
FORMALIZED MATHEMATICS

Vol.2, No.4, September–October 1991

Université Catholique de Louvain

Category Ens

Czes law Byliński

Warsaw University

Bia lystok

Summary. If V is any non-empty set of sets, we define EnsV to
be the category with the objects of all sets X ∈ V , morphisms of all
mappings from X into Y , with the ususal composition of mappings. By
a mapping we mean a triple 〈X, Y, f〉 where f is a function from X into
Y . The notations and concepts included correspond to those presented in
[11,9]. We also introduce representable functors to illustrate properties
of the category Ens.

MML Identifier: ENS 1.

The notation and terminology used here are introduced in the following papers:
[15], [16], [13], [2], [3], [7], [5], [1], [14], [10], [12], [4], [8], and [6].

Mappings

In the sequel V denotes a non-empty set and A, B denote elements of V . Let
us consider V . The functor FuncsV yielding a non-empty set of functions is
defined by:

(Def.1) FuncsV =
⋃
{BA}.

We now state three propositions:

(1) For an arbitrary f holds f ∈ Funcs V if and only if there exist A, B

such that if B = ∅, then A = ∅ but f is a function from A into B.

(2) BA ⊆ FuncsV .

(3) For every non-empty subset W of V holds FuncsW ⊆ FuncsV .

In the sequel f is an element of FuncsV . Let us consider V . The functor
MapsV yielding a non-empty set is defined as follows:

(Def.2) MapsV = {〈〈〈〈A, B〉〉, f〉〉 : (B = ∅ ⇒ A = ∅)∧f is a function from A into B}.

In the sequel m, m1, m2, m3 are elements of MapsV . One can prove the
following four propositions:

527
c© 1991 Fondation Philippe le Hodey

ISSN 0777–4028



528 czes law byliński

(4) There exist f , A, B such that m = 〈〈〈〈A, B〉〉, f〉〉 but if B = ∅, then
A = ∅ and f is a function from A into B.

(5) For every function f from A into B such that if B = ∅, then A = ∅
holds 〈〈〈〈A, B〉〉, f〉〉 ∈ MapsV .

(6) MapsV ⊆ [: [:V, V :], Funcs V :].

(7) For every non-empty subset W of V holds MapsW ⊆ MapsV .

We now define three new functors. Let us consider V , m. The functor
graph(m) yields a function and is defined as follows:

(Def.3) graph(m) = m2.

The functor domm yields an element of V and is defined by:

(Def.4) domm = (m1)1.

The functor cod m yielding an element of V is defined by:

(Def.5) cod m = (m1)2.

The following three propositions are true:

(8) m = 〈〈〈〈 dom m, cod m〉〉, graph(m)〉〉.

(9) cod m 6= ∅ or domm = ∅ but graph(m) is a function from domm into
cod m.

(10) For every function f and for all sets A, B such that 〈〈〈〈A, B〉〉, f〉〉 ∈
MapsV holds if B = ∅, then A = ∅ but f is a function from A into B.

Let us consider V , A. The functor id(A) yields an element of MapsV and is
defined by:

(Def.6) id(A) = 〈〈〈〈A, A〉〉, idA 〉〉.

The following proposition is true

(11) graph(id(A)) = idA and dom id(A) = A and cod id(A) = A.

Let us consider V , m1, m2. Let us assume that cod m1 = domm2. The
functor m2 · m1 yields an element of MapsV and is defined as follows:

(Def.7) m2 · m1 = 〈〈〈〈dom m1, cod m2〉〉, graph(m2) · graph(m1)〉〉.

One can prove the following propositions:

(12) If domm2 = cod m1, then graph((m2 · m1)) = graph(m2) · graph(m1)
and dom(m2 · m1) = domm1 and cod(m2 · m1) = cod m2.

(13) If domm2 = cod m1 and domm3 = cod m2, then m3 · (m2 · m1) =
m3 · m2 · m1.

(14) m · id(domm) = m and id(cod m) · m = m.

Let us consider V , A, B. The functor Maps(A,B) yields a set and is defined
by:

(Def.8) Maps(A,B) = {〈〈〈〈A, B〉〉, f〉〉 : 〈〈〈〈A, B〉〉, f〉〉 ∈ MapsV }, where f ranges
over elements of FuncsV .

The following propositions are true:

(15) For every function f from A into B such that if B = ∅, then A = ∅
holds 〈〈〈〈A, B〉〉, f〉〉 ∈ Maps(A,B).



category ens 529

(16) If m ∈ Maps(A,B), then m = 〈〈〈〈A, B〉〉, graph(m)〉〉.

(17) Maps(A,B) ⊆ MapsV .

(18) MapsV =
⋃
{Maps(A,B)}.

(19) m ∈ Maps(A,B) if and only if domm = A and cod m = B.

(20) If m ∈ Maps(A,B), then graph(m) ∈ BA.

Let us consider V , m. We say that m is a surjection if and only if:

(Def.9) rng graph(m) = cod m.

Category Ens

We now define four new functors. Let us consider V . The functor DomV yields
a function from Maps V into V and is defined by:

(Def.10) for every m holds DomV (m) = domm.

The functor CodV yields a function from MapsV into V and is defined as follows:

(Def.11) for every m holds CodV (m) = cod m.

The functor ·V yields a partial function from [: MapsV, MapsV :] to MapsV and
is defined as follows:

(Def.12) for all m2, m1 holds 〈〈m2, m1〉〉 ∈ dom(·V ) if and only if domm2 =
cod m1 and for all m2, m1 such that domm2 = cod m1 holds ·V (〈〈m2,

m1〉〉) = m2 · m1.

The functor IdV yields a function from V into Maps V and is defined by:

(Def.13) for every A holds IdV (A) = id(A).

Let us consider V . The functor EnsV yields a category structure and is
defined by:

(Def.14) EnsV = 〈V,Maps V,DomV ,CodV , ·V , IdV 〉.

We now state the proposition

(21) 〈V,Maps V,DomV ,CodV , ·V , IdV 〉 is a category.

Let us consider V . Then EnsV is a category.

In the sequel a, b are objects of EnsV . Next we state the proposition

(22) A is an object of EnsV .

Let us consider V , A. The functor @A yielding an object of EnsV is defined
as follows:

(Def.15) @A = A.

One can prove the following proposition

(23) a is an element of V .

Let us consider V , a. The functor @a yields an element of V and is defined
by:

(Def.16) @a = a.

In the sequel f , g denote morphisms of EnsV . The following proposition is
true



530 czes law byliński

(24) m is a morphism of EnsV .

Let us consider V , m. The functor @m yields a morphism of EnsV and is
defined as follows:

(Def.17) @m = m.

One can prove the following proposition

(25) f is an element of Maps V .

Let us consider V , f . The functor @f yields an element of MapsV and is
defined as follows:

(Def.18) @f = f .

One can prove the following propositions:

(26) dom f = dom(@f) and cod f = cod(@f).

(27) hom(a, b) = Maps(@a, @b).

(28) If dom g = cod f , then g · f = (@g) · (@f).

(29) ida = id(@a).

(30) If a = ∅, then a is an initial object.

(31) If ∅ ∈ V and a is an initial object, then a = ∅.

(32) For every universal class W and for every object a of EnsW such that
a is an initial object holds a = ∅.

(33) If there exists arbitrary x such that a = {x}, then a is a terminal object.

(34) If V 6= {∅} and a is a terminal object, then there exists arbitrary x such
that a = {x}.

(35) For every universal class W and for every object a of EnsW such that
a is a terminal object there exists arbitrary x such that a = {x}.

(36) f is monic if and only if graph((@f)) is one-to-one.

(37) If f is epi and there exists A and there exist arbitrary x1, x2 such that
x1 ∈ A and x2 ∈ A and x1 6= x2, then @f is a surjection.

(38) If @f is a surjection, then f is epi.

(39) For every universal class W and for every morphism f of EnsW such
that f is epi holds @f is a surjection.

(40) For every non-empty subset W of V holds EnsW is full subcategory of
EnsV .

Representable Functors

We follow a convention: C will be a category, a, b, c will be objects of C, and
f , g, h, f ′, g′ will be morphisms of C. Let us consider C. The functor Hom(C)
yields a non-empty set and is defined as follows:

(Def.19) Hom(C) = {hom(a, b)}.

We now state two propositions:

(41) hom(a, b) ∈ Hom(C).



category ens 531

(42) If hom(a, cod f) = ∅, then hom(a,dom f) = ∅ but if hom(dom f, a) = ∅,
then hom(cod f, a) = ∅.

We now define two new functors. Let us consider C, a, f . The functor
hom(a, f) yielding a function from hom(a,dom f) into hom(a, cod f) is defined
by:

(Def.20) for every g such that g ∈ hom(a,dom f) holds (hom(a, f))(g) = f · g.

The functor hom(f, a) yields a function from hom(cod f, a) into hom(dom f, a)
and is defined by:

(Def.21) for every g such that g ∈ hom(cod f, a) holds (hom(f, a))(g) = g · f .

We now state several propositions:

(43) hom(a, idc) = idhom(a,c).

(44) hom(idc, a) = idhom(c,a).

(45) If dom g = cod f , then hom(a, g · f) = hom(a, g) · hom(a, f).

(46) If dom g = cod f , then hom(g · f, a) = hom(f, a) · hom(g, a).

(47) 〈〈〈〈hom(a,dom f), hom(a, cod f)〉〉, hom(a, f)〉〉 is an element of
MapsHom(C).

(48) 〈〈〈〈hom(cod f, a), hom(dom f, a)〉〉, hom(f, a)〉〉 is an element of
MapsHom(C).

We now define two new functors. Let us consider C, a. The functor hom(a,−)
yields a function from the morphisms of C into MapsHom(C) and is defined as
follows:

(Def.22) for every f holds (hom(a,−))(f) = 〈〈〈〈 hom(a,dom f), hom(a, cod f)〉〉,
hom(a, f)〉〉.

The functor hom(−, a) yields a function from the morphisms of C into
Maps Hom(C)
and is defined as follows:

(Def.23) for every f holds (hom(−, a))(f) = 〈〈〈〈hom(cod f, a), hom(dom f, a)〉〉,
hom(f, a)〉〉.

The following propositions are true:

(49) If Hom(C) ⊆ V , then hom(a,−) is a functor from C to EnsV .

(50) If Hom(C) ⊆ V , then hom(−, a) is a contravariant functor from C into
EnsV .

(51) If hom(dom f, cod f ′) = ∅, then hom(cod f,dom f ′) = ∅.

Let us consider C, f , g. The functor hom(f, g) yielding a function from
hom(cod f,dom g) into hom(dom f, cod g) is defined by:

(Def.24) for every h such that h ∈ hom(cod f,dom g) holds (hom(f, g))(h) =
g · h · f .

We now state several propositions:

(52) 〈〈〈〈hom(cod f,dom g), hom(dom f, cod g)〉〉, hom(f, g)〉〉 is an element of
MapsHom(C).

(53) hom(ida, f) = hom(a, f) and hom(f, ida) = hom(f, a).



532 czes law byliński

(54) hom(ida, idb) = idhom(a,b).

(55) hom(f, g) = hom(dom f, g) · hom(f,dom g).

(56) If cod g = dom f and dom g′ = cod f ′, then hom(f ·g, g′·f ′) = hom(g, g′)·
hom(f, f ′).

Let us consider C. The functor homC(−,−) yielding a function from the
morphisms of [:C, C :] into MapsHom(C) is defined as follows:

(Def.25) for all f , g holds (homC(−,−))(〈〈f, g〉〉) =
〈〈〈〈 hom(cod f,dom g), hom(dom f, cod g)〉〉, hom(f, g)〉〉.

The following two propositions are true:

(57) hom(a,−) = (curry(homC(−,−)))(ida) and
hom(−, a) = (curry′(homC(−,−)))(ida).

(58) If Hom(C) ⊆ V , then homC(−,−) is a functor from [:Cop, C :] to EnsV .

We now define two new functors. Let us consider V , C, a. Let us assume
that Hom(C) ⊆ V . The functor homV (a,−) yields a functor from C to EnsV

and is defined by:

(Def.26) homV (a,−) = hom(a,−).

The functor homV (−, a) yields a contravariant functor from C into EnsV and
is defined as follows:

(Def.27) homV (−, a) = hom(−, a).

Let us consider V , C. Let us assume that Hom(C) ⊆ V . The functor
homC

V (−,−) yielding a functor from [:Cop, C :] to EnsV is defined as follows:

(Def.28) homC
V (−,−) = homC(−,−).

One can prove the following propositions:

(59) If Hom(C) ⊆ V , then
(homV (a,−))(f) = 〈〈〈〈hom(a,dom f), hom(a, cod f)〉〉, hom(a, f)〉〉.

(60) If Hom(C) ⊆ V , then (Obj(homV (a,−)))(b) = hom(a, b).

(61) If Hom(C) ⊆ V , then
(homV (−, a))(f) = 〈〈〈〈hom(cod f, a), hom(dom f, a)〉〉, hom(f, a)〉〉.

(62) If Hom(C) ⊆ V , then (Obj(homV (−, a)))(b) = hom(b, a).

(63) If Hom(C) ⊆ V , then (homC
V (−,−))(〈〈f op, g〉〉) = 〈〈〈〈hom(cod f,dom g),

hom(dom f, cod g)〉〉, hom(f, g)〉〉.

(64) If Hom(C) ⊆ V , then (Obj(homC
V (−,−)))(〈〈aop, b〉〉) = hom(a, b).

(65) If Hom(C) ⊆ V , then (homC
V (−,−))(aop,−) = homV (a,−).

(66) If Hom(C) ⊆ V , then (homC
V (−,−))(−, a) = homV (−, a).

Acknowledgements

I would like to thank Andrzej Trybulec for his useful sugestions and valuable
comments.

References



category ens 533

[1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics,
1(3):537–541, 1990.

[2] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,
1(1):55–65, 1990.

[3] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[4] Czes law Byliński. Introduction to categories and functors. Formalized Mathematics,
1(2):409–420, 1990.

[5] Czes law Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[6] Czes law Byliński. Opposite categories and contravariant functors. Formalized Mathe-
matics, 2(3):419–424, 1991.

[7] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[8] Czes law Byliński. Subcategories and products of categories. Formalized Mathematics,

1(4):725–732, 1990.
[9] Sunders MacLane. Categories for the working mathematician. Springer,

Berlin/Heilderberg/New York, 1972.
[10] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics,

1(3):595–600, 1990.
[11] Zbigniew Semadeni and Antoni Wiweger. Wste

‘
p do teorii kategorii i funktorów. Vol-

ume 45 of Biblioteka Matematyczna, PWN, Warszawa, 1978.
[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.

Received August 1, 1991


