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Summary. We construct a real normed space 〈V, ‖.‖〉, where V
is a real vector space and ‖.‖ is a norm. Auxillary properties of the
norm are proved. Next, we introduce the notion of sequence in the real
normed space. The basic operations on sequences (addition, substraction,
multiplication by real number) are defined. We study some properties of
sequences in the real normed space and the operations on them.

MML Identifier: NORMSP 1.

The notation and terminology used in this paper have been introduced in the
following papers: [5], [13], [16], [3], [4], [1], [2], [17], [11], [12], [9], [7], [8], [10],
[15], [14], and [6]. We consider normed structures which are systems

〈vectors, a norm〉,
where the vectors constitute a real linear space and the norm is a function from
the vectors of the vectors into

�
.

In the sequel X is a normed structure and a, b are real numbers. Let us
consider X. A point of X is an element of the vectors of the vectors of X.

In the sequel x denotes a point of X. Let us consider X, x. The functor ‖x‖
yields a real number and is defined as follows:

(Def.1) ‖x‖ = (the norm of X)(x).

A normed structure is said to be a real normed space if:

(Def.2) for all points x, y of it and for every a holds ‖x‖ = 0 if and only if
x = 0the vectors of it but ‖a · x‖ = |a| · ‖x‖ and ‖x + y‖ ≤ ‖x‖ + ‖y‖.

We adopt the following rules: R1 is a real normed space and x, y, z, g are
points of R1. The following propositions are true:

(2)2 ‖x‖ = 0 if and only if x = 0the vectors of R1
.

1Supported by RPBP.III-24.C8
2The proposition (1) was either repeated or obvious.
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(3) ‖a · x‖ = |a| · ‖x‖.

(4) ‖x + y‖ ≤ ‖x‖ + ‖y‖.

(5) ‖0the vectors of R1
‖ = 0.

(6) ‖−x‖ = ‖x‖.

(7) ‖x − y‖ ≤ ‖x‖ + ‖y‖.

(8) 0 ≤ ‖x‖.

(9) ‖a · x + b · y‖ ≤ |a| · ‖x‖ + |b| · ‖y‖.

(10) ‖x − y‖ = 0 if and only if x = y.

(11) ‖x − y‖ = ‖y − x‖.

(12) ‖x‖ − ‖y‖ ≤ ‖x − y‖.

(13) |‖x‖ − ‖y‖| ≤ ‖x − y‖.

(14) ‖x − z‖ ≤ ‖x − y‖ + ‖y − z‖.

(15) If x 6= y, then ‖x − y‖ 6= 0.

Let us consider R1. A subset of R1 is a subset of the vectors of the vectors
of R1.

Let us consider R1. A function is called a sequence of R1 if:

(Def.3) dom it = � and rng it ⊆ the vectors of the vectors of R1.

For simplicity we adopt the following rules: S, S1, S2, T are sequences of
R1, k, n, m are natural numbers, r is a real number, f is a function, and d is
arbitrary. We now state several propositions:

(17)3 f is a sequence of R1 if and only if dom f = � and for every d such that
d ∈ � holds f(d) is a point of R1.

(18) For all S, T such that for every n holds S(n) = T (n) holds S = T .

(19) For every x there exists S such that rng S = {x}.

(20) If there exists x such that for every n holds S(n) = x, then there exists
x such that rng S = {x}.

(21) If there exists x such that rng S = {x}, then for every n holds S(n) =
S(n + 1).

(22) If for every n holds S(n) = S(n + 1), then for all n, k holds S(n) =
S(n + k).

(23) If for all n, k holds S(n) = S(n+k), then for all n, m holds S(n) = S(m).

(24) If for all n, m holds S(n) = S(m), then there exists x such that for
every n holds S(n) = x.

(25) There exists S such that rng S = {0the vectors of R1
}.

Let us consider R1, S. We say that S is constant if and only if:

(Def.4) there exists x such that for every n holds S(n) = x.

The following propositions are true:

(27)4 S is constant if and only if there exists x such that rng S = {x}.

3The proposition (16) was either repeated or obvious.
4The proposition (26) was either repeated or obvious.
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(28) For every n holds S(n) is a point of R1.

Let us consider R1, S, n. Then S(n) is a point of R1.

The scheme ExRNSSeq concerns a real normed space A and a unary functor
F yielding a point of A and states that:

there exists a sequence S of A such that for every n holds S(n) = F(n)
for all values of the parameters.

Let us consider R1, S1, S2. The functor S1 + S2 yielding a sequence of R1 is
defined as follows:

(Def.5) for every n holds (S1 + S2)(n) = S1(n) + S2(n).

One can prove the following proposition

(29) S = S1 + S2 if and only if for every n holds S(n) = S1(n) + S2(n).

Let us consider R1, S1, S2. The functor S1 − S2 yielding a sequence of R1 is
defined as follows:

(Def.6) for every n holds (S1 − S2)(n) = S1(n) − S2(n).

The following proposition is true

(30) S = S1 − S2 if and only if for every n holds S(n) = S1(n) − S2(n).

Let us consider R1, S, x. The functor S − x yields a sequence of R1 and is
defined by:

(Def.7) for every n holds (S − x)(n) = S(n) − x.

Next we state the proposition

(31) T = S − x if and only if for every n holds T (n) = S(n) − x.

Let us consider R1, S, a. The functor a · S yields a sequence of R1 and is
defined by:

(Def.8) for every n holds (a · S)(n) = a · S(n).

We now state the proposition

(32) T = a · S if and only if for every n holds T (n) = a · S(n).

Let us consider R1, S. We say that S is convergent if and only if:

(Def.9) there exists g such that for every r such that 0 < r there exists m such
that for every n such that m ≤ n holds ‖S(n) − g‖ < r.

One can prove the following propositions:

(34)5 If S1 is convergent and S2 is convergent, then S1 + S2 is convergent.

(35) If S1 is convergent and S2 is convergent, then S1 − S2 is convergent.

(36) If S is convergent, then S − x is convergent.

(37) If S is convergent, then a · S is convergent.

Let us consider R1, S. The functor ‖S‖ yielding a sequence of real numbers
is defined by:

(Def.10) for every n holds ‖S‖(n) = ‖S(n)‖.

Next we state two propositions:

5The proposition (33) was either repeated or obvious.
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(38) ‖S‖ is a sequence of real numbers if and only if for every n holds
‖S‖(n) = ‖S(n)‖.

(39) If S is convergent, then ‖S‖ is convergent.

Let us consider R1, S. Let us assume that S is convergent. The functor limS

yielding a point of R1 is defined by:

(Def.11) for every r such that 0 < r there exists m such that for every n such
that m ≤ n holds ‖S(n) − (lim S)‖ < r.

The following propositions are true:

(40) If S is convergent, then lim S = g if and only if for every r such that
0 < r there exists m such that for every n such that m ≤ n holds ‖S(n)−
g‖ < r.

(41) If S is convergent and limS = g, then ‖S−g‖ is convergent and lim‖S−
g‖ = 0.

(42) If S1 is convergent and S2 is convergent, then lim(S1 + S2) = limS1 +
lim S2.

(43) If S1 is convergent and S2 is convergent, then lim(S1 − S2) = limS1 −
lim S2.

(44) If S is convergent, then lim(S − x) = limS − x.

(45) If S is convergent, then lim(a · S) = a · (lim S).
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