Directed Geometrical Bundles and Their Analytical Representation¹

Grzegorz Lewandowski Siedlce Agricultural and Pedagogical University Krzysztof Prażmowski Warsaw University Białystok

Bożena Lewandowska Siedlce Agricultural and Pedagogical University

Summary. We introduce the notion of weak directed geometrical bundle. We prove representation theorems for directed and weak directed geometrical bundles which establish a one-to-one correspondence between such structures and appropriate 2-divisible abelian groups. To this aim we construct over an arbitrary weak directed geometrical bundle a group defined entirely in terms of geometrical notions - the group of (abstract) "free vectors".

MML Identifier: AFVECTO.

The terminology and notation used here have been introduced in the following articles: [8], [3], [4], [10], [11], [7], [5], [6], [1], [9], and [2]. An affine structure is said to be a weak affine vector space if:

- (Def.1) (i) there exist elements a, b of the points of it such that $a \neq b$,
 - (ii) for all elements a, b, c of the points of it such that $a, b \Rightarrow c, c$ holds a = b,
 - (iii) for all elements a, b, c, d, p, q of the points of it such that $a, b \Rightarrow p, q$ and $c, d \Rightarrow p, q$ holds $a, b \Rightarrow c, d$,
 - (iv) for every elements a, b, c of the points of it there exists an element d of the points of it such that $a, b \Rightarrow c, d$,
 - (v) for all elements a, b, c, a', b', c' of the points of it such that $a, b \Rightarrow a', b'$ and $a, c \Rightarrow a', c'$ holds $b, c \Rightarrow b', c'$,
 - (vi) for every elements a, c of the points of it there exists an element b of the points of it such that $a, b \Rightarrow b, c$,

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C3

(vii) for all elements a, b, c, d of the points of it such that $a, b \Rightarrow c, d$ holds $a, c \Rightarrow b, d$.

We see that the space of free vectors is a weak affine vector space.

We adopt the following convention: A_1 will be a weak affine vector space and a, b, c, d, f, a', b', c', d', f', p, q, r, o will be elements of the points of A_1 . The following propositions are true:

- $(2)^2 \quad a,b \Rrightarrow a,b.$
- $(3) \quad a, a \Rrightarrow a, a.$
- (4) If $a, b \Rightarrow c, d$, then $c, d \Rightarrow a, b$.
- (5) If $a, b \Rightarrow a, c$, then b = c.
- (6) If $a, b \Rightarrow c, d$ and $a, b \Rightarrow c, d'$, then d = d'.
- (7) For all a, b holds $a, a \Rightarrow b, b$.
- (8) If $a, b \Rightarrow c, d$, then $b, a \Rightarrow d, c$.
- (9) If $a, b \Rightarrow c, d$ and $a, c \Rightarrow b', d$, then b = b'.
- (10) If $b, c \Rightarrow b', c'$ and $a, d \Rightarrow b, c$ and $a, d' \Rightarrow b', c'$, then d = d'.
- (11) If $a, b \Rightarrow a', b'$ and $c, d \Rightarrow b, a$ and $c, d' \Rightarrow b', a'$, then d = d'.
- (12) If $a, b \Rightarrow a', b'$ and $c, d \Rightarrow c', d'$ and $b, f \Rightarrow c, d$ and $b', f' \Rightarrow c', d'$, then $a, f \Rightarrow a', f'$.
- (13) If $a, b \Rightarrow a', b'$ and $a, c \Rightarrow c', b'$, then $b, c \Rightarrow c', a'$.

Let us consider A_1 , a, b. We say that a, b are in a maximal distance if and only if:

(Def.2) $a, b \Rightarrow b, a \text{ and } a \neq b.$

One can prove the following propositions:

- $(15)^3$ a, a are not in a maximal distance.
- (16) There exist a, b such that $a \neq b$ and a, b are not in a maximal distance.
- (17) If a, b are in a maximal distance, then b, a are in a maximal distance.
- (18) If a, b are in a maximal distance and a, c are in a maximal distance, then b = c or b, c are in a maximal distance.
- (19) If a, b are in a maximal distance and $a, b \Rightarrow c, d$, then c, d are in a maximal distance.

Let us consider A_1 , a, b, c. We say that b is a midpoint of a, c if and only if:

(Def.3) $a, b \Rightarrow b, c.$

We now state a number of propositions:

- $(21)^4$ If b is a midpoint of a, c, then b is a midpoint of c, a.
- (22) b is a midpoint of a, b if and only if a = b.
- (23) b is a midpoint of a, a if and only if a = b or a, b are in a maximal distance.

²The proposition (1) was either repeated or obvious.

³The proposition (14) was either repeated or obvious.

⁴The proposition (20) was either repeated or obvious.

- (24) There exists b such that b is a midpoint of a, c.
- (25) If b is a midpoint of a, c and b' is a midpoint of a, c, then b = b' or b, b' are in a maximal distance.
- (26) There exists c such that b is a midpoint of a, c.
- (27) If b is a midpoint of a, c and b is a midpoint of a, c', then c = c'.
- (28) If b is a midpoint of a, c and b, b' are in a maximal distance, then b' is a midpoint of a, c.
- (29) If b is a midpoint of a, c and b' is a midpoint of a, c' and b, b' are in a maximal distance, then c = c'.
- (30) If p is a midpoint of a, a' and p is a midpoint of b, b', then $a, b \Rightarrow b', a'$.
- (31) If p is a midpoint of a, a' and q is a midpoint of b, b' and p, q are in a maximal distance, then $a, b \Rightarrow b', a'$.

Let us consider A_1 , a, b. The functor PSym(a, b) yields an element of the points of A_1 and is defined as follows:

(Def.4) a is a midpoint of b, PSym(a, b).

One can prove the following propositions:

- (32) $\operatorname{PSym}(p, a) = b$ if and only if p is a midpoint of a, b.
- (33) $\operatorname{PSym}(p, a) = b$ if and only if $a, p \Rightarrow p, b$.
- (34) p is a midpoint of a, PSym(p, a).
- (35) PSym(p, a) = a if and only if a = p or a, p are in a maximal distance.
- (36) $\operatorname{PSym}(p, \operatorname{PSym}(p, a)) = a.$
- (37) If $\operatorname{PSym}(p, a) = \operatorname{PSym}(p, b)$, then a = b.
- (38) There exists a such that PSym(p, a) = b.
- (39) $a, b \Rightarrow \operatorname{PSym}(p, b), \operatorname{PSym}(p, a).$
- (40) $a, b \Rightarrow c, d$ if and only if $\operatorname{PSym}(p, a), \operatorname{PSym}(p, b) \Rightarrow \operatorname{PSym}(p, c), \operatorname{PSym}(p, d).$
- (41) a, b are in a maximal distance if and only if PSym(p, a), PSym(p, b) are in a maximal distance.
- (42) b is a midpoint of a, c if and only if PSym(p, b) is a midpoint of PSym(p, a), PSym(p, c).
- (43) PSym(p, a) = PSym(q, a) if and only if p = q or p, q are in a maximal distance.
- (44) $\operatorname{PSym}(q, \operatorname{PSym}(p, \operatorname{PSym}(q, a))) = \operatorname{PSym}(\operatorname{PSym}(q, p), a).$
- (45) $\operatorname{PSym}(p, \operatorname{PSym}(q, a)) = \operatorname{PSym}(q, \operatorname{PSym}(p, a))$ if and only if p = q or p, q are in a maximal distance or q, $\operatorname{PSym}(p, q)$ are in a maximal distance.
- (46) $\operatorname{PSym}(p, \operatorname{PSym}(q, \operatorname{PSym}(r, a))) = \operatorname{PSym}(r, \operatorname{PSym}(q, \operatorname{PSym}(p, a))).$
- (47) There exists d such that PSym(a, PSym(b, PSym(c, p))) = PSym(d, p).
- (48) There exists c such that PSym(a, PSym(c, p)) = PSym(c, PSym(b, p)).

Let us consider A_1 , o, a, b. The functor Padd(o, a, b) yielding an element of the points of A_1 is defined as follows:

(Def.5) $o, a \Rightarrow b, Padd(o, a, b).$

Next we state the proposition

(49) Padd(o, a, b) = c if and only if $o, a \Rightarrow b, c$.

Let us consider A_1 , o, a. The functor Pcom(o, a) yielding an element of the points of A_1 is defined as follows:

(Def.6) o is a midpoint of a, Pcom(o, a).

One can prove the following propositions:

- (50) Pcom(o, a) = b if and only if o is a midpoint of a, b.
- (51) Pcom(o, a) = b if and only if $a, o \Rightarrow o, b$.

Let us consider A_1 , o. The functor Padd o yielding a binary operation on the points of A_1 is defined as follows:

(Def.7) for all a, b holds (Padd o)(a, b) = Padd(o, a, b).

Let us consider A_1 , o. The functor Pcom o yielding a unary operation on the points of A_1 is defined as follows:

(Def.8) for every a holds (Pcom o)(a) = Pcom(o, a).

The following propositions are true:

- (52) For every binary operation O on the points of A_1 holds O = Padd o if and only if for all a, b holds O(a, b) = Padd(o, a, b).
- (53) For every unary operation O on the points of A_1 holds O = Pcom o if and only if for every a holds O(a) = Pcom(o, a).

Let us consider A_1 , o. The functor GroupVect (A_1, o) yields a group structure and is defined by:

(Def.9) GroupVect $(A_1, o) = \langle$ the points of A_1 , Padd o, Pcom $o, o \rangle$.

The following two propositions are true:

- (54) For every X being a group structure holds $X = \text{GroupVect}(A_1, o)$ if and only if $X = \langle \text{ the points of } A_1, \text{Padd } o, \text{Pcom } o, o \rangle$.
- (55) For all A_1 , o holds the carrier of GroupVect (A_1, o) = the points of A_1 and the addition of GroupVect (A_1, o) = Padd o and the reverse-map of GroupVect (A_1, o) = Pcom o and the zero of GroupVect $(A_1, o) = o$.

In the sequel a, b, c will denote elements of $\text{GroupVect}(A_1, o)$. One can prove the following propositions:

- (56) For an arbitrary x holds x is an element of the points of A_1 if and only if x is an element of GroupVect (A_1, o) .
- (57) For all elements a, b of GroupVect (A_1, o) and for all elements a', b' of the points of A_1 such that a = a' and b = b' holds a + b = (Padd o)(a', b').
- (58) For every element a of GroupVect (A_1, o) and for every element a' of the points of A_1 such that a = a' holds $-a = (\operatorname{Pcom} o)(a')$.
- (59) $0_{\operatorname{GroupVect}(A_1,o)} = o.$

- (60) For every uniquely 2-divisible group A_2 and for all elements a, b of A_2 and for all elements a', b' of the carrier of A_2 such that a = a' and b = b' holds a + b = a' # b'.
- $(61) \quad a+b=b+a.$
- (62) (a+b) + c = a + (b+c).
- (63) $a + 0_{\operatorname{GroupVect}(A_1,o)} = a.$
- (64) $a + (-a) = 0_{\text{GroupVect}(A_1, o)}.$
- (65) GroupVect (A_1, o) is an Abelian group.

Let us consider A_1 , o. Then GroupVect (A_1, o) is an Abelian group.

In the sequel a, b will be elements of the carrier of $\text{GroupVect}(A_1, o)$. Next we state the proposition

(66) For every *a* there exists *b* such that (the addition of GroupVect (A_1, o))(b, b) = a.

Let us consider A_1 , o. Then GroupVect (A_1, o) is a 2-divisible group.

In the sequel A_1 will denote a space of free vectors and o will denote an element of the points of A_1 . One can prove the following proposition

(67) For every element a of the carrier of $\text{GroupVect}(A_1, o)$ such that (the addition of

 $\operatorname{GroupVect}(A_1, o))(a, a) = 0_{\operatorname{GroupVect}(A_1, o)}$

holds $a = 0_{\text{GroupVect}(A_1, o)}$.

Let us consider A_1 , o. Then GroupVect (A_1, o) is a uniquely 2-divisible group.

A uniquely 2-divisible group is said to be a proper uniquely two divisible group if:

(Def.10) there exist elements a, b of the carrier of it such that $a \neq b$.

The following proposition is true

 $(69)^5$ GroupVect (A_1, o) is a proper uniquely two divisible group.

Let us consider A_1 , o. Then GroupVect (A_1, o) is a proper uniquely two divisible group.

Next we state the proposition

(70) For every proper uniquely two divisible group A_2 holds $Vectors(A_2)$ is a space of free vectors.

Let A_2 be a proper uniquely two divisible group. Then $Vectors(A_2)$ is a space of free vectors.

We now state two propositions:

- (71) For every A_1 and for every element o of the points of A_1 holds $A_1 =$ Vectors(GroupVect (A_1, o)).
- (72) For every A_3 being an affine structure holds A_3 is a space of free vectors if and only if there exists a proper uniquely two divisible group A_2 such that $A_3 = \text{Vectors}(A_2)$.

⁵The proposition (68) was either repeated or obvious.

Let X, Y be group structures, and let f be a function from the carrier of X into the carrier of Y. We say that f is an isomorphism of X and Y if and only if:

(Def.11) f is one-to-one and rng f = the carrier of Y and for all elements a, b of X holds f(a+b) = f(a) + f(b) and $f(0_X) = 0_Y$ and f(-a) = -f(a).

Let X, Y be group structures. We say that X, Y are isomorph if and only if:

(Def.12) there exists a function f from the carrier of X into the carrier of Y such that f is an isomorphism of X and Y.

In the sequel A_2 will be a proper uniquely two divisible group and f will be a function from the carrier of A_2 into the carrier of A_2 . The following propositions are true:

- $(75)^6$ Let o' be an element of A_2 . Let o be an element of the points of Vectors (A_2) . Suppose for every element x of A_2 holds f(x) = o' + x and o = o'. Then for all elements a, b of A_2 holds f(a + b) = (Padd o)(f(a), f(b)) and $f(0_{A_2}) = 0_{\text{GroupVect}(\text{Vectors}(A_2), o)}$ and f(-a) = (Pcom o)(f(a)).
- (76) For every element o' of A_2 such that for every element b of A_2 holds f(b) = o' + b holds f is one-to-one.
- (77) For every element o' of A_2 and for every element o of the points of Vectors (A_2) such that for every element b of A_2 holds f(b) = o' + b and o = o' holds rng f = the carrier of GroupVect(Vectors $(A_2), o)$.
- (78) For every proper uniquely two divisible group A_2 and for every element o' of A_2 and for every element o of the points of $Vectors(A_2)$ such that o = o' holds A_2 , GroupVect($Vectors(A_2), o$) are isomorph.

References

- Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537–541, 1990.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [6] Grzegorz Lewandowski and Krzysztof Prażmowski. A construction of an abstract space of congruence of vectors. *Formalized Mathematics*, 1(4):685–688, 1990.
- [7] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601–605, 1990.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

⁶The propositions (73)–(74) were either repeated or obvious.

- [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received September 24, 1990