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Summary. The notions of arc and line segment are introduced in
two-dimensional topological real space £%. Some basic theorems for these
notions are proved. Using line segments, the notion of special polygonal
arc is defined. It has been shown that any special polygonal arc is home-
omorphic to unit interval 1. The notion of unit square Dggr has been also

introduced and some facts about it have been proved.

MML Identifier: TOPREAL1.

The articles [22], [21], [13], [1], [24], [20], [6], [7], [18], [4], [8], [15], [23], [17],
[25], [11], [16], [9], [19], [2], [5], [14], [3], [10], and [12] provide the notation and
terminology for this paper. In the sequel [; will denote a real number and i, 7,
n will denote natural numbers. The scheme Fraenkel_Alt concerns a non-empty
set A, and two unary predicates P and Q, and states that:

{v:Plv] vV O]} = {v1 : Plu1]} U{ve : Qlua]}, where vy ranges over elements
of A, and vy ranges over elements of A, and v ranges over elements of A
for all values of the parameters.

In the sequel dy, ds, d3 will be arbitrary. We now state the proposition

(2)2 (dy,ds,ds) is one-to-one if and only if dy # ds and do # d3 and d; # ds.

In the sequel D denotes a non-empty set and p denotes a finite sequence

of elements of D. Let us consider D, p, n. The functor p | n yielding a finite
sequence of elements of D is defined by:

(Def.1) pln=p]| Segn.

One can prove the following proposition

IThe article was written during my work at Shinshu University, 1991.
2The proposition (1) has been removed.
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(3) Ifn<lenp, then len(p | n) = n.

Let us consider T'. A finite sequence of elements of T is a finite sequence of
elements of the carrier of T'.

We adopt the following convention: p, p1, p2, ¢, q1, g2 Will be points of £2
and P, Q, P1, P, will be subsets of 6'%. Let us consider p1, p2, P. We say that
P is an arc from p; to ps if and only if:

(Def.2) P # () and there exists a map f from [ into (£2) | P such that f is a
homeomorphism and f(0) = p; and f(1) = po.
One can prove the following two propositions:
(4) If Pis an arc from p; to pe, then p; € P and py € P.

(5) If P is an arc from p; to pe and @ is an arc from ps to ¢g; and PNQ =
{p2}, then P U Q is an arc from p; to ¢j.

The subset Og2 of £2 is defined by the condition (Def.3).
(Def.3) Og2={p:p1=0Apa <1Ap2 >0V p1 <1Ap1 >0Apa =1V p1 <
LApr >20Ap2=0V py =1Apa <1Ap2 >0}

Let us consider pi, p. The functor L£(p1, p2) yielding a non-empty subset of
E2 is defined as follows:

(Def4)  L(p1,p2) ={p: V[0S AL <TAp=(1—11)-p1+11-pa]}.

Next we state a number of propositions:

(6) p1 € L(p1,p2) and ps € L(p1,p2)-
(1) Lp,p) = {pr}
(8)  L(p1,p2) = L(p2,11)-
(9)  If p1g < poy and p € L(p1,p2), then p1y < py and p1 < poy.
(10) If p1g < pa2g and p € L(p1,p2), then p1o < po and p2 < pos.
(11)  If p € L(p1,p2), then L(p1,p2) = L(p1,p) U L(p, p2)-
(12) If g1 € L(p1,p2) and g2 € L(p1,p2), then L(q1,q2) € L(p1,p2).
(13)  If p € L(p1,p2) and q € L(p1,p2), then L(p1,p2) = L(p1,p) U L(p,q) U

E(Q7p2)

(14)  If p € L(p1,p2), then L(p1,p) N L(p,p2) = {p}-

(15)  If py # po, then L(p1,p2) is an arc from p; to po.

(16) If P is an arc from py to p2 and PN L(p2,q1) = {p2}, then PUL(p2,q1)
is an arc from p; to ¢i.

(17)  If Pis an arc from ps to p; and L(q1,p2) NP = {p2}, then L(q1,p2)UP
is an arc from ¢ to pj.

(18)  If p1 # p2 or p2 # @1 but L(p1,p2) N L(p2,q1) = {p2}, then L(p1,p2) U
L(p2,q1) is an arc from py to q.

(19) (1)  £([0,0],10,1]) = {p1 : p11 =0 Ap12 < 1A pig > 0},

(i)  £([0,1],[1,1]) = {p2 : p21 < 1 Ap21 = 0Apag =1},

(i)  £([0,0],[1,0]) ={q1 : 11 <1 Aqiy = 0Aqug =0},

(iv)  L([1,0],[1,1]) ={g2 : @21 = 1 A gag < 1 Aqag > 0}.
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(20)  Og2 = £([0,0], [0,1]) U £([0, 1], [1,1]) U (£([0, 0], [1,0]) U L([1, 0], [1, 1])).
(21)  £([0,0],[0,1]) n £([0,1], [1,1]) = {[0, 1]}.

(22)  £([0,0],[1,0]) N £([1,0], [1,1]) = {[1,0]}.

(23)  £([0,0],[0,1]) N £([0,0], [1,0]) = {[0,0]}-

(24)  £([0,1], [1,1]) n £([1,0], [1,1]) = {[1, 1]}

(25)  £([0,0],[1,0]) N L([0,1],[1,1]) = 0.

(26)  £([0,0],[0,1]) N £([1,0],[1,1]) = 0.

In the sequel f, fi, f2, h will be finite sequences of elements of £2. Let
us consider f, ¢, j. The functor L(f,1,j) yielding a subset of 5% is defined as
follows:

(Det.5) (i)  for all p1, pe such that p; = f(i) and p2 = f(j) holds L(f,i,j) =
L(p1,p2) if i € Seglen f and j € Seglen f,
(ii)  L(f,i,7) = 0, otherwise.
The following proposition is true
(27) If i € Seglen f and j € Seglen f, then f(i) € L(f,4,j) and f(j) €
L(f,i,7)-

Let us consider f. The functor E( f) yields a subset of £2 and is defined as
follows:

(Def.6)  L(f)=U{L(f,ii+1):1<iAi<lenf—1}.

One can prove the following propositions:

(28) lenf =0 or len f = 1 if and only if £(f) = 0.
(29) Iflen f > 2, then £(f) # 0.
Let us consider f. We say that f is a special sequence if and only if the
conditions (Def.7) is satisfied.
(Def.7) (i)  f is one-to-one,
(ii) len f >3,
(iii)  for every i such that 1 <iand i <len f—2holds L(f,7,i+1)NL(f,i+
Li+2) = {f(+ 1)},
(iv) foralld, j such thati—j > 1orj—i > 1holds L(f,i,i+1)NL(f, 7,5+
1) =0,

(v) ) for all i, p1, po such that 1 < i and i <lenf —1 and p; = f(i) and

p2 = f(i+ 1) holds p17 = p21 or p1g = p2a.

The following propositions are true:

(30) There exist f1, fo such that fi is a spe(nal sequence and fo is a special
sequence and Og2 = L£(f1) U L(f2) and L(f1) N L(f2) = {[0,0],[1,1]} and
f]l(l) =1[0,0] and fi(len f1) = [1,1] and f2(1) = [0,0] and fa(len f2) = [1,
1].

(31) If h is a special sequence and P = E(h), then for all py, ps such that
p1 = h(1) and py = h(len h) holds P is an arc from p; to ps.

Let us consider P. We say that P is a special polygonal arc if and only if:

(Def.8)  there exists f such that f is a special sequence and P = Z( f)-
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The following propositions are true:
(32)
(33)
(34)

If P is a special polygonal arc, then P # ().

If f is a special sequence, then EN( f) is a special polygonal arc.

There exist P;, P, such that P; is a special polygonal arc and P; is a
special polygonal arc and Og2 = Py U P» and Py N P, = {[0,0], [1,1]}.

If P is a special polygonal arc, then there exist p1, p2 such that P is an
arc from p; to ps.

If P is a special polygonal arc, then there exists a map f from [ into
(E2) | P such that f is a homeomorphism.
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