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Summary. If V is any non-empty set of sets, we define Ensy to
be the category with the objects of all sets X € V, morphisms of all
mappings from X into Y, with the ususal composition of mappings. By
a mapping we mean a triple (X, Y, f) where f is a function from X into
Y. The notations and concepts included correspond to those presented in
[11,9]. We also introduce representable functors to illustrate properties
of the category Ens.

MML Identifier: ENS_1.

The notation and terminology used here are introduced in the following papers:
[15], [16], [13], [2], [3], [7], [5], [1], [14], [10], [12], [4], [8], and [6].

MAPPINGS

In the sequel V' denotes a non-empty set and A, B denote elements of V. Let
us consider V. The functor FuncsV yielding a non-empty set of functions is
defined by:

(Def.1)  FuncsV = J{B4}.

We now state three propositions:

(1)  For an arbitrary f holds f € FuncsV if and only if there exist A, B
such that if B = (), then A = ) but f is a function from A into B.

(2) B4 C FuncsV.
(3) For every non-empty subset W of V' holds Funcs W C Funcs V.
In the sequel f is an element of Funcs V. Let us consider V. The functor
Maps V' yielding a non-empty set is defined as follows:
(Def.2) MapsV = {((4, B), f): (B=0= A=0)Afisa function from A into B}.
In the sequel m, my, mo, ms are elements of MapsV. One can prove the
following four propositions:
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(4) There exist f, A, B such that m = ({4, B), f) but if B = (), then
A =0 and f is a function from A into B.

(5)  For every function f from A into B such that if B = (), then A = ()
holds ((A, B), f) € Maps V.

(6) MapsV C [}V, V], FuncsV {.

(7)  For every non-empty subset W of V' holds Maps W C Maps V.

We now define three new functors. Let us consider V', m. The functor
graph(m) yields a function and is defined as follows:

(Def.3)  graph(m) = ma.
The functor dom m yields an element of V' and is defined by:
(Def.4)  domm = (mq)1.
The functor cod m yielding an element of V' is defined by:
(Def.5)  codm = (mq)a.
The following three propositions are true:
(8) m = {({domm, codm), graph(m)).
(9) codm # 0 or domm = () but graph(m) is a function from domm into
cod m.

(10)  For every function f and for all sets A, B such that ((A, B), f) €
Maps V' holds if B =0, then A ={) but f is a function from A into B.

Let us consider V', A. The functor id(A) yields an element of Maps V' and is
defined by:

(Def.6) id(A) = ((A, A),id4).
The following proposition is true
(11)  graph(id(A)) =id4 and domid(A) = A and codid(A) = A.
Let us consider V', mq, mo. Let us assume that codm; = dommsy. The
functor ms - mq yields an element of Maps V' and is defined as follows:
(Def.7)  mgy-my = ({dommy, codms), graph(ms) - graph(m;)).
One can prove the following propositions:
(12)  If dommg = codmq, then graph((ms - my)) = graph(ms) - graph(m;)
and dom(mg - mp) = domm; and cod(mg - my) = cod ma.
(13) If domms = codm; and dommg = codms, then mg - (mg - my) =
ms-1mg-1Mmj.
(14)  m-id(domm) = m and id(cod m) - m = m.
Let us consider V', A, B. The functor Maps(A, B) yields a set and is defined
by:
(Def.8)  Maps(A4, B) = {{{4, B), f): ({(A, B), f) € MapsV'}, where f ranges
over elements of Funcs V.
The following propositions are true:

(15)  For every function f from A into B such that if B = (), then A = ()
holds ((A, B), f) € Maps(4, B).
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(16) If m € Maps(A, B), then m = ((A, B), graph(m)).

(17)  Maps(A,B) C Maps V.

(18) MapsV = U{Maps(4, B)}.

(19)  m € Maps(A, B) if and only if domm = A and codm = B.
(20)  If m € Maps(A, B), then graph(m) € BA4.

Let us consider V', m. We say that m is a surjection if and only if:
(Det.9)  rnggraph(m) = cod m.

CATEGORY Ens

We now define four new functors. Let us consider V. The functor Domy, yields
a function from Maps V into V' and is defined by:

(Def.10)  for every m holds Domy (m) = domm.
The functor Cody yields a function from Maps V into V and is defined as follows:
(Def.11)  for every m holds Cody (m) = cod m.

The functor -y yields a partial function from [ Maps V, MapsV ] to Maps V' and
is defined as follows:

(Def.12)  for all mg, m; holds (mg, m1) € dom(-y) if and only if dommy =
codm; and for all mgy, m; such that domms = codm; holds -y ({ma,
ml)) = ms9 -Mmj.
The functor Idy yields a function from V' into Maps V' and is defined by:
(Def.13)  for every A holds Idy (A) = id(A).
Let us consider V. The functor Ensy yields a category structure and is
defined by:
(Def.14)  Ensy = (V,Maps V, Domy, Cody, -y, Idy).
We now state the proposition
(21)  (V,Maps V,Domy, Cody, -y, Idy) is a category.
Let us consider V. Then Ensy is a category.
In the sequel a, b are objects of Ensy . Next we state the proposition
(22) Ais an object of Ensy .

Let us consider V, A. The functor ®A yielding an object of Ensy is defined
as follows:

(Def.15) @A =A.
One can prove the following proposition
(23) ais an element of V.
Let us consider V, a. The functor ®a yields an element of V and is defined
by:
(Def.16)  “a = a.
In the sequel f, g denote morphisms of Ensy. The following proposition is
true
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(24)
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m is a morphism of Ensy .

Let us consider V, m. The functor ®m yields a morphism of Ensy and is
defined as follows:

(Def.17)

@m:m.

One can prove the following proposition

(25)

f is an element of Maps V.

Let us consider V, f. The functor ®f yields an element of MapsV and is
defined as follows:

(Def.18)

“f=r

One can prove the following propositions:
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dom f = dom(®f) and cod f = cod(® f).
hom(a, b) = Maps(“a, ®b).

If dom g = cod f, then g - f = (®g) - (*f).

id, = id(“a).

If a = (), then a is an initial object.

If ) € V and a is an initial object, then a = .

For every universal class W and for every object a of Ensyy such that
a is an initial object holds a = ().

If there exists arbitrary = such that a = {2}, then a is a terminal object.

If V # {0} and a is a terminal object, then there exists arbitrary = such
that a = {z}.

For every universal class W and for every object a of Ensy such that
a is a terminal object there exists arbitrary z such that a = {x}.

f is monic if and only if graph((®f)) is one-to-one.

If f is epi and there exists A and there exist arbitrary x1, x2 such that
x1 € A and 29 € A and 1 # x9, then @f is a surjection.

If @f is a surjection, then f is epi.

For every universal class W and for every morphism f of Ensys such
that f is epi holds @f is a surjection.

For every non-empty subset W of V holds Ensyy is full subcategory of
Ensy .

REPRESENTABLE FUNCTORS

We follow a convention: C will be a category, a, b, ¢ will be objects of C, and
f, g, h, f', ¢ will be morphisms of C. Let us consider C'. The functor Hom(C)
yields a non-empty set and is defined as follows:

(Def.19)

Hom(C) = {hom(a,b)}.

We now state two propositions:

(41)

hom(a,b) € Hom(C).
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(42)  If hom(a,cod f) = 0, then hom(a,dom f) = ) but if hom(dom f,a) = 0,
then hom(cod f,a) = 0.

We now define two new functors. Let us consider C, a, f. The functor
hom(a, f) yielding a function from hom(a,dom f) into hom(a,cod f) is defined
by:

(Def.20)  for every g such that g € hom(a,dom f) holds (hom(a, f))(g) = f - g

The functor hom(f,a) yields a function from hom(cod f,a) into hom(dom f,a)
and is defined by:

(Def.21)  for every g such that g € hom(cod f,a) holds (hom(f,a))(g) =¢- f.
We now state several propositions:
43)  hom(a,id.) = idyom(a,c)-

(

(44)  hom(idc, a) = idhom(c,a)-

(45) If domg = cod f, then hom(a, g - f) = hom(a, g) - hom(a, f).

(46) If dom g = cod f, then hom(g - f,a) = hom(f,a) - hom(g,a).

(47)  ({hom(a,dom f), hom(a,cod f)), hom(a, f)) is an element of
Maps Hom(C).

(48)  ({(hom(cod f,a), hom(dom f,a)), hom(f,a)) is an element of
Maps Hom(C).

We now define two new functors. Let us consider C, a. The functor hom(a, —)
yields a function from the morphisms of C' into Maps Hom(C') and is defined as
follows:

(Def.22)  for every f holds (hom(a,—))(f) = ({(hom(a,dom f), hom(a,cod f)}),
hom(a, f)).

The functor hom(—, a) yields a function from the morphisms of C' into
Maps Hom(C')
and is defined as follows:
(Def.23)  for every f holds (hom(—,a))(f) = ({(hom(cod f,a), hom(dom f,a)),
hom(f,a)).
The following propositions are true:
(49) If Hom(C) C V, then hom(a, —) is a functor from C' to Ensy .
(50)  If Hom(C) C V, then hom(—, a) is a contravariant functor from C' into
Ensy .
(51)  If hom(dom f,cod f') = (), then hom(cod f,dom f’) = .
Let us consider C, f, g. The functor hom(f,g) yielding a function from
hom(cod f,dom g) into hom(dom f, cod g) is defined by:
(Def.24)  for every h such that h € hom(cod f,domg) holds (hom(f,q))(h) =
g-h-f.
We now state several propositions:
(52)  ({(hom(cod f,dom g), hom(dom f,cod g)), hom(f,g)) is an element of
Maps Hom(C).
(563)  hom(id,, f) = hom(a, f) and hom(f,id,) = hom(f,a).
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(54) hom(ida, ldb) = idhom(a,b)'

(55)  hom(f,g) = hom(dom f, g) - hom(f,dom g).

(56) Ifcodg = dom f and dom ¢’ = cod f’, then hom(f-g,¢"-f’) = hom(g, ')
hom(f, f').

Let us consider C. The functor homgc(—, —) yielding a function from the
morphisms of [ C, C'{ into Maps Hom(C) is defined as follows:

(Def.25)  for all f, g holds (home(—, —))({f, g)) =
({hom(cod f,dom g), hom(dom f,cod g)), hom(f, g)).
The following two propositions are true:
(57)  hom(a,—) = (curry(homg(—, —)))(id,) and
hom(—, a) = (curry’(home(—, —)))(idg).
(58) If Hom(C) C V, then homg(—, —) is a functor from [ C°P, C'] to Ensy.
We now define two new functors. Let us consider V, C, a. Let us assume

that Hom(C) C V. The functor homy (a, —) yields a functor from C to Ensy
and is defined by:

(Def.26)  homy (a,—) = hom(a, —).
The functor homy (—, a) yields a contravariant functor from C' into Ensy and
is defined as follows:
(Def.27)  homy (—,a) = hom(—,a).
Let us consider V, C. Let us assume that Hom(C') € V. The functor
hom§/ (—, —) yielding a functor from [ C°P, C'] to Ensy is defined as follows:
(Def.28)  hom{/(—, —) = hom¢(—, —).
One can prove the following propositions:
(59) If Hom(C) C V, then
(homy (a, —))(f) = ((hom(a,dom f), hom(a,cod f)), hom(a, f)).

(60) If Hom(C) C V, then (Obj(homy (a, )))(b) = hom(a, b).

(61) If Hom(C') C V, then
(homy (—,a))(f) = ((hom(cod f,a), hom(dom f,a)), hom(f,a)).

(62) If Hom(C) C V, then (Obj(homy (—,a)))(b) = hom(b, a).

(63) 1f Hom(C) C V, then (hom{(—, =))({f*?, g)) = ({hom(cod f,domg),
hom(dom f, co dg)) hom(f, g)).

(64) If Hom(C) C V, then (Obj(hom{ (—, —)))({a®?, b)) = hom(a, b).

(65)  If Hom(C) C V, then (hom$(—, —))(a°?, —) = homy (a, —).

(66) If Hom(C) C V, then (homy (—, —))(—,a) = homy(—,a).
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