Category of Left Modules

Michał Muzalewski Warsaw University Białystok

Summary. We define the category of left modules over an associative ring. The carriers of the modules are included in a universum. The universum is a parameter of the category.

MML Identifier: MODCAT_1.

The papers [12], [1], [2], [4], [5], [7], [3], [11], [10], [9], [6], and [8] provide the terminology and notation for this paper. For simplicity we adopt the following convention: x, y are arbitrary, D is a non-empty set, U_1 is a universal class, R is an associative ring, and G, H are left modules over R. Let us consider R. A non-empty set is said to be a non-empty set of left-modules of R if:

(Def.1) for every element x of it holds x is a strict left module over R.

In the sequel V is a non-empty set of left-modules of R. Let us consider R, V. We see that the element of V is a left module over R.

We now state two propositions:

- (1) For every left module morphism f of R and for every element x of $\{f\}$ holds x is a left module morphism of R.
- (2) For every strict morphism f from G to H and for every element x of $\{f\}$ holds x is a strict morphism from G to H.

Let us consider R. A non-empty set is said to be a non-empty set of morphisms of left-modules of R if:

(Def.2) for every element x of it holds x is a strict left module morphism of R.

Let us consider R, and let M be a non-empty set of morphisms of left-modules of R. We see that the element of M is a left module morphism of R.

Next we state the proposition

(3) For every strict left module morphism f of R holds $\{f\}$ is a non-empty set of morphisms of left-modules of R.

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 Let us consider R, G, H. A non-empty set of morphisms of left-modules of R is called a non-empty set of morphisms of left-modules from G into H if:

(Def.3) for every element x of it holds x is a strict morphism from G to H.

The following two propositions are true:

- (4) D is a non-empty set of morphisms of left-modules from G into H if and only if for every element x of D holds x is a strict morphism from G to H.
- (5) For every strict morphism f from G to H holds $\{f\}$ is a non-empty set of morphisms of left-modules from G into H.

Let us consider R, G, H. The functor Morphs(G, H) yields a non-empty set of morphisms of left-modules from G into H and is defined as follows:

(Def.4) $x \in Morphs(G, H)$ if and only if x is a strict morphism from G to H.

Let us consider R, G, H, and let M be a non-empty set of morphisms of left-modules from G into H. We see that the element of M is a morphism from G to H.

Let us consider x, y, R. The predicate $P_{ob} x, y, R$ is defined by:

(Def.5) there exist arbitrary x_1 , x_2 such that $x = \langle x_1, x_2 \rangle$ and there exists a strict left module G over R such that y = G and $x_1 =$ the carrier of G and $x_2 =$ the left multiplication of G.

One can prove the following propositions:

- (6) For arbitrary x, y_1, y_2 such that $P_{ob} x, y_1, R$ and $P_{ob} x, y_2, R$ holds $y_1 = y_2$.
- (7) For every U_1 there exists x such that $x \in \{\langle G, f \rangle\}$, where G ranges over elements of GroupObj (U_1) , and f ranges over elements of $\{\emptyset\}^{[\text{the carrier of } R, \{\emptyset\}]}$ and $P_{ob} x, {}_{R}\Theta, R$.

 $\begin{array}{c} \text{cond} \mathbf{I}_{00} & \mathbf{w}, \mathbf{h}^{\mathsf{O}}, \mathbf{H}^{\mathsf{O}}, \mathbf{H}^{\mathsf{O}} \\ \text{cond} & \mathbf{I}_{00} & \mathbf{h}^{\mathsf{O}}, \mathbf{H}^{\mathsf{O}}, \mathbf{H}^{\mathsf{O}} \end{array}$

Let us consider U_1 , R. The functor $LModObj(U_1, R)$ yielding a non-empty set is defined as follows:

(Def.6) for every y holds $y \in \text{LModObj}(U_1, R)$ if and only if there exists x such that $x \in \{\langle G, f \rangle\}$, where G ranges over elements of GroupObj (U_1) , and f ranges over elements of $\{\emptyset\}^{[\text{the carrier of } R, \{\emptyset\}]}$ and $P_{\text{ob}} x, y, R$.

One can prove the following two propositions:

- (8) $_{R}\Theta \in \mathrm{LModObj}(U_{1}, R).$
- (9) For every element x of $LModObj(U_1, R)$ holds x is a strict left module over R.

Let us consider U_1 , R. Then $LModObj(U_1, R)$ is a non-empty set of leftmodules of R.

Let us consider R, V. The functor Morphs V yields a non-empty set of morphisms of left-modules of R and is defined as follows:

(Def.7) for every x holds $x \in Morphs V$ if and only if there exist strict elements G, H of V such that x is a strict morphism from G to H.

We now define two new functors. Let us consider R, V, and let F be an element of Morphs V. The functor dom' F yields an element of V and is defined as follows:

(Def.8) $\operatorname{dom}' F = \operatorname{dom} F.$

The functor $\operatorname{cod}' F$ yields an element of V and is defined by:

(Def.9) $\operatorname{cod}' F = \operatorname{cod} F.$

Let us consider R, V, and let G be an element of V. The functor I_G yielding a strict element of Morphs V is defined as follows:

(Def.10) $I_G = I_G$.

We now define three new functors. Let us consider R, V. The functor dom V yields a function from Morphs V into V and is defined by:

(Def.11) for every element f of Morphs V holds $(\operatorname{dom} V)(f) = \operatorname{dom}' f$.

The functor $\operatorname{cod} V$ yields a function from Morphs V into V and is defined as follows:

(Def.12) for every element f of Morphs V holds $(\operatorname{cod} V)(f) = \operatorname{cod}' f$.

The functor I_V yields a function from V into Morphs V and is defined by:

(Def.13) for every element G of V holds $I_V(G) = I_G$.

One can prove the following three propositions:

- (10) For all elements g, f of Morphs V such that dom' $g = \operatorname{cod'} f$ there exist strict elements G_1 , G_2 , G_3 of V such that g is a morphism from G_2 to G_3 and f is a morphism from G_1 to G_2 .
- (11) For all elements g, f of Morphs V such that dom' $g = \operatorname{cod'} f$ holds $g \cdot f \in \operatorname{Morphs} V$.
- (12) For all elements g, f of Morphs V such that dom $g = \operatorname{cod} f$ holds $g \cdot f \in \operatorname{Morphs} V$.

Let us consider R, V. The functor comp V yields a partial function from [Morphs V, Morphs V] to Morphs V and is defined by:

(Def.14) for all elements g, f of Morphs V holds $\langle g, f \rangle \in \text{dom comp } V$ if and only if dom' g = cod' f and for all elements g, f of Morphs V such that $\langle g, f \rangle \in \text{dom comp } V$ holds $(\text{comp } V)(\langle g, f \rangle) = g \cdot f$.

The following proposition is true

(13) For all elements g, f of Morphs V holds $\langle g, f \rangle \in \operatorname{dom} \operatorname{comp} V$ if and only if dom $g = \operatorname{cod} f$.

Let us consider U_1 , R. The functor $LModCat(U_1, R)$ yields a strict category structure and is defined by:

 $\begin{array}{ll} (\mathrm{Def.15}) & \mathrm{LModCat}(U_1,R) = \langle \mathrm{LModObj}(U_1,R), \mathrm{Morphs}\,\mathrm{LModObj}(U_1,R), \mathrm{dom}\,\mathrm{LModObj}(U_1,R), \\ & \mathrm{cod}\,\mathrm{LModObj}(U_1,R), \mathrm{comp}\,\mathrm{LModObj}(U_1,R), \mathrm{I}_{\mathrm{LModObj}(U_1,R)} \rangle. \end{array}$

One can prove the following propositions:

(14) For all morphisms f, g of $\operatorname{LModCat}(U_1, R)$ holds $\langle g, f \rangle \in \operatorname{dom}(\operatorname{the composition of }\operatorname{LModCat}(U_1, R))$ if and only if $\operatorname{dom} g = \operatorname{cod} f$.

- (15) Let f be a morphism of $\operatorname{LModCat}(U_1, R)$. Then for every element f' of Morphs $\operatorname{LModObj}(U_1, R)$ and for every object b of $\operatorname{LModCat}(U_1, R)$ and for every element b' of $\operatorname{LModObj}(U_1, R)$ holds f is a strict element of Morphs $\operatorname{LModObj}(U_1, R)$ and f' is a morphism of $\operatorname{LModCat}(U_1, R)$ and b is a strict element of $\operatorname{LModObj}(U_1, R)$ and b' is an object of $\operatorname{LModCat}(U_1, R)$.
- (16) For every object b of $LModCat(U_1, R)$ and for every element b' of $LModObj(U_1, R)$ such that b = b' holds $id_b = I_{b'}$.
- (17) For every morphism f of $LModCat(U_1, R)$ and for every element f' of Morphs $LModObj(U_1, R)$ such that f = f' holds dom f = dom f' and cod f = cod f'.
- (18) Let f, g be morphisms of $LModCat(U_1, R)$. Let f', g' be elements of Morphs $LModObj(U_1, R)$. Suppose f = f' and g = g'. Then
 - (i) dom $g = \operatorname{cod} f$ if and only if dom $g' = \operatorname{cod} f'$,
 - (ii) dom $g = \operatorname{cod} f$ if and only if $\langle g', f' \rangle \in \operatorname{dom} \operatorname{comp} \operatorname{LModObj}(U_1, R)$,
 - (iii) if dom $g = \operatorname{cod} f$, then $g \cdot f = g' \cdot f'$,
 - (iv) $\operatorname{dom} f = \operatorname{dom} g$ if and only if $\operatorname{dom} f' = \operatorname{dom} g'$,
 - (v) $\operatorname{cod} f = \operatorname{cod} g$ if and only if $\operatorname{cod} f' = \operatorname{cod} g'$.

Let us consider U_1 , R. Then $LModCat(U_1, R)$ is a strict category.

References

- [1] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [3] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
- [4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [6] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
- Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [8] Michał Muzalewski. Rings and modules part II. Formalized Mathematics, 2(4):579– 585, 1991.
- Michał Muzalewski and Wojciech Skaba. N-tuples and Cartesian products for n=5. Formalized Mathematics, 2(2):255-258, 1991.
- [10] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595–600, 1990.
- [11] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

Received December 12, 1991