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Summary. A continuation of [11] and of [12]. First we define the
following concepts: the Cauchy sequence, the bounded sequence and the
subsequence. The last part consists definitions of the complete space and
the Hilbert space.
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The articles [5], [18], [22], [3], [4], [1], [10], [8], [9], [7], [15], [2], [23], [16], [17],
[14], [21], [20], [19], [13], [11], [12], and [6] provide the notation and terminology
for this paper. For simplicity we follow the rules: X is a real unitary space, x is
a point of X, g is a point of X, a, r are real numbers, M is a real number, s1,
s2, s3, s4 are sequences of X, N1 is an increasing sequence of naturals, and k,
n, m are natural numbers. Let us consider X, s1. We say that s1 is a Cauchy
sequence if and only if:

(Def.1) for every r such that r > 0 there exists k such that for all n, m such
that n ≥ k and m ≥ k holds ρ(s1(n), s1(m)) < r.

One can prove the following propositions:

(1) If s1 is constant, then s1 is a Cauchy sequence.

(2) s1 is a Cauchy sequence if and only if for every r such that r > 0
there exists k such that for all n, m such that n ≥ k and m ≥ k holds
‖s1(n) − s1(m)‖ < r.

(3) If s2 is a Cauchy sequence and s3 is a Cauchy sequence, then s2 + s3 is
a Cauchy sequence.

(4) If s2 is a Cauchy sequence and s3 is a Cauchy sequence, then s2 − s3 is
a Cauchy sequence.

(5) If s1 is a Cauchy sequence, then a · s1 is a Cauchy sequence.

(6) If s1 is a Cauchy sequence, then −s1 is a Cauchy sequence.
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(7) If s1 is a Cauchy sequence, then s1 + x is a Cauchy sequence.

(8) If s1 is a Cauchy sequence, then s1 − x is a Cauchy sequence.

(9) If s1 is convergent, then s1 is a Cauchy sequence.

Let us consider X, s2, s3. We say that s2 is compared to s3 if and only if:

(Def.2) for every r such that r > 0 there exists m such that for every n such
that n ≥ m holds ρ(s2(n), s3(n)) < r.

One can prove the following propositions:

(10) s1 is compared to s1.

(11) If s2 is compared to s3, then s3 is compared to s2.

(12) If s2 is compared to s3 and s3 is compared to s4, then s2 is compared
to s4.

(13) s2 is compared to s3 if and only if for every r such that r > 0 there
exists m such that for every n such that n ≥ m holds ‖s2(n)−s3(n)‖ < r.

(14) If there exists k such that for every n such that n ≥ k holds s2(n) =
s3(n), then s2 is compared to s3.

(15) If s2 is a Cauchy sequence and s2 is compared to s3, then s3 is a Cauchy
sequence.

(16) If s2 is convergent and s2 is compared to s3, then s3 is convergent.

(17) If s2 is convergent and lim s2 = g and s2 is compared to s3, then s3 is
convergent and lim s3 = g.

Let us consider X, s1. We say that s1 is bounded if and only if:

(Def.3) there exists M such that M > 0 and for every n holds ‖s1(n)‖ ≤ M .

One can prove the following propositions:

(18) If s2 is bounded and s3 is bounded, then s2 + s3 is bounded.

(19) If s1 is bounded, then −s1 is bounded.

(20) If s2 is bounded and s3 is bounded, then s2 − s3 is bounded.

(21) If s1 is bounded, then a · s1 is bounded.

(22) If s1 is constant, then s1 is bounded.

(23) For every m there exists M such that M > 0 and for every n such that
n ≤ m holds ‖s1(n)‖ < M .

(24) If s1 is convergent, then s1 is bounded.

(25) If s2 is bounded and s2 is compared to s3, then s3 is bounded.

Let us consider X, N1, s1. Then s1 · N1 is a sequence of X.

Let us consider X, s2, s1. We say that s2 is a subsequence of s1 if and only
if:

(Def.4) there exists N1 such that s2 = s1 · N1.

One can prove the following propositions:

(26) For every n holds (s1 · N1)(n) = s1(N1(n)).

(27) s1 is a subsequence of s1.
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(28) If s2 is a subsequence of s3 and s3 is a subsequence of s4, then s2 is a
subsequence of s4.

(29) If s1 is constant and s2 is a subsequence of s1, then s2 is constant.

(30) If s1 is constant and s2 is a subsequence of s1, then s1 = s2.

(31) If s1 is bounded and s2 is a subsequence of s1, then s2 is bounded.

(32) If s1 is convergent and s2 is a subsequence of s1, then s2 is convergent.

(33) If s2 is a subsequence of s1 and s1 is convergent, then lim s2 = lim s1.

(34) If s1 is a Cauchy sequence and s2 is a subsequence of s1, then s2 is a
Cauchy sequence.

Let us consider X, s1, k. The functor s1 ↑ k yields a sequence of X and is
defined by:

(Def.5) for every n holds (s1 ↑ k)(n) = s1(n + k).

The following propositions are true:

(35) s1 ↑ 0 = s1.

(36) s1 ↑ k ↑ m = s1 ↑ m ↑ k.

(37) s1 ↑ k ↑ m = s1 ↑ (k + m).

(38) (s2 + s3) ↑ k = s2 ↑ k + s3 ↑ k.

(39) (−s1) ↑ k = −s1 ↑ k.

(40) (s2 − s3) ↑ k = s2 ↑ k − s3 ↑ k.

(41) (a · s1) ↑ k = a · (s1 ↑ k).

(42) (s1 · N1) ↑ k = s1 · (N1 ↑ k).

(43) s1 ↑ k is a subsequence of s1.

(44) If s1 is convergent, then s1 ↑ k is convergent and lim(s1 ↑ k) = lim s1.

(45) If s1 is convergent and there exists k such that s2 = s1 ↑ k, then s2 is
convergent and lim s2 = lim s1.

(46) If s1 is convergent and there exists k such that s1 = s2 ↑ k, then s2 is
convergent.

(47) If s1 is a Cauchy sequence and there exists k such that s1 = s2 ↑k, then
s2 is a Cauchy sequence.

(48) If s1 is a Cauchy sequence, then s1 ↑ k is a Cauchy sequence.

(49) If s2 is compared to s3, then s2 ↑ k is compared to s3 ↑ k.

(50) If s1 is bounded, then s1 ↑ k is bounded.

(51) If s1 is constant, then s1 ↑ k is constant.

Let us consider X. We say that X is a complete space if and only if:

(Def.6) for every s1 such that s1 is a Cauchy sequence holds s1 is convergent.

The following propositions are true:

(52) If X is a complete space and s2 is a Cauchy sequence and s2 is compared
to s3, then s3 is a Cauchy sequence.

(53) If X is a complete space and s1 is a Cauchy sequence, then s1 is bounded.
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Let us consider X. We say that X is a Hilbert space if and only if:

(Def.7) X is a real unitary space and X is a complete space.
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