Sequences in Metric Spaces

Stanisława Kanas Adam Lecko Technical University of Rzeszów Technical University of Rzeszów

Summary. Sequences in metric spaces are defined. The article contains definitions of bounded, convergent, Cauchy sequences. The subsequences are introduced too. Some theorems concerning sequences are proved.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{METRIC_6}.$

The terminology and notation used in this paper have been introduced in the following articles: [11], [14], [4], [5], [3], [6], [13], [12], [7], [10], [8], [9], [1], and [2]. For simplicity we follow a convention: X will be a metric space, x, y, z will be elements of the carrier of X, V will be a subset of the carrier of X, A will be a non-empty set, a will be an element of A, G will be a function from [A, A] into \mathbb{R} , k, n, m will be natural numbers, and r will be a real number. The following propositions are true:

(1) $|\rho(x,z) - \rho(y,z)| \le \rho(x,y).$

(2) If G is a metric of A, then for all elements a, b of A holds $0 \le G(a, b)$.

Let us consider A, G. We say that G is not a pseudo metric if and only if:

(Def.1) for all elements a, b of A holds G(a, b) = 0 if and only if a = b.

Let us consider A, G. We say that G is symmetric if and only if:

(Def.2) for all elements a, b of A holds G(a, b) = G(b, a).

Let us consider A, G. We say that G satisfies triangle inequality if and only if:

(Def.3) for all elements a, b, c of A holds $G(a, c) \leq G(a, b) + G(b, c)$.

Next we state three propositions:

- (3) G is a metric of A if and only if G is not a pseudo metric and G is symmetric and G satisfies triangle inequality.
- (4) For every strict metric space X holds the distance of X is not a pseudo metric and the distance of X is symmetric and the distance of X satisfies triangle inequality.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 (5) G is a metric of A if and only if G is not a pseudo metric and for all elements a, b, c of A holds $G(b, c) \leq G(a, b) + G(a, c)$.

Let us consider A, G. Let us assume that G is a metric of A. The functor \widetilde{G}_A yielding a function from [A, A] into \mathbb{R} is defined as follows:

(Def.4) for all elements
$$a, b$$
 of A holds $\widetilde{G}_A(a, b) = \frac{G(a, b)}{1+G(a, b)}$.

The following proposition is true

- (6) If G is a metric of A, then \tilde{G}_A is a metric of A.
- Let X be a metric space. A sequence of elements of X is defined by:

(Def.5) it is a function from \mathbb{N} into the carrier of X.

Let X be a metric space. We see that the sequence of elements of X is a function from \mathbb{N} into the carrier of X.

Next we state the proposition

(7) For every function F from \mathbb{N} into the carrier of X holds F is a sequence of elements of X.

We follow the rules: S, S_1, T denote sequences of elements of X, N_1 denotes an increasing sequence of naturals, and F denotes a function from \mathbb{N} into the carrier of X. The following propositions are true:

- (8) F is a sequence of elements of X if and only if for every a such that $a \in \mathbb{N}$ holds F(a) is an element of the carrier of X.
- (9) For all S, T such that for every n holds S(n) = T(n) holds S = T.
- (10) For every x there exists S such that $\operatorname{rng} S = \{x\}$.
- (11) If there exists x such that for every n holds S(n) = x, then there exists x such that rng $S = \{x\}$.

Let us consider X, S. We say that S is constant if and only if:

(Def.6) there exists x such that for every n holds S(n) = x.

The following proposition is true

(13)¹ S is constant if and only if there exists x such that $\operatorname{rng} S = \{x\}$.

Let us consider X, S. We say that S is convergent if and only if:

(Def.7) there exists x such that for every r such that 0 < r there exists m such that for every n such that $m \le n$ holds $\rho(S(n), x) < r$.

Let us consider X, S, x. We say that S is convergent to x if and only if:

(Def.8) for every r such that 0 < r there exists m such that for every n such that $m \le n$ holds $\rho(S(n), x) < r$.

Let us consider X, S. We say that S satisfies the Cauchy condition if and only if:

(Def.9) for every r such that 0 < r there exists m such that for all n, k such that $m \le n$ and $m \le k$ holds $\rho(S(n), S(k)) < r$.

Let us consider X, V. We say that V is bounded if and only if:

¹The proposition (12) has been removed.

(Def.10) there exist r, x such that 0 < r and $V \subseteq Ball(x, r)$.

Let us consider X, S. We say that S is bounded if and only if:

(Def.11) there exist r, x such that 0 < r and $\operatorname{rng} S \subseteq \operatorname{Ball}(x, r)$.

Let us consider X, V, S. We say that V contains almost all sequence S if and only if:

(Def.12) there exists m such that for every n such that $m \le n$ holds $S(n) \in V$.

Let us consider X, s_1 , s_2 . We say that s_1 is a subsequence of s_2 if and only if:

(Def.13) there exists N_1 such that $s_1 = s_2 \cdot N_1$.

Next we state the proposition

 $(16)^2$ S is convergent to x if and only if for every r such that 0 < r there exists m such that for every n such that $m \le n$ holds $\rho(S(n), x) < r$.

We now state three propositions:

- $(20)^3$ S is bounded if and only if there exist r, x such that 0 < r and for every n holds $S(n) \in Ball(x, r)$.
- (21) If S is convergent to x, then S is convergent.
- (22) If S is convergent, then there exists x such that S is convergent to x.

Let us consider X, S, x. The functor $\rho(S, x)$ yields a sequence of real numbers and is defined as follows:

(Def.14) for every n holds $(\rho(S, x))(n) = \rho(S(n), x)$.

Next we state the proposition

(23) $\rho(S, x)$ is a sequence of real numbers if and only if for every n holds $(\rho(S, x))(n) = \rho(S(n), x).$

Let us consider X, S, T. The functor $\rho(S,T)$ yields a sequence of real numbers and is defined by:

(Def.15) for every n holds $(\rho(S,T))(n) = \rho(S(n),T(n))$.

Next we state the proposition

(24) $\rho(S,T)$ is a sequence of real numbers if and only if for every n holds $(\rho(S,T))(n) = \rho(S(n),T(n)).$

Let us consider X, S. Let us assume that S is convergent. The functor $\lim S$ yields an element of the carrier of X and is defined as follows:

(Def.16) for every r such that 0 < r there exists m such that for every n such that $m \le n$ holds $\rho(S(n), \lim S) < r$.

One can prove the following propositions:

(25) If S is convergent, then $\lim S = x$ if and only if for every r such that 0 < r there exists m such that for every n such that $m \le n$ holds $\rho(S(n), x) < r$.

²The propositions (14) and (15) have been removed.

³The propositions (17)–(19) have been removed.

- (26) If S is convergent to x, then $\lim S = x$.
- (27) S is convergent to x if and only if S is convergent and $\lim S = x$.
- (28) If S is convergent, then there exists x such that S is convergent to x and $\lim S = x$.
- (29) S is convergent to x if and only if $\rho(S, x)$ is convergent and $\lim \rho(S, x) = 0$.
- (30) If S is convergent to x, then for every r such that 0 < r holds Ball(x, r) contains almost all sequence S.
- (31) If for every r such that 0 < r holds Ball(x, r) contains almost all sequence S, then for every V such that $x \in V$ and $V \in$ the open set family of X holds V contains almost all sequence S.
- (32) If for every V such that $x \in V$ and $V \in$ the open set family of X holds V contains almost all sequence S, then S is convergent to x.
- (33) S is convergent to x if and only if for every r such that 0 < r holds Ball(x, r) contains almost all sequence S.
- (34) S is convergent to x if and only if for every V such that $x \in V$ and $V \in$ the open set family of X holds V contains almost all sequence S.
- (35) For every r such that 0 < r holds $\operatorname{Ball}(x, r)$ contains almost all sequence S if and only if for every V such that $x \in V$ and $V \in$ the open set family of X holds V contains almost all sequence S.
- (36) If S is convergent and T is convergent, then $\rho(\lim S, \lim T) = \lim \rho(S, T)$.
- (37) If S is convergent to x and S is convergent to y, then x = y.
- (38) If S is constant, then S is convergent.
- (39) If S is convergent to x and S_1 is a subsequence of S, then S_1 is convergent to x.
- (40) If S satisfies the Cauchy condition and S_1 is a subsequence of S, then S_1 satisfies the Cauchy condition.
- (41) If S is convergent, then S satisfies the Cauchy condition.
- (42) If S is constant, then S satisfies the Cauchy condition.
- (43) If S is convergent, then S is bounded.
- (44) If S satisfies the Cauchy condition, then S is bounded.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.

- [7] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [8] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [11] Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [12] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115–122, 1990.
- [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [14] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received December 12, 1991