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Summary. The notions of arc and line segment are introduced in
two-dimensional topological real space E2

T. Some basic theorems for these
notions are proved. Using line segments, the notion of special polygonal
arc is defined. It has been shown that any special polygonal arc is home-
omorphic to unit interval

�
. The notion of unit square � E2

T
has been also

introduced and some facts about it have been proved.

MML Identifier: TOPREAL1.

The articles [22], [21], [13], [1], [24], [20], [6], [7], [18], [4], [8], [15], [23], [17],
[25], [11], [16], [9], [19], [2], [5], [14], [3], [10], and [12] provide the notation and
terminology for this paper. In the sequel l1 will denote a real number and i, j,
n will denote natural numbers. The scheme Fraenkel Alt concerns a non-empty
set A, and two unary predicates P and Q, and states that:

{v : P[v]∨Q[v]} = {v1 : P[v1]} ∪ {v2 : Q[v2]}, where v2 ranges over elements
of A, and v1 ranges over elements of A, and v ranges over elements of A
for all values of the parameters.

In the sequel d1, d2, d3 will be arbitrary. We now state the proposition

(2)2 〈d1, d2, d3〉 is one-to-one if and only if d1 6= d2 and d2 6= d3 and d1 6= d3.

In the sequel D denotes a non-empty set and p denotes a finite sequence
of elements of D. Let us consider D, p, n. The functor p � n yielding a finite
sequence of elements of D is defined by:

(Def.1) p � n = p � Seg n.

One can prove the following proposition

1The article was written during my work at Shinshu University, 1991.
2The proposition (1) has been removed.
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(3) If n ≤ len p, then len(p � n) = n.

Let us consider T . A finite sequence of elements of T is a finite sequence of
elements of the carrier of T .

We adopt the following convention: p, p1, p2, q, q1, q2 will be points of E2

T

and P , Q, P1, P2 will be subsets of E2

T
. Let us consider p1, p2, P . We say that

P is an arc from p1 to p2 if and only if:

(Def.2) P 6= ∅ and there exists a map f from
�
into (E 2

T
) � P such that f is a

homeomorphism and f(0) = p1 and f(1) = p2.

One can prove the following two propositions:

(4) If P is an arc from p1 to p2, then p1 ∈ P and p2 ∈ P .

(5) If P is an arc from p1 to p2 and Q is an arc from p2 to q1 and P ∩Q =
{p2}, then P ∪ Q is an arc from p1 to q1.

The subset � E2 of E2

T
is defined by the condition (Def.3).

(Def.3) � E2 = {p : p1 = 0∧p2 ≤ 1∧p2 ≥ 0 ∨ p1 ≤ 1∧p1 ≥ 0∧p2 = 1 ∨ p1 ≤
1 ∧ p1 ≥ 0 ∧ p2 = 0 ∨ p1 = 1 ∧ p2 ≤ 1 ∧ p2 ≥ 0}.

Let us consider p1, p2. The functor L(p1, p2) yielding a non-empty subset of
E2

T
is defined as follows:

(Def.4) L(p1, p2) = {p :
∨

l1
[0 ≤ l1 ∧ l1 ≤ 1 ∧ p = (1 − l1) · p1 + l1 · p2]}.

Next we state a number of propositions:

(6) p1 ∈ L(p1, p2) and p2 ∈ L(p1, p2).

(7) L(p, p) = {p}.

(8) L(p1, p2) = L(p2, p1).

(9) If p11 ≤ p21 and p ∈ L(p1, p2), then p11 ≤ p1 and p1 ≤ p21.

(10) If p12 ≤ p22 and p ∈ L(p1, p2), then p12 ≤ p2 and p2 ≤ p22.

(11) If p ∈ L(p1, p2), then L(p1, p2) = L(p1, p) ∪ L(p, p2).

(12) If q1 ∈ L(p1, p2) and q2 ∈ L(p1, p2), then L(q1, q2) ⊆ L(p1, p2).

(13) If p ∈ L(p1, p2) and q ∈ L(p1, p2), then L(p1, p2) = L(p1, p) ∪ L(p, q) ∪
L(q, p2).

(14) If p ∈ L(p1, p2), then L(p1, p) ∩ L(p, p2) = {p}.

(15) If p1 6= p2, then L(p1, p2) is an arc from p1 to p2.

(16) If P is an arc from p1 to p2 and P ∩L(p2, q1) = {p2}, then P ∪L(p2, q1)
is an arc from p1 to q1.

(17) If P is an arc from p2 to p1 and L(q1, p2)∩P = {p2}, then L(q1, p2)∪P

is an arc from q1 to p1.

(18) If p1 6= p2 or p2 6= q1 but L(p1, p2) ∩ L(p2, q1) = {p2}, then L(p1, p2) ∪
L(p2, q1) is an arc from p1 to q1.

(19) (i) L([0, 0], [0, 1]) = {p1 : p11 = 0 ∧ p12 ≤ 1 ∧ p12 ≥ 0},
(ii) L([0, 1], [1, 1]) = {p2 : p21 ≤ 1 ∧ p21 ≥ 0 ∧ p22 = 1},
(iii) L([0, 0], [1, 0]) = {q1 : q11 ≤ 1 ∧ q11 ≥ 0 ∧ q12 = 0},
(iv) L([1, 0], [1, 1]) = {q2 : q21 = 1 ∧ q22 ≤ 1 ∧ q22 ≥ 0}.
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(20) � E2 = L([0, 0], [0, 1]) ∪L([0, 1], [1, 1]) ∪ (L([0, 0], [1, 0]) ∪L([1, 0], [1, 1])).

(21) L([0, 0], [0, 1]) ∩ L([0, 1], [1, 1]) = {[0, 1]}.

(22) L([0, 0], [1, 0]) ∩ L([1, 0], [1, 1]) = {[1, 0]}.

(23) L([0, 0], [0, 1]) ∩ L([0, 0], [1, 0]) = {[0, 0]}.

(24) L([0, 1], [1, 1]) ∩ L([1, 0], [1, 1]) = {[1, 1]}.

(25) L([0, 0], [1, 0]) ∩ L([0, 1], [1, 1]) = ∅.

(26) L([0, 0], [0, 1]) ∩ L([1, 0], [1, 1]) = ∅.

In the sequel f , f1, f2, h will be finite sequences of elements of E 2

T
. Let

us consider f , i, j. The functor L(f, i, j) yielding a subset of E 2

T
is defined as

follows:

(Def.5) (i) for all p1, p2 such that p1 = f(i) and p2 = f(j) holds L(f, i, j) =
L(p1, p2) if i ∈ Seg len f and j ∈ Seg len f ,

(ii) L(f, i, j) = ∅, otherwise.

The following proposition is true

(27) If i ∈ Seg len f and j ∈ Seg len f , then f(i) ∈ L(f, i, j) and f(j) ∈
L(f, i, j).

Let us consider f . The functor L̃(f) yields a subset of E2

T
and is defined as

follows:

(Def.6) L̃(f) =
⋃
{L(f, i, i + 1) : 1 ≤ i ∧ i ≤ len f − 1}.

One can prove the following propositions:

(28) len f = 0 or len f = 1 if and only if L̃(f) = ∅.

(29) If len f ≥ 2, then L̃(f) 6= ∅.

Let us consider f . We say that f is a special sequence if and only if the
conditions (Def.7) is satisfied.

(Def.7) (i) f is one-to-one,
(ii) len f ≥ 3,
(iii) for every i such that 1 ≤ i and i ≤ len f−2 holds L(f, i, i+1)∩L(f, i+

1, i + 2) = {f(i + 1)},
(iv) for all i, j such that i−j > 1 or j− i > 1 holds L(f, i, i+1)∩L(f, j, j+

1) = ∅,
(v) for all i, p1, p2 such that 1 ≤ i and i ≤ len f − 1 and p1 = f(i) and

p2 = f(i + 1) holds p11 = p21 or p12 = p22.

The following propositions are true:

(30) There exist f1, f2 such that f1 is a special sequence and f2 is a special

sequence and � E2 = L̃(f1) ∪ L̃(f2) and L̃(f1) ∩ L̃(f2) = {[0, 0], [1, 1]} and
f1(1) = [0, 0] and f1(len f1) = [1, 1] and f2(1) = [0, 0] and f2(len f2) = [1,
1].

(31) If h is a special sequence and P = L̃(h), then for all p1, p2 such that
p1 = h(1) and p2 = h(len h) holds P is an arc from p1 to p2.

Let us consider P . We say that P is a special polygonal arc if and only if:

(Def.8) there exists f such that f is a special sequence and P = L̃(f).
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The following propositions are true:

(32) If P is a special polygonal arc, then P 6= ∅.

(33) If f is a special sequence, then L̃(f) is a special polygonal arc.

(34) There exist P1, P2 such that P1 is a special polygonal arc and P2 is a
special polygonal arc and � E2 = P1 ∪ P2 and P1 ∩ P2 = {[0, 0], [1, 1]}.

(35) If P is a special polygonal arc, then there exist p1, p2 such that P is an
arc from p1 to p2.

(36) If P is a special polygonal arc, then there exists a map f from
�
into

(E2

T
) � P such that f is a homeomorphism.
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