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Summary. Some notions connected with metric spaces and the
relationship between metric spaces and topological spaces. Compactness
of topological spaces is transferred for the case of metric spaces [13]. Some
basic theorems about translations of topological notions for metric spaces

are proved. One-dimensional topological space � 1 is introduced, too.

MML Identifier: TOPMETR.

The papers [21], [11], [1], [22], [20], [4], [5], [6], [12], [10], [3], [14], [16], [23], [9],
[7], [2], [15], [18], [17], [19], and [8] provide the notation and terminology for this
paper. For simplicity we follow a convention: a, b, r will denote real numbers,
n will denote a natural number, T will denote a topological space, and F will
denote a family of subsets of T . One can prove the following proposition

(1) F is a cover of T if and only if the carrier of T ⊆
⋃

F .

In the sequel A will be a subspace of T . Next we state three propositions:

(2) For every point p of A holds p is a point of T .

(3) If T is a T2 space, then A is a T2 space.

(4) For all subspaces A, B of T such that the carrier of A ⊆ the carrier of
B holds A is a subspace of B.

In the sequel P , Q denote subsets of T and p denotes a point of T . We now
state several propositions:

(5) If P 6= ∅T , then T � P is a subspace of T � P ∪Q qua a subset of T but
if Q 6= ∅T , then T � Q is a subspace of T � P ∪ Q qua a subset of T .

(6) If P 6= ∅ and p ∈ P , then for every neighborhood Q of p and for every
point p′ of T � P and for every subset Q′ of T � P such that Q′ = Q ∩ P

and p′ = p holds Q′ is a neighborhood of p′.

1The article was written during my work at Shinshu University, 1991.
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(7) For all topological spaces A, B, C and for every map f from A into C

such that f is continuous and C is a subspace of B for every map h from
A into B such that h = f holds h is continuous.

(8) For all topological spaces A, B and for every map f from A into B

and for every subspace C of B such that f is continuous and rng f ⊆ the
carrier of C for every map h from A into C such that h = f holds h is
continuous.

(9) For all topological spaces A, B and for every map f from A into B and
for every subset C of B such that f is continuous and rng f ⊆ C and
C 6= ∅ for every map h from A into B � C such that h = f holds h is
continuous.

(10) For all topological spaces T , S and for every map f from T into S such
that f is continuous for every subset P of T and for every map h from
T � P into S such that P 6= ∅T and h = f � P holds h is continuous.

In the sequel M will denote a metric space and p will denote a point of M .
One can prove the following proposition

(11) If r > 0, then p ∈ Ball(p, r).

We now define two new modes. Let us consider M . A subset of M is sets of
points of M .

A family of subsets of M is a family of subsets of the carrier of M .

Let us consider M . A metric space is said to be a subspace of M if:

(Def.1) the carrier of it ⊆ the carrier of M and for all points x, y of it holds
(the distance of it)(x, y) = (the distance of M)(x, y).

In the sequel A will be a subspace of M . One can prove the following propo-
sitions:

(12) For every point p of A holds p is a point of M .

(13) For every point x of M and for every point x′ of A such that x = x′

holds Ball(x′, r) = Ball(x, r)∩ the carrier of A.

Let M be a metric space, and let A be a non-empty subset of M . The functor
M � A yielding a subspace of M is defined as follows:

(Def.2) the carrier of M � A = A.

Let us consider a, b. Let us assume that a ≤ b. The functor [a, b]M yields a
subspace of the metric space of real numbers and is defined by:

(Def.3) for every non-empty subset P of the metric space of real numbers such
that P = [a, b] holds [a, b]M = (the metric space of real numbers) � P .

We now state the proposition

(14) If a ≤ b, then the carrier of [a, b]M = [a, b].

In the sequel F , G will be families of subsets of M . We now define two new
predicates. Let us consider M , F . We say that F is a family of balls if and only
if:
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(Def.4) for an arbitrary P such that P ∈ F there exist p, r such that P =
Ball(p, r).

We say that F is a cover of M if and only if:

(Def.5) the carrier of M ⊆
⋃

F .

The following propositions are true:

(15) For all points p, q of the metric space of real numbers and for all real
numbers x, y such that x = p and y = q holds ρ(p, q) = |x − y|.

(16) The carrier of M = the carrier of Mtop and the topology of Mtop = the
open set family of M .

(17) For every family F of subsets of M holds F is a family of subsets of
Mtop.

(18) For every family F of subsets of Mtop holds F is a family of subsets of
M .

(19) Atop is a subspace of Mtop.

(20) For every subset P of En

T and for every non-empty subset Q of En such
that P = Q holds (En

T) � P = (En � Q)top.

(21) For every subset P of Mtop such that P = Ball(p, r) holds P is open.

(22) For every subset P of Mtop holds P is open if and only if for every point
p of M such that p ∈ P there exists r such that r > 0 and Ball(p, r) ⊆ P .

Let us consider M . We say that M is compact if and only if:

(Def.6) Mtop is compact.

We now state the proposition

(23) M is compact if and only if for every F such that F is a family of balls
and F is a cover of M there exists G such that G ⊆ F and G is a cover
of M and G is finite.

The topological space � 1 is defined as follows:

(Def.7) � 1 = (the metric space of real numbers)top.

One can prove the following proposition

(24) The carrier of � 1 = � .

Let us consider a, b. Let us assume that a ≤ b. The functor [a, b]T yields a
subspace of � 1 and is defined by:

(Def.8) [a, b]T = ([a, b]M)top.

We now state three propositions:

(25) If a ≤ b, then the carrier of [a, b]T = [a, b].

(26) If a ≤ b, then for every subset P of � 1 such that P = [a, b] holds
[a, b]T = � 1 � P .

(27) [0, 1]T = � .
Let us note that it makes sense to consider the following constant. Then � is

a subspace of � 1 .

The following proposition is true



610 agata darmochwa l and yatsuka nakamura

(28) For every map f from � 1 into � 1 such that there exist real numbers
a, b such that for every real number x holds f(x) = a · x + b holds f is
continuous.
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