iMoo f2)-

(123)  If f1 is convergent in +o00 and fs is convergent in +o0o and lim, fo # 0
and for every r there exists g such that r < g and g € dom %, then % is

convergent in +oo and lim % = mioog
oo

(124)  If f is convergent in —oo, then r f is convergent in —oo and lim _ . (rf) =
r- (lim_o f).

(125)  If f is convergent in —oo, then — f is convergent in —oo and lim _o(—f) =
—lim_ f.

(126) If f; is convergent in —oo and fo is convergent in —oo and for every
r there exists g such that ¢ < r and g € dom(f; + f2), then f; + f5 is
convergent in —oo and lim_o(f1 + f2) = lim_s f1 + lim_ fo.

(127) If f; is convergent in —oo and fo is convergent in —oo and for every
r there exists g such that ¢ < r and g € dom(f; — f2), then f; — f5 is
convergent in —oo and lim_o(f1 — f2) = lim_o f1 — lim_ fo.

(128)  If f is convergent in —co and f ~! {0} = () and lim_, f # 0, then % is
convergent in —oo and lim_oo% = (lim_ f)7".

(129)  If f is convergent in —oo, then |f] is convergent in —oo and lim_, |f| =
[lim_ o f]-

(130) If f is convergent in —oo and lim_, f # 0 and for every r there exists
g such that ¢ < r and g € dom f and f(g) # 0, then % is convergent in
—oo and lim_oo% = (lim_o f)7L.

(131) If f; is convergent in —oo and fo is convergent in —oo and for every r
there exists g such that g < r and g € dom(f1f2), then fi fs is convergent
in —oo and lim_(f1f2) = (im_w f1) - (lim_so f2).

(132) If fy is convergent in —oo and f is convergent in —oco and lim_, fo # 0

and for every r there exists g such that ¢ < r and g € dom %, then % is
convergent in —oo and lim_ % = Eziz 2

(133) If fi is convergent in +oo and lim ., f1 = 0 and for every r there exists
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g such that r < g and g € dom(fif2) and there exists r such that fo is
bounded on |r, 400, then f; f2 is convergent in +o00 and lim o (f1 f2) = 0.
(134) If f; is convergent in —oo and lim_, f1 = 0 and for every r there exists
g such that g < r and g € dom(f;f2) and there exists r such that fo is
bounded on |—oo, r[, then f; f2 is convergent in —oo and lim_ o (f1f2) = 0.
(135)  Suppose that
i)  fi is convergent in +oo,
(ii)  fo is convergent in +o0,
( i.) liIn+oo fl = liIn+oo f27
(iv)
)

—

—

i

iv)  for every r there exists g such that r < g and g € dom f,

(v)  there exists r such that dom f; N |r,+oo[ C dom fa N |r,4+o0[ and
dom fN]r,+oo[ C dom f1N]r, 400 or dom foN]r, +o00[ C dom f1 N]r, +0o0]
and dom f N |r, +oo[ C dom fo N |r,+o0] but for every g such that g €

dom f N ]r, +-00[ holds fi(g) < f(g) and f(g) < fa(g)-
Then f is convergent in +o0o0 and lim o, f = lim; f1.

(136) Suppose fi is convergent in +oo and fy is convergent in +oo and
lim, o f1 = limy fo and there exists r such that |r,+oo[ C (dom f1 N
dom fy) Ndom f and for every g such that g € |r, +00[ holds f1(g) < f(9)
and f(g) < fa(g). Then f is convergent in 400 and lim o f = lim o fi.
(137)  Suppose that
) fi1is convergent in —oo,
) fo is convergent in —oo,
ii) lim_oo fl = lirn_oo fg,
) for every r there exists g such that ¢ < r and g € dom f,
) there exists r such that dom f1; N ]—oo,r[ € dom fy N |—o0,r[ and
dom fN]—o0,r[ C dom f1N]—o00, 7| or dom foN]—o0,r[ C dom f1N]—o0,r]
and dom f N |—oo,r[ C dom fy N |—o0,r[ but for every g such that g €

dom f M ]—o0,r[ holds fi(g) < f(g) and f(g) < fa(g).
Then f is convergent in —oo and lim_o, f = lim_ f1.

(138)  Suppose f1 is convergent in —oco and fo is convergent in —oo and
lim_o f1 = im_o fo and there exists r such that |—oo,r[ C (dom f1 N
dom f3) Ndom f and for every g such that g € |—oo,r[ holds f1(g) < f(9)
and f(g) < f2(g). Then f is convergent in —oco and lim_, f = lim_, fi.
(139)  Suppose that
(i)  fi1 is convergent in +oo,

(ii)  fo is convergent in +oo,

(ili)  there exists r such that dom fi N |r,+oo[ C dom fo N ]r,+oo[ and for
every g such that g € dom f; N ]r,+o00[ holds fi(g) < f2(g) or dom fo N
|, +00[ € dom f1 N]r, +oo] and for every g such that g € dom foN]r, +00]
holds f1(g) < fa(g)-

Then limy o f1 < limy fo.

(140)  Suppose that
(i)  f1 is convergent in —oo,
(ii)  fo is convergent in —oo,
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(ili)  there exists r such that dom f; N]—o0,r[ C dom fy N ]—o0,r[ and for
every g such that g € dom f; N]—oo,r[ holds fi(g) < fa(g) or dom fo N
|—o00,7[ C dom f1N]—o0, r| and for every g such that g € dom foN]—o0, 7]
holds f1(g) < fa(g).

Then lim_, f1 < lim_ fo.

(141)  If f is divergent in +o00 to 400 or f is divergent in +oo to —oo but for
every r there exists g such that r < g and g € dom f and f(g) # 0, then
% is convergent in +o0o and lim % =0.

We now state several propositions:

(142)  If f is divergent in —oo to 400 or f is divergent in —oo to —oo but for
every r there exists g such that g < r and g € dom f and f(g) # 0, then
% is convergent in —oo and lim_ % = 0.

(143) If f is convergent in +oo and lim,, f = 0 and for every r there exists
g such that r < g and g € dom f and f(g) # 0 and there exists r such
that for every g such that g € dom f N ]r, +00[ holds 0 < f(g), then % is
divergent in +oo to +oo.

(144) If f is convergent in +o00 and lim, f = 0 and for every r there exists
g such that » < g and g € dom f and f(g) # 0 and there exists r such
that for every g such that g € dom f N |r,+oo[ holds f(g) < 0, then % is
divergent in 400 to —oo.

(145)  If f is convergent in —oo and lim_, f = 0 and for every r there exists
g such that ¢ < r and g € dom f and f(g) # 0 and there exists r such
that for every g such that g € dom f N]—oo,r[ holds 0 < f(g), then % is
divergent in —oo to +oo.

(146) If f is convergent in —oo and lim_, f = 0 and for every r there exists
g such that g < r and g € dom f and f(g) # 0 and there exists r such
that for every g such that g € dom f N]—oo,r[ holds f(g) < 0, then % is
divergent in —oo to —oo.

(147) If f is convergent in +oco and lim, f = 0 and there exists r such

that for every g such that g € dom f N |r,+oo[ holds 0 < f(g), then % is
divergent in 400 to +o0.

(148) If f is convergent in 400 and lim;o f = 0 and there exists r such
that for every g such that g € dom f N ]r, +00[ holds f(g) < 0, then % is
divergent in +o00 to —oo.

(149) If f is convergent in —co and lim_o, f = 0 and there exists r such
that for every g such that g € dom f N]—oo,r[ holds 0 < f(g), then % is
divergent in —oo to +o0.

(150) If f is convergent in —oo and lim_o, f = 0 and there exists r such
that for every g such that g € dom f N]—oo,r[ holds f(g) < 0, then % is
divergent in —oo to —oo.

27
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Summary. We introduce the left-side and the right-side limit of
a real function at a point. We prove a few properties of the operations
on the proper and improper one-side limits and show that Cauchy and
Heine characterizations of one-side limit are equivalent.

MML Identifier: LIMFUNC2.

The articles [15], [4], [1], [2], [13], [11], [3], [7], [12], [14], [3], [8], [9], [10], and [c]
provide the terminology and notation for this paper. For simplicity we adopt
the following convention: r, r1, r2, g, g1, o will be real numbers, n, k will be
natural numbers, s; will be a sequence of real numbers, and f, f1, fo will be
partial functions from R to R. We now state several propositions:

(1) If s; is convergent and r < lims;, then there exists n such that for
every k such that n < k holds r < s1(k).

(2) If s; is convergent and lims; < r, then there exists n such that for
every k such that n < k holds s1(k) < r.

(3) If 0 < rgand]ry —ra,7m1[ C dom f, then for every r such that r < r;
there exists g such that r < g and g < r; and g € dom f.

(4) If 0 < rgand |ry,r1 + o[ € dom f, then for every r such that r; < r
there exists g such that g < r and 1 < g and g € dom f.

(5)  If for every n holds zp— n+r1 < s1(n) and s1(n) < zp and s1(n) € dom f,
then s; is convergent and lim sy = x¢ and rngs; € dom f and rngs; C
dom f N ]—o0, x|

(6) If for every n holds zp < s1(n) and s1(n) < xO"'%ﬂ and s1(n) € dom f,
then s; is convergent and lims; = zg and rngs; € dom f and rngs; C
dom f N ]xzg, o0l
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We now define several new predicates. Let us consider f, xg. We say that f
is left convergent in xq if and only if:

(Def.1) (i)  for every r such that r < z( there exists g such that r < ¢ and
g < xg and g € dom f,
(ii)  there exists g such that for every s; such that s; is convergent and
lim sy = z¢ and rngs; C dom f N]—o0, x| holds f - s1 is convergent and
lim(f -s1) =g.
We say that f is left divergent to 400 in zg if and only if:

(Def.2)  for every r such that r < z( there exists g such that r < g and g < z¢
and g € dom f and for every s1 such that sq is convergent and lim s; = x
and rng s; C dom f N ]—o0, zo[ holds f - s; is divergent to +oo.

We say that f is left divergent to —oo in x if and only if:

(Def.3)  for every r such that r < z( there exists g such that r < g and g < z¢
and g € dom f and for every s1 such that s; is convergent and lim s = x
and rng s C dom f N ]—o0, o[ holds f - s1 is divergent to —oo.
We say that f is right convergent in z¢ if and only if:

(Def.4) (i)  for every r such that xp < r there exists g such that g < r and
xg < g and g € dom f,
(ii)  there exists g such that for every s; such that s; is convergent and
lim s; = z¢ and rng s; C dom f N ]zg, +oo[ holds f - sy is convergent and
lim(f-s1) =g
We say that f is right divergent to +oco in x¢ if and only if:

(Def.5)  for every r such that z¢y < r there exists g such that g < r and zg < g
and g € dom f and for every s; such that s; is convergent and lim s; = zg
and rng s; C dom f N ]xg, +oo[ holds f - s; is divergent to +oo.

We say that f is right divergent to —oo in zq if and only if:

(Def.6)  for every r such that x¢ < r there exists g such that ¢ < r and zg < g
and g € dom f and for every s1 such that s; is convergent and lim s; = x
and rng s1 C dom f N ]xg, +o00[ holds f - s1 is divergent to —oo.

We now state a number of propositions:

(7)  f is left convergent in zq if and only if the following conditions are
satisfied:

(i)  for every r such that r < xg there exists g such that r < g and g < xg
and g € dom f,

(ii)  there exists g such that for every s; such that s; is convergent and
lim s; = z¢ and rng s; C dom f N ]—o00, zo[ holds f - sy is convergent and
lm(f-s1) =g

(8)  fisleft divergent to +o0 in z¢ if and only if for every r such that r < zg
there exists g such that r < g and g < g and g € dom f and for every s;
such that s; is convergent and lim s; = z¢ and rngs; C dom f N]—o0, x|
holds f - s1 is divergent to +oo.
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(9)  fisleft divergent to —oo in ¢ if and only if for every r such that r < zg
there exists g such that r < g and g < g and g € dom f and for every s;
such that sj is convergent and lim s; = z¢ and rngs; C dom f N]—o0, x|
holds f - s1 is divergent to —oo.

(10)  f is right convergent in ¢ if and only if the following conditions are
satisfied:

(i)  for every r such that xg < r there exists g such that g < r and xg < g
and g € dom f,

(ii)  there exists g such that for every s; such that s; is convergent and
lim sy = z¢ and rngs; C dom f N]zg, 400 holds f - s1 is convergent and
lim(f-s1) =g.

(11)  fisright divergent to +00 in z if and only if for every r such that z¢ < r
there exists g such that ¢ < r and zg < g and g € dom f and for every s;
such that sj is convergent and lim s; = z¢ and rngs; C dom f N ]z, +00]
holds f - s1 is divergent to +oo.

(12)  fisright divergent to —oo in z if and only if for every r such that z¢ < r
there exists g such that ¢ < r and 2y < g and g € dom f and for every s;
such that s is convergent and lim s; = zp and rng sy C dom f N]xg, +00]
holds f - s1 is divergent to —oo.

(13)  f is left convergent in z( if and only if the following conditions are
satisfied:

(i)  for every r such that r < x( there exists g such that r < g and g < xg
and g € dom f,

(ii)  there exists g such that for every g; such that 0 < g; there exists r such
that r < x¢ and for every r; such that » < r; and r; < g and r; € dom f
holds |f(r1) — g < g1.

(14)  f is left divergent to 400 in xg if and only if the following conditions
are satisfied:

(i)  for every r such that r < x( there exists g such that r < g and g < xg
and g € dom f,

(ii)  for every g; there exists r such that r < xp and for every r; such that
r <rpand r; < zg and r € dom f holds g1 < f(r1).

(15)  f is left divergent to —oo in xq if and only if the following conditions
are satisfied:

(i)  for every r such that r < x( there exists g such that r < g and g < xg
and g € dom f,

(ii)  for every g; there exists r such that r < ¢ and for every r; such that
r <ryand r; < xg and 71 € dom f holds f(r1) < ¢g;.

(16)  f is right convergent in z¢ if and only if the following conditions are
satisfied:

(i)  for every r such that xzoy < r there exists g such that g < r and 2o < g
and g € dom f,

(ii)  there exists g such that for every g; such that 0 < g; there exists r such
that ¢y < r and for every rq such that r; < r and ¢y < r1 and r; € dom f

31



32

JAROSEAW KOTOWICZ

holds |f(r1) — ¢g] < g1.

(17)  f is right divergent to +o00 in z¢ if and only if the following conditions
are satisfied:
(i) for every r such that oy < r there exists g such that g < r and 2o < g
and g € dom f,
(ii)  for every g¢; there exists r such that xo < r and for every r; such that
r1 <rand xg < r; and r; € dom f holds g1 < f(rq1).
(18)  f is right divergent to —oo in z¢ if and only if the following conditions
are satisfied:
(i) for every r such that xzoy < r there exists g such that g < r and 2o < g
and g € dom f,
(ii)  for every g¢; there exists r such that xg < r and for every r; such that
r1 <rand xg < r; and 11 € dom f holds f(r1) < g1.

(19) If fy is left divergent to 400 in xg and fo is left divergent to +oo in x
and for every r such that r < x( there exists g such that » < g and g < x
and g € dom f; Ndom fo, then f1 + fo is left divergent to +oo in xy and
f1fs is left divergent to 400 in xg.

(20) If fy is left divergent to —oo in xg and fo is left divergent to —oo in x
and for every r such that r < x( there exists g such that r < g and g < x¢
and g € dom f; Ndom fo, then fi + fo is left divergent to —oo in zo and
f1f2 is left divergent to +o00 in xg.

(21) If fy is right divergent to 400 in xg and f, is right divergent to +oco in
zg and for every r such that xg < r there exists g such that g < r and
xg < g and g € dom f; Ndom fy, then f1 + fo is right divergent to +oo in
xo and f1fo is right divergent to 400 in zg.

(22) If fy is right divergent to —oo in xg and f, is right divergent to —oo in
zg and for every r such that xg < r there exists g such that g < r and
xg < g and g € dom f; Ndom fy, then f1 + fo is right divergent to —oo in
xo and f1 fo is right divergent to +oo in .

(23) If fy is left divergent to +o0 in x( and for every r such that r» < xg there
exists g such that r < g and g < g and g € dom(f1 + f2) and there exists
r such that 0 < r and fs is lower bounded on |zo — 7, z¢[, then fi + fo is
left divergent to +o0 in xg.

(24)  Suppose that

(i)  f1 is left divergent to 400 in xg,
(ii)  for every r such that r < z( there exists g such that r < g and g < xg
and g € dom(f f2),
(i)  there exist r, r; such that 0 < r and 0 < r; and for every g such that
g € dom fy N]xg — r,zo[ holds 1 < fa(g).
Then fi fs is left divergent to 400 in xg.

(25) If f is right divergent to +oo in xy and for every r such that xyp < r
there exists g such that g < r and zg < g and g € dom(f1 + f2) and there
exists r such that 0 < r and fs is lower bounded on |zg,zo + 7|, then
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f1 4+ fo is right divergent to 400 in xy.

(26)  Suppose that
(i)  f1 is right divergent to +oo in xy,
(ii)  for every r such that zg < r there exists g such that g < r and zg < ¢
and g € dom(f1 f2),
(i)  there exist r, r; such that 0 < r and 0 < 7 and for every g such that
g € dom fy N]xzg, 0 + r[ holds r1 < fa(g).
Then fi fs is right divergent to +oo in xg.

(27) (1) If f is left divergent to +o00 in xg and r > 0, then rf is left divergent
to 400 in zg,

(i) if f is left divergent to +00 in z¢ and r < 0, then rf is left divergent
to —oo in xg,

(i)  if f is left divergent to —oco in z¢ and r > 0, then rf is left divergent
to —oo in xg,

(iv) if f is left divergent to —oo in xg and r < 0, then rf is left divergent
to 400 in xg.

(28) (i) If f is right divergent to +oc in xp and r > 0, then rf is right
divergent to 400 in zq,

(ii)  if f is right divergent to +o00 in xg and r < 0, then r f is right divergent
to —oo in xg,

(i)  if f is right divergent to —oo in g and r > 0, then r f is right divergent
to —oo in xg,

(iv) if fisright divergent to —oco in zg and r < 0, then rf is right divergent
to +o00 in xzg.

(29) If f is left divergent to +oo in ¢ or f is left divergent to —oo in x,
then |f] is left divergent to +o0 in xg.

(30) If f is right divergent to +o0 in xg or f is right divergent to —oo in x,
then |f] is right divergent to 400 in xg.

(31)  If there exists r such that 0 < r and f is non-decreasing on |xo — 7, o[
and f is not upper bounded on |zg—r, zo[ and for every r such that r < xg
there exists g such that r < g and g < g and g € dom f, then f is left
divergent to +o0 in zg.

(32)  If there exists r such that 0 < r and f is increasing on |x¢ — r, zo[ and
f is not upper bounded on |z — r, xg| and for every r such that r < xzg
there exists g such that » < g and g < zg and g € dom f, then f is left
divergent to +oo in zg.

(33)  If there exists r such that 0 < r and f is non-increasing on |zg — 7, x|
and f is not lower bounded on |xg—r, o[ and for every r such that r < xg
there exists g such that r < g and g < g and g € dom f, then f is left
divergent to —oo in xg.

(34)  If there exists r such that 0 < r and f is decreasing on |xo — r, zo[ and
f is not lower bounded on |zg — 7, z¢[ and for every r such that r < xzg
there exists g such that » < g and g < zg and g € dom f, then f is left

33
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divergent to —oo in zg.

(35)  If there exists r such that 0 < r and f is non-increasing on |zg, o + 7|
and f is not upper bounded on |z, xg+r[ and for every r such that z¢y < r
there exists g such that ¢ < r and z¢g < g and g € dom f, then f is right
divergent to 400 in zg.

(36)  If there exists r such that 0 < r and f is decreasing on |zg, zo + r[ and
f is not upper bounded on |z, zo + [ and for every r such that z¢ < r
there exists g such that g < r and zg < g and g € dom f, then f is right
divergent to 400 in zg.

(37)  If there exists r such that 0 < r and f is non-decreasing on |z, zo + 7|
and f is not lower bounded on |z, 2o+ 7] and for every r such that z¢ < r
there exists g such that g < r and zg < g and g € dom f, then f is right
divergent to —oo in zg.

Next we state several propositions:

(38)  If there exists r such that 0 < r and f is increasing on |z, xo + r[ and
f is not lower bounded on |z, z¢ + r[ and for every r such that z¢ < r
there exists g such that g < r and zg < g and g € dom f, then f is right
divergent to —oo in zg.

(39)  Suppose that

(i)  f1 is left divergent to +oo in xg,

(ii)  for every r such that r < z( there exists g such that r < g and g < xg
and g € dom f,

(iii)  there exists r such that 0 < r and dom fN]xg—r, z¢[ C dom f; N]xg —
r, o[ and for every g such that g € dom fNl]xg—r, o[ holds f1(g) < f(g)-
Then f is left divergent to +o0 in xg.

(40)  Suppose that

(i)  f1 is left divergent to —oo in g,

(ii)  for every r such that r < x( there exists g such that r < g and g < z¢
and g € dom f,

(iii)  there exists r such that 0 < r and dom f N]xg—r,z¢[ C dom f; N]xg —
r,xo[ and for every g such that g € dom fN]xg—r, xo[ holds f(g) < f1(g).
Then f is left divergent to —oo in x.

(41)  Suppose that
(i)  f1 is right divergent to +oo in xg,

(ii)  for every r such that zo < r there exists g such that g < r and 2o < g
and g € dom f,

(i)  there exists r such that 0 < r and dom fN]xg, zo+r[ C dom fi1N]zg, xo+
r[ and for every g such that g € dom f N ]xg, zo + r[ holds fi(g) < f(g).
Then f is right divergent to +o0 in zg.

(42)  Suppose that
(i)  f1 is right divergent to —oo in xy,

(ii)  for every r such that xg < r there exists g such that g < r and xp < g

and g € dom f,
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(iii)  there exists r such that 0 < r and dom fN]xg, xg+7r[ C dom f1N]xg, zo+
r[ and for every g such that g € dom f Nz, zo + r[ holds f(g) < fi1(9)-
Then f is right divergent to —oo in zg.

(43) If fi is left divergent to +oo in xo and there exists r such that 0 < r
and |xg —r,xo[ € dom fNdom f; and for every g such that g € |xg—r, ]
holds f1(g) < f(g), then f is left divergent to +oc in z.

(44) If fy is left divergent to —oo in xp and there exists  such that 0 < r
and Jzg —r,zo[ C dom fNdom f; and for every g such that g € Jzog—r, x|
holds f(g) < f1(g), then f is left divergent to —oo in xg.

(45)  If f; is right divergent to +00 in xg and there exists r such that 0 < r
and ]zg,zo+ 7] C dom fNdom f; and for every g such that g € Jxg,zg+7]
holds f1(g) < f(g), then f is right divergent to +oco in zo.

(46) If f; is right divergent to —oo in xg and there exists r such that 0 < r
and ]zg, zo+ 7] C dom fNdom f; and for every g such that g € ]z, zg+7]
holds f(g) < f1(g), then f is right divergent to —oo in zo.

Let us consider f, xg. Let us assume that f is left convergent in xy. The

functor lim, - f yields a real number and is defined by:

(Def.7)  for every s; such that s; is convergent and lims; = xy and rngs; C
dom f N]—o00,zg[ holds f - s; is convergent and lim(f - s1) = lim, - f.

Let us consider f, xg. Let us assume that f is right convergent in xg. The
functor lim, + f yields a real number and is defined by:

(Def.8)  for every s such that s; is convergent and lims; = z¢ and rngs; C
dom f N ]z, +o00[ holds f - 51 is convergent and lim(f - s1) = lim,+ f.

One can prove the following propositions:

(47)  If f is left convergent in ¢, then lim, - f = g if and only if for every s;
such that s; is convergent and lim s; = x and rng sy C dom f N]—o0, 2]
holds f - s1 is convergent and lim(f - s1) = g.

(48)  If fis right convergent in ¢, then lim, + f = g if and only if for every s;
such that s is convergent and lim s; = z and rng sy C dom f N]xg, +00]
holds f - s1 is convergent and lim(f - s1) = g.

(49) If f is left convergent in x, then lim, - f = g if and only if for every
g1 such that 0 < g; there exists r such that » < ¢ and for every r; such
that » < r; and r; < z¢ and 71 € dom f holds |f(r1) — g| < g1.

(50)  If f is right convergent in x¢, then lim, + f = g if and only if for every
g1 such that 0 < g; there exists r such that g < r and for every r; such
that 7 < r and xg < 1 and 71 € dom f holds |f(r1) — g| < g1.

(51) If f is left convergent in g, then rf is left convergent in xy and
lim, — (rf) =r- (lim,, - f).

(52) If f is left convergent in x(, then —f is left convergent in zy and
lim, - (—f) = —lim, - f.

(53)  Suppose f1 is left convergent in ¢ and fs is left convergent in xy and
for every r such that r < z( there exists g such that » < g and g <
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xg and g € dom(f1 + f2). Then f; + fo is left convergent in zy and
hmmg*(fl + f2) = limmO* fl + hmxo* f2-

(54)  Suppose fi is left convergent in xg and f is left convergent in x and
for every r such that r < z( there exists g such that r < g and g <
xo and g € dom(f; — f2). Then f; — fo is left convergent in z( and
lim:co*(fl — f2) = hmx()* fi— limxo* Ja-

(55) If f is left convergent in xg and f ~' {0} = () and lim, - f # 0, then %

is left convergent in x¢ and lim, - % = (lim,,- f)~".

(56) If f is left convergent in zq, then |f| is left convergent in zy and
limg— [f| = [limg, - f].
(67)  Suppose f is left convergent in z¢ and lim, - f # 0 and for every r such

that r < zy there exists g such that r < g and g < ¢ and g € dom f and
f(g) # 0. Then % is left convergent in zo and lim,,, - % = (limg,- f)~ .

(58)  Suppose f; is left convergent in xg and f is left convergent in x and
for every r such that r < xq there exists g such that r < g and g < xy and
g € dom(fif2). Then fify is left convergent in zg and lim, -(f1f2) =
(limxof fl) . (limmof fg)

(59)  Suppose f1 is left convergent in zy and f; is left convergent in zy and
lim, - f2 # 0 and for every r such that r < xo there exists g such that

r < gand g < zgand g € dom % Then % is left convergent in xy and
. lim, - f1
hm:co’ = limZO, f2-

(60) If f is right convergent in xg, then rf is right convergent in xy and
lim, +(rf) =r- (limg+ f).

(61) If f is right convergent in xzg, then —f is right convergent in zy and
limx0+(—f) = — limx0+ f

(62)  Suppose fi is right convergent in xg and fs is right convergent in xg
and for every r such that xy < r there exists g such that ¢ < r and
xo < g and g € dom(f; + f2). Then f; + f3 is right convergent in z¢ and
limg,+ (f1 + f2) = limgg+ f1 + limgg+ fo.

(63)  Suppose fi is right convergent in zy and fy is right convergent in z
and for every r such that zg < r there exists g such that g < r and
xg < g and g € dom(f; — f2). Then f; — fo is right convergent in xy and
limx0+ (fl — fg) = hmeJr f1 — limx0+ fg.

(64) If f is right convergent in zg and f ~! {0} = 0 and lim,+ f # 0, then
% is right convergent in g and lim, + % = (limg,+ f)~".

(65) If f is right convergent in zg, then |f| is right convergent in xy and
limmg* ‘f‘ - |hIngvoJr f‘

(66)  Suppose f is right convergent in 2 and lim, + f # 0 and for every r such
that g < r there exists g such that ¢ < r and zg < g and g € dom f and
f(g) # 0. Then % is right convergent in zg and lim, + % = (lim,,+ L

(67)  Suppose fi is right convergent in o and fy is right convergent in z
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and for every r such that zo < r there exists g such that g < r and
xg < g and g € dom(f1f2). Then fyfo is right convergent in zy and
limm0+ (flfg) = (hmeJr fl) . (limm0+ fg)

(68)  Suppose fi is right convergent in xy and fo is right convergent in xg
and lim,+ fo # 0 and for every r such that xg < r there exists g such
that g < r and zg < g and g € dom % Then % is right convergent in x

lim_, +f1

and lim, + 4 = llmx0+ 7

(69)  Suppose f; is left convergent in x¢ and lim, - fi = 0 and for every
r such that r < z¢ there exists g such that r < ¢ and g < z¢ and
g € dom(f1f2) and there exists r such that 0 < r and f3 is bounded on
Jxg — r,20[. Then f f5 is left convergent in g and lim, - (f1f2) = 0.

(70)  Suppose f; is right convergent in o and lim, + f; = 0 and for every
r such that z¢o < r there exists ¢g such that ¢ < r and z9 < g and
g € dom(f1f2) and there exists r such that 0 < r and f5 is bounded on
|zo, 20 + 7. Then fi fo is right convergent in g and lim, +(f1f2) = 0.

(71)  Suppose that

(i)  f1 is left convergent in xg,

(ii)  fo is left convergent in x,

(iii)  limg, - fi = lim, - fo,

(iv)  for every r such that r < x( there exists g such that r < g and g < ¢
and g € dom f,

(v)  there exists r such that 0 < r and for every ¢ such that g € dom f N
Jwo =7, @o[ holds f1(g) < f(g) and f(g) < f2(g) but dom f1N]zo—7, zo[ €
dom fo N |xg — r,x0] and dom f N Jzg — r,zo[ C dom f1 N |z — r,x0] Or
dom fo N |xg — 29[ C dom f1 N |zg — r,x0] and dom f N ]z — r,x0] C
dom fo Nz — r,x0].

Then f is left convergent in zg and lim, - f = lim, - f1.
(72)  Suppose that
(i)  f1 is left convergent in xg,
(ii)  fo2 is left convergent in x,
(iii)  limg - fi = lim, - fo,

(iv)  there exists r such that 0 < r and |z — r,20[ C (dom f; N dom fa) N
dom f and for every g such that g € Jxg — r,zo[ holds fi(g) < f(g) and
f(g) < fa(g)-

Then f is left convergent in zg and lim, - f = lim, - f1.

(73)  Suppose that

(i)  f1 is right convergent in xg,

(ii)  fo is right convergent in x,

(iii)  limg+ fi = lim,+ fo,

(iv)  for every r such that xg < r there exists g such that ¢ < r and o < g
and g € dom f,

(v)  there exists r such that 0 < r and for every g such that g € dom f N
Jzo, xo+r[ holds fi(g) < f(g) and f(g) < fa(g) but dom f1N]xo, xo+r[ C
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dom fy N ]zg, z¢ + r[ and dom f N |xg,xo + r[ C dom f1 N ]zg,zo + r[ or
dom fy N ]xg, g + r[ C dom f1 N ]zg, zo + r| and dom f N ]zg,z¢ + 7| C
dom fo N ]z, zg + 7.
Then f is right convergent in xo and lim, + f = lim, + fi.
(74)  Suppose that
(i)  f1 is right convergent in xq,
(il)  fo is right convergent in z,
(111) limeJr f1 = limeJr fg,
(iv)  there exists  such that 0 < r and |zg, o + [ C (dom f1 Ndom fa) N
dom f and for every g such that g € |xg,zo + r[ holds fi1(g9) < f(g) and
f(g) < fa(g).
Then f is right convergent in zo and lim, + f = lim, + fi.
(75)  Suppose that
(i)  f1 is left convergent in xg,

(ii)  fo is left convergent in xq,

(iii)  there exists r such that 0 < r but dom f1 N]zg—r, 29[ C dom foN]zg—
r, o[ and for every g such that g € dom f1N]zg—r, xo[ holds f1(g) < fa(g)
or dom fy N |xg — r,x9[ € dom f1 N ]zg — 7,20 and for every g such that
g € dom fy N ]z — 7, 29[ holds f1(g) < f2(g).

Then lim, - f1 <lim, - fo.
(76)  Suppose that
(i)  f1 is right convergent in z,

(il)  fo is right convergent in z,

(ili)  there exists r such that 0 < r but dom f1 N ]zg,zo + r[ C dom fo N
|zo, 20 + [ and for every g such that g € dom f1 N ]z, zo + r[ holds
f1(g) < fa(g) or dom foN]xg, o+ r[ C dom f1 N]zg, zo + [ and for every
g such that g € dom fo N |z, 2o + [ holds f1(g) < fa(g).

Then limx0+ f1 § limeJr f2.

(77)  If f is left divergent to +o0 in xg or f is left divergent to —oo in zo but
for every r such that r < x( there exists g such that r < g and g < zy and
g € dom f and f(g) # 0, then % is left convergent in xo and lim,, - % =0.

One can prove the following propositions:

(78) If f is right divergent to 400 in zy or f is right divergent to —oo in
xg but for every r such that zy < r there exists g such that ¢ < r and
xg < g and g € dom f and f(g) # 0, then % is right convergent in x( and
limg,+ 5 = 0.

(79)  If fis left convergent in ¢ and lim, - f = 0 and there exists 7 such that

0 < r and for every ¢ such that g € dom f N ]xg — r, 29[ holds 0 < f(g),
then % is left divergent to 400 in xg.

(80)  If fis left convergent in ¢ and lim, - f = 0 and there exists 7 such that
0 < r and for every g such that g € dom f N ]xg — r, 29[ holds f(g) < 0,
then % is left divergent to —oo in xg.
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(81) If f is right convergent in ¢ and lim, + f = 0 and there exists r such
that 0 < r and for every g such that g € dom fN]xg, z¢+7[ holds 0 < f(g),
then % is right divergent to +oo in xg.

(82) If f is right convergent in g and lim, + f = 0 and there exists r such
that 0 < r and for every g such that g € dom fNJxg,xzo—+r[ holds f(g) <0,
then % is right divergent to —oo in xg.

(83)  Suppose that
(i)  f is left convergent in o,
(i) lim,,- f =0,
(iii)  for every r such that r < x( there exists g such that r < g and g < ¢
and g € dom f and f(g) # 0,
(iv)  there exists r such that 0 < r and for every g such that g € dom f N
lzo — 7, 20] holds 0 < f(g).
Then % is left divergent to 400 in z.

(84)  Suppose that
(i)  f is left convergent in xo,
(i) lim,,- f =0,
(iii)  for every r such that r < z( there exists g such that r < g and g < z
and g € dom f and f(g) # 0,
(iv)  there exists r such that 0 < r and for every g such that g € dom f N
Jzo — 1, @0[ holds f(g) < 0.
Then 1 is left divergent to —oco in .
f
(85)  Suppose that
(i)  f is right convergent in z,
(i) limg+ f =0,
(ili)  for every r such that xzg < r there exists g such that g < r and zg < g
and g € dom f and f(g) # 0,
(iv)  there exists r such that 0 < r and for every g such that g € dom f N
|zo, xo + [ holds 0 < f(g).
Then % is right divergent to +oo in xg.
(86)  Suppose that
(i)  f is right convergent in zo,
(i) limg,+ f =0,
(iii)  for every r such that z¢p < r there exists g such that g < r and zg < g
and g € dom f and f(g) # 0,
(iv)  there exists r such that 0 < r and for every g such that g € dom f N
Jwo, zo + r[ holds f(g) < 0.
Then % is right divergent to —oo in xp.
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Lattice of Subgroups of a Group. Frattini
Subgroup

Wojciech A. Trybulec!
Warsaw University

Summary. We define the notion of a subgroup generated by a set
of elements of a group and two closely connected notions, namely lattice
of subgroups and the Frattini subgroup. The operations on the lattice
are the intersection of subgroups (introduced in [18]) and multiplication
of subgroups, which result is defined as a subgroup generated by a sum of
carriers of the two subgroups. In order to define the Frattini subgroup and
to prove theorems concerning it we introduce notion of maximal subgroup
and non-generating element of the group (see page 30 in [6]). The Frattini
subgroup is defined as in [6] as an intersection of all maximal subgroups.
We show that an element of the group belongs to the Frattini subgroup
of the group if and only if it is a non-generating element. We also prove
theorems that should be proved in [1] but are not.

MML Identifier: GROUP_4.

The notation and terminology used here are introduced in the following articles:
3], [13], [4], [11], [20], [10], [19], [8], [16], [5], [17], [2], [15], [18], [14], [12], [21],
[7], [9], and [1]. Let D be a non-empty set, and let F' be a finite sequence of
elements of D, and let X be a set. Then F' — X is a finite sequence of elements
of D.

In this article we present several logical schemes. The scheme SubsetD deals
with a non-empty set A, and a unary predicate P, and states that:

{d : P[d]}, where d is an element of A, is a subset of A
for all values of the parameters.

The scheme MeetSbgEx deals with a group A, and a unary predicate P, and
states that:

there exists a subgroup H of A such that the carrier of H = N{A: Vg[A =
the carrier of K A P[K]]}, where A is a subset of A, and K is a subgroup of A
provided the parameters have the following property:
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e there exists a subgroup H of A such that P[H].

For simplicity we adopt the following rules: X denotes a set, k, I, m, n
denote natural numbers, i, i1, i2, i3, j denote integers, G denotes a group, a,
b, ¢ denote elements of G, A, B denote subsets of G, H, H{, Hy, H3, K denote
subgroups of G, N1, Ny denote normal subgroups of G, h denotes an element
of H, I, F1, F» denote finite sequences of elements of the carrier of G, and I,
11, I denote finite sequences of elements of Z. The scheme SubgrSep deals with
a group A, and a unary predicate P, and states that:

there exists X such that X C SubGr A and for every subgroup H of A holds
H € X if and only if P[H]
for all values of the parameters.

Let i be an element of Z. The functor @7 yields an integer and is defined by:

(Def.1) @i =1.
We now state the proposition
(1)  For every element i of Z holds @i = 1.

Let us consider 7. The functor @i yielding an element of 7 is defined as
follows:

(Def.2) @i =1.

Next we state several propositions:
2)  @i=i.

3) If a=h, then a" = h".

4)  If a = h, then a' = h'.

5) Ifa€ H,then a" € H.

6) Ifae€ H,thena' € H.

Let us consider G, F. The functor [ F' yielding an element of G is defined
as follows:

(Def.3) I F = the operation of G® F.

Next we state a number of propositions:

e R e o

— =
[S2NTAN

[I(n+—a)=a"

[1(F —{1le}) =11 F.

If len Fi = len Fy and for every k such that k € Seg(len Fy) holds
Fg((lenFl — ]{7) + 1) = (ﬂ'kFl)_l, then HF1 = (H Fg)_l.

(

[[{a,b,¢) = (a-b)-cand [[{a,b,c) =a-(b-c).
(
(

—_
=2

(7)  TIF = the operation of G©® F.
(8) I~ Fp) =111 -] Fo.
9 IEF~{@)=IIF"a
10) [Ia)"~ F)=a-]]F.
11) HEthO carrier of G — 1G-
12)  TI{a) = a.
13)  Tl{a,b) =a-b.

)

)

)

)

e e e e R N N

—_
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(18) If G is an Abelian group, then for every permutation P of Seg(len F})
such that Fs = Fy - P holds [[ F1 =[] Fa.

(19) If G is an Abelian group and F} is one-to-one and Fj is one-to-one and
rng I} = rng Iy, then [[ Fy =[] Fs.

(20) If G is an Abelian group and len F' = len F; and len F' = len F, and
for every k such that k& € Seg(len F') holds F(k) = miFy - mpFs, then
[IF=]I1F-1]F:.

(21) IfrngF C H, then [[F € H.

Let us consider G, I, F. Let us assume that len F = lenI. The functor F'!
yields a finite sequence of elements of the carrier of G and is defined as follows:

(Def.4)  len(F!) = len F and for every k such that k € Seg(len F') holds (F1)(k) =
ﬂkF@(ﬂkI).

One can prove the following propositions:
(22) IflenF = lenl and lenF; = len F' and for every k such that k €
Seg(len F) holds Fy (k) = 7 FO*!) then F} = F!.

(23) If len F' = lenl, then for every k such that k& € Seg(len F') holds
(P1)(k) = mp PO,

(24) Iflen F =len I, then len(F?) =len F.

(25) Iflen F; =lenI; and len Fy = len I, then (Fy ~ Fy)1" 2 = pli~ pl2,
(26) Iflen F =lenl and rng F C H, then [[(F!) € H.

(27) giﬁc carrier of G — &

(28)  (a)'® = ().

(29) (0, 0)(®%9) = (o, bi).

(30) <CL, b’ C> <@i1,@i2,@i3> — <ai17bi27ci3>.

(31) Flen Fr—Q(+1) _ .

(32) FlenF—0H0) —jen F— 1.

(33) IflenI =n, then (n+— 1) =n+—— 1g.

Let us consider G, A. The functor gr(A) yielding a subgroup of G is defined
as follows:

(Def.5) A C the carrier of gr(A) and for every H such that A C the carrier of
H holds gr(A) is a subgroup of H.
We now state a number of propositions:

(34) If A C the carrier of H; and for every Hj such that A C the carrier of
Hs holds Hj is a subgroup of Hg, then H; = gr(A).

(35) A C the carrier of gr(A).

(36) If A C the carrier of H, then gr(A) is a subgroup of H.

(37)  a € gr(A) if and only if there exist F', I such that len F' = lenI and
mg F C A and [[(F!) = a.

(38) Ifae€ A, then a € gr(A).

(39) gr(che carrier of G) = {I}G
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gr(H) = H.
If A C B, then gr(A) is a subgroup of gr(B).
gr(AnN B) is a subgroup of gr(A) Ngr(B).
43)  The carrier of gr(A) = N{B : \Vy[B = the carrier of H A A C H]}.
1) gr(4) = gi(A\ {16}).
We now define two new predicates. Let us consider G, a. We say that a is
non-generating if and only if:

(Def.6)  for every A such that gr(A) = G holds gr(A\ {a}) = G.

a is generating stands for a is not non-generating.

e~
= O

~— — ~— ~— ~—
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We now state the proposition
(46)? 1¢ is non-generating.
Let us consider G, H. We say that H is maximal if and only if:
(Def.7) H # G and for every K such that H # K and H is a subgroup of K
holds K = G.
Next we state the proposition
(48)® If H is maximal and a ¢ H, then gr(H U {a}) = G.
Let us consider G. The functor ®(G) yields a subgroup of G and is defined
as follows:
(Def.8)  the carrier of ®(G) = ({4 : Vy[A = the carrier of HA H is maximal
|} if there exists H such that H is maximal, &(G) = G, otherwise.
We now state several propositions:

(49)  If there exists H such that H is maximal and the carrier of H = ({A :
Vi [A = the carrier of KA K is maximal |}, then H = &(G).

(50)  If for every H holds H is not maximal, then &(G) = G.

(51)  If there exists H such that H is maximal, then the carrier of ®(G) =
{4 : Vx[A = the carrier of KA K is maximal |}.

(52)  If there exists H such that H is maximal, then a € ®(G) if and only if
for every H such that H is maximal holds a € H.

If for every H holds H is not maximal, then a € &(G).
If H is maximal, then ®(G) is a subgroup of H.

53
54
5
56) a € ®(G) if and only if a is non-generating.

Let us consider G, Hy, Hy. The functor H; - Hsy yielding a subset of G is

defined as follows:
(Def9) Hl 'Hg :EFQ

The following propositions are true:
(57) Hl-HQ:E-EandHl-HQZHl-EandHl-HQZE-HQ.

t
o

The carrier of ®(G) = {a : a is non-generating }.

A~~~ N /S /N

2The proposition (45) was either repeated or obvious.
3The proposition (47) was either repeated or obvious.
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H-H=H.

(Hy-Hy)-Hz=H;-(Hy- Hs).
(a-Hy)-Hy=a-(Hy- Hs).
(Hy-Hs)-a=H;-(Hs-a).
(A‘Hl)‘HQZA‘(Hl‘HQ).
(Hy-Hs)-A=H;-(Hy- A).

N1 - Ny =Ny - Niq.

If G is an Abelian group, then Hy - Ho = Hy - Hy.

Let us consider G, Hi, Hy. The functor Hy U Hy yielding a subgroup of G is
defined as follows:

(Def.10)

H{UH, = gT(EUE)

One can prove the following propositions:

(66)
(67)

68

TN TN N N N N N N N N N N N N
N e O S I IO R R e
© 00~ D D W N = O

—_
—_ — — D D D D O oo

(82
(83
(8
(
(

g

)
)
)
85)
86)

H{UH, = gT(EUE)
a € Hi U Hs if and only if there exist F', I such that len ' = len I and

mg F C Hy U Hy and a = [[(FT).

H{UHy; = gr(H1 . HQ).

If Hi - Hy = Hy - Hy, then the carrier of H; U Hy = Hy - Ho.

If G is an Abelian group, then the carrier of Hy L Hy = Hy - Ho.
The carrier of N7 U Ny = Ny - No.

Nj U Ns is a normal subgroup of G.

HUH=H.

HyUHy,=H>U H;.

(Hl (| HQ) U Hs=H U (H2 (] Hg).
{I}GUH:HandHl_l{l}G:H.

QcUH =G and HU Qg =G.

H, is a subgroup of Hy U Hs and H is a subgroup of Hy LI Hs.
H, is a subgroup of Hs if and only if Hy U Hy = Ho.

If Hy is a subgroup of Hs, then H; is a subgroup of Hs LI Hs.

If Hy is a subgroup of Hs and Hs is a subgroup of Hs, then Hy LI Hs is

a subgroup of Hj.

If H, is a subgroup of Hs, then Hi U Hg is a subgroup of Hs Ll Hs.
Hyi N Hy is a subgroup of Hy LI Hs.

(H1 N Hy) U Hy = Hs.

H,nN(HUHy) =H,.

H, U Hy = Hs if and only if Hy N Hy = Hy.

In the sequel S1, So are elements of SubGr G and o is a binary operation on
SubGrG. Let us consider G. The functor SubJoin G yields a binary operation
on SubGr G and is defined by:
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(Def.11)  for all Sy, So, Hy, Hy such that S; = Hy and Sy = Hs holds
(SubJoin G)(Sl, Sg) = Hy U Hs.
Next we state two propositions:
(87) If for all Sy, Sy, Hy, Hy such that S; = H; and Sy = Hj holds o(Sy,
Sy) = H; U Hy, then o = SubJoinG.
(88) If H; =57 and Hy = So, then SubJoin G(S1, S3) = Hy U Hs.
Let us consider G. The functor SubMeet G yields a binary operation on
SubGr G and is defined as follows:
(Def.12)  for all Sy, So, Hy, Hs such that S = H; and Sy = Hj holds
(SubMeet G) (S, S2) = Hy N Hs.
One can prove the following two propositions:

(89) If for all Sy, Sy, Hy, Hs such that S; = Hy and Sy = Hs holds o(St,
Sa) = Hi N Hy, then 0 = SubMeet G.

(90) If H = 51 and Hy = S5, then SubMeet G(Sl, Sg) = H, N Hs.
Let us consider G. The functor L yielding a lattice is defined as follows:
(Def.13)  Lg = (SubGr G, SubJoin G, SubMeet G).

One can prove the following propositions:

(91) Lg = (SubGr G, SubJoin G, SubMeet G).
(92)  The carrier of Lg = SubGrG.
(93)  The join operation of Lg = SubJoinG.
(94)  The meet operation of L = SubMeet G.
(95) Lg is a lower bound lattice.
(96) Lg is an upper bound lattice.
(97) Lg is a bound lattice.
(98) Li, =A{1}c.
(99) Ti, = Q.
(100) mmod2=0or nmod?2=1.
(101) k-nmodk =0 and k-nmodn = 0.
(102) If k> 1, then 1 mod k = 1.
(103) If kmodn =0 and ! =k —m-n, then lmodn = 0.
(104) Ifn+#0and kmodn =0 and | < n, then (k+ 1) modn = I.
(105) If kmodn =0 and [ modn = 0, then (k + ) mod n = 0.
(106) If n # 0 and kmodn = 0 and [ modn = 0, then (kK +1) +n =

(k+n)+ (+n).
(107) If k#0, then k-n+k=n.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.



2]
8]

[4]
[5]

(6]
[7]

8]
[9]

[10]
[11]

[12]
[13]

[14]

[15]
[16]

[17]
18]

[19]
[20]

21]

LATTICE OF SUBGROUPS OF A GROUP. FRATTINI ... 47

Czestaw Byliniski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
Czeslaw Bylinski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

Czestaw Byliriski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

M. 1. Kargapotlow and J. I. Mierzlakow. Podstawy teorii grup. PWN, Warszawa, 1989.
Rafal Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative
primes. Formalized Mathematics, 1(5):829-832, 1990.

Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,
1(2):369-376, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,
1(5):979-981, 1990.

Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathe-
matics, 1(5):955-962, 1990.

Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. For-
malized Mathematics, 1(3):569-573, 1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics,
1(5):855-864, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized
Mathematics, 1(1):17-23, 1990.

Stanistaw Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-
222, 1990.

Received August 22, 1990



48



FORMALIZED MATHEMATICS
Vol.2,No.1, January-February 1991
Université Catholique de Louvain

Equalities and Inequalities in Real
Numbers

Andrzej Kondracki
Warsaw University

Summary. The article is to give a number of useful theorems con-
cerning equalities and inequalities in real numbers. Some of the theorems
are extentions of [1] theorems, others were found to be needed in practice.

MML Identifier: REAL_2.

The terminology and notation used here are introduced in the following articles:
[1], [3], [2], and [4]. In the sequel a, b, d, e will be real numbers. One can prove
the following propositions:

(1) Ifb+a=bora+b=borb—a=D>, thena=0.
(2)  Suppose that
(i) a—b=0ora+(-b)=0o0r (-b)+a=00r —a=—-bora—e=b—e
ora—e=b+(—e)ora—e=(—e)+bore—a=e—bore—a=e+(-b)
ore—a=(-b)+e.
Then a = b.
) Ifa=—b,thena+b=0andb+a=0and —a=>h.
) Ifa+b=0o0rb+a=0,then a =—b.
5 (—a)—b=(-b) —a.
) —(a+0b) = (—a)+ (-b) and —(a+b) = (=b) + (—a) and —(a + b) =
(=b) —a and —(a +b) = (—a) — b.
(7) a—b=(-b)+a.
8) —(a—b)=(—-a)+band —(a—b) =b—aand —(a —b) = b+ (—a).
9) —((—a)+b)=a—band —((—a)+b) =a+ (=b) and —((—a) +b) =
(—=b) + a.
(10) (i) a+b=—((—a)-D),
(i) a+b=—((-b)—a),
(ili) a+b=—((-b)
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(iv) a+b=—((-a)+ (=),
(v) a+b=a—(-b),
(vi) a+b=b—(—a).
(11) Ifa+b=-eorb+a=e,thena=e—banda=e+(—b)and a = (—b)+e.
(12) Ifa=e—bora=e+(—b)ora=(—b)+e, thena+b=candb+a=c¢
and b =e —a.
(13) Ifa+b=e+d,thena—e=d—banda—d=e—bandb—e=d—a
andb—d=-e—a.
(14) Ifa—e=d—b,thena+b=e+danda+b=d+eandb+a=d+e
and b+a =-e+d.
(15) Ifa—b=e—d,thena—e=>b—d.
(16) Ifa+b=e—dorb+a=e—d,thena+d=e—bandd+a=e—Db.
(17) i) a=a+(b—0),
(i) a=(a+0b)—b
(ili) a=a+ (b+ (D)),
(iv) a=(a+b)+(-b),
(v) a=a—(b-b),
(vi) a=(a—"0)+0b,
(vii) a=a—(b+(=b)),
(vili) a=a+ ((=b) +0b),
(ix) a=(a+(=b))+b,
(x) a=b+(a—0D),
(xi) a=(b+a)=b
(xii) a=0b+ (a+ (-b)),
(xili) a=(b+a)+ (-b),
(xiv) a=b-—(b—a),
(xv) a=(b-0b)+a,
(xvi) a=(=b)+ (a+D),
(xvii)) a=((=b)+a)+b,
(xviil) a=(=b)+ (b+ a),
(xix) a=((—b)+0b)+a,
(xx) a=(=b) = ((—a) =),
(oxi)  a=(=b) — ((—b) — ).

—b)—e)=(a—b)—eand a— ((-b) —e) =(a+b) +e.
(a+b)+e = (a+e)+b and (a+b)+e = (b+e)+a and (a+b)+e = (e+a)+b
and (a+b) +e = (e +b) + a.
(22) (a+b)—e=(a—e)+band (a+b)—e=(b—€e)+aand (a+b)—e=
((—e)+a)+band (a+b)—e=((—e)+b) +a.
(23) (a—b)+e=(e—=b)+aand (a—b)+e=((-b)+a)+eand (a—b)+e =
((=b) +e) +a.

IThe proposition (19) was either repeated or obvious.
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(ii)) (a—b)—e=((-b)+a)—ce

(iii) (a—b)—e=((—=b) —e)+a,

(iv) (a—=0b)—e=((—€)+a)—0b,

(v) (a—b)—e=((—e)—b)+a.
(

(i) ((ma)=b)—e=((-b)—€)—a
(i) ((—a)—=b)—e=((-e)—a)—b
(iv) ((—ma)—b)—e=((-e)—b)—a

27) () —((a+b)+e)=((-a)—b)—e

(ii)) —((a+b)—e)=((—a)—0)+e,
(ii) —((a=b)+e)=((—a)+b)—e
(iv) —(((—a)+b)+e)=(a—b)—e

(v) —((@a=b)—e€)=((-a)+b)+e,
(vi)  —(((=a) +b) —e)=(a—b)+e,
(vii)  —(((—a) —b)+e)=(a+0b) —e,

(viii)  —(((—a)—b)—€e)=(a+b)+e

(i) a+e=(b+a)+(e—b),
(ili)) a4+e=(a—>b)+ (e+0),
(iv) a+e=(a—b)+(b+e)
(v) e+a=(a+0b)+(e—b),
(vi) e4+a=({b+a)+(e—D),
(vii) e4+a=(a—0b)+ (e+b),
(vii) e4+a=(a—0)+ (b+e),
(ix) a+e=(a+b)—(b—e)
(x) at+e=(b+a)—(b—re),
(xi) e+a=((b+a)—(b—e)
(xii) e4+a=(a+b)—(b—-e).

(29) i) a—e=(a—b)—(e—0),
i) a—e=(a—0b)+(b—re),
(i) a—e=(a+b)— (e+Db),
) a—e=(b+a)—(e+b),

) a—e=(b+a)—(b+e).
(30) Ifb#0, thenif ¢ =1lora-b~'=1lorb'-a=1, thena="0.

(31) Ife;é()and%:g,thena:b.
Next we state a number of propositions:

(32) Ifa-1=b-lora-1=1-borl-a=1-borl-a=b-1, then a="o.
33) Ifa#0andb#0,thenifat=b"lori=1ord =571 thena=0»
(34) Ifb#0and § = —1, then a = —b and b = —a.
(35) Ifa-b=1lorb-a=1,thena=3anda=>b"".
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(36)

(37)
(38)
(39)
(40)
(41)
(42)

(43)
(44)
(45)
(46)
(47)
(i)
(i)
(iii)
(iv)
(v)
(48)
(49)
(11

—~~
[
< =

—~
= =
E g s,

—~
Lo

ot Ot ot (S} IENG) NG §

— <

SEeETEeE B ey
N N N

—~
e
~—

(i)

Ifb;éO,thenifa:%ora:b_l,thena-bzlandl%
a_lzbandb:%
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Ifb#0buta-b=borb-a=2», then a=1.
Ifb;éObuta‘b:—borb a = —b, then a = —1.
If a # 0 and b # 0 and 2

Ifa;é()andb;éOand

If a # 0, then *
a~t- b1 #£0and

1
I
a
I

) 1 _

) 1
0
) 1

)

If a # 0 and b # 0, then
(—a)-b=—b-a,

If b# 0, then § =
Ifcz;«é()alldl)7$(),then%-1

= #0.
Ifa#Oandb;éO then a-b~! # 0 and b~ ! -a # 0 and

40,

=—1and £

If a # 0, thenT—a
Suppose e 75 0 and d # 0. Then

a, b _ ba

e d e~d’

a. b _ ba

e d = de’

a. b _ ab

e d~ de’
g.é_g.lz

e d  d

If a # 0, thena = =1.

[SEISESRISY

= b, then a = 1.
= —b, then a =

=land17!=1and 2
—ganda-1"1=q and 1_1-a:a.
If a # 0, then —*

SR

= —1and (—

0 if and only if a = 0.

1

b~ ab’

Suppose b # 0 and e # 0. Then

a _ ae
b eb?

—1 and (—a

—1.

™' =—1and (-

)—1 — _a—l'

,thena=1ora=—1.

a =1 and
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a _ ea
b~ be’
a _ ¢ca
b~ eb’
a
a e
b b
a N a
b=
2 e
b= ©
b= be &
a a
= . £
b — ¢
a a
b b6
a_a. e
b e b
If b # 0, then

a
If b # 0, then T

b
If b# 0, then — =% = ¢ and —=* = ¢ and

sl o=

If e # 0, then 9 = b 4 ¢

€ € €

Suppose e # 0 and d # 0. Then

a b _ datbe
&b deteb
a b _ date
Ay
a _ ad+te
E—i_g_de'db 7
a o -a+b-e
e+zl_ddve b’
a b _ date
N oy
a a-d+e-
eTd= de >
a__ b _ da=be
e d—  ed
a_ b d-a—e-b
e d ed
a__ b a-d—e-b
e d—  ed
a__ b _ da-be
e d~—  de
a__ b d-a—e-b
e d "~  de
a__ b _ ad—eb
e d—  de
Suppose b # 0 and e # 0. Then
a _ ea
b T b
b=as
b=5-a
a a
T =€ %
a_a
325-6.
Suppose b # 0. Then
a:a-g,
_ ab
(I—T,

1
a=a-(b-y3),

Sl
_Q oL

|||
e
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(v) a=4%,
(vi) a= %b - b,
(vil) a= b—f%—,
(vii) a=a-(3b),
(ix) a=(a-g)-b
(X) a=b- %7
(i) a=t2,
(xii) a=b-(a"3),
(xiii) a=(b-a)-%,
(xiv) a= ll—; -a,
(v) a=(}b)-a,
(xvi) a=1-(b-a),
(xvi)) a=¢-(a-b),
(xvil) a=(3-a)-b
The following propositions are true:
(63)  For every a, b there exists e such that a =b —e.

(64
(65

For all a, b such that a # 0 and b # 0 there exists e such that a = g.
Suppose b # 0. Then

S — —

(i) ¢+e= Ll
(ii) ¢ +e=ofle,
(iii) ¢ +e=2ete
(iv) 4 +e=<bte,
(v) et ==

Y

(vi) e+ § =l

(vii) e+ § = g,

(vil) e+ ¢ = beta
(66)  Suppose b # 0. Then

(1) % — €= a_be'bv
(ii) ¢ —e=3e,
(i) e—§=cbe
. _ bee—
(iv) e— % =252

(67)  Suppose b # 0 and e # 0. Then

(i) % = b%ev
W f-g
() =3
m t=}

(V) é = % : %7

NoOF 1
(VI) é — e’ %7

.o b 1
i) E-gl,
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(viii) =-¢ =%,
: 1 a a
(ix) e D T e
a 1 a
(%) B % Py
. a _ a
() §e=pe
(68) Suppose b # 0. Thene-7 = 9% ande- ¢ = %% and § -e = % and
a,,— ea
b= -

(69) (a-b)-e=(a-e)-band (a-b)-e=(b-e)-aand (a-b)-e=(e-a)-b
and (a-b)-e=(e-b)-a.
(70)  Suppose e # 0 and d # 0. Then

N ab %
(1) ?3 = d
o ab b2
(ii) ;fl = —£,
b.g
(i) b =<~
) wh  ab
(IV) ed de7
a- %'b
(v) §2=-<r,
N ab bE
(Vl) d_.lé - d>
a-t
(vi) 4t =Ze
i up b
(viii) ==
(711) (-1)ra=—-aanda-(—1) = —aand (—a)-(—1) =aand (-1)-(—a) =a
and —a = % and a = =7.
(72) Ife;é(),thenifa-e:bore-a:b,thena:g.
(73) Ife;é()anda:g,thena-e:bande-a:b.
(74) Ifa#Oande;éOanda:g,thene:g.
(75) Ife#0and d#0, thenifa-e=b-dore-a=b-dore-a=4d-bor

a-e:d-b,then%:g.
(76) Ife#()andd;é()and%:g,thena-e:b'dande-a:b-dand
eca=d-banda-e=d-b.

(77) Ife#()andd;é(),thenifa-e:gore~a:§,thena-d:gand

d-a:g.

(78)  Suppose b # 0. Then
() a-e=(a-b)-£
(i) a-e=(b-a)-7,
(iii) a-e=%-(e-b),
(iv) a-e=%-(b-e),
(V) e-a=(a-b)-f,
(vi) e-a=(b-a)-%,
(vii) e-a=7%F-(e-b),

(viii) e-a=%-(b-e).
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(79)  Supposeb#0and e #0. Thena-e= % anda-e= %% ande-a = 42

and e-a = %2,

(80) Ifb#0,then % -e=¢-aand $-e=(3-a)-eand $-e=(7-e)- a.

(81) (—a)-(=b)=a-band (—a)-(—=b)=0b-a.

(82) Ifb#0andd#0andb#dand § =5, then § = =5

(83) Suppose b # 0 and d # 0 and b # —d and § = . Thengzﬁand
5~ £ and § = 558 and § — 355

(84).(i) e-(a+b)=a-e+e-b,

(ii) e-(a+b):e~a+b-e,
(iii) e-(a+b)=a-e+b-e,
(iv) (a+b)-e=e-a+b-e,
(v) (a+b)-e=a-e+e-b
(vi) (a+b)-e=e-a+e-b,
(vii) e-(b+a)=a-e+e-b,
(vii) e-(b+a)=e-a+b-e,
(ix) e-(b+a)=a-e+b-e,
(x) (b+a)-e=e-a+b-e,
(xi) (b4+a)-e=a-e+e-b,
(xii) (b+a)-e=e-a+e-b,
(xiii) (a+b)-e=b-e+a-e,
(xiv) e-(a+b)=e-b+e-a.
(85) (i) e-(a—b)=a-e—e-b,
(i) e-(a—b)=e-a—b-e,
(iii) e-(a—b)=a-e—b-e,
(iv) (a—b)-e=e-a—b-e,
(v) (a—b)-e=a-e—e-b,
(vi) (a—b)-e=e-a—e-b,
(vii) (a—0)-e=(b—a) (—e),
(viii) (a—b)-e=—(b—a)-e,
(ix) e-(a—b)=(-€) (b—a),
(x) e-(a—b)=—e-(b—a).
(86 Ifa#(),thenifézlora‘l:1,thena:1.

)
(87) If a # 0, then if % =—lora!=—1, thena=—1.
(88) (i) 2-a=a+ta,

(i) a-2=a+a,
(i) 3-a=(a+a)+a,
(iv) a-3=(a+a)+
(v) 4-a=((a+a)+ ) +a,
(vi) a-4=((a+a)+a)+a.
(89) %“ = a and 7(a+§)+a = a and 7((a+a)4+a)+a =aand &% =4



(93)

EQUALITIES AND INEQUALITIES IN REAL NUMBERS

2ta=0
(§a+ §(2+§a: a,a
(F+P+9+i=0
sia—g
171 :
If b# 0, then 5% + 5% = ¢ and (35 + 35) + 3% = ¢

Suppose e # 0. Then
atb=c-(2+1Y,

€ €

bta=e-(2+2),

bt+a=(2+2) e
at+b=(2+2) e

Ife#0,thena—b=ce- (———) anda—b=(2—-2).e

One can prove the following propositions:

(94)
(i
(i

)
)
)
(iv)

(v)

(vi)
(vii)
(viii)

(

—~

O~ Ne)

-/\@H' = »—-/‘\Cﬂ

L — < Bl Bl A~
—_ D T

,\,_\
- Y~
= =

. = >

N N e e e N N N

Suppose e # 0. Then
a+ b= retbe
a+ b= reteb
a+ b= eeteb
a+ b= eetbe
b+a=cetbe
b+a:ﬁ,
Zizz ae-el—be7
Suppose e 7é 0. Then

ae—be

— b= &=

__ ae—eb
a—b— we—eb
_bh= ea—eb

e )
a—b= e-a;be‘
Suppose a # 0. Then
a+b=a-(1+2),

a+b=(1+2)aq,

a+b=( —i—l)‘a

a+b=a-(2+1),

bt+a=a-(1+2),

b+a:(1+ by q,

b+a= (2 +1) a,

bt+a=a-(2+1).
Ifa#0,thena—b=a-(1-2)anda—-b=(1-2) a
(@=b)-(e—d)=(b—a)-(d—e).

((a+b)+e)-d=(a-d+b-d)+e-d,
d-((a+b)+e)=(d-a+d-b)+d-e,
((a+b)—e)-d=(a-d+b-d)—e-d,

o7
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(iv) d-((a+b)—e)=(d-a+d-b)—d-e,
(v) ((a=b)+e)-d=(a-d—b-d)+e-d,
(vi) d-((a—b)+e)=(d-a—d-b)+d-e,
(vii) ((a—b)—e)-d=(a-d—b-d)—e-d,
(viii) d-((a—=b)—e)=(d-a—d-b)—d-e.

(100)  Suppose d # 0. Then

(i) —E“*f*e:(%ng,

.. e a b e

(i) b =(G+3a) o

S g*e:(%—swg,

(iv) “==0E-5H-5
(101) i) (a+b)-(e+d)=((a-e+a-d)+b-e)+b-d,

(i) (a+b)-(e—d)=((a-e—a-d)+b-e)—b-d,
(ii) (a—b)-(e+d)=((a-e+a-d)—b-e)—b-d,
(iv) (a—=b)-(e—d)=((a-e—a-d)—b-e)+b-d.
(103)2 Ifa>b,thena+e>e+bande+a>e+bande+a>b+e.
(104) Ifa+e>b+eorat+e>e+bore+a>e+bore+a>b+eor

a—e>b—e, thena>b.
(105)  Suppose that
(i) a—b<0Oora+(-b)<Oor(-b)+a<0or—a>-borb—a>0or
b+ (—a)>0or (—a)+b>0ora—e<b+(—e)ora—e<(—e)+bor
a+(—e)<b—eor(—e)+a<b—eore—a>e—b.
Then a < b.
(106)  Suppose that
(i) a—-b<Oora+(-b)<Oor(=b)+a<0or—a>-borb—a>0or
b+ (—a)>0o0r (—a)+b>00ra—e<b+(—e)ora—e<(—e)+bor
a+(—e)<b—ecor(—e)+a<b—eore—a>e—b
Then a < b.

(107)  Suppose a < b. Then a —b < 0 and a + (—=b) < 0 and (—b) +a < 0
and b—a >0 and b+ (—a) > 0 and (—a) +b > 0 and —a > —b and
e—a>e—b.

(108)  Suppose a < b. Then a —b < 0 and a + (—=b) < 0 and (—b) +a < 0

and b—a > 0 and b+ (—a) > 0 and (—a) +b > 0 and —a > —b and

e—a>e—b.

(109) Ifa< —b,thena+b<0and b+a <0 and —a > b.

(110) Ifa< —b,thena+b<0and b+a <0 and —a > b.

(111) If —a<b,thenb+a>0and a+b >0 and a > —b.

(112) If -b<a,thena+b>0and b+a >0 and b > —a.

(113) Ifa+b<0orb+a<0,then a < —b.

(114) Ifa+b<0orb+a<0,then a < —b.

(115) Ifa+b>0o0rb+a >0, then a > —b.

2The proposition (102) was either repeated or obvious.
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(116) Ifa+b>0o0rb+a >0, then a> —b.
(117)  Suppose b > 0. Then
) if £ > 1, then a > b,
) if § <1, then a <,
(iii) if § > —1, then a > —b and b > —a,
) if § < -1, then a < —band b < —a.
(118)  Suppose b > 0. Then
) if § > 1, then a > b,
) if § <1, then a <b,
(iii) if $ > —1, then a > —b and b > —a,
) if ¢ <—1,then a < —band b < —a.
(119)  Suppose b < 0. Then
) if $ > 1, then a < b,
) if £ <1, then a > b,
(iii) if § > —1, then a < —b and b < —a,
) if § <1, then a > —b and b > —a.
(120)  Suppose b < 0. Then
(i) if § > 1, then a <D,
ii) if § <1, then a > b,
(iii) if $ > —1, then a < —b and b < —a,
) if ¢ < -1, then a > —band b > —a.
(121) Ifa>0ora>0butb>0o0orb>00ra<0ora<0butdb<O0or
b<0,thena-b>0and b-a > 0.
(122) Ifa<Oandb<Oora>0andb>0,thena-b>0.
(123) Ifa>0ora>0butb<0Oorb<Oora<O0ora<O0butbdb>0or
b>0,thena-b<0and b-a <0.

(124) Ifa>0and b<0,thena-b<0andb-a<0.

One can prove the following propositions:
(125) Ifa<O0andb<0ora>0andb>0, then
(126) Ifa>0and b<0ora<0andb>0,then
(127) Ifa>0and b>0ora<0andb <0, then
(128) Ifa<0andb>0,then ¢ <0and £ <0.
(129) Ifa-b<0,thena>0and b<0ora<0andb>0.
(131)3 Ifa-b>0,thena>0and b>0ora<0andb < 0.
(132)
(133)
(134)
(135)
(

e e oie

132 Ifa-b<0,thena>0and b<0ora<0andb>D0.

133 Ifb;é()and%§0,thenb>0anda§00rb<0anda20.
134 Ifb;é()and%20,thenb>0anda200rb<0anda§0.
135 Ifb#0and 3 <0,thenb<0anda>0orb>0anda<O0.
136) Ifb#0and § >0, then b>0and a>0orb<0anda<0.

3The proposition (130) was either repeated or obvious.
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(137) Ifa>1butb>1lorb>1lora< —1butb< —1orb< —1, then
a-b>1landb-a>1.

(138) Ifa>landb>1lora<—-1landb< —1,thena-b>1.

(139)  Suppose that
(i) 0<aor0<abuta<lbutO<borO<bbutb<lorb<1or
O>aor0>abuta>—-1butO>bor0>bbutdb>—-1orb>—1.
Thena-b<landb-a < 1.

(140) If0<aanda<landO0<bandb<lor0O>aanda>-1and0>b
and b> —1, thena-b<1.

(141) Ife<0anda§bore>0andaZb,then%

(142) If0<aanda<borb<aanda<O0,then ¢ > 1.
(143) If0<aanda<borb<aanda<0, then  <1land; >1.
(144) Ifa>0andb>1lora<Oandb<1,thena-b>aandb-a>a.
(145)
(146)

Qo Qo

Ifa>0andb<lora<Oandb>1,thena-b<aandb-a<a.
Ifa>0o0ra>0butb>1lorb>1lora<0ora<O0butb<1or
b<1,thena-b>aand b-a > a.
(147) Ifa>0ora>0butb<lorb<lora<Oora<O0butb>1or
b>1,thena-b<aandb-a<a.

(148) a > 0 if and only if —a < 0 but a > 0 if and only if —a < 0 but a <0
if and only if —a > 0.

(149) Ifa <0, then 1 <0and a™! <0 butif a >0, then > 0.
(150) If a # 0, then if%<07 then a < 0 but if%>07 then a > 0.
(151) If0<aorb<0buta<b,then 2 > 1.

(152) If0<aorb<0buta§b,thenéz%.

(153) Ifa<0andb>0, then%<%.

(154) Ifa#Oandb#Obut%>00r%<0and%>%,thena<b.
(155) Ifa#0andb#0but + >0o0r 2 <0and L >3, thena <b.

Next we state a number of propositions:

(156) Ifa##0andb+#0and 2 <0and 7 >0, then a < b.

(157) Ifa<—1,then 0> 2 and 1 > —1.

(158) Ifa<—1,then0> 1 and 1> 1.

(159) If -1 <aand a <0, then 1 < —1.

(160) If —1 <a and a <0, then % < —1.

(161) If0<aand a <1, then % > 1.

(162) If0<aanda<1,theni>1.

(163) If1<a,then0<2and i <1.

(164) Ifl1<a,then0<landl <1,

(165) Ifb<e—a,thena<e—Dbbutifb>e—a,thena>e—b.
(166) Ifb<e—a,thena<e—>bbutifb>e—a,thena>e—b.
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(167) Ifa+b<e+d ,thena—e<d—bande—a>b—danda—d<e—b
andd—a>b—e.

(168) Ifa+b<e+d,thena—e<d—bande—a>b—danda—d<e—b
andd—a>b—e.

(169) Suppose a —b < e—d. Thena+d <e+band d+a < e+ b and
d+a<bt+eandat+d<b+eanda—e<b—-—dande—a>d—>band
b—a>d-—e.

(170)  Suppose a —b < e—d. Thena+d < e+band d+a < e+ b and
d+a<b+eanda+d<b+eanda—e<b-—dande—a>d—0band
b—a>d—e.

(171) (i) Ifa+b<e—dorb+a<e—d,thena+d<e—bandd+a <e—b,

(i) fa+b>e—dorb+a>e—d, thena+d>e—bandd+a>e—b.

(172) i) Ifa+b<e—dorb+a<e—d,thena+d<e—bandd+a<e—b,

(i) ifa+tb>e—dorb+a>e—d,thena+d>e—bandd+a>e—b.

(173) Ifa<0,thenb+a<banda+b<bandb—a>bbutifa+b<bor
b4+a<borb—a>b,then a <0.

(174) T a<0,thenb+a<banda+b<bandb—a>bbutifb+a<bor
a+b<borb—a>b, then a <0.

(175) Ifa>0,thenb+a>banda+b>bandb—a <bbutifb+a>bor
a+b>borb—a<b,then a > 0.

(176) Ifa>0,thenb+a>banda+b>bandb—a<bbutifb+a>bor
a+b>borb—a<b, then a > 0.

(177) i) Ifb>O0buta-b<eorb-a<e, thena< g,

(ii) ifb<Obuta-b<eorb-a<e, thena> g,
(iii) ifb>0buta~b2€orb'aZe,thenaZ%,
(iv) ifb<Obuta-b>eorb-a>e,thena< 3.

(178) (i) Ifb>0buta-b<eorb-a<e,thena< g,

(ii) ifb<Obuta-b<eorb-a<e, thena> g,
(iii) ifb>0buta-b>eorb-a>e,thena> g,
(iv) ifb<Obuta-b>eorb-a>e, thena< 3.
(179) (i) Ifb>0anda > ¢, thena-b>eand b-a > e,
(ii) ifb>0anda< ¢, thena-b<eandb-a<e,
(iii) ifb<Oanda> ¢, thena-b<eandb-a<e,
(iv) ifb<Oanda<f,thena-b>eandb-a>e.
(180) (i) Ifb>0anda> ¢, thena-b>eandb-a > e,
(ii) ifb>0anda< ¢, thena-b<eandb-a<e,
(iii) ifb<Oanda> ¢, thena-b<eandb-a<e,
(iv) ifb<Oanda< f,thena-b>eandb-a>e.

(181)  If for every a such that @ > 0 holds b+ a > e or for every a such that
a <0 holds b —a > e, then b > e.

(182)  If for every a such that @ > 0 holds b — a < e or for every a such that
a <0holds b+ a < e, then b <e.
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(183)  If for every a such that @ > 1 holds b-a > e or for every a such that
0<aanda<1holds326,thenb26.

(184)  If for every a such that 0 < @ and a < 1 holds b-a < e or for every a
such thata>1h01ds%§e, then b < e.

(185) Supposeb >0andd>0orb<0Oandd<Obuta-d<e-bord-a<e-b
ord-a<b-eora-d<b-e Then 7 < 7.

(186) Supposeb>0andd <Oorb<Oandd>O0buta-d<e-bord-a<e-b
ord-a<b-eora-d<b-e Then § > 3.

The following propositions are true:

(187) Supposeb>0andd >0orb<Oandd<Obuta-d<e-bord-a<e-b
ord-agb-eora-dgb-e.Then%gg.

(188) Supposeb>0andd <Oorb<Oandd>O0buta-d<e-bord-a<e-b
ord-a<b-eora-d<b-e Then § > 3.

(189)  Supposeb>0andd>0orb<0andd <O0but § < §. Thena-d<e-b
andd-a<e-bandd-a<b-eanda-d<b-e.

(190)  Supposeb < 0Oandd >0orb>0andd <0but § < §. Thena-d>e-b
andd-a>e-bandd-a>b-eanda-d>b-e.

(191) Supposeb>Oandd>00rb<0andd<0but%§ 5. Thena-d <e-b
andd-a<e-bandd-a<b-eanda-d<b-e.

(192)  Supposeb <0Oandd >0orb>0andd <O0but § <& Thena-d>e-b

andd-a>e-bandd-a>b-eanda-d>b-e.
(193)  Supposeb<0and d <0 or b> 0 and d > 0. Then
(i) ifa-b<gorb-a< g, thena-d<fandd-a<7g,
i) ifa-b>5orb-a> g, thena-d>fandd-a> f.
(194)  Supposeb<0and d>0or b> 0 and d < 0. Then
i) ifa-b<Jorb-a< g, thena-d>fandd-a> 3,

jay

) ifa-b>Sorb-a> 9, thena-d<jfandd-a< 3.
(195)  Supposeb< 0and d <0 or b> 0 and d > 0. Then
i) ifa-b<Jorb-a< g thena-d<fandd-a<7,
i) ifa-b>%orb-a> g thena-d>fandd-a>¢.
) Suppose b< 0and d>0orb>0andd<0. Then
i) ifa-b<Sorb-a<§ thena-d>fandd-a> g,

)

(
i
5
(
i
(196
(
(i) ifa-b>5orb-a>g, thena-d<fandd-a<?.
(197)  Suppose 0 < aor 0 <abuta <bora<bbut0<eor0<eand
e<d. Thena-e<b-danda-e<d-bande-a<d-bande-a<b-d.
(198)  Suppose 0 > aor 0 > abuta >bora>bbut0>eor0>eand
e>d. Thena-e<b-danda-e<d-bande-a<d-bande-a<b-d.
(199) Suppose 0 < abuta <bora <band 0 < eande <dor0>abut
a>bora>band0>eande>d. Thena-e<b-danda-e<d-band
e-ra<d-bande-a<b-d.

(200) Ife>0buta>0orb<0anda<b,then £ > 7.

(201) Ife>0ore>0buta>0orb<0anda<b, then 2%.

€
a
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(202) Ife<Obuta>0orb<0anda<b,then £ <¢.
(203) Ife<Oore<0buta>0orb<0anda<b,then
Next we state the proposition
(204)  For all subsets X, Y of R such that X # () and Y # () and for all a, b
such that ¢ € X and b € Y holds a < b there exists d such that for every

a such that ¢ € X holds a < d and for every b such that b € Y holds
d <b.

€
<e

<2
a
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Countable Sets and Hessenberg’s Theorem

Grzegorz Bancerek
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Biatystok

Summary. The concept of countable sets is introduced and there
are shown some facts which deal with finite and countable sets. Besides,
the article includes theorems and lemmas on the sum and the product of
infinite cardinals. The most important of them is Hessenberg’s theorem
which says that for every infinite cardinal m the product m - m is equal
to m.

MML Identifier: CARD_4.

The papers [20], [16], [3], [11], [9], [15], [5], [8], [7], [21], [19], [2], [1], [10], [22],
[12], [13], [18], [14], [17], [4], and [6] provide the terminology and notation for
this paper. For simplicity we follow the rules: X, Y are sets, D is a non-empty
set, m, n, ni, ng, N3, Mg, M1 are natural numbers, A, B are ordinal numbers,
L, K, M, N are cardinal numbers, x is arbitrary, and f is a function. Next we
state a number of propositions:

X is finite if and only if X is finite.
X is finite if and only if X < Ng.
If X is finite, then X e R and X cw.

X is finite if and only if there exists n such that X =7,
succ A\ {A} = A.

If A~ ord(n), then A = ord(n).

A is finite if and only if A € w.

A is not finite if and only if w C A.

M is finite if and only if M € Ng.

M is finite if and only if M < Ng.

M is not finite if and only if Rg C M.

M is not finite if and only if Rg < M.

If N is finite and M is not finite, then N < M and N < M.
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(14) X is not finite if and only if there exists Y such that ¥ C X and

Y = Rg.

(15)  w is not finite and N is not finite.

(16) Ng is not finite.

(17) X =0 if and only if X = 0.

(18) M # 0 if and only if 0 < M.

(19) 0< M.

(200 X =Y ifand only if XT =Y.

(21) M =N ifand only if Nt = M.

(22) N < M if and only if N* < M.

(23) N < MT if and only if N < M.

(24) 0< M if and only if 1 < M.

(25) 1< M if and only if 2 < M.

(26) If M is finite but N < M or N < M, then N is finite.

(27) A is a limit ordinal number if and only if for all B, n such that B € A
holds B + ord(n) € A.

(28)  A-+succord(n) = succ A+ord(n) and A+ord(n+1) = succ A+ord(n).

(29)  There exists n such that A -succl = A + ord(n).

(30) If Ais a limit ordinal number, then A -succl = A.

(31) HwCA thenl4+ A=A.

Next we state a number of propositions:
(32) If M is not finite, then ord(M) is a limit ordinal number.
(33) If M is not finite, then M + M = M.

(34) If M is not finite but N < M or N < M, then M + N = M and
N+ M=M.
(35) If X is not finite but X ~Y or Y ~ X, then XUY ~ X and X UY =

<

(36) If X is not finite and Y is finite, then X UY ~ X and X UY = X.

(37) If X is not finite but Y <X orY < X, then XUY ~ X and
XUY = X.

(38) If M is finite and N is finite, then M + N is finite.

(39) If M is not finite, then M + N is not finite and N + M is not finite.

(40)

(41)

40 If M is finite and N is finite, then M - N is finite.

41 ITK<Land M<NorK<Land M <Nor K< Land M <N or
K<Land M <N,then K+ M <L+Nand M+ K <L+ N.
(42) IfM<NorM<N,then K+ M <K+Nand K+ M < N+ K and
M+K<K+Nand M+ K < N+K.
Let us consider X. We say that X is countable if and only if:

(Def.1) X < No.
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One can prove the following propositions:
(43) If X is finite, then X is countable.
(44)  w is countable and N is countable.

(45) X is countable if and only if there exists f such that dom f = N and
X Crngf.

(46) IfY C X and X is countable, then Y is countable.

(47) If X is countable and Y is countable, then X UY is countable.

(48) If X is countable, then X NY is countable and Y N X is countable.
(49) If X is countable, then X \ Y is countable.

(

50) If X is countable and Y is countable, then X =Y is countable.

The scheme Lambda2N deals with a binary functor F yielding a natural
number and states that:
there exists a function f from [N, N] into N such that for all n, m holds

f({n,m)) = F(n,m)
for all values of the parameter.
In the sequel r will denote a real number. Next we state the proposition

(51) 7 #0or n=0if and only if ™ # 0.
Let m, n be natural numbers. Then m™ is a natural number.
One can prove the following propositions:
(52) If2™ - (2-my+1)=2"-(2-mg+ 1), then n; = ng and m; = ma.
(53) EN,N]~Nand N =[N, NJ.
(54)  Ng-Rg =Np.
(55)
(56)

If X is countable and Y is countable, then [ X, Y ] is countable.
D'~ Dand DI =D.
We now state a number of propositions:

(57) D™ D™]~ D"t™ and [ D", D™ ] = Dntm,

(58) If D is countable, then D™ is countable.

(59) If dom f < M and for every x such that x € dom f holds f(z) < N,
then Uf < M - N.

(60) If X < M and for every Y such that Y € X holds ¥ < N, then
UX <M-N.

(61)  For every f such that dom f is countable and for every x such that
x € dom f holds f(x) is countable holds J f is countable.

(62) If X is countable and for every Y such that Y € X holds Y is countable,
then |J X is countable.

(63)  For every f such that dom f is finite and for every = such that z € dom f
holds f(x) is finite holds | f is finite.

(64) If X is finite and for every Y such that Y € X holds Y is finite, then

J X is finite.
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(65) If D is countable, then D* is countable.
(66) Ng < D*.
Now we present three schemes. The scheme FraenCounl deals with a unary
functor F, and a unary predicate P, and states that:
{F(n) : P[n]} is countable
for all values of the parameters.
The scheme FraenCoun2 concerns a binary functor F, and a binary predicate
P, and states that:
{F(n1,n2) : P[ny,ns]} is countable
for all values of the parameters.
The scheme FraenCound concerns a ternary functor F, and a ternary predi-
cate P, and states that:
{F(n1,n2,n3) : P[ni,na,ns)} is countable
for all values of the parameters.
The following propositions are true:
(67) Ng-m <Ngand 7 - Vg < V.
(68) IHK<Land M <NorK<Land M <N or K<Land M <N or
K<Land M <N,then K-M<L-Nand M -K <L-N.
(69) M < No M<N,then K-M<K-Nand K-M < N - K and
M-K<K-Nand M - K<N-K.
(70) ITK<Land M <NorK<Land M <Nor K<Land M <N or
K <Land M <N, then K=0or KM <LV,

(71) If M < Nor M <N, then K=0or K™ < K¥ and M¥ < NX,
(72) M<M+Nand N<M+N.

(73) IfN#0,then M <M-Nand M <N - M.

(714) IfK<Land M < N,then K+ M <L+ N and M +K <L+ N.
(75) I K+ M<K+ N, then M < N.

(76) FX+Y =XandY < X, then X \Y = X.

One can prove the following propositions:

(77)  If M is not finite, then M - M = M.

(78)  If M is not finite and 0 < N but N < M or N < M, then M - N = M
and N -M = M.

(79) If M is not finite but N < M or N < M, then M - N < M and
N-M< M.

(80) If X is not finite, then | X, X ]~ X and [ X, X ] = X.

(81) If X is not finite and Y is finite and Y # ), then [ X, Y] ~ X and

(X, Y]=X.
(82) If K<Land M <N,then K-M <L -Nand M-K <L-N.
(83) If K-M < KN, then M < N.

(84) If X is not finite, then X =R X.
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(85) If X # () and X is finite and Y is not finite, then Y - X =Y.
(86) If D is not finite and n # 0, then D" ~ D and D* = D
(87) If D is not finite, then D = D*.
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The Limit of a Real Function at a Point
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Biatystok

Summary. We define the proper and the improper limit of a real
function at a point. The main properties of the operations on the limit
of a function are proved. The connection between the one-side limits
and the limit of a function at a point are exposed. Equivalent Cauchy
and Heine characterizations of the limit of a real function at a point are
proved.

MML Identifier: LIMFUNC3.

The papers [17], [5], [1], [2], [3], [15], [13], [6], [8], [14], [18], [16], [4], [10],
[11], [12], [7], and [9] provide the notation and terminology for this paper. For
simplicity we adopt the following convention: r, r1, r2, g, g1, g2, o will be real
numbers, n, k will be natural numbers, s; will be a sequence of real numbers,
and f, f1, fo will be partial functions from R to R. The following propositions
are true:

(1)
(2)

If rng s1 C dom fN]—o0, zo[ or rng s; C dom fN]zg, +oo[, then rng sy C
dom f\ {zo}.

Suppose for every n holds 0 < |zg — s1(n)| and |zg — s1(n)| < n+r1 and
s1(n) € dom f. Then s; is convergent and lim s; = ¢ and rng s; C dom f
and rngs; C dom f\ {zo}.

Suppose s7 is convergent and lims; = zp and rngs; C dom f \ {zp}.
Then for every r such that 0 < r there exists n such that for every k such
that n < k holds 0 < |zp — s1(k)| and |xg — s1(k)| < r and s;(k) € dom f.

If 0 <7, then |xg —r,zo + [\ {zo} = Jzo — 7, 20[ U |z0, 20 + 7[.

Suppose 0 < 7o and |xg — ro, x| U |xg, 2o + r2[ € dom f. Then for all
r1, ro such that r1 < zg and zg < ro there exist g1, go such that v < g1
and g1 < g and g; € dom f and g < ry and zg < g2 and g € dom f.
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(6) If for every n holds zo— n+r1 < s1(n) and s1(n) < xg and s1(n) € dom f,
then s; is convergent and lim s; = g and rngs; C dom f \ {z¢}.

(7)  If sy is convergent and lim sy = xp and 0 < g, then there exists k such
that for every n such that £ < n holds ¢ — g < s1(n) and s1(n) < xo+g.

(8)  The following conditions are equivalent:
(i)  for all rq, r9 such that r < zp and xy < 79 there exist g1, go such
that 71 < g1 and g1 < g and ¢g; € dom f and go < 9 and xzg < g2 and
g2 € dom f,
(ii)  for every r such that r < z( there exists g such that r < g and g < xg
and g € dom f and for every r such that xg < r there exists g such that
g <rand zp < g and g € dom f.

We now define three new predicates. Let us consider f, xg. We say that f is
convergent in x if and only if:

(Def.1) (i) for all r1, r9 such that r; < x¢ and zo < 7o there exist g1, g2 such
that 1 < g1 and g1 < zg and g1 € dom f and g» < ro and zg < g9 and
g2 € dom f,

(ii)  there exists g such that for every s; such that s; is convergent and
lims; = z¢p and rngs; C dom f \ {zp} holds f - s is convergent and
lim(f-s1) =g

We say that f is divergent to +oco in x¢ if and only if:

(Def.2) (i) for all r1, r9 such that r; < x¢ and zy < 7o there exist g1, g2 such
that 1 < g1 and g1 < zg and g1 € dom f and g2 < ro and zg < g9 and
g2 € dOIHf,

(ii)  for every s; such that s; is convergent and lims; = xy and rngs; C
dom f \ {x¢} holds f - s1 is divergent to +oco.

We say that f is divergent to —oo in zg if and only if:

(Det.3) (i) for all ry, rp such that r; < g and z¢ < rp there exist g1, g2 such
that 71 < ¢1 and g1 < g and ¢g; € dom f and g < 9 and xg < g2 and
g2 € dOIHf,

(ii)  for every s; such that s; is convergent and lims; = xg and rngs; C
dom f \ {xo} holds f - s1 is divergent to —oco.

The following propositions are true:

(9)  f is convergent in x if and only if the following conditions are satisfied:
(i)  for all rq, r9 such that r < zp and xy < 79 there exist g1, go such
that 71 < g1 and g1 < g and g1 € dom f and go < 9 and xg < g2 and

g2 € dOIHf,

(ii)  there exists g such that for every s; such that s; is convergent and
lims; = zp and rngs; C dom f \ {zo} holds f - s; is convergent and
lim(f-s1) =g.

(10)  f is divergent to 400 in xg if and only if the following conditions are
satisfied:
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(i)  for all rq, r9 such that r < zp and xy < 79 there exist g1, go such
that r1 < g1 and g1 < zg and ¢; € dom f and g» < 1o and zg < g9 and
g2 € dom fa

(ii)  for every s; such that s; is convergent and lim s; = xo and rngs; C
dom f \ {xo} holds f - s1 is divergent to +oco.

(11)  f is divergent to —oo in xq if and only if the following conditions are
satisfied:

(i) for all ry, 7o such that r; < g and xg < ry there exist g1, go such
that r1 < g1 and g1 < zg and g1 € dom f and g < ro and zg < g9 and
g2 € dom f,

(ii)  for every s; such that s; is convergent and lim s; = xo and rngs; C
dom f \ {xo} holds f - s1 is divergent to —oco.

(12)  f is convergent in x if and only if the following conditions are satisfied:

(i) for all ry, 7o such that r; < xzp and xg < ry there exist g1, go such
that 1 < g1 and g1 < zg and g1 € dom f and g < ro and zg < g9 and
g2 € dom f,

(ii)  there exists g such that for every g; such that 0 < g1 there exists go
such that 0 < g9 and for every 7 such that 0 < |zg—71] and |zo—7r1| < g2
and r1 € dom f holds |f(r1) — g] < g1.

(13)  f is divergent to 400 in ¢ if and only if the following conditions are
satisfied:

(i) for all ry, 7o such that r; < g and xg < ry there exist g1, go such
that r1 < g1 and g1 < zg and g1 € dom f and g < r9 and zg < g9 and
go € dom f,

(ii)  for every g; there exists go such that 0 < g9 and for every ry such that
0 < |zog —r1] and |zg — 71| < g2 and r; € dom f holds g1 < f(r1).

(14)  f is divergent to —oo in z¢ if and only if the following conditions are
satisfied:

(i) for all ry, 7o such that r; < xzp and xg < ry there exist g1, go such
that r1 < g1 and g1 < zg and g1 € dom f and g < ro and zg < g9 and
g2 € dom f,

(ii)  for every g; there exists go such that 0 < go and for every ry such that
0 < |xo —r1] and |xg — 71| < g2 and r; € dom f holds f(r1) < ¢1.

(15)  f is divergent to 400 in z¢ if and only if f is left divergent to +oo in
xo and f is right divergent to +oo in xg.

(16)  f is divergent to —oo in xq if and only if f is left divergent to —oo in
xg and f is right divergent to —oo in .

(17)  Suppose that

(i)  f1 is divergent to +oo in z,

(ii)  fo2 is divergent to +o0 in xg,

(iii)  for all 71, ro such that r; < xg and xg < ro there exist gy, g2 such that
ry < g1 and g1 < zg and g1 € dom f; Ndom fy and g2 < 79 and zg < go
and g9 € dom f; N dom fo.

Then f1 + fo is divergent to +o00 in xg and fi fo is divergent to +oo in xy.
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(18)  Suppose that

(i)  f1 is divergent to —oo in xg,

(il)  fo is divergent to —oo in z,

(iii)  for all 71, 79 such that r; < xg and xg < r9 there exist gy, g2 such that
r1 < g1 and g1 < xg and g1 € dom f; Ndom fy and go < ro and zg < go
and go € dom f; Ndom fs.

Then f1+ fo is divergent to —oo in xg and f; fo is divergent to 400 in xg.
(19)  Suppose that

(i)  f1 is divergent to +oo in xg,

(ii)  for all r1, r9 such that 1 < z and xy < ry there exist g1, g2 such that
r1 < g1 and g1 < xg and g; € dom(f; + f2) and g2 < ro and xg < g2 and
g2 € dom(f1 + f2),

(iii)  there exists r such that 0 < r and fs is lower bounded on |xg — 7, o[ U
o, Ty + 7.

Then f1 + f5 is divergent to +o00 in zg.
(20)  Suppose that

(i)  f1 is divergent to +oo in xg,

(ii)  for all r1, 79 such that 1 < zg and xy < ry there exist g1, g2 such that
r1 < g1 and g1 < zp and g1 € dom(f1f2) and g2 < 79 and z¢p < g2 and
g2 € dom(fi f2),

(iii)  there exist 7, 71 such that 0 < r and 0 < r; and for every g such that
g € dom fo N (Jzg — r,z0[ U]z, 2o + r[) holds r1 < fa(g).

Then fi f5 is divergent to 400 in zg.
(21) (i) If f is divergent to 400 in xp and r > 0, then rf is divergent to 400
in xgq,

(ii) if f is divergent to +o0 in z¢ and r < 0, then rf is divergent to —oco
in 0,

(i) if f is divergent to —oo in xg and r > 0, then rf is divergent to —oo
in xg,

(iv) if f is divergent to —oo in xg and r < 0, then rf is divergent to +oo
in xg.

(22) If f is divergent to +oo in xg or f is divergent to —oo in xg, then |f| is
divergent to 400 in zg.
(23)  Suppose that

(i)  there exists r such that 0 < r and f is non-decreasing on |xg — r, 2|
and f is non-increasing on |xg,xo + r[ and f is not upper bounded on
|zo — r,xo[ and f is not upper bounded on |zg, zg + 7,

(ii)  for all rq, 79 such that ry < zp and xy < 7o there exist g1, go such
that r1 < g1 and g1 < zg and ¢; € dom f and g» < 12 and zg < g9 and
go € dom f.

Then f is divergent to +oo in xg.
(24)  Suppose that

(i)  there exists 7 such that 0 < r and f is increasing on |x¢ — r, xg| and

f is decreasing on |zg, z¢ + r[ and f is not upper bounded on |xy — r, ]
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and f is not upper bounded on |zg, zo + 7],

(ii)  for all r1, r9 such that r1 < xg and z¢ < ry there exist g1, g2 such
that 71 < ¢1 and g1 < xg and ¢g; € dom f and g < 79 and zg < g2 and
go € dom f.

Then f is divergent to +oo in xg.

(25)  Suppose that

(i)  there exists r such that 0 < r and f is non-increasing on |zg — 7, 2|
and f is non-decreasing on |xg,xo + [ and f is not lower bounded on
|zo — r,x0[ and f is not lower bounded on |zg, z¢ + 7|,

(ii)  for all r1, r9 such that r1 < xg and z¢ < ry there exist g1, g2 such
that r1 < g1 and g1 < zg and g1 € dom f and g < r9 and zg < g9 and
g2 € dom f.

Then f is divergent to —oo in xg.
(26)  Suppose that

(i)  there exists r such that 0 < r and f is decreasing on |z¢ — r, o[ and
f is increasing on |zg,xo + 7| and f is not lower bounded on |zg — 7, 2|
and f is not lower bounded on |z, zo + 7|,

(ii)  for all r1, r9 such that r1 < xg and z¢ < ry there exist gj, g2 such
that 1 < g1 and g1 < zg and g1 € dom f and g < ro and zg < g9 and
g2 € dom f.

Then f is divergent to —oo in xg.
(27)  Suppose that

(i)  f1 is divergent to +oo in xg,

(ii)  for all ry, r9 such that r1 < xg and z¢ < ry there exist g1, g2 such
that 1 < ¢1 and g1 < zg and g1 € dom f and g < ro and zg < g9 and
g2 € dom f,

(i)  there exists r such that 0 < r and dom f N (Jzg — 7, xo[U]zo, 20 +7[) C
dom f1 N (Jxg — r, xo[U]zo, xo + r[) and for every g such that g € dom f N
(Jzo — 7, @w0[ U ]mo, 20 + 7[) holds fi(g) < f(g).

Then f is divergent to +oo in xg.
(28)  Suppose that

(i)  f1 is divergent to —oo in x,

(ii)  for all r1, 79 such that r1 < xg and z¢ < ry there exist g1, g2 such
that r1 < g1 and g1 < zg and ¢; € dom f and g» < 1o and zg < g9 and
g2 € domfa

(iii)  there exists r such that 0 < r and dom f N (Jxg — r, xo[U]xo, 20 +7[) C
dom f1 N (Jxg — r, 29[ U]zg, 29 + r]) and for every g such that g € dom f N
(Jzo — r o[ U]z, 2o + r[) holds f(g) < fi(g).

Then f is divergent to —oo in xg.
(29)  Suppose that

(i)  f1 is divergent to +oo in z,

(ii)  there exists r such that 0 < r and |xg — r,xo[ U ]zo, 2o + [ € dom f N
dom f; and for every g such that g € |zg — 7, 29[ U |xg, 20 + [ holds
fi(g) < f(g)-

75
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Then f is divergent to +oo in xg.

(30)  Suppose that

(i)  f1 is divergent to —oo in xg,

(ii)  there exists r such that 0 < r and |Jzg — 7, 29[ U |z, z0 + r[ C dom f N
dom f; and for every g such that g € |zg — r,20[ U ]Jzg, 20 + r[ holds
f9) < f(9)-
Then f is divergent to —oo in xg.

Let us consider f, xg. Let us assume that f is convergent in xy. The functor

lim,,, f yields a real number and is defined by:

(Def.4)  for every sy such that s; is convergent and lims; = z¢ and rngs; C
dom f \ {zo} holds f - s; is convergent and lim(f - s1) = lim,, f.

The following propositions are true:

(31)  If f is convergent in z, then lim,, f = g if and only if for every s; such
that s1 is convergent and lims; = xp and rngs; C dom f \ {xo} holds
f - s1 is convergent and lim(f - s1) = g.

(32)  Suppose f is convergent in zg. Then lim,, f = g if and only if for every
g1 such that 0 < g1 there exists go such that 0 < go and for every r; such
that 0 < |zg—71| and |xg—7r1| < g2 and r; € dom f holds |f(r1) —g| < ¢1.

(33) If f is convergent in g, then f is left convergent in zy and f is right
convergent in xp and lim, - f = lim, + f and lim,,f = lim, - f and
limg, f = lim, + f.

(34)  If f is left convergent in x¢ and f is right convergent in zg and lim, - f =
lim, + f, then f is convergent in zg and limg, f = lim, - f and lim,, f =

limm0+ f

(35) If f is convergent in xg, then rf is convergent in z¢ and lim,,(rf) =
r - (limg, f).

(36) If f is convergent in g, then —f is convergent in z¢ and limg, (—f) =
—limg, f.

(37)  Suppose that
(i)  fi1 is convergent in zg,

(ii)  fo is convergent in z,

(iii)  for all 71, 79 such that r; < xy and xg < r2 there exist gy, g2 such that
r1 < g1 and g1 < xg and g1 € dom(f1 + f2) and g2 < r9 and zy < g2 and
g2 € dom(f1 + f2).

Then f1 + f2 is convergent in z and limg, (f1 + f2) = limy, f1 + limg, fo.
(38)  Suppose that
(i)  f1 is convergent in z,

(il)  fo is convergent in zg,

(iii)  for all 71, 79 such that r; < xy and xg < r2 there exist gy, g2 such that
r1 < g1 and g1 < xg and g1 € dom(f; — f2) and g2 < r9 and zy < g2 and
g2 € dom(f1 — fg)

Then f; — f2 is convergent in xo and lim,, (f1 — f2) = limg, f1 — limy, fo.
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(39) If f is convergent in xg and f ~! {0} = @ and lim,,f # 0, then % is
convergent in xg and limxo% = (limg, f)~'.

(40) If f is convergent in xg, then |f| is convergent in xg and lim,,|f| =
[limg, f]-
(41)  Suppose that
(i)  f is convergent in xg,

(i) limg,f # 0,

(iii)  for all r1, r9 such that r1 < xg and 2y < ry there exist g1, g2 such
that r1 < g1 and g1 < zg and g1 € dom f and g < ro and zg < g9 and
gs € dom f and f(g1) # 0 and f(ga) # 0.

Then % is convergent in xy and Iimxo% = (limxof)_l.
(42)  Suppose that
(i)  f1 is convergent in x,

(ii)  fo is convergent in xg,

(iii)  for all 1, o such that 71 < g and z¢ < ry there exist g1, g2 such that
r1 < g1 and g1 < z¢ and g1 € dom(f1f2) and g2 < 79 and z¢ < g2 and
g2 € dom(f1f2).

Then f fo is convergent in z¢ and limy, (f1f2) = (limg, f1) - (limg, f2).
(43)  Suppose that
(i)  fi1 is convergent in z,
(ii)  f2 is convergent in xg,
(i) limg, fo # 0,
(iv)  for all 71, ro such that r1 < zy and 2y < 7o there exist g1, g2 such

that 71 < g1 and g1 < x¢ and g; € dom % and go < 79 and zg < go and

go € dom %

A . . i limgg fy
Then 7, s convergent in zg and limg, F = Tl

(44)  Suppose that
(i)  fi1 is convergent in z,

(i)  limg, f1 = O,

(iii)  for all 1, o such that 7 < xg and z¢ < ro there exist g1, g2 such that
r1 < g1 and g1 < zp and g1 € dom(f1f2) and g2 < 79 and z¢p < g2 and
g2 € dom(f1f2),

(iv)  there exists 7 such that 0 < r and fy is bounded on |zg — r,zo[ U
Jzo, w0 + 1.

Then fi f2 is convergent in z¢ and lim,,(f1f2) = 0.

(45)  Suppose that
(i)  f1 is convergent in z,

(ii)  f2 is convergent in xg,

(iii) limxo fl = limxo fg,

(iv)  for all 71, ro such that r; < xy and xg < ro there exist g;, go such
that 71 < g1 and g1 < g and g1 € dom f and g < 9 and xzg < g2 and
g2 € domfa

7
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(v)  there exists r such that 0 < r and for every g such that g € dom f N
(Jro—r, zo[U]z0, m0+7]) holds f1(g) < f(g) and f(g) < f2(g) but dom f1N
(Jxo — ryxo[ U Jzo, 20 + r[) € dom fo N (Jzg — r,x0[ U Jzo, 29 + ) and
dom f N (Jxg —r, zo[ U]z, 20 +7[) C dom f1 N (Jxg— 1, 20[U]x0, 20 + 7[) OF
dom f5 N (Jzo — 7, mo[ U]z, 20 + [) € dom f1 N (Jwg — 7, 20[ U ]20, 20 + 1)
and dom fN(Jxg—r, zo[U]xo, xo+7]) C dom fon(Jzg—1, zo[U]zg, 20 +7[)-
Then f is convergent in xg and limg,, f = limg, fi.
(46)  Suppose that
) fi1is convergent in x,
) f2 is convergent in x,
) liInxofl = hmxonv
) there exists r such that 0 < r and |z — 7, 20[U]zo, 2o + 7] C (dom f1 N
dom fy) N'dom f and for every g such that g € |xg — r, zo[ U |zo,x0 + 7]
holds f1(g) < f(g) and f(g) < fa(9)-
Then f is convergent in ¢ and lim,, f = limg, f1.
(47)  Suppose that
(i)  f1 is convergent in z,
(il)  fo is convergent in xg,
(iii)  there exists r such that 0 < r but dom f1 N (Jxg — 7, zo[U]xo, zo +7[)
dom fo N (Jzg — 7, xo[U ]z, zo + r]) and for every g such that g € dom f1N
(Jzo = r,20[ U Jzo, 20 + 7[) holds fi(g) < fa(g) or dom fo N (Jag — 7, z0[ U
|zo, xzo + 7[) € dom f1 N (Jxg — 7, 20[ U |z, x0 + 7[) and for every g such
that g € dom fa N (Jog — 7, wo[ U zo, 2o + r[) holds fi(g) < fa(g)-
Then lim,, f1 < limg, fo.
(48)  Suppose that
(i)  f is divergent to 400 in xg or f is divergent to —oo in z,
(ii)  for all ry, ro such that r; < xp and xg < ry there exist g1, go such
that 1 < g1 and g1 < zg and g1 € dom f and g2 < ro and zg < g9 and
gs € dom f and f(g1) # 0 and f(gs) # 0.
Then % is convergent in z( and limwo% =0.
(49) Suppose that
(i)  f is convergent in xg,
(i) limg, f =0,
(iii)  for all r1, 7o such that r1 < xg and z¢ < ry there exist g1, g2 such
that r1 < g1 and g1 < zg and ¢; € dom f and g» < 12 and zg < g9 and
g2 € dom f and f(g1) # 0 and f(g2) # O,
(iv)  there exists r such that 0 < r and for every g such that g € dom f N
(Jzo — 7, z0[ U |20, 20 + 7[) holds 0 < f(g).
Then % is divergent to +oo in xzg.
(50)  Suppose that
(i)  f is convergent in xg,
(i) limg, f =0,
(iii)  for all r1, 7o such that r1 < xg and 2o < ry there exist g1, g2 such
that 1 < g1 and g1 < zg and ¢; € dom f and g» < 12 and zg < g9 and



(51)

(52)
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g2 € dom f and f(g1) # 0 and f(g2) # 0,

(iv)  there exists r such that 0 < r and for every g such that g € dom f N

(Jxo — 7, x0[ U Jx0, 20 + [) holds f(g) < 0.
Then % is divergent to —oo in xg.

If f is convergent in zo and lim,,f = 0 and there exists r such that
0 < r and for every g such that g € dom f N (Jzg — r, o[ U Jzo, x0 + 1)
holds 0 < f(g), then % is divergent to +oo in x.

If f is convergent in zo and lim,,f = 0 and there exists r such that
0 < r and for every g such that g € dom f N (Jzg — r, o[ U Jzo, x0 + 1)
holds f(g) < 0, then % is divergent to —co in x.
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Summary. The theorem on the proper and the improper limit of
a composition of real functions at a point, at infinity and one-side limits
at a point are presented.

MML Identifier: LIMFUNCA4.

The terminology and notation used in this paper have been introduced in the
following articles: [17], [4], [1], [2], [15], [13], [5], [8], [14], [16], [3], [10], [11],
[12], 7], [9], and [6]. We follow a convention: r, r1, ra, g, g1, g2, o Will be
real numbers and f1, fo will be partial functions from R to R. The following
propositions are true:

(1) Let s be a sequence of real numbers. Then for every set X such that
rngs C dom(fs - f1) N X holds rng s C dom(fs - f1) and rngs C X and
rng s C dom f; and rng s C dom f; N X and rng(f1 - s) C dom fs.

(2)  For every sequence of real numbers s and for every set X such that
rngs C dom(f2 - f1) \ X holds rngs C dom(f2 - f1) and rngs C dom f;
and rng s C dom f1 \ X and rng(f1 - s) C dom fs.

(3) If f1 is divergent in +oo to +oo and fs is divergent in 400 to 400 and
for every r there exists g such that r < g and g € dom(f2- f1), then fo- f1
is divergent in 400 to +oo.

(4) If fy is divergent in +00 to +o00 and fs is divergent in +o00 to —oo and
for every r there exists g such that » < g and g € dom(f2- f1), then fo- f1
is divergent in 400 to —oo.

(5) If f1 is divergent in +o00 to —oo and fs is divergent in —oo to 400 and
for every r there exists g such that r < g and g € dom(f2- f1), then fo- f1
is divergent in 400 to 4o0.
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(6) If f1 is divergent in +00 to —oo and fo is divergent in —oo to —oco and
for every r there exists g such that r < g and g € dom(f2- f1), then fo- f1
is divergent in 400 to —oo.

(7) If fy is divergent in —oo to +o0o and fs is divergent in +00 to +oo and
for every r there exists g such that g < r and g € dom(f2- f1), then fo- f1
is divergent in —oo to 4-o00.

(8) If fy is divergent in —oo to +oo and fs is divergent in +00 to —oo and
for every r there exists g such that g < r and g € dom(f2- f1), then fo- f1
is divergent in —oo to —oo.
(9) If f1 is divergent in —oo to —oo and f9 is divergent in —oo to 400 and
for every r there exists g such that g < r and g € dom(f2- f1), then fo- f1
is divergent in —oo to 4o0.
(10)  If fy is divergent in —oo to —oo and fs is divergent in —oo to —oo and
for every r there exists g such that g < r and g € dom(f2- f1), then fo- f1
is divergent in —oco to —oo.
(11)  If f is left divergent to +o00 in z¢ and fs is divergent in +oo to 00
and for every r such that r < x( there exists g such that » < g and g < x
and g € dom(fy - f1), then fo - f1 is left divergent to +o00 in x.

(12) If f; is left divergent to 400 in ¢ and f is divergent in +0o to —oo
and for every r such that r < x( there exists g such that r < g and g < x¢
and g € dom(fy - f1), then fy - f1 is left divergent to —oo in zg.

(13) If fi is left divergent to —oo in ¢ and fs is divergent in —oo to 400
and for every r such that r < x( there exists g such that » < g and g < x
and g € dom(fy - f1), then fo - f1 is left divergent to +o00 in x.

(14) If f; is left divergent to —oo in z¢ and fs is divergent in —oo to —oo
and for every r such that r < x( there exists g such that r < g and g < x¢
and g € dom(fs - f1), then fy - f1 is left divergent to —oo in z.

(15)  If fy is right divergent to 400 in xp and fo is divergent in 400 to +00
and for every r such that z¢ < r there exists g such that ¢ < r and g < g
and g € dom(fy - f1), then fo - f1 is right divergent to +oo in z.

(16)  If fy is right divergent to +oo in xg and fo is divergent in +o0o to —oo
and for every r such that xg < r there exists g such that g < r and zg < g
and g € dom(fs - f1), then fy - fi is right divergent to —oo in xg.

(17)  If fy is right divergent to —oo in xg and fo is divergent in —oo to 400
and for every r such that z¢ < r there exists g such that ¢ < r and g < g
and g € dom(fy - f1), then fo - f1 is right divergent to +oo in z.

(18) If fy is right divergent to —oo in xp and fo is divergent in —oo to —oo
and for every r such that z¢ < r there exists g such that ¢ < r and g < g
and g € dom(fs - f1), then fy - fi is right divergent to —oo in xg.

(19)  Suppose that

(i)  f1 is left convergent in x,
(i)  fois left divergent to 400 in lim, - f1,
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(iii)  for every r such that r < z( there exists g such that r < g and g < ¢
and g € dom(fs - f1),
(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
o — g,20[ holds fi(r) < lim, - fi.
Then f5 - f is left divergent to 400 in xzg.
(20)  Suppose that
(i)  f1 is left convergent in xg,
(ii)  fo is left divergent to —oo in lim, - f1,
(ili)  for every r such that r < x( there exists g such that r < g and g < ¢
and g € dom(fs3 - f1),
(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
lzo — g, o[ holds fi(r) < lim, - fi.
Then fs - f1 is left divergent to —oo in xg.
(21)  Suppose that
(i)  f1 is left convergent in x,
(ii)  fo is right divergent to +o0 in lim, - f1,
(iii)  for every r such that r < z( there exists g such that r < g and g < z
and g € dom(f> - f1),
(iv)  there exists g such that 0 < g and for every r such that r € dom f1 N
]1‘0 — g,l’o[ holds hmmg* f1 < fl(’l“).
Then fs - f1 is left divergent to 400 in zg.
(22)  Suppose that
(i)  f1 is left convergent in xg,
(i)  fo is right divergent to —oo in lim, - fi,
(iii)  for every r such that r < z( there exists g such that r < g and g < ¢
and g € dom(fs3 - f1),
(iv)  there exists g such that 0 < g and for every r such that r € dom f1 N
]1‘0 — g,l’o[ holds hm:c(r f1 < fl(’l“).
Then f5 - f1 is left divergent to —oo in xzg.
(23)  Suppose that
(i)  f1 is right convergent in xg,
(i)  fo is right divergent to +o0 in lim, + f1,
(iii)  for every r such that z¢p < r there exists g such that g < r and zg < g
and g € dom(f2 - f1),
(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
|zo, xo + g[ holds lim, + fi < fi(r).
Then fs - f1 is right divergent to 400 in xg.
(24)  Suppose that
(i)  f1 is right convergent in z,
(ii)  f is right divergent to —oo in lim, + fi,
(iii)  for every r such that 2y < r there exists g such that g < r and zg < g
and g € dom(f2 - f1),
(iv)  there exists g such that 0 < g and for every r such that r € dom f1 N
|xo, zo + g[ holds limx0+ f1 < fi(r).
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Then fs - f1 is right divergent to —oo in .
(25)  Suppose that

(i)  f1 is right convergent in xq,

(i)  fo is left divergent to +o0 in lim, + f1,

(ili)  for every r such that zg < r there exists g such that g < r and zg < g
and g € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
Jzo, 20 + g[ holds fi(r) < lim, + fi.
Then fo - f1 is right divergent to +oo in .

(26)  Suppose that

(i)  f1 is right convergent in z,

(i)  fo is left divergent to —oo in lim, + f1,

(iii)  for every r such that z¢p < r there exists g such that g < r and zg < g
and g € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
|zo, z0 + g[ holds fi(r) < lim, + fi.
Then f5 - f1 is right divergent to —oo in x.

(27) If f1 is convergent in +oo and fo is left divergent to +oo in lim o fi
and for every r there exists ¢g such that r < g and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N ]r, +oo[ holds
fi1(g) <limy f1, then fy- f1 is divergent in 400 to +oc.

(28) If f1 is convergent in +oo and fo is left divergent to —oo in lim o fi
and for every r there exists g such that » < g and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N |r, +oo[ holds
fi1(g) <limys f1, then fy - f1 is divergent in +o00 to —oc.

(29) If fy is convergent in 400 and f is right divergent to +oo in lim 4 fi
and for every r there exists g such that » < g and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N ]r, +oo[ holds
limi o f1 < f1(g), then fo - fi is divergent in +oo to 4o0.

(30) If fy is convergent in +oo and fo is right divergent to —oo in lim o f1
and for every r there exists g such that r < g and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f1 N ]r,+oo[ holds
lim; o f1 < f1(g), then fo - fi is divergent in +oo to —oo.

(31) If f1 is convergent in —oo and fs is left divergent to +o00 in lim_ f1
and for every r there exists ¢g such that g < r and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N]—o0, [ holds
fi(g) < lim_s f1, then fo - f1 is divergent in —oo to +oo.

Next we state a number of propositions:

(32) If f1 is convergent in —oo and fy is left divergent to —oo in lim_ f1
and for every r there exists g such that g < r and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N ]—o0, [ holds
fi(g) < lim_s f1, then fo - f1 is divergent in —oco to —oo.
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(33) If fy is convergent in —oo and fo is right divergent to +oo in lim_, fi
and for every r there exists g such that g < r and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N ]—o0, [ holds
lim_ f1 < fi1(g), then fo - f1 is divergent in —oo to +oo.

(34) If f1 is convergent in —oo and fo is right divergent to —oo in lim_o f1
and for every r there exists ¢g such that ¢ < r and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N]—o0, [ holds
lim_ f1 < fi1(g), then fo - f1 is divergent in —oco to —oo.

(35)  Suppose f; is divergent to +o0 in zg and fy is divergent in +o00 to 400
and for all r1, 79 such that vy < zg and zg < 7y there exist g1, go such
that 1 < g1 and g1 < 29 and g; € dom(f2 - f1) and g2 < 7o and zp < g
and go € dom(fy - f1). Then fy - fi is divergent to +oco in xg.

(36) Suppose fi is divergent to +o0 in zg and fy is divergent in +o00 to —oo
and for all 1, r9 such that vy < zg and zg < 7y there exist g1, go such
that 1 < g1 and g1 < 29 and g; € dom(f2 - f1) and g2 < 1o and zp < g
and go € dom(fy - f1). Then fy - fi is divergent to —oo in xg.

(37)  Suppose fi is divergent to —oo in zg and fy is divergent in —oo to 400
and for all 1, 79 such that vy < zg and zg < 7y there exist g1, go such
that 1 < g1 and g1 < z¢ and g; € dom(f2 - f1) and g2 < 19 and zp < g
and go € dom(fy - f1). Then f5 - fi is divergent to +oco in xg.

(38)  Suppose fi is divergent to —oo in zg and fy is divergent in —oco to —oo
and for all 1, 79 such that vy < zg and zg < 7y there exist g1, go such
that 1 < g1 and g1 < 29 and g; € dom(f2 - f1) and g2 < 79 and zp < g
and go € dom(fy - f1). Then fy - fi is divergent to —oo in xg.

(39) Suppose that

(i)  f1 is convergent in z,

(ii)  f2 is divergent to +o0 in limgy, f1,

(iii)  for all 1, o such that 7 < xg and z¢ < ry there exist g1, g2 such that
r1 < g1 and g1 < xo and g1 € dom(fs - f1) and g2 < 9 and xy < g2 and
g2 € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
(]IL’O -9, .13()[ U ].130, o + g[) holds fl(r) 7é hmxofl-

Then fs5 - f1 is divergent to +o00 in zg.

(40)  Suppose that

(i)  fi1 is convergent in z,

(ii)  fa is divergent to —oo in limg, f1,

(iii)  for all 71, 79 such that r; < xg and xg < ry there exist g1, g2 such that
r1 < g1 and g1 < xg and g1 € dom(fs - f1) and g2 < 79 and xy < g2 and
g2 € dom(fy - 1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f1 N
(Jzo — g, zo[ U |z, 20 + g[) holds fi(r) # limy, f1.

Then fs5 - f1 is divergent to —oo in zg.

(41)  Suppose that
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(i)  f1 is convergent in z,

(ii)  fo is right divergent to +oo in limg, fi,

(iii)  for all 1, o such that 7 < xo and z¢ < ro there exist g1, g2 such that
r1 < g1 and g1 < 2 and g; € dom(fy - f1) and g2 < ry and xy < g2 and
g2 € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
(Jzo — g, z0[ U ]xo, 0 + g[) holds f1(r) > limg, fi.

Then fs5 - f1 is divergent to +o0 in zg.

(42)  Suppose that

(i)  f1 is convergent in z,

(ii)  fo is right divergent to —oo in limg, f1,

(iii)  for all 1, o such that 7 < xy and z¢ < ro there exist g1, g2 such that
r1 < g1 and g1 < 2 and g; € dom(fy - f1) and g2 < ry and xy < g2 and
g2 € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
(Jxo — g, x0[ U |xo, To + g]) holds fi(r) > limgy, f1.

Then f5 - f1 is divergent to —oo in zg.

(43)  Suppose that

(i)  f1 is right convergent in xq,

(i)  fo is divergent to +oo in lim, + fi,

(ili)  for every r such that xg < r there exists g such that g < r and zg < g
and g € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
Jzo, xo + g[ holds fi(r) # lim, + fi.

Then f5 - f1 is right divergent to +oo in x.

(44)  Suppose that

(i)  f1 is right convergent in z,

(i)  fo is divergent to —oo in lim,+ f1,

(iii)  for every r such that z¢p < r there exists g such that g < r and zg < g
and g € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
|zo, x0 + g[ holds fi(r) # lim, + fi.

Then fs - f1 is right divergent to —oo in x.

(45) If f1 is convergent in +oo and f is divergent to 400 in lim, f1 and
for every r there exists g such that r < ¢g and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f1 N ]r,+oo[ holds
fi1(g) # limy o f1, then fo - f1 is divergent in 400 to +oo.

(46) If f1 is convergent in +oo and fy is divergent to —oo in lim, o f1 and
for every r there exists g such that r < ¢g and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f1 N ]r,+oo[ holds
fi1(g) # limy o f1, then fo - f1 is divergent in 400 to —oo.

(47) If f1 is convergent in —oo and fy is divergent to 400 in lim_. f1 and
for every r there exists g such that ¢ < r and g € dom(fs - f1) and
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there exists r such that for every g such that g € dom f; N]—o0, [ holds
fi(g) # lim_o f1, then fo - f1 is divergent in —oo to +oo.

(48) If fy is convergent in —oo and fo is divergent to —oo in lim_. f; and
for every r there exists g such that ¢ < r and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N]—o0, [ holds
f1(g) # lim_q f1, then fo - f1 is divergent in —oco to —oo.

(49)  Suppose that

(i)  fi1 is convergent in z,

(ii)  fais left divergent to +o0 in lim,, fi,

(iii)  for all 71, 79 such that r; < xg and xg < ro there exist gy, g2 such that
r1 < g1 and g1 < xg and g1 € dom(fs - f1) and g2 < 719 and xy < g2 and
g2 € dom(fa - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
(Jzo — g, z0[ U ]xo, 20 + g[) holds fi1(r) < limg, fi.

Then fs5 - f1 is divergent to 400 in zg.

(50)  Suppose that

(i)  fi1 is convergent in z,

(ii)  fais left divergent to —oo in lim,, fi,

(iii)  for all 71, 79 such that r; < xg and xg < ro there exist gy, g2 such that
r1 < g1 and g1 < xo and g1 € dom(fs - f1) and g2 < 79 and xy < g2 and
g2 € dom(f2 - f1),

(iv)  there exists g such that 0 < ¢g and for every r such that r € dom f; N
(Jzo — g, z0[ U ]xo, 0 + g[) holds fi1(r) < limg, fi.

Then fs5 - f1 is divergent to —oo in zg.

(51)  Suppose that

(i)  f1 is left convergent in xg,

(i)  fo is divergent to +ooc in lim, - f1,

(iii)  for every r such that r < x( there exists g such that r < g and g < ¢
and g € dom(f3 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
lzo — g, o[ holds fi(r) # lim, - fi.

Then fs - f1 is left divergent to 400 in xg.

(52)  Suppose that

(i)  f1 is left convergent in xg,

(i)  fo is divergent to —oo in lim, - f1,

(iii)  for every r such that r < x( there exists g such that r < g and g < ¢
and g € dom(f3 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
lzo — g, o[ holds fi(r) # lim, - fi.

Then fs - f1 is left divergent to —oo in xg.

(53) If f; is divergent in 400 to 400 and fo is convergent in +oo and for
every r there exists g such that r < g and g € dom(f3 - f1), then fo - f is
convergent in 400 and lim o (f2 - f1) = lim o fo.
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(54) If fy is divergent in 400 to —oo and fo is convergent in —oo and for
every r there exists g such that r < g and g € dom(f3 - f1), then fo - f is
convergent in 400 and lim . (f2 - f1) = lim_ fo.

(55) If fy is divergent in —oo to 400 and fs is convergent in +oo and for
every r there exists g such that g < r and g € dom(fs - f1), then fo- f is
convergent in —oo and lim_(f2 - f1) = limy o fo.

(56) If fy is divergent in —oo to —oo and fs is convergent in —oo and for
every r there exists g such that g < r and g € dom(fs - f1), then fo- f is
convergent in —oo and lim_(f2 - f1) = lim_ fo.

(57) If fy is left divergent to 400 in ¢ and fs is convergent in +o0o and for
every r such that r < zg there exists g such that » < g and g < zg and
g € dom(f2- f1), then f5- fi is left convergent in xo and lim, - (f2- f1) =
lim o fo.

(58) If fy is left divergent to —oo in xg and fs is convergent in —oo and for
every r such that r < x( there exists g such that » < g and ¢ < x¢ and
g € dom(f2- f1), then f5- fi is left convergent in xg and lim, - (f2- f1) =
lim_oo f2.

(59) If f; is right divergent to 400 in xp and fs is convergent in +oo and for
every r such that zg < r there exists g such that ¢ < r and zg < g and
g € dom(fz- f1), then fo- fi is right convergent in zo and lim, +(f2- f1) =
hm—l—oo f2-

(60) If f is right divergent to —oo in x and fs is convergent in —oo and for
every r such that zg < r there exists g such that ¢ < r and zg < g and
g € dom(f2- f1), then fo- fi is right convergent in zg and lim, +(f2- f1) =
lim_oo fg.

(61)  Suppose that

(i)  f1 is left convergent in z,
(i)  fois left convergent in lim, - f1,
(iii)  for every r such that r < x( there exists g such that r < g and g < ¢
and g € dom(f2 - f1),
(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
o — g, o[ holds fi(r) < lim, - fi.
Then fo - fi is left convergent in x¢ and lim, - (f2- f1) = limhmx( - fo

(62)  Suppose that

(i)  f1 is right convergent in xq,

(i)  fo is right convergent in lim, + fi,

(iii)  for every r such that z¢p < r there exists g such that g < r and zg < g
and g € dom(f3 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f1 N
|xo, zo + g[ holds limx0+ f1< fa(r).
Then fy- f1 is right convergent in x¢ and lim, +(f2- f1) = hmlimx(ﬁ f+ Jo

One can prove the following propositions:
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(63)  Suppose that

(i)  f1 is left convergent in xg,

(i)  fo is right convergent in lim, - fi,

(iii)  for every r such that r < z( there exists g such that r < g and g < z
and g € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
Jzo — g, 20[ holds lim, - f1 < fi(r).
Then f5 - fi is left convergent in x¢ and lim, - (f2 - f1) = limlimzf f+ Jo

(64) Suppose that
(i)  f1 is right convergent in xg,

(ii)  fo is left convergent in lim, + f1,

(iii)  for every r such that z¢p < r there exists g such that g < r and zg < g
and g € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
Jzo, zo + g[ holds fi(r) < lim, + fi.
Then fy- f1 is right convergent in o and lim, +(f2- f1) = hmliszJr - f2

(65)  Suppose f1 is convergent in +oo and fs is left convergent in lim, o f1
and for every r there exists ¢g such that r < g and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f1 N ]r,+oo[ holds
f1(g) < limyoo f1. Then fo- f1 is convergent in +oo and lim o (f2 - f1) =
limlim+oo i fg.

(66)  Suppose fi is convergent in +oo and fs is right convergent in lim, o f1
and for every r there exists g such that r < g and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f1 N ]r,+oo[ holds
lim o f1 < f1(g). Then f5- f1 is convergent in +oo and lim o (f2- f1) =
limlim+oo f1+ fg.

(67)  Suppose f1 is convergent in —oo and fy is left convergent in lim_ . f1
and for every r there exists g such that g < r and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N]—o0, [ holds
fi(g) < lim_q f1. Then fo- f1 is convergent in —oo and lim_(f2 - f1) =
hmlim,oo A~ f2.

(68)  Suppose fi is convergent in —oo and fs is right convergent in lim_ . f1
and for every r there exists ¢g such that ¢ < r and g € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N]—o0, 7| holds
lim_o f1 < fi(g). Then fs- f1 is convergent in —oco and im_(f2 - f1) =
hmlim,oo f1+ f2.

(69)  Suppose f; is divergent to +o00 in z¢ and fy is convergent in +o0o and
for all r1, r9 such that ;1 < zg and zg < r9 there exist gy, go such that
r1 < g1 and g1 < xp and g1 € dom(fs - f1) and g2 < 9 and xy < g2 and
g2 € dom(fa - f1). Then fo - fi is convergent in xo and lim,,(f2 - f1) =
lim o fo.

(70)  Suppose f; is divergent to —oo in z¢ and fy is convergent in —oo and
for all r1, 7o such that r1 < zg and xy < r9 there exist g1, go such that
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r1 < g1 and g1 < xo and g1 € dom(fy - f1) and g2 < 79 and xg < g2 and
g2 € dom(fa2 - f1). Then fy - fi is convergent in xo and lim,,(f2 - f1) =
lim_oo fg.

(71)  Suppose f; is convergent in +oo and fy is convergent in lim,, f1 and
for every r there exists g such that »r < ¢g and ¢ € dom(fs - f1) and
there exists r such that for every g such that g € dom f; N ]r, +oo[ holds
fi1(g) #limy f1. Then fo- f1 is convergent in +oo and lim o (fo - f1) =
limyim, o 1, fo

(72)  Suppose f1 is convergent in —oo and fy is convergent in lim_ ., fi and
for every r there exists g such that ¢ < r and ¢ € dom(fs - f1) and
there exists  such that for every g such that g € dom f; N]—o0, [ holds
fi1(g) #lim_ f1. Then fo- f1 is convergent in —oco and im_(f2- f1) =
limyim,_ o £, fo

(73)  Suppose that

(i)  f1 is convergent in xg,

(ii)  fo is left convergent in limg, fi,

(iii)  for all 1, o such that 71 < xo and z¢ < ro there exist g1, g2 such that
r1 < g1 and g1 < xo and g1 € dom(fs - f1) and g2 < 79 and xy < g2 and
g2 € dom(fy - ),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
(Jxo — g, x0[ U ]xo, zo + g]) holds fi(r) < limg, f1.

Then fo - f1 is convergent in zg and limg,(f2 - f1) = limhmxoff fa.

(74)  Suppose that

(i)  f1 is left convergent in xg,

(i)  f2 is convergent in lim, - fi,

(iii)  for every r such that r < x( there exists g such that r < g and g < ¢
and g € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
o — g, o[ holds fi(r) # lim, - fi.

Then f5 - f1 is left convergent in x¢ and lim, - (f2 - f1) = limlim107 ffa

(75)  Suppose that

(i)  fi1 is convergent in zg,

(ii)  fo is right convergent in limg, f1,

(iii)  for all 1, o such that 71 < xo and z¢ < ro there exist g1, g2 such that
r1 < g1 and g1 < xo and g1 € dom(fy - f1) and g2 < 9 and xy < g2 and
g2 € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
(Jzo — g, z0[ U]z, 0 + g[) holds lim,, f1 < fi(r).

Then fo - f1 is convergent in zg and limg,(f2 - f1) = limlimx0f1+ fo.

(76)  Suppose that

(i)  f1 is right convergent in z,
(i)  f2 is convergent in lim, + fi,
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(ili)  for every r such that xg < r there exists g such that g < r and zg < g
and g € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
|zo, x0 + g[ holds fi(r) # lim, + fi.
Then fo - fi is right convergent in z¢ and lim, +(f2 - f1) = hmlimxo L hfe

(77)  Suppose that
(i)  f1 is convergent in x,

(ii)  fa is convergent in limgy, f1,

(iii)  for all 1, o such that 71 < g and z¢ < ry there exist g1, g2 such that
r1 < g1 and g1 < zg and g; € dom(fy - f1) and g2 < ry and xy < g2 and
g2 € dom(f2 - f1),

(iv)  there exists g such that 0 < g and for every r such that r € dom f; N
(20 — g, 20[ U Jwo, g + g]) holds fi(r) # limy, fi.

Then fo - f1 is convergent in zg and limg,(f2 - f1) = limhmzo nfe
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Summary. This article is a continuation of [6]. We define a neigh-
bourhood of a point and a neighbourhood of a set and prove some facts
about them. Then the definitions of a locally connected space and a lo-
cally connected set are introduced. Some theorems on locally connected
spaces are given (based on [5]). We also define a quasi-component of a
point and prove some of its basic properties.

MML Identifier: CONNSP_2.

The papers [11], [10], [2], [13], [7], (1], [12], [9], [3], [8], [14], [6], and [4] provide
the terminology and notation for this paper. Let X be a topological space, and
let = be a point of X. A subset of X is called a neighborhood of x if:

(Def.1) € Intit.
Let X be a topological space, and let A be a subset of X. A subset of X is
called a neighborhood of A if:
(Def.2) A C Intit.

In the sequel X will denote a topological space, x will denote a point of X,
and A, Uy will denote subsets of X. We now state a number of propositions:

(2)2 A is a neighborhood of U; if and only if U; C Int A.

(3)  For every z and for all subsets A, B of X such that A is a neighborhood
of x and B is a neighborhood of x holds A U B is a neighborhood of z.

(4)  For every z and for all subsets A, B of X holds A is a neighborhood of
x and B is a neighborhood of z if and only if AN B is a neighborhood of
T.

(5) For every subset U; of X and for every point z of X such that Uj is
open and z € Uy holds U; is a neighborhood of .

(6) For every subset Uy of X and for every point x of X such that U; is a
neighborhood of « holds x € Uj.

LSupported by RPBP.I11-24.C1
2The proposition (1) was either repeated or obvious.
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(7)  For all Uy, = such that U; is a neighborhood of z there exists a subset
V of X such that V is a neighborhood of z and V is open and V C Uj.

(8)  For all Uy, z holds U, is a neighborhood of z if and only if there exists
a subset V of X such that V isopenand V C U; and z € V.
(9) Uj is open if and only if for every x such that x € Uy there exists a
subset A of X such that A is a neighborhood of z and A C Uj;.
(10)  For every subset V' of X holds V is a neighborhood of {z} if and only
if V' is a neighborhood of x.

(11)  For every subset B of X and for every point z of X | B and for every
subset A of X | B and for every subset Ay of X and for every point x;
of X such that B # ()x and B is open and A is a neighborhood of z and
A = A; and z = x1 holds A; is a neighborhood of ;.

(12)  For every subset B of X and for every point z of X | B and for every
subset A of X | B and for every subset A; of X and for every point x; of
X such that Ay is a neighborhood of 1 and A = A; and x = 21 holds A
is a neighborhood of x.

(13)  For all subsets A, B of X such that A is a component of X and A C B
holds A is a component of B.

(14)  For every subspace X; of X and for every point x of X and for every

point 1 of X; such that x = 1 holds Component(x;) C Component(z).

Let X be a topological space, and let & be a point of X. We say that X is
locally connected in «x if and only if:

(Def.3)  for every subset U; of X such that U; is a neighborhood of = there exists
a subset V' of X such that V is a neighborhood of z and V is connected
and V C Uj.

Let X be a topological space. We say that X is locally connected if and only
if:
(Def.4)  for every point = of X holds X is locally connected in x.
Let X be a topological space, and let A be a subset of X, and let = be a
point of X. We say that A is locally connected in «x if and only if:
(Def.5)  there exists a point 21 of X | A such that z; = x and X | A is locally
connected in x1.
The following proposition is true

(17)3  Ais locally connected in x if and only if there exists a point 21 of X | A
such that 1 = x and X | A is locally connected in x1.

Let X be a topological space, and let A be a subset of X. We say that A is
locally connected if and only if:

(Def.6) X | A is locally connected.

One can prove the following propositions:

3The propositions (15)—(16) were either repeated or obvious.
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(19)* For every  holds X is locally connected in x if and only if for all subsets
V, S of X such that V is a neighborhood of x and S is a component of
V and x € S holds S is a neighborhood of z.

(20)  For every z holds X is locally connected in z if and only if for every
subset U7 of X such that Uy is open and x € Uy there exists a point x7
of X | Uy such that z; = x and x € Int Component(z1).

(21) If X is locally connected, then for every subset S of X such that S is a
component of X holds S is open.

(22) If X is locally connected in x, then for every subset A of X such that
A is open and x € A holds A is locally connected in x.

(23)  If X is locally connected, then for every subset A of X such that A # 0 x
and A is open holds A is locally connected.

(24) X is locally connected if and only if for all subsets A, B of X such that
A # (x and A is open and B is a component of A holds B is open.

(25) If X is locally connected, then for every subset E of X and for every
subset C' of X | E such that F # 0x and C # Ox;g and C is connected
and C is open there exists a subset H of X such that H is open and H is
connected and C = F N H.

(26) X is a Ty space if and only if for all subsets A, C of X such that A # ()
and C' # Qx and A C C and A is closed and C is open there exists a
subset GG of X such that G is open and A C G and G C C.

(27)  Suppose X is locally connected and X is a T4 space. Let A, B be
subsets of X. Suppose A # () and B # () and A is closed and B is closed
and AN B = (). Then if A is connected and B is connected, then there
exist subsets R, S of X such that R is connected and S is connected and
R is open and S is open and A C Rand BC S and RN S = 0.

(28)  For every point = of X and for every family F of subsets of X such that
for every subset A of X holds A € F if and only if A is open closed and
x € A holds F # ().

Let X be a topological space, and let  be a point of X. The
quasi-component of
is a subset of X defined by:

(Def.7)  there exists a family F of subsets of X such that for every subset A of
X holds A € F if and only if A is open closed and z € A and N F =
the quasi-component of x.
We now state several propositions:

(29) A = thequasi-component of x if and only if there exists a family F' of
subsets of X such that for every subset A of X holds A € F' if and only
if A is open closed and z € A and N F = A.

(30) =z € the quasi-component of .

4The proposition (18) was either repeated or obvious.
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(31) If Ais open closed and = € A, then if A C the quasi-component of z,
then A = the quasi-component of x.
(32)  The quasi-component of x is closed.
(33)  Component(z) C the quasi-component of z.
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Summary. This text includes definitions of finite sequences over
rings and left-, right-, and bi-module over a ring, treated as functions
defined for all natural numbers, but almost everywhere equal to zero.
Some elementary theorems are proved, in particular for each category of
sequences the schema of existence is proved. In all four cases, i.e for rings,
left-, right-, and bi-modules are almost exactly the same, hovewer we do
not know how to do the job in Mizar in a different way. The paper is
mostly based on [2]. In particular the notion of initial segment of natural
numbers is introduced which differs from that of [2] by starting with zero.
This proved to be more convenient for algebraic purposes.

MML Identifier: ALGSEQ_1.

The notation and terminology used in this paper are introduced in the following
papers: [8], [3], [5], [1], [4], [6], and [7]. We adopt the following rules: i, k,
[, m, n will be natural numbers and z will be arbitrary. We now state four
propositions:

(2)2 Ifm<n+1,then m <norm=n.

(4)3 Ifk<2 thenk=0ork=1.

(5) For every real number z holds = < z + 1.

(N* Tfk<landl<k+1,thenl=Fk+1.

Let us consider n. The functor PSegn yields a set and is defined by:

(Def.1)  PSegn ={k:k <n}.

'Supported by RPBP.I11-24.C3

2The proposition (1) was either repeated or obvious.
3The proposition (3) was either repeated or obvious.
4The proposition (6) was either repeated or obvious.
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Let us consider n. Then PSegn is sets of natural numbers.
We now state a number of propositions:

(8) PSegn={k:k <n}.
(9) If x € PSegn, then z is a natural number.
10 k € PSegn if and only if & < n.

—_
—_

PSeg0 = () and PSeg1 = {0} and PSeg2 = {0, 1}.
n € PSeg(n + 1).
n < m if and only if PSegn C PSegm.

—_ =
W N
— O ' Y

If PSegn = PSegm, then n = m.
If K < n, then PSeg k = PSeg kN PSegn and PSeg k = PSegn NPSeg k.
If PSegk = PSegk NPSegn or PSegk = PSegn N PSegk, then k < n.
PSegn U {n} = PSeg(n + 1).
In the sequel R is a field structure and z is a scalar of R. Let us consider R.
A function from N into the carrier of R is said to be an algebraic sequence of R
if:
(Def.2)  there exists n such that for every ¢ such that ¢ > n holds it(i) = Og.

—_
(@)

e R R N N N N N
—_ —_
=2 =~

—_
N
~—

In the sequel p, ¢ denote algebraic sequences of R. Next we state the propo-
sition
(19)® domp = N,
Let us consider R, p, k. We say that the length of p is at most k if and only
if:
(Det.3)  for every i such that i > k holds p(i) = Opg.
We now state the proposition
(20)  the length of p is at most k if and only if for every i such that i > k
holds p(i) = Og.
Let us consider R, p. The functor len p yielding a natural number is defined
as follows:
(Def.4)  the length of p is at most len p and for every m such that the length of
p is at most m holds lenp < m.
We now state several propositions:

(21) ¢ =lenp if and only if the length of p is at most ¢ and for every m such
that the length of p is at most m holds ¢ < m.

22)  For every i such that ¢ > len p holds p(i) = Og.
23) If p(k) # Og, then lenp > k.
24)  If for every i such that i < k holds p(i) # Og, then lenp > k.
25) Iflenp =Fk+ 1, then p(k) # Org.
Let us consider R, p. The functor support p yields sets of natural numbers
and is defined as follows:

(
(
(
(

>The proposition (18) was either repeated or obvious.
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(Def.5)  support p = PSeg(lenp).

Next we state two propositions:
(26)  For every y being sets of natural numbers holds y = support p if and
only if y = PSeg(len p).
(27)  k =lenp if and only if PSeg k = supportp.
The scheme AlgSeqLambdaF concerns field structure A, a natural number B,
and a unary functor F yielding a scalar of A and states that:
there exists an algebraic sequence p of A such that lenp < B and for every
k such that k < B holds p(k) = F(k)
for all values of the parameters.
One can prove the following proposition
(28) If lenp = lenq and for every k such that k& < lenp holds p(k) = q(k),
then p = q.
The following proposition is true

(29)  For every R such that the carrier of R # {Og} for every k there exists
an algebraic sequence p of R such that lenp = k.

Let us consider R, z. The functor (z) yielding an algebraic sequence of R is
defined by:

(Def.6) len(z) <1 and (z)(0) = x.

One can prove the following propositions:

(30) p= (z) if and only if lenp < 1 and p(0) = x.
(31) p=(0g) if and only if lenp = 0.

(32) p=(0g) if and only if supportp = 0.

(33)  (Og)(i) = Og.

(34)  p=(0g) if and only if rngp = {0g}.

In the sequel R will be an associative ring and V will be a left module over
R. Let us consider R, V. The functor ©y yields a vector of V and is defined
by:

(Def7) 6)V = Othc carrier of V-
One can prove the following proposition

(35) Oy = Othe carrier of V-
In the sequel x denotes a vector of V. Let us consider R, V. A function from
N into the carrier of the carrier of V' is said to be an algebraic sequence of V' if:
(Def.8)  there exists n such that for every i such that ¢ > n holds it(i) = Oy
In the sequel p, ¢ will denote algebraic sequences of V. The following propo-
sition is true
(37)6 domp = N.
Let us consider R, V', p, k. We say that the length of p is at most k£ if and
only if:

5The proposition (36) was either repeated or obvious.
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(Def.9)  for every i such that ¢ > k holds p(i) = ©y.

We now state the proposition
(38)  the length of p is at most k if and only if for every i such that i > k
holds p(i) = Oy.
Let us consider R, V, p. The functor lenp yields a natural number and is
defined as follows:
(Def.10)  the length of p is at most lenp and for every m such that the length of
p is at most m holds lenp < m.
One can prove the following propositions:

(39) i =lenp if and only if the length of p is at most ¢ and for every m such
that the length of p is at most m holds 7 < m.

(40)  For every i such that i > lenp holds p(i) = Oy
(41)  If p(k) # Oy, then lenp > k.
(42)  If for every i such that ¢ < k holds p(i) # Oy, then lenp > k.
(43) Iflenp =k +1, then p(k) # Oy.
Let us consider R, V', p. The functor support p yields sets of natural numbers
and is defined by:
(Def.11)  support p = PSeg(lenp).

We now state two propositions:
(44)  For every y being sets of natural numbers holds y = support p if and
only if y = PSeg(len p).
(45)  k =lenp if and only if PSeg k = support p.
The scheme AlgSeqLambdalL M deals with an associative ring A, a left module
B over A, a natural number C, and a unary functor F yielding a vector of B
and states that:
there exists an algebraic sequence p of B such that lenp < C and for every k
such that k& < C holds p(k) = F(k)
for all values of the parameters.
The following proposition is true
(46) If lenp = lenq and for every k such that k& < lenp holds p(k) = q(k),
then p = q.
We now state the proposition

(47)  For all R, V such that the carrier of the carrier of V' # {©y } for every
k there exists an algebraic sequence p of V' such that lenp = k.

Let us consider R, V', z. The functor (z) yielding an algebraic sequence of
V' is defined as follows:

(Def.12)  len(z) <1 and (z)(0) = x.
One can prove the following propositions:
(48)  p=(z) if and only if lenp < 1 and p(0) = =.
(49) p=(Oy) if and only if lenp = 0.
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(50) = (Oy) if and only if supportp = .
(51) <@v>( ) =Ov.
(52)  p=(Oy) if and only if rngp = {Oy}.

In the sequel V' will denote a right module over R. Let us consider R, V.
The functor Oy yields a vector of V' and is defined as follows:

(Def13) @V - Othc carrier of V-

The following proposition is true

(53) ®V = Othe carrier of V-
Let us consider R, V. The functor Oy yields a vector of V' and is defined as
follows:

(Def14) @V = 0the carrier of V-

The following proposition is true

(54) @V = Othe carrier of V-
In the sequel = will denote a vector of V. Let us consider R, V. A function
from N into the carrier of the carrier of V is called an algebraic sequence of V
if:
(Def.15)  there exists n such that for every ¢ such that ¢ > n holds it(i) = Oy
In the sequel p, ¢ will be algebraic sequences of V. We now state the propo-
sition
(56)7 domp = N.
Let us consider R, V', p, k. We say that the length of p is at most k£ if and
only if:
(Def.16)  for every ¢ such that ¢ > k holds p(i) = ©y.

Next we state the proposition
(57)  the length of p is at most & if and only if for every i such that i > k
holds p(i) = Oy.
Let us consider R, V, p. The functor lenp yields a natural number and is
defined by:
(Def.17)  the length of p is at most len p and for every m such that the length of
p is at most m holds lenp < m.
Next we state several propositions:

(58) i =lenp if and only if the length of p is at most ¢ and for every m such
that the length of p is at most m holds 7 < m.

(59)  For every ¢ such that i > lenp holds p(i) = Oy .

(60) If p(k) # Oy, then lenp > k.

(61)  If for every ¢ such that ¢ < k holds p(i) # ©y, then lenp > k.
(62) Iflenp =k + 1, then p(k) # Oy.

"The proposition (55) was either repeated or obvious.
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Let us consider R, V, p. The functor supportp yielding sets of natural
numbers is defined by:

(Def.18)  support p = PSeg(lenp).

The following propositions are true:

(63) For every y being sets of natural numbers holds y = support p if and
only if y = PSeg(len p).
(64) k =lenp if and only if PSeg k = support p.

The scheme AlgSeqLambdaRM deals with an associative ring A, a right mod-
ule B over A, a natural number C, and a unary functor F yielding a vector of
B and states that:

there exists an algebraic sequence p of B such that lenp < C and for every k
such that k£ < C holds p(k) = F(k)
for all values of the parameters.

The following proposition is true

(65) If lenp = lengq and for every k such that k& < lenp holds p(k) = q(k),
then p = gq.

One can prove the following proposition

(66) For all R, V such that the carrier of the carrier of V' # {©y } for every
k there exists an algebraic sequence p of V' such that lenp = k.

Let us consider R, V', z. The functor (x) yielding an algebraic sequence of
V' is defined by:

(Def.19)  len(x) <1 and (x)(0) = x.

We now state several propositions:
67) p= (z)if and only if lenp < 1 and p(0) = z.
6

Qo

) p=(Oy) if and only if lenp = 0.

) p=(Oy) if and only if supportp = 0.
70)  (Ov)(i) =Ov.

71) p=(Oy) if and only if rngp = {Oy }.

In the sequel V is a bimodule over R. Let us consider R, V. The functor Oy
yields a vector of V and is defined as follows:

(Def20) @V - Otho carrier of V-

A~ o~ A~~~
D
=)

One can prove the following proposition

(72) @V = Otho carrier of V-

Let us consider R, V. The functor Oy yields a vector of V' and is defined as
follows:

(Def21) @V = Othe carrier of V-
We now state the proposition

(73) ®V = 0the carrier of V-
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In the sequel x will denote a vector of V. Let us consider R, V. A function
from N into the carrier of the carrier of V is said to be an algebraic sequence of

Vv if:
(Def.22)  there exists n such that for every i such that ¢ > n holds it(i) = Oy
In the sequel p, ¢ will be algebraic sequences of V. We now state the propo-
sition
(75)% domp = N.
Let us consider R, V, p, k. We say that the length of p is at most &k if and
only if:
(Def.23)  for every i such that i > k holds p(i) = Oy

Next we state the proposition
(76)  the length of p is at most k if and only if for every i such that i > k
holds p(i) = Oy.
Let us consider R, V, p. The functor lenp yielding a natural number is
defined by:

(Def.24)  the length of p is at most lenp and for every m such that the length of
p is at most m holds lenp < m.
One can prove the following propositions:

(77) i =lenp if and only if the length of p is at most ¢ and for every m such
that the length of p is at most m holds ¢ < m.

78)  For every i such that i > lenp holds p(i) = Oy.
79) If p(k) # Oy, then lenp > k.
80)  If for every ¢ such that i < k holds p(i) # ©y, then lenp > k.
81) Iflenp =k + 1, then p(k) # Oy.
Let us consider R, V, p. The functor supportp yielding sets of natural
numbers is defined by:

(Def.25)  supportp = PSeg(len p).

(
(
(
(

We now state two propositions:

(82)  For every y being sets of natural numbers holds y = support p if and
only if y = PSeg(len p).
(83) k =lenp if and only if PSeg k = supportp.

The scheme AlgSeqLambdaBM concerns an associative ring 4, a bimodule B
over A, a natural number C, and a unary functor F yielding a vector of 5 and
states that:

there exists an algebraic sequence p of B such that lenp < C and for every k
such that k& < C holds p(k) = F(k)
for all values of the parameters.

We now state the proposition

8The proposition (74) was either repeated or obvious.
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(84) If lenp = lenq and for every k such that k& < lenp holds p(k) = q(k),

then p = q.
The following proposition is true

(85)  For all R, V such that the carrier of the carrier of V' # {Oy} for every

k there exists an algebraic sequence p of V' such that lenp = k.
Let us consider R, V, . The functor (x) yields an algebraic sequence of V'

and is defined by:
(Def.26)  len(x) <1 and (x)(0) = x.

Next we state several propositions:

(86) p = (z) if and only if lenp < 1 and p(0) =
(87) = (Oy) if and only if lenp = 0.
(88) p=(Oy) if and only if supportp = ().
(89)  (Ov)(i) =
(90) p=(OY) 1f and only if rngp = {Oy }.
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Relations of Tolerance *

Krzysztof Hryniewiecki
Warsaw University

Summary. Introduces notions of relations of tolerance, tolerance
set and neighbourhood of an element. The basic properties of relations
of tolerance are proved.

MML Identifier: TOLER_1.

The notation and terminology used here have been introduced in the following
papers: [2], [3], [4], [5], and [1]. We adopt the following rules: X, Y, Z denote
sets, x, y are arbitrary, and R denotes a relation between X and X. The
following propositions are true:

(1) fieldo = 0.

2 is pseudo reflexive.

w

is symmetric.

W

(@)
NN AN N NN N

is irreflexive.

t

is asymmetric.

[N

%]
%]
%]
@ is antisymmetric.
%]
@ is connected.
8 1]
9

Let us consider X. The functor V x yielding a relation between X and X is
defined by:

(Def.l) Vx=1[X, X].
Let us consider X, R, Y. Then R|?Y is a relation between Y and Y.

The following propositions are true:

(10)  For every relation R between X and X holds R = Vi if and only if
R=}[X, X].

is strongly connected.

(
(
(
(
(
(
(
(

@ is transitive.

!Supported by Philippe le Hodey Foundation. This work had been done on Mizar Workshop
’89 (Fourdrain, France) in Summer ’89.
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Vx=1[}X, X1
domVyx = X.
mgVyx = X.
field Vx = X.

For all x, y such that x € X and y € X holds (z,y) € Vx.

For all z, y such that € field Vx and y € field Vx holds (x,y) € V.
V x is pseudo reflexive.

V x is symmetric.

V x is strongly connected.

V x is transitive.

V x is connected.

Let us consider X. A relation between X and X is said to be a tolerance of

X if:
(Def.2)

it is pseudo reflexive and it is symmetric and fieldit = X.

In the sequel T', R denote tolerances of X. The following propositions are

true:

(23)°

NN NN
~N O Ot =~
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—

(32)

For every tolerance R of X holds R is pseudo reflexive and R is sym-

metric and field R = X.

For every tolerance T of X holds domT = X.

For every tolerance T' of X holds rngT = X.

For every tolerance 1" of X holds field T = X.

For every tolerance T" of X holds z € X if and only if (z,z) € T.

For every tolerance T' of X holds T is reflexive in X.

For every tolerance T' of X holds T is symmetric in X.

For every tolerance T of X such that (x,y) € T holds (y,x) € T.

For every tolerance T' of X and for all z, y such that (x,y) € T holds

re X and y € X.

For every relation R between X and Y such that R is symmetric holds
|2 Z is symmetric.

Let us consider X, T, and let Y be a subset of X. Then 7'|?Y is a tolerance

of Y.

Next we state the proposition

(33)

If Y C X, then T|?Y is a tolerance of Y.

Let us consider X, and let T' be a tolerance of X. A set is called a set of
mutually elements w.r.t. T if:

(Def.3)

for all x, y such that x € it and y € it holds (z,y) € T

We now state the proposition

(34)

() is a set of mutually elements w.r.t. T

2The proposition (22) was either repeated or obvious.
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Let us consider X, and let T be a tolerance of X. A set of mutually elements
w.r.t. T is called a tolerance class of T if:

(Def.4)  for every x such that z ¢ it and x € X there exists y such that y € it
and (z,y) ¢ T.
Next we state a number of propositions:

(36)% Y is a set of mutually elements w.r.t. T if and only if for all z, y such
that z € Y and y € Y holds (z,y) € T.

(38)* For every tolerance T of X such that () is a tolerance class of 7" holds
T=0.
(39) @ is a tolerance of 0.

(40)  For all z, y such that (x,y) € T holds {x, y} is a set of mutually elements
wr.t. T.

(41)  For every z such that x € X holds {z} is a set of mutually elements
w.r.t. T.

(42)  For all Y, Z such that YV is a set of mutually elements w.r.t. 7" and Z
is a set of mutually elements w.r.t. T holds Y N Z is a set of mutually
elements w.r.t. T

(43) If Y is a set of mutually elements w.r.t. T, then Y C X.
(44) If Y is a tolerance class of T', then Y C X.

(45)  For every set Y of mutually elements w.r.t. T there exists a tolerance
class Z of T such that Y C Z.

(46)  For all z, y such that (x,y) € T there exists a tolerance class Z of T
such that z € Z and y € Z.

(47)  For every = such that z € X there exists a tolerance class Z of T" such
that x € Z.
Let us consider X. Then Ax is a tolerance of X.
We now state three propositions:
(48)  Vx is a tolerance of X.
(49) T CVxk.
(50) Ax CT.
The scheme ToleranceEx concerns a set A, and a binary predicate P, and
states that:
there exists a tolerance T' of A such that for all x, y such that z € A and
y € A holds (z,y) € T if and only if P[z,y]
provided the parameters satisfy the following conditions:
e for every z such that x € A holds P[z, z],
e for all z, y such that x € A and y € A and Plz,y| holds P[y, x].
One can prove the following propositions:

3The proposition (35) was either repeated or obvious.
4The proposition (37) was either repeated or obvious.
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(51)  For every Y there exists a tolerance T of |JY such that for every Z
such that Z € Y holds Z is a set of mutually elements w.r.t. T

(52) Let Y beaset. Let T, R be tolerances of [JY. Then if for all z, y holds
(z,y) € T if and only if there exists Z such that Z € Y and x € Z and
y € Z and for all z, y holds (x,y) € R if and only if there exists Z such
that Z €Y andx € Z and y € Z, then T' = R.
(53)  For all tolerances T, R of X such that for every Z holds Z is a tolerance
class of T' if and only if Z is a tolerance class of R holds T'= R.
Let us consider X, and let T" be a tolerance of X, and let us consider . The
functor neighbourhood(z, T") yielding a set is defined by:

(Det.5)  for every y holds y € neighbourhood(xz,T") if and only if (x,y) € T

One can prove the following propositions:
(54)  For every tolerance T' of X and for every x and for every set Y holds
Y = neighbourhood(x,T) if and only if for every y holds y € Y if and
only if (x,y) € T.
(55)  For every tolerance T' of X holds y € neighbourhood(z,T) if and only
if (x,y) € T.
(56) If x € X, then = € neighbourhood(x,T).
(57)  neighbourhood(z,T) C X.
(58)  For every Y such that for every set Z holds Z € Y if and only if x € Z
and Z is a tolerance class of T holds neighbourhood(z,7T) = JY.
(59)  For every Y such that for every Z holds Z € Y if and only if z € Z and
Z is a set of mutually elements w.r.t. 7" holds neighbourhood(z,7") = Y.
We now define two new functors. Let us consider X, and let T" be a tolerance
of X. The functor TolSets T yields a set and is defined by:
(Def.6)  for every Y holds Y € TolSets T if and only if YV is a set of mutually
elements w.r.t. T
The functor TolClasses T yields a set and is defined by:
(Def.7)  for every Y holds Y € TolClasses T if and only if Y is a tolerance class
of T.

The following propositions are true:

(60)  For every set Y and for every tolerance T of X holds Y = TolSets T if
and only if for every Z holds Z € Y if and only if Z is a set of mutually
elements w.r.t. 7.

(61)  For every tolerance T of X and for every Z holds Z € TolSets T if and
only if Z is a set of mutually elements w.r.t. 7.

(62)  For every set Y and for every tolerance T of X holds Y = TolClasses T’
if and only if for every Z holds Z € Y if and only if Z is a tolerance class
of T.

(63)  For every tolerance T of X holds Z € TolClasses T' if and only if Z is a
tolerance class of T'.
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(64) If TolClasses R C TolClasses T, then R C T

(65) For all tolerances T, R of X such that TolClassesT = TolClasses R
holds T' = R.

(66) U(TolClassesT) = X.
(67) U(TolSetsT) = X.

(68) If for every x such that z € X holds neighbourhood(z,T') is a set of
mutually elements w.r.t. T, then T is transitive.

(69) If T is transitive, then for every z such that x € X holds
neighbourhood(z, T')
is a tolerance class of 7'

(70)  For every x and for every tolerance class Y of 7" such that = € Y holds
Y C neighbourhood(z,T).

(71)  TolSets R C TolSets T if and only if R C T

(72)  TolClasses T' C TolSets T'.

(73)  If for every x such that x € X holds
neighbourhood(z, R) C neighbourhood(x, T),
then R CT.

(74 TCT-T.
(75) U T =TT, then T is transitive.
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Summary. We construct a real normed space (V, ||.||), where V
is a real vector space and ||.|| is a norm. Auxillary properties of the
norm are proved. Next, we introduce the notion of sequence in the real
normed space. The basic operations on sequences (addition, substraction,
multiplication by real number) are defined. We study some properties of
sequences in the real normed space and the operations on them.

MML Identifier: NORMSP_1.

The notation and terminology used in this paper have been introduced in the
following papers: [5], [13], [16], [3], [4], [1], [2], [17], [11], [12], [9], [7], [8], [10],
[15], [14], and [6]. We consider normed structures which are systems

(vectors, a norm),
where the vectors constitute a real linear space and the norm is a function from
the vectors of the vectors into R.

In the sequel X is a normed structure and a, b are real numbers. Let us
consider X. A point of X is an element of the vectors of the vectors of X.

In the sequel x denotes a point of X. Let us consider X, z. The functor ||z||
yields a real number and is defined as follows:

(Def.1)  ||z|| = (the norm of X)(z).

A normed structure is said to be a real normed space if:

(Def.2)  for all points z, y of it and for every a holds ||z|| = 0 if and only if
Z = Othe vectors of it Put [la-z| = la| - [|z| and ||z + y[| < [lz[| + [|y[-

We adopt the following rules: R; is a real normed space and z, y, z, g are
points of R;. The following propositions are true:

(2)2 ||z|| = 0 if and only if 2 = Othe vectors of Ry -

LSupported by RPBP.II1-24.C8
2The proposition (1) was either repeated or obvious.
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la-z+b-yll < laf - [lz] + [b] - [lyl]-
lx — y|| = 0 if and only if z = y.

JAN POPIOLEK
3)  la-z| =lal-[=].
@)z +yll < llzll + llyll
(5 ||0the vectors of Rp H =0.
©) =zl = [l
(M) Mz =yl < llzll + [lyll-
®)  0< .
(
1

—_
= O

lz =yl = lly — ||

]l = llyll < [lz —yll.

llzll =yl < llz = yl|-

|z — 2]l < [lz —yll + [ly — 2]
If x # y, then ||z — y|| # 0.

Let us consider R1. A subset of Ry is a subset of the vectors of the vectors
of Rl.
Let us consider R;. A function is called a sequence of Ry if:

—_
\)

—_
=~ =]
O N O N N D D —

e N N N N N
—_
w

—_
ot

(Def.3)  domit = N and rngit C the vectors of the vectors of Rj.

For simplicity we adopt the following rules: S, Sq, So, T are sequences of
R1, k, n, m are natural numbers, r is a real number, f is a function, and d is
arbitrary. We now state several propositions:

(17)%  f is a sequence of R if and only if dom f = N and for every d such that
d € N holds f(d) is a point of R;.

(18)  For all S, T such that for every n holds S(n) = T'(n) holds S =T.
(19)  For every x there exists S such that rng.S = {z}.

(20)  If there exists = such that for every n holds S(n) = z, then there exists
x such that rg S = {z}.
(21)  If there exists = such that rng S = {z}, then for every n holds S(n) =
S(n+1).
(22)  If for every n holds S(n) = S(n + 1), then for all n, k holds S(n) =
S(n+k).
(23) Ifforall m, k holds S(n) = S(n+k), then for all n, m holds S(n) = S(m).
S

(24) If for all n, m holds S(n) = S(m), then there exists = such that for
every n holds S(n) = .

(25)  There exists S such that rng .S = {Othe vectors of Ry }-
Let us consider Ry, S. We say that S is constant if and only if:

(Def.4)  there exists = such that for every n holds S(n) = .

The following propositions are true:
(27)* S is constant if and only if there exists = such that rng S = {z}.

3The proposition (16) was either repeated or obvious.
4The proposition (26) was either repeated or obvious.
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(28)  For every n holds S(n) is a point of R;.
Let us consider Ry, S, n. Then S(n) is a point of R;.

The scheme FxRNSSeq concerns a real normed space A and a unary functor
F yielding a point of A and states that:

there exists a sequence S of A such that for every n holds S(n) = F(n)
for all values of the parameters.

Let us consider Ry, S1, So. The functor S1 + S5 yielding a sequence of Ry is
defined as follows:

(Def.5)  for every n holds (S1 + S2)(n) = S1(n) + Sa(n).
One can prove the following proposition
(29) S =51+ 5 if and only if for every n holds S(n) = S1(n) + Sz(n).

Let us consider Ry, S1, S3. The functor S1 — S, yielding a sequence of R is
defined as follows:

(Def.6)  for every n holds (S7 — S2)(n) = S1(n) — Sa(n).
The following proposition is true
(30) S =51 — Sz if and only if for every n holds S(n) = Si(n) — Sa(n).

Let us consider Ry, S, z. The functor S — x yields a sequence of R and is
defined by:

(Def.7)  for every n holds (S — z)(n) = S(n) — x.
Next we state the proposition
(31) T =S —z if and only if for every n holds T'(n) = S(n) — .

Let us consider Ry, S, a. The functor a - S yields a sequence of Ry and is
defined by:

(Def.8)  for every n holds (a-S)(n) =a-S(n).
We now state the proposition
(32) T =a-S if and only if for every n holds T'(n) = a - S(n).
Let us consider R1, S. We say that S is convergent if and only if:
(Def.9)  there exists g such that for every r such that 0 < r there exists m such
that for every n such that m < n holds ||S(n) — g|| < 7.

One can prove the following propositions:
3

=~

)5 If Sy is convergent and S5 is convergent, then Sy + S is convergent.

w
Ot
=

(
( If S7 is convergent and S5 is convergent, then S; — S5 is convergent.
(36) If S is convergent, then S — x is convergent.

(37) If S is convergent, then a - S is convergent.

Let us consider Ry, S. The functor ||S|| yielding a sequence of real numbers
is defined by:

(Def.10)  for every n holds ||S||(n) = ||S(n)]|.

Next we state two propositions:

>The proposition (33) was either repeated or obvious.
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(38) ||S]| is a sequence of real numbers if and only if for every n holds
151(n) = IS(n)].
(39) If S is convergent, then ||S]| is convergent.
Let us consider Ry, S. Let us assume that S is convergent. The functor lim S
yielding a point of R is defined by:
(Def.11)  for every r such that 0 < r there exists m such that for every n such
that m < n holds [|S(n) — (im S)|| < 7.
The following propositions are true:

(40) If S is convergent, then lim S = g if and only if for every r such that
0 < r there exists m such that for every n such that m < n holds ||S(n) —

gl <r.

(41)  If Sis convergent and lim S = g, then ||S—g|| is convergent and lim||S —
gl = 0.

(42) If S; is convergent and So is convergent, then lim(S; 4+ S2) = lim S} +
lim Sg.

(43) If Sy is convergent and Sy is convergent, then lim(S; — S3) = lim Sy —
lim SQ.

(44) If S is convergent, then lim(S — z) = lim S — «.

(45)  If S is convergent, then lim(a - S) = a - (lim S).
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Summary. We prove some useful shemes of existence of real se-
quences, partial functions from a domain into a domain, partial functions
from a set to a set and functions from a domain into a domain. At the
begining we prove some related auxiliary theorems to the article [1].

MML Identifier: SCHEME1.

The notation and terminology used here are introduced in the following articles:
9], [5], [1], [2], [3], [8], [6], [4], and [7]. We adopt the following convention: x,
y will be arbitrary, n, m will denote natural numbers, and r will denote a real

number. Next we state four propositions:

(1)  For every n there exists m such that n =2 -

(2) For every n there exists m such that n =
n=3-m-++2.

(3) For every n there exists m such that n =
n=4-m+2orn=4-m+3.

(4)  For every n there exists m such that n =

morn=2-m-+ 1.
3-morn=3-m+1 or

4 -morn=4-m+1 or

5-morn=5-m+1or

n=5m+2orn=5-m+3orn=5-m-+4.

In this article we present several logical schemes.

The scheme FxRealSubseq

concerns a sequence of real numbers A, and a unary predicate P, and states

that:

there exists a sequence of real numbers ¢ such that ¢ is a subsequence of A
and for every n holds P[g(n)] and for every n such that for every r such that
r = A(n) holds P[r] there exists m such that A(n) = g(m)

provided the following requirement is met:

e for every n there exists m such that n < m and P[A(m)].

!Supported by RPBP.ITI-24.C8
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The scheme FzRealSeq2 deals with a unary functor F yielding a real number
and a unary functor G yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds s(2:n) =
F(n) and s(2-n+1) =G(n)
for all values of the parameters.

The scheme ExRealSeq3 deals with a unary functor F yielding a real number,
a unary functor G yielding a real number, and a unary functor H yielding a real
number and states that:

there exists a sequence of real numbers s such that for every n holds s(3-n) =
F(n)and s(3-n+1) =G(n) and s(3-n+2) = H(n)
for all values of the parameters.

The scheme FzRealSeq deals with a unary functor F yielding a real number,
a unary functor G yielding a real number, a unary functor H yielding a real
number, and a unary functor Z yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds s(4:-n) =
F(n) and s(4-n+1) =G(n) and s(4-n+2) = H(n) and s(4-n+3) =Z(n)
for all values of the parameters.

The scheme ExRealSeq5 deals with a unary functor F yielding a real number,
a unary functor G yielding a real number, a unary functor H yielding a real
number, a unary functor Z yielding a real number, and a unary functor J
yielding a real number and states that:

there exists a sequence of real numbers s such that for every n holds s(5-n) =
F(n) and s(5-n+1) =G(n) and s(5-n+2) = H(n) and s(5-n+3) = Z(n)
and s(b-n+4) =J(n)
for all values of the parameters.

The scheme PartFuncExD2 deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, and two unary predicates P and Q, and states that:

there exists a partial function f from A to B such that for every element ¢ of
A holds ¢ € dom f if and only if Plc] or Q[c] and for every element ¢ of A such
that ¢ € dom f holds if P[c], then f(c) = F(c) but if Q|¢], then f(c) = G(c)
provided the following condition is met:

e for every element c of A such that P[c] holds not QJc].

The scheme PartFuncExD2’ concerns a non-empty set 4, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, and two unary predicates P and O, and states that:

there exists a partial function f from A to B such that for every element ¢ of
A holds ¢ € dom f if and only if Plc] or Q[c] and for every element ¢ of A such
that ¢ € dom f holds if P[c], then f(c) = F(c) but if Q|¢], then f(c) = G(c)
provided the following requirement is met:

e for every element ¢ of A such that P|c] and Q|c] holds F(c) = G(c).

The scheme PartFuncExD2” deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, and a unary predicate P, and states that:
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there exists a partial function f from A to B such that f is total and for
every element ¢ of A such that ¢ € dom f holds if P[¢], then f(c) = F(c) but if
not P[c], then f(c) = G(c)
for all values of the parameters.
The scheme PartFuncExD3 deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, a unary functor H yielding an element of B, and three unary
predicates P, Q, and R, and states that:
there exists a partial function f from A to B such that for every element ¢
of A holds ¢ € dom f if and only if P|c] or Q[c] or R[c| and for every element
¢ of A such that ¢ € dom f holds if P[], then f(c) = F(c) but if Q]c|, then
f(e) = G(e) but if R[], then f(c) = H(c)
provided the parameters satisfy the following condition:
e for every element ¢ of A holds if P[c], then not Q[¢] but if P[c],
then not R]c] but if Q[¢], then not R|c].
The scheme PartFuncExD3’ concerns a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, a unary functor H yielding an element of B, and three unary
predicates P, O, and R, and states that:
there exists a partial function f from A to B such that for every element ¢
of A holds ¢ € dom f if and only if P[] or Q[c] or R[c| and for every element
¢ of A such that ¢ € dom f holds if P[], then f(c) = F(c) but if Q]c|, then
f(c) = G(c) but if R[], then f(c) = H(c)
provided the following requirement is met:
e for every element ¢ of A holds if Plc] and Q|c|, then F(c) = G(c)
but if Ple] and R]c], then F(c) = H(c) but if Q[c] and R[c], then
G(c) = H(c).
The scheme PartFuncExD/j deals with a non-empty set A, a non-empty set
B, a unary functor F yielding an element of B, a unary functor G yielding an
element of B, a unary functor H yielding an element of B, a unary functor Z
yielding an element of B, and four unary predicates P, Q, R, and S, and states
that:
there exists a partial function f from A to B such that for every element ¢
of A holds ¢ € dom f if and only if Plc] or Q[c] or R[c] or S[c] and for every
element ¢ of A such that ¢ € dom f holds if P[c], then f(c) = F(c) but if Q|c],
then f(c) = G(c) but if R[¢|, then f(c) = H(c) but if S[¢], then f(c) = Z(c)
provided the parameters satisfy the following condition:
e for every element ¢ of A holds if P[c], then not Q[¢] but if P[c],
then not R|c| but if Pc|, then not S[c] but if Qlc], then not R[]
but if Q[¢], then not S[c| but if R[c], then not Slc|.
The scheme PartFuncExS2 deals with a set A, a set B, a unary functor F, a
unary functor G, and two unary predicates P and Q, and states that:
there exists a partial function f from A to B such that for every x holds
x € dom f if and only if z € A but Plz] or Qlz| and for every x such that
x € dom f holds if P[x], then f(z) = F(z) but if Q[z], then f(x) = G(x)
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provided the parameters satisfy the following conditions:

e for every x such that x € A holds if P[z], then not Q[z],

e for every z such that x € A and P[z] holds F(x) € B,

e for every z such that x € A and QJz| holds G(x) € B.

The scheme PartFuncExS3 deals with a set A, a set B, a unary functor F, a
unary functor G, a unary functor H, and three unary predicates P, Q, and R,
and states that:

there exists a partial function f from A to B such that for every x holds
x € dom f if and only if z € A but P[x| or Q[x] or R[x] and for every = such
that = € dom f holds if P[z], then f(z) = F(z) but if Qlx], then f(z) = G(z)
but if Rlz], then f(x) = H(x)
provided the parameters meet the following conditions:

e for every x such that z € A holds if P[z], then not Qx| but if P[x],

then not R[x] but if Q[z], then not R[z],

e for every z such that x € A and P[z] holds F(x)

e for every z such that x € A and Q] holds G(x)

e for every z such that € A and R[z] holds H(z) € B.

The scheme PartFuncFExS/ deals with a set A, a set B, a unary functor
F, a unary functor G, a unary functor H, a unary functor Z, and four unary
predicates P, O, R, and S, and states that:

there exists a partial function f from A to B such that for every x holds
x € dom f if and only if x € A but P[z] or Qlz] or R[z] or S[z] and for
every x such that = € dom f holds if Plz], then f(z) = F(x) but if Q[z], then
f(x) = G(x) but if R[x|, then f(x) = H(x) but if S[z], then f(x) = Z(x)
provided the parameters meet the following requirements:

e for every z such that = € A holds if P[z], then not Q[x] but if P[z],
then not R[x] but if P[x], then not S[z| but if Q[z], then not R[x]
but if Q[z], then not S[x] but if R[z], then not S[z],
for every x such that x € A and P[z] holds F(x) € B,
for every x such that € A and Q[z] holds G(z) € B,
for every x such that x € A and R[z] holds H(x) € B,
for every x such that x € A and S[z] holds Z(x) € B.

The scheme PartFuncExC_D2 concerns a non-empty set A, a non-empty set
B, a non-empty set C, a binary functor F yielding an element of C, a binary
functor G yielding an element of C, and two binary predicates P and Q, and
states that:

there exists a partial function f from [.A, B to C such that for every element
¢ of A and for every element d of B holds (c¢,d) € dom f if and only if Plc,d]
or Qle,d] and for every element ¢ of A and for every element d of B such that
(c,d) € dom f holds if Ple,d], then f({c,d)) = F(c,d) but if Qle,d], then
f{e,d)) = G(c,d)
provided the parameters meet the following requirement:

e for every element ¢ of A and for every element d of B such that
Ple, d] holds not Qlc, d).

€ B,
€ B,
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The scheme PartFuncExC_D3 concerns a non-empty set A, a non-empty set
B, a non-empty set C, a binary functor F yielding an element of C, a binary
functor G yielding an element of C, a binary functor H yielding an element of
C, and three binary predicates P, Q, and R, and states that:

there exists a partial function f from [ A, B] to C such that for every element
c of A and for every element d of B holds (c,d) € dom f if and only if P|c,d] or
Qle,d] or Rle,d] and for every element ¢ of A and for every element r of B such
that {c,r) € dom f holds if Plc,r|, then f({c,7)) = F(c,r) but if Q[c,r], then
f({e,r)) =G(e,r) but if Rle,r], then f({c,r)) = H(c,r)
provided the following requirement is met:

e for every element c of A and for every element s of B holds if Plc, s],

then not Qle, s] but if Ple, s, then not Rlc, s] but if Qle,s], then
not RJc, s].

The scheme PartFuncExC_S2 concerns a set A, a set B, a set C, a binary
functor F, a binary functor G, and two binary predicates P and Q, and states
that:

there exists a partial function f from [ A, B to C such that for all z, y holds
(z,y) € dom f if and only if x € A and y € B but P[z,y] or Q[z,y] and for all
x, y such that (z,y) € dom f holds if Plx,y|, then f({x,y)) = F(z,y) but if
Qlz,yl, then f({z,y)) = G(x,y)
provided the following conditions are met:

e for all z, y such that x € A and y € B holds if Pz, y], then not

Qlz,y],
e for all , y such that x € Aand y € B and P|x, y] holds F(x,y) € C,
e for all z, y such that x € A and y € B and Q[z,y] holds G(x,y) € C.
The scheme PartFuncErC_S3 concerns a set A, a set B, a set C, a binary
functor F, a binary functor G, a binary functor H, and three binary predicates
P, O, and R, and states that:
there exists a partial function f from [.A, B] to C such that for all x, y holds
(r,y) € dom f if and only if x € A and y € B but Pz,y| or Qz,y] or Rz, y]
and for all z, y such that (x,y) € dom f holds if P[x,y], then f({z,y)) = F(z,y)
but if Q[x,y], then f({z,y)) = G(z,y) but if R[z,y], then f({x,y)) = H(x,y)
provided the following conditions are met:
e for all x, y such that z € A and y € B holds if Plx,y|, then
not Qx,y] but if Plz,y|, then not R[z,y] but if Q[z,y], then not
Rlz, yl,

e for all x, y such that x € A and y € B holds if P[z,y], then
F(z,y) €C,

e for all x, y such that x € A and y € B holds if Q[z,y], then
G(z,y) €C,

e for all x, y such that x € A and y € B holds if R[z,y], then
H(z,y) €C.

The scheme FExFuncD3 concerns a non-empty set A, a non-empty set B, a
unary functor F yielding an element of B, a unary functor G yielding an element
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of B, a unary functor H yielding an element of B, and three unary predicates
P, Q, and R, and states that:

there exists a function f from A into B such that for every element ¢ of A
holds if P[c], then f(c) = F(c) but if Q|c|, then f(c) = G(c) but if R[c|, then
f(e) =H(c)
provided the parameters satisfy the following conditions:

e for every element ¢ of A holds if P[c|, then not Q[c| but if P|c],

then not R|c|] but if Qlc|, then not R|c],

e for every element ¢ of A holds Plc] or Q[c| or R[]

The scheme FExFuncD/ concerns a non-empty set A, a non-empty set B, a
unary functor F yielding an element of B, a unary functor G yielding an element
of B, a unary functor H yielding an element of B, a unary functor Z yielding an
element of B, and four unary predicates P, @, R, and S, and states that:

there exists a function f from A into B such that for every element ¢ of A
holds if P[c], then f(c) = F(c) but if Q|c|, then f(c) = G(c) but if R[c|, then
f(c) = H(e) but if S[¢], then f(c) = Z(c)
provided the following conditions are met:

e for every element ¢ of A holds if P[c], then not Q[¢] but if Plc],

then not R[c| but if Plc|, then not S[c] but if Ql¢], then not R[]
but if Q[¢], then not S[c| but if R[c], then not Slc],

e for every element ¢ of A holds Plc] or Q[c] or R]c] or S]c|.

The scheme FuncExC_D2 deals with a non-empty set A, a non-empty set B,
a non-empty set C, a binary functor F yielding an element of C, a binary functor
G yielding an element of C, and a binary predicate P, and states that:

there exists a function f from [.A4, B] into C such that for every element ¢
of A and for every element d of B such that {c,d) € dom f holds if Plc, d], then
f({e,d)) = F(e,d) but if not Ple,d], then f({c,d)) = G(c,d)
for all values of the parameters.

The scheme FuncExC_D3 deals with a non-empty set A, a non-empty set B,
a non-empty set C, a binary functor F yielding an element of C, a binary functor
G yielding an element of C, a binary functor H yielding an element of C, and
three binary predicates P, Q, and R, and states that:

there exists a function f from [.A4, B] into C such that for every element ¢
of A and for every element d of B holds (c,d) € dom f if and only if Plc,d] or
Qle,d] or Rle,d] and for every element c of A and for every element d of B such
that {(c,d) € dom f holds if Plc,d], then f({c,d)) = F(c,d) but if Qlc,d], then
f({c,d)) = G(c,d) but if Rlc,d], then f({c,d)) = H(c,d)
provided the parameters have the following properties:

e for every element c of A and for every element d of B holds if Plc, d],

then not Q[e,d] but if Ple,d], then not Rlc,d] but if Qfec,d], then
not Rle, d],

e for every element ¢ of A and for every element d of B holds P|e, d]

or Qle,d] or Rle,d).
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Integer and Rational Exponents

Konrad Raczkowski!
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Summary. The article includes definitions and theorems which
are needed to define real exponent. The following notions are defined:
natural exponent, integer exponent and rational exponent.

MML Identifier: PREPOWER.

The terminology and notation used in this paper are introduced in the following
papers: [12], [15], [4], [10], [1], [2], [3], [9], [7], [8], [14], [11], [13], [6], and [5]. For
simplicity we follow the rules: a, b, ¢ will be real numbers, m, n will be natural
numbers, k, [, ¢ will be integers, p, ¢ will be rational numbers, and s, so will
be sequences of real numbers. The following propositions are true:

(2)2 If s1 is convergent and for every n holds s1(n) > a, then lim s; > a.
(3) If s1 is convergent and for every n holds s1(n) < a, then lim s; < a.

Let us consider a. The functor (a").en yielding a sequence of real numbers
is defined as follows:

(Def.1)  ((a")xen)(0) = 1 and for every m holds ((a”)xen )(m+1) = ((a™)ren ) (m)-

Next we state two propositions:

(4)  For every sequence of real numbers s and for every a holds s = (a”)en
if and only if s(0) = 1 and for every m holds s(m + 1) = s(m) - a.

(5)  For every a such that a # 0 for every m holds (a").en (m) # 0.

Let us consider a, n. The functor ay yields a real number and is defined by:
(Def.2)  af = (a")ken (n).

Next we state a number of propositions:

(6) ag = (a")xen (1)

LSupported by RPBP.II1-24.C8
2The proposition (1) was either repeated or obvious.
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n _ . n+l
Ay - a=ay -
1 =1.
n+m __ n m
ay = Qy "Gy -

(a-b)g =af -by.
ay™ = (ay )V’

If 0 # a, then 0 # af .
If 0 < a, then 0 < af.
If a # 0, then %g = %
If a # 0, then gz = %
If n > 1, then Of = 0.

If 0 <aanda <b, then af <b.

If 0<aand a<band1<n,then af <b.
If a > 1, then af > 1.
If1<aand1l<n,thena<ag.

If1 <aand2<n,then a <ag.
If0<aand a<1and1l<n,then af < a.
If 0 <aand a<1and2<n,then af <a.

If —-1<a,then (1+a)l >1+4+n-a.

If0<aanda<1,then (14+a)f <1+4+3( -a.

If s1 is convergent and for every n holds sy(n) = (s1(n))y’, then sg is

convergent and lim so = (lim s7){.

Let us consider n, a. Let us assume that 1 <n. The functor root, (a) yields
a real number and is defined as follows:

(Def.3)

(root,(a))f = a and root,(a) > 0 if a > 0, root,(a) =0 if a = 0.

Next we state a number of propositions:

(27)

W W W NN
N = O © 0o

W W w w
~N O Ot

N N N N N N N S S /N
[N w
0] w
M O~ T Y N~ Y

For all a, b, n such that 1 < n holds if a > 0, then b = root,(a) if and

only if b = a and b > 0 but if a = 0, then root,(a) = 0.

If a > 0 and n > 1, then (root,(a)){ = a and root,(a ) = a.

If n > 1, then root, (1) = 1.

If @ > 0, then rooty(a) = a.

If a>0and b>0and n > 1, then root,(a - b) = root,(a) - root, (b).
If a > 0 and n > 1, then root, () = —1

rootn(a)

If a >0 and b > 0 and n > 1, then root,($) = izzz’;gz))

If a>0and n > 1 and m > 1, then root, (root,,(a)) = root,.,(a).
Ifa > 0andn > 1 and m > 1, then root,,(a)-100t,, (a) = r00t,.., (al™).
If 0 <aand a <band n > 1, then root,(a) < root,(b).
If a >0 and a < b and n > 1, then root,(a) < root,(b).

If @ > 1 and n > 1, then root,(a) > 1 and a > root,(a).



INTEGER AND RATIONAL EXPONENTS 127

(39) If0<aanda<1andn>1,then a <root,(a) and root,(a) < 1.
(40) If a > 0 and n > 1, then root,(a) — 1 < “%1

(41) If a > 0, then roota(a) = /a.

(42)  For every sequence of real numbers s and for every a such that a > 0 and

for every m such that n > 1 holds s(n) = root,(a) holds s is convergent
and lims = 1.

Let us consider a, k. Let us assume that a # 0. The functor a% yields a real
number and is defined as follows:

(Def.d) akf =dfif k>0, ak = (a1 if k < 0.
We now state a number of propositions:

(43) If a # 0, then if k > 0, then a% = a,lwk‘ but if k < 0, then a% = (a,lwk‘)_l.
(44)  If a # 0, then for every i such that i = 0 holds a’, = 1.
(45)  If a # 0, then for every i such that i = 1 holds a’ = a.
(46) If a #0 and i = n, then a} = af.

(47) =1,

(48)  If a # 0, then ak # 0.

(49) If a >0, then ak > 0.

(50) Ifa#0and b#0, then (a-b)k =ak - bk.
(51) Ifa#0, thenaikzj.

(52)

(53)

(54)

(55)

(56)

k
If a # 0, then * —é.

az
If a # 0, then a})'™" = %
If a # 0, then a5™ = a% - al,.
If a # 0, then (ak)} = k.
If @ > 0 and n > 1, then (root,(a))% = root,, (a%).

Let us consider a, p. Let us assume that a > 0. The functor af) yielding a
real number is defined by:

(Def.5)  al) = rootgenplaz 7).
We now state a number of propositions:
57) If a > 0, then af) = rootgen p(ay 7).

(

58) If a>0and p =0, then ab = 1.

( ) p ) Q

(59) Ifa >0 and p=1, then af, = a.

(60) If a >0 and p =n, then ab, = al.

(61) Ifa>0andn>1and p=n—1 then a} = root,(a).
62) 17 =1.

(63) If a > 0, then af > 0.

(64) If a > 0, then af, - a, = ab™.

(65) If a > 0, then % =ag”.
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(@)
(=)

p
If a > 0, then % = aP 7.
a0

D
J

If a >0 and b >0, then (a-b)f =ab -

&

68) 1If a >0, then +p :?18'
69) Ifa>0andb>0, then &¥ — %

ba = P
If a > 0, then (a})d = ab”.
If a >1and p >0, then af > 1.
Ifa>1andp<0, thena‘% <1.
If a > 1 and p > 0, then ab > 1.
If a > 1 and p > ¢, then af, > af,.
If a > 1 and p > g, then a}, > af.
Ifa>0and a<1andp >0, then af < 1.
Ifa>0anda<1andp<O0, then af, > 1.
A sequence of real numbers is called a rational sequence if:

e N R e e R e e e e
~N N N N
S O = W N~ O
N T Y N
\%
=

)
N

(Def.6)  for every n holds it(n) is a rational number.
Let s be a rational sequence, and let us consider n. Then s(n) is a rational
number.
Next we state two propositions:
(79)% For every a there exists a rational sequence s such that s is convergent
and lim s = a and for every n holds s(n) < a.
(80)  For every a there exists a rational sequence s such that s is convergent
and lim s = a and for every n holds s(n) > a.
Let us consider a, and let s be a rational sequence. Let us assume that a > 0.
The functor ag, yields a sequence of real numbers and is defined as follows:
(Def.7)  for every n holds (a§,)(n) = af:,,(").
The following propositions are true:
(81)  For every a and for every rational sequence s and for every sy such that
a > 0 holds s; = af, if and only if for every n holds s1(n) = aa(n).

(82)  For every rational sequence s and for every a such that s is convergent
and a > 0 holds a§, is convergent.

(83)  For all rational sequences s1, s and for every a such that s; is con-
vergent and s9 is convergent and lim s; = lim so and a > 0 holds aal is
convergent and a¢’ is convergent and limag' = lim ag?.

Let us consider a, b. Let us assume that a > 0. The functor af yielding a
real number is defined by:

(Def.8)  there exists a rational sequence s such that s is convergent and lim s = b

5 3 ; s _ b
and a§ is convergent and lim ag, = ay.

We now state a number of propositions:

3The proposition (78) was either repeated or obvious.
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(84)  For all a, b, ¢ such that a > 0 holds ¢ = af if and only if there exists
a rational sequence s such that s is convergent and lims = b and ag, is
convergent and lim ag = c.

85) If a >0, then a} = 1.

86) If a > 0, then a} = a.

87) 18 = 1.

88) Ifa >0, then af = af).

89) Ifa >0, then aj™ = ab - ag.
90) Ifa >0, then aﬁczé

91) Ifa > 0, then a} ¢ = %

Nel
\S)

If a>0and b >0, then (a-b)
If a > 0, then %TR:%.

ap

=ag - bi.

o0

ag
Ifa>0andb>0,then%;:¥.

Ne
ot

If a > 0, then af > 0.
If a > 1 and ¢ > b, then af 2a§3.
If a > 1 and ¢ > b, then af > aj.
Ifa>0and a <1 andc>b, then af; < aj.
If a > 1 and b > 0, then a$ > 1.
If a > 1 and b > 0, then af > 1.
If a > 1 and b <0, then af < 1.
If a > 1 and b < 0, then af < 1.
If 51 is convergent and sg is convergent and lim s; > 0 and for every n
holds s1(n) > 0 and sa(n) = (s1(n))5, then lim so = (lim s1)h.
(104) If a > 0 and s; is convergent and s is convergent and for every n holds
s9(n) = ale(n), then lim sy = ap™*!.
(105) If a > 0, then (a})§ = af°.
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Summary. We study connections between Major Desargues Ax-
iom and the transitivity of group of homotheties. A formal proof of the
theorem which establishes an equivalence of these two properties of affine
planes is given. We also study connections between the trapezium ver-
sion of Major Desargues Axiom and the existence of the shears in affine
planes. The article contains investigations on ”Scherungssatz”.

MML Identifier: HOMOTHET.

The papers [9], [1], [2], [10], [3], [4], [6], [7], [5], and [8] provide the terminology
and notation for this paper. For simplicity we adopt the following rules: A; will
be an affine plane, a, b, o, p, p’, q, ¢, z, y will be elements of the points of A1,
M, K will be subsets of the points of A1, and f will be a permutation of the
points of A;. We now state four propositions:

(1)  Suppose that

(i) not L(o,a,p),

(ii) L(o,a,b),

(i)  L(o,a,x),

(iv) L(o,a,y),

(v)  L(o,p,p),

(vi)  L(o,p,q),
(vii)  L(o,p,q'),
(vili) p#gq,

(ix) a#w,

(x) o#q

(xi) o#uz,
(xil) a,p [l 0,0,
(xili) a,q | b d,
xiv)  z,p | yp,

!Supported by RPBP.I11-24.C2
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(xv) A satisfies DES.
Then z,q || y,q".

(2) If for all o, a, b such that 0o # a and o0 # b and L(0, a,b) there exists f
such that f is a dilatation and f(0) = o and f(a) = b, then A; satisfies
DES.

(3) If A; satisfies DES, then for all o, a, b such that o # a and o # b
and L(o, a,b) there exists f such that f is a dilatation and f(0) = o and
fla@)=b.

(4)  A; satisfies DES if and only if for all o, a, b such that 0 # a and 0 # b
and L(o, a,b) there exists f such that f is a dilatation and f(0) = o and
fla@)=b.

Let us consider Ay, f, K. We say that f is Sc K if and only if:

(Def.1)  fis a collineation and K is a line and for every x such that z € K holds

f(x) = z and for every z holds z, f(z) || K.

One can prove the following propositions:
(5) If fis Sc K and f(p) =p and p ¢ K, then f = idthe points of A, -

(6) If for all a, b, K such that a,b || K and a ¢ K there exists f such that
fis Sc K and f(a) = b, then A; satisfies TDES.

(7)  Suppose that
) K| M,

(i) peK,

(i) ¢ K,

(iv) p €K,

(v) dEK,

(vi)  Aj satisfies TDES,
(vil) a€ M,
(vii) b€ M,

(ix) =ze€M,

(x) yeM,

() a£b,

(xii) q#p,
(xili)  p,a| Pz,
(xiv)  p,bl Py,
(xv) gqald,z

Then ¢,b || ¢, y.

(8) Ifa,b| K and a ¢ K and A; satisfies TDES, then there exists f such
that f is Sc K and f(a) = b.

(9)  A; satisfies TDES if and only if for all a, b, K such that a,b || K and
a ¢ K there exists f such that f is Sc K and f(a) = b.
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Summary. We introduce the notion of weak directed geometrical
bundle. We prove representation theorems for directed and weak directed
geometrical bundles which establish a one-to-one correspondence between
such structures and appropriate 2-divisible abelian groups. To this aim
we construct over an arbitrary weak directed geometrical bundle a group
defined entirely in terms of geometrical notions - the group of (abstract)
“free vectors”.

MML Identifier: AFVECTO.

The terminology and notation used here have been introduced in the following
articles: [8], [3], [4], [10], [11], [7], [5], [6], [1], [9], and [2]. An affine structure is
said to be a weak affine vector space if:
(Def.1) (i)  there exist elements a, b of the points of it such that a # b,
(ii)  for all elements a, b, ¢ of the points of it such that a,b = ¢,c holds
a=>b,
(iii)  for all elements a, b, ¢, d, p, q of the points of it such that a,b = p,q
and ¢,d = p,q holds a,b = c¢,d,
(iv) for every elements a, b, ¢ of the points of it there exists an element d
of the points of it such that a,b = ¢, d,
(v) for all elements a, b, ¢, a’, V', ¢’ of the points of it such that a,b = o',
and a,c = da’,c holds b,c = V',
(vi)  for every elements a, ¢ of the points of it there exists an element b of
the points of it such that a,b = b,c,

'Supported by RPBP.I11-24.C3
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(vii)  for all elements a, b, ¢, d of the points of it such that a,b = ¢, d holds
a,c=b,d.
We see that the space of free vectors is a weak affine vector space.

We adopt the following convention: A; will be a weak affine vector space and
a, b, c,d, f,a,v,c,d, f,p, q, r, owil be elements of the points of A;. The
following propositions are true:

(2)? a,b= a,b.

a,a = a,q.

If a,b = ¢,d, then ¢,d = a,b.

If a,b = a,c, then b= c.

Ifa,b= c,dand a,b= c,d, thend = d'.

For all a, b holds a,a = b,b.

If a,b = ¢, d, then b,a = d,c.

Ifa,b=c,dand a,c=b,d, then b=1'.

Ifb,c=V,d and a,d = b,cand a,d = b,c, then d = d'.
Ifa,b=d,V and ¢c,d = b,a and ¢,d = V', d’, then d = d'.

If a,b = a',b and ¢,d = /,d and b, f = c¢,d and V', f' = ¢, d’', then
a, f=d,f.

(13) Ifa,b=ad b and a,c= ¢V, then b,c = ¢, d’.

Let us consider Ay, a, b. We say that a, b are in a maximal distance if and

only if:
(Def.2) a,b= b,a and a # .

One can prove the following propositions:

co S O = W
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=~~~ —~
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—_
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15)3 a, a are not in a maximal distance.
16
1
18

There exist a, b such that a # b and a, b are not in a maximal distance.

3

(
(16)
(17)  If @, b are in a maximal distance, then b, a are in a maximal distance.
(18)

If a, b are in a maximal distance and a, ¢ are in a maximal distance,
then b = c or b, ¢ are in a maximal distance.

(19) If a, b are in a maximal distance and a,b = ¢, d, then ¢, d are in a
maximal distance.

Let us consider Ay, a, b, c. We say that b is a midpoint of a, ¢ if and only if:
(Def.3)  a,b= b,ec.
We now state a number of propositions:
(21)* If b is a midpoint of a, ¢, then b is a midpoint of ¢, a.
(22) b is a midpoint of a, b if and only if a = b.
(23) b is a midpoint of a, a if and only if a = b or a, b are in a maximal
distance.

2The proposition (1) was either repeated or obvious.
3The proposition (14) was either repeated or obvious.
4The proposition (20) was either repeated or obvious.
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(24)  There exists b such that b is a midpoint of a, c.

(25)  If b is a midpoint of a, ¢ and b’ is a midpoint of a, ¢, then b = b" or b,
b’ are in a maximal distance.

(26)  There exists ¢ such that b is a midpoint of a, c.

(27)  If b is a midpoint of a, ¢ and b is a midpoint of a, ¢/, then ¢ = ¢.

(28)  If b is a midpoint of a, ¢ and b, b’ are in a maximal distance, then b’ is
a midpoint of a, c.

(29) If b is a midpoint of a, ¢ and b is a midpoint of a, ¢’ and b, b’ are in a
maximal distance, then ¢ = ¢.

(30)  If p is a midpoint of a, a’ and p is a midpoint of b, &', then a,b = ¥, d’.

(31) If p is a midpoint of a, a’ and ¢ is a midpoint of b, b’ and p, g are in a
maximal distance, then a,b = V', d’.

Let us consider Ay, a, b. The functor PSym(a,b) yields an element of the
points of A; and is defined as follows:

(Def.4) @ is a midpoint of b, PSym(a, b).

One can prove the following propositions:

(32)  PSym(p,a) = b if and only if p is a midpoint of a, b.

(33)  PSym(p,a) = b if and only if a,p = p,b.

(34)  pis a midpoint of a, PSym(p, a).

(35)  PSym(p,a) = a if and only if a = p or a, p are in a maximal distance.
(36)  PSym(p,PSym(p,a)) = a.

(37)  If PSym(p,a) = PSym(p,b), then a = b.

(38)  There exists a such that PSym(p,a) = b.

(39) a,b= PSym(p,b),PSym(p,a).

(40)  a,b= c,d if and only if

PSym(p, a), PSym(p,b) = PSym(p, ¢), PSym(p, d).

(41) @, b are in a maximal distance if and only if PSym(p, a), PSym(p,b) are
in a maximal distance.

(42) b is a midpoint of a, ¢ if and only if PSym(p,b) is a midpoint of
PSym(p,a), PSym(p, ¢).

(43)  PSym(p,a) = PSym(q, a) if and only if p = ¢ or p, ¢ are in a maximal
distance.

(44)  PSym(q, PSym(p, PSym(q,a))) = PSym(PSym(q,p), a).

(45)  PSym(p, PSym(q,a)) = PSym(q, PSym(p, a)) if and only if p = ¢ or p,
q are in a maximal distance or ¢, PSym(p, ¢) are in a maximal distance.

(46)  PSym(p, PSym(q, PSym(r,a))) = PSym(r, PSym(q, PSym(p, a))).

(47)  There exists d such that PSym(a, PSym(b, PSym(e,p))) = PSym(d, p).

(48)  There exists ¢ such that PSym(a, PSym(c,p)) = PSym(c, PSym(b, p)).

Let us consider Ay, o, a, b. The functor Padd(o, a, b) yielding an element of
the points of A7 is defined as follows:
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(Def.5)  0,a = b,Padd(o,a,b).
Next we state the proposition
(49) Padd(o,a,b) = c if and only if 0,a = b, c.
Let us consider Aj, o, a. The functor Pcom(o, a) yielding an element of the
points of A7 is defined as follows:
(Def.6) o is a midpoint of a, Pcom(o, a).
One can prove the following propositions:
(50)  Pcom(o,a) = b if and only if o is a midpoint of a, b.
(51)  Pcom(o,a) = b if and only if a,0 = o, .
Let us consider Ay, o. The functor Padd o yielding a binary operation on the
points of A7 is defined as follows:
(Det.7)  for all a, b holds (Padd o)(a, b) = Padd(o, a,b).
Let us consider Ay, 0. The functor Pcom o yielding a unary operation on the
points of A7 is defined as follows:
(Def.8)  for every a holds (Pcomo)(a) = Pcom(o, a).

The following propositions are true:
(52)  For every binary operation O on the points of A; holds O = Padd o if
and only if for all a, b holds O(a, b) = Padd(o, a,b).
(53)  For every unary operation O on the points of A; holds O = Pcomo if
and only if for every a holds O(a) = Pcom(o, a).
Let us consider Ay, 0. The functor GroupVect(A1, 0) yields a group structure
and is defined by:

(Def.9)  GroupVect(A1,0) = ( the points of A, Padd o, Pcomo,0).

The following two propositions are true:

(54)  For every X being a group structure holds X = GroupVect(A41,o0) if
and only if X = ( the points of A;,Padd o, Pcom o, o).

(55)  For all A, o holds the carrier of GroupVect(A;,0) = the points of A;
and the addition of GroupVect(A1,0) = Paddo and the reverse-map of
GroupVect(A;, 0) = Pcomo and the zero of GroupVect(A,0) = o.

In the sequel a, b, ¢ will denote elements of GroupVect(A1,0). One can prove
the following propositions:

(56)  For an arbitrary = holds x is an element of the points of A; if and only
if z is an element of GroupVect(A1, o).

(57)  For all elements a, b of GroupVect(A1,0) and for all elements a’, b of
the points of A; such that a = a/ and b = ¥ holds a + b = (Padd o)(d/,
).

(58)  For every element a of GroupVect(A7,0) and for every element o’ of the
points of A; such that a = a’ holds —a = (Pcom 0)(a’).

(59) OGroupVect(Al,o) = 0.
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(60)  For every uniquely 2-divisible group A, and for all elements a, b of A,
and for all elements a’, b’ of the carrier of Ay such that a = a’ and b=V
holds a + b = a'#V'.

(61) a+b=0b+a.

(62) (a+b)+c=a+(b+c).

(63) a+ OGroupVect(Al,o) = a.

( ) a+ (_a) = OGroupVect(Al,o)'

(65)  GroupVect(A1,0) is an Abelian group.

Let us consider Ay, o. Then GroupVect(Aq,0) is an Abelian group.

In the sequel a, b will be elements of the carrier of GroupVect(Aj,0). Next
we state the proposition

(66)  For every a there exists b such that (the addition of GroupVect(A1,0))(b,
b) = a.
Let us consider Ay, 0. Then GroupVect(A1,0) is a 2-divisible group.

In the sequel A; will denote a space of free vectors and o will denote an
element of the points of A;. One can prove the following proposition

(67)  For every element a of the carrier of GroupVect(Aq,0) such that (the
addition of

GroupVect(Al, 0))(a7 CL) = OGroupVect(Al,o)
holds a = OGrouchct(Al,o)'
Let us consider Ay, o. Then GroupVect(A1,0) is a uniquely 2-divisible group.
A uniquely 2-divisible group is said to be a proper uniquely two divisible
group if:
(Def.10)  there exist elements a, b of the carrier of it such that a # b.

The following proposition is true
(69)® GroupVect(A1, o) is a proper uniquely two divisible group.
Let us consider Ay, o. Then GroupVect(Aj,0) is a proper uniquely two
divisible group.
Next we state the proposition

(70)  For every proper uniquely two divisible group As holds Vectors(Asg) is
a space of free vectors.

Let Az be a proper uniquely two divisible group. Then Vectors(A») is a space
of free vectors.
We now state two propositions:
(71)  For every A; and for every element o of the points of A; holds 4; =
Vectors(GroupVect(A1,0)).
(72)  For every As being an affine structure holds Az is a space of free vectors

if and only if there exists a proper uniquely two divisible group As such
that A3 = Vectors(A4s).

>The proposition (68) was either repeated or obvious.
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Let X, Y be group structures, and let f be a function from the carrier of X
into the carrier of Y. We say that f is an isomorphism of X and Y if and only
if:

(Def.11)  f is one-to-one and rng f = the carrier of Y and for all elements a, b of

X holds f(a+b) = f(a)+ f(b) and f(0x) =0y and f(—a) = —f(a).
Let X, Y be group structures. We say that X, Y are isomorph if and only
if:
(Def.12)  there exists a function f from the carrier of X into the carrier of Y such
that f is an isomorphism of X and Y.

In the sequel As will be a proper uniquely two divisible group and f will be a
function from the carrier of As into the carrier of As. The following propositions
are true:

(75)¢ Let o' be an element of Ay. Let o be an element of the points of
Vectors(Asy). Suppose for every element z of Ay holds f(x) = o' + x and
o = 0. Then for all elements a, b of Ay holds f(a + b) = (Paddo)(f(a),
f(b)) and f(OAz) = OGroupVect(Vectors(Ag),o) and f(_a) = (PCOIIl 0)(f(a))

(76)  For every element o' of As such that for every element b of A holds
f(b) = o' + b holds f is one-to-one.

(77)  For every element o’ of Ay and for every element o of the points of
Vectors(Ay) such that for every element b of Ay holds f(b) = o’ + b and
o = o' holds rng f = the carrier of GroupVect(Vectors(As), o).

(78)  For every proper uniquely two divisible group Ay and for every element
o' of Ay and for every element o of the points of Vectors(As) such that
o = 0 holds As, GroupVect(Vectors(As),0) are isomorph.
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Summary. The article is contituation of [6] and [5]. It deals with
concepts of variables occuring in a formula and free variables, replace-
ment of variables in a formula and definable functions. The goal is to
create a base of facts which are neccesary to show that every model of
ZF set theory is a good model, i.e. it is closed under fundamental set-
theoretical operations (union, intersection, Cartesian product ect.). The
base includes the facts concerning the composition and conditional sum
of two definable functions.

MML Identifier: ZFMODEL2.

The notation and terminology used here are introduced in the following articles:
[12], [1], [11], [8], [7], [10], [4], [9], [2], [3], [5], and [6]. For simplicity we follow a
convention: x, ¥y, z, x1, 2, *3, £4 will denote variables, M will denote a non-
empty set, ¢, j will denote natural numbers, m, mi, meo, ms, myg will denote
elements of M, H, Hy, Hy will denote ZF-formulae, and v, v, vy will denote
functions from VAR into M. One can prove the following propositions:

(1)  Free(H(3)) C (Free H \ {z}) U {y}.

(2) 1Ify¢ Vary, then if x € Free H, then Free(H (7)) = (Free H \ {z})U{y}
but if # ¢ Free H, then Free(H({)) = Free H.

(3)  Varp is finite.

(4)  There exists ¢ such that for every j such that x; € Vary holds j < 4
and there exists x such that = ¢ Vary.

(5) Ifz ¢ Varg, then M,v |= H if and only if M,v =V H.

(6) If x ¢ Vary, then M,v |= H if and only if M,v(%) = H.

(7)  Suppose x # y and y # z and 2z # 2. Then ((v(;5))G5))G5) =
(w5 G (Gr) and ((0(55) (G5 () = () G ) G-

(8) Suppose 1 # x2 and x1 # x3 and x1 # x4 and x9 # x3 and xy # 14
and x3 # x4. Then
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() ((EDENENE) = (((2)(E)E)E),
(i) ((ED)EDED)E) = (v(E)(E)(E)()
(i) ((EDEEDE) = (&) E)E)E)

O 0 (ENE)E) = p(2)(E),

(i) (EDEDENE) = ((E2)(E)E).

(i) ((EDENEDEDE) = (E)E)E)E).

(10)  If 2 ¢ Free H, then M,v |= H if and only if M,v(;) =
(11)  Suppose g ¢ Free H and M, v |= V4, (35 (Vo  H < x4=20)). Then for
all m1, mg holds fi[v](m1) = mo if and only if M, (v(72))(;i2) F H.

(12) If FreeH C {z3,xz4} and M = Vyy (3o (Vo  H < x4=210)), then fy[v] =
fr[M].

(13) If x ¢ Varg, then M,v |= H(Z) if and only if M,U(T%) = H.
(14) Ifz ¢ Vary and M,v = H, then M,’U(Tz)) = H(Y).
(15)  Suppose that

(i) xo ¢ Free H,

(ii) M, v ): Vmg(ﬂmo (vm4H <~ 1‘4:330)),

(iii) =« ¢ Varg,

(IV) ) 7é T3,

(V) Yy 7é T4,

(vi)  y ¢ FreeH,

(vil) = # o,
(viil) x # z3,

(ix) = # x4

Then

(x) o ¢ Free(H(})),
(Xi) M, U(TUZJ)) ': Vm(axo (VM(H(%)) g x4:x0))7

(i) o] = ey [o(555)

(16) If x ¢ Varg, then M |= H(¥) if and only if M |= H.

(17)  Suppose z¢ ¢ Free Hy and M,v; = V(34 (Va, H1 < x4=20)). Then
there exist Hj, vg such that for every j such that j < ¢ and z; € Vargy,
holds j = 3 or j = 4 and zy ¢ Free Hy and M, vy = Yy (35, (Vo He &
x4=x0)) and fg, [v1] = fp,[va].

(18)  Suppose xg ¢ Free Hy and M, v = Vg, (3o (Yo, H1 < x4=20)). Then
there exist Hg, v such that Free HyNFree Hy C {x3,24} and z¢ ¢ Free Hy
and M, vy = Vi, (35, (Yo, Ha & x4=10)) and g, [v1] = 5, [va].

In the sequel F', G are functions. One can prove the following propositions:

(19) If F is definable in M and G is definable in M, then F - G is definable
in M.

(20) If zg ¢ Free H, then M, v = V4, (35, (Vo H < z4=20)) if and only if for
every my there exists mg such that for every mg holds M, (v(;2))(;5t) =
H if and only if mg = mo.
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(21)  Suppose F' is definable in M and G is definable in M and Free H C {x3}.
Let F} be a function. Then if dom Fy = M and for every v holds if M,v =
H, then Fi(v(z3)) = F(v(zs)) but if M,v = —H, then Fi(v(z3)) =
G(v(x3)), then F} is definable in M.

(22) If F is parametrically definable in M and G is parametrically definable
in M, then G - F is parametrically definable in M.

(23)  Suppose that

(i {0, 21,2} misses Free Hy,

(i' M, v }: Vx3(5|x0(vx4H1 -~ ZC4:J}0)),
i {0, 21,2} misses Free Hy,

o e

—
—_
. jay
— — N —

iv M, v }: Vx3(5|x0(vx4H2 -~ ZC4:J}0)),
(v)  {=xo, 1,22} misses Free H,
(vi) x4 ¢ Free H.

Let F} be a function. Then if dom F; = M and for every m holds if
M,v(%) = H, then Fi(m) = fg,[v](m) but if M,v(32) = —H, then
Fi(m) = fg,[v](m), then F} is parametrically definable in M.

(24)  idjs is definable in M.

(25)  idjs is parametrically definable in M.
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Summary. We develop the classical propositional calculus, follow-
ing [3].

MML Identifier: LUKASI_1.

The notation and terminology used here are introduced in the articles [1] and
[2]. We follow the rules: p, g, r, s are elements of CQC—WFF and X is a subset
of CQC—WFF. We now state a number of propositions:

(1) (=q9=(¢=r)=(p=r)) € Taut.
(2) If p= q € Taut, then (¢ = r) = (p = r) € Taut.
(3) If p= g € Taut and g = r € Taut, then p = r € Taut.
(4) p= p € Taut.
(5) q= (p= q) € Taut.
6) ((p=q =r)=(¢=r)c Taut.
(1) q¢= ((¢ = p) = p) € Taut.
(8) (s=(¢=p)) = (¢= (s=p)) € Taut.
) (@=r)=(p=4q = (p=r)) € Taut.
(10) (¢g=(g=r1)) = (¢=r) € Taut.
(1) (p=(¢=r))=((p=q9 = (p=r)) € Taut.
(12) -~ VERUM = p € Taut.
(13) If g € Taut, then p = ¢ € Taut.
(14)  If p € Taut, then (p = ¢q) = ¢ € Taut.
(15) If s = (¢ = p) € Taut, then ¢ = (s = p) € Taut.
(16) If s= (¢ = p) € Taut and ¢ € Taut, then s = p € Taut.
(17)  If s = (¢ = p) € Taut and ¢ € Taut and s € Taut, then p € Taut.
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(18) If ¢ = (¢ = r) € Taut, then ¢ = r € Taut.

(19) If p= (¢ =r) € Taut, then (p = q) = (p = r) € Taut.

(20) Ifp= (¢ =r) € Taut and p = ¢ € Taut, then p = r € Taut.

(21) Ifp= (¢ =r) € Taut and p = ¢ € Taut and p € Taut, then r € Taut.

(22) Ifp= (¢=r) € Taut and p = (r = s) € Taut, then p = (¢ = s) €
Taut.

(23)  p= VERUM € Taut.

(24)  (—p= —q) = (¢ = p) € Taut.

(25)  —=(=-p) = p € Taut.

(26)  (p=q)= (—g= —p) € Taut.

(27)  p= —(-p) € Taut.

(28)  (=(-p) = @) = (p= q) € Taut and (p = ¢q) = (~(-p) = ¢) € Taut.

(29)  (p= ~(=q)) = (p= q) € Taut and (p = ¢q) = (p = ~(~q)) € Taut.

(30)  (p= —q) = (¢ = —p) € Taut.

(31) (-p=q) = (nq= p) € Taut.

We now state a number of propositions:

(32)  (p= —-p) = —p € Taut.

(33) —p= (p=q) € Taut.

(34) p= q € Taut if and only if ¢ = —p € Taut.
(35) If =p = —q € Taut, then ¢ = p € Taut.

(36) p € Taut if and only if =(—p) € Taut.

(37)  p= q € Taut if and only if p = —(—q) € Taut.
(38) p= g € Taut if and only if =(—p) = ¢ € Taut.
(39) If p= —q € Taut, then ¢ = —p € Taut.

(40) If =p = g € Taut, then ~q = p € Taut.

(41) Fh=9=(e=r)=pm=r)).

(42) IfkFp=gq,thent (¢g=7r)= (p=r).

(43) IfFp=gqandtqg=r,thenkp=r.

(44) Fp=p.

(45) Fp=(a=p).

(46) If - p, then F ¢ = p.

(47 F(s=(@=p)= @@= (s=0p).

(48) IfFp=(¢=r), thentFq= (p=r).

(49) IfFp=(¢=r)andt g, then -p=r.
(50) Fp= VERUM and + = VERUM = p.

(651) Fp=(p=9=0a).

(52) Flg=(g=r)=(¢g=r).

(53) IfFqg=(¢g=r), thent g=r.

(54) F=(e=r)=(p=9=(=r1)).
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(55) IfFp=(¢g=r), thent (p=q)= (p=r).
(56) IfFp=(¢=r)andkFp=gq, thenkp=r.
(67 Flp=q9=r)=(@=r).

(58) IfF(p=-q)=r,thentqg=r.

(59) F=q9=(r=p=(=q4q).

(60) IfFp=gq, thent (r=p) = (r=q).

(61) F(p=4q) = (~g= —p).

(62) F(-p=—q) = (¢=Dp)

The following propositions are true:
63) F —p = —qif and only if - ¢ = p.

(

(64) Fp=—(-p).

(65) F=(=p)=p.

(66) F =(—p) if and only if - p.

(67) F(=(-p)=q9 = (=aq).

(68) I+ —=(-p) = ¢ if and only if - p = ¢.

(69) F(p=-(-q) = (p=0q.

(70)  Fp= —(—q) if and only if - p = q.

(71)  F(p=—q) = (¢ = —p).

(72) If Fp= —gq, then - g = —p.

(73) F(p=4q) = (-q=p).

(714) If+ —p=q, then F g = p.

(75) IfXFp=gq,then X+ (¢g=r)=(p=r).
(76) If XFp=gqgand X Fq=r,then X Fp=r.
(77) X Fp=p.

(78) If X Fp, then X g = p.

(719) I XFop, then X F(p=q)=gq.

(80) IfXFp=(¢g=r),then XFqg= (p=r).
(81) IfXFp=(¢=r)and X+ q,then X Fp=r.
(82) IfXFp=(p=q),then X Fp=gq.

(83) IfXF(p=gq) =r, then X Fq=r.

(84) Ile—p:>(q$T‘),thenX|—(p:>q):>(p:>7«)‘
(85) IXFp=(¢g=r)and XFp=q, then X Fp=r.
(86) X I~ —p = —q if and only if X I ¢ = p.

(87) Xk —(—p) if and only if X + p.

(88) X Fp= —(—q)ifand only if X Fp = gq.

(89) X F—(-p)=gqifand onlyif X p=gq.

(90) If X Fp= —q, then X F ¢ = —p.

(91) If X F—p= g, then X F =¢ = p.

(92) If XFp= —-qgand X} q, then X F —p.

149
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(93) If X+ —-p=qand X F —q, then X F p.
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Complex Spaces !
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Summary. We introduce the concept of n-dimensional complex
space. We prove a number of simple but useful theorems concerning ad-
dition, multiplication by scalars and similar basic concepts. We introduce
metric and topology. We prove that an n-dimensional complex space is a
Hausdorf space and that it is regular.

MML Identifier: COMPLSP1.

The articles (20, [16], [12], [1], (21], [5], [22], [7), (8], (3], [(17], [11], [2], [18], [19],
6], [4], [9], [10], [15], [14], and [13] provide the notation and terminology for
this paper. We follow the rules: k, n will be natural numbers, r, r’, r; will be
real numbers, and ¢, ¢/, ¢1, co will be elements of C. In this article we present
several logical schemes. The scheme FuncDefUnig concerns a non-empty set A,
a non-empty set B, and a unary functor F yielding an element of B and states
that:

for all functions f1, fo from A into B such that for every element z of A holds
fi(x) = F(x) and for every element x of A holds fo(x) = F(z) holds f1 = fo
for all values of the parameters.

The scheme UnOpDefuniq deals with a non-empty set A and a unary functor
F yielding an element of A4 and states that:

for all unary operations w1, ug on A such that for every element x of A holds
ui(z) = F(x) and for every element x of A holds ug(z) = F(x) holds u; = us
for all values of the parameters.

The scheme BinOpDefuniqdeals with a non-empty set .4 and a binary functor
F yielding an element of A4 and states that:

for all binary operations o1, 02 on A such that for all elements a, b of A holds
o1(a, b) = F(a,b) and for all elements a, b of A holds 02(a, b) = F(a,b) holds
01 = 09
for all values of the parameters.
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The binary operation +¢ on C is defined as follows:
(Def.1)  for all ¢1, ¢2 holds +¢ (¢1, ¢2) = ¢1 + co.
The following propositions are true:
1
2
3
4
5
The unary operation —¢ on C is defined as follows:
(Def.2)  for every ¢ holds —¢(c) = —ec.

Next we state three propositions:

+¢ is commutative.

+¢ is associative.

Oc is a unity w.r.t. +¢.
14 =0c.

+¢ has a unity.

N N N /N /N
~— — — ~— ~—

(6) —c is an inverse operation w.r.t. +c.

(7)  +¢ has an inverse operation.

(8)  Theinverse operation w.r.t. +¢ = —¢.

The binary operation —¢ on C is defined by:
(Def.3) —¢ = +¢c o (ide, —¢).

The following proposition is true

9) —cl(er, ) =1 — co.

The binary operation -¢ on C is defined by:
(Def.4)  for all ¢1, co holds ¢ (c1, c2) =1 - ¢a.

The following propositions are true:

(10) ¢ is commutative.

(11) ¢ is associative.

(12)  1¢ is a unity w.r.t. ¢.

(13) 1. =1lc.

(14)  -c has a unity.

(15) ¢ is distributive w.r.t. +c.

Let us consider c. The functor -¢ yields a unary operation on C and is defined
by:
(Def.5) £ =-2(c,ide).
We now state two propositions:
(16) £(d)=ec-.
(17) £ is distributive w.r.t. +¢.
The function | - [ from C into R is defined by:
(Def.6)  for every c holds | - | (c) = |¢|.
In the sequel z, z1, zo will be finite sequences of elements of C. We now

define two new functors. Let us consider zi, zo. The functor z; + zo yields a
finite sequence of elements of C and is defined by:
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(Def.7) 21+ 20 = 42 (21, 22).
The functor z; — zy yielding a finite sequence of elements of C is defined as
follows:

(Def.8) 21 — 29 = —2 (21, 22)-
Let us consider z. The functor —z yielding a finite sequence of elements of
C is defined by:
(Det9) —z=—¢ 2.
Let us consider ¢, z. The functor ¢ - z yielding a finite sequence of elements
of C is defined by:
(Def.10) ¢ z="-§ 2.
Let us consider z. The functor |z| yields a finite sequence of elements of R
and is defined as follows:
(Def11) |z =|-|¢ - 2
Let us consider n. The functor C"* yielding a non-empty set of finite sequences
of C is defined by:
(Def.12) C* =C".
We follow a convention: z, z, 21, 22, 23 will denote elements of C"* and A, B
will denote subsets of C". One can prove the following propositions:
(18) lenz =n.
(19)  For every element z of C° holds z = e¢.
(20)  &c is an element of C°.
(21) If k € Segn, then z(k) € C.
(22) If k € Segn, then z(k) is an element of C.
(23)  If for every k such that k € Segn holds z1(k) = z2(k), then z; = 2.
Let us consider n, z1, zo0. Then 21 + 29 is an element of C".
Next we state three propositions:
(24) 1If k € Segn and ¢1 = z1(k) and cg = 2z3(k), then (21 + 22)(k) = ¢1 + co.
(25) 21420 =20+ 2.
(26) 21 + (ZQ + Zg) = (21 + Zg) + z3.
Let us consider n. The functor 0¢ yielding a finite sequence of elements of
C is defined by:

(Def.13) 0 =n+— Oc.
Let us consider n. Then O is an element of C".
Next we state two propositions:
(27) If k € Segn, then 0Z (k) = Oc.
(28) 2z40¢ =z and z =0 + 2.
Let us consider n, z. Then —z is an element of C".

Next we state several propositions:
(29) If k € Segn and ¢ = z(k), then (—z)(k) = —c.
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(8]
=~

If z14+2z=204+2z0r 21 +2=2z+ 29, then 21 = 29.
—(21 4+ 22) = (—21) + (—22).
Let us consider n, z1, zo. Then z;1 — 25 is an element of C".

(30) z+4+(—2)=0¢ and (—2) + z = 0.

(31) If zy + 29 = OF, then 23 = —29 and 29 = —27.
(32) —(—2)=-=.

(33)  If —z1 = —2, then 23 = 25.

(34)

(35)

w
at

Next we state a number of propositions:

36) If k€ Segn and ¢; = z1(k) and ca = 22(k), then (21 — 22)(k) = 1 — ca.
37 21— 29 =21+ (—2’2).

38) z-0¢ ==z

39) 0 —z2=—z.

W
(@)

zZ1 — (—2’2) = Z1 + z9.
—(2:1 — 22) = Z2 — Z1.
—(21 — 22) = (—21) + 22.

z—z=0¢.

e
W DN =

If 21 — 29 = 0, then z; = 2.

(21 — 2’2) — 23 =21 — (22 + 2’3).

214 (22 — 23) = (21 + 22) — 23.

21 — (Zg — Zg) = (Z1 — Zg) + 23.

(21 — 22) + 23 = (21 + 23) — 29.

21 :(21+Z)—2.

21+ (22 — 21) = 2.

21= (21 —2) + 2.

Let us consider n, ¢, z. Then c- z is an element of C™.

AN N N N N N N N N N N N N S S
[ o, S S
S © 0 g O O W~

— N N N N N~ N T N N

ot
—_

One can prove the following propositions:

(52) Ifk € Segn and ¢ = z(k), then (c-2)(k) =c- .
(53)  c1-(ca-2)=(c1-¢c2)- 2

(54) (aa+c2)-z=c1-z+cy- 2.

(55) ¢ (z1+22)=c-z1+c- 2.

(56) 1l -z=-=z.

(57)  O¢ -z =0z

(58) (—1l¢) 2= —z.

Let us consider n, z. Then |z| is an element of R™.
Next we state four propositions:

(59) If k € Segn and ¢ = z(k), then |z|(k) = |c|.
(60) |0¢| =n 0.

(61) |=z[ =[]

(62) ez = le| - |z,
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Let z be a finite sequence of elements of C. The functor |z| yields a real
number and is defined by:

(Def.14) |z = v22(%z])-

One can prove the following propositions:

63) |02| = 0.

64) If |z] =0, then z = 0.
65) 0<|z.

66) |—z| =z

67) |c-z|=lc|-|z|-

68) |z + 22| < |z1| + |22l

|21 — 22| < |21 + |22].
’21‘ — ‘2’2’ S ‘2’1 +22’.

AN N AN N N N N N N N N N N
N O
o ©

~— N N~ N N N N N~ N

71 21| = |z2| < |21 — 2.

72) |21 — 29| = 0 if and only if 21 = zo.
73 If 21 # 29, then 0 < |21 — 29|

74) |21 — 2] = |22 — 21

75) |21 — 2] <z — 2]+ |2 — 2l

Let us consider n, and let A be an element of 2" . We say that A is open if
and only if:

(Def.15)  for every z such that x € A there exists r such that 0 < r and for every
z such that |z| < holds z + z € A.
Let us consider n, and let A be an element of 2" . We say that A is closed
if and only if:
(Def.16)  for every z such that for every r such that r > 0 there exists z such
that |z| < r and z + z € A holds z € A.
We now state four propositions:
(76)  For every element A of 2¢" such that A = () holds A is open.
(77)  For every element A of 2" such that A = C" holds A is open.

(78)  For every family A; of subsets of C" such that for every element A of
2€" such that A € A; holds A is open for every element A of 2" such
that A =J A1 holds A is open.

(79)  For all subsets A, B of C" such that A is open and B is open for every
element C of 2" such that C = AN B holds C' is open.

Let us consider n, x, r. The functor Ball(x,r) yielding a subset of C™" is
defined by:

(Def.17)  Ball(z,r) ={z:|z —z| <r}.
The following three propositions are true:
(80)  z e Ball(z,r) if and only if |z — 2| < r.
(81) If 0 < r, then z € Ball(x,r).
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(82) Ball(z1,71) is open.
Now we present two schemes. The scheme SubsetF'D deals with a non-empty
set A, a non-empty set B, a unary functor F yielding an element of B, and a
unary predicate P, and states that:
{F(x) : P[z]}, where z is an element of A, is a subset of B
for all values of the parameters.
The scheme SubsetF'D2 deals with a non-empty set A, a non-empty set B,
a non-empty set C, a binary functor F yielding an element of C, and a binary
predicate P, and states that:
{F(x,y) : Plz,y]}, where x is an element of A, and y is an element of B, is
a subset of C
for all values of the parameters.
Let us consider n, z, A. The functor p(z, A) yielding a real number is defined
by:
(Def.18)  for every X being sets of real numbers such that X = {|z — 2| : z € A}
holds p(z, A) = inf X.
Let us consider n, A, r. The functor Ball(A,r) yields a subset of C" and is
defined as follows:
(Def.19)  Ball(A,r) ={z: p(z, A) <r}.
Next we state a number of propositions:
(83)  If for every 7’ such that ' > 0 holds r + 7’ > ry, then r > rq.
(84)  For every X being sets of real numbers and for every r such that X # ()
and for every r’ such that 7’ € X holds r < 7’ holds inf X > r.
If A# 0, then p(z, A) > 0.
If A#0Q, then p(xz+ 2, A) < p(z, A) + |z|.
If x € A, then p(z, A) = 0.
If 2 ¢ Aand A # () and A is closed, then p(x, A) > 0.
If A# 0, then |z — x|+ p(x, A) > p(z1, A).
z € Ball(A,r) if and only if p(z, A) < r.
If 0 <rand z € A, then x € Ball(A, 7).
If 0 < r, then A C Ball(A,7).
If A+ (), then Ball(A,rq) is open.
Let us consider n, A, B. The functor p(A4, B) yields a real number and is
defined as follows:

co 0 0o o
0 N O Ot

© © ©
NN = O

AN AN N N N N N N
Ne) [09]
w =)
— O~ N

(Def.20)  for every X being sets of real numbers such that X = {|z — 2| : = €
ANz € B} holds p(A, B) = inf X.

Let X, Y be sets of real numbers. The functor X 4+ Y yields sets of real
numbers and is defined as follows:

(Def2l) X+Y={r+ri:reXAreY}

Next we state several propositions:
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(94) For all X, Y being sets of real numbers such that X # () and Y # ()
holds X + Y # 0.

(95) For all X, Y being sets of real numbers such that X # () and X is
lower bounded and Y # ) and Y is lower bounded holds X + Y is lower
bounded.

(96) For all X, Y being sets of real numbers such that X # () and X is
lower bounded and Y # () and Y is lower bounded holds inf(X +Y) =
inf X +inf Y.

(97)  For all X, Y being sets of real numbers such that Y is lower bounded
and X # () and for every r such that » € X there exists ry such that
r1 € Y and 1 < r holds inf X > inf Y.

(98) If A# (0 and B # 0, then p(A,B) > 0.
(99)  p(A, B) = p(B, A).
100) If A+# 0 and B # 0, then p(z, A) + p(z, B) > p(4, B).
(101) If ANB #0, then p(A, B) = 0.
Let us consider n. The opensubsets of C* constitute a family of subsets of
C" defined by:
(Def.22)  theopensubsetsof C* = {A : A is open }, where A is an element of 2¢" .

The following proposition is true
(102)  For every element A of 2" holds A € the open subsets of C" if and only
if A is open.

Let us consider n. The n-dimensional complex space is a topological space
defined by:

(Def.23)  then-dimensional complex space = (C", the open subsets of C™).

We now state two propositions:
(103)  The topology of
the n -dimensional complex space = the open subsets of C".
(104)  The carrier of the n-dimensional complex space = C™.

In the sequel p denotes a point of the n-dimensional complex space and V'
denotes a subset of the m-dimensional complexspace. Next we state several
propositions:

(105)  pis an element of C".
(106) V is a subset of C".

(107)  For every subset A of C" holds A is a subset of the
n-dimensional complex space.

(108)  For every subset A of C" such that A =V holds A is open if and only
if V' is open.

(109)  For every subset A of C" holds A is closed if and only if A° is open.

(110)  For every subset A of C" such that A =V holds A is closed if and only
if V' is closed.

(111)  The n-dimensional complex space is a Ts space.
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(112)  The n-dimensional complex space is a T3 space.
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Summary. The article includes a continuation of the paper [2].
Some simple theorems concerning basic properties of a field are proved.

MML Identifier: REALSET3.

The articles [8], [7], [5], [6], [3], [1], [2], and [4] provide the terminology and
notation for this paper. The following propositions are true:
(1)  For every field F holds —r(0F) = Op.
(2)  For every field F holds '(1r) = 1p.
(3) For every field F and for all elements a, b of the supportof F' holds
—r(+r({a, —r(0)))) = +r((b, —r(a)}).
(4)  For every field F' and for all elements a, b of the support of F'\ single(0 )
holds ' (-r({a, 7' (b)) = -F({b, 7' (a))).
(5)  For every field F' and for all elements a, b of the supportof F' holds
—r(+r({a,b))) = +r((=r(a), —r(b))).
(6)  For every field F' and for all elements a, b of the support of F'\single(0 )
holds &' (-r({a,0))) = -r((5'(a), 7' (1))
(7)  For every field F' and for all elements a, b, ¢, d of the support of F' holds
+r({a, —r(b))) = +r({c, —r(d))) if and only if +¢({a,d)) = +r((b, c}).
(8) Let F be a field. Then for all elements a, ¢ of the supportof F' and
for all elements b, d of thesupport of F'\ single(0 ) holds - z({a, 7' (b))) =
-r({e, 7' (d))) if and only if -p({a,d)) = -r({b, c)).
(9) For every field F and for all elements a, b of the supportof F' holds
-r({a,b)) = 0p if and only if a = 0p or b = 0p.
(10) Let F be a field. Let a, b be elements of the supportof F.. Let ¢, d be
elements of the support of F' \ single(0r). Then
F(CF(a, 21 (@), r (0 7 (D)) = P ((p({a,0)), 5 (r({e,d))).
(11)  Let F be a field. Let a, b be elements of the supportof F.. Let ¢, d be
elements of the support of F' \ single(0r).
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Then  +p({r({a, ' (0))), r({b, 7' (d)))) =

r((+r((r({a,d)), (b, e)))), 7' (#({e,d)))))-
Let F be a field. The functor osf F' yielding a binary operation of the support of F'
is defined as follows:

(Def.1)  for all elements x, y of the support of F' holds
(osf F)({z,y)) = +r({z, —r(y)))-

The following propositions are true:

(12)  For every field F' and for every binary operation S of the support of F'
holds S = osf F' if and only if for all elements x, y of the supportof F
holds S({z,y)) = +r({z, —r(y)))-

(13)  For every field F' and for all elements z, y of the supportof F' holds
osf F({z,y)) = +r({z, —r(y)))-

(14)  For every field F' and for every element x of the supportof F' holds
osf F({z,z)) = 0F.

(15)  For every field F' and for all elements a, b, ¢ of the support of F' holds
-#({a, 08t F({b,c)))) = ost F({-r({a,b)),-r({a,c))))-

(16)  For every field F' and for all elements a, b of the supportof F' holds
osf F'({a,b)) is an element of the support of F.

(17)  For every field F and for all elements a, b, ¢ of the support of F' holds
F(( OSfF((a7 b))v C)) = OSfF(<'F(<a7 C))? 'F(<b7 C))))

(18)  For every field F' and for all elements a, b of the supportof F' holds
osf F({a,b)) = —p(ost F({b,a))).

(19)  For every field F' and for all elements a, b of the supportof F' holds
osf F({(—r(a), b)) = —p(+r({a;b))).

(20)  For every field F' and for all elements a, b, ¢, d of the support of F' holds
osf F({a,b)) = osf F({c,d)) if and only if +r({a,d)) = +r((b,c)).

(21)  For every field F' and for every element a of the supportof F' holds
osf F({0Op,a)) = —p(a).

(22) For every field F' and for every element a of the supportof F' holds
osf F({a,0F)) = a.

(23)  For every field F and for all elements a, b, ¢ of the support of F' holds
+r({a,b)) = c if and only if osf F({c,a)) = b.

(24)  For every field F and for all elements a, b, ¢ of the support of F' holds
+r({a,b)) = c if and only if osf F({c,b)) = a.

(25)  For every field F' and for all elements a, b, ¢ of the support of F' holds
ost F({a,osf F'((b,c})))) = +r({osf F'({a, b)), c)).

(26)  For every field F' and for all elements a, b, ¢ of the support of F' holds
ost F({a,+r({b,c})}) = ost F'({ost F({a,b)),c)).

Let F be a field. The functor ovf F yields a function from
the support of F'#(the support of F'\ single(0r))
into the support of F' and is defined as follows:
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(Def.2)  for every element x of the supportof F' and for every element y of
the support of F' \ single(0x) holds (ovf F)({z,y)) = -r({z, 7" (v)))-

Next we state a number of propositions:

(27) Let F be a field. Then for every function D from
the support of F'#(the support of F'\ single(0r))
into the support of ' holds D = ovf F' if and only if for every element x of
the support of F' and for every element y of the supportof F'\ single(0 )
holds D({z,y)) = -r({z. ' ())).

(28)  For every field F' and for every element z of the supportof F' and for
every element y of thesupportof F' \ single(0r) holds ovf F({z,y)) =

-1

({2, 7 (¥))-

(29)  For every field F' and for every element x of the support of F'\single(0 )
holds ovf F({z,z)) = 1p.

(30) For every field F' and for every element a of the supportof F' and for
every element b of thesupportof F'\ single(0r) holds ovf F'({a,b)) is an
element of the support of F'.

(31)  For every field F' and for all elements a, b of the support of F' and for ev-
ery element c of the support of F'\ single(0r) holds - ({a,ovf F({b,c)))) =
ovf F({-r({a,b}),¢}).

(32)  For every field F and for every element a of the support of F'\single(0 )
holds - p({a,ovf F({1p,a)))) = 1p and -p({ovf F((1F,a)),a)) = 1F.
(34)! For every field F and for all elements a, b of the support of F'\single(0 r)

holds -p({a, 7' (b)) = 7' (£ ({b, 7' (a)))).

(35)  For every field F and for all elements a, b of the support of F'\single(0 )
holds ovf F({a,b)) = ' (ovf F({(b,a))).

(36)  For every field F' and for all elements a, b of the support of F'\single(0 )
holds ovf F((7!(a),1)) = 7+ ({a,b))).

(37)  For every field F' and for all elements a, ¢ of the supportof F' and for
all elements b, d of thesupportof F' \ single(0r) holds ovf F'({a,b)) =
ovf F({c,d)) if and only if -p({a,d)) = -p({b, c)).

(38)  For every field F' and for every element a of the support of F'\ single(0 )
holds ovf F({1p,a)) = 7'(a).

(39)  For every field F' and for every element a of the supportof F' holds
ovf F({a,1F)) = a.

(40)  For every field F and for every element a of the support of F'\single(0 )
and for all elements b, ¢ of the supportof F' holds -p({a,b)) = c if and
only if ovf F({c,a)) = b.

(41)  For every field F' and for all elements a, ¢ of the supportof F' and for

every element b of the support of F'\ single(0r) holds -¢({a, b)) = c if and
only if ovf F({c,b)) = a.

IThe proposition (33) was either repeated or obvious.
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(42)  For every field F' and for every element a of the support of F' and for all

elements b, ¢ of the support of F'\ single(0r) holds
ovf F({a,ovf F({b,c)))) = -r({ovf F({a,b)),c)).

(43)  For every field F and for every element a of the support of F' and for all

elements b, ¢ of the support of F'\ single(0r) holds ovf F'({a,-r({b,c)))) =
ovf F({ovf F({a,b)),c)).
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Summary. We introduce some properties of the least upper bound
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denotes the enlarged set of real numbers, R = R U {—0c0,+00}. The
paper contains definitions of majorant and minorant elements, bounded
from above, bounded from below and bounded sets, sup and inf of set,

for nonempty subset of R. We prove theorems describing the basic rela-
tionships among those definitions. The work is the first part of the series
of articles concerning the Lebesgue measure theory.

MML Identifier: SUPINF_1.

The terminology and notation used here have been introduced in the following
articles: [3], [1], and [2]. The constant +oo is defined by:

(Def.1l) H4oo=R

The following propositions are true:

(1) +4oo=R

(2) +oo ¢ R

A positive infinite number is defined as follows:
(Def.2) it = 4o0.

One can prove the following proposition

(4)! +oo0 is a positive infinite number.

The constant —oo is defined as follows:
(Def.3)  —oo = {R}.

The following propositions are true:

(5) —oo={R}.

(6) —oco ¢ R

IThe proposition (3) was either repeated or obvious.
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A negative infinite number is defined as follows:
(Defd) it = —o0.
One can prove the following proposition
(8)2 —oo is a negative infinite number.
A Real number is defined as follows:
(Def.5) it € RU{—o0,+00}.
One can prove the following propositions:
(10)® For every real number x holds z is a Real number.

(11)  For an arbitrary z such that x = —oo or # = +o0 holds x is a Real
number.

Let us note that it makes sense to consider the following constant. Then +oc0
is a Real number.

Let us note that it makes sense to consider the following constant. Then —oo
is a Real number.

Next we state the proposition
(14)* —o0 # +o0.
Let z, y be Real numbers. The predicate x < y is defined by:

(Def.6)  there exist real numbers p, ¢ such that p =z and ¢ =y and p < q or
there exists a positive infinite number ¢ such that ¢ = y or there exists a
negative infinite number p such that p = x.

Next we state several propositions:

5 . .
Y
(16)° For all Real numbers z, y such that x is a real number and y is a real
number holds z < y if and only if there exist real numbers p, ¢ such that
p=xand g =y and p < q.

—_
N

For every Real number x such that € R holds z £ —ooc.

—_
&3

For every Real number x such that € R holds +oo £ x.
+o0 £ —o0.
For every Real number x holds z < 4o00.

N
o ©

For every Real number x holds —oo < z.

e e e e
N DN
N

— Y Y N

()
=~

For all Real numbers x, y such that x <y and y < x holds x = y.

[\
w

For every Real number x such that £ < —oo holds x = —cc.
For every Real number x such that +o0o < x holds x = +oc.

The scheme SepR_eal concerns a unary predicate P, and states that:
there exists a subset X of RU {—o00, 400} such that for every Real number x
holds z € X if and only if P[z]

for all values of the parameter.

2The proposition (7) was either repeated or obvious.

3The proposition (9) was either repeated or obvious.

“The propositions (12)-(13) were either repeated or obvious.
>The proposition (15) was either repeated or obvious.
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The set R is defined as follows:
(Def.7) R=RU{—00,+00}.

We now state several propositions:

(25) R=RU{—00,+00}.

(26) R is a non-empty set.

(27)  For an arbitrary x holds z is a Real number if and only if x € R.
(28)  For every Real number x holds = < z.

(29)  For all Real numbers x, y, z such that z < y and y < z holds = < z.

Let us note that it makes sense to consider the following constant. Then R
is a non-empty set.
Let x, y be Real numbers. The predicate x < y is defined by:
(Def.8) x<yandzx#y.
The following proposition is true
(31)% For every Real number x such that z € R holds —oco < x and = < +o0.
Let X be a non-empty subset of R. A Real number is said to be a majorant
of X if:
(Det.9)  for every Real number x such that x € X holds x < it.
We now state two propositions:
(33)7 For every non-empty subset X of R holds +oo is a majorant of X.

(34)  For all non-empty subsets X, Y of R such that X C Y for every Real
number Uy such that Uy is a majorant of Y holds U; is a majorant of X.

Let X be a non-empty subset of R. A Real number is said to be a minorant
of X if:

(Def.10)  for every Real number x such that x € X holds it < x.

We now state four propositions:
(36)® For every non-empty subset X of R holds —oco is a minorant of X.

(37)  For every non-empty subset X of R such that X = R holds +o0o is a
majorant of X.

(38)  For every non-empty subset X of R such that X = R holds —o0 is a
minorant of X.

(39)  For all non-empty subsets X, Y of R such that X C Y for every Real
number L1 such that Ly is a minorant of Y holds L is a minorant of X.

Let us note that it makes sense to consider the following constant. Then R
is a non-empty subset of R.

One can prove the following propositions:
(41)? +o0 is a majorant of R.

5The proposition (30) was either repeated or obvious.
"The proposition (32) was either repeated or obvious.
8The proposition (35) was either repeated or obvious.
9The proposition (40) was either repeated or obvious.
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(42)  —oo is a minorant of R.
Let X be a non-empty subset of R. We say that X is upper bounded if and
only if:
(Def.11)  there exists a majorant U; of X such that U; € R.

The following two propositions are true:
(44)° For all non-empty subsets X, Y of R such that X C Y holds if Y is
upper bounded, then X is upper bounded.
(45) R is not upper bounded.
Let X be a non-empty subset of R. We say that X is lower bounded if and
only if:
(Def.12)  there exists a minorant L; of X such that L; € R.

The following two propositions are true:
(47)* For all non-empty subsets X, Y of R such that X C Y holds if Y is
lower bounded, then X is lower bounded.
(48) R is not lower bounded.
Let X be a non-empty subset of R. We say that X is bounded if and only if:
(Def.13) X is upper bounded and X is lower bounded.

The following two propositions are true:

(50)2 For all non-empty subsets X, Y of R such that X C Y holds if Y is
bounded, then X is bounded.

(51)  For every non-empty subset X of R there exists a non-empty subset Y’
of R such that for every Real number x holds x € Y if and only if z is a
majorant of X.

Let X be a non-empty subset of R. The functor X yields a non-empty subset
of R and is defined as follows:

(Def.14)  for every Real number x holds z € X if and only if = is a majorant of
X.

One can prove the following four propositions:

(52)  For every non-empty subset X of R and for every non-empty subset Y
of R holds Y = X if and only if for every Real number x holds x € Y if
and only if x is a majorant of X.

(53)  For every non-empty subset X of R and for every Real number x holds
x € X if and only if z is a majorant of X.

(54)  For all non-empty subsets X, Y of R such that X C Y for every Real
number x such that x € Y holds z € X.

(55)  For every non-empty subset X of R there exists a non-empty subset YV’

of R such that for every Real number x holds x € Y if and only if = is a
minorant of X.

10The proposition (43) was either repeated or obvious.
HThe proposition (46) was either repeated or obvious.
12The proposition (49) was either repeated or obvious.
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Let X be a non-empty subset of R. The functor X yields a non-empty subset
of R and is defined by:

(Def.15)  for every Real number x holds x € X if and only if  is a minorant of
X.

We now state a number of propositions:

(56)  For every non-empty subset X of R and for every non-empty subset Y
of R holds Y = X if and only if for every Real number x holds x € Y if
and only if x is a minorant of X.

(57)  For every non-empty subset X of R and for every Real number z holds
z € X if and only if = is a minorant of X.

(58)  For all non-empty subsets X, Y of R such that X C Y for every Real
number x such that r € Y holds z € X.

(59)  For every non-empty subset X of R such that X is upper bounded and
X # {—o0o} there exists a real number x such that x € X and = # —oc.

(60)  For every non-empty subset X of R such that X is lower bounded and
X # {400} there exists a real number x such that x € X and z # +o0.

(62) '3 For every non-empty subset X of R such that X is upper bounded and
X # {—oo} there exists a Real number U; such that U; is a majorant
of X and for every Real number y such that y is a majorant of X holds
U <.

(63)  For every non-empty subset X of R such that X is lower bounded and
X # {+o0o} there exists a Real number Ly such that L; is a minorant
of X and for every Real number y such that y is a minorant of X holds
y < L.

(64)  For every non-empty subset X of R such that X = {—oo} holds X is
upper bounded.

(65)  For every non-empty subset X of R such that X = {400} holds X is
lower bounded.

(66)  For every non-empty subset X of R such that X = {—oco} there exists
a Real number Uy such that Uy is a majorant of X and for every Real
number y such that y is a majorant of X holds Uy < y.

(67)  For every non-empty subset X of R such that X = {+oc0} there exists
a Real number Ly such that Lq is a minorant of X and for every Real
number y such that y is a minorant of X holds y < L.

(68)  For every non-empty subset X of R such that X is upper bounded there
exists a Real number Uy such that U; is a majorant of X and for every
Real number y such that y is a majorant of X holds U; < y.

(69)  For every non-empty subset X of R such that X is lower bounded there
exists a Real number Ly such that L is a minorant of X and for every
Real number y such that y is a minorant of X holds y < L;.

13The proposition (61) was either repeated or obvious.



168 JOZEF BIALAS

(70)  For every non-empty subset X of R such that X is not upper bounded
for every Real number y such that y is a majorant of X holds y = +ooc.

(71)  For every non-empty subset X of R such that X is not lower bounded
for every Real number y such that y is a minorant of X holds y = —o0.

(72)  For every non-empty subset X of R there exists a Real number Uy such
that Uy is a majorant of X and for every Real number y such that y is a
majorant of X holds U; < y.

(73)  For every non-empty subset X of R there exists a Real number Ly such
that L1 is a minorant of X and for every Real number y such that y is a
minorant of X holds y < L.

Let X be a non-empty subset of R. The functor sup X yields a Real number
and is defined as follows:

(Def.16)  sup X is a majorant of X and for every Real number y such that y is a
majorant of X holds sup X <y.

The following propositions are true:

(74)  For every non-empty subset X of R and for every Real number S holds
S =sup X if and only if S is a majorant of X and for every Real number
y such that y is a majorant of X holds § < y.

(75)  For every non-empty subset X of R holds sup X is a majorant of X and
for every Real number y such that y is a majorant of X holds sup X < y.

(76)  For every non-empty subset X of R and for every Real number x such
that x € X holds z < sup X.

Let X be a non-empty subset of R. The functor inf X yields a Real number
and is defined by:

(Def.17)  inf X is a minorant of X and for every Real number y such that y is a
minorant of X holds y <inf X.

The following propositions are true:

(77)  For every non-empty subset X of R and for every Real number S holds
S = inf X if and only if S is a minorant of X and for every Real number
y such that y is a minorant of X holds y < S.

(78)  For every non-empty subset X of R holds inf X is a minorant of X and
for every Real number y such that y is a minorant of X holds y < inf X.

(79)  For every non-empty subset X of R and for every Real number x such
that z € X holds inf X < z.

(80)  For every non-empty subset X of R and for every majorant z of X such
that ¢ € X holds x = sup X.

(81)  For every non-empty subset X of R and for every minorant = of X such
that z € X holds z = inf X.

(82)  For every non-empty subset X of R holds sup X = inf X and inf X =
sup X.
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(83)  For every non-empty subset X of R such that X is upper bounded and
X # {—oo} holds sup X € R.

(84)  For every non-empty subset X of R such that X is lower bounded and
X # {+o0} holds inf X € R.

Let x be a Real number. Then {z} is a non-empty subset of R.
Let x, y be Real numbers. Then {x,y} is a non-empty subset of R.
We now state a number of propositions:

(85)  For every Real number x holds sup{z} = z.

(86)  For every Real number x holds inf{x} = x.

(87)  sup{—o0} = —0c0c.

(88)  sup{+oo} = +o0.

(89) inf{—o0} = —o0.

(90)  inf{4o0} = +o0.

(91)  For all non-empty subsets X, Y of R such that X C Y holds sup X <

supY.

(92)  For all Real numbers z, y and for every Real number a such that x < a
and y < a holds sup{z,y} < a.

(93)  For all Real numbers x, y holds if x < y, then sup{z,y} = y but if
y < x, then sup{z,y} = x.

(94)  For all non-empty subsets X, Y of R such that X C Y holds inf Y <
inf X.

(95)  For all Real numbers z, y and for every Real number a such that a < z
and a < y holds a < inf{z,y}.

(96)  For all Real numbers x, y holds if x < y, then inf{x,y} = z but if y < x,
then inf{z,y} = y.

(97)  For every non-empty subset X of R and for every Real number x such
that there exists a Real number y such that y € X and z < y holds
r <supX.

(98)  For every non-empty subset X of R and for every Real number x such

that there exists a Real number y such that y € X and y < z holds
inf X <z.

(99)  For all non-empty subsets X, Y of R such that for every Real number x
such that x € X there exists a Real number y such that y € Y and x <y
holds sup X <supV.

(100)  For all non-empty subsets X, Y of R such that for every Real number y
such that y € Y there exists a Real number x such that v € X and x <y
holds inf X < infY.

Let X, Y be non-empty subsets of R. Then X UY is a non-empty subset of
R.

One can prove the following propositions:
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(101)  For all non-empty subsets X, Y of R and for every majorant U, of X
and for every majorant Us of Y holds sup{Us, Us} is a majorant of X UY".

(102)  For all non-empty subsets X, Y of R and for every minorant Ly of X
and for every minorant L3 of Y holds inf{Ls, L3} is a minorant of X UY".

(103)  For all non-empty subsets X, Y, S of R and for every majorant Uy of
X and for every majorant Us of Y such that S = X NY holds inf{U,,Us}
is a majorant of S.

(104)  For all non-empty subsets X, Y, S of R and for every minorant Ly of X
and for every minorant Lz of Y such that S = X NY holds sup{Ls, L3}
is a minorant of S.

(105)  For all non-empty subsets X, Y of R holds
sup(X UY') = sup{sup X,supY'}.

(106)  For all non-empty subsets X, Y of R holds inf(XUY") = inf{inf X, inf Y'}.

(107)  For all non-empty subsets X, Y, S of R such that S = X N'Y holds
sup S < inf{sup X,sup Y'}.

(108)  For all non-empty subsets X, Y, S of R such that S = X N'Y holds
sup{inf X,inf Y’} <inf S.

Let X be a non-empty set. A set is called a non-empty set of non-empty
subsets of X if:

(Def.18) it is a non-empty subset of 2% and for every set A such that A € it
holds A is a non-empty set.

Let F be a non-empty set of non-empty subsets of R. The functor supg F’
yielding a non-empty subset of R is defined as follows:

(Def.19)  for every Real number a holds a € supg F' if and only if there exists a
non-empty subset A of R such that A € F and a = sup A.

We now state several propositions:

(110)'*  For every non-empty set I of non-empty subsets of R and for every
non-empty subset S of R holds S = supg F if and only if for every Real
number a holds a € S if and only if there exists a non-empty subset A of
R such that A € F and a = sup A.

(111)  For every non-empty set F' of non-empty subsets of R and for every Real
number a holds a € supg I if and only if there exists a non-empty subset
A of R such that A € F and a = sup A.

(112)  For every non-empty set F of non-empty subsets of R and for every
non-empty subset S of R such that S = |J F holds sup S is a majorant of
supg F.

(113)  For every non-empty set F' of non-empty subsets of R and for every non-
empty subset S of R such that S = |J F holds sup(supg F)) is a majorant
of S.

The proposition (109) was either repeated or obvious.
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(114)  For every non-empty set F of non-empty subsets of R and for every
non-empty subset S of R such that S = JF holds sup S = sup(supg F).

Let F' be a non-empty set of non-empty subsets of R. The functor infg F
yields a non-empty subset of R and is defined as follows:

(Def.20)  for every Real number a holds a € infg F' if and only if there exists a
non-empty subset A of R such that A € F and a = inf A.

We now state several propositions:

(115)  For every non-empty set F of non-empty subsets of R and for every
non-empty subset S of R holds S = infgz F' if and only if for every Real
number a holds a € S if and only if there exists a non-empty subset A of
R such that A € F and a = inf A.

(116)  For every non-empty set F' of non-empty subsets of R and for every Real
number a holds a € infgz F' if and only if there exists a non-empty subset
A of R such that A € F and a = inf A.

(117)  For every non-empty set F of non-empty subsets of R and for every
non-empty subset S of R such that S = JF holds inf S is a minorant of
infﬁ F.

(118)  For every non-empty set F' of non-empty subsets of R and for every non-
empty subset S of R such that S = |JF holds inf(infg F') is a minorant
of S.

(119)  For every non-empty set F of non-empty subsets of R and for every
non-empty subset S of R such that S = J F holds inf S = inf(infz F').
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Summary. We introduce properties of a series of nonnegative R

numbers, where R denotes the enlarged set of real numbers, R=RuU
{—00,+00}. The paper contains definitions of sup F and inf F, for F'

being function, and a definition of a sumable subset of R. We prove the
basic theorems regarding the definitions mentioned above. The work is
the second part of a series of articles concerning the Lebesgue measure
theory.
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The notation and terminology used here are introduced in the following articles:
6], [5], [2], [3], [4], and [1]. Let x, y be Real numbers. Let us assume that neither
x =400 and y = —oco nor x = —oo and y = +o0o. The functor z 4 y yielding a
Real number is defined by:

(Def.1)  there exist real numbers a, b such that x = a and y = band z+y = a+b
orx=+4occand z+y =+4ocoory =4oo0and xr+y = 400 or £ = —00
and x+y=—ocoory=—o0and z +y = —o0.

Next we state four propositions:

(1) Let z, y be Real numbers. Suppose neither = +o00 and y = —oo nor
x = —oo and y = +o0o. Then
(i) there exist real numbers a, b such that z = a and y = b and z+y = a+b,
or

(i

(iii

(iv

(v

(2)  For all Real numbers z, y and for all real numbers a, b such that x = a
and y =b holds x +y =a + 0.

x =400 and ¢ +y = +00, or
y =400 and z + y = 400, or
x=—oo0and x +y = —o0, or
y=—oo0and x +y = —o0.

— — — —
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(3) For every Real number x such that x # —oo holds 400 + x = 400 and
T + +00 = +00.
(4)  For every Real number x such that x # +oo holds —oo + 2 = —oc0 and

T+ —00 = —00.

Let x, y be Real numbers. Let us assume that neither x = 400 and y = +o0
nor x = —oo and y = —oo. The functor = — y yielding a Real number is defined
by:

(Def.2)  there exist real numbers a, b such that x =aandy =band z—y = a—b
orr=4occandxz—y=4+ccory=—+occand r—y = —000r x = —00
and z —y = —o0 or y=—o0 and x — y = 4o00.

We now state a number of propositions:
(5) Let z, y be Real numbers. Suppose neither x = 400 and y = +00 nor

r = —o0 and y = —oo. Then
(i)  there exist real numbers a, b such that z = e and y = band z—y = a—b,
or
(i) = =+ooand z —y = +o0, or
(ii) y=+ooand x —y = —o0, or
(iv) z=-ocandx—y= —o00,o0r
(v) y=-o0and x—y=+oc.

(6)  For all Real numbers x, y and for all real numbers a, b such that x = a
and y=>bholdsx —y=a—b.
(7)  For every Real number x such that x # +oo holds 400 — x = 400 and

r — +00 = —00.
(8)  For every Real number x such that z # —oo holds —oo — 2 = —o0 and
T — —00 = +00.
(9) For all Real numbers x, s such that x + s = +oo holds z = +o0 or
s = +o00.
(10)  For all Real numbers x, s such that © + s = —oo holds z = —o0 or
§ = —00.

(11)  For all Real numbers z, s such that x — s = 400 holds x = +o0 or

5= —00.

(12)  For all Real numbers z, s such that x —s = —oo holds x = —o0 or
§ = +00.

(13)  For all Real numbers x, s such that neither x = +o00 and s = —oo nor

x = —o00 and s = +oo and £ + s € R holds z € R and s € R.
(14)  For all Real numbers x, s such that neither + = 400 and s = +00 nor
x=—o0and s = —oo and x —s € R holds x € R and s € R.

(15)  Let z, y, s, t be Real numbers. Then if neither x = 400 and s = —oco
nor x = —oo and s = 400 and neither y = +00 and ¢t = —oo nor y = —oo
andt=+occand z <y and s <t, then x +s <y +t.

(16) Let z, y, s, t be Real numbers. Then if neither x = 400 and t = 400
nor x = —oo and t = —oo and neither y = +00 and s = +00 nor y = —oo
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and s=—ocoand x <yand s <t , thenzx —t <y —s.
Let « be a Real number. The functor —z yields a Real number and is defined
by:
(Def.3)  there exists a real number a such that + = a and —z = —a or z = +00
and —x = —o0 or x = —00 and —x = +00.

We now state several propositions:

(17)  For every Real number x and for every Real number z holds z = —x if
and only if there exists a real number a such that x = a and z = —a or
x =400 and z = —o0 or x = —o0 and z = +00.
(18)  For every Real number x holds there exists a real number a such that
r =aand —z = —a or x = 400 and —x = —o0 or x = —oo0 and
—x = +00.
(19)  For every Real number x and for every real number a such that x = a
holds —z = —a.
(20)  For every Real number x holds if x = 400, then —x = —oo but if
r = —o0, then —x = +o0.
(21)  For every Real number x holds —(—z) = x.
(22)  For all Real numbers z, y holds z < y if and only if —y < —z.
(23)  For all Real numbers z, y holds z < y if and only if —y < —z.
(24)  For all Real numbers z, y such that x = y holds x < y.
The Real number Og is defined by:
We now state several propositions:

(25) 0z =0.

(26)

(27) —o0 < O and Of < +o0.
(28)

For every Real number x holds z + Og = =z and Og + = = .

For all Real numbers x, y, z such that Og < zand Og <z andy =z + =2
holds = < y.
(29)  For every real number x such that z € N holds 0 < z.
(30)  For every Real number x such that z € N holds 0x < z.
Let X, Y be non-empty subsets of R. Let us assume that neither —co € X
and +00 € Y nor +oo € X and —oo € Y. The functor X + Y yielding a
non-empty subset of R is defined as follows:

(Det.5)  for every Real number z holds z € X +Y if and only if there exist Real
numbers x, y such that xt € X and y € Y and z =z + y.

We now state two propositions:
(31)  For all non-empty subsets X, Y of R such that neither —oco € X and
400 € Y nor +o00 € X and —oc € Y for every Real number z holds
z € X +Y if and only if there exist Real numbers z, y such that z € X
andy €Y and z=z+y.
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(32) Let X,Y, Z be non-empty subsets of R. Then if neither —oo € X and
400 €Y nor +00 € X and —oo € Y, then Z = X 4+ Y if and only if for
every Real number z holds z € Z if and only if there exist Real numbers
z,ysuch that r€e X and y €Y and z=z +y.

Let X be a non-empty subset of R. The functor —X yielding a non-empty
subset of R is defined as follows:
(Def.6)  for every Real number z holds z € —X if and only if there exists a Real
number x such that x € X and z = —x.

Next we state a number of propositions:

(33)  For every non-empty subset X of R and for every Real number z holds
z € — X if and only if there exists a Real number x such that x € X and
z=—I.

(34)  For all non-empty subsets X, Z of R holds Z = —X if and only if for
every Real number z holds z € Z if and only if there exists a Real number
x such that x € X and z = —x.

(35)  For every non-empty subset X of R holds —(—X) = X.

(36)  For every non-empty subset X of R and for every Real number z holds
z € X if and only if —z € —X.

(37)  For all non-empty subsets X, Y of R holds X C Y if and only if —X C
-Y.

(38)  For every Real number z holds z € R if and only if —z € R.

(39) Let X, Y be non-empty subsets of R. Then if neither —co € X and
400 € Y nor 400 € X and —oo € Y and neither sup X = 400 and
supY = —oo nor supX = —oo and supY = +oo, then sup(X +Y) <
supX +supY.

(40) Let X, Y be non-empty subsets of R. Then if neither —oco € X and
+00 € Y nor +00 € X and —oco € Y and neither inf X = 400 and inf Y =
—oo nor inf X = —oo and inf Y = 400, then inf X +inf Y <inf(X +Y).

(41)  For all non-empty subsets X, Y of R such that X is upper bounded and
Y is upper bounded holds sup(X +Y) <sup X + supY.

(42)  For all non-empty subsets X, Y of R such that X is lower bounded and
Y is lower bounded holds inf X +inf Y <inf(X +Y).

(43)  For every non-empty subset X of R and for every Real number a holds
a is a majorant of X if and only if —a is a minorant of —X.

(44)  For every non-empty subset X of R and for every Real number a holds
a is a minorant of X if and only if —a is a majorant of —X.

(45)  For every non-empty subset X of R holds inf(—X) = —sup X.

(46)  For every non-empty subset X of R holds sup(—X) = —inf X.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F'
be a function from X into Y. Then rng F' is a non-empty subset of R.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let
F be a function from X into Y. The functor sup F' yielding a Real number is
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defined by:
(Def.7)  sup F' = sup(rng F).
The following proposition is true

(47)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds sup F' = sup(rng F)).

Let X be a non-empty set, and let Y be a non-empty subset of R, and let
F be a function from X into Y. The functor inf F' yields a Real number and is
defined by:

(Def.8)  inf F' = inf(rng F).
Next we state the proposition

(48)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds inf F' = inf(rng F').

Let X be a non-empty set, and let Y be a non-empty subset of R, and let
F be a function from X into Y, and let = be an element of X. Then F(x) is a
Real number.

The scheme FunctR_ealEx concerns a non-empty set A, a set I3, and a unary
functor F and states that:

there exists a function f from A into B such that for every element z of A
holds f(z) = F(x)
provided the parameters have the following property:

e for every element x of A holds F(z) € B.

Let X be a non-empty set, and let Y, Z be non-empty subsets of R, and let
F be a function from X into Y, and let G be a function from X into Z. Let us
assume that neither —co € Y and +00 € Z nor 400 € Y and —oo € Z. The
functor '+ G yields a function from X into Y + Z and is defined by:

(Def.9)  for every element z of X holds (F + G)(z) = F(z) + G(z).

Next we state several propositions:

(49) Let X be a non-empty set. Let Y, Z be non-empty subsets of R. Sup-
pose neither —oco € Y and +00 € Z nor 400 € Y and —oc € Z. Then for
every function F' from X into Y and for every function G from X into Z
and for every function H from X into Y + Z holds H = F' 4 G if and only
if for every element x of X holds H(x) = F(z) + G(z).

(50)  Let X be a non-empty set. Then for all non-empty subsets Y, Z of R
such that neither —oco € Y and 400 € Z nor +00 € Y and —oco € Z for
every function F' from X into Y and for every function G from X into Z
and for every element x of X holds (F' + G)(x) = F(z) + G(x).

(51)  For every non-empty set X and for all non-empty subsets Y, Z of R
such that neither —oco € ¥ and 400 € Z nor +00 € Y and —oo € Z for
every function F' from X into Y and for every function G from X into Z
holds rng(F + G) C rng F + rmg G.

(52) Let X be a non-empty set. Let Y, Z be non-empty subsets of R. Sup-
pose neither —oo € Y and 400 € Z nor 400 € Y and —oo € Z. Then for
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every function F' from X into Y and for every function G from X into Z
such that neither sup FF = 400 and supG = —oo nor sup F' = —oo and
sup G = 400 holds sup(F + G) < sup F' + supG.

(53) Let X be a non-empty set. Let Y, Z be non-empty subsets of R. Sup-
pose neither —oco € Y and +00 € Z nor 400 € Y and —oc € Z. Then for
every function F' from X into Y and for every function G from X into
Z such that neither inf /' = 400 and inf G = —oo nor inf ' = —oco and
inf G = 400 holds inf F' + inf G < inf(F + G).

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F'
be a function from X into Y. The functor —F yielding a function from X into
—Y is defined by:

(Def.10)  for every element x of X holds (—F)(z) = —F(z).

One can prove the following three propositions:

(54)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y and for every function G from X
into —Y holds G = —F if and only if for every element x of X holds
G(z) = —F(x).

(55)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds rng(—F) = —rng F.

(56) For every non-empty set X and for every non-empty subset Y of R
and for every function F' from X into Y holds inf(—F) = —sup F' and
sup(—F) = —inf F.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F'
be a function from X into Y. We say that F' is upper bounded if and only if:

(Def.11)  sup F < +o0.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F
be a function from X into Y. We say that F is lower bounded if and only if:

(Def.12)  —oo < inf F.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F'
be a function from X into Y. We say that F' is bounded if and only if:

(Def.13)  F is upper bounded and F' is lower bounded.

We now state a number of propositions:

(60)! For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds F' is bounded if and only if
sup F' < +00 and —oo < inf F.

(61)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds F is upper bounded if and only
if —F is lower bounded.

!The propositions (57)—(59) were either repeated or obvious.
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(62)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds F is lower bounded if and only
if —F is upper bounded.

(63)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds F' is bounded if and only if —F
is bounded.

(64)  For every non-empty set X and for every non-empty subset Y of R and
for every function F from X into Y and for every element x of X holds
—00 < F(z) and F(x) < 4o0.

(65)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y and for every element x of X such
that Y C R holds —oo < F(z) and F(z) < +00.

(66)  For every non-empty set X and for every non-empty subset Y of R and
for every function F from X into Y and for every element x of X holds
inf FF < F(x) and F(z) <supF.

(67)  For every non-empty set X and for every non-empty subset Y of R and
for every function F from X into Y such that Y C R holds F' is upper
bounded if and only if sup F' € R.

(68)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y such that Y C R holds F' is lower
bounded if and only if inf F' € R.

(69)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y such that Y C R holds F' is bounded
if and only if inf F' € R and sup F' € R.

(70)  For every non-empty set X and for all non-empty subsets Y, Z of R
such that Y C R and Z C R for every function Fy from X into Y and for
every function Fy from X into Z such that Fj is upper bounded and Fy
is upper bounded holds F} + F5 is upper bounded.

(71)  For every non-empty set X and for all non-empty subsets Y, Z of R
such that Y C R and Z C R for every function F} from X into Y and for
every function F5 from X into Z such that Fj is lower bounded and Fb
is lower bounded holds F} + F3 is lower bounded.

(72)  For every non-empty set X and for all non-empty subsets Y, Z of R
such that Y € R and Z C R for every function F; from X into Y and
for every function Fy from X into Z such that F} is bounded and F is
bounded holds F} + F5 is bounded.

(73)  There exists a function F from N into R such that F' is one-to-one and
N = rng F' and rng F' is a non-empty subset of R.

A non-empty subset of R is called a denumerable set of larged real if:

(Def.14)  there exists a function F' from N into R such that it = rng F.

Next we state the proposition
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(75)%2 N is a denumerable set of larged real.

A denumerable set of larged real is said to be a denumerable set of positive
larged real if:

(Def.15)  for every Real number x such that x € it holds Og < z.

Let D be a denumerable set of larged real. A function from N into R is said
to be a numeration of D if:

(Def.16) D = rngit.
One can prove the following proposition
(78)% For every denumerable set D of positive larged real and for every func-
tion F from N into R holds F is a numeration of D if and only if D = rng F.

Let N be a function from N into R, and let n be a natural number. Then
N(n) is a Real number.

We see that the Real number is an element of R.

The scheme RecFuncExzR_eal concerns a Real number A and a binary functor
F yielding a Real number and states that:

there exists a function F from N into R such that F(0) = A and for every
natural number n and for every Real number x such that x = F(n) holds F(n +
1) = F(n,z)
for all values of the parameters.

We now state the proposition

(79)  For every denumerable set D of larged real and for every numeration
N of D there exists a function F' from N into R such that F(0) = N(0)
and for every natural number n and for every Real number y such that
y=F(n) holds F(n+1)=y+ N(n+1).

Let D be a denumerable set of larged real, and let N be a numeration of D.
The functor Ser(D, N) yields a function from N into R and is defined by:
(Def.17)  Ser(D,N)(0) = N(0) and for every natural number n and for every
Real number y such that y = Ser(D, N)(n) holds Ser(D,N)(n + 1) =
y+ N(n+1).
The following propositions are true:

(80)  Let D be a denumerable set of larged real. Then for every numeration
N of D and for every function F from N into R holds F' = Ser(D, N) if
and only if F(0) = N(0) and for every natural number n and for every
Real number y such that y = F(n) holds F(n+ 1) =y + N(n+1).

(81)  For every denumerable set D of larged real and for every numeration N
of D holds Ser(D, N)(0) = N(0) and for every natural number n and for
every Real numbery such that y = Ser(D, N)(n) holds Ser(D, N)(n+1) =
y+ N(n+1).

(82)  For every denumerable set D of positive larged real and for every nu-
meration N of D and for every natural number n holds O < N(n).

2The proposition (74) was either repeated or obvious.
3The propositions (76)—(77) were either repeated or obvious.
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(83)  For every denumerable set D of positive larged real and for every nu-
meration N of D and for every natural number n holds Ser(D, N)(n) <
Ser(D, N)(n + 1) and 0z < Ser(D, N)(n).

(84)  For every denumerable set D of positive larged real and for every nu-
meration N of D and for all natural numbers n, m holds Ser(D, N)(n) <
Ser(D, N)(n + m).

Let D be a denumerable set of larged real. A non-empty subset of R is called
a set of series of D if:

(Def.18)  there exists a numeration N of D such that it = rng Ser(D, N).

Let F be a function from N into R. Then rng F' is a non-empty subset of R.

Let D be a denumerable set of positive larged real, and let N be a numeration
of D. The functor ), N yields a Real number and is defined as follows:

(Def.19) > p N = sup(rng Ser(D, N)).
One can prove the following propositions:
(86)* For every denumerable set D of positive larged real and for every nu-
meration N of D and for every Real number s holds s = > p N if and
only if s = sup(rng Ser(D, N)).
(87)  For every denumerable set D of positive larged real and for every nu-
meration N of D holds > N = sup(rng Ser(D, N)).

Let D be a denumerable set of positive larged real, and let /N be a numeration
of D. We say that D is N sumable if and only if:

One can prove the following proposition

(89)® For every function F' from N into R holds rng F is a denumerable set of
larged real.

Let F be a function from N into R. Then rng F' is a denumerable set of larged
real.

Next we state the proposition
(90)  For every function F' from N into R holds F' is a numeration of rng F.

Let F be a function from N into R. The functor Ser F yields a function from
N into R and is defined by:

(Def.21)  for every numeration N of rng F' such that N = F holds Ser F' =
Ser(rng F, N).
We now state the proposition
(91)  For every function F' from N into R and for every numeration N of
rng I such that N = F holds Ser F' = Ser(rng F, N).
Let F be a function from N into R. We say that F' is non-negative if and
only if:

4The proposition (85) was either repeated or obvious.
>The proposition (88) was either repeated or obvious.
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(Def.22)  rng F' is a denumerable set of positive larged real.

Let F be a function from N into R. Let us assume that F' is non-negative.
The functor Y F yields a Real number and is defined by:

(Def.23) > F = sup(rngSer F).
The following propositions are true:
(93)% For every function F from N into R such that F' is non-negative holds
> F = sup(rng Ser F).
(94)  For every function F' from N into R holds F' is non-negative if and only
if for every natural number n holds Oz < F(n).

(95)  For every function F from N into R and for every natural number n such
that F' is non-negative holds Ser F'(n) < Ser F'(n + 1) and O < Ser F'(n).

(96)  For every function F' from N into R such that F' is non-negative for all
natural numbers n, m holds Ser F'(n) < Ser F'(n + m).

(97)  For all functions Fy, Fy from N into R such that Fj is non-negative
holds if for every natural number n holds Fj(n) < Fy(n), then for every
natural number n holds Ser Fi(n) < Ser Fy(n).

(98)  For all functions F}, F, from N into R such that Fj is non-negative holds
if for every natural number n holds Fy(n) < Fy(n), then Y F} <> F5.

(99)  For every function F from N into R holds Ser F'(0) = F(0) and for every
natural number n and for every Real number y such that y = Ser F'(n)
holds Ser F(n+ 1) =y + F(n+1).

(100)  For every function F from N into R such that F' is non-negative holds if

there exists a natural number n such that F'(n) = 400, then ) F = 400.

Let F' be a function from N into R. Let us assume that F' is non-negative.
We say that F' is sumable if and only if:

(Def.24) SIF € R.

One can prove the following propositions:

(102)" For every function F' from N into R such that F' is non-negative holds
if there exists a natural number n such that F(n) = 400, then F' is not
sumable.

(103)  For all functions Fy, F; from N into R such that F is non-negative holds
if for every natural number n holds Fy(n) < Fy(n), then if F; is sumable,
then I} is sumable.

(104)  For all functions Fy, Fy from N into R such that F) is non-negative
holds if for every natural number n holds F;(n) < Fy(n), then if Fj is not
sumable, then F5 is not sumable.

(105)  For every function F from N into R such that F is non-negative for

every natural number n such that for every natural number r such that
n <7 holds F(r) = Og holds Y F = Ser F'(n).

5The proposition (92) was either repeated or obvious.
"The proposition (101) was either repeated or obvious.
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(106)  For every function F' from N into R such that for every natural number
n holds F'(n) € R for every natural number n holds Ser F'(n) € R.

(107)  For every function F' from N into R such that F' is non-negative holds
if there exists a natural number n such that for every natural number k
such that n < k holds F'(k) = Og and for every natural number k such
that £ < n holds F(k) # 400, then F' is sumable.
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Summary. This paper contains the second part of the set of ar-
ticles concerning the theory of algebraic structures, based on the [9], pp.
9-12 (pages 4-6 of the English edition).

First the basic structure (F, 4, -, 1, 0) is defined. Following it the
consecutive structures are contemplated in detail, including double loop,
left quasi-field, right quasi-field, double sided quasi-field, skew field and
field. These structures are created by gradually augmenting the basic
structure with new axioms of commutativity, associativity, distributivity
etc. Each part of the article begins with the set of auxiliary theorems
related to the structure under consideration that are necessary for the
existence proof of each defined mode. Next the mode and proof of its
existence is included. If the current set of axioms may be replaced with a
different and equivalent one, the appropriate proof is performed following
the definition of that mode. With the introduction of double loop the
7 —” function is defined. Some interesting features of this function are
also included.

MML Identifier: ALGSTR_2.

The terminology and notation used here have been introduced in the following
articles: [11], [10], [3], [4], [1], [2], [6], [5], [7], and [8]. We consider double loop
structures which are systems

(a carrier, an addition, a multiplication, a unity, a zero),
where the carrier is a non-empty set, the addition is a binary operation on the
carrier, the multiplication is a binary operation on the carrier, the unity is an
element of the carrier, and the zero is an element of the carrier.

In the sequel GG; will be a double loop structure and L will be a double loop
structure. Let us consider GG1. An element of GG1 is an element of the carrier of
Gy.

In the sequel a, b will denote elements of Gy. Let us consider Gy, a, b. The
functor a + b yields an element of G; and is defined by:
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(Def.1)  a+ b = (the addition of G1)(a, b).
Let us consider G1, a, b. The functor a - b yields an element of G and is
defined by:
(Def.2)  a-b= (the multiplication of G1)(a, b).
One can prove the following propositions:
(1)  a+ b= (the addition of G1)(a, b).
(2)  a-b= (the multiplication of G1)(a, b).
Let us consider GG;. The functor Og, yielding an element of GG; is defined as
follows:

(Def.3)  0¢g, = the zero of Gj.
Let us consider GG;. The functor 1g, yields an element of G; and is defined
as follows:
(Def.4)  1g, = the unity of G;.
The following two propositions are true:
(3)  0g, = the zero of G;.
(4) 1@, = the unity of G;.
The double loop structure loopg is defined by:
(Def.5)  loopg = (R, +g, &, 1,0).
One can prove the following three propositions:
(5) loopgp = (R, +gr,r,1,0).
(6) For every real numbers ¢, p there exists a real number y such that

p=q+y.
(7)  For every real numbers ¢, p there exists a real number y such that
p=y+q.

A double loop structure is said to be a double loop if:
(Def.6) (i) for every element a of it holds a + 03 = a,
(ii)  for every element a of it holds 0y + a = a,
(iii)  for every elements a, b of it there exists an element x of it such that

a+x=0>,
(iv)  for every elements a, b of it there exists an element z of it such that
r+a=>b,

) for all elements a, x, y of it such that a + z = a + y holds = = y,

) for all elements a, x, y of it such that z + a = y + a holds = = y,
(Vii) Oi¢ # Lit,

) for every element a of it holds a - (13) = a,

) for every element a of it holds (1j) - a = a,

) for all elements a, b of it such that a # 0;; there exists an element z of
it such that a -z = b,
(xi) for all elements a, b of it such that a # 0j; there exists an element z of
it such that z-a = b,
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(xii)  for all elements a, z, y of it such that a # 0;; holds if a -z = a -y, then

=Y,
(xiii)  for all elements a, x, y of it such that a # 0, holds if z-a = y - a, then
r=1y,

(xiv)  for every element a of it holds a - 0;; = O,
(xv)  for every element a of it holds 0j; - a = 0.

Let us note that it makes sense to consider the following constant. Then
loopy, is a double loop.

Let L be a double loop, and let a be an element of L. The functor —a yielding
an element of L is defined as follows:

(Def.7)  a+ (—a) =0p.
Next we state the proposition
(9)2 For every double loop L and for every element a of L holds a + (—a) =
Or.
Let L be a double loop, and let a, b be elements of L. The functor a — b
yielding an element of L is defined by:

(Def.8) a—b=a+ (-b).
We now state the proposition
(10)  For every double loop L and for all elements a, b of L holds a — b =
a+(=0b).
A double loop is said to be a left quasi-field if:
(Def.9) (i) for all elements a, b, ¢ of it holds (a +b) + ¢ =a+ (b + ¢),

(ii) for all elements a, b of it holds a +b =0+ a,
(iii)  for all elements a, b, cof it holds a- (b+¢)=a-b+a-c.

In the sequel a, b, ¢, z, y are elements of L. The following proposition is true

(12)3 L is a left quasi-field if and only if the following conditions are satisfied:
(i) for every a holds a + 07, = a,
) for every a there exists = such that a + = = 0p,
) forall a, b, c holds (a+b) +c=a+ (b+c),
) foralla,bholdsa+b=>b+a,
) O0p#1p,
) for every a holds a- (1) = a,
(vii)  for every a holds (11) - a = a,
) for all a, b such that a # 0, there exists x such that a -z = b,
)
)
)
)
)

ix) for all a, b such that a # 0, there exists x such that x - a = b,

(x) for all a, x, y such that a # 0, holds if a- = = a - y, then x =y,
(xi) for all a, x, y such that a # 0 holds if - a =y - a, then x =y,
(xii)  for every a holds a -0, = 0p,

for every a holds Oy, - a =0y,
(xiv) foralla,b, choldsa-(b+c)=a-b+a-c.

2The proposition (8) was either repeated or obvious.
3The proposition (11) was either repeated or obvious.
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We follow the rules: G will be a left quasi-field and a, b, z, y will be elements
of G. We now state several propositions:
(13) a+(—a)=0qg and (—a) +a = 0g.
14) a-(=b)=—-a-b.
15)  —(—a) =a.
) (=le) - (—le) =1a-
17) a-(z—y)=a-z—a-y.
A double loop is called a right quasi-field if:
(Def.10) (i) for all elements a, b, ¢ of it holds (a +b) +c=a+ (b+ ¢),
(ii)  for all elements a, b of it holds a +b =0+ a,
(iii)  for all elements a, b, ¢ of it holds (b+¢)-a=b-a+c-a.

In the sequel a, b, ¢, x, y are elements of L. One can prove the following
proposition
(19)* L is aright quasi-field if and only if the following conditions are satisfied:
(i) for every a holds a 4+ 07, = a,
for every a there exists x such that a +x = 0p,
for all a, b, ¢ holds (a +b) +¢c=a+ (b+¢),
for all @, b holds a+b =0+ a,

)
)
)
v) 0p #1pg,
(vi) for every a holds a - (11) = a,

(vii)  for every a holds (11) - a = a,

(viii)  for all a, b such that a # 0, there exists = such that a -z =,
(ix) for all a, b such that a # 0r, there exists  such that z-a = b,
(x) for all a, x, y such that a # O, holds if a- = = a - y, then x =y,
(xi) for all a, x, y such that a # 0f, holds if - a =y - a, then z =y,

(xii)  for every a holds a - 07, = 0y,

for every a holds 0r, - a = 0p,

(xiv) forall @, b, cholds (b+¢)-a=b-a+c-a.

We adopt the following rules: G will be a right quasi-field and a, b, x, y will

be elements of G. We now state several propositions:

(20) a+(—a) =0¢g and (—a) +a = 0g.

(21) (=b)-a=—b-a.
(22) —(—a)=a.
(23)  (~le)-(1lg) = le-
(24) (z—y)-a=zxz-a—y-a.

[\

In the sequel a, b, ¢, x, y will denote elements of L. A double loop is called
a double sided quasi-field if:
(Def.11) (i)  for all elements a, b, ¢ of it holds (a +b) + c=a+ (b + ¢),
(ii)  for all elements a, b of it holds a +b =0+ a,
(i)  for all elements a, b, cof it holds a- (b+¢)=a-b+a-c,
(iv)  for all elements a, b, ¢ of it holds (b+c)-a=b-a+c-a.

4The proposition (18) was either repeated or obvious.
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Let us note that it makes sense to consider the following constant. Then
loopg is a double sided quasi-field.

The following propositions are true:

(26)° L is a double sided quasi-field if and only if the following conditions are

satisfied:

for every a holds a + 07, = a,

for every a there exists x such that a +x = 0p,

for all a, b, c holds (a +b) +c=a+ (b+ c),

for all @, b holds a +b =0+ a,

e Tpe
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(vi) for every a holds a- (11) = a,
(vii)  for every a holds (11) - a = a,

for all a, b such that a # 0y, there exists x such that a -z = b,

—~ =

ix) for all a, b such that a # 0, there exists x such that x - a = b,
(x) for all a, x, y such that a # 0y, holds if a- = = a - y, then x =y,
(xi) for all a, x, y such that a # O, holds if - a =y - a, then x =y,

(xii)  for every a holds a -0y = 0f,

(xiii)  for every a holds Of, - a = 0p,

(xiv) foralla, b, choldsa-(b+¢c)=a-b+a-c,

(xv) foralla,b, cholds (b+c)-a=b-a+c-a.

(27)  For every double sided quasi-field L holds L is a left quasi-field.

(28)  For every double sided quasi-field L holds L is a right quasi-field.
We adopt the following rules: GG will be a double sided quasi-field and a, b,
x, y will be elements of G. Next we state two propositions:
(29) a-(-b)=—-a-band (-b)-a=—-b-a.
30) a-(z—y)=a-xz—a-yand (z—y)-a=x-a—y-a.
We see that the double sided quasi-field is a left quasi-field.
In the sequel a, b, ¢, x will be elements of L. A double sided quasi-field is
called a skew field if:
(Def.12)  for all elements a, b, ¢ of it holds (a-b)-c=a- (b-c).
Let us note that it makes sense to consider the following constant. Then
loopg, is a skew field.
The following proposition is true
(32)% L is a skew field if and only if the following conditions are satisfied:
(i) for every a holds a + 01 = a,
) for every a there exists = such that a + = = 0p,
(i) for all @, b, ¢ holds (a +b) +c=a+ (b+¢),
(iv) for all a, bholdsa+b=0+a,
)

OL 7é 1L7
(vi) for every a holds a- (11) = a,

5The proposition (25) was either repeated or obvious.
5The proposition (31) was either repeated or obvious.
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(vii)  for every a such that a # 0f, there exists x such that a-z =1,
(viii)  for every a holds a -0 = 0f,
(ix) for every a holds O - a = 0p,
(x) forall a,b,cholds (a-b)-c=a-(b-c),
(xi) foralla,b,choldsa-(b+c)=a-b+a-c,
(xii) for all @, b, c holds (b+¢)-a=b-a+c-a.
A skew field is said to be a field if:
(Def.13)  for all elements a, b of it holds a-b=1b- a.

Let us note that it makes sense to consider the following constant. Then
loopg, is a field.

The following proposition is true

(34)7 L is a field if and only if the following conditions are satisfied:
(i) for every a holds a 4+ 01, = a,

=
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< =
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for every a there exists x such that a +x = 0p,
for all a, b, ¢ holds (a+b) +¢c=a+ (b+¢),
for all @, b holds a+b =0+ a,

0r # 1z,

for every a holds a - (11) = a,

(vii)  for every a such that a # Of, there exists x such that a -2z =1p,
(viii)  for every a holds a -0, = 0,
(ix) forall a, b, cholds (a-b)-c=a-(b-c),
(x) foralla,b,choldsa-(b+¢c)=a-b+a-c,
(xi) foralla,bholdsa-b="0-a.
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