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Summary. We introduce properties of a series of nonnegative R

numbers, where R denotes the enlarged set of real numbers, R=RU
{—00,+00}. The paper contains definitions of sup F and inf F, for F

being function, and a definition of a sumable subset of R. We prove the
basic theorems regarding the definitions mentioned above. The work is
the second part of a series of articles concerning the Lebesgue measure
theory.

MML Identifier: SUPINF_2.

The notation and terminology used here are introduced in the following articles:
6], [5], [2], [3], [4], and [1]. Let x, y be Real numbers. Let us assume that neither
x =400 and y = —oo nor x = —oo and y = +oo. The functor z 4 y yielding a
Real number is defined by:

(Def.1)  there exist real numbers a, b such that x = a and y = band z4+y = a+b
orx=+4ococand z+y =+4ooory =4oo0and xr+y =400 or z = —00
and x+y=—ocoory=—o0and z +y = —o0.

Next we state four propositions:

(1) Let z, y be Real numbers. Suppose neither = +o00 and y = —oo nor
x = —o0 and y = +o0o. Then
(i)  there exist real numbers a, b such that z = a and y = b and z+y = a+b,
or

(ii

(iii

(iv

(v

(2)  For all Real numbers z, y and for all real numbers a, b such that x = a
and y =b holds x +y =a + 0.

x =400 and ¢ +y = +00, or
y =400 and = + y = 400, or
x=—o0and x +y = —o0, or
y=—o0and x +y = —o0.

— — — —
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(3) For every Real number x such that x # —oo holds 400 + x = 00 and
T + +00 = +00.
(4)  For every Real number x such that x # +oo holds —oo + 2 = —oo and

T+ —00 = —00.

Let x, y be Real numbers. Let us assume that neither x = 400 and y = +o0
nor x = —oo and y = —oo. The functor = — y yielding a Real number is defined
by:

(Def.2)  there exist real numbers a, b such that x =aandy =band z—y = a—>b
orr=4occandzx—y=4+ccory=—+occand r—y = —000r x = —00
and z —y = —o0 or y =—o0 and x — y = 4o00.

We now state a number of propositions:
(5) Let z, y be Real numbers. Suppose neither x = 400 and y = +00 nor

r = —o00 and y = —oo. Then
(i)  there exist real numbers a, b such that z = e and y = band z—y = a—b,
or
(i) = =+ooand z —y = +o0, or
(ii) y=+ooand x —y = —o0, or
(iv) z=-ocandx—y= —00,o0r
(v) y=-o0and x—y=+oc.

(6)  For all Real numbers x, y and for all real numbers a, b such that x = a
and y=bholdsx —y=a—b.
(7)  For every Real number x such that x # +o0 holds 400 — x = 400 and

r — +00 = —00.
(8)  For every Real number x such that z # —oo holds —oo — 2 = —o0 and
T — —00 = 400.
(9) For all Real numbers x, s such that x + s = +oo holds z = 400 or
s = +o00.
(10)  For all Real numbers x, s such that © + s = —oo holds z = —o0 or
§ = —00.

(11)  For all Real numbers z, s such that x — s = 400 holds x = +oo or

5= —00.

(12)  For all Real numbers z, s such that x —s = —oo holds x = —o0 or
§ = +00.

(13)  For all Real numbers x, s such that neither = 400 and s = —oo nor

z=—ooand s =400 and x + s € R holds z € R and s € R.

(14)  For all Real numbers x, s such that neither + = +o00 and s = +00 nor
r=—-ocoand s = —o0 and x — s € R holds z € R and s € R.

(15)  Let z, y, s, t be Real numbers. Then if neither x = 400 and s = —oco
nor x = —oo and s = 400 and neither y = +00 and ¢t = —oo nor y = —oo
andt=+occand z <y and s <t, then x +s <y +t.

(16) Let z, y, s, t be Real numbers. Then if neither x = 400 and t = 400
nor x = —oo and t = —oo and neither y = +00 and s = +00 nor y = —oo
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and s=—ocoand zx <yand s <t, thenzx —t <y —s.
Let « be a Real number. The functor —z yields a Real number and is defined
by:
(Def.3)  there exists a real number a such that + = a and —z = —a or z = +00
and —x = —o0 or x = —00 and —x = +00.

We now state several propositions:

(17)  For every Real number x and for every Real number z holds z = —x if
and only if there exists a real number a such that x = a and z = —a or
x =400 and z = —o0 or x = —o0 and z = +00.
(18)  For every Real number x holds there exists a real number a such that
r =aand —z = —a or x = 400 and —x = —o0 or x = —oo0 and
—x = +00.
(19)  For every Real number x and for every real number a such that x = a
holds —z = —a.
(20)  For every Real number x holds if x = 400, then —x = —oo but if
r = —o0, then —x = +o0.
(21)  For every Real number x holds —(—z) = x.
(22)  For all Real numbers z, y holds z < y if and only if —y < —z.
(23)  For all Real numbers z, y holds z < y if and only if —y < —z.
(24)  For all Real numbers z, y such that x = y holds x < y.
The Real number Og is defined by:
We now state several propositions:

(25) 07 =0.

(26)

(27)  —o0 < O and Of < +o0.
(28)

For every Real number x holds z + Og = =z and Og + = = .

For all Real numbers z, y, z such that Og < zand Og <z andy =z + =2
holds = < y.
(29)  For every real number x such that z € N holds 0 < z.
(30)  For every Real number x such that z € N holds 0x < z.
Let X, Y be non-empty subsets of R. Let us assume that neither —co € X
and +00 € Y nor +oo € X and —oo € Y. The functor X + Y yielding a
non-empty subset of R is defined as follows:

(Det.5)  for every Real number z holds z € X +Y if and only if there exist Real
numbers x, y such that x € X and y € Y and z =z + y.

We now state two propositions:
(31)  For all non-empty subsets X, Y of R such that neither —oo € X and
400 € Y nor +00 € X and —oc € Y for every Real number z holds
z € X +Y if and only if there exist Real numbers x, y such that z € X
andy €Y and z=z+y.
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(32) Let X,Y, Z be non-empty subsets of R. Then if neither —oo € X and
4+00 €Y nor +00 € X and —oo € Y, then Z = X 4+ Y if and only if for
every Real number z holds z € Z if and only if there exist Real numbers
z,ysuch that r€e X and y €Y and z=z +y.

Let X be a non-empty subset of R. The functor —X yielding a non-empty
subset of R is defined as follows:
(Def.6)  for every Real number z holds z € —X if and only if there exists a Real
number x such that x € X and z = —x.

Next we state a number of propositions:

(33)  For every non-empty subset X of R and for every Real number z holds
z € — X if and only if there exists a Real number x such that x € X and
z=—I.

(34)  For all non-empty subsets X, Z of R holds Z = —X if and only if for
every Real number z holds z € Z if and only if there exists a Real number
x such that x € X and z = —x.

(35)  For every non-empty subset X of R holds —(—X) = X.

(36)  For every non-empty subset X of R and for every Real number z holds
z € X if and only if —z € —X.

(37)  For all non-empty subsets X, Y of R holds X C Y if and only if —X C
-Y.

(38)  For every Real number z holds z € R if and only if —z € R.

(39) Let X, Y be non-empty subsets of R. Then if neither —co € X and
400 € Y nor 400 € X and —oo € Y and neither sup X = 400 and
supY = —oo nor supX = —oo and supY = +oo, then sup(X +Y) <
supX +supY.

(40) Let X, Y be non-empty subsets of R. Then if neither —oo € X and
+00 € Y nor +00 € X and —oco € Y and neither inf X = 400 and inf Y =
—oo nor inf X = —oo and inf Y = 400, then inf X +inf Y <inf(X +Y).

(41)  For all non-empty subsets X, Y of R such that X is upper bounded and
Y is upper bounded holds sup(X +Y) <sup X + supY.

(42)  For all non-empty subsets X, Y of R such that X is lower bounded and
Y is lower bounded holds inf X +inf Y <inf(X +Y).

(43)  For every non-empty subset X of R and for every Real number a holds
a is a majorant of X if and only if —a is a minorant of —X.

(44)  For every non-empty subset X of R and for every Real number a holds
a is a minorant of X if and only if —a is a majorant of —X.

(45)  For every non-empty subset X of R holds inf(—X) = —sup X.

(46)  For every non-empty subset X of R holds sup(—X) = —inf X.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F'
be a function from X into Y. Then rng F' is a non-empty subset of R.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let
F be a function from X into Y. The functor sup F' yielding a Real number is



SERIES OF POSITIVE REAL NUMBERS. MEASURE ... 177

defined by:
(Def.7)  sup F' = sup(rng F).
The following proposition is true

(47)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds sup F' = sup(rng F)).

Let X be a non-empty set, and let Y be a non-empty subset of R, and let
F be a function from X into Y. The functor inf F' yields a Real number and is
defined by:

(Def.8)  inf F' = inf(rng F).
Next we state the proposition

(48)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds inf F' = inf(rng F').

Let X be a non-empty set, and let Y be a non-empty subset of R, and let
F be a function from X into Y, and let = be an element of X. Then F(x) is a
Real number.

The scheme FunctR_ealEx concerns a non-empty set A, a set I3, and a unary
functor F and states that:

there exists a function f from A into B such that for every element z of A
holds f(z) = F(x)
provided the parameters have the following property:

e for every element x of A holds F(z) € B.

Let X be a non-empty set, and let Y, Z be non-empty subsets of R, and let
F be a function from X into Y, and let G be a function from X into Z. Let us
assume that neither —co € Y and +00 € Z nor 400 € Y and —oo € Z. The
functor '+ G yields a function from X into Y + Z and is defined by:

(Def.9)  for every element z of X holds (F + G)(z) = F(z) + G(z).

Next we state several propositions:

(49) Let X be a non-empty set. Let Y, Z be non-empty subsets of R. Sup-
pose neither —oco € Y and +00 € Z nor 400 € Y and —oc € Z. Then for
every function F' from X into Y and for every function G from X into Z
and for every function H from X into Y + Z holds H = F' 4 G if and only
if for every element x of X holds H(z) = F(z) + G(z).

(50) Let X be a non-empty set. Then for all non-empty subsets Y, Z of R
such that neither —oco € Y and 400 € Z nor +00 € Y and —oco € Z for
every function F' from X into Y and for every function G from X into Z
and for every element x of X holds (F' + G)(z) = F(z) + G(x).

(51)  For every non-empty set X and for all non-empty subsets Y, Z of R
such that neither —oco € Y and 400 € Z nor +00 € Y and —oo € Z for
every function F' from X into Y and for every function G from X into Z
holds rng(F 4+ G) C rng F' + rmg G.

(52) Let X be a non-empty set. Let Y, Z be non-empty subsets of R. Sup-
pose neither —oo € Y and 400 € Z nor 400 € Y and —oo € Z. Then for
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every function F' from X into Y and for every function G from X into Z
such that neither sup FF = 400 and supG = —oo nor sup F' = —oo and
sup G = 400 holds sup(F + G) < sup F' + supG.

(53) Let X be a non-empty set. Let Y, Z be non-empty subsets of R. Sup-
pose neither —oco € Y and +00 € Z nor 400 € Y and —oc € Z. Then for
every function F' from X into Y and for every function G from X into
Z such that neither inf /' = 400 and inf G = —oo nor inf ' = —oco and
inf G = 400 holds inf F' + inf G < inf(F + G).

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F'
be a function from X into Y. The functor —F yielding a function from X into
—Y is defined by:

(Def.10)  for every element x of X holds (—F)(z) = —F(z).

One can prove the following three propositions:

(54)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y and for every function G from X
into =Y holds G = —F if and only if for every element x of X holds
G(z) = —F(x).

(55)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds rng(—F) = —rng F.

(56)  For every non-empty set X and for every non-empty subset Y of R
and for every function F' from X into Y holds inf(—F) = —sup F' and
sup(—F) = —inf F.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F'
be a function from X into Y. We say that F' is upper bounded if and only if:

(Def.11)  sup F < +o0.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F
be a function from X into Y. We say that F' is lower bounded if and only if:

(Def.12)  —oo < inf F.

Let X be a non-empty set, and let Y be a non-empty subset of R, and let F'
be a function from X into Y. We say that F' is bounded if and only if:

(Def.13)  F is upper bounded and F' is lower bounded.

We now state a number of propositions:

(60)* For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds F' is bounded if and only if
sup ' < +o00 and —oo < inf F.

(61)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds F is upper bounded if and only
if —F is lower bounded.

!The propositions (57)—(59) were either repeated or obvious.
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(62)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds F is lower bounded if and only
if —F is upper bounded.

(63)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y holds F' is bounded if and only if —F
is bounded.

(64)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y and for every element x of X holds
—00 < F(z) and F(x) < 4o0.

(65)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y and for every element x of X such
that Y C R holds —oo < F(z) and F(z) < +00.

(66)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y and for every element x of X holds
inf F < F(x) and F(z) <supF.

(67)  For every non-empty set X and for every non-empty subset Y of R and
for every function F from X into Y such that Y C R holds F' is upper
bounded if and only if sup F' € R.

(68)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y such that Y C R holds F' is lower
bounded if and only if inf F' € R.

(69)  For every non-empty set X and for every non-empty subset Y of R and
for every function F' from X into Y such that Y C R holds F' is bounded
if and only if inf F' € R and sup F' € R.

(70)  For every non-empty set X and for all non-empty subsets Y, Z of R
such that Y C R and Z C R for every function Fy from X into Y and for
every function Fy from X into Z such that Fj is upper bounded and Fy
is upper bounded holds F} + F5 is upper bounded.

(71)  For every non-empty set X and for all non-empty subsets Y, Z of R
such that Y C R and Z C R for every function F} from X into Y and for
every function F5 from X into Z such that Fj is lower bounded and Fb
is lower bounded holds F} + F5 is lower bounded.

(72)  For every non-empty set X and for all non-empty subsets Y, Z of R
such that Y C R and Z C R for every function F; from X into Y and
for every function Fy from X into Z such that F} is bounded and F is
bounded holds F} + F5 is bounded.

(73)  There exists a function F' from N into R such that F' is one-to-one and
N = rng F' and rng F' is a non-empty subset of R.

A non-empty subset of R is called a denumerable set of larged real if:

(Def.14)  there exists a function F' from N into R such that it = rng F.

Next we state the proposition
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(75)2 N is a denumerable set of larged real.

A denumerable set of larged real is said to be a denumerable set of positive
larged real if:

(Def.15)  for every Real number x such that x € it holds Og < z.

Let D be a denumerable set of larged real. A function from N into R is said
to be a numeration of D if:

(Def.16) D = rngit.
One can prove the following proposition
(78)% For every denumerable set D of positive larged real and for every func-
tion F' from N into R holds F' is a numeration of D if and only if D = rng F.
Let N be a function from N into R, and let n be a natural number. Then
N(n) is a Real number.

We see that the Real number is an element of R.

The scheme RecFuncExR_eal concerns a Real number A and a binary functor
F yielding a Real number and states that:

there exists a function F' from N into R such that F(0) = A and for every
natural number n and for every Real number x such that x = F(n) holds F(n +
1) = F(n,z)
for all values of the parameters.

We now state the proposition

(79)  For every denumerable set D of larged real and for every numeration
N of D there exists a function F' from N into R such that F(0) = N(0)
and for every natural number n and for every Real number y such that
y=F(n) holds F(n+1) =y + N(n+1).

Let D be a denumerable set of larged real, and let N be a numeration of D.
The functor Ser(D, N) yields a function from N into R and is defined by:
(Def.17)  Ser(D,N)(0) = N(0) and for every natural number n and for every
Real number y such that y = Ser(D, N)(n) holds Ser(D,N)(n + 1) =
y+ N(n+1).
The following propositions are true:

(80)  Let D be a denumerable set of larged real. Then for every numeration
N of D and for every function F from N into R holds F' = Ser(D, N) if
and only if F(0) = N(0) and for every natural number n and for every
Real number y such that y = F(n) holds F(n+ 1) =y + N(n+1).

(81)  For every denumerable set D of larged real and for every numeration N
of D holds Ser(D, N)(0) = N(0) and for every natural number n and for
every Real numbery such that y = Ser(D, N)(n) holds Ser(D, N)(n+1) =
y+ N(n+1).

(82)  For every denumerable set D of positive larged real and for every nu-
meration N of D and for every natural number n holds O < N(n).

2The proposition (74) was either repeated or obvious.
3The propositions (76)—(77) were either repeated or obvious.
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(83)  For every denumerable set D of positive larged real and for every nu-
meration N of D and for every natural number n holds Ser(D, N)(n) <
Ser(D, N)(n + 1) and 0z < Ser(D, N)(n).

(84)  For every denumerable set D of positive larged real and for every nu-
meration N of D and for all natural numbers n, m holds Ser(D, N)(n) <
Ser(D, N)(n + m).

Let D be a denumerable set of larged real. A non-empty subset of R is called
a set of series of D if:

(Def.18)  there exists a numeration N of D such that it = rng Ser(D, N).

Let F be a function from N into R. Then rng F' is a non-empty subset of R.

Let D be a denumerable set of positive larged real, and let N be a numeration
of D. The functor ), N yields a Real number and is defined as follows:

(Def.19) > p N = sup(rng Ser(D, N)).
One can prove the following propositions:

(86)* For every denumerable set D of positive larged real and for every nu-
meration N of D and for every Real number s holds s = > p N if and
only if s = sup(rng Ser(D, N)).

(87)  For every denumerable set D of positive larged real and for every nu-
meration N of D holds > N = sup(rng Ser(D, N)).

Let D be a denumerable set of positive larged real, and let /N be a numeration
of D. We say that D is N sumable if and only if:

One can prove the following proposition

(89)® For every function F' from N into R holds rng F is a denumerable set of
larged real.

Let F be a function from N into R. Then rng F' is a denumerable set of larged
real.

Next we state the proposition
(90)  For every function F from N into R holds F' is a numeration of rng F.

Let F be a function from N into R. The functor Ser F' yields a function from
N into R and is defined by:

(Def.21)  for every numeration N of rng F' such that N = F holds Ser F' =
Ser(rng F, N).
We now state the proposition

(91)  For every function F' from N into R and for every numeration N of
rng I such that N = F holds Ser F' = Ser(rng F, N).

Let F be a function from N into R. We say that F' is non-negative if and
only if:

4The proposition (85) was either repeated or obvious.
>The proposition (88) was either repeated or obvious.
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(Def.22)  rng F' is a denumerable set of positive larged real.

Let F be a function from N into R. Let us assume that F' is non-negative.
The functor Y F yields a Real number and is defined by:

(Def.23) > F = sup(rngSer F).
The following propositions are true:
(93)% For every function F from N into R such that F' is non-negative holds
> F = sup(rng Ser F).
(94)  For every function F' from N into R holds F' is non-negative if and only
if for every natural number n holds Oz < F(n).

(95)  For every function F from N into R and for every natural number n such
that F' is non-negative holds Ser F'(n) < Ser F'(n + 1) and O < Ser F'(n).

(96)  For every function F' from N into R such that F' is non-negative for all
natural numbers n, m holds Ser F'(n) < Ser F'(n + m).

(97)  For all functions Fy, Fy from N into R such that Fj is non-negative
holds if for every natural number n holds Fy(n) < Fy(n), then for every
natural number n holds Ser Fi(n) < Ser Fy(n).

(98)  For all functions Fy, F5 from N into R such that Fj is non-negative holds
if for every natural number n holds Fy(n) < Fy(n), then Y F} <> F5.

(99)  For every function F from N into R holds Ser F'(0) = F(0) and for every
natural number n and for every Real number y such that y = Ser F'(n)
holds Ser F(n+1) =y + F(n+1).

(100)  For every function F from N into R such that F' is non-negative holds if

there exists a natural number n such that F'(n) = 400, then ) F = 4o0.

Let F be a function from N into R. Let us assume that F' is non-negative.
We say that F' is sumable if and only if:

(Def.24) STF € R.

One can prove the following propositions:

(102)" For every function F' from N into R such that F' is non-negative holds
if there exists a natural number n such that F'(n) = 400, then F' is not
sumable.

(103)  For all functions Fy, F; from N into R such that F is non-negative holds
if for every natural number n holds Fy(n) < Fy(n), then if F; is sumable,
then I} is sumable.

(104)  For all functions Fy, Fy from N into R such that F) is non-negative
holds if for every natural number n holds F;(n) < Fy(n), then if Fj is not
sumable, then F5 is not sumable.

(105)  For every function F from N into R such that F' is non-negative for

every natural number n such that for every natural number r such that
n <7 holds F(r) = Og holds }_ F = Ser F'(n).

5The proposition (92) was either repeated or obvious.
"The proposition (101) was either repeated or obvious.
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(106)  For every function F' from N into R such that for every natural number
n holds F'(n) € R for every natural number n holds Ser F'(n) € R.

(107)  For every function F' from N into R such that F' is non-negative holds
if there exists a natural number n such that for every natural number k
such that n < k holds F'(k) = Og and for every natural number k such
that £ < n holds F(k) # 400, then F is sumable.
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