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Summary. We define the notion of a subgroup generated by a set
of elements of a group and two closely connected notions, namely lattice
of subgroups and the Frattini subgroup. The operations on the lattice
are the intersection of subgroups (introduced in [18]) and multiplication
of subgroups, which result is defined as a subgroup generated by a sum of
carriers of the two subgroups. In order to define the Frattini subgroup and
to prove theorems concerning it we introduce notion of maximal subgroup
and non-generating element of the group (see page 30 in [6]). The Frattini
subgroup is defined as in [6] as an intersection of all maximal subgroups.
We show that an element of the group belongs to the Frattini subgroup
of the group if and only if it is a non-generating element. We also prove
theorems that should be proved in [1] but are not.

MML Identifier: GROUP 4.

The notation and terminology used here are introduced in the following articles:
[3], [13], [4], [11], [20], [10], [19], [8], [16], [5], [17], [2], [15], [18], [14], [12], [21],
[7], [9], and [1]. Let D be a non-empty set, and let F be a finite sequence of
elements of D, and let X be a set. Then F −X is a finite sequence of elements
of D.

In this article we present several logical schemes. The scheme SubsetD deals
with a non-empty set A, and a unary predicate P, and states that:

{d : P[d]}, where d is an element of A, is a subset of A
for all values of the parameters.

The scheme MeetSbgEx deals with a group A, and a unary predicate P, and
states that:

there exists a subgroup H of A such that the carrier of H =
⋂
{A :

∨
K [A =

the carrier of K ∧ P[K]]}, where A is a subset of A, and K is a subgroup of A
provided the parameters have the following property:
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• there exists a subgroup H of A such that P[H].
For simplicity we adopt the following rules: X denotes a set, k, l, m, n

denote natural numbers, i, i1, i2, i3, j denote integers, G denotes a group, a,
b, c denote elements of G, A, B denote subsets of G, H, H1, H2, H3, K denote
subgroups of G, N1, N2 denote normal subgroups of G, h denotes an element
of H, F , F1, F2 denote finite sequences of elements of the carrier of G, and I,
I1, I2 denote finite sequences of elements of � . The scheme SubgrSep deals with
a group A, and a unary predicate P, and states that:

there exists X such that X ⊆ SubGrA and for every subgroup H of A holds
H ∈ X if and only if P[H]
for all values of the parameters.

Let i be an element of � . The functor @i yields an integer and is defined by:

(Def.1) @i = i.

We now state the proposition

(1) For every element i of � holds @i = i.

Let us consider i. The functor @i yielding an element of � is defined as
follows:

(Def.2) @i = i.

Next we state several propositions:

(2) @i = i.

(3) If a = h, then an = hn.

(4) If a = h, then ai = hi.

(5) If a ∈ H, then an ∈ H.

(6) If a ∈ H, then ai ∈ H.

Let us consider G, F . The functor
∏

F yielding an element of G is defined
as follows:

(Def.3)
∏

F = the operation of G ⊙ F .

Next we state a number of propositions:

(7)
∏

F = the operation of G ⊙ F .

(8)
∏

(F1
�

F2) =
∏

F1 ·
∏

F2.

(9)
∏

(F
�
〈a〉) =

∏
F · a.

(10)
∏

(〈a〉
�

F ) = a ·
∏

F .

(11)
∏

εthe carrier of G = 1G.

(12)
∏
〈a〉 = a.

(13)
∏
〈a, b〉 = a · b.

(14)
∏
〈a, b, c〉 = (a · b) · c and

∏
〈a, b, c〉 = a · (b · c).

(15)
∏

(n 7−→ a) = an.

(16)
∏

(F − {1G}) =
∏

F .

(17) If len F1 = len F2 and for every k such that k ∈ Seg(len F1) holds
F2((len F1 − k) + 1) = (πkF1)

−1, then
∏

F1 = (
∏

F2)
−1.
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(18) If G is an Abelian group, then for every permutation P of Seg(len F1)
such that F2 = F1 · P holds

∏
F1 =

∏
F2.

(19) If G is an Abelian group and F1 is one-to-one and F2 is one-to-one and
rng F1 = rng F2, then

∏
F1 =

∏
F2.

(20) If G is an Abelian group and lenF = len F1 and len F = len F2 and
for every k such that k ∈ Seg(len F ) holds F (k) = πkF1 · πkF2, then
∏

F =
∏

F1 ·
∏

F2.

(21) If rng F ⊆ H, then
∏

F ∈ H.

Let us consider G, I, F . Let us assume that len F = len I. The functor F I

yields a finite sequence of elements of the carrier of G and is defined as follows:

(Def.4) len(F I) = len F and for every k such that k ∈ Seg(len F ) holds (F I)(k) =
πkF

@(πkI).

One can prove the following propositions:

(22) If len F = len I and len F1 = len F and for every k such that k ∈
Seg(len F ) holds F1(k) = πkF

@(πkI), then F1 = F I .

(23) If len F = len I, then for every k such that k ∈ Seg(len F ) holds
(F I)(k) = πkF

@(πkI).

(24) If len F = len I, then len(F I) = len F .

(25) If len F1 = len I1 and len F2 = len I2, then (F1
�

F2)
I1 � I2 = F I1

1
�

F I2
2 .

(26) If len F = len I and rng F ⊆ H, then
∏

(F I) ∈ H.

(27) εε �
the carrier of G = ε.

(28) 〈a〉〈@i〉 = 〈ai〉.

(29) 〈a, b〉〈@i,@j〉 = 〈ai, bj〉.

(30) 〈a, b, c〉〈@i1 ,@i2,@i3〉 = 〈ai1 , bi2 , ci3〉.

(31) F len F 7−→@(+1) = F .

(32) F len F 7−→@(+0) = len F 7−→ 1G.

(33) If len I = n, then (n 7−→ 1G)I = n 7−→ 1G.

Let us consider G, A. The functor gr(A) yielding a subgroup of G is defined
as follows:

(Def.5) A ⊆ the carrier of gr(A) and for every H such that A ⊆ the carrier of
H holds gr(A) is a subgroup of H.

We now state a number of propositions:

(34) If A ⊆ the carrier of H1 and for every H2 such that A ⊆ the carrier of
H2 holds H1 is a subgroup of H2, then H1 = gr(A).

(35) A ⊆ the carrier of gr(A).

(36) If A ⊆ the carrier of H, then gr(A) is a subgroup of H.

(37) a ∈ gr(A) if and only if there exist F , I such that len F = len I and
rng F ⊆ A and

∏
(F I) = a.

(38) If a ∈ A, then a ∈ gr(A).

(39) gr(∅the carrier of G) = {1}G.
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(40) gr(H) = H.

(41) If A ⊆ B, then gr(A) is a subgroup of gr(B).

(42) gr(A ∩ B) is a subgroup of gr(A) ∩ gr(B).

(43) The carrier of gr(A) =
⋂
{B :

∨
H [B = the carrier of H ∧ A ⊆ H]}.

(44) gr(A) = gr(A \ {1G}).

We now define two new predicates. Let us consider G, a. We say that a is
non-generating if and only if:

(Def.6) for every A such that gr(A) = G holds gr(A \ {a}) = G.

a is generating stands for a is not non-generating.

We now state the proposition

(46)2 1G is non-generating.

Let us consider G, H. We say that H is maximal if and only if:

(Def.7) H 6= G and for every K such that H 6= K and H is a subgroup of K
holds K = G.

Next we state the proposition

(48)3 If H is maximal and a /∈ H, then gr(H ∪ {a}) = G.

Let us consider G. The functor Φ(G) yields a subgroup of G and is defined
as follows:

(Def.8) the carrier of Φ(G) =
⋂
{A :

∨
H [A = the carrier of H∧ H is maximal

]} if there exists H such that H is maximal, Φ(G) = G, otherwise.

We now state several propositions:

(49) If there exists H such that H is maximal and the carrier of H =
⋂
{A :

∨
K [A = the carrier of K∧ K is maximal ]}, then H = Φ(G).

(50) If for every H holds H is not maximal, then Φ(G) = G.

(51) If there exists H such that H is maximal, then the carrier of Φ(G) =
⋂
{A :

∨
K [A = the carrier of K∧ K is maximal ]}.

(52) If there exists H such that H is maximal, then a ∈ Φ(G) if and only if
for every H such that H is maximal holds a ∈ H.

(53) If for every H holds H is not maximal, then a ∈ Φ(G).

(54) If H is maximal, then Φ(G) is a subgroup of H.

(55) The carrier of Φ(G) = {a : a is non-generating }.

(56) a ∈ Φ(G) if and only if a is non-generating.

Let us consider G, H1, H2. The functor H1 · H2 yielding a subset of G is
defined as follows:

(Def.9) H1 · H2 = H1 · H2.

The following propositions are true:

(57) H1 · H2 = H1 · H2 and H1 · H2 = H1 · H2 and H1 · H2 = H1 · H2.

2The proposition (45) was either repeated or obvious.
3The proposition (47) was either repeated or obvious.
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(58) H · H = H.

(59) (H1 · H2) · H3 = H1 · (H2 · H3).

(60) (a · H1) · H2 = a · (H1 · H2).

(61) (H1 · H2) · a = H1 · (H2 · a).

(62) (A · H1) · H2 = A · (H1 · H2).

(63) (H1 · H2) · A = H1 · (H2 · A).

(64) N1 · N2 = N2 · N1.

(65) If G is an Abelian group, then H1 · H2 = H2 · H1.

Let us consider G, H1, H2. The functor H1 ⊔H2 yielding a subgroup of G is
defined as follows:

(Def.10) H1 ⊔ H2 = gr(H1 ∪ H2).

One can prove the following propositions:

(66) H1 ⊔ H2 = gr(H1 ∪ H2).

(67) a ∈ H1 ⊔ H2 if and only if there exist F , I such that len F = len I and
rng F ⊆ H1 ∪ H2 and a =

∏
(F I).

(68) H1 ⊔ H2 = gr(H1 · H2).

(69) If H1 · H2 = H2 · H1, then the carrier of H1 ⊔ H2 = H1 · H2.

(70) If G is an Abelian group, then the carrier of H1 ⊔ H2 = H1 · H2.

(71) The carrier of N1 ⊔ N2 = N1 · N2.

(72) N1 ⊔ N2 is a normal subgroup of G.

(73) H ⊔ H = H.

(74) H1 ⊔ H2 = H2 ⊔ H1.

(75) (H1 ⊔ H2) ⊔ H3 = H1 ⊔ (H2 ⊔ H3).

(76) {1}G ⊔ H = H and H ⊔ {1}G = H.

(77) ΩG ⊔ H = G and H ⊔ ΩG = G.

(78) H1 is a subgroup of H1 ⊔ H2 and H2 is a subgroup of H1 ⊔ H2.

(79) H1 is a subgroup of H2 if and only if H1 ⊔ H2 = H2.

(80) If H1 is a subgroup of H2, then H1 is a subgroup of H2 ⊔ H3.

(81) If H1 is a subgroup of H3 and H2 is a subgroup of H3, then H1 ⊔H2 is
a subgroup of H3.

(82) If H1 is a subgroup of H2, then H1 ⊔ H3 is a subgroup of H2 ⊔ H3.

(83) H1 ∩ H2 is a subgroup of H1 ⊔ H2.

(84) (H1 ∩ H2) ⊔ H2 = H2.

(85) H1 ∩ (H1 ⊔ H2) = H1.

(86) H1 ⊔ H2 = H2 if and only if H1 ∩ H2 = H1.

In the sequel S1, S2 are elements of SubGrG and o is a binary operation on
SubGrG. Let us consider G. The functor SubJoinG yields a binary operation
on SubGrG and is defined by:
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(Def.11) for all S1, S2, H1, H2 such that S1 = H1 and S2 = H2 holds
(SubJoinG)(S1, S2) = H1 ⊔ H2.

Next we state two propositions:

(87) If for all S1, S2, H1, H2 such that S1 = H1 and S2 = H2 holds o(S1,
S2) = H1 ⊔ H2, then o = SubJoinG.

(88) If H1 = S1 and H2 = S2, then SubJoinG(S1, S2) = H1 ⊔ H2.

Let us consider G. The functor SubMeetG yields a binary operation on
SubGrG and is defined as follows:

(Def.12) for all S1, S2, H1, H2 such that S1 = H1 and S2 = H2 holds
(SubMeetG)(S1, S2) = H1 ∩ H2.

One can prove the following two propositions:

(89) If for all S1, S2, H1, H2 such that S1 = H1 and S2 = H2 holds o(S1,
S2) = H1 ∩ H2, then o = SubMeetG.

(90) If H1 = S1 and H2 = S2, then SubMeetG(S1, S2) = H1 ∩ H2.

Let us consider G. The functor � G yielding a lattice is defined as follows:

(Def.13) � G = 〈SubGrG,SubJoin G,SubMeet G〉.

One can prove the following propositions:

(91) � G = 〈SubGrG,SubJoin G,SubMeet G〉.

(92) The carrier of � G = SubGrG.

(93) The join operation of � G = SubJoinG.

(94) The meet operation of � G = SubMeetG.

(95) � G is a lower bound lattice.

(96) � G is an upper bound lattice.

(97) � G is a bound lattice.

(98) ⊥ �
G

= {1}G.

(99) ⊤ �
G

= ΩG.

(100) n mod 2 = 0 or n mod 2 = 1.

(101) k · n mod k = 0 and k · n mod n = 0.

(102) If k > 1, then 1 mod k = 1.

(103) If k mod n = 0 and l = k − m · n, then l mod n = 0.

(104) If n 6= 0 and k mod n = 0 and l < n, then (k + l) mod n = l.

(105) If k mod n = 0 and l mod n = 0, then (k + l) mod n = 0.

(106) If n 6= 0 and k mod n = 0 and l mod n = 0, then (k + l) ÷ n =
(k ÷ n) + (l ÷ n).

(107) If k 6= 0, then k · n ÷ k = n.
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