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Summary. Some facts concerning matrices with dimention 2 x 2
are shown. Upper and lower triangular matrices, and operation of deleting
rows and columns in a matrix are introduced. Besides, we deal with sets
of permutations and the fact that all permutations of finite set constitute
a finite group is proved. Some proofs are based on [11] and [14].

MML Identifier: MATRIX_2.

The articles [17], [7], [8], [3], [15], [2], [1], [19], [18], [21], [20], [4], [13], [16], [9],
[6], [12], [10], and [5] provide the notation and terminology for this paper.

1. SOME EXAMPLES OF MATRICES

For simplicity we follow a convention: x, x1, T2, y1, yo are arbitrary, ¢, j, k, n, m
are natural numbers, D is a non-empty set, K is a field, s is a finite sequence,
and a, b, ¢, d are elements of D. The scheme SeqDFEz concerns a non-empty set
A, a natural number B, and a binary predicate P, and states that:

there exists a finite sequence p of elements of A such that dom p = Seg B and
for every k such that k € Seg B holds Pk, p(k)]
provided the following requirement is met:

e for every k such that k € Seg BB there exists an element x of A such

that Pk, z].
Let us consider D, a, b. Then (a,b) is a finite sequence of elements of D.

nxm
a ... a

Let us consider n, m, and let a be arbitrary. The functor

yielding a tabular finite sequence is defined as follows:
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nxXm
a ... a
(Def.1) Do, =nr— (m—a).
a ... a
d d nxm
Let us consider D, n, m, d. Then | @ -. is a matrix over D of
d . d
dimension n x m.
Next we state the proposition
nxXm
a ... a
(1) If (i, j) € the indicesof | @ . , then
a ... a
nxXm
a ... a
(& )i = a
a ... a

In the sequel a/, V' are elements of the carrier of K. Next we state the
proposition
d ..od\"" vy J+V . od+u N\
@ | o o o
a ... d oo a+bv ... d+V
Let a, b, ¢, d be arbitrary. The functor ( Z Z ) yielding a tabular finite
sequence is defined as follows:

Det2) (&0 ) =l (o))

The following two propositions are true:

(3) Ien( T ) = 2 and Width( T ) = 2 and the indices of

Yy Y2 yr Y2
Tr1 T2
= [ Seg?2, Seg2].
(22 ) —FSeq2, Seg2;

(4) (1, 1) € the indices of < 51 52 ) and (1, 2) € the indices of
1 Y2
()
Y1 Y2
and (2, 1) € the indices of (
()
oy )
Let us consider D, and let a be an element of D. Then (a) is an element of
Dt

I

2 ) and (2, 2) € the indices of
Y1 Y2
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Let us consider D, and let us consider n, and let p be an element of D".
Then (p) is a matrix over D of dimension 1 X n.

One can prove the following proposition
(5) (1, 1) € the indices of ((a)) and ((a))1,1 = a.

Let us consider D, and let a, b, ¢, d be elements of D. Then ( (CI Z ) is a

matrix over D of dimension 2.
Next we state the proposition

b a b a b
(6) <a ) :aand< > :band< ) = c and
c d 11 c d 1.2 c d 91

a b) y
=d.
(c d 22

Let us consider n, and let K be a field. A matrix over K of dimension n is
said to be an upper triangular matrix over K of dimension n if:

(Def.3)  for all 4, j such that (i, j) € the indices of it holds if ¢ > j, then
it@j = 0.
Let us consider n, K. A matrix over K of dimension n is said to be a lower
triangular matrix over K of dimension n if:
(Def.4)  for all i, j such that (i, j) € the indices of it holds if ¢ < j, then
itiJ’ = 0.
The following proposition is true

(7)  For every matrix M over D such that len M = n holds M is a matrix
over D of dimension n x width M.

2. DELETING OF ROWS AND COLUMNS IN A MATRIX

Let us consider 4, and let p be a finite sequence. Let us assume that ¢ € dom p.
The functor p;; yielding a finite sequence is defined by:
(Det.5)  pyi =p-Sgm(Seglenp\ {i}).
We now state three propositions:
(8)  For every finite sequence p such that len p > 0 and for every i such that
i € domp there exists m such that lenp =m + 1 and len(p};) = m.
(9)  For every finite sequence p of elements of D and for every ¢ such that
i € dom p holds py; is a finite sequence of elements of D.
(10)  For every matrix M over K of dimension n x m and for every k such
that k& € Segn holds M (k) = Line(M, k).
Let us consider ¢, and let us consider K, and let M be a matrix over K.
Let us assume that ¢ € Segwidth M. The deleting of i-column in M yielding a
matrix over K is defined as follows:
(Def.6)  len(the deleting of i-column in M) = len M and for every k such that
k € Seglen M holds (the deleting of i-column in M)(k) = Line(M, k) ;.

713



714 KATARZYNA JANKOWSKA

The following propositions are true:
(11)  For all matrices My, My over D holds M; = M if and only if M;T =
My" and len M, = len Mo.
(12)  For every matrix M over D such that width M > 0 holds len(MT) =
width M and width(M ™) = len M.
(13)  For all matrices My, My over D such that width M; > 0 and width My >
0 holds M, = M, if and only if M;T = M," and
width(M;T) = width(M,"1).
(14)  For all matrices My, My over D such that width M; > 0 and width My >
0 holds M; = My if and only if M, T = Myt and width My = width My.
(15)  For every matrix M over D such that len M > 0 and width M > 0 holds
(MTT = M.
(16)  For every matrix M over D and for every i such that i € Seglen M
holds Line(M,i) = (M™1)q,;.
(17)  For every matrix M over D and for every j such that j € Segwidth M
holds Line(M™, ) = Mp ;.
(18)  For every matrix M over D and for every ¢ such that ¢ € Seglen M
holds M (i) = Line(M,1).
Let us consider ¢, and let us consider K, and let M be a matrix over K. Let
us assume that ¢ € Seglen M and width M > 0. The deleting of i-row in M
yields a matrix over K and is defined by:
(Def.7) (i)  the deleting of i-row in M =¢ if len M =1,
(i)  width(the deleting of i-row in M) = width M and for every k such
that £ € Segwidth M holds (the deleting of i-row in M)ny = (Mpk)yi,
otherwise.

Let us consider i, j, and let us consider n, and let us consider K, and let M
be a matrix over K of dimension n. The deleting of i-row and j-column in M
yields a matrix over K and is defined as follows:
(Def.8) (i)  the deleting of i-row and j-column in M = ¢ if n =1,
(ii)  the deleting of i-row and j-column in M = the deleting of j-column in
the deleting of i-row in M, otherwise.

3. SETS OF PERMUTATIONS

Let us consider n, and let ¢, p be permutations of Segn. Then p - ¢ is a
permutation of Segn.

A set is permutational if:

(Detf.9)  there exists n such that for every x such that = € it holds z is a per-
mutation of Segn.

Let P be a permutational non-empty set. The functor len P yielding a natural
number is defined as follows:
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(Def.10)  there exists s such that s € P and len P = len s.
Let P be a permutational non-empty set. We see that the element of P is a
permutation of Seglen P.
One can prove the following proposition
(19)  For every n there exists a permutational non-empty set P such that
len P = n.
Let us consider n. The permutations of n-element set constitute a permuta-
tional non-empty set defined as follows:

(Def.11)  x € the permutations of n-element set if and only if x is a permutation
of Segn.
The following propositions are true:
(20)  len(the permutations of n-element set) = n.
(21)  The permutations of 1-element set = {id; }.

Let us consider n, and let p be an element of the permutations of n-element
set. The functor len p yields a natural number and is defined as follows:

(Def.12)  there exists a finite sequence s such that s = p and lenp = len s.

We now state the proposition
(22)  For every element p of the permutations of n-element set holds len p = n.

4. GROUP OF PERMUTATIONS

In the sequel p, ¢ denote elements of the permutations of n-element set. Let us
consider n. The functor A, yielding a strict half group structure is defined by:

(Def.13)  the carrier of A,, = the permutations of n-element set and for all ele-
ments ¢, p of the permutations of n-element set holds (the operation of

An)(a,p)=p-q
One can prove the following propositions:
id,, is an element of A,,.

[
=~

)

) p-id, =pandid, -p=np.

) p-pl=id, and p~!-p=id,.
)

)

p~! is an element of A,,.

~ ~ —~ —~
[N}
ot

p is an element of A,, if and only if p is an element of the permutations
of n-element set.
Let us consider n. A permutation of n element set is an element of the
permutations of n-element set.
Then A, is a strict group.
We now state the proposition
(28) id, =14,.
Let us consider n, and let p be a permutation of Segn. We say that p is a
transposition if and only if:
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(Def.14)  there exist i, j such that ¢ € domp and j € domp and i # j and p(i) = j
and p(j) = i and for every k such that k # i and k # j and k € domp
holds p(k) = k.

We now define two new predicates. Let us consider n, and let p be a permu-
tation of Segn. We say that p is even if and only if:

(Def.15)  there exists a finite sequence [ of elements of the carrier of A,, such that
lenl mod 2 = 0 and p = ]! and for every i such that ¢ € dom! there
exists ¢ such that (i) = ¢ and ¢ is a transposition.

p is odd stands for p is not even.
We now state the proposition
(29)  idgegn is even.
Let us consider K, n, and let x be an element of the carrier of K, and let

p be an element of the permutations of n-element set. The functor (—1)%"®)z
yields an element of the carrier of K and is defined by:

Def.16) (i —1)82P)g = 2 if p is even
( ) (1) (1) p :
(i) (—1)*®*®)z = —z, otherwise.

Let X be a set. Let us assume that X is finite. The functor Qg( yields an
element of Fin X and is defined as follows:

(Def.17)  Qf = X.
We now state the proposition
(30)  The permutations of n-element set is finite.
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