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Summary. A supplement of [3] and [2], i.e. some useful and ex-
planatory properties of the product and also the curried and uncurried
functions are shown. Besides, the functions yielding functions are con-
sidered: two different products and other operation of such functions are
introduced. Finally, two facts are presented: quasi-distributivity of the

power of the set to other one w.r.t. the union (me SN IL X 7))
and quasi-distributivity of the poroduct w.r.t. the raising to the power

(I, f(@)* = (L, f(=))™).

MML Identifier: FUNCT_6.

The articles [16], [14], [8], [17], [5], [12], [9], [11], [6], [4], [13], [15], [7], [10], [2],
[1], and [3] provide the notation and terminology for this paper.

PROPERTIES OF CARTESIAN PRODUCT

For simplicity we follow the rules: z, vy, y1, y2, 2, a will be arbitrary, f, g,
h, I/, fi, fo will denote functions, i will denote a natural number, X, Y, Z,
Vi, Vo will denote sets, P will denote a permutation of X, D, Dy, Dy, Ds
will denote non-empty sets, dy will denote an element of D1, ds will denote an
element of Dy, and d3 will denote an element of D3. We now state a number of
propositions:
(1) =z e[[(X) if and only if there exists y such that y € X and =z = (y).
(2) =z ell(X,Y) if and only if there exist z, y such that x € X and y € Y
and z = (z,y).
(3) a € ll(X,Y,Z) if and only if there exist z, y, z such that z € X and
yeY and z € Z and a = (z,y, 2).

(4) (D)= D"
(56)  TI(D1,D2) = {(d1,d2)}.
(6) TI{D,D)= D2

© 1991 Fondation Philippe le Hodey
547 ISSN 0777-4028



548

GRZEGORZ BANCEREK

(7)  TI{D1, D2, D3) = {(d1,d2,d3)}.
(8) II(D,D,D)= D3,
(9) TI(i — D)= D

(10)  TIf S (Uf)dem/.

CURRIED AND UNCURRIED FUNCTIONS OF SOME FUNCTIONS

The following propositions are true:
(11)  If x € dom~f, then there exist y, z such that x = (y, z).
(12) A([X, Y]r—2)=}Y, X]+— 2.

(13)  curry f = curry’~f and uncurry f = ~uncurry’ f.

(14) K [X,Y] #0, then curry(f X, Y] — 2) = X —— (Y — 2) and
curry' (X, Y]+—2) =Y — (X — 2).

(15)  uncurry(X — (Y +— 2)) = [ X, Y] — 2 and uncurry’(X —
Yr—2)=[Y,X]+— 2.

(16) If x € dom f and g = f(z), then rngg C rnguncurry f and rngg C
rng uncurry’ f.

(17)  domuncurry(X +— f) = [ X, dom f] and rnguncurry(X —— f) C
rng f and dom uncurry’(X — f) = [dom f, X ] and rng uncurry’ (X —
f) Crmgf.

(18) If X = (), then rnguncurry(X — f) = rng f and rnguncurry’ (X ——
f)=mgf.

(19) HKEX,Y]#0and f e ZESY then curry f € (ZY)X and curry’ f €
(Z*)".

(20) If f € (Z¥)¥, then uncurry f € ZEX Y1 and uncurry’ f € Z8Y X1,

(21)  If curry f € (Z¥)X or curry’ f € (ZX)Y but dom f C [ V4, Vo], then
fezZbXvd,

(22)  If uncurry f € ZE5Y 1 or uncurry’ f € ZEY-X1 but g f € Vi 5V5 and
dom f = X, then f € (ZV)X.

(23) If felX,Y]>Z, then curry f € X>(Y—-Z) and
curry' f e Y (X 52).

(24) If fe X>(Y>Z), then uncurry f € [ X, Y ]>Z and uncurry’ f € [Y,
X152,

(25) Ifcurryf € X=>(Y=>52) or curry’ f € Y-(X—-Z) but dom f C [V,
Vo, then f €[ X, Y |52,

(26) If uncwrry f € [ X, Y ]>Z or uncurry’ f € [Y, X |>Z but mg f C
V1V, and dom f C X, then f € X>(Y—>2).

FUNCTIONS YIELDING FUNCTIONS

Let X be a set. The functor Sub¢ X is defined as follows:

(Def.1)  x € Subg X if and only if z € X and x is a function.
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Next we state four propositions:
(27)  Subf X C X.
(28) € f ! Subgrng f if and only if # € dom f and f(x) is a function.
(29)  Sub¢( =0 and Subg{f} = {f} and Sub¢{f, g} = {f, g} and
Sube{f,g,h} ={f,g,h}.
(30) IfY C Sub¢ X, then SubsY =Y.
We now define three new functors. Let f be a function. The functor
domy, f(k) yielding a function is defined by:

(Def.2)  dom(dom, f(k)) = f ~! Subsrng f and for every z such that z € f ~!
Sub¢ rng f holds (dom, f(k))(z) = m(f(x)).

The functor rng,, f(k) yields a function and is defined as follows:
(Def.3)  dom(rng, f(k)) = f ~! Subgrng f and for every x such that z € f ~*
Subg rng f holds (rng,. f(k))(z) = ma(f(x)).
The functor () f is defined as follows:
(Def4) N f=Nrngf.
Next we state a number of propositions:

(31) Ifz €dom f and g = f(x), then x € dom(dom,, f(x)) and
(domy f(k))(x) = domg
and = € dom(rng,, f(k)) and (rng,, f(k))(z) = rngg.

(32) dom,O(k) =0 and rng, O(k) = O.

(33)  domg(f)(k) = (dom f) and rng,(f)(x) = (rng f).

(34)  domy(f,g)(r) = (dom f,domg) and g, (f, g)(x) = (mg f,mgg).

(35)  domg(f,g,h)(k) = (dom f,dom g,dom h) and rng,(f, g, h)(x) = (rng f,
rng g,rngh).

(36) d(;cmH(X — f)(k) = X +— dom f and g, (X — f)(k) = X —
rng f.

(37) If f # 0O, then x € N f if and only if for every y such that y € dom f
holds = € f(y).

) UoO=0and NO=10.
) UX) =X and N(X) = X.
40) U(X,Y)=XUY and (X,Y)=XNY.
) UX,Y.Z)=XUYUZand N(X,Y,Z)=XNYNZ.
) U@ —Y)=0and N0 +—Y)=0.
43) X #0, then UX +—Y)=Y and (X —Y) =Y.
Let f be a function, and let x, y be arbitrary. The functor f(z)(y) is defined
by:
(Def.5)  f(2)(y) = (uncurry f)({z, y)).
We now state several propositions:
(44) If x € dom f and g = f(x) and y € dom g, then f(z)(y) = g(y).
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(45) If x € dom f, then (f)(1)(z) = f(x) and (f,9)(1)(x) = f(z) and (f,g,
h)(1)(z) = f(z).

(46) If z € domg, then (f,9)(2)(z) = g(z) and (f,g,h)(2)(z) = g(x).

(47) If x € domh, then (f, g, h)(3)(x) = h(x).

(48) Ifzx € X and y € dom f, then (X — f)(z)(y) = f(y).

CARTESIAN PRODUCT OF FUNCTIONS WITH THE SAME DOMAIN

Let f be a function. The functor [[* f yielding a function is defined as follows:
(Def.6) IT* f = curry(uncurry’ f I f((domy f(k)), dom f ).
We now state several propositions:

(49)  dom[[" f = N(domy f(k)) and mg[[" f C [(rng, f(x)).

(50) If x € dom][[* f, then (IT* f)(x) is a function.

(51) If z € dom[[*f and ¢ = (I[* f)(z), then domg = f ~! Sub¢rng f
and for every y such that y € domg holds (y, ) € domuncurry f and
9(y) = (uncurry f)((y, ).

(52) If x € dom[[* f, then for every g such that g € rng f holds x € dom g.

(563) If g € rng f and for every g such that g € rng f holds = € dom g, then

x € dom[[* f.

(54) Ifz edomf and g = f(x) and y € dom[[* f and h = (IT" f)(y), then
9(y) = h(z).

(55) If x € dom f and f(z) is a function and y € dom [[* f, then f(z)(y) =
(T /) (w)(=).

CARTESIAN PRODUCT OF FUNCTIONS

Let f be a function. The functor [][° f yielding a function is defined by the
conditions (Def.7).

(Def.7) (i) domT[[° f =II(domy f(k)),
(ii)  for every g such that g € [[(dom, f(x)) there exists h such that
(IT1° f)(9) = h and domh = f ~! Subsrng f and for every z such that
x € dom h holds h(z) = (uncurry f)({z, g(x))).

The following propositions are true:

(56)  If g € [[(domy f(x)) and x € domg, then (T]° f)(g9)(z) = f(z)(g(x)).

(57) Ifz e domf and g = f(z) and h € [[(dom, f(x)) and b’ = (TT° f)(h),
then h(z) € domg and h/(z) = g(h(x)) and A’ € [[(rng,. f(x)).

(58)  rngI[° f = [1(rng, f(x)).

(59) IfO ¢ rng f, then []° f is one-to-one if and only if for every g such that
g € rng f holds g is one-to-one.



CARTESIAN PRODUCT OF FUNCTIONS 551

PROPERTIES OF CARTESIAN PRODUCTS OF FUNCTIONS

The following propositions are true:

(60) [['O=0and[[°O0={0}+— 0O.

(61) dom][[*(h) = domh and for every = such that z € dom h holds
(T (r)(x) = (h(x)).

(62)  dom [[*(f1, fo) = dom fiNdom f, and for every z such that € dom f1N
dom f5 holds ([T*(f1, f2))(z) = (f1(x), f2(x)).

(63) If X # 0, then dom [[*(X —— f) = dom f and for every x such that
x € dom f holds (IT*(X — f))(z) = X — f(z).

(64) dom[[°(h) = [[(dom h) and rng [[°(h) = [[(rng h) and for every x such
that € dom h holds (JT°(h))({x)) = (h(x)).

(65) (i)  dom[[°(f1, f2) = [I(dom f1,dom f5),

(ii)  mglI°(f1, f2) = [1{rng f1,1ng f2),
(i)  for all z, y such that = € dom f; and y € dom fs holds (I]°(f1, f2))((x,

) = (fi(z), f2(y))-

(66) dom[[°(X +— f) = (dom f)* and mg[[°(X ~— f) = (rngf)
for every g such that g € (dom f)* holds ([[°(X — f))(g) =

(67) If z € dom f; and = € dom fo, then for all y1, y2 holds (f1, fo >( ) (y1,
yo) if and only if ([T*(f1, f2))(z) = (y1, y2)-

(68) If x € dom f; and y € dom fo, then for all y1, yo holds [ f1, f2]({z,
) = (y1, y2) if and only if ([T°(f1, f2))((z,9)) = (y1,92)-

(69) If dom f = X and domg = X and for every = such that z € X holds
f(@) = g(x), then [T f = [Ig.

(70) If dom f = dom h and dom g = rngh and h is one-to-one and for every
x such that x € dom h holds f(z) =~ g(h(x)), then []f ~[[g.

(71)  Ifdom f = X, then [[ f = [I(f - P).

FUNCTION YIELDING POWERS

Let us consider f, X. The functor X7 yielding a function is defined by:

(Def.8)  dom(X/) = dom f and for every = such that € dom f holds X/ (z) =
xflx)

We now state several propositions:

(72)  If ) ¢ rng £, then )/ = dom f — 0.
(73) X"=0O.

(74) Y = (v¥X),

(75) 2V = (zX 7V,

(76) ZX Y =X+ ZY.

(

77) XU disjoin f H(Xf)
Let us consider X, f. The functor f¥X yielding a function is defined by:
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dom(fX) = dom f and for every z such that z € dom f holds f*(z) =
fx)x.

Next we state several propositions:

9
© 0

o0 0o
N =

N N N N /N
Q0 9]
w (=)
~— O~ — — —

[1]
2]

3]
[4]

[5]
[6]

[7]

f? = dom f — {O}.
oX =0.
(V)X = (v¥).

(Y, Z)% = (yX, zX).
(Y — )X =Y — ZX.
(%) = 1)~
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