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Summary. Let X and Y be topological spaces and let X; and X
be subspaces of X. Let f: X; U X2 — Y be a mapping defined on the
union of X; and Xz such that the restriction mappings f|x, and f|x, are
continuous. It is well known that if X1 and X, are both open (closed)
subspaces of X, then f is continuous (see e.g. [6, p.106]).

The aim is to show, using Mizar System, the following theorem (see
Section 5): If X1 and X2 are weakly separated, then f is continuous
(compare also [15, p.358] for related results). This theorem generalizes
the preceding one because if X; and X2 are both open (closed), then
these subspaces are weakly separated (see [5]). However, the following
problem remains open.

Problem 1. Characterize the class of pairs of subspaces X; and
X of a topological space X such that (x) for any topological space
Y and for any mapping f : X1 U X2 — Y, f is continuous if the
restrictions f|x, and f|x, are continuous.

In some special case we have the following characterization: X; and X»
are separated iff X1 misses X2 and the condition (x) is fulfilled. In con-
nection with this fact we hope that the following specification of the
preceding problem has an affirmative answer.

Problem 2. Suppose the condition (x) is fulfilled. Must X: and
X2 be weakly separated ?

Note that in the last section the concept of the union of two mappings
is introduced and studied. In particular, all results presented above are
reformulated using this notion. In the remaining sections we introduce
concepts needed for the formulation and the proof of theorems on prop-
erties of continuous mappings, restriction mappings and modifications of
the topology.
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The articles [13], [14], [2], [3], [1], [4], [11], [8], [10], [16], [7], [9], [12], and [5]
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1. SET-THEORETIC PRELIMINARIES

In the sequel A, B will denote non-empty sets. Next we state several proposi-
tions:

(1)  For every function f from A into B and for every subset Ay of A and
for every subset By of B holds f ° Ay C By if and only if Ag C f ~! By.
(2)  For every function f from A into B and for every non-empty subset A

of A and for every function fy from Ag into B such that for every element
¢ of A such that ¢ € Ap holds f(c) = fo(c) holds f 1 Ay = fo.

(3)  For every function f from A into B and for every non-empty subset A
of A and for every element c of A such that ¢ € Ap holds f(c) = (fA4o)(c).

(4)  For every function f from A into B and for every non-empty subset A
of A and for every subset C of A such that C' C Ag holds f°C' = (f[ Ap)°C.

(5) For every function f from A into B and for every non-empty subset
Ag of A and for every subset D of B such that f ' D C Ap holds
f7'D=(f140) "' D.

Let A, B be non-empty sets, and let A1, As be non-empty subsets of A, and
let f1 be a function from A7 into B, and let fy be a function from A, into B.
Let us assume that f1 ] (A1 NAs2) = fol (A1 N Ag). The functor fi U fo yielding
a function from A; U Ay into B is defined by:

(Defl)  (fiU fo) I A1 = fiand (fiU f2) [ A2 = fo.

The following proposition is true

(6) Let A, B be non-empty sets. Then for all non-empty subsets A, A of
A such that A; misses Ay and for every function f; from A; into B and
for every function fo from Ag into B holds f; | (A1 NA2) = fa| (A1 NA2)
and (fl @] f2) I Ay = f1 and (fl U fg) [ Ay = fo.

We follow the rules: A, B are non-empty sets and Ay, Ao, Az are non-empty

subsets of A. We now state four propositions:

(7)  For every function g from Ay U As into B and for every function g; from
Aj into B and for every function gs from As into B such that g | A1 = ¢1
and g | As = g2 holds g = g1 U ¢o.

(8)  For every function f; from A; into B and for every function f; from A,
into B such that fi | (Al N Ag) = fo] (Al N Ag) holds f1 U fo = fo U fi.

(9) Let Ay, Ass be non-empty subsets of A. Suppose Ajos = A3 U Ay
and A3 = Ay U A3. Let f1 be a function from A; into B. Let fy be a
function from A into B. Let f3 be a function from Az into B. Suppose
fil (AiNAz) = fal (A1 N Az) and fo [ (A2 N A3) = f3 [ (A2 N A3) and
fil(A1NAs) = f3] (A1 N As). Then for every function fi5 from Ay into
B and for every function fo3 from Ass into B such that fio = f1 U fo and
fa3 = f2U f3 holds fi2 U f3 = f1 U fas.

(10)  For every function f; from A; into B and for every function fo from
As into B such that f1 | (A1 N As) = fo | (A1 N Az) holds Ay is a subset
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of Ay if and only if f1 U fo = fo but As is a subset of Ay if and only if
fiU fa = f1.

2. SELECTED PROPERTIES OF SUBSPACES OF TOPOLOGICAL SPACES

In the sequel X is a topological space. Next we state four propositions:
(11)  For every subspace Xy of X holds the topological structure of Xy is a
strict subspace of X.
(12)  For all topological spaces X1, Xs such that X; = the topological struc-

ture of X5 holds X7 is a subspace of X if and only if X5 is a subspace of
X.

(13)  For all topological spaces X1, X2 such that Xy = the topological struc-
ture of X7 holds X is a closed subspace of X if and only if X5 is a closed
subspace of X.

(14)  For all topological spaces X1, X2 such that Xy = the topological struc-
ture of X7 holds X is an open subspace of X if and only if X5 is an open
subspace of X.

In the sequel Xi, X will denote subspaces of X. Next we state several
propositions:

(15) If X is a subspace of Xy, then for every point x; of X; there exists a
point x9 of X5 such that zo = 7.

(16)  For every point x of X; U X5 holds there exists a point z; of X; such
that z1 = = or there exists a point x5 of X5 such that z9 = z.

(17)  If X1 meets Xy, then for every point = of X; N Xs holds there exists a
point x; of X7 such that z1 = x and there exists a point x9 of X5 such
that zo = .

(18)  For every point x of X U Xy and for every subset F} of X; and for
every subset F5 of X5 such that F} is closed and x € F; and F5 is closed
and x € Fy there exists a subset H of X7 U X5 such that H is closed and
r € Hand HC F; U Fs.

(19)  For every point z of X7 U X5 and for every subset U; of X; and for
every subset Us of X9 such that Uy is open and x € U; and Us is open
and x € Us there exists a subset V' of X; U X5 such that V is open and
zeVand V C U; UUs.

(20)  For every point x of X; U X9 and for every point 1 of X7 and for every
point x5 of X such that x1 = x and x9 = x and for every neighbourhood
Aj of 1 and for every neighbourhood As of x5 there exists a subset V' of
X1 U X, such that Vis open and z € V and V C A U As.

(21)  For every point z of X; U Xy and for every point x; of X; and for
every point xo of X5 such that 1 = x and xo = x and for every neigh-
bourhood A of x1 and for every neighbourhood Ay of xo there exists a
neighbourhood A of x such that A C 47 U As,.
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In the sequel Xg, X1, Xa, Y7, Yo will be subspaces of X. One can prove the
following propositions:

(22) If Xy is a subspace of X7, then Xy meets X; and X; meets Xj.

(23) If Xy is a subspace of X7 but Xy meets Xy or X9 meets Xy, then X,
meets X5 and Xo meets X.

(24) If X is a subspace of X; but X; misses X5 or Xo misses X, then X
misses X9 and X5 misses Xj.

(25)  Xo U X = the topological structure of Xj.

(26)  Xo N X = the topological structure of Xj.

(27) If Yy is a subspace of X; and Y3 is a subspace of Xy, then Y1 UY; is a
subspace of X7 U Xo.

(28) If Y7 meets Y3 and Y; is a subspace of X7 and Y5 is a subspace of Xo,
then Y7 NY5 is a subspace of X7 N Xs.

(29) If X; is a subspace of Xy and Xs is a subspace of X, then X; U Xy is
a subspace of Xj.

(30) If X7 meets Xy and X7 is a subspace of Xy and X3 is a subspace of X,
then X7 N X5 is a subspace of Xj.

(31) (i) If Xy misses Xy or X misses X7 but Xy meets X or Xy meets Xo,
then (Xl U XQ) NXyg=XoNXpand XgN (X1 U Xg) = Xp N Xo,

(ii)  if X3 meets Xy or Xy meets X7 but Xy misses Xy or X misses X,
then (Xl U Xg) NXy=X1NXpand XgN (Xl U XQ) = XN Xj.

(32) If X; meets Xy, then if X; is a subspace of X, then X; N X5 is a
subspace of Xy N X9 but if X5 is a subspace of Xy, then X; N X5 is a
subspace of X7 N Xj.

(33) If X; is a subspace of Xy but Xy misses X5 or Xy misses X, then
XoN(X7UX32) = the topological structure of X7 and XoN(X2UX;) = the
topological structure of X7.

(34) If X7 meets Xy, then if X7 is a subspace of X, then XyN X meets X
and X N Xy meets X7 but if X5 is a subspace of Xy, then X7 N Xy meets
X9 and X N X7 meets Xo.

(35) If X; is a subspace of Y7 and X5 is a subspace of Y5 but Y7 misses Y>
or Y1 NY5 misses X7 U X, then Y7 misses X9 and Y5 misses X;.

(36) Suppose X7 is not a subspace of X9 and X is not a subspace of X3
and X U X3 is a subspace of Y1 UY, and Y7 N (X7 U X3) is a subspace of
X7 and Y5 N (X7 U X3) is a subspace of Xo. Then Y7 meets X; U X5 and
Y5 meets X7 U Xo.

(37)  Suppose that

(i) X meets Xo,
(ii) X7 is not a subspace of X,
(iii) X3 is not a subspace of X7,
(iv)  the topological structure of X = Y7 U Y, U X,
(v) YN (X;UXy) is a subspace of X7,
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(vi) Yo (X3 UXy) is a subspace of X,
(vil)  XoN (X1 U X>) is a subspace of X7 N Xo.
Then Y] meets X1 U X5 and Y5 meets X1 U Xo.
(38)  Suppose that
(i) X meets Xo,
(i X is not a subspace of Xs,
(ili) Xy is not a subspace of X7,
(iv
(

1

)
)
) X7 UXj, is not a subspace of Y7 U Y,

v)  the topological structure of X = Y7 U Y, U X,

(vi) Y1 N (X;1UXy) is a subspace of X7,

(vil)  Y2N (X7 U X3) is a subspace of Xo,

(viii)  Xo N (X1 U Xa) is a subspace of X7 N Xo.

Then Y7 U Y5 meets X7 U Xo and X meets X7 U X5,

(39)  X; U Xo meets Xy if and only if X; meets Xy or Xo meets Xy but X
meets X7 U X5 if and only if Xy meets X; or Xy meets Xs.

(40) X7 U X5 misses X if and only if X; misses Xy and X9 misses Xy but
X misses X7 U X5 if and only if Xy misses X1 and Xy misses X5.

(41)  If X7 meets Xo, then if X3 N X9 meets X, then X; meets Xy and X,
meets Xg but if Xy meets X7 N X9, then Xy meets X7 and Xy meets Xo.

(42) If X3 meets Xy, then if X; misses Xy or Xy misses X, then X7 N X,
misses X but if Xy misses X7 or Xy misses Xo, then Xy misses X7 N Xs.

(43)  For every closed subspace Xy of X such that Xy meets X; holds XoNX;
is a closed subspace of Xj.

(44)  For every open subspace X of X such that Xy meets X; holds XoNX;
is an open subspace of X7.

(45)  For every closed subspace Xy of X such that X; is a subspace of X
and X misses X5 holds X7 is a closed subspace of X7 U X5 and X7 is a
closed subspace of Xy U X7.

(46)  For every open subspace X of X such that X is a subspace of X, and

X misses X5 holds X7 is an open subspace of X7 U X5 and X7 is an open

subspace of Xo U X;.

3. CONTINUITY OF MAPPINGS

We now define two new constructions. Let X, Y be topological spaces. A
mapping from X into Y is a function from the carrier of X into the carrier of
Y.

We say that f is continuous at z if and only if:

(Def.2)  for every neighbourhood G of f(z) there exists a neighbourhood H of
x such that f° H C G.

In the sequel X, Y denote topological spaces and f denotes a mapping from
X into Y. One can prove the following propositions:
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(47)  For every point = of X holds f is continuous at z if and only if for every
neighbourhood G of f(z) holds f ! G is a neighbourhood of z.

(48)  For every point = of X holds f is continuous at z if and only if for every
subset G of Y such that G is open and f(z) € G there exists a subset H
of X such that H is open and x € H and f° H C G.

(49)  f is continuous if and only if for every point z of X holds f is continuous
at .

(50)  For all topological spaces X, Y, Z such that the carrier of Y = the
carrier of Z and the topology of Z C the topology of Y and for every
mapping f from X into Y and for every mapping g from X into Z such
that f = g and for every point x of X such that f is continuous at = holds
g is continuous at x.

(51) Let X, Y, Z be topological spaces. Then if the carrier of X = the
carrier of Y and the topology of Y C the topology of X, then for every
mapping f from X into Z and for every mapping ¢ from Y into Z such
that f = g and for every point x of X and for every point y of Y such
that x = y holds if g is continuous at y, then f is continuous at x.

Let X, Y, Z be topological spaces, and let f be a mapping from X into Y,
and let g be a mapping from Y into Z. Then ¢ - f is a mapping from X into Z.

We follow a convention: X, Y, Z are topological spaces, f is a mapping from
X into Y, and ¢ is a mapping from Y into Z. The following propositions are
true:

(52)  For every point x of X and for every point y of Y such that y = f(z)
holds if f is continuous at x and g is continuous at y, then g- f is continuous
at x.

(53)  For every point y of Y such that f is continuous and g is continuous
at y and for every point x of X such that z € f ~!' {y} holds g - f is
continuous at z.

(54)  For every point = of X such that f is continuous at z and g is continuous
holds ¢ - f is continuous at x.

Let X, Y be topological spaces. We introduce continuous mapping from X
into Y as a synonym of continuous map from X into Y.
The following propositions are true:
(55)  f is a continuous mapping from X into Y if and only if for every point
x of X holds f is continuous at z.

(56)  For all topological spaces X, Y, Z such that the carrier of Y = the
carrier of Z and the topology of Z C the topology of Y every continuous
mapping from X into Y is a continuous mapping from X into Z.

(57)  For all topological spaces X, Y, Z such that the carrier of X = the
carrier of Y and the topology of Y C the topology of X every continuous
mapping from Y into Z is a continuous mapping from X into Z.

Let X, Y be topological spaces, and let X be a subspace of X, and let f be
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a mapping from X into Y. The functor f | X yielding a mapping from X into
Y is defined by:

(Det.3)  f1 Xo = f I the carrier of Xj.

In the sequel X, Y will denote topological spaces, X will denote a subspace
of X, and f will denote a mapping from X into Y. The following propositions
are true:

(58)  For every point x of X such that x € the carrier of X holds f(z) =
(f 1 Xo)(x).

(59)  For every mapping fo from X into Y such that for every point = of X
such that = € the carrier of X holds f(z) = fo(x) holds f | Xo = fo.

(60)  If the topological structure of Xy = the topological structure of X, then
=171 Xo.

(61)  For every subset A of X such that A C the carrier of X holds f° A =
(f I Xo)° A

(62)  For every subset B of Y such that f ~! B C the carrier of Xy holds
f'B=(f1X0) "B

(63)  For every mapping ¢ from X into Y there exists a mapping h from X
into Y such that h [ Xy = g.

In the sequel f is a mapping from X into Y and X is a subspace of X. Next
we state several propositions:

(64) For every point x of X and for every point zg of Xy such that z = xg
holds if f is continuous at z, then f | X is continuous at xg.

(65)  For every subset A of X and for every point x of X and for every point
xo of X¢ such that A C the carrier of Xy and A is a neighbourhood of x
and x = zg holds f is continuous at x if and only if f | X is continuous
at xp.

(66)  For every subset A of X and for every point x of X and for every point
2o of Xg such that A is open and x € A and A C the carrier of Xy and
T = o holds f is continuous at x if and only if f [ X is continuous at x.

(67)  For every open subspace Xy of X and for every point x of X and for
every point zg of Xg such that x = xg holds f is continuous at x if and
only if f | Xy is continuous at .

(68)  For every continuous mapping f from X into Y and for every subspace
Xp of X holds f I Xy is a continuous mapping from X into Y.

(69)  For all topological spaces X, Y, Z and for every subspace X of X and
for every mapping f from X into Y and for every mapping ¢ from Y into
Z holds (g- f) I Xo =g (f I Xo).

(70)  For all topological spaces X, Y, Z and for every subspace X, of X and
for every mapping g from Y into Z and for every mapping f from X into
Y such that g is continuous and f | X is continuous holds (g - f) | Xp is
continuous.
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(71)  For all topological spaces X, Y, Z and for every subspace X of X and
for every continuous mapping g from Y into Z and for every mapping f
from X into Y such that f | X{ is a continuous mapping from X into Y
holds (g - f) I Xo is a continuous mapping from X into Z.

Let X, Y be topological spaces, and let Xy, X7 be subspaces of X, and let ¢
be a mapping from X into Y. Let us assume that X is a subspace of Xy. The
functor g | X yielding a mapping from X into Y is defined as follows:

(Def.4) g1 X1 = g the carrier of X;.

For simplicity we follow a convention: X, Y denote topological spaces, Xy,
X1 denote subspaces of X, f denotes a mapping from X into Y, and g denotes
a mapping from Xg into Y. The following propositions are true:

(72) If Xy is a subspace of Xy, then for every point zy of X such that
xq € the carrier of X, holds g(zo) = (9 | X1)(z0)-

(73) If X, is a subspace of Xy, then for every mapping ¢; from X; into Y
such that for every point g of Xy such that xg € the carrier of X7 holds
g(xo) = g1(zo) holds g | X1 = ¢1.

(74)  g=g1 Xo.

(75) If X; is a subspace of Xy, then for every subset A of X such that
A C the carrier of X; holds g° A= (g X;)° A.

(76) If X; is a subspace of Xy, then for every subset B of Y such that
g ~! B C the carrier of X; holds g 7' B= (g X;) ! B.

(77)  For every mapping g from Xy into Y such that g = f | X holds if X,
is a subspace of Xg, then g | X1 = f | Xi.

(78)  If X; is a subspace of Xy, then f| Xo | X1 = f 1 X1.

(79)  For all subspaces X, X1, X2 of X such that X is a subspace of X
and X5 is a subspace of X; and for every mapping g from Xg into Y holds
gr Xi 1 Xo=g1 Xo.

(80)  For every mapping f from X into Y and for every mapping fo from X,

into Y and for every mapping g from X into Y such that Xo = X and
f =g holds g X1 = fyif and only if f | X1 = fo.

We follow the rules: Xy, Xy, X5 are subspaces of X, f is a mapping from
X into Y, and ¢ is a mapping from X, into Y. One can prove the following
propositions:

(81)  For every point zy of X and for every point x; of X; such that z¢g = z1
holds if X; is a subspace of Xy and g is continuous at xg, then g | X7 is
continuous at x.

(82) If X is a subspace of X, then for every point x( of Xy and for every
point x1 of X7 such that zg = z1 holds if f | X is continuous at x(, then
f 1 X1 is continuous at z.

(83) If Xj is a subspace of Xy, then for every subset A of Xy and for every
point xzg of Xg and for every point x1 of X7 such that A C the carrier of
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X1 and A is a neighbourhood of xy and x¢y = x1 holds ¢ is continuous at
xg if and only if g | X is continuous at .

(84) If X; is a subspace of X, then for every subset A of Xy and for every
point g of Xy and for every point 1 of X; such that A is open and
29 € A and A C the carrier of X7 and g = x1 holds ¢ is continuous at
xg if and only if g | X7 is continuous at .

(85) If X is a subspace of X, then for every subset A of X and for every
point xg of Xy and for every point x1 of X; such that A is open and
29 € A and A C the carrier of X7 and g = x1 holds ¢ is continuous at
xg if and only if g | X is continuous at .

(86) If X; is an open subspace of Xy, then for every point o of X and for
every point x1 of X7 such that zg = z1 holds g is continuous at g if and
only if g I X7 is continuous at x1.

(87) If X; is an open subspace of X and X is a subspace of Xy, then for
every point xg of X and for every point z1 of X7 such that z¢g = z1 holds
g is continuous at x¢ if and only if ¢ | X is continuous at .

(88)  If the topological structure of X; = X, then for every point zy of Xy
and for every point x1 of X7 such that g = 21 holds if g X7 is continuous
at x1, then ¢ is continuous at xg.

(89) For every continuous mapping g from X, into Y such that X; is a
subspace of Xy holds ¢ | X1 is a continuous mapping from X7 into Y.

(90) If X; is a subspace of Xy and X3 is a subspace of X, then for every
mapping g from Xy into Y such that g | X is a continuous mapping from
X1 into Y holds g | X5 is a continuous mapping from X5 into Y.

Let X be a topological space. The functor idx yielding a mapping from X
into X is defined as follows:

(Def5) idx = id(tho carrier of X)-
One can prove the following four propositions:

(91)  For every point x of X holds idx(z) = =.

(92)  For every mapping f from X into X such that for every point x of X
holds f(x) = x holds f = idx.

(93)  For every mapping f from X into Y holds f-idx = f and idy - f = f.

(94) idx is a continuous mapping from X into X.

We now define two new functors. Let X be a topological space, and let X
be a subspace of X. The functor ‘)ﬁf yielding a mapping from X, into X is
defined by:

(Def.6) X0 =idx I Xo.
We introduce the functor Xy < X as a synonym of )i)

Next we state four propositions:

(95)  For every subspace X of X and for every point x of X such that = € the
carrier of X holds (X°)(z) = z.
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(96)  For every subspace Xy of X and for every mapping fo from Xj into X
such that for every point z of X such that x € the carrier of X holds
z = fo(z) holds X0 = fq.

(97)  For every subspace Xy of X and for every mapping f from X into Y
holds f | X = f - (X0).

<
(98)  For every subspace X of X holds ‘)ﬁf is a continuous mapping from X
into X.

4. A MODIFICATION OF THE TOPOLOGY OF TOPOLOGICAL SPACES

In the sequel X will denote a topological space and H, G will denote subsets
of X. Let us consider X, and let A be a subset of X. The A-extension of the
topology of X yielding a family of subsets of X is defined as follows:
(Def.7)  the A-extension of the topology of X = {H UGN A : H € the topology
of X A G € the topology of X}.

We now state several propositions:
(99)  For every subset A of X holds the topology of X C the A-extension of
the topology of X.
(100)  For every subset A of X holds {GN A : G € the topology of X} C the
A-extension of the topology of X, where G ranges over subsets of X.
(101)  For every subset A of X and for all subsets C, D of X such that C € the
topology of X and D € {GN A : G € the topology of X}, where G ranges
over subsets of X holds C'U D € the A-extension of the topology of X
and C'N D € the A-extension of the topology of X.
(102)  For every subset A of X holds A € the A-extension of the topology of
X.
(103)  For every subset A of X holds A € the topology of X if and only if the
topology of X = the A-extension of the topology of X.
Let X be a topological space, and let A be a subset of X. The X modified
w.r.t. A yields a strict topological space and is defined by:
(Def.8)  the X modified w.r.t. A = (the carrier of X,the A-extension of the
topology of X).
In the sequel A will be a subset of X. The following three propositions are
true:
(104) The carrier of the X modified w.r.t. A = the carrier of X and the
topology of the X modified w.r.t. A = the A-extension of the topology of
X.
(105)  For every subset B of the X modified w.r.t. A such that B = A holds
B is open.
(106) A is open if and only if the topological structure of X = the X modified
w.r.t. A.
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Let X be a topological space, and let A be a subset of X. The functor
modidx, 4 yields a mapping from X into the X modified w.r.t. A and is defined
as follows:

(Defg) mOdidX,A = id(the carrier of X)-

We now state several propositions:

(107)  If A is open, then modidy 4 = idx.

(108)  For every point x of X such that z ¢ A holds modidx 4 is continuous
at x.

(109)  For every subspace X of X such that (the carrier of Xy) N A = and
for every point zp of Xy holds modidx 4 [ X is continuous at xg.

(110)  For every subspace X of X such that the carrier of Xy = A and for
every point xg of Xy holds modidx 4 [ X is continuous at .

(111)  For every subspace X of X such that (the carrier of Xy) N A = () holds
modidx, 4 [ Xp is a continuous mapping from X into the X modified w.r.t.
A.

(112)  For every subspace Xy of X such that the carrier of Xy = A holds
modidx 4 | Xo is a continuous mapping from X, into the X modified
w.r.t. A.

(113)  For every subset A of X holds A is open if and only if modidx 4 is a
continuous mapping from X into the X modified w.r.t. A.

Let X be a topological space, and let X be a subspace of X. The X modified

w.r.t. Xg yielding a strict topological space is defined as follows:

(Def.10)  for every subset A of X such that A = the carrier of X holds the X
modified w.r.t. Xy = the X modified w.r.t. A.

In the sequel Xy will denote a subspace of X. The following three proposi-
tions are true:

(114)  The carrier of the X modified w.r.t. Xy = the carrier of X and for
every subset A of X such that A = the carrier of X holds the topology
of the X modified w.r.t. Xg = the A-extension of the topology of X.

(115)  For every subspace Y of the X modified w.r.t. X such that the carrier
of Yy = the carrier of Xy holds Yy is an open subspace of the X modified
w.r.t. Xp.

(116) X, is an open subspace of X if and only if the topological structure of
X = the X modified w.r.t. Xj.

Let X be a topological space, and let Xy be a subspace of X. The functor
modidx x, yielding a mapping from X into the X modified w.r.t. X is defined
as follows:

(Def.11)  for every subset A of X such that A = the carrier of X holds
modidx x, = modidx A.

We now state several propositions:
(117)  If X, is an open subspace of X, then modidx x, = idx.
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(118)  For all subspaces X¢, X1 of X such that X, misses X; and for every
point x; of X; holds modidx x, [ X1 is continuous at xi.

(119)  For every subspace X of X and for every point xg of X holds
mOdidX’XO r X(]
is continuous at x.

(120)  For all subspaces X, X of X such that X misses X holds modid x, x|
X1 is a continuous mapping from X; into the X modified w.r.t. Xj.

(121)  For every subspace X of X holds modidx x, [ Xo is a continuous map-
ping from Xj into the X modified w.r.t. Xg.

(122)  For every subspace X of X holds X is an open subspace of X if and
only if modidx x, is a continuous mapping from X into the X modified
w.r.t. Xp.

5. CONTINUITY OF MAPPINGS OVER THE UNION OF SUBSPACES

In the sequel X, Y denote topological spaces. We now state three propositions:

(123)  For all subspaces X1, X5 of X and for every mapping g from X; U X,
into Y and for every point z; of X7 and for every point x9 of X5 and
for every point x of X; U Xy such that x = z1 and z = x5 holds g is
continuous at x if and only if ¢ [ X7 is continuous at x; and g [ X3 is
continuous at xs.

(124) Let f be a mapping from X into Y. Then for all subspaces X1, Xy of
X and for every point z of X; U Xs and for every point 1 of X; and for
every point xg of Xy such that x = x; and = = x5 holds f | (X; U X3)
is continuous at z if and only if f | X is continuous at 1 and f | X5 is
continuous at xs.

(125) Let f be a mapping from X into Y. Then for all subspaces X7, X3 of
X such that X = X7 U X5 and for every point x of X and for every point
x1 of X7 and for every point x5 of X5 such that £ = z; and x = x5 holds
f is continuous at x if and only if f | X; is continuous at x; and f | X5
is continuous at xs.

In the sequel X7, X5 will denote subspaces of X. One can prove the following
propositions:

(126) If X; and X5 are weakly separated, then for every mapping g from
X1 U X5 into Y holds g is a continuous mapping from X; U X5 into Y if
and only if g | X1 is a continuous mapping from X into Y and g | X» is
a continuous mapping from X5 into Y.

(127)  For all closed subspaces X7, X5 of X and for every mapping g from
X1 U X5 into Y holds ¢ is a continuous mapping from X; U X5 into Y if
and only if g | X1 is a continuous mapping from X into Y and g | X» is
a continuous mapping from X5 into Y.
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(128)  For all open subspaces X1, X9 of X and for every mapping g from
X1 U X5 into Y holds ¢ is a continuous mapping from X; U X5 into Y if
and only if g | X1 is a continuous mapping from X into Y and g | X» is
a continuous mapping from X5 into Y.

(129) If X; and X5 are weakly separated, then for every mapping f from X
into Y holds f | (X; U X3) is a continuous mapping from X; U X, into YV
if and only if f | X is a continuous mapping from X; into Y and f | X»
is a continuous mapping from Xs into Y.

(130)  For every mapping f from X into Y and for all closed subspaces X1,
Xy of X holds f 1 (X;UX>) is a continuous mapping from X; U X5 into YV’
if and only if f | X7 is a continuous mapping from X; into Y and f | X5
is a continuous mapping from X5 into Y.

(131)  For every mapping f from X into Y and for all open subspaces X1, X5
of X holds f | (X7 U X2) is a continuous mapping from X; U Xy into Y if
and only if f | X7 is a continuous mapping from X into Y and f | X5 is
a continuous mapping from X5 into Y.

(132)  For every mapping f from X into Y and for all subspaces X1, X3 of X
such that X = X7 U X5 and X; and X, are weakly separated holds f is a
continuous mapping from X into Y if and only if f | X7 is a continuous
mapping from X; into Y and f | X5 is a continuous mapping from X5
into Y.

(133)  For every mapping f from X into Y and for all closed subspaces X1,
X5 of X such that X = X; U X5 holds f is a continuous mapping from
X into Y if and only if f | X7 is a continuous mapping from X; into Y
and f | X5 is a continuous mapping from X5 into Y.

(134)  For every mapping f from X into Y and for all open subspaces X1, X»
of X such that X = X; U X5 holds f is a continuous mapping from X
into Y if and only if f [ X7 is a continuous mapping from X7 into Y and
f 1 X5 is a continuous mapping from X5 into Y.

(135) X7 and Xy are separated if and only if X; misses X5 and for every
topological space Y and for every mapping g from X; U X5 into Y such
that ¢ | X7 is a continuous mapping from X; into Y and g [ Xo is a
continuous mapping from Xs into Y holds ¢ is a continuous mapping
from X7 U X5 into Y.

(136) X7 and Xy are separated if and only if X; misses X5 and for every
topological space Y and for every mapping f from X into Y such that
f1 X1 is a continuous mapping from X7 into Y and f | X5 is a continuous
mapping from X5 into Y holds f | (X7 U X3) is a continuous mapping
from X7 U X5 into Y.

(137)  For all subspaces X1, X2 of X such that X = X; U X, holds X; and
Xy are separated if and only if X; misses Xy and for every topological
space Y and for every mapping f from X into Y such that f | X; is a
continuous mapping from X; into Y and f | X5 is a continuous mapping
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from X5 into Y holds f is a continuous mapping from X into Y.

6. THE UNION OF CONTINUOUS MAPPINGS

Let X, Y be topological spaces, and let X7, X5 be subspaces of X, and let f;
be a mapping from X into Y, and let fo be a mapping from X5 into Y. Let
us assume that X; misses Xy or f1 | (X1 N X3) = fo | (X1 N X3). The functor
f1 U fa yielding a mapping from X; U Xs into Y is defined as follows:

(Def12)  (f1U f2) I X1 = f1and (f1 U f2) | Xo = fo.

In the sequel X, Y will denote topological spaces. We now state a number
of propositions:

(138)  For all subspaces X1, X2 of X and for every mapping ¢ from X; U Xy
intoY holds g=g¢g X1 Ug [ Xo.

(139)  For all subspaces X1, X2 of X such that X = X; U X5 and for every
mapping ¢ from X into Y holds g=¢ [ X7 Ug | Xo.

(140)  For all subspaces X1, X2 of X such that X; meets X, and for every
mapping f; from X; into Y and for every mapping fo from X5 into YV
holds (f1Uf2) ' X1 = f1and (flUfg) | Xo = fy if and only if flf(XlﬂXg) =
fol (Xl N Xg)

(141)  For all subspaces X7, X3 of X and for every mapping f; from X; into
Y and for every mapping fs from X5 into Y such that f1 | (X; N Xq) =
fa 1 (X1 N X3) holds X; is a subspace of X if and only if f1 U fo = fo but
X5 is a subspace of X7 if and only if f1 U fo = fi.

(142)  For all subspaces X, X5 of X and for every mapping f; from X; into
Y and for every mapping fo from X5 into Y such that X; misses Xo or
AT (X1NXz) = fol (X1NX2) holds f1U fo = faU fi.

(143)  Let X1, X2, X3 be subspaces of X. Let f; be a mapping from X; into
Y. Let fo be a mapping from X5 into Y. Let f3 be a mapping from X3
into Y. Suppose X; misses Xy or f1 [ (X1 N Xe2) = fo (X1 N X2) but
X1 misses X3 or f1 ] (X1 NX3) = f3] (X1 N X3) but Xy misses X3 or
Lol (XanNX3) = f31 (XaN X3). Then (f1U f2) U fs = frU(faU f3).

(144)  For all subspaces X, Xs of X such that X; meets Xs and for every
continuous mapping f1 from X7 into Y and for every continuous mapping
fa from Xo into Y such that fi | (X1 N X2) = fo | (X1 N X2) holds if X;
and Xo are weakly separated, then f1 U fo is a continuous mapping from
X1 UXsinto Y.

(145)  For all subspaces X7, X5 of X such that X; misses X and for every
continuous mapping f1 from X7 into Y and for every continuous mapping
fo from X5 into Y such that X7 and X5 are weakly separated holds f1 U fo
is a continuous mapping from X; U X5 into Y.

(146)  For all closed subspaces X1, X2 of X such that X; meets Xo and for
every continuous mapping fi from X; into Y and for every continuous
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mapping fo from X5 into Y such that fi | (X3 N X5) = fo | (X1 N X3)
holds f; U f2 is a continuous mapping from X; U X5 into Y.

(147)  For all open subspaces X1, X5 of X such that X; meets Xy and for
every continuous mapping f1 from X; into Y and for every continuous
mapping fo from Xy into Y such that fi | (X1 N Xy) = fo | (X1 N Xo)
holds f1 U fs is a continuous mapping from X; U X5 into Y.

(148)  For all closed subspaces X7, X2 of X such that X; misses X3 and for
every continuous mapping f1 from X; into Y and for every continuous
mapping fs from X3 into Y holds f1 U fo is a continuous mapping from
X1 UXsinto Y.

(149)  For all open subspaces X, Xy of X such that X; misses X5 and for
every continuous mapping f1 from X; into Y and for every continuous
mapping fs from X3 into Y holds f1 U fo is a continuous mapping from
X1 UXsinto Y.

(150)  For all subspaces X7, X5 of X holds X; and X5 are separated if and
only if X7 misses X9 and for every topological space Y and for every
continuous mapping f1 from X; into Y and for every continuous mapping
fo from X5 into Y holds f; U f5 is a continuous mapping from X; U Xo
into Y.

(151)  For all subspaces X1, Xo of X such that X = X; U X» and for every
continuous mapping f1 from X; into Y and for every continuous mapping
fo from X5 into Y such that (f1 U f2) I X1 = f1 and (f1 U f2) I Xo = fo
holds if X7 and X, are weakly separated, then f; U fo is a continuous
mapping from X into Y.

(152)  For all closed subspaces X1, X9 of X and for every continuous mapping
f1 from X into Y and for every continuous mapping fo from Xs into Y
such that X = X3 U Xo and (f1U fo) [ X3 = frand (f1U fo) | Xo = fo
holds f; U fo is a continuous mapping from X into Y.

(153)  For all open subspaces X, X5 of X and for every continuous mapping
f1 from X into Y and for every continuous mapping fs from Xs into Y
such that X = X; U X5 and (fl U fg) I X1 = f1 and (fl U f2) I Xo = fo
holds f1 U f3 is a continuous mapping from X into Y.
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Summary. Definitions of functional sequences and basic oper-
ations on functional sequences from a domain to a domain, point and
uniform convergent, limit of functional sequence from a domain to the
set of real numbers and facts about properties of the limit of functional
sequences are proved.

MML Identifier: SEQFUNC.

The articles [11], [1], [2], [3], [13], [5], [6], [9], [8], [4], [12], [7], and [10] provide the
notation and terminology for this paper. For simplicity we adopt the following
rules: D, D1, Dy denote non-empty sets, n, k denote natural numbers, p, r
denote real numbers, and f denotes a function. Let us consider Dy, Dy. A
function is called a sequence of partial functions from D; into Dy if:

(Def.1)  domit =N and rngit C D;—>Ds.

In the sequel F, I, F> are sequences of partial functions from D4 into Ds.
Let us consider Dy, Do, F', n. Then F(n) is a partial function from D; to Ds.

In the sequel G, H, Hy, Ho, J are sequences of partial functions from D into
R. One can prove the following two propositions:

(1) f is a sequence of partial functions from D; into D if and only if
dom f = N and for every n holds f(n) is a partial function from D; to
D,.

(2)  For all Fy, Fy such that for every n holds Fi(n) = Fy(n) holds Fy = F.

The scheme ExFuncSeq deals with a non-empty set A, a non-empty set B,
and a unary functor F yielding a partial function from A to B and states that:
there exists a sequence G of partial functions from A into B such that for
every n holds G(n) = F(n)
for all values of the parameters.
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We now define several new functors. Let us consider D, H, r. The functor
r H yields a sequence of partial functions from D into R and is defined as follows:

(Def.2)  for every n holds (r H)(n) =r H(n).

Let us consider D, H. The functor H~! yielding a sequence of partial functions
from D into R is defined by:

(Def.3)  for every n holds H~'(n) = H%n).
The functor —H yields a sequence of partial functions from D into R and is
defined by:

(Def.4)  for every n holds (—H)(n) = —H(n).

The functor |H| yields a sequence of partial functions from D into R and is
defined as follows:

(Det.5)  for every n holds |H|(n) = |H(n)|.

Let us consider D, G, H. The functor G + H yields a sequence of partial
functions from D into R and is defined by:

(Def.6)  for every n holds (G + H)(n) = G(n) + H(n).

The functor G — H yielding a sequence of partial functions from D into R is
defined as follows:

(Def.7) G- H=G+ —H.

The functor G H yields a sequence of partial functions from D into R and is
defined as follows:

(Det.8)  for every n holds (G H)(n) = G(n) H(n).

Let us consider D, H, G. The functor % yielding a sequence of partial functions
from D into R is defined as follows:

(Det.9) S =GH

Next we state a number of propositions:

G(n

N

(3) Hy =% if and only if for every n holds Hy(n) = DR

(4) H; =G — H if and only if for every n holds Hi(n) = G(n) — H(n).
5) G+H=H+Gand (G+H)+J=G+ (H+J).

6) GH=HG and (GH)J =G (H.J).

() (G+H)J=GJ+HJand J(G+H)=JG+ JH.

]) —H=(-1)H.

©) (G-H)J=GJ-HJand JG—JH=J(G—H).

1

—_

1) (r-p)H=r(pH).

2 1H=H.

3 ——H=H.

4) G 'H'=(GH)™

5) Ifr#0, then (r H)~' =r—tHL.
6) |H|™'=|HY.

—_

—_ =

)
)
)
)
)
)
)
0) »r(G+H)=rG+rHandr(G—H)=rG—-rH.
)
)
)
)
)
)

N N AN S S /S
—_

—_
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(17) |G H|=|G||H].
G| _ Gl
(18) |7l = 1@
(19)  |rH|=|r[[H].
In the sequel x is an element of D, X, Y are sets, and f is a partial function

from D to R. We now define three new constructions. Let us consider Dy, Ds,
F, X. We say that X is common for elements of F' if and only if:

(Def.10) X # ) and for every n holds X C dom F(n).
Let us consider D, H, x. The functor H#x yielding a sequence of real numbers
is defined as follows:

(Def.11)  for every n holds (H#xz)(n) = H(n)(z).
Let us consider D, H, X. We say that H is point-convergent on X if and only
if:

(Def.12) X is common for elements of H and there exists f such that X = dom f

and for every x such that z € X and for every p such that p > 0 there
exists k such that for every n such that n > & holds |H (n)(x) — f(z)| < p.

Next we state two propositions:

(20) H is point-convergent on X if and only if X is common for elements
of H and there exists f such that X = dom f and for every x such that
x € X holds H#ux is convergent and lim(H#z) = f(x).

(21)  H is point-convergent on X if and only if X is common for elements of
H and for every x such that x € X holds H#«x is convergent.

We now define two new constructions. Let us consider D, H, X. We say
that H is uniform-convergent on X if and only if:
(Def.13) X is common for elements of H and there exists f such that X = dom f
and for every p such that p > 0 there exists k such that for all n, z such
that n > k and = € X holds |H(n)(z) — f(x)| < p.
Let us assume that H is point-convergent on X. The functor lim x H yielding a
partial function from D to R is defined as follows:
(Def.14)  domlimxH = X and for every x such that # € domlimxH holds
(limx H)(z) = im(H+#zx).
We now state a number of propositions:

(22) If H is point-convergent on X, then f = lim x H if and only if dom f =
X and for every x such that z € X and for every p such that p > 0 there
exists k such that for every n such that n > k holds |H(n)(x) — f(x)| < p.

(23) If H is uniform-convergent on X, then H is point-convergent on X.

(24) IfY C X and Y # () and X is common for elements of H, then Y is
common for elements of H.

(25) IfY C X and Y # 0 and H is point-convergent on X, then H is
point-convergent on Y and limxH | Y = limy H.

(26) IfY C X and Y # 0 and H is uniform-convergent on X, then H is
uniform-convergent on Y.
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(27) If X is common for elements of H, then for every z such that z € X
holds {x} is common for elements of H.

(28) If H is point-convergent on X, then for every x such that z € X holds
{z} is common for elements of H.

(29) Suppose {z} is common for elements of H; and {z} is common for
elements of Hy. Then Hi#x+ Ho#x = (H1+Hsz)#x and Hi#x— HoF#x =
(H1 - HQ)#Z‘ and (Hl#l‘) (Hg#l‘) = (H1 Hg)#l’

(30)  If {z} is common for elements of H, then |H|#x = |H#x| and
(—H)#x = —H#x.

(31)  If {z} is common for elements of H, then (r H)#x = r (H#x).

(32)  Suppose X is common for elements of H; and X is common for ele-
ments of Hy. Then for every x such that € X holds Hi#x + Ho#x =
(H1+ Ho)#x and Hi#x — Ho#tx = (Hy — Ha)#x and (H1#x) (Ho#x) =
(Hl Hg)#x

(33) If X is common for elements of H, then for every = such that x € X
holds |H|#x = |H#x| and (—H)#x = —H#wx.

(34) If X is common for elements of H, then for every x such that x € X
holds (r H)#x = r (H#x).

(35)  Suppose H; is point-convergent on X and Hj is point-convergent on X.
Then for every x such that x € X holds Hi#x + Ho#x = (Hy + Ho)#x
and Hl#l‘ — Hg#l‘ = (H1 — Hg)#l’ and (Hl#l‘) (Hg#l‘) = (Hl Hg)#l’

(36) If H is point-convergent on X, then for every x such that z € X holds
|H|#x = |H#x| and (—H)#x = —H#x.

(37) If H is point-convergent on X, then for every x such that z € X holds
(r Hy#x =r (H#x).

(38) If X is common for elements of H; and X is common for elements of
Hsy, then X is common for elements of H; + Hs and X is common for
elements of Hy — Hy and X is common for elements of Hy Ho.

(39) If X is common for elements of H, then X is common for elements of
|H| and X is common for elements of —H.

(40) If X is common for elements of H, then X is common for elements of
rH.
(41)  Suppose H; is point-convergent on X and Hs is point-convergent on X.
Then
) Hj + Hs is point-convergent on X,
) limx(Hl—l-Hg) = limx Hq + limx Ho,
iii) Hj — Hs is point-convergent on X,
) limX(H1 —Hg) :thHl —limXHQ,
) Hj Hy is point-convergent on X,
) limx(Hl Hg) :limle limXHQ.
(42) If H is point-convergent on X, then |H| is point-convergent on X and
limy|H| = [limx H| and —H is point-convergent on X and limx(—H) =
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—limyH.

(43) If H is point-convergent on X, then r H is point-convergent on X and
limx(rH) =rlimxH.

(44)  H is uniform-convergent on X if and only if X is common for elements
of H and H is point-convergent on X and for every r such that 0 < r
there exists k such that for all n, x such that n > k& and x € X holds
|H(n)(z) — (limx H)(z)| < r.

In the sequel H will be a sequence of partial functions from R into R. Let us
consider n, k. Then max(n, k) is a natural number.

We now state the proposition

(45)  If H is uniform-convergent on X and for every n holds H(n) is contin-
uous on X, then limx H is continuous on X.
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Reper Algebras

Michal Muzalewski
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Biatystok

Summary. We shall describe n-dimensional spaces with the reper
operation [10, pages 72-79]. An inspiration to such approach comes from
the monograph [12] and so-called Leibniz program. Let us recall that
the Leibniz program is a program of algebraization of geometry using
purely geometric notions. Leibniz formulated his program in opposition to
algebraization method developed by Descartes. The Euclidean geometry
in Szmielew’s approach [12] is a theory of structures (S; ||, ®, O), where
(S; |I,®,0) is Desarguean midpoint plane and O C S x S x S is the
relation of equi-orthogonal basis. Points o, p, g are in relation O if they
form an isosceles triangle with the right angle in vertex a. If we fix vertices
a,p, then there exist exactly two points ¢, ¢’ such that O(apq), O(apq’).
Moreover ¢ ® ¢’ = a. In accordance with the Leibniz program we replace
the relation of equi-orthogonal basis by a binary operation x : S x .S — S,
called the reper operation. A standard model for the Euclidean geometry
in the above sense is the oriented plane over the field of real numbers with
the reper operations * defined by the condition: a * b = ¢ iff the point ¢
is the result of rotating of p about right angle around the center a.

MML Identifier: MIDSP_3.

The terminology and notation used here are introduced in the following articles:
[13], [5], [6], [3], [7], [2], [4], [1], [8], [11], and [9].

1. SUBSTITUTIONS IN TUPLES

For simplicity we adopt the following rules: n, i, j, k, [ are natural numbers, D
is a non-empty set, ¢, d are elements of D, and p, ¢, r are finite sequences of
elements of D. The following propositions are true:
(1) Iflenp = j+ 1+ k, then there exist ¢, r, ¢ such that leng = j and
lenr=kand p=q~{(c)"r.
(2) If i € Segn, then there exist j, k such that n =j+1+k and i = j + 1.
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(3) Suppose p=¢~(c) "7 and i = leng + 1. Then for every [ such that
1 <land! <lengq holds p(l) = ¢(l) and p(i) = ¢ and for every [ such that
i+1<land! <lenp holds p(l) = r(l —i).
(4) I<jorl=j+1lorj+2<lI.
(5) IfleSegn\{i}andi=j+1,then 1 <landl<jori+1<1!and
[ <n.
Let us consider n, i, D, d, and let p be an element of D"*!. Let us assume
that i € Seg(n + 1). The functor p(i/d) yielding an element of D"*! is defined
as follows:

(Def.1)  p(i/d)(i) = d and for every I such that [ € Seglen p\{i} holds p(i/d)(l) =
p(0)-

2. REPER ALGEBRA STRUCTURE AND ITS PROPERTIES

Let us consider n. We consider structures of reper algebra over n which are
extension of a midpoint algebra structure and are systems

(a carrier, a midpoint operation, a reper),
where the carrier is a non-empty set, the midpoint operation is a binary op-
eration on the carrier, and the reper is a function from (the carrier)” into the
carrier. Let us observe that there exists a structure of reper algebra over n + 2
which is midpoint algebra-like.

We adopt the following rules: R; will denote a midpoint algebra-like structure
of reper algebra over n+ 2 and a, b, d, p1, pj will denote points of R;. We now
define two new modes. Let us consider 7, D. A tuple of i and D is an element
of D’

Let us consider n, Ry, i. A tuple of i and Ry is a tuple of ¢ and the carrier
of Rl.

In the sequel p, ¢ will denote tuples of n + 1 and R;. Let us consider n, Ry,
a. Then (a) is a tuple of 1 and Ry. Let us consider n, Ry, i, j, and let p be a
tuple of ¢ and Ry, and let ¢ be a tuple of j and R;. Then p~q is a tuple of i + j
and R;.

We now state the proposition

(6) (a) " pisa tuple of n+ 2 and Rj.

We now define two new functors. Let us consider n, Ry, a, p. The functor
*(a, p) yielding a point of R; is defined as follows:

(Def.2)  x(a,p) = (the reper of Ry)({a) "~ p).

Let us consider n, 7, Ry, d, p. The functor py;-,q yields a tuple of n + 1 and R;
and is defined as follows:

(Def.3)  for every D and for every element p’ of D"*! and for every element
d" of D such that D = the carrier of Ry and p’ = p and d’ = d holds

Prisa = p'(i/d’).
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We now state the proposition
(1) 1If i € Seg(n + 1), then p;;~4(i) = d and for every [ such that | €
Seglenp \ {i} holds pi=q(l) = p(1).

Let us consider n. A natural number is said to be a natural number of n if:
(Def4) 1<itandit<n+1.

In the sequel m is a natural number of n. We now state several propositions:

(8) 4 is a natural number of n if and only if i € Seg(n + 1).

9) 1<i+1

(10) If ¢ <mn, then i+ 1 is a natural number of n.

(

(

[

1)  If for every m holds p(m) = g(m), then p = q.
2)  For every natural number [ of n such that { =4 holds p;~q(l) = d and
for all natural numbers [, i of n such that [ # ¢ holds p;—q (1) = p(I).

We now define three new predicates. Let us consider n, D, and let p be an
element of D"*!, and let us consider m. Then p(m) is an element of D. Let us
consider n, R1. We say that R; is invariance if and only if:

(Def.5)  for all a, b, p, ¢ such that for every m holds a ® q(m) = b @ p(m) holds
a® *(b,q) =b® x(a,p).
Let us consider n, ¢, R;. We say that R; has property of zero in ¢ if and only if:
(Def.6)  for all a, p holds *(a,p}i=q) = a.
We say that R; is semi additive in ¢ if and only if:
(Det.7)  for all a, p1, p such that p(i) = p; holds *(a, piwamp, ) = a & *(a, p).

[
~—

The following proposition is true
(13) If Ry is semi additive in m, then for all a, d, p, ¢ such that ¢ = p;p—q
holds *(a, pm—amd) = a ® *(a,q).
We now define two new predicates. Let us consider n, 7, R1. We say that Ry
is additive in ¢ if and only if:
(Def.8)  for all a, p1, p}, p such that p(i) = p; holds *(a,pri_-,pl@pzl) = x(a,p) ®
*(avp[i—'m’l )-
We say that R; is alternative in ¢ if and only if:
(Det.9)  for all a, p, p1 such that p(i) = p; holds *(a, p1it1-p, ) = a.
In the sequel W is an atlas of Ry and v is a vector of W. Let us consider n,
Ry, W, i. A tuple of i and W is a tuple of ¢ and the carrier of the algebra of W.
In the sequel x, y are tuples of n + 1 and W. Let us consider n, Ry, W, x,
i, v. The functor x};—,, yields a tuple of n +1 and W and is defined by:
(Def.10)  for every D and for every element z’ of D"*! and for every element v’
of D such that D = the carrier of the algebra of W and 2/ = x and v/ = v
holds x iz, = 2/ (i/0").
Next we state three propositions:
(14) If i € Seg(n + 1), then z};-, (i) = v and for every [ such that [ €
Seglenz \ {i} holds x ., (1) = z(l).
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(15)  For every natural number [/ of n such that [ =i holds x;~,(l) = v and
for all natural numbers [, i of n such that [ # ¢ holds z ;= () = z(I).

(16)  If for every m holds z(m) = y(m), then x = y.

The scheme SeqLambdaD’ concerns a natural number A, a non-empty set B,
and a unary functor F yielding an element of B and states that:

there exists a finite sequence z of elements of B such that lenz = . A+ 1 and
for every natural number j of A holds z(j) = F(j)
for all values of the parameters.

We now define two new functors. Let us consider n, R1, W, a, . The functor
(a,x).W yielding a tuple of n + 1 and R; is defined as follows:

(Def11)  ((a,x).W)(m) = (a,z(m)).W.
Let us consider n, Ry, W, a, p. The functor W (a, p) yielding a tuple of n + 1
and W is defined by:
(Def.12)  W(a, p)(m) = W(a, p(m)).
The following three propositions are true:
(17)  W(a, p) = x if and only if (a,z).W = p.
(18)  W(a, (a,z).W) = x.
(19)  (a,W(a, p)).W =p.
Let us consider n, Ry, W, a, . The functor ®(a, z) yields a vector of W and
is defined by:
(Def.13)  ®(a,z) = W(a, *(a, (a,x).W)).
One can prove the following propositions:
(20) IfW(a, p) = x and W(a, b) = v, then x(a, p) = b if and only if ®(a,z) =
.
21
22

R; is invariance if and only if for all a, b, = holds ®(a,x) = ®(b, x).
1 € Seg(n+1).
1 is an element of Seg(n + 1).

~~ —~ —~
[\
w

o
=
N N N N

1 is a natural number of n.

3. REPER ALGEBRA AND ITS ATLAS

Let us consider n. A midpoint algebra-like structure of reper algebra over n + 2
is called a reper algebra of n if:

(Def.14) it is invariance.
For simplicity we adopt the following convention: R; will be a reper algebra
of n, a, b will be points of Ry, p will be a tuple of n + 1 and R;, W will be

an atlas of Ry, v will be a vector of W, and z will be a tuple of n + 1 and W.
Next we state the proposition

(25) ®(a,x) = P(b,x).
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Let us consider n, Ry, W, x. The functor ®(z) yields a vector of W and is

defined by:
(Def.15)  for every a holds ®(x) = ®(a, z).

We now state a number of propositions:

26) If W(a, p) =« and W(a, b) = v and ®(z) = v, then *(a,p) = b.

) If (a,x). W =p and (a,v).W = b and x(a,p) = b, then &(z) = v.

) If W(a, p) = and W(a, b) = v, then W(a, pim=p) = Tpm—w-
9) If (a,z).W =p and (a,v).W = b, then (a, Z pm—=0).W = Drm—sp-

) Ry has property of zero in m if and only if for every x holds
(1m0 ) = Ow-

(31) R issemiadditive in m if and only if for every = holds & ((z n—22(m))) =

20(x).

(32) If Ry has property of zero in m and R; is additive in m, then R; is semi

additive in m.

(33) If R; has property of zero in m, then R; is additive in m if and only if

for all z, v holds ®((%p=z(m)+v)) = () + P((T1mw))-

(34) If W(a, p) =z and m < n, then W(a, pymti-pim)) = Trms1=sa(m) -

(35) If (a,7).W = p and m < n, then (a, Zpmr1-z(m))-W = Prm+1-=p@m) -
(36) If m < n, then R; is alternative in m if and only if for every x holds

2]

[3]
[4]

[5]
[6]
[7]
8]
[9]
[10]

[11]
[12]

O((T g 1-20m))) = Ow.
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Summary. Some theorems and properties of cyclic groups have
been proved with special regard to isomorphisms of these groups. Among
other things it has been proved that an arbitrary cyclic group is iso-
morphic with groups of integers with addition or group of integers with
addition modulo m. Moreover, it has been proved that two arbitrary
cyclic groups of the same order are isomorphic and that the class of cyclic
groups is closed in consideration of homomorphism images. Some other
properties of groups of this type have been proved too.

MML Identifier: GR_CY_2.

The terminology and notation used in this paper have been introduced in the
following articles: [19], [6], [11], [7], [12], [2], [18], [1], [10], [4], [14], [17], [21],
[13], [31], [25], [29], [23], [3], [27], [26], [24], [30], [15], [16], [5], [28], [22], [20],
[9], and [8]. For simplicity we adopt the following rules: F'; G will be groups,
G1 will be a subgroup of GG, G2 will be a cyclic group, H will be a subgroup of
Go, f will be a homomorphism from G to G2, a, b will be elements of G, g will
be an element of G2, a; will be an element of Gy, k, m, n, p, s will be natural
numbers, and i, i1, 1o will be integers. The following propositions are true:

(1)  For all n, m such that 0 < m holds nmodm =n —m- (n+m).
2) If iy > 0, then i; mod iz > 0.
) If 49 > 0, then i1 mod iy < 5.
11 = (il - ’i2) <19 + (il mod i2).
) For all m, n such that m > 0 or n > 0 there exist 7, i; such that
i-m-+iy-n=ged(m,n).

If ord(a) > 1 and a = b¥, then k # 0.

If G is finite, then ord(G) > 0.

a € gr({a}).

w
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(9) If a=ay, then gr({a}) = gr({a1}).
(10)  gr({a}) is a cyclic group.
(11)  For every strict group G and for every element b of G holds for every
element a of G there exists ¢ such that a = b if and only if G = gr({b}).

(12)  For every strict group G and for every element b of G such that G is
finite holds for every element a of G there exists p such that a = b? if and
only if G = gr({b}).

(13)  For every strict group G and for every element a of G such that G is
finite and G = gr({a}) and for every strict subgroup G; of G there exists
p such that G1 = gr({a?}).

(14) If G is finite and G = gr({a}) and ord(G) = n and n = p- s, then
ord(aP) = s.

(15) If s | k, then a”* € gr({a®}).

(16)  If G is finite and ord(gr({a°})) = ord(gr({a*})) and a* € gr({a®}), then
gr({a’}) = gr({a"}).

(17) If G is finite and ord(G) = n and G = gr({a}) and ord(G;) = p and
G1 = gr({a*}), then n | k - p.

(18)  For every strict group G and for every element a of G such that G is
finite and G = gr({a}) and ord(G) = n holds G = gr({a*}) if and only if
ged(k,n) = 1.

(19) If G2 = gr({g}) and g € H, then the half group structure of Go = the
half group structure of H.

(20) If G2 = gr({g}), then G is finite if and only if there exist i, i; such
that i # i1 and ¢* = g".

Let us consider n satisfying the condition: n > 0. Let h be an element of
7;}. The functor ®h yielding a natural number is defined as follows:

(Def.1)  ©h=h.

The following propositions are true:

(21)  For every strict cyclic group G such that Gy is finite and ord(G2) = n
holds 7} and G5 are isomorphic.

(22)  For every strict cyclic group Go such that G is infinite holds Z* and
G2 are isomorphic.

(23)  For all strict cyclic groups G, H; such that H; is finite and Gs is finite
and ord(H;) = ord(G2) holds H; and G2 are isomorphic.

(24)  For all strict groups F, G such that F' is finite and G is finite and
ord(F) = p and ord(G) = p and p is prime holds F' and G are isomorphic.

(25)  For all strict groups F, G such that F is finite and G is finite and
ord(F') = 2 and ord(G) = 2 holds F and G are isomorphic.

(26)  For every strict group G such that G is finite and ord(G) = 2 and for
every strict subgroup H of G holds H = {1} or H = G.
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(27)  For every strict group G such that G is finite and ord(G) = 2 holds G
is a cyclic group.

(28)  For every strict group G such that G is finite and G is a cyclic group and
ord(G) = n and for every p such that p | n there exists a strict subgroup
G1 of G such that ord(G1) = p and for every strict subgroup G3 of G
such that ord(G3) = p holds G35 = G1.

Let us note that every group which is cyclic is also Abelian.

We now state two propositions:

(29) If Gy = gr({g}), then for all G, f such that ¢ € Im f holds f is an
epimorphism.

(30)  For every strict cyclic group G4 such that G5 is finite and ord(G3) =n
and there exists k such that n = 2-k there exists an element g; of G5 such
that ord(g1) = 2 and for every element go of G2 such that ord(gs) = 2
holds g1 = go.

Let us consider G. Then Z(G) is a strict normal subgroup of G.
One can prove the following propositions:

(31)  For every strict cyclic group G4 such that G5 is finite and ord(G3) =n
and there exists k such that n = 2 - k there exists a subgroup H of G»
such that ord(H) = 2 and H is a cyclic group.

(32)  For every strict group G and for every homomorphism g from G to F
such that G is a cyclic group holds Im g is a cyclic group.

(33)  For all strict groups G, F' such that G and F' are isomorphic but G is
a cyclic group or F' is a cyclic group holds G is a cyclic group and F' is a
cyclic group.
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Summary. We define some well known isomorphisms between
functor categories: between AC™ and A, between Ct4P4 and (C’B)A,
and between [B,C]* and [B*, C*]. Compare [12] and [11]. Unfortu-
nately in this paper ”functor” is used in two different meanings, as a
lingual function and as a functor between categories.

MML Identifier: ISOCAT_2.

The notation and terminology used in this paper are introduced in the following
papers: [17], [18], [4], [5], [3], [7], [1], [2], [10], [13], [8], [14], [6], [9], [16], and
[15].

1. PRELIMINARIES

The scheme ChoiceD concerns a non-empty set A, a non-empty set 3, and a
binary predicate P, and states that:

there exists a function h from A into B such that for every element a of A
holds Pla, h(a)]
provided the parameters meet the following requirement:

e for every element a of A there exists an element b of B such that

Pla, b].

Let A, B, C be non-empty sets, and let f be a function from A into C5.

Then uncurry f is a function from [ A, B into C.

We now state several propositions:

(1)  For all non-empty sets A, B, C' and for every function f from A into
CP holds curry uncurry f = f.
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(2)  For all non-empty sets A, B, C' and for every function f from A into
CPB and for every element a of A and for every element b of B holds
(uncurry f)({a, b)) = f(a)(b).

(3)  For an arbitrary x and for every non-empty set A and for all functions
f, g from {z} into A such that f(z) = g(z) holds f = g.

(4)  For all non-empty sets A, B and for every element z of A and for every
function f from A into B holds f(z) € rng f.

(5)  For all non-empty sets A, B, C' and for all functions f, g from A into | B,
C']such that m(BxC)-f = m(BxC)-gand ma(BxC)-f = m(BxC)-g
holds f = g.

We adopt the following rules: A, B, C' will be categories and F', Fy, Fy will

be functors from A to B. The following two propositions are true:

(6)  For every morphism f of A holds idcoas - f = f.

(7)  For every morphism f of A holds f -idgom f = f.

In the sequel o, m will be arbitrary. The following two propositions are true:

(8) o is an object of B4 if and only if o is a functor from A to B.

(9)  For every morphism f of B4 there exist functors F, Fy from A to B
and there exists a natural transformation ¢ from Fy to F5 such that Fj
is naturally transformable to F5 and dom f = F} and cod f = F5 and

[ ={(F1, F2), t).

2. THE ISOMORPHISM BETWEEN A®(©™M) AnD A

Let us consider A, B, and let a be an object of A. The functor a — B yields a
functor from B4 to B and is defined by:

(Def.1)  for all functors Fy, F, from A to B and for every natural transformation
t from Fy to Fy such that F} is naturally transformable to F5 holds (a —

B)(((F17 F2>7 t)) = t(a)'
One can prove the following two propositions:
(10)  The objects of ©(0,m) = {o} and the morphisms of O(o,m) = {m}.
(11)  ASm) >~ 4
3. THE ISOMORPHISM BETWEEN CF4B1 anp (CB)"

Next we state four propositions:

(12)  For every functor F from [ A, B ] to C and for every object a of A and
for every object b of B holds F(a,—)(b) = F({a, b}).

(13)  For all objects a1, as of A and for all objects by, by of B holds
hom(ay,as) # 0 and hom(by,be) # 0 if and only if hom({ay, b1), (as,
ba)) # 0.
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(14) Let aj, az be objects of A. Then for all objects by, by of B such that
hom({a1, b1), {(ag, b2)) # 0 and for every morphism f of A and for every
morphism g of B holds (f, g) is a morphism from (a1, b1) to {(ag, be) if
and only if f is a morphism from a; to as and g is a morphism from b
to bg.

(15)  For all functors Fy, F» from [ A, B] to C such that F; is naturally
transformable to Fy and for every natural transformation t from F} to
F, and for every object a of A holds F(a,—) is naturally transformable
to Fy(a,—) and (curryt)(a) is a natural transformation from F}(a,—) to
F: 2 (CL, —).

Let us consider A, B, C, and let F' be a functor from [ A, B] to C, and
let f be a morphism of A. The functor curry(F, f) yields a function from the
morphisms of B into the morphisms of C' and is defined by:

(Def.2)  curry(F, f) = (curry F)(f).
The following two propositions are true:

(16)  For all objects a1, az of A and for all objects by, by of B and for every
morphism f of A and for every morphism g of B such that f € hom(ay,as)
and ¢g € hom(by,bs) holds (f, g) € hom({aq, b1), {az, b2)).

(17)  For every functor F from [ A, B ] to C and for all objects a, b of A such
that hom(a,b) # () and for every morphism f from a to b holds F(a,—)
is naturally transformable to F'(b, —) and curry(F, f) - the id-map of B is
a natural transformation from F(a,—) to F(b, —).

Let us consider A, B, C, and let F be a functor from [ A, B] to C, and let
f be a morphism of A. The functor F(f, —) yielding a natural transformation
from F(dom f,—) to F(cod f,—) is defined by:
(Det.3)  F(f,—) = curry(F, f) - the id-map of B.
We now state four propositions:

(18)  For every functor F from [ A, B] to C and for every morphism g of A
holds F(dom g, —) is naturally transformable to F'(cod g, —).

(19)  For every functor F from [ A, B] to C and for every morphism f of A
and for every object b of B holds F(f,—)(b) = F((f, idp)).

(20)  For every functor F' from [ A, B ] to C and for every object a of A holds
idF(%_) == F(ida, —)

(21)  For every functor F' from [ A, B] to C' and for all morphisms g, f of
A such that dom g = cod f and for every natural transformation ¢ from
F(dom f,—) to F(domg,—) such that ¢t = F(f,—) holds F(g- f,—) =
F(gv _) °t.

Let us consider A, B, C, and let F' be a functor from [ A, B] to C. The
functor export(F) yielding a functor from A to C' B is defined as follows:
(Def.4)  for every morphism f of A holds (export(F))(f) = ({(F(dom f,—),
F(COdfv _))7 F(fa _))

We now state several propositions:
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(22)  For every functor F' from [ A, B to C and for every morphism f of A
holds (export(F))(f) = ((F(dom f, =), F(cod f,—)), F(f,—))-
(23)  For all functors Fy, F5 from A to B such that F} is transformable to Fb

and for every transformation t from F; to F5 and for every object a of A
holds t(a) € hom(F;(a), F2(a)).

(24)  For every functor F from [ A, B to C and for every object a of A holds
(export(F'))(a) = F(a,—).

(25)  For every functor F' from [ A, B] to C and for every object a of A holds
(export(F'))(a) is a functor from B to C.

(26) For all functors Fy, Fy from [ A, B] to C such that export(F}) =
export(Fy) holds F = Fy.

(27) Let Fy, Fy be functors from [ A, B] to C. Suppose Fj is naturally
transformable to Fy. Let t be a natural transformation from Fy to F5.
Then export(F}) is naturally transformable to export(F3) and there ex-
ists a natural transformation G from export(F}) to export(Fs) such that
for every function s from [ the objects of A, the objects of B] into the
morphisms of C such that ¢ = s and for every object a of A holds
G(a) = {{(export(F1))(a), (export(F2))(a)), (curry s)(a)).

Let us consider A, B, C, and let Fy, F; be functors from [ A, B] to C
satisfying the condition: F} is naturally transformable to Fy. Let ¢t be a nat-
ural transformation from Fj to Fy. The functor export(t) yielding a natural
transformation from export(F;) to export(Fy) is defined as follows:

(Def.5)  for every function s from [the objects of A, the objects of B into

the morphisms of C such that ¢ = s and for every object a of A holds
(export(t))(a) = ({(export(F1))(a), (export(F2))(a)), (curry s)(a)).
We now state several propositions:

(28)  For every functor F' from [ A, B{ to C holds idexport(r) = export(idg).

(29)  For all functors Fy, Fy, F3 from [ A, B] to C such that F is naturally
transformable to Fy and Fj is naturally transformable to F3 and for every
natural transformation ¢1 from Fj to F5 and for every natural transfor-
mation to from Fy to F3 holds export(ty © t1) = export(te) © export(ty).

(30)  For all functors Fy, Fy from [ A, B] to C such that F; is naturally
transformable to Fy and for all natural transformations ¢1, ¢t from F} to
F;, such that export(t1) = export(ts) holds t; = ts.

(31)  For every functor G from A to CP there exists a functor F from | A,
B to C such that G = export(F).

(32)  For all functors F1, F» from [ A, B] to C such that export(F}) is nat-
urally transformable to export(F2) and for every natural transformation
t from export(Fy) to export(F») holds F is naturally transformable to

F5 and there exists a natural transformation u from Fj to Fy such that
t = export(u).
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Let us consider A, B, C. The functor export, 5~ yields a functor from
CtA B to (CP)A and is defined by:

(Def.6)  for all functors Fy, F from [ A, B {to C such that F} is naturally trans-

formable to F5 and for every natural transformation ¢ from F} to F5 holds

export 4 g o(({(F1, F»), t)) = ({export(F), export([3)), export(t)).
Next we state two propositions:
(33) export, p o is an isomorphism.
(34) CEABI= (CB)A,

4. THE ISOMORPHISM BETWEEN [B, ] AND [BA,C4]

We now state the proposition

(35)  For all functors Fy, F» from A to B and for every functor G from B
to C such that F} is naturally transformable to F and for every natural
transformation ¢ from F; to F5 holds G -t = G - t qua a function .

We now define two new functors. Let us consider A, B. Then m1(A x B) is

a functor from [ A, B{ to A. Then m(A x B) is a functor from [ A, B] to B.
Let us consider A, B, C, and let I’ be a functor from A to B, and let G be a
functor from A to C. Then (F,G) is a functor from A to [ B, C']. Let F be a
functor from A to [ B, C']. The functor ;- F yielding a functor from A to B is
defined as follows:

(Def?) 7T1-F=7['1(BXC)‘F.
The functor mo- F' yielding a functor from A to C is defined by:

(Def8) WQ-FITFQ(BXC)‘F.

The following two propositions are true:
(36)  For every functor F' from A to B and for every functor G from A to C'
holds 71+ (F,G) = F and my- (F,G) = G.
(37)  For all functors F, G from A to [ B, C'{ such that m1- F = m;- G and
mo F = mo G holds F = G.
We now define two new functors. Let us consider A, B, C, and let Fy, Fy
be functors from A to [ B, C'], and let ¢t be a natural transformation from F}
to F5. The functor 71 ¢ yielding a natural transformation from - F; to m1- F5
is defined as follows:
(Def9) 7T1-t:7r1(BXC)‘t.
The functor 7ot yielding a natural transformation from 7o 7 to 7o Fh is defined
as follows:
(Def.lO) ﬂg-t:ﬂg(BXC)‘t.

We now state several propositions:
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(38)  For all functors F', G from A to [ B, C'{ such that F' is naturally trans-
formable to G holds 71 - F' is naturally transformable to 71+ G and 7o F
is naturally transformable to mo- G.

(39) For all functors Fy, Fy, Gy, Gy from A to [ B, C'] such that Fj is
naturally transformable to Fy and (G is naturally transformable to G
and for every natural transformation s from F; to F5 and for every natural

transformation ¢t from G7 to Go such that m1-s = 71t and m9- s = mg- t
holds s = ¢.

(40)  For every functor F' from A to [ B, C'] holds idr.r = 71- (idr) and
idm.p =Ty (idF).

(41)  For all functors F', G, H from A to [ B, C'{ such that F' is naturally
transformable to G and G is naturally transformable to H and for every
natural transformation s from F' to G and for every natural transforma-
tion ¢ from G to H holds mq- (t°s) = my-t°m-s and wo- (t° s) = mo-t° mo- S.

(42)  For every functor F from A to B and for every functor G from A to
C and for all objects a, b of A such that hom(a,b) # 0 and for every
morphism f from a to b holds (F,G)(f) = (F(f), G(f))-

(43)  For every functor F' from A to B and for every functor G from A to C
and for every object a of A holds (F,G)(a) = (F(a), G(a)).

(44)  For all functors F1, G from A to B and for all functors F, G2 from A

to C such that F} is transformable to G and F5 is transformable to G
holds (F}, F5) is transformable to (G1, G2).

Let us consider A, B, C, and let F}, G1 be functors from A to B, and let
F5, G5 be functors from A to C' satisfying the condition: F} is transformable to
G1 and Fj is transformable to Ga. Let t; be a transformation from Fj to Gy,
and let ¢y be a transformation from Fy to Gy. The functor (t,ts) yielding a
transformation from (Fy, Fy) to (G1,G2) is defined as follows:

(Def.ll) <t1,t2> = <t1,t2>.
One can prove the following propositions:

(45)  For all functors Fy, G from A to B and for all functors F», G2 from A to
C such that Fj is transformable to G and F5 is transformable to G and
for every transformation ¢; from F; to G; and for every transformation
to from Fy to G and for every object a of A holds (t1,t2)(a) = (t1(a),
ta(a)).

(46)  For all functors Fy, G from A to B and for all functors Fy, Go from
A to C such that Fj is naturally transformable to G1 and F5 is naturally
transformable to G holds (F}, F5) is naturally transformable to (G1,G3).

Let us consider A, B, C, and let Fy, GG1 be functors from A to B, and
let Fy, G be functors from A to C satisfying the conditions: F}y is naturally
transformable to G7 and F5 is naturally transformable to G5. Let t; be a natural
transformation from F; to Gy, and let t9 be a natural transformation from F,

to G2. The functor (t1,t2) yielding a natural transformation from (F}, F) to
(G1, Ga) is defined as follows:
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(Def.lQ) <t1, t2> = <t1, t2>.
Next we state the proposition
(47)  For all functors Fy, G; from A to B and for all functors Fy, G2 from

A to C' such that Fj is naturally transformable to G; and F5 is naturally
transformable to GGo and for every natural transformation ¢1 from Fj to G
and for every natural transformation ¢5 from Fb to G holds my-(t1,t2) = ¢4
and 7y- <t1,t2> = to.

Let us consider A, B, C. The functor distribute, g ¢ yielding a functor

from [ B, C 1" to | BA, C*] is defined by:

(Def.13)

[1]
2]

3]
[4]
[5]
(6]
[7]

8]
[9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]

[17]

for all functors Fy, Fy from A to [ B, C'{ such that Fj is naturally
transformable to F5 and for every natural transformation ¢ from F}y to Fy
holds diStI‘ibuteA7B7c(<<F1, Fg), t)) = ((<7T1-F1, 7T1'F2>, 7T1-7f), ((7T2'F1,
o Fo), ma- t)).

One can prove the following two propositions:
(48)
(49)

distributey p ¢ is an isomorphism.
[B, Ci = BA C4).
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The Lattice of Domains of a Topological
Space !
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Nagano

Summary. Let T be a topological space and let A be a subset of
T. Recall that A is said to be a closed domain of T if A =Int A and A
is said to be an open domain of T if A = Int A (see e.g. [8], [15]). Some
simple generalization of these notions is the following one. A is said to
be a domain of T provided Int A C A C Tnt A (see [15] and compare [7]).
In this paper certain connections between these concepts are introduced
and studied.

Our main results are concerned with the following well-known theo-
rems (see e.g. [9], [2]). For a given topological space all its closed domains
form a Boolean lattice, and similarly all its open domains form a Boolean
lattice, too. It is proved that all domains of a given topological space
form a complemented lattice. Moreover, it is shown that both the lattice
of open domains and the lattice of closed domains are sublattices of the
lattice of all domains. In the beginning some useful theorems about sub-
sets of topological spaces are proved and certain properties of domains,
closed domains and open domains are discussed.

MML Identifier: TDLAT_1.

The terminology and notation used in this paper are introduced in the following
articles: [14], [11], [4], [5], [16], [3], [13], [10], [15], [1], [12], and [6].

1. PRELIMINARY THEOREMS ON SUBSET OF TOPOLOGICAL SPACES

In the sequel T is a topological space. We now state a number of propositions:
(1) For all subsets A, B of T' holds AU B = Qr if and only if A° C B.
(2)  For all subsets A, B of T holds AN B = if and only if B C A°.

!This paper was done under the supervision of Z. Karno while the author was visiting the
Institute of Mathematics of Warsaw University in Bialystok.
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(3)  For every subset A of T holds Int A C A.

(4)  For every subset A of T holds Int A C Int Int A.

(5)  For every subset A of T holds Int A = Int Int A.

(6) For all subsets A, B of T such that A is closed or B is closed holds

Int AU Int B = Int(A U B).

(7)  For all subsets A, B of T such that A is open or B is open holds
Int ANInt B =Int AN B.

(8)  For every subset A of T holds Int(A N A€) = Q.
(9)  For every subset A of T" holds A U Int(A¢) = Q.

(10)  For all subsets A, B of T holds Int AU (Int BU B)U(AU (Int BUB)) =
Int AUBU (AU B).

(11)  For all subsets A, C of T holds IntInt AUAUC U (Int AUAUC) =
ItAUCU(AUC).

(12)  For all subsets A, B of T holds Int(A N (Int BN B))N(AN(Int BNB)) =
Int(ANB)N (AN B).

(13)  For all subsets A, C of T holds Int(Int AN ANC)N(Int ANANC) =
Int(ANC)N(ANCQC).

2. PROPERTIES OF DOMAINS OF TOPOLOGICAL SPACES

In the sequel T will be a topological space. Next we state a number of proposi-
tions:

(14) 07 is a domain.

(15)  Qr is a domain.

(16)  For every subset A of T such that A is a domain holds A€ is a domain.
(17)

17 For all subsets A, B of T such that A is a domain and B is a domain
holds Int A U BU(AUB) is a domain and Int(A N B)N(ANB) is a domain.

(18) O is a closed domain.

(19) Qg is a closed domain.

(20)  (p is an open domain.

(21) Qg is an open domain.

(22)  For every subset A of T holds Int A is a closed domain.

(23)  For every subset A of T holds Int A is an open domain.

(24)  For every subset A of T such that A is a domain holds A is a closed

domain.

(25)  For every subset A of T' such that A is a domain holds Int A is an open
domain.

(26)  For every subset A of T such that A is a domain holds A€ is a closed
domain.
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(27)  For every subset A of T such that A is a domain holds Int(A°) is an
open domain.

(28)  For all subsets A, B, C of T such that A is a closed domain and B is
a closed domain and C is a closed domain holds Int(A N Int(B N C)) =
Int(Int(A N B) N C).

(29) For all subsets A, B, C' of T such that A is an open domain and B

is an open domain and C is an open domain holds Int AUInt BUC =
IntInt AUBUC.

3. THE LATTICE OF DOMAINS

We now define five new functors. Let T' be a topological space. The domains
of T yields a non-empty family of subsets of the carrier of T and is defined as
follows:

(Def.1)  the domains of T'= {A : A is a domain}, where A ranges over subsets
of T

The domains union of T yielding a binary operation on the domains of T is
defined by:
(Def.2)  for all elements A, B of the domains of T holds (the domains union of
T)(A, B)=Int AUBU (AU B).
We introduce the functor D-Union(7") as a synonym of the domains union of 7.
The domains meet of T yields a binary operation on the domains of T and is
defined as follows:

(Def.3)  for all elements A, B of the domains of T holds (the domains meet of
T)(A, B)=Int(ANB)N (AN B).
We introduce the functor D-Meet(7T) as a synonym of the domains meet of 7.
One can prove the following proposition

(30)  For every topological space T holds (the domains of T, D-Union(T),
D-Meet(T)) is a complemented lattice.

Let T be a topological space. The lattice of domains of 1" yields a comple-
mented lattice and is defined by:

(Def.4)  the lattice of domains of T' = (the domains of T',the domains union of
T, the domains meet of T).

4. THE LATTICE OF CLOSED DOMAINS

Let T be a topological space. The closed domains of T yielding a non-empty
family of subsets of the carrier of 1" is defined as follows:
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(Def.5)  the closed domains of 7= {A : A is a closed domain}, where A ranges
over subsets of T'.
Next we state the proposition
(31)  For every topological space T holds the closed domains of 7' C the
domains of T'.

We now define two new functors. Let T be a topological space. The closed
domains union of 7" yielding a binary operation on the closed domains of T is
defined by:

(Def.6)  for all elements A, B of the closed domains of 7" holds (the closed
domains union of T')(A, B) = AU B.

We introduce the functor CLD-Union(7") as a synonym of the closed domains
union of 7.
Next we state the proposition
(32)  For all elements A, B of the closed domains of 7" holds
(CLD-Union(T"))(A, B) = (D-Union(T"))(A, B).

We now define two new functors. Let T be a topological space. The closed
domains meet of T yielding a binary operation on the closed domains of T is
defined as follows:

(Detf.7)  for all elements A, B of the closed domains of T" holds (the closed
domains meet of T')(A, B) = Int(AN B).
We introduce the functor CLD-Meet(7') as a synonym of the closed domains
meet of T'.

One can prove the following two propositions:

(33)  For all elements A, B of the closed domains of 7" holds (CLD-Meet(T))(A,
B) = (D-Meet(T'))(A, B).

(34)  For every topological space T holds (the closed domains of
T, CLD-Union(T'), CLD-Meet(T'))
is a Boolean lattice.

Let T be a topological space. The lattice of closed domains of T yielding a
Boolean lattice is defined as follows:

(Def.8)  the lattice of closed domains of T = (the closed domains of T', the closed
domains union of T, the closed domains meet of T').

5. THE LATTICE OF OPEN DOMAINS

Let T be a topological space. The open domains of T yields a non-empty family
of subsets of the carrier of T and is defined by:

(Def.9)  the open domains of 7' = {A : A is an open domain}, where A ranges
over subsets of 7.

Next we state the proposition
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(35)  For every topological space T' holds the open domains of T' C the do-
mains of T

We now define two new functors. Let T be a topological space. The open
domains union of T yielding a binary operation on the open domains of T is
defined by:

(Def.10)  for all elements A, B of the open domains of T" holds (the open domains
union of T')(A4, B) =Int AU B.
We introduce the functor OPD-Union(7") as a synonym of the open domains
union of 7.
One can prove the following proposition
(36)  For all elements A, B of the open domains of T holds (OPD-Union(T"))(A,
B) = (D-Union(T))(A, B).
We now define two new functors. Let T be a topological space. The open

domains meet of T' yielding a binary operation on the open domains of T is
defined by:

(Def.11)  for all elements A, B of the open domains of 7" holds (the open domains
meet of T)(A, B) = AN B.

We introduce the functor OPD-Meet(T") as a synonym of the open domains meet
of T
We now state two propositions:
(37)  For all elements A, B of the open domains of T holds (OPD-Meet(T))(A4,
B) = (D-Meet(T))(A, B).
(38)  For every topological space T" holds (the open domains of
T, OPD-Union(7T), OPD-Meet(T))
is a Boolean lattice.

Let T be a topological space. The lattice of open domains of T yielding a
Boolean lattice is defined by:

(Def.12)  the lattice of open domains of 7' = (the open domains of T, the open
domains union of 7', the open domains meet of T').

6. CONNECTIONS BETWEEN LATTICES OF DOMAINS

In the sequel T" will be a topological space. The following propositions are true:

(39) CLD-Union(7T') = D-Union(T') | [ the closed domains of T', the closed
domains of T'{.

(40)  CLD-Meet(T') = D-Meet(T') I [ the closed domains of T, the closed do-
mains of T'].

(41)  The lattice of closed domains of T is a sublattice of the lattice of domains
of T.

(42)  OPD-Union(T") = D-Union(7') | [ the open domains of T', the open do-
mains of 7.
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(43)

(44)

TOSHIHIKO WATANABE

OPD-Meet(T) = D-Meet(T') | [ the open domains of T, the open do-
mains of 7.

The lattice of open domains of T is a sublattice of the lattice of domains
of T.
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Summary. This article contains the notions of trivial and non-
trivial leftmodules and rings, cyclic submodules and inclusion of sub-
modules. A few basic theorems related to these notions are proved.
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The notation and terminology used here are introduced in the following papers:
[15], [16], [3], [4], [2], [1], [5], [6], [7], [14], [9], [13], [12], [10], [11], and [8].

1. PRELIMINARIES

For simplicity we adopt the following rules: x is arbitrary, K denotes an asso-
ciative ring, r denotes a scalar of K, V', M, My, Mo, N denote left modules over
K, a denotes a vector of V, m, mq, my denote vectors of M, n, ny, no denote
vectors of N, A denotes a subset of V', [ denotes a linear combination of A, and
W, Wy, Ws, W3 denote submodules of V. Next we state four propositions:

(1) If My = the left module structure of My, then x € M if and only if
x € M.

(2)  For every vector v of the left module structure of V' such that a = v
holds r-a =17 -w.

(3)  The left module structure of V' is a strict submodule of V.

(4) V is a submodule of Qy.
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2. TRIVIAL AND NON-TRIVIAL MODULES AND RINGS

We now define two new predicates. Let us consider K, V. We say that V is
non-trivial if and only if:

(Def.1)  there exists a vector a of V' such that a # Oy.
Let us consider K. We say that K is non-trivial if and only if:
(Def.2) OK 75 1[{.

We now state three propositions:

(5) If K is trivial, then for every r holds r = Ok and for every a holds
a = @V.

(6) If K is trivial, then V is trivial.

(7)  V is trivial if and only if the left module structure of V' = 0y .

3. SUBMODULES AND SUBSETS

We now define two new functors. Let us consider K, V', and let W be a strict
submodule of V. The functor é(W) yields an element of Sub(V') and is defined
by:
(Det.3)  &W)=W.
The functor ¢(V') yields a non-empty subset of V' and is defined as follows:
(Def.4)  ¢(V') = the carrier of V.

The following two propositions are true:

(8)  For all sets X, Y, A such that X CY and A is a subset of X holds A
is a subset of Y.

(9)  Every subset of W is a subset of V.

Let us consider K, V, W, and let A be a subset of W. The functor i(A)
yields a subset of V' and is defined by:

(Def.5) i(A) = A.
Let A be a non-empty subset of W. Then i(A) is a non-empty subset of V.
The following propositions are true:

(10) =z e€¢(V)if and only if x € V.
(11) =z €i(¢(W)) if and only if z € W.
(12) A C¢(Lin(A)).
(13) If A# 0 and A is linearly closed, then Y"1 € A.
(14) If ©y € A and A is linearly closed, then Y 1 € A.
(15) If Oy € A and A is linearly closed, then A = ¢(Lin(A)).
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4. CYCLIC SUBMODULES

Let us consider K, V, a. Then {a} is a non-empty subset of V. The functor
[T a yielding a strict submodule of V' is defined by:

(Def.6) I["a = Lin({a}).

5. INCLUSION OF LEFT R-MODULES

Let us consider K, M, N. The predicate M C N is defined as follows:
(Def.7) M is a submodule of N.

We now state a number of propositions:

(16) If M C N, then if z € M, then = € N but if x is a vector of M, then z
is a vector of N.

(17)  Suppose M C N. Then
(i) Oy =06y,
(ii)  if my; = n; and mg = ng, then my + mg = ny + ng,
(i) if m=n, thenr-m=r-n,
(iv) if m =n, then —n = —m,
(v) if m; = ny and mg = ng, then m; — mg = ny — no,
(Vi) Oy € M,
(Vii) Oup €N,
(viii) if ny € M and ng € M, then ny +ny € M,
(ix) ifneM,thenr-neM,
(x) ifne M, then —n e M,
(xi) ifny € M and ny € M, then ny —ng € M.
(18)  Suppose M} C N and My C N. Then
(i)  Owm = O,
(ii) @M1 € M,
(iii)  if the carrier of M; C the carrier of Ms, then M; C Mo,
(iv)  if for every n such that n € My holds n € My, then M; C Mo,
v)

if the carrier of M; = the carrier of My and M is strict and My is
strict, then M7 = Ms,
(Vi) 0]\/[1 - MQ.
(19) Wi +WyCVand WiNW, CV.

(200 N CN.
(21)  For all strict left modules V', M over K such that V. C M and M CV
holds V = M.

(22) IV CMand M CN,thenV CN.
(23) If M C N, then 0)y C N.
(24) If M C N, then Oy C M.
(25) If M C N, then M C Q.
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Wi C Wi+ Wy and Wo € Wy + Wa.

WiN Wy CWp and Wi N Wy C W,

If W7 C Wy, then Wi N W3 C Wy N Ws.

If W7 € W3, then W7 N Wy C W3,

If Wy € Wy and Wy C W3, then Wy C Wo N W,

WinNnWy C Wy + Wh.

WinNnWy+ Won Wy QWQQ(Wl—FWg).

If W7 € Wy, then Wy N (Wl + Wg) =WiNWy +WynN Ws.
Wo+WiNWs C (Wl + Wg) N (Wa + Ws).

If W; C Wy, then Wo + W1 N W3 = (W) + Wa) N (Wa + W3).

If W7 C Wy, then W7 C Wy 4+ Wiy,

If W7 C W3 and Wy C W3, then Wy + Wy C Wi,

For all subsets A, B of V such that A C B holds Lin(A) C Lin(B).
For all subsets A, B of V holds Lin(AN B) C Lin(A) N Lin(B).

If My C Ms, then (;(Ml) - (;(MQ).

W1 C Wh if and only if for every a such that a € Wy holds a € Whs.
W1 C Wy if and only if ¢(W;) C ¢(Wa).

Wy € Wy if and only if 1(¢(W7)) Ci(¢(Wa)).

OW - V and 0\/ - W and 0W1 - WQ.
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Summary. Axiomatic description of properties of the oriented
orthogonality relation. Next we construct (with the help of the oriented
orthogonality relation) vector space and give the definitions of left-, right-,
and semi-transitives.
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The articles [1], [6], [7], [5], [3], [2], [4], and [8] provide the notation and termi-
nology for this paper. In the sequel V will be a real linear space, A; will be
an affine structure, and x, y will be vectors of V. One can prove the following
propositions:

(1)  Suppose z, y span the space. Then

(i) for all elements u, u1, v, v1, w, wy, we of the carrier of CESpace(V, z,y)
holds w,uT~”v,w and w,vT~w,w but if u,vT uy,v; and u,vT vy, uq,
then v = v or uy = vy but if u,vT~u1,v1 and u,vT ~uy, w, then u,vT vy, w
or u,v T w,v; but if u,vT uy, vy, then v,uT vy, uq but if u,vT  uy, vy
and u,v T~ vy, w, then u,vT~uy,w but if u,u; T-v, vy, then v,v1 T u, uy
or v,v1 T u1,u,

(ii)  for every elements u, v, w of the carrier of CESpace(V,z,y) there
exists an element uy of the carrier of CESpace(V,z,y) such that w # uy
and w,u1 T~ u, v,

(iii)  for every elements u, v, w of the carrier of CESpace(V,z,y) there
exists an element u; of the carrier of CESpace(V,z,y) such that w # u;
and u, v T 7w, uy.

(2)  Suppose x, y span the space. Then

(i) for all elements u, uy, v, v1, w, wi, wy of the carrier of CMSpace(V, z,y)
holds w,uT”v,w and w,vT~w,w but if u,vT uy,v; and u,vT vy, uq,
then v = v or uy; = vy but if u,vT~uy,v1 and u,vT ~uy, w, then u,vT vy, w
or u,v T w,vy; but if u,vT uy, vy, then v,uT v, u; but if u,vT  uy, vy
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and u,v T~ vy, w, then u,vT~uy,w but if u,u; T7v, vy, then v,v1 T u, uy
or v,v1 T uy,u,

(ii)  for every elements u, v, w of the carrier of CMSpace(V,x,y) there
exists an element u; of the carrier of CMSpace(V, x,y) such that w # uy
and w,u1 T~ u, v,

(iii)  for every elements u, v, w of the carrier of CMSpace(V,x,y) there
exists an element u; of the carrier of CMSpace(V,x,y) such that w # u;
and u, v T~ w, u;.

We now define two new constructions. An affine structure is oriented orthog-

onality if it satisfies the conditions (Def.1).

(Def.1) (i) For all elements w, uj, v, v1, w, wy, we of the carrier of it holds
u,uT v, w and u,v T w,w but if uw,vT u,v; and w,vT vy, uq, then
u = v or u; = vy but if u,vT”uy,v1 and u,vT~uy,w, then u,vT v, w
or u,v T w,vy; but if u,vTu, vy, then v,uT vy, up but if w,vT " ug, vy
and u,vT~v1,w, then u,vT~uy,w but if u,u; T-v, v, then v,v1 T u, uy
or v,v1 T u1,u,
(ii)  for every elements u, v, w of the carrier of it there exists an element
up of the carrier of it such that w # w; and w,u; T~ u, v,
(iii)  for every elements u, v, w of the carrier of it there exists an element
up of the carrier of it such that w # w; and w,vT~w, u;.

An oriented orthogonality space is an oriented orthogonality affine structure.
Next we state three propositions:

(3)  The following conditions are equivalent:
(i) for all elements u, ui, v, v, w, wy, wy of the carrier of A; holds

u,uT v, w and w,v T w,w but if u,vT us,v; and w,vT " vy,uq, then
u = v or u; = vy but if u,v T uy,v1 and u,vT~uq,w, then u,vT v, w
or u,v T w,v; but if u,vT uy, vy, then v,uT vy, uy but if w,vT  ug, vy
and u,v T~ vy, w, then u,vT~uqy,w but if u,u; T-v, v, then v,v1 T u, uy
or v,v1 T ~uy,u and for every elements u, v, w of the carrier of Ay there
exists an element u; of the carrier of A; such that w # uy and w,u; T~ u, v
and for every elements u, v, w of the carrier of A1 there exists an element
uyp of the carrier of Ay such that w # vy and u,vT~w, uy,

(ii)  Aj is an oriented orthogonality space.

(4) If z, y span the space, then CMSpace(V,x,y) is an oriented orthogo-
nality space.

(5)  Ifx, y span the space, then CESpace(V, x,y) is an oriented orthogonality
space.

We follow a convention: A; will denote an oriented orthogonality space and
u, u1, U, v, V1, V2, w, wi will denote elements of the carrier of A;. We now
state three propositions:

(6) For every elements u, v, w of the carrier of A; there exists an element
up of the carrier of Ay such that wy,w T u,v and u; # w.

(7)  For all elements u, v, w of the carrier of Ay holds u,vT~w,w.
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(8)  For every elements u, v, w of the carrier of A; there exists an element
uy of the carrier of Ay such that u # uy but v, w T u,u; or v,w T uy, u.

We now define several new constructions. Let A; be an oriented orthogonality
space, and let a, b, ¢, d be elements of the carrier of A1. The predicate a,b L ¢,d
is defined by:

(Def.2)  a,bT~”¢,d or a,bT~d,c.
Let a, b, ¢, d be elements of the carrier of A;. The predicate a,b || ¢,d is defined
as follows:
(Def.3)  there exist elements e, f of the carrier of A; such that e # f and
e,fT”a,band e, fT c,d.
An oriented orthogonality space is semi transitive if:

(Def.4)  for all elements u, uy, ug, v, v1, vy, w, wy of the carrier of it such that
u,u; T-v,v1 and w,w; T~ v,v1 and w,w; T~ ug,vs holds w = wy or v = vy
or u,u; 1~ us, vVa.

An oriented orthogonality space is right transitive if:

* 9 9 9 ) 9 9 )

(Def.5)  for all elements u, uy, ug, v, v, va, w, wy of the carrier of it such that
u,u1 T-v,v1 and v,v1 T~ w, w1 and ug, vo T~ w,w; holds w = wq or v = vy
or u,u1 T~ usg, vo.

An oriented orthogonality space is left transitive if:

(Def.6)  for all elements w, uy, ug, v, v1, vy, w, wy of the carrier of it such that
u,u1 T-v,v1 and v,v1 T~ w,w; and w,u1 T~ ug, vy holds u = u; or v = vy
or us, vy T~ w, wy.

An oriented orthogonality space is Euclidean like if:

(Def.7)  for all elements u, ui, v, v; of the carrier of it such that u,u; T~ v, v;
holds v, v1 T uq, u.

An oriented orthogonality space is Minkowskian like if:

(Def.8)  for all elements u, u1, v, v1 of the carrier of it such that w,u; T~ v, v
holds v, v1 T~ u, uy.

One can prove the following propositions:
9)  w,uq | w,w and w,w I u,u;.
(10)
(11)  If w,uq [ v,v1, then uy,u | vy,v.
(12)

If u,uy 1| v,v1, then v,v1 || w,uy.

Aj is left transitive if and only if for all v, vy, w, w1, ue, ve such that

v,v1 || w2, vy and v, v1 T7w, w; and v # vy holds ug, v T~ w, w;.

(13)  A; is semi transitive if and only if for all w, u1, ug, v, v1, vy such that
w,up T-v,v1 and v, v1 1| ug,v2 and v # vy holds u, uy T~ ug, va.

(14) If A; is semi transitive, then for all u, uy, v, v, w, wy such that u,uy 1]
v,v1 and v,v1 || w,wy and v # vy holds u,u; | w,w;.

(15)  If z, y span the space and A; = CESpace(V, x,y), then A; is Euclidean

like, left transitive, right transitive and semi transitive.

99
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One can readily verify that there exists an oriented orthogonality space which
is Euclidean like, left transitive, right transitive and semi transitive.

We now state the proposition

(16) If x, y span the space and A; = CMSpace(V, z,y), then
Ay is Minkowskian like, left transitive, right transitive and semi transitive.

Let us note that there exists an oriented orthogonality space which is Min-
kowskian like, left transitive, right transitive and semi transitive.

Next we state four propositions:

(17)  If Ay is left transitive, then A; is right transitive.

(18)  If Aj is left transitive, then A; is semi transitive.

(19) If Ay is semi transitive, then A; is right transitive if and only if for all
u, Ui, v, v1, U2, vy such that u,u; T7ug, vy and v, v, T~ usg, vo and us # vy
holds w, uq 1 v, v1.

(20) If A; is right transitive but A; is Euclidean like or A; is Minkowskian
like, then Aj is left transitive.
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Summary. Let K = (S;K,0,1,+,-) be a ring. The structure
PK = (S; K,0,1,+, e) is called anti-ring, if « ¢ 8 = - « for elements
a, B of K [12, pages 5-7]. It is easily seen that °°K is also a ring. If
V is a left module over K, then V is a right module over °K. If W
is a right module over K, then W is a left module over °°K. Let K, L
be rings. A morphism J : K — L is called anti-homomorphism, if
J(a - B) = J(B) - J(a) for elements o, S of K. If J : K — L is a
homomorphism, then J : K — °PL is an anti-homomorphism. Let K, L
be rings, V, W left modules over K, L respectively and J : K — L an
anti-monomorphism. A map f : V — W is called J - semilinear, if

flx4+y) = f(z) + f(y) and f(a-z) = J() - f(z) for vectors x,y of V
and a scalar « of K.

MML Identifier: MOD_4.

The papers [19], [18], [21], [3], [4], [1], [20], [17], [2], [7], [8], [11], [14], [15], [16],
[5], [6], [9], [13], and [10] provide the notation and terminology for this paper.

1. OPPOSITE FUNCTIONS

In the sequel A, B, C are non-empty sets and f is a function from [ A, B into
C'. Let us consider A, B, C, f. Then f is a function from | B, A] into C.

We now state the proposition

(1) For every element x of A and for every element y of B holds f(z,
y) = ()Y, ).
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2. OPPOSITE RINGS

In the sequel K, L will be field structures. Let us consider K. The functor °°P K
yielding a strict field structure is defined by:

(Def.1)  °PK = (the carrier of K, ~(the multiplication of K), the addition of K,

the reverse-map of K, the unity of K, the zero of K).

We now state four propositions:

(2)  The group structure of °° K = the group structure of K and for an
arbitrary x holds z is a scalar of °P K if and only if x is a scalar of K.

(3)  °P(°PK) = the field structure of K.

(4) 1) Og = 0ok,

(i) 1x = lovg,

(iii)  for all scalars x, y, z, u of K and for all scalars a, b, ¢, d of °°K such
that x = aandy =band z = cand u = d holds x+y = a+b and -y = b-a
and —z = —cand z+y+z=a+b+cand z+ (y+2) =a+ (b+c) and
(z-y)-z=c-(bra)andz-(y-2)=(c-b)-aandx-(y+2)=(b+c)-a
and (y+z2)-z=a-(b+c)andz-y+z-u=b-a+d-c

(5) For every ring K holds °PK is a strict ring.

Let K be aring. Then °PK is a strict ring.

One can prove the following proposition

(6) For every associative ring K holds °PK is an associative ring.

Let K be an associative ring. Then °PK is a strict associative ring.

Next we state the proposition

(7)  For every skew field K holds °PK is a skew field.

Let K be a skew field. Then °PK is a strict skew field.

One can prove the following proposition

(8)  For every field K holds °PK is a strict field.

Let K be a field. Then °PK is a strict field.

3. OPPOSITE MODULES

In the sequel V' denotes a left module structure over K. Let us consider K, V.
The functor °PV yields a strict right module structure over °°? K and is defined
as follows:

(Def.2)  for every function o from [ the carrier of V, the carrier of °°K ] into the

carrier of V such that o = ~\(the left multiplication of V') holds PV = (the
carrier of V,the addition of V,the reverse-map of V,the zero of V, o).
The following proposition is true

(9) The group structure of °°V = the group structure of V and for an
arbitrary z holds z is a vector of V if and only if x is a vector of °PV.
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Let us consider K, V, and let o be a function from [the carrier of K, the
carrier of V' { into the carrier of V. The functor °Po yields a function from [ the
carrier of °PV, the carrier of °° K | into the carrier of °®V and is defined by:

(Def.3)  °Po = .
One can prove the following two propositions:
(10)  The right multiplication of °®V = °P(the left multiplication of V).
(11)  °PV = (the carrier of °PV,the addition of °PV,the reverse-map of °PV,
the zero of °PV, °P(the left multiplication of V')).
In the sequel W denotes a right module structure over K. Let us consider

K, W. The functor °°W yields a strict left module structure over °° K and is
defined by:

(Def.4)  for every function o from [ the carrier of °°K, the carrier of W] into
the carrier of W such that o = ~\(the right multiplication of W) holds
°PW = (the carrier of W, the addition of W, the reverse-map of W, the zero
of W, o).

We now state the proposition

(12)  The group structure of W = the group structure of W and for an
arbitrary z holds x is a vector of W if and only if z is a vector of °°W.

Let us consider K, W, and let o be a function from [the carrier of W, the
carrier of K ] into the carrier of W. The functor °Po yielding a function from
fthe carrier of °PK, the carrier of ®®W | into the carrier of °°W is defined as
follows:

(Def.5)  °Po = «o.

The following propositions are true:

(13)  The left multiplication of °®W = °P(the right multiplication of ).
(14)  °PW = (the carrier of °°W, the addition of °°W, the reverse-map of °PW,
the zero of °PW, °P(the right multiplication of W)).

(15)  For every function o from [ the carrier of K, the carrier of V' ] into the
carrier of V' holds °P(°Po) = o.

(16)  For every function o from [the carrier of K, the carrier of V | into the
carrier of V' and for every scalar x of K and for every scalar y of °° K and
for every vector v of V' and for every vector w of °®V such that x = y and
v = w holds (°Po)(w, y) = o(z, v).

(17)  Let K, L be rings. Then for every V being a left module structure over
K and for every W being a right module structure over L and for every
scalar x of K and for every scalar y of L and for every vector v of V' and
for every vector w of W such that L = °PK and W = °PV and x = y and
v=w holds w-y ==z -wv.

(18)  For all rings K, L and for every V being a left module structure over
K and for every W being a right module structure over L and for all
vectors vy, v9 of V' and for all vectors wy, we of W such that L = PK
and W = °PV and v; = wy and v9 = w9 holds w1 + wy = v1 + v9.
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(19)  For every function o from [the carrier of W, the carrier of K ] into the
carrier of W holds °P(°Po) = o.

(20)  For every function o from [the carrier of W, the carrier of K ] into the
carrier of W and for every scalar x of K and for every scalar y of °° K and
for every vector v of W and for every vector w of °°W such that x = y
and v = w holds (°Po)(y, w) = o(v, x).

(21) Let K, L be rings. Then for every V being a left module structure over
K and for every W being a right module structure over L and for every
scalar x of K and for every scalar y of L and for every vector v of V and
for every vector w of W such that K = °PL and V = °°W and = = y and
v=w holdsw-y=ux-wv.

(22)  For all rings K, L and for every V being a left module structure over
K and for every W being a right module structure over L and for all
vectors vy, v9 of V' and for all vectors wy, we of W such that K = °PL
and V = °°W and v; = wy and va = ws holds w; + wy = vy + vs.

(23)  For every K being a strict field structure and for every V being a left
module structure over K holds °P(°PV') = the left module structure of V.

(24)  For every K being a strict field structure and for every W being a right
module structure over K holds °P(°°?W) = the right module structure of
Ww.

(25)  For every associative ring K and for every left module V' over K holds
°PV/ is a strict right module over °PK.

Let K be an associative ring, and let V' be a left module over K. Then °PV
is a strict right module over P K.

One can prove the following proposition

(26)  For every associative ring K and for every right module W over K holds
OPIV is a strict left module over P K.

Let K be an associative ring, and let W be a right module over K. Then
OPTV is a strict left module over PK.

4. MORPHISMS OF RINGS

We now define several new attributes. Let us consider K, L. A map from K
into L is antilinear if:

(Def.6)  for all scalars x, y of K holds it(z +y) = it(z) +it(y) and for all scalars
x,y of K holds it(z -y) = it(y) - it(x) and it(1x) = 1p.
A map from K into L is monomorphism if:
(Def.7) it is linear and it is one-to-one.
A map from K into L is antimonomorphism if:
(Def.8) it is antilinear and it is one-to-one.
A map from K into L is epimorphism if:
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(Def.9) it is linear and rngit = the carrier of L.
A map from K into L is antiepimorphism if:
(Def.10) it is antilinear and rngit = the carrier of L.
A map from K into L is isomorphism if:
(Def.11) it is monomorphism and rngit = the carrier of L.
A map from K into L is antiisomorphism if:
(Def.12) it is antimonomorphism and rngit = the carrier of L.
In the sequel J denotes a map from K into K. We now define four new
attributes. Let us consider K. A map from K into K is endomorphism if:
(Def.13) it is linear.
A map from K into K is antiendomorphism if:
(Def.14) it is antilinear.
A map from K into K is automorphism if:
(Def.15) it is isomorphism.
A map from K into K is antiautomorphism if:

(Def.16) it is antiisomorphism.

One can prove the following propositions:
(27)  J is automorphism if and only if the following conditions are satisfied:
(i)  for all scalars x, y of K holds J(x +y) = J(z) + J(y),
(ii)  for all scalars x, y of K holds J(x-y) = J(x) - J(y),
i)  J(lg) = 1k,
)
)

e

(
(iv) J is one-to-one,
(v) rngJ = the carrier of K.
(28)  J is antiautomorphism if and only if the following conditions are satis-
fied:
(i)  for all scalars x, y of K holds J(x +y) = J(z) + J(y),
(ii) for all scalars z, y of K holds J(z -y) = J(y) - J(z),
i) J(1x) = L,
(iv) J is one-to-one,
(v) rngJ = the carrier of K.
(29) idg is automorphism.
We follow the rules: K, L will denote rings, J will denote a map from K
into L, and x, y will denote scalars of K. Next we state three propositions:

(30) If J is linear, then J(0x) = 0z and J(—x) = —J(z) and J(z —y) =

J(z) = J(y)-
(31)  If J is antilinear, then J(0x) = 0r, and J(—z) = —J(x) and J(z —y) =
J(z) = J(y)-

(32)  For every associative ring K holds id x is antiautomorphism if and only
if K is a commutative ring.

One can prove the following proposition
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(33)  For every skew field K holds id is antiautomorphism if and only if K
is a field.

5. OPPOSITE MORPHISMS TO MORPHISMS OF RINGS

In the sequel K, L will be field structures and J will be a map from K into L.
Let us consider K, L, J. The functor °®J yielding a map from K into °PL is
defined by:

(Def.17)  °PJ =J.
Next we state several propositions:
4)  °P(°PJ) =J.
) J is linear if and only if °P.J is antilinear.

W w W
S Ot

) J is antilinear if and only if °P.J is linear.

w
|

) J is monomorphism if and only if °P.J is antimonomorphism.
) J is antimonomorphism if and only if °?.J is monomorphism.

(I
Ne)

) J is epimorphism if and only if °P.J is antiepimorphism.

N
(e}

) J is antiepimorphism if and only if °?.J is epimorphism.

W

1)  J is isomorphism if and only if °P.J is antiisomorphism.

AN N N N N N N N
w
(¢

W
o

) J is antiisomorphism if and only if °P.J is isomorphism.

In the sequel J will be a map from K into K. We now state four propositions:
3
44
45
46

W

J is endomorphism if and only if °P.J is antilinear.
J is antiendomorphism if and only if °P.J is linear.
J is automorphism if and only if °PJ is antiisomorphism.

A~~~/

)
)
)
)

J is antiautomorphism if and only if °P.J is isomorphism.

6. MORPHISMS OF GROUPS

In the sequel G, H will denote groups. Let us consider G, H. A map from G
into H is said to be a homomorphism from G to H if:

(Def.18)  for all elements x, y of G holds it(x + y) = it(x) + it(y).
Then zero(G, H) is a homomorphism from G to H.

In the sequel f is a homomorphism from G to H. We now define four
new constructions. Let us consider G, H. A homomorphism from G to H is
monomorphism if:

(Def.19) it is one-to-one.

A homomorphism from G to H is epimorphism if:
(Def.20)  rngit = the carrier of H.

A homomorphism from G to H is isomorphism if:
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(Def.21) it is one-to-one and rngit = the carrier of H.
Let us consider G. An endomorphism of GG is a homomorphism from G to G.
We now state the proposition
(47)  For every element x of G holds idg(z) = =.
We now define two new constructions. Let us consider G. An endomorphism
of G is automorphism-like if:
(Def.22) it is isomorphism.
An automorphism of G is an automorphism-like endomorphism of G.
Then idg is an automorphism of G.
In the sequel x, y will be elements of G. We now state the proposition
(48)  f(0g) =0p and f(—z) = —f(z) and f(z —"y) = f(z) - f(y).
We adopt the following convention: GG, H denote Abelian groups, f denotes

a homomorphism from G to H, and x, y denote elements of G. The following
proposition is true

(49)  flx—y) = f(=) - f(y)

7. SEMILINEAR MORPHISMS

For simplicity we adopt the following rules: K, L are associative rings, J is a
map from K into L, V is a left module over K, and W is a left module over
L. Let us consider K, L, J, V, W. A map from V into W is said to be a
homomorphism from V' to W by J if:
(Def.23)  for all vectors x, y of V holds it(x + y) = it(x) + it(y) and for every
scalar a of K and for every vector z of V holds it(a - z) = J(a) - it(z).

The following proposition is true
(50)  zero(V,W) is a homomorphism from V to W by J.
In the sequel f denotes a homomorphism from V to W by J. We now define
three new predicates. Let us consider K, L, J, V, W, f. We say that f is a
monomorphism wrp J if and only if:
(Def.24)  f is one-to-one.

We say that f is a epimorphism wrp J if and only if:
(Def.25)  rng f = the carrier of W.

We say that f is a isomorphism wrp .J if and only if:
(Def.26)  f is one-to-one and rng f = the carrier of W.

In the sequel J will denote a map from K into K and f will denote a ho-
momorphism from V to V by J. We now define two new constructions. Let us
consider K, J, V. An endomorphism of J and V is a homomorphism from V'
to V by J.

Let us consider K, J, V, f. We say that f is a automorphism wrp .J if and
only if:
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f is one-to-one and rng f = the carrier of V.

In the sequel W is a left module over K. Let us consider K, V, W. A
homomorphism from V to W is a homomorphism from V to W by idg.

Next we state the proposition

(51)

For every map f from V into W holds f is a homomorphism from V to
W if and only if for all vectors x, y of V holds f(z+vy) = f(x)+ f(y) and
for every scalar a of K and for every vector z of V holds f(a-z) = a- f(z).

We now define five new constructions. Let us consider K, V, W. A homo-
morphism from V' to W is monomorphism if:

(Def.28)

it is one-to-one.

A homomorphism from V to W is epimorphism if:

(Def.29)

rngit = the carrier of W.

A homomorphism from V' to W is isomorphism if:

(Def.30)

it is one-to-one and rngit = the carrier of W.

Let us consider K, V. An endomorphism of V' is a homomorphism from V to

V.

An endomorphism of V' is automorphism if:

(Det.31)

Next

(52)
(53)

(54)

[1]
2]
8]
[4]
[5]
(6]

[7]

it is one-to-one and rngit = the carrier of V.

8. ANNEX

we state three propositions:

For every skew field K holds K is a field if and only if for all scalars =z,
yof Kholdsx-y=y-x.

For every K being a field structure holds K is a field if and only if K
is a skew field and for all scalars x, y of K holds x -y =y - x.

For every group G and for all elements z, y, z of G such that z+y = x+=2
holds y = z.
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Summary. The paper contains definitions and basic properties of
Caratheodor’s measure, with values in R, the enlarged set of real numbers,

where R denotes set R = R U {—o00,+00} - by [14]. The article includes
the text being a continuation of the paper [3]. Caratheodor’s theorem and
some theorems concerning basic properties of Caratheodor’s measure are
proved. The work is the sixth part of the series of articles concerning the
Lebesgue measure theory.

MML Identifier: MEASURE4.

The terminology and notation used in this paper have been introduced in the
following papers: [16], [15], [10], [11], [8], [9], [1], [13], [2], [12], [4], [5], [7], [6],
[3], and [17]. One can prove the following propositions:

(1)  For all Real numbers x, y, z such that O < z and O < y and 0z < z
holds (z +y) +z =2+ (y + 2).

(2) For all Real numbers x, y, z such that z # —oo and = # +oo holds
y+ax <zifand only if y <z — z.

(3)  For all Real numbers x, y such that Oz < z and O < y holds z +y =
Y+ x.

(4)  For every set X and for every o-field S of subsets of X and for every
function F' from N into S and for every element A of S and for every
function G from N into S such that for every element n of N holds G(n) =
AN F(n) holds UrngG = ANUrng F.

(5) Let X be aset. Let S be a o-field of subsets of X. Let F' be a function
from N into S. Let G be a function from N into S. Suppose G(0) = F(0)
and for every element n of N holds G(n + 1) = F(n+ 1) UG(n). Then
for every function H from N into S such that H(0) = F(0) and for every
element n of N holds H(n+1) = F'(n+1)\G(n) holds Jrng F' = Jrng H.

(6)  For every set X holds 2% is a o-field of subsets of X.

© 1992 Fondation Philippe le Hodey
67 ISSN 0777-4028



68 JOZEF BIALAS

Let X be a set, and let F be a function from N into 2¥. Then rng F is a
non-empty family of subsets of X. Let A be a non-empty family of subsets of
X. Then |J A is an element of 2%. Let F be a function from 2% into R. We say
that I’ is non-negative if and only if:

(Def.1)  for every element A of 2% holds O < F/(A).

Let F be a function from N into 2%, and let M be a function from 2% into R.
Then M - F is a function from N into R.

One can prove the following propositions:

(7)  For every set X and for every Real numbers a, b there exists a function
M from 2% into R such that for every element A of 2% holds if A = 0,
then M(A) = a but if A # (), then M(A) = b.

(8)  For every set X there exists a function M from 2% into R such that for
every element A of 2% holds M(A) = Og.

(9)  For every set X and for every function F' from N into 2% and for every
function M from 2% into R such that M is non-negative holds M - F is
non-negative.

(10)  For every set X and for every function F' from N into 2% and for every
function M from 2% into R and for every natural number n holds (M -
F)(n) = M(F(n)).

(11)  Let X be a set. Then there exists a function M from 2% into R such
that M is non-negative and M ((})) = Og and for all elements A, B of 2%
such that A C B holds M(A) < M(B) and for every function F from N
into 2% holds M (Jmg F) < (M - F).

We now define two new constructions. Let X be a set. A function from 2%
into R is said to be a Caratheodor’s measure on X if:

(Def.2) it is non-negative and it(()) = Oz and for all elements A, B of 2% such
that A C B holds it(A) < it(B) and for every function F from N into 2%
holds it(Urng F) < >>(it - F).
Let C' be a Caratheodor’s measure on X. The functor o-Field(C) yielding a
non-empty family of subsets of X is defined by:

(Def.3)  for every element A of 2% holds A € o-Field(C) if and only if for all
elements W, Z of 2% such that W C A and Z C X \ A4 holds C(W) +
C(Z)<CcWuU2Z).

The following propositions are true:

(12)  For every set X and for every Caratheodor’s measure C' on X and for
all elements W, Z of 2% holds C(W U Z) < C(W) + C(Z).

(13)  For every set X and for every Caratheodor’s measure C' on X and for
all elements W, Z of 2% holds C(Z) + C(W) = C(W) + C(2).

(14)  For every set X and for every Caratheodor’s measure C on X and for
every element A of 2% holds A € o-Field(C) if and only if for all elements
W, Z of 2% such that W C A and Z C X \ A holds C(W) + C(Z) =
cC(WuZz).
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(15)  For every set X and for every Caratheodor’s measure C' on X and for
all elements W, Z of 2% such that W € o-Field(C) and Z € o-Field(C)
and ZNW =0 holds C(WU Z) =C(W) + C(Z).

(16)  For every set X and for every Caratheodor’s measure C' on X and for
every set A such that A € o-Field(C) holds X \ A € o-Field(C).

(17)  For every set X and for every Caratheodor’s measure C' on X and
for all sets A, B such that A € o-Field(C') and B € o-Field(C) holds
AU B € o-Field(C).

(18)  For every set X and for every Caratheodor’s measure C' on X and
for all sets A, B such that A € o-Field(C) and B € o-Field(C) holds
AN B € o-Field(C).

(19)  For every set X and for every Caratheodor’s measure C' on X and
for all sets A, B such that A € o-Field(C') and B € o-Field(C) holds
A\ B € o-Field(C).

(20)  For every set X and for every o-field S of subsets of X and for every
function N from N into S and for every element A of S there exists
a function F' from N into S such that for every element n of N holds
F(n)=ANN(n).

(21)  For every set X and for every Caratheodor’s measure C' on X holds
o-Field(C) is a o-field of subsets of X.

Let X be aset, and let C' be a Caratheodor’s measure on X. Then o-Field(C)
is a o-field of subsets of X. Let S be a o-field of subsets of X, and let A be a
subfamily of S. Then [J A is an element of S. The functor o-Meas(C) yields a
function from o-Field(C) into R and is defined by:
(Def.4)  for every element A of 2% such that A € o-Field(C) holds
(0-Meas(C))(A) = C(A).
One can prove the following proposition
(22)  For every set X and for every Caratheodor’s measure C' on X holds
o-Meas(C') is a measure on o-Field(C).
Let X be a set, and let C' be a Caratheodor’s measure on X, and let A be
an element of o-Field(C). Then C(A) is a Real number.
One can prove the following proposition
(23)  For every set X and for every Caratheodor’s measure C' on X holds
o-Meas(C') is a o-measure on o-Field(C).
Let X be aset, and let C' be a Caratheodor’s measure on X. Then o-Meas(C')
is a o-measure on o-Field(C).
The following propositions are true:
(24)  For every set X and for every Caratheodor’s measure C' on X and for
every element A of 2% such that C(A) = Og holds A € o-Field(C).

(25)  For every set X and for every Caratheodor’s measure C' on X holds
o-Meas(C') is complete on o-Field(C').
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Summary. Let T be a topological space and let A be a subset of
T. Recall that A is said to be a domain in T provided Int A C A C Int A
(see [24] and comp. [14]). This notion is a simple generalization of the
notions of open and closed domains in T' (see [24]). Our main result is
concerned with an extension of the following well-known theorem (see
e.g. [5], [17], [13]). For a given topological space the Boolean lattices of
all its closed domains and all its open domains are complete. It is proved
here, using Mizar System, that the complemented lattice of all domains
of a given topological space is complete, too (comp. [23]).

It is known that both the lattice of open domains and the lattice of
closed domains are sublattices of the lattice of all domains [23]. However,
the following two problems remain open.

Problem 1. Let L be a sublattice of the lattice of all domains.
Suppose L is complete, is smallest with respect to inclusion, and
contains as sublattices the lattice of all closed domains and the
lattice of all open domains. Must L be equal to the lattice of all
domains 7

A domain in T is said to be a Borel domain provided it is a Borel set. Of
course every open (closed) domain is a Borel domain. It can be proved
that all Borel domains form a sublattice of the lattice of domains.

Problem 2. Let L be a sublattice of the lattice of all domains.
Suppose L is smallest with respect to inclusion and contains as
sublattices the lattice of all closed domains and the lattice of all
open domains. Must L be equal to the lattice of all Borel domains 7

Note that in the beginning the closure and the interior operations for fam-
ilies of subsets of topological spaces are introduced and their important
properties are presented (comp. [16], [15], [17]). Using these notions, cer-
tain properties of domains, closed domains and open domains are studied
(comp. [15], [13]).
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!This paper was done while the second author was visiting the Institute of Mathematics of
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The papers [20], [22], [21], [18], [8], [9], [12], [4], [3], [19], [24], [11], [6], [7], [25],
[10], [2], [1], and [23] provide the notation and terminology for this paper.

1. PRELIMINARY THEOREMS ABOUT SUBSETS OF TOPOLOGICAL SPACES

In the sequel T" will denote a topological space. One can prove the following
propositions:
(1)  For every subset A of T holds Int Int A C Int A and Int Int A C Int A.
(2)  For every subset A of T holds Int A C Int A and Int A C Int A.

(3)  For all subsets A, B of T such that B is closed holds if Int(A N B) = A,
then A C B.

(4)  For all subsets A, B of T such that A is open holds if Int AU B = B,
then A C B.

(5) For every subset A of T such that A C IntA holds AU IntA C
Int(A U Int A).

(6) For every subset A of T such that IntA C A holds Int ANInt A C
AN Int A.

2. THE CLOSURE AND THE INTERIOR OPERATIONS FOR FAMILIES
OF SUBSETS OF A TOPOLOGICAL SPACE

In the sequel T" will be a topological space. Let us consider T', and let F' be a
family of subsets of T. We introduce the functor F' as a synonym of clf F.

One can prove the following propositions:

(7)  For every family F of subsets of T holds F' = {A : \/3[A = BAB € F]},
where A ranges over subsets of T', and B ranges over subsets of T

(8)  For every family F of subsets of T holds F' = F.

(9)  For every family F' of subsets of T holds F = ) if and only if F = ().
(10)  For all families F', G of subsets of T holds FNG C FNG.
(11)  For all families F', G of subsets of T holds F\ G C F \ G.
(12)  For every family F' of subsets of T' and for every subset A of T" such

that A€ F holds f{/F C Aand ACF.
(13)  For every family F of subsets of 7" holds N F C N F.
(14)  For every family F of subsets of T holds N F C N F.
(15)  For every family F of subsets of 7" holds UF C J F.
Let us consider T', and let F' be a family of subsets of T'. The functor Int F’
yielding a family of subsets of T" is defined as follows:
(Def.1)  for every subset A of T holds A € Int F' if and only if there exists a
subset B of T such that A=Int B and B € F.
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The following propositions are true:

(16)  For every family F' of subsets of T" holds Int F' = {A : \/g[A = Int B A
B € F1}, where A ranges over subsets of 7', and B ranges over subsets of
T.

(17)  For every family F' of subsets of T holds Int F' = Int Int F'.

(18)  For every family F' of subsets of 7" holds Int F' is open.

(19)  For every family F' of subsets of T' holds F' = () if and only if Int F' = ().
(20)  For every subset A of T' and for every family F' of subsets of 7" such
that F' = {A} holds Int F' = {Int A}.

(21)  For all families F', G of subsets of 7" such that F' C G holds Int F' C
IntG.

(22)  For all families F', G of subsets of T holds Int(F' U G) = Int F' U Int G.
(23)  For all families F', G of subsets of T holds Int(F' N G) C Int F' N Int G.
(24)  For all families F', G of subsets of T holds Int F'\ Int G C Int(F' \ G).

(25)  For every family F' of subsets of T" and for every subset A of T' such

that A € F holds Int A C JInt F' and () Int F' C Int A.
(26)  For every family F' of subsets of T" holds JInt F' C |J F.
(27)  For every family F' of subsets of T" holds (N Int ' C (N F.
(28)  For every family F' of subsets of T" holds (JInt F' C IntJ F'.
(29)  For every family F' of subsets of T" holds Int | F' C () Int F'.
(30)

For every family F of subsets of T such that F' is finite holds Int (| F' =
N Int F.

In the sequel F' denotes a family of subsets of T'. The following propositions
are true:

(31) IntF ={A:Vp[A=Int BAB € F]}, where A ranges over subsets of
T, and B ranges over subsets of T

(32) IntF ={A:\g|A=1Int BAB € F|}, where A ranges over subsets of
T, and B ranges over subsets of T

(33) IntF ={A:\g|A=1Int BAB € F|}, where A ranges over subsets of
T, and B ranges over subsets of T

(34) IntIntF = {A : Vg[A = IntInt BA B € F|}, where A ranges over
subsets of T', and B ranges over subsets of 7.

(35) IntIntF = Int F.
(36) IntInt F = Int F.
(37) UIntF CJIntF.
(38) NIntF CNIntF.
(39)
(40)
(41)

UInt F C JInt F.

NInt FF C N Int F.
UIntInt F C JInt F.
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(42) NIntInt F C NInt F.
(43) UIntInt F C (JInt F'.
(44) NIntInt FF C NInt F.
(45) UImtF CUF.

(46) NIntF CNF.

(47) UInt F C JIntInt F.
(48) NInt F C NIntInt F.
(49) UIntF CIntF.

(50) IntNF C(Int F.

(51) UIntF CIntyF.

(52) IntNF CNIntF.

(53) UIntF CIntyF.

(54) IntOF CNIntF.

(55)  UntInt F C IntInt (J F.
(56) IntInt(F C (N IntInt F.
(57)  For every family F of subsets of T" such that for every subset A of T

such that A € Fholds A CInt Aholds JF CInt|JF and JF =Int F.

(58)  For every family I of subsets of T such that for every subset A of T'
such that A € F holds Int A C A holds Int F C N F and IntInt | F =
IntN F.

3. SELECTED PROPERTIES OF DOMAINS OF A TOPOLOGICAL SPACE

In the sequel T is a topological space. We now state several propositions:
(59)  For all subsets A, B of T such that B is a domain holds Int AU B U
(AUB) =B if and only if A C B.
(60)  For all subsets A, B of T such that A is a domain holds Int(A N B) N
(AN B) = Aif and only if A C B.
(61)  For all subsets A, B of T such that A is a closed domain and B is a
closed domain holds Int A C Int B if and only if A C B.

(62)  For all subsets A, B of T such that A is an open domain and B is an
open domain holds A C B if and only if A C B.

(63)  For all subsets A, B of T such that A is a closed domain holds if A C B,
then Int(AN B) = A.

(64)  For all subsets A, B of T such that B is an open domain holds if A C B,
then Int AU B = B.

Let us consider T'. A family of subsets of T' is domains-family if:
(Def.2)  for every subset A of T such that A € it holds A is a domain.
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The following propositions are true:

(65)  For every family F of subsets of 7" holds F' C the domains of T if and
only if F' is domains-family.

(66) For every family F' of subsets of T' such that F' is domains-family holds
UFCIntyFand UF=IntJF.

(67)  For every family F of subsets of T" such that F' is domains-family holds
IntNF CNF and IntIntF =Int N F.

(68)  For every family F of subsets of T' such that F' is domains-family holds
UFUIntUF is a domain.

(69) Let F be a family of subsets of T'. Then for every subset B of T' such
that B € F holds B C |JF UIntJF and for every subset A of T such
that A is a domain holds if for every subset B of T" such that B € F holds
B C A, then JFUIntJF C A.

(70)  For every family F' of subsets of T" such that F' is domains-family holds
N F NInt F is a domain.

(71)  Let F be a family of subsets of 7. Then

(i)  for every subset B of T such that B € F holds NFNIntN F C B,
(i) F =0 or for every subset A of T' such that A is a domain holds if for
every subset B of T'such that B € F'holds A C B, then A C " FNInt () F.

Let us consider T'. A family of subsets of T" is closed-domains-family if:
(Det.3)  for every subset A of T such that A € it holds A is a closed domain.

We now state several propositions:

(72)  For every family F' of subsets of T" holds F' C the closed domains of T’
if and only if F' is closed-domains-family.

(73)  For every family F' of subsets of T such that F' is closed-domains-family
holds F' is domains-family.

(74)  For every family F' of subsets of T" such that F' is closed-domains-family
holds F' is closed.

(75) _ For every family F' of subsets of T" such that I is domains-family holds
F' is closed-domains-family.

(76)  For every family F’ of subsets of 1" such that F' is closed-domains-family
holds |J F' is a closed domain and Int () F' is a closed domain.

(77)  For every family F' of subsets of T" holds for every subset B of T' such
that B € F holds B C [JF and for every subset A of T such that A is
a closed domain holds if for every subset B of T" such that B € F holds
B C A, then UF C A.

(78)  Let F be a family of subsets of 7. Then if F' is closed, then for every
subset B of T such that B € F holds Int (\F' C B but F' = () or for every
subset A of T such that A is a closed domain holds if for every subset B
of T such that B € F holds A C B, then A C Int () F.

Let us consider T'. A family of subsets of T" is open-domains-family if:
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(Def.4)  for every subset A of T such that A € it holds A is an open domain.

We now state several propositions:

(79)  For every family F of subsets of T' holds F' C the open domains of T' if
and only if F' is open-domains-family.

(80)  For every family F' of subsets of T" such that F' is open-domains-family
holds F' is domains-family.

(81)  For every family F' of subsets of T such that F' is open-domains-family
holds F' is open.

(82)  For every family F of subsets of T' such that F' is domains-family holds
Int F' is open-domains-family.

(83)  For every family F' of subsets of T such that F' is open-domains-family
holds Int () F is an open domain and Int{J F is an open domain.

(84)  For every family F of subsets of T holds if F' is open, then for every
subset B of T such that B € F holds B C Int | F but for every subset A
of T such that A is an open domain holds if for every subset B of T' such
that B € F holds B C A, then Int JF C A.

(85)  For every family F' of subsets of T holds for every subset B of T' such
that B € F holds Int(\F C B but F = () or for every subset A of T
such that A is an open domain holds if for every subset B of T' such that
B € F holds A C B, then A C Int( F.

4. COMPLETENESS OF THE LATTICE OF DOMAINS

In the sequel T' denotes a topological space. Next we state several propositions:

(86)  The carrier of the lattice of domains of T' = the domains of 7.

(87)  For all elements a, b of the lattice of domains of T and for all elements
A, B of the domains of T" such that « = A and b = B holds aUb =
Int AUBU(AUB)and anNb=Int(ANB)N(ANB).

(88) L the lattice of domains of T = ®T and T the lattice of domains of T = Qr.

(89)  For all elements a, b of the lattice of domains of T and for all elements
A, B of the domains of T" such that ¢« = A and b = B holds a C b if and
only if A C B.

(90)  For every subset X of the lattice of domains of T" there exists an element
a of the lattice of domains of T such that X C a and for every element b
of the lattice of domains of 7" such that X T b holds a C b.

(91)  The lattice of domains of 7" is complete.

(92)  For every family F' of subsets of T" such that F' is domains-family and
for every subset X of the lattice of domains of 7" such that X = F holds
I_l(tho lattice of domains of T') X = U F U Int U F.

(93)  For every family F' of subsets of T" such that F' is domains-family and
for every subset X of the lattice of domains of 7" such that X = F holds
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it X 7& ®7 then ﬂ(the lattice of domains of T)X = ﬂF N Int ﬂF but if X = (Da
then ﬂ(the lattice of domains of T)X = Qr.

5. COMPLETENESS OF THE LATTICES OF CLOSED DOMAINS
AND OPEN DOMAINS

In the sequel T will be a topological space. The following propositions are true:

(94)  The carrier of the lattice of closed domains of 7" = the closed domains
of T

(95)  For all elements a, b of the lattice of closed domains of 7" and for all
elements A, B of the closed domains of T" such that « = A and b = B
holds alUb =AU B and aMb=Int(AN B).

(96) J—tho lattice of closed domains of T' — (Z)T and Ttho lattice of closed domains of T' — QT-

(97)  For all elements a, b of the lattice of closed domains of 7" and for all
elements A, B of the closed domains of T" such that ¢« = A and b = B
holds @ C b if and only if A C B.

(98)  For every subset X of the lattice of closed domains of T" there exists
an element a of the lattice of closed domains of T such that X C a and
for every element b of the lattice of closed domains of T" such that X C b
holds a C b.

(99)  The lattice of closed domains of T' is complete.

(100)  For every family F of subsets of T such that F' is closed-domains-family
and for every subset X of the lattice of closed domains of T such that

X = F holds U(the lattice of closed domains of T) X = U—F
(101)  For every family F of subsets of T such that F' is closed-domains-family

and for every subset X of the lattice of closed domains of T such that
X = F holds if X # (2)7 then ﬂ(tho lattice of closed domains of T)X = It F
but if X = (2)7 then |_‘(thc lattice of closed domains of T)X = Qr.

(102)  For every family F' of subsets of T such that F is closed-domains-family
and for every subset X of the lattice of domains of 7" such that X = F
holds if X # (2)7 then ﬂ(tho lattice of domains of T)X =IntNF but if X = @7
then I_‘(tho lattice of domains of T)X = Qr.

(103)  The carrier of the lattice of open domains of T' = the open domains of
T.

(104)  For all elements a, b of the lattice of open domains of T" and for all
elements A, B of the open domains of T" such that ¢ = A and b = B holds
allb=IntAUB and alb= AN B.

(105) J—the lattice of open domains of T = ®T and Tthe lattice of open domains of T' = QT-

(106)  For all elements a, b of the lattice of open domains of T and for all
elements A, B of the open domains of T  such that a = A and b = B holds
a C bif and only if A C B.
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(107)

(108)

(109)

(110)

(111)
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For every subset X of the lattice of open domains of 1" there exists an
element a of the lattice of open domains of T" such that X C a and for
every element b of the lattice of open domains of T" such that X C b holds
aCb.

The lattice of open domains of T is complete.

For every family F' of subsets of T' such that F' is open-domains-family
and for every subset X of the lattice of open domains of 7" such that
X = F holds U(the lattice of open domains of T') X =Int U F.

For every family F' of subsets of T' such that F' is open-domains-family
and for every subset X of the lattice of open domains of 7" such that
X = F holds if X # @7 then I_l(thc lattice of open domains of T)X = Int () F" but
i X = ®7 then I_l(tho lattice of open domains of T)X = Q7.

For every family F' of subsets of T' such that F' is open-domains-family
and for every subset X of the lattice of domains of T" such that X = F

holds U(the lattice of domains of T) X =Int U—F
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On Paracompactness of Metrizable Spaces

Leszek Borys
Warsaw University
Biatystok

Summary. The aim is to prove, using Mizar System, one of the
most important result in general topology, namely the Stone Theorem
on paracompactness of metrizable spaces [19]. Our proof is based on
[18] (and also [16]). We prove first auxiliary fact that every open cover
of any metrizable space has a locally finite open refinement. We show
next the main theorem that every metrizable space is paracompact. The
remaining material is devoted to concepts and certain properties needed
for the formulation and the proof of that theorem (see also [5]).

MML Identifier: PCOMPS_2.

The notation and terminology used here are introduced in the following articles:
[21], [7], 8], [13], [26], [15], [10], [20], [11], [23], [1], [14], [9], [5], [12], [17], [24],
2], 3], [4], [25], [6], and [22].

1. SELECTED PROPERTIES OF REAL NUMBERS

We adopt the following rules: r, u, v, w, y are real numbers and k is a natural
number. One can prove the following propositions:

1 =1

(2) ri=r.

(3) If r > 0 and u > 0, then there exists a natural number k such that
= <r.
2k —

(4) Ifk>nandr>1, then rf >0,
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2. CERTAIN FUNCTIONS DEFINED ON FAMILIES OF SETS

We adopt the following convention: R will be a binary relation, A, B, C will
be sets, and t will be arbitrary. The following proposition is true

(5) If R well orders A, then R |?> A well orders A and A = field(R | A).

The scheme MinSet concerns a set A, a binary relation B, and a unary
predicate P, and states that:

there exists arbitrary X such that X € A and P[X] and for an arbitrary ¥
such that Y € A and P[Y] holds (X, Y) € B
provided the parameters meet the following conditions:

e B well orders A,

e there exists arbitrary X such that X € A and P[X].

We now define three new functors. Let F7 be a family of sets, and let R be
a binary relation, and let B be an element of Fy. The functor Uz .5 0 yields a
family of sets and is defined as follows:

(Def1)  Upe i = U(R—Seg(B)).
Let F} be a family of sets, and let R be a binary relation. The disjoint family
of F, R yielding a family of sets is defined by:
(Def.2) A € the disjoint family of F}, R if and only if there exists an element
B of Iy such that B € F1 and A= B\ Uz, 3

Let X be a set, and let n be a natural number, and let f be a function from N
into 2X. The functor U,.,, f(k) yields a set and is defined as follows:

(Def.3)  Uscn f(1) = U(S ° (Segn \ {n})).

3. PARACOMPACTNESS OF METRIZABLE SPACES

We adopt the following convention: P; will denote a topological space, Fi, G
will denote families of subsets of Py, and W, X will denote subsets of P;. We
now state several propositions:

(6) If Py is a T3 space, then for every F; such that Fj is a cover of P; and
F1 is open there exists Hqi such that H; is open and H; is a cover of P;
and for every V such that V' € Hy there exists W such that W € F; and
VCw.

(7)  For all Py, Fy such that P; is a Ty space and P is paracompact and Fj
is a cover of P; and F} is open there exists GG; such that G is open and
(1 is a cover of P; and clf G is finer than F} and G is locally finite.

(8)  For every function f from f[the carrier of Pj, the carrier of P; | into R
such that f is a metric of the carrier of P; holds if P, = MetrSp((the
carrier of Py), f), then the carrier of P, = the carrier of P;.

(9)  For every function f from [ the carrier of Pj, the carrier of P; | into R
such that f is a metric of the carrier of P; holds if Py = MetrSp((the
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carrier of Py), f), then x is a point of P; if and only if x is an element of
the carrier of Ps.

(10)  For every function f from [ the carrier of Pj, the carrier of P; ] into R
such that f is a metric of the carrier of P; holds if P» = MetrSp((the
carrier of Pp), f), then X is a subset of P; if and only if X is a subset of
the carrier of Ps.

(11)  For every function f from [ the carrier of Pj, the carrier of P; ] into R
such that f is a metric of the carrier of P; holds if Py = MetrSp((the
carrier of Py), f), then F} is a family of subsets of P; if and only if F} is
a family of subsets of the carrier of Ps.

In the sequel k is a natural number. Let P> be a non-empty set, and let g
be a function from N into (22°2)*, and let us consider n. Then g(n) is a finite
sequence of elements of 222

The following propositions are true:

(12) If Py is metrizable, then for every family F) of subsets of P; such that
Fy is a cover of P; and F} is open there exists a family G of subsets of
P; such that 7 is open and G is a cover of P; and (37 is finer than F;
and G is locally finite.

(13) If Py is metrizable, then P is paracompact.
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Summary. The aim is to prove, using Mizar System, the following
simplest version of the Brouwer Fixed Point Theorem [2]. For every

continuous mapping f : | — [ of the topological unit interval | there exists
a point x such that f(z) = x (see e.g. [9], [3]).

MML Identifier: TREAL_1.

The terminology and notation used here are introduced in the following papers:

23], [22], [25], [16], [5], [6], [20], [4], [18], [10], [24], [14], [19], [17], [7], [15], [11],
[1], [21], [8], [13], and [12].

1. PROPERTIES OF TOPOLOGICAL INTERVALS

The following three propositions are true:

(1)  For all real numbers a, b, ¢, d such that a < ¢ and d < b and ¢ < d
holds [e,d] C [a, b].

(2)  For all real numbers a, b, ¢, d such that a < cand b < d and ¢ < b holds
[a,b] U [c,d] = [a,d].

(3)  For all real numbers a, b, ¢, d such that a < cand b < d and ¢ < b holds
[a,b] N [e,d] = e, b)].

In the sequel a, b, ¢, d are real numbers. We now state four propositions:

(4)  For every subset A of R! such that A = [a,b] holds A is closed.

(5) If @ < b, then [a, bt is a closed subspace of RL.

(6) Ifa<candd<bandc<d, then [c, d|T is a closed subspace of [a, b]T.

!This paper was done under the supervision of Z. Karno while the author was visiting the
Institute of Mathematics of Warsaw University in Bialystok.
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(7) Ifa<cand b < d and ¢ < b, then [a, d|T = [a, b]T U [c, d]7 and
[C, b]T = [a, b]T N [C, d]T.
We now define two new functors. Let a, b be real numbers. Let us assume
that a < b. The functor ay, ), yields a point of [a, b]T and is defined by:
(Def.1)  apgp), = a-
The functor by, ), yields a point of [a, b and is defined by:
(Def2) b[a,b}T == b
One can prove the following two propositions:
(8) 0|] = O[le]T and 1[] = 1[071]T'

(9) Ifa<bandb<c then ap ), = af)p and Cp oy = Clae)p-

2. CONTINUOUS MAPPINGS BETWEEN TOPOLOGICAL INTERVALS

Let a, b be real numbers satisfying the condition: a < b. Let t1, to be points
of [a, bl7. The functor Lo (¢1,t2) yielding a mapping from [0, 1]t into [a, b]T is
defined as follows:
(Det.3)  for every point s of [0, 1]T and for all real numbers r, r1, 7o such that
s=rand ry =t; and ro = t9 holds (Loi(t1,t2))(s) = (1 —7) -1 + 7 - ro.
We now state four propositions:

(10) Let a, b be real numbers. Then if a < b, then for all points ti, ty of
[a, b]T and for every point s of [0, 1] and for all real numbers r, r1, 75 such
that s = r and r; = t; and ro = t9 holds (Lo (t1,t2))(s) = (re—ry)-r+ry.

(11)  For all real numbers a, b such that a < b and for all points ¢1, to of
[a, b]T holds Lo (t1,t2) is a continuous mapping from [0, 1)1 into [a, b]T.

(12)  For all real numbers a, b such that a < b and for all points ¢y, t2 of
[CL, b]T holds (L01(t17t2))(0[0,1]T) =1 and (L01(t17t2))(1[071]T) = to.

(13)  Lo1(0p0,1)» Ljo,1+) = id(j0, 1))

Let a, b be real numbers satisfying the condition: a < b. Let t1, t3 be
points of [0, 1]7. The functor P (a,b,t1,ts) yielding a mapping from [a, b]
into [0, 1]7 is defined as follows:

(Def.4)  for every point s of [a, b]T and for all real numbers r, r1, ro such that
s=rand r; =t; and ro = t5 holds (Po1(a, b, t1,t2))(s) = (bzr)mit(r=a)rs

b—a
The following propositions are true:

(14)  Let a, b be real numbers. Suppose a < b. Let t1, to be points of [0, 1]7.
Let s be a point of [a, b]7. Then for all real numbers r, r1, 79 such that s =
rand r; = t1 and 7 = tp holds (Po1(a,b,t1,t2))(s) = B=L - r + b'r},:%.

(15)  For all real numbers a, b such that a < b and for all points ¢1, t9 of [0, 1]
holds Po1(a, b, t1,t2) is a continuous mapping from [a, b]7 into [0, 1]r.

(16)  For all real numbers a, b such that a < b and for all points ¢4, t2 of [0, 1]
holds (P(]l (a, b, t1, tg))((l[&b]T) =1 and (P01 (CL, b, t1, t2))(b[a,bh«) = to.
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(A7) Poi(0, L, 0po,11rs Loyr) = id(go,1])-
(18)  Let a, b be real numbers. Then if a < b, then
id((a,b)r) = Lo1(fap)rs Ola,plz) - Por(a; 0,010,115 1j0,1])
and id((o, 1)7) = Po1(a, b, 0j0,1)15 Ljo,1)1) - Lo1(@[a,p)rs Djap)r)-
(19)  Let a, b be real numbers. Then if a < b, then
id((a,b)r) = Lo1(bfa s Afa,plr) - Por(a;0, 10,1115 0p0,1))
and idpo, 11) = Por(a: b, 10,11 00,11 ) - Lo (bia,p) Ofa,p))-
(20)  Let a, b be real numbers. Suppose a < b. Then
) Lo1(a,prsbla,p)r) is @ homeomorphism,
) (Lot(aaprbape)) " = Por(a, b, 001755 1,152
) Poi(a,b,0(01)1, 1[0,1);) is @ homeomorphism,
) (Poi(a, 0,000,155 1j0,110)) " = Low(ajaprs bja,bjr)-
(21)  Let a, b be real numbers. Suppose a < b. Then
) Lo1(bjap)ps Aap]r) 18 @ homeomorphism,
) (Lot (blaprs Aapir)) = Por(a, b, 1 1755 O0p0,154)
(iii)  Poi(a,b,1(0,1)1,0(0,1),) is @ homeomorphism,
) (Poi(a, b, 10,135, 010,110)) ™" = Lot (bfap)r» Gfa,bjr)-

3. CONNECTEDNESS OF INTERVALS AND BROUWER FIXED POINT THEOREM
FOR INTERVALS

We now state several propositions:

(22) 11is connected.

(23)  For all real numbers a, b such that a < b holds [a, b1 is connected.

(24)  For every continuous mapping f from [ into [ there exists a point = of
I such that f(x) = z.

(25)  For all real numbers a, b such that a < b and for every continuous
mapping f from [a, b1 into [a, b]T there exists a point x of [a, b]T such
that f(z) = x.

(26) Let X, Y be subspaces of RL. Then for every continuous mapping f
from X into Y such that there exist real numbers a, b such that a < b and
[a,b] C the carrier of X and [a,b] C the carrier of Y and f ° [a,b] C [a, D]
there exists a point x of X such that f(z) = x.

(27)  For all subspaces X, Y of Rl and for every continuous mapping f from
X into Y such that there exist real numbers a, b such that a < b and
[a,b] C the carrier of X and f ° [a,b] C [a,b] there exists a point = of X
such that f(z) = .
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Summary. In the first section the results of [23, axiom (30)], i.e.
the correspondence between natural and ordinal (cardinal) numbers are
shown. The next section is concerned with the concepts of infinity and
cofinality (see [3]), and introduces alephs as infinite cardinal numbers.
The arithmetics of alephs, i.e. some facts about addition and multiplica-
tion, is present in the third section. The concepts of regular and irregular
alephs are introduced in the fourth section, and the fact that Xy and every
non-limit cardinal number are regular is proved there. Finally, for every
alephs « and 3

2%, if o <,
B _ Z,Ka v°, if 8 < cfa and o is limit cardinal,

cfa
(Z“Ka’yﬁ) , ifcdfa< g <a.

(%

Some proofs are based on [20].

MML Identifier: CARD_5.

The papers [24], [6], [16], [14], [21], [19], [26], [10], [17], [12], [15], [13], [25], [22],
El]’}?]’ (18], [5], 9], [1], [8], [7], [4], and [3] provide the notation and terminology
or this paper.

1. RESULTS OF [23, AXIOM (30)]

One can readily check that every set which is cardinal is also ordinal-like.

For simplicity we adopt the following convention: n denotes a natural num-
ber, A, B denote ordinal numbers, X denotes a set, and z, y are arbitrary. We
now state several propositions:

'Axiom (30) - n={k&€N:k < n} for every natural number n.
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(1) 0=0and 1={0} and 2 ={0,1}.

(2) succn=n+1.

(3)  For every n holds ord(n) = n and m = n.
(4) 0=0and1=1.

(5) 0=0and1=1and 2=2.

(6) If X is finite, then card X = X.

(7) N=wand N = Rg.

(8) Segn=(n+1)\{0}.

2. INFINITY, ALEPHS AND COFINALITY

We adopt the following rules: f is a function, K, M, N are cardinal numbers,
and py, po are sequences of ordinal numbers. The following propositions are
true:
) X =Xt
)y € fif and only if there exists x such that € dom f and y € f(x).
11) N4 is not finite.
) If M is not finite, then there exists A such that M = Ny4.
) There exists n such that M = 7 or there exists A such that M = Ry4.
Let us consider p;. Then |Jp; is an ordinal number.
Next we state a number of propositions:
(14) If X C A, then there exists p; such that p; = the canonical isomorphism
between ggx and Sx and p; is increasing and dom p; = ; and rngp; =
X.

If X C A, then sup X is cofinal with €.

There exists B such that B C A and A is cofinal with B.

There exists M such that M < A and A is cofinal with M and for every
B such that A is cofinal with B holds M C B.

(15)
(16) If X C A, then X = Cy.
(17)
(18)

(19) Ifrngp; = rngpe and p; is increasing and pq is increasing, then p; = ps.

(20) If py is increasing, then pp is one-to-one.

(21)  (p1” p2) I dompy = p1.

(22) IfX #0,then {Y:Y < M} < M-?M, where Y ranges over elements
of 2%,

(23) M <32,

We now define four new constructions. A set is infinite if:

(Def.1) it is not finite.
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Let us observe that there exists a set which is infinite. One can readily check
that there exists a cardinal number which is infinite. One can readily check that
every set which is infinite is also non-empty.

An aleph is an infinite cardinal number.

Let us consider M. The functor cf M yielding a cardinal number is defined
by:

(Def.2) M is cofinal with cf M and for every N such that M is cofinal with N
holds ¢f M < N.

Let us consider N. The functor (a — a¥)4ens yielding a function yielding
cardinal numbers is defined as follows:

(Def.3)  for every x holds € dom((a +— a™)aen) if and only if z € M and

x is a cardinal number and for every K such that K € M holds (a —
oM)aem(K) = KV,

Let us consider A. Then N4 is an aleph.

3. ARITHMETICS OF ALEPHS

In the sequel a, b will be alephs. The following propositions are true:
(24)  There exists A such that a = Ny.

(25) a#0anda#1anda#2and a# 7 and 7 < a and Rg < a.

(26) Ifa <M or a< M, then M is an aleph.

(27)

27 Ifa<Mora<M,thena+M=Mand M+a=Manda-M =M
and M -a =M.

(28) a+a=aanda-a=a.

(29) IfM<aorM<a,thena+M=aand M +a=a.

(30) IfO0O<Mbut M <aor M <a,thena-M =aand M -a = a.
(31) M < M.

(32) Ua=a.

Let us consider a, M. Then a + M is an aleph. Let us consider M, a. Then
M + a is an aleph. Let us consider a, b. Then a+ b is an aleph. Then a-b is an
aleph. Then a® is an aleph.

4. REGULAR ALEPHS

We now define two new attributes. An aleph is regular if:
(Def4)  cfit =it.

An aleph is irregular if:
(Def.5)  cfit < it.



92 GRZEGORZ BANCEREK

Let us consider a. Then a™ is an aleph. We see that the element of a is an
ordinal number.

One can prove the following propositions:
(33) cof M <M.
(34)  cf(Rg) = Ro.
(35) cf(a™)=a™.
(36) Ng < cfa.
(37) cf0=0andcfn+1=T1.
(38) If X C M and X < cf M, then supX € M and JX € M.
(39) If domp; = M and rngp; € N and M < cf N, then supp; € N and
Up1 € N.
Let us consider a. Then cf ¢ is an aleph.
One can prove the following propositions:
(40) If cfa < a, then a is a limit cardinal number.
(41)  If cf a < a, then there exists a sequence z; of ordinal numbers such that

domz; = cfa and rngz1 C a and x7 is increasing and a = sup x1 and x
is a function yielding cardinal numbers and 0 ¢ rngx.

(42) g is regular and a™ is regular.

5. INFINITE POWERS

In the sequel a, b will denote alephs. The following propositions are true:
(43) If a < b, then a® = 2".
(44)  (a")’=a-(a*).
(45 X((a = aP)aea) < a”.
(46)  If @ is a limit cardinal number and b < cf a, then a® = 3 ((a — a®)pcq).
(47)  Ifcfa <band b < a, then a® = (X ((a — a)aea))
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Basic Properties of Connecting Points with
Line Segments in £}
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Summary. Some properties of line segments in 2-dimensional Eu-
clidean space and some relations between line segments and balls are
proved.

MML Identifier: TOPREAL3.

The terminology and notation used in this paper have been introduced in the
following papers: [17], [13], [1], [7], [2], [8], [4], [15], [16], [18], [6], [14], [5], [9],
[10], [3], [11], and [12];

1. REAL NUMBERS PRELIMINARIES

For simplicity we follow the rules: p, p1, p2, p3, ¢ will denote points of 8%, fyh
will denote finite sequences of elements of 2, 7, r1, 12, s, s1, s2 will denote real
numbers, u, ui, uy will denote points of £2, n, m, 4, j, k will denote natural
numbers, and z, y, z will be arbitrary. One can prove the following propositions:

(1) 3-2=land3—-1=2and =1-1.

(2) 0<iandj<l.

(3) Ifr<5,thenr<gﬁand%<sandr<s'§—rands'§—r<s.
(4) Ifr#s, thenr# =2 and 2 # s.
(5)

w

5) If 11 > s1 and ro > s9 or r1 > s1 and r9 > So, then r1 + 19 > s1 + $o.

!The article was written during my visit at Shinshu University in 1992.
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2. PROPERTIES OF LINE SEGMENTS

We now state a number of propositions:
(6) 1€ Seglen(z,y,z) and 2 € Seglen(z,y, z) and 3 € Seglen(x,y, z).

(7)  (p1+p2)1 =p11 +po1 and (p1 + p2)2 = p12 + p22-
(8)  (p1—p2)1 =p11 — P21 and (p1 — p2)2 = p12 — P22-
(9 (r-plr=r-prand (r-p)2=r-p2.
(10)  If p1 = (r1,s1) and pa = (re, s2), then p; + pe = (r1 + ro, 51 + s2) and

p1—p2 = (11 — 12,81 — S2).
p = q if and only if p; = g1 and p2 = g2.

—_
—_

—_
[\

Ifu; = py and uy = po, then p?(uy, ug) = \/(p11 —p21)% + (P12 — p22)?.
The carrier of £F = the carrier of £".

— =
- W

 is a point of £2 if and only if z is a point of £2.

If r1 < s1, then {p1 : p11 =r A1 < pig Ap1g < s1} = L([r, 1], [r, $1])-
If 11 < s1, then {p1 : p1o =7 A1 <p11 Ap11 < s1} = L([r1,7], [s1,7]).
If p e L([r,r],][r, s1]), then py = 7.

pr € E([Tler [81,7“]), then p2 =T.

If p1 # q1 and pa = g2, then [PA29L 1ol € L(p,q).

If p1 = q1 and p2 # g2, then [p1, 227%2] € L(p, q).
If f=(p,p1,q) and i #0and j—i>1, then L(f,j,7+1)=0.
If i = 0, then L(f,i,i+ 1) =0.
If f = (p1,p2,p3), then L(f) = L(p1,p2) U L(p2,p3).
If i € dom f and j € dom(f | 4) and k € dom(f | ), then L(f,j,k) =
)
If j € dom f and ¢ € dom f, then L(f ~ h,j,i) = L(f,],1).
L(f,i,i+1) C L(f).
L(f 1) <L)
For all 7, p1, p2, u such that » > 0 and p; € Ball(u,r) and ps € Ball(u, )
holds L(p1,p2) C Ball(u,r).
(29) If w = py and p; = [r,s1] and ps = [ro,s2] and p = [rg,s1] and
p2 € Ball(u,r), then p € Ball(u, ).
(30) Ifry # sy and r >0 and [s,r1] € Ball(u,r) and [s, s1] € Ball(u, ), then
[s, 1551] € Ball(u, 7).
(31) Ifry # sy and r >0 and [rq, s] € Ball(u,r) and [s1, s] € Ball(u, ), then
[BF5L 5] € Ball(u, 7).
(32) If 1y # s; and sp # ro and © > 0 and [rq,72] € Ball(u,r) and [sq,
so] € Ball(u, ), then [r1, s2] € Ball(u,r) or [s1,72] € Ball(u,r).
(33)  Suppose that
(i) f(Q1) ¢ Ball(u,r),

— = =
J O Ut

—
=)

NN NN
W N = O

e e e e e e e e e N N e T
[\ —
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(i) 1<m,

(iii) m<lenf—1,

(iv)  L(f,m,m+ 1) N Ball(u,r) # 0,

(v)  for every i such that 1 < ¢ and i < lenf — 1 and L(f,i,i + 1) N

Ball(u,r) # () holds m < i.
Then f(m) ¢ Ball(u, 7).
(34)  For all g, pa, p such that ga = pag and pa # pag holds (L(p2, [p21,

p2]) U L([p21, p2], p)) N L(g, p2) = {p2}-
(35) For all ¢, p2, p such that g = p2q and p1 # p2q holds (L(p2, [p1,

p22]) U L([p1,p22],p)) N L(q, p2) = {p2}-

(36) If p1 # q1 and p2 # g2, then L(p, [p1,q2]) N L([p1, 92, 9) = {[p1, 32}
One can prove the following propositions:

(37)  If p1 # q1 and pa # g2, then L(p, [q1,p2]) N L([q1,p2],7) = {[a1,p2]}
(38) Ifpy = g1 and pa # g2, then L(p, [p1, 2232))NL([p1, 22592, ¢) = {[p1,

pzT*qz]}.

(39) If p1 # q1 and pp = ga, then L(p, 7™, po]) N L[PG po],q) =
{[M57 pal}.

(40) Ifi>2andi € dom f and f is a special sequence, then f | i is a special
sequence.

(41) If p1 # q1 and p2 # g2 and f = (p,[p1,q2].¢), then f(1) = p and
f(len f) = q and f is a special sequence.

(42) If p1 # q1 and p2 # g2 and f = (p,[q1,p2].¢), then f(1) = p and
f(len f) = q and f is a special sequence.

(43) If p1 = q1 and pa # g2 and f = (p,[p1, p2+q2] q), then f(1) = p and
f(len f) = q and f is a special sequence.

(44)  If p1 # q1 and p2 = g2 and f = (p, [T, pa], q), then f(1) = p and
f(len f) = q and f is a special sequence.

(45) Ifi e domf and i+ 1 € dom f and f(i) = p and f(i + 1) = g, then
LFTE+1) =L 1)U LD q).

(46) Iflen f > 2andp ¢ L(f), then for every n such that 1 < n and n < len f
holds f(n) # p.

(47) I g #pand L(q,p) N L(f) = {g}, then p ¢ L(f).
(48)  Suppose that

m<lenf—1,

(i)  f is a special sequence,
(i) f(1) =p,
(iii)  f(len f) =g,
(iv) p ¢ Ball(u,r),
(v) g€ Ball(u,r),
(vi) g€ L(f,mm+1),
(vii)  1<m,
)

(viii
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L(f,m,m+ 1) N Ball(u,r) # 0.

Then m =len f — 1.

Suppose that

r >0,

p1 ¢ Ball(u,r),

q € Ball(u,r),

p € Ball(u,r),

p & L(p1,9),

q1 = p1 and g2 # p2 or q1 # p1 and g2 = p2,
P11 = q1 Or P12 = q2.

Then L(p1,q) N L(g,p) = {q}.

Suppose that

r >0,

p1 ¢ Ball(u,r),

p € Ball(u,r),

[plv q2] € Bau(u’ ’I"),
q € Ball(u,r),
[p1,92] & L(p1,p);
b11 = P1,

p1# q1,

p2 # q2-

Then (L(p, [p1,q2]) U L([p1,92], 7)) N L(p1,p) = {p}-

Suppose that
r >0,
p1 ¢ Ball(u,r),
p € Ball(u,r),
[QI7p2] € Ball(u,r),
q € Ball(u,r),
[q1,p2] & L(p1, D),
P12 = P2,
P1 # q1,
P2 # q2-

Then (L(p, [q1,p2]) U L([q1,p2], 7)) N L(p1,p) = {p}-
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Connectedness Conditions Using Polygonal

Arcs
Yatsuka Nakamura Jarostaw Kotowicz!
Shinshu University Warsaw University
Nagano Bialystok

Summary. A concept of special polygonal arc joining two different
points is defined. Any two points in a ball can be connected by this kind
of arc, and that is also true for any region in £2.

MML Identifier: TOPREAL4.

The notation and terminology used here have been introduced in the following
articles: [13], (9], [1], [4], 2], [12], [11], (14], [10], [3], (3], [6], [7], and [3]. For
simplicity we follow a convention: P, P;, P, R will denote subsets of 5%, P,
p1, P2, g will denote points of 5%, f, h will denote finite sequences of elements
of £2, r will denote a real number, u will denote a point of £2, and n, i will
denote natural numbers. We now define three new predicates. Let us consider
P, p, q. We say that P is a special polygonal arc joining p and ¢ if and only if:
(Def.1)  there exists f such that f is a special sequence and P = L(f) and
p=f(1) and g = f(len f).
Let us consider P. We say that P is a special polygon if and only if the conditions
(Def.2) is satisfied.

(Def.2) (i) There exist py, ps such that p; # p and p; € P and ps € P,
(ii)  for all p, ¢ such that p € P and ¢ € P and p # q there exist Py, P,
such that P is a special polygonal arc joining p and ¢ and Ps is a special
polygonal arc joining p and ¢ and Py N P> = {p,q} and P = P, U P;.

We say that P is a region if and only if:
(Def.3) P is open and P is connected.

The following propositions are true:

!The article was written during my visit at Shinshu University in 1992.
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(1) 1If P is a special polygonal arc joining p and ¢, then P is a special
polygonal arc.

(2) If P is a special polygonal arc joining p and ¢, then P is an arc from p

to gq.
(3) If P is a special polygonal arc joining p and ¢, then p € P and g € P.
(4) If P is a special polygonal arc joining p and ¢, then p # q.
(5) If P is a special polygon, then P is a simple closed curve.
(6) Suppose p1 = ¢q1 and pg # g2 and r > 0 and p € Ball(u,r) and

q € Ball(u,r) and f = (p, [pl,p2;rq2],q>. Then f is a special sequence
and f(1) = p and f(len f) = ¢ and Z(f) is a special polygonal arc joining
p and ¢ and £(f) C Ball(u, 7).

(7)  Suppose p1 # ¢q1 and p2 = g2 and r > 0 and p € Ball(u,r) and
q € Ball(u,r) and f = (p, [Zqu,pz],q>. Then f is a special sequence
and f(1) = p and f(len f) = g and Z(f) is a special polygonal arc joining
p and ¢ and £(f) C Ball(u, r).

(8) Suppose p1 # ¢q1 and p2 # g2 and r > 0 and p € Ball(u,r) and
q € Ball(u,r) and [p1,¢2] € Ball(u,r) and f = (p,[p1,q92],q). Then f is
a special sequence and f(1) = p and f(len f) = ¢ and Z(f) is a special
polygonal arc joining p and ¢ and £(f) C Ball(u,r).

(9) Suppose p1 # ¢q1 and p2 # g2 and r > 0 and p € Ball(u,r) and
q € Ball(u,r) and [q1,p2] € Ball(u,r) and f = (p,[q1,p2],¢). Then f is
a special sequence and f(1) = p and f(len f) = ¢ and L(f) is a special
polygonal arc joining p and ¢ and £(f) C Ball(u, 7).

(10) Ifr > 0andp # gand p € Ball(u,r) and ¢ € Ball(u, r), then there exists
P such that P is a special polygonal arc joining p and ¢ and P C Ball(u, 7).

(11)  Suppose p # p1 and p1o = p2 and f is a special sequence and f(1) = py
and f(len f) = py and p € L(f,1,2) and h = (p1, [p112+p1,p12],p>. Then
h is a special sequence and h(1) = p; and h(lenh) = p and L(h) is a
special polygonal arc joining p; and p and L(h) C L(f) and L(h) =
L(f11)UL(p1,p)-

(12)  Suppose p # py and p;1 = p1 and f is a special sequence and f(1) =
and f(len f) = pa and p € L(f,1,2) and h = (p1,[p11, 12+p2] > Then
h is a special sequence and h(1) = p; and h(lenh) = p and E(h) is
special polygonal arc joining p; and p and Z(h) C E(f) and E(h)
L(f11)UL(p1,p)-

(13)  Suppose that

p 7 p1,
f is a special sequence,

)
)

(iii; f(1) = p,
)

f(len f) = po,
1 € dom f,
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i+ 1 € dom f,
i>1,
p e L(fii+1),

q = f(i).

Then h is a special sequence and h(1) = p; and h(lenh) = p and L(h)
is a special polygonal arc joining p; and p and L(k) C L(f) and L(h) =
L(f1i)UL(q,p)
(14)  Suppose p # py and f is a special sequence and f( ) =pi1and f(len f) =
p2 and f(2) = p and py = p1g and h = (p1, [Z17L py], p). Then
) his a special sequence,
) h(1)= p1,

) h(len h) =
iv) L h) is a Spemal polygonal arc joining p; and p,

)

)

)

(
L(h) € L(f),
L(h) = L(f 11) U L(p1,p),
L(h)=L(f12)UL(pp).
(15)  Suppose p # p1 and f is a special sequence and f(1) = p; and f(len f) =
p2 and £(2) = p and p1 = p1q and h = (py, [p11, “27"2], p). Then
) his a special sequence,
) h(1) —p1,
) h(len h) =
iv) L h) is a spemal polygonal arc joining p; and p,
)
)
)

(

L(h) C L(f),

L(h) = L(f11)UL(p1,p),

L(h) = L(f r 2) U L(p,p)-

(16)  Suppose p # p1 and f is a special sequence and f(1) = p; and f(len f) =
pe and f(i) =pand ¢ > 2andi € dom f and h = f]i. Then h is a special
sequence and h(1) = p; and h(len h) = p and L(h) is a special polygonal
arc joining p; and p and L(h) C L(f) and L(h) = L(f | i) U L(p,p).

(17)  Suppose p # p1 and f is a special sequence and f(1) = p; and f(len f) =
pe and p € L(f,n,n+ 1) and ¢ = f(n). Then there exists h such that
h is a special sequence and k(1) = p; and h(lenh) = p and L(h) is a
special polygonal arc joining p; and p and Z(h) C Z(f) and Z(h) =
L(fn)UL(gp)

(18)  Suppose p # p1 and f is a special sequence and f(1) = p; and f(len f) =
po and p € E( f). Then there exists h such that h is a special sequence
and (1) = py and h(len h) = p and L(R) is a special polygonal arc joining
p1 and p and L(h) C L(f).
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(19)  Suppose that

i) p1=p21 and pa # pag or p1 # paq and pa = paa,
(i) r>o0,
(i)  pp ¢ Ball(u,r),
(iv) p2 € Ball(u,r),
(v) pe Ball(u,r),
(vi)  f is a special sequence,
(vii)  f(1) =p1,
(viti)  f(len f) = pa.
(ix)  L(p2,p) NL(f) = {p2},
(x) h=f"{(p) ~
Then h is a special sequence and L£(h) is a special polygonal arc joining
p1 and p and £(h) C L(f) UBall(u, r).
(20)  Suppose that
(i) r>0,
(il)  p1 ¢ Ball(u,r),
(iii)  p2 € Ball(u,r),
(iv)  p e Ball(u,r),
(v)  [p1,p22] € Ball(u,r),

(vi)  f is a special sequence,

(vi))  f(1) =p1,

(viii)  f(len f) = po,

(ix)  p1# po1s

(x)  p2 # P22,

() b= f " (pr.pasl) )

(xii)  (L(p2; [p1,p22]) U L([p1,p22],p)) N L(f) = {p2}. - B
Then L(h) is a special polygonal arc joining p; and p and L(h) C L(f)U
Ball(u, ).

(21)  Suppose that
(i) r>0,
(il)  p1 ¢ Ball(u,r),

(iii)  p2 € Ball(u,r),

(iv) p e Ball(u,r),

) [par,pa] € Ball(u, ),
vi)  fis a special sequence,

(i) (1) =pr,

(viii)  f(len f) = pa,

(ix)  p1# P21,

(x)  p2 # p22,
(Xi) h:f’\<[p217p2]7p>? _
(xii)  (£(p2; [p21,p2]) U L([p21,p2], p)) N L(f) = {p2}-

Then L(h) is a special polygonal arc joining p; and p and Z(h) CL(fHu
Ball(u, ).
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(22)  Suppose r > 0 and p; ¢ Ball(u,r) and py € Ball(u,r) and p € Ball(u, r)
and f is a special sequence and f(1) = p; and f(len f) = po and p ¢ Z(f)
Then there exists h such that Z(h) is a special polygonal arc joining p;
and p and £(h) C L(f) U Ball(u,r).

(23)  Given R, p, p1, p2, P, 7, u. Then if p # p; and P is a special polygonal
arc joining p; and py and P € R and r > 0 and p € Ball(u,r) and
p2 € Ball(u,r) and Ball(u,r) C R, then there exists P; such that P; is a
special polygonal arc joining p; and p and P; C R.

(24)  For every p such that R is aregion and P = {q : ¢ # pAq € RA=\p [Py
is a special polygonal arc joining p and ¢ A Py C R]} holds P is open.

(25) If Ris a region and p € Rand P = {q:q =pV Vp [P is a special
polygonal arc joining p and ¢ A P; C R]}, then P is open.

(26) Ifpe Rand P={q:q=pV \p[P1 is aspecial polygonal arc joining
pand ¢ A P, C R]}, then P C R.

(27) If Ris a region and p € Rand P = {q: ¢ = pV \Vp, [P is a special
polygonal arc joining p and ¢ A P; C R]}, then R C P.

(28) If Ris a region and p € Rand P = {q: q=pV Vp[P1 is a special
polygonal arc joining p and ¢ A P; C R]}, then R = P.

(29) If Ris aregion and p € R and ¢ € R and p # ¢, then there exists P
such that P is a special polygonal arc joining p and ¢ and P C R.
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Introduction to Go-Board - Part 1

Jarostaw Kotowicz! Yatsuka Nakamura
Warsaw University Shinshu University
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Summary. In the article we introduce Go-board as some kinds
of matrix which elements belong to topological space £%. We define the
functor of delaying column in Go-board and relation between Go-board
and finite sequence of point from £%. Basic facts about those notations
are proved. The concept of the article is based on [16].

MML Identifier: GOBOARD1.

The notation and terminology used here have been introduced in the following
papers: [17], [11], [2], [6], [3], [9], [7], [14], [15], [1], [18], [5], [12], [4], [8], [10],
and [13].

1. REAL NUMBERS PRELIMINARIES

For simplicity we follow the rules: p denotes a point of E%, fs f1, fo, g denote
finite sequences of elements of 5%, v denotes a finite sequence of elements of
R, r, s denote real numbers, n, m, ¢, j, k denote natural numbers, and x is
arbitrary. One can prove the following three propositions:

(1) |r—s|=1lifandonlyifr>sandr=s+1lorr<sands=r+1.

(2) li—jl+n—m|=1ifandonlyif|i—jl=1andn=mor |n—m|=1

and ¢ = j.
(3) mn > 1if and only if there exists m such that n =m + 1 and m > 0.

!This article was written during my visit at Shinshu University in 1992.

© 1992 Fondation Philippe le Hodey
107 ISSN 0777-4028



108 JAROSEAW KOTOWICZ AND YATSUKA NAKAMURA

2. FINITE SEQUENCES PRELIMINARIES

The scheme FinSeqDChoice concerns a non-empty set A, a natural number B,
and a binary predicate P, and states that:
there exists a finite sequence f of elements of A such that len f = B and for
every n such that n € Seg B holds P[n, f(n)]
provided the parameters have the following property:
e for every n such that n € Seg B there exists an element d of A such
that P[n, d].
One can prove the following propositions:
(4) Ifn=m+1and i€ Segn, then len Sgm(Segn \ {i}) = m.
(5) Suppose n =m+ 1 and k € Segn and ¢ € Segm. Then if 1 < ¢ and
i < k, then (Sgm(Segn \ {k}))(i) = i but if £ < i and i < m, then
(Sgm(Segn \ {k}))(i) =i+ 1.
(6)  For every finite sequence f and for all n, m such that len f = m+1 and
n € Seglen f holds len(f,) = m.
(7)  For every finite sequence f and for all n, m, k such that len f = m + 1
and n € Seglen f and k € Segm holds f, (k) = f(k) or fin(k) = f(k+1).
(8)  For every finite sequence f and for all n, m, k such that len f = m + 1
and n € Seglen f and 1 < k and k < n holds fy, (k) = f(k).
(9) For every finite sequence f and for all n, m, k such that len f =m + 1
and n € Seglen f and n < k and k < m holds f,(k) = f(k+1).
(10) Ifn € dom f and m € Segn, then (f | n)(m) = f(m) and m € dom f.
We now define four new constructions. A finite sequence of elements of R is
increasing if:

(Def.1)  for all n, m such that n € domit and m € domit and n < m and for

all 7, s such that r =it(n) and s = it(m) holds r < s.
A finite sequence is constant if:

(Def.2)  for all n, m such that n € domit and m € domit holds it(n) = it(m).
Let us observe that there exists a finite sequence of elements of R which is
increasing. Note also that there exists a finite sequence of elements of R which
is constant.

Let us consider f. The functor X-coordinate(f) yields a finite sequence of
elements of R and is defined by:

(Def.3)  lenX-coordinate(f) = len f
and for every n such that n € dom X-coordinate(f) and for every p such
that p = f(n) holds (X-coordinate(f))(n) = pq.
The functor Y-coordinate( f) yielding a finite sequence of elements of R is defined
as follows:

(Def.4)  lenY-coordinate(f) = len f
and for every n such that n € dom Y-coordinate(f) and for every p such
that p = f(n) holds (Y-coordinate(f))(n) = pa.
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One can prove the following propositions:
(11)  Suppose that
v #E,
rngv C Segn,

)
)

ii) wv(lenv) =mn,
)

(iv for every k such that 1 < k and k£ <lenv — 1 and for all 7, s such that
r=wv(k) and s =v(k+1) holds [r —s| =1orr=s,
(v) i€ Segn,
(vi) i+ 1€ Segn,
(vii)  m € domuw,
(viii)  w(m) =1,
(ix) for every k such that k € domwv and v(k) = ¢ holds k < m.

Then m+ 1 € domwv and v(m + 1) =i+ 1.
(12)  Suppose that
) v#e,
) rngov C Segn,
i) w(l)=1,
)
)

v(lenv) = n,

v for every k such that 1 < k and k < lenv — 1 and for all r, s such that
r=uv(k) and s =v(k+1) holds |[r —s|=1orr =s.
Then
(vi)  for every i such that i € Segn there exists k such that k& € domv and
v(k) =1,

(vii)  for all m, k, i, r such that m € domv and v(m) = i and for every j
such that j € domwv and v(j) = holds 7 < m and m < k and k € domv
and r = v(k) holds ¢ < r.

(13) Ifie dom f and 2 <len f, then f(i) € L(f).

3. MATRIX PRELIMINARIES

Next we state two propositions:

(14)  For every non-empty set D and for every matrix M over D and for
all ¢, j such that j € Seglen M and i € Segwidth M holds Mp;(j) =
Line(M, j)(1).

(15)  For every non-empty set D and for every matrix M over D and for
every k such that k € Seglen M holds M (k) = Line(M, k).

We now define several new constructions. Let T be a topological space. A
matrix over 7' is a matrix over the carrier of 7.
A matrix over £2 is non-trivial if:

(Def.5) 0 <lenit and 0 < widthit.

A matrix over 5'% is line X-constant if:
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(Def.6)  for every n such that n € Seglenit holds X-coordinate(Line(it,n)) is
constant.
A matrix over £2 is column Y-constant if:
(Def.7)  for every n such that n € Seg widthit holds Y-coordinate(itm ) is con-
stant.
A matrix over 5% is line Y-increasing if:
(Def.8)  for every n such that n € Seglenit holds Y-coordinate(Line(it,n)) is
increasing.
A matrix over £2 is column X-increasing if:
(Def.9)  for every m such that n € Segwidthit holds X-coordinate(itg ) is in-
creasing.
One can readily verify that there exists a matrix over 5% which is non-trivial, line
X-constant, column Y-constant, line Y-increasing and column X-increasing.
We now state two propositions:
(16)  For every column X-increasing line X-constant matrix M over £2 and
for all z, n, m such that z € rngLine(M,n) and x € rng Line(M,m) and
n € Seglen M and m € Seglen M holds n = m.

(17)  For every line Y-increasing column Y-constant matrix M over £3% and
for all «, n, m such that € rng(Mp,) and = € rng(Mp,,) and n €
Segwidth M and m € Segwidth M holds n = m.

4. Basic Go-BOARD‘S NOTATION

A Go-board is a non-trivial line X-constant column Y-constant line Y-increasing
column X-increasing matrix over 8%.
In the sequel G denotes a Go-board. The following four propositions are
true:
(18) Ifx =Gy and x = G, 5 and (m, k) € the indices of G and (i, j) € the
indices of GG, then m =14 and k = j.
(19) If m edom f and f(1) € rng(Go,1), then (f [ m)(1) € rng(Go,1)-
(20) If m € dom f and f(m) € mg(Gowidth), then (f | m)(len(f | m)) €
g (Go,width G)-
(21) If rng f Nrng(Go,) = 0 and f(n) = Gy and n € dom f and m €
Seglen G, then i # k.
Let us consider G, i. Let us assume that ¢ € Segwidth G and widthG > 1.
The deleting of i-column in G yielding a Go-board is defined by:
(Def.10)  len(the deleting of i-column in G) = len G and for every k such that
k € Seglen G holds (the deleting of i-column in G)(k) = Line(G, k) ;.

One can prove the following propositions:

(22) If i € SegwidthG and widthG > 1 and k € Seglen G, then Line(the
deleting of i-column in G, k) = Line(G, k) ;.
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(23) If i € SegwidthG and widthG = m + 1 and m > 0, then width(the
deleting of i-column in G) = m.

(24) 1If i € Segwidth G and width G > 1, then width G = width(the deleting
of 4-column in G) + 1.

(25) If i € SegwidthG and widthG > 1 and n € SeglenG and m €
Seg width(the deleting of i-column in G), then (the deleting of i-column
in G)pm = Line(G,n) ;i (m).

(26) Ifi € Segwidth G and widthG = m+1andm > 0and 1 < k and k < 1,
then (the deleting of i-column in G)gj = Gny and k € Seg width(the
deleting of i-column in G) and k € Seg width G.

(27)  Suppose i € SegwidthG and widthG = m+1 and m > 0 and i < k
and k& < m. Then (the deleting of i-column in G)gy = Gpgy1 and
k € Segwidth(the deleting of i-column in G) and k + 1 € Segwidth G.

(28) If i € SegwidthG and widthG = m + 1 and m > 0 and n € Seglen G
and 1 <k and k < 4, then (the deleting of i-column in G), = Gy and
k € Segwidth G.

(29) Suppose i € SegwidthG and widthG = m + 1 and m > 0 and n €
SeglenG and i < k and k& < m. Then (the deleting of i-column in
G)nk = Gprt1 and k+ 1 € Segwidth G.

(30) If widthG = m+ 1 and m > 0 and k € Segm, then (the deleting of
I-column in G)gy = Go k41 and k € Seg width(the deleting of 1-column
in G) and k + 1 € Segwidth G.

(31) If widthG =m+ 1 and m > 0 and k € Segm and n € Seglen G, then
(the deleting of 1-column in G), ; = Gy k41 and 1 € Segwidth G.

(32) If widthG = m + 1 and m > 0 and k € Segm, then (the deleting
of width G-column in G)ny = Goy and k € Segwidth(the deleting of
width G-column in G).

(33) If widthG =m+1and m > 0 and k € Segm and n € Seglen G, then
k € Segwidth G and (the deleting of width G-column in G), , = Gp i
and width G € Seg width G.

(34)  Suppose rng f N rng(Gp;) = 0 and f(n) € rngLine(G,m) and n €
dom f and ¢ € SegwidthG and m € Seglen G and widthG > 1. Then
f(n) € rng Line(the deleting of i-column in G, m).

Let us consider f, G. We say that f is a sequence which elements belong to
G if and only if the conditions (Def.11) is satisfied.

(Def.11) (i)  For every n such that n € dom f there exist ¢, j such that (i, j) € the
indices of G and f(n) = G, ,
(ii)  for every n such that n € dom f and n+ 1 € dom f and for all m, k,
i, j such that (m, k) € the indices of G and (i, j) € the indices of G and
f(n) =Gk and f(n+1) =G, holds |m —i| + |k — j| = 1.

One can prove the following propositions:
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(35) If f is a sequence which elements belong to G and m € dom f, then
1 <len(f | m)and f | m is a sequence which elements belong to G.

(36)  Suppose that

(i)  for every n such that n € dom f; there exist ¢, j such that (i, j) € the
indices of G and fi(n) = G; j,

(ii)  for every n such that n € dom fy there exist ¢, j such that (i, j) € the
indices of G and fa(n) = G; ;.

Then for every n such that n € dom(f; ™ fa) there exist ¢, j such that (i,
J) € the indices of G and (f1 ™~ f2)(n) = G ;.

(37)  Suppose that

(i) for every n such that n € dom f; and n+ 1 € dom f; and for all m, k,
i, j such that (m, k) € the indices of G and (i, j) € the indices of G and
£1(1) = G and fi(n+1) = Gy holds [m — il + [k — j| = 1,

(ii)  for every n such that n € dom f; and n+ 1 € dom fo and for all m, k,
i, j such that (m, k) € the indices of G and (i, j) € the indices of G and
fa(n) = G and fo(n+1) = G, ; holds |m —i| + |k — j| =1,

(i)  for all m, k, 4, j such that (m, k) € the indices of G and (i, j) € the
indices of G and fi(len f1) = Gy, and f3(1) = G;; and len f; € dom f;
and 1 € dom f5 holds |m —i| + |k — j| = 1.

Given n. Suppose n € dom(f1~ f2) and n+1 € dom(f; ~ f2). Given m, k,
i, j. Then if (m, k) € the indices of G and (i, j) € the indices of G and
(f1i™ f2)(n) = Gy and (f1~ f2)(n+1) = G, 4, then |m —i| + |k — j| = 1.

(38) If f is a sequence which elements belong to G and i € Segwidth G
and rng f Nrng(Gn,;) = 0 and widthG > 1, then f is a sequence which
elements belong to the deleting of i-column in G.

(39) If f is a sequence which elements belong to G and i € dom f, then there
exists n such that n € Seglen G and f(i) € rngLine(G,n).

(40)  Suppose f is a sequence which elements belong to G and i € dom f
and i + 1 € dom f and n € SeglenG and f(i) € rngLine(G,n). Then
f(i+1) € rngLine(G, n) or for every k such that f(i+1) € rng Line(G, k)
and k € Seglen G holds |n — k| = 1.

(41)  Suppose that

(i) 1<lenf,

i

for every k such that k£ € dom f and f(k) € rngLine(G, ¢) holds k < m.
Then m 41 € dom f and f(m + 1) € rng Line(G,i + 1).
(42)  Suppose 1 <len f and f(1) € rngLine(G, 1) and
f(en f) € rng Line(G,len G)
and f is a sequence which elements belong to G. Then

)
(ii))  f(len f) € rngLine(G,len G),
(iii)  f is a sequence which elements belong to G,
(iv) 7€ SeglenG,
(v) i+1€SeglenG,
(vi) m e domf,
(vii)  f(m) € rngLine(G, i),
)

(viii
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(i) for every i such that 1 < i and ¢ < lenG there exists k such that
k € dom f and f(k) € rngLine(G, 1),

(ii)  for every i such that 1 < i and i <lenG and 2 < len f holds £(f) N
rng Line(G, i) # 0,

(iii) for all 4, j, k, m such that 1 <iand i <lenG and 1 < jand j <lenG
and k € dom f and m € dom f and f(k) € rngLine(G, i) and for every n
such that n € dom f and f(n) € rngLine(G,?) holds n < k and k < m
and f(m) € rng Line(G, j) holds i < j.

(43) If f is a sequence which elements belong to G and i € dom f, then there
exists n such that n € Seg width G and f(i) € rng(Gno,).

(44)  Suppose f is a sequence which elements belong to G and i € dom f
and i +1 € dom f and n € SegwidthG and f(i) € rng(Gn,,). Then
f(i+1) € mg(Gny,) or for every k such that f(i + 1) € rng(Gny) and
k € Segwidth G holds |n — k| = 1.

(45)  Suppose that

) 1<lenf,

) f(len f) € rng(Gowidth G)

) f is a sequence which elements belong to G,

v) i€ SegwidthG,

) i+ 1€ SegwidthG,

) méedomf,

) f(m) € mg(Gny),

) for every k such that k € dom f and f(k) € rng(Gn,) holds k < m.

Then m+ 1 € dom f and f(m +1) € rng(Goiy1)-

(46)  Suppose 1 <len f and f(1) € rng(Gn,1) and f(len f) € rng(Gno width &)
and f is a sequence which elements belong to G. Then

(i)  for every i such that 1 < i and ¢ < width G there exists k such that
k € dom f and f(k) € rng(Gn,),
(ii)  for every i such that 1 < ¢ and i < widthG and 2 < len f holds

L(f) Nng(Go,) # 0,

(iii)  for all 4, 7, k, m such that 1 < ¢ and ¢ < widthG and 1 < j and
Jj < widthG and k € dom f and m € dom f and f(k) € rng(Gn,;) and
for every n such that n € dom f and f(n) € rmg(Gp,;) holds n < k and
k <m and f(m) € rng(Gg,;) holds i < j.

(47)  Suppose that

(i) nedomf,

1i f(n) € rng(GD,k)v

k € Segwidth G,

f(1) € rng(Gm,1),

f is a sequence which elements belong to G,

for every ¢ such that ¢ € dom f and f(i) € rng(Gn ) holds n <.

Then for every ¢ such that ¢ € dom f and 7 < n and for every m such that
m € Segwidth G and f(i) € rng(Gn ) holds m < k.

—~
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(48)

(49)

(50)
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Suppose f is a sequence which elements belong to G and f(1) € rng(Go,1)
and f(len f) € mg(Gn width ¢) and widthG > 1 and 1 < len f. Then there
exists g such that g(1) € rng((the deleting of width G-column in G)q )
and g(len g) € rng((the deleting of width G-column in
G)D,width(the deleting of width G—column in G))
and 1 < leng and g is a sequence which elements belong to the deleting
of width G-column in G and rngg C rng f.

Suppose f is a sequence which elements belong to G and
mg f Nmg(Goy) # 0 and mg f N mg(Gowiane) # 0.
Then there exists g such that rngg C rng f and g(1) € rng(Gno1) and
g(len g) € rng(Go wiath ¢) and 1 < len g and g is a sequence which elements
belong to G.

Suppose k € SeglenG and f is a sequence which elements belong
to G and f(len f) € rngLine(G,lenG) and n € dom f and f(n) €
rng Line(G, k). Then

(i)  for every i such that k& < i and ¢ < lenG there exists j such that

j€dom f and n < j and f(j) € rng Line(G, ),

(ii)  for every i such that k¥ < i and i < lenG there exists j such that

[1]
2]

8]
[4]
[5]
(6]
[7]
:
[10]
[11]
[12]
[13]
[14]

[15]

j€dom fand n < jand f(j) € rngLine(G,1).
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Summary. In article we define Go-board determined by finite
sequence of points from topological space £%. A few facts about this
notation are proved.

MML Identifier: GOBOARD2.

The papers [17], [10], [2], [6], [3], [8], [15], [16], [1], [18], [13], [5], [12], [11], [4],
[7], [9], and [14] provide the notation and terminology for this paper.

1. REAL NUMBERS PRELIMINARIES

For simplicity we follow the rules: p, ¢ denote points of E%, £y f1, f2, g denote
finite sequences of elements of 5%, R denotes a subset of R, r, s denote real
numbers, v, vy, v2 denote finite sequences of elements of R, n, m, i, j, k denote
natural numbers, and G denotes a Go-board. We now state the proposition
(1) If R is finite and R # (), then R is upper bounded and sup R € R and
R is lower bounded and inf R € R.

2. PROPERTIES OF FINITE SEQUENCES OF POINTS FROM E2

One can prove the following propositions:
(2)  For every finite sequence f holds f is one-to-one if and only if for all n,
m such that n € dom f and m € dom f and n # m holds f(n) # f(m).
(3) For every n holds 1 <n and n <len f — 1 if and only if n € dom f and
n+1& dom f.

!This article was written during my visit at Shinshu University in 1992.
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(4)  For every n holds 1 <n and n <len f — 2 if and only if n € dom f and
n+ 1€ dom f and n+ 2 € dom f.

(5)  The following conditions are equivalent:

(i)  for all n, m such that n —m > 1 or m —n > 1 holds L(f,n,n+ 1) N
L(fym,m+1) =0,

(ii)  for all n, m such that n —m > 1 or m —n > 1 but n € dom f and
n+1¢€domf and m € dom f and m + 1 € dom f holds L(f,n,n+ 1) N
L(f,m,m+1)=0.

(6)  Suppose that

(i) for every n such that 1 < n and n <len f — 2 holds L(f,n,n+ 1) N
L(f,n+1,n+2)={f(n+1)},

(ii))  for all n, m such that n —m > 1 or m —n > 1 holds L(f,n,n+ 1) N
L(fym,m+1) =0,

(iii)  f is one-to-one,

(iv)  f(enf) e L(f,i,i+1),

(v) i€ domf,

(vi) i+ 1€ domf.

Then i+ 1 = len f.
(7) Ik#0andlenf=Fk+1,then £(f) = L(f I k) UL(f, k. k+1).
(8)  Suppose that
(i) 1<k,
(i) lenf=k+1,
(iii)  for every n such that 1 < n and n <len f — 2 holds L(f,n,n+ 1) N
L(fin+1,n+2)={f(n+1)},
(iv)  for all n, m such that n —m > 1 or m —n > 1 holds L(f,n,n+ 1) N
L(f,m,m+1)=0.
Then L(f I k)N L(f, k,kE+1)={f(k)}.

(9) Iflenf; <nandn <len(fi "~ f2) —1 and m =n —len fi, then L(f1 ™

fo,n,n+1) = L(fa,m,m +1).

(10)  L(f) S L(f"9).

(11)  Suppose for all n, m such that n—m > 1 or m—n > 1 holds L(f,n,n+
1) N L(f,m,m + 1) = (. Then for all n, m such that n — m > 1 or
m—mn>1holds L(f Ii,n,n+1)NL(f]im,m+1)=0.

(12)  Suppose that

(i) for all n, p, g such that 1 <m and n <len f; — 1 and fi(n) = p and
fi(n+1) = g holds p1 = q1 or p2 = g2,

(i)  for all n, p, g such that 1 < n and n <len fo — 1 and f2(n) = p and
f2(n+1) = ¢ holds p1 = q1 or p2 = g2,

(iii)  for all p, ¢ such that fi(len f1) = p and f2(1) = ¢ holds p; = ¢1 or

P2 = q2.
Then for all n, p, ¢ such that 1 < n and n < len(f; © f3) — 1 and
(f1” f2)(n) =pand (f1 "~ f2)(n + 1) = g holds p1 = g1 or p2 = qa.

(13) If f # €, then X-coordinate(f) # e.
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(14) If f # €, then Y-coordinate(f) # e.
(15)  Suppose for all n, p, ¢ such that n € dom f and n + 1 € dom f and
f(n)=pand f(n+1) = q holds p; = ¢1 or pa = ga. Given n. Suppose
n € domf and n+ 1 € dom f. Then for all i, j, m, k such that (3,
Jj) € the indices of G and (m, k) € the indices of G and f(n) = G; ; and
f(n+1) =G holds i =mor k = j.
(16)  Suppose that
(i)  for every n such that n € dom f there exist 4, j such that (i, j) € the
indices of G and f(n) = G, j,
(ii)  for all n, p, ¢ such that n € dom f and n+ 1 € dom f and f(n) = p
and f(n + 1) = ¢ holds p1 = q1 or p2 = g2,
(iii)  for every n such that n € dom f and n + 1 € dom f holds f(n) #
f(n+1).
Then there exists g such that g is a sequence which elements belong
to G and L(f) = L(g) and ¢g(1) = f(1) and g(leng) = f(len f) and
len f <leng.
(17)  If v is increasing, then for all n, m such that n € domv and m € domwv
and n < m and for all r, s such that r = v(n) and s = v(m) holds r < s.
(18)  If v is increasing, then for all n, m such that n € domv and m € domwv
and n # m holds v(n) # v(m).
(19) If v is increasing and v; = v | Segn, then vy is increasing.
(20) For every v there exists v; such that rngv; = rngov and lenv; =
cardrngv and v; is increasing.
(21)  For all vy, vy such that lenv; = lenwvy and rngv; = rngvy and vy is
increasing and v is increasing holds v; = vs.

3. GO-BOARD DETERMINED BY FINITE SEQUENCE

We now define three new functors. Let vq, v be increasing finite sequences of
elements of R. Let us assume that v; # € and vy # . The Go-board of vy, v9
yields a Go-board and is defined by:

(Def.1)  lenthe Go-board of v1, v9 = lenwv; and width the Go-board of vy, v =
lenvy and for all n, m such that (n, m) € the indices of the Go-board
of v, vg and for all r, s such that vi(n) = r and ve(m) = s holds (the
Go-board of vy, v2)pm = [r, s].

Let us consider v. The functor Inc(v) yielding an increasing finite sequence of
elements of R is defined by:

(Def.2)  rngInc(v) = rngv and lenInc(v) = card rngv.

Let us consider f. Let us assume that f # . The Go-board of f yielding a
Go-board is defined by:

(Def.3)  the Go-board of f = the Go-board of Inc(X-coordinate(f)),

Inc(Y-coordinate(f)).
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One can prove the following propositions:

(22)
(23)

(24)

(27)

(28)

[1]
2]

8]
[4]
[5]
[6]
[7]
y
[10]
[11]
[12]
[13]
[14]

[15]

If v # €, then Inc(v) # €.

If f # e, then lenthe Go-board of f = card rng X-coordinate(f) and
width the Go-board of f = card rng Y-coordinate(f).

If f # £, then for every n such that n € dom f there exist i, j such that
(i, j) € the indices of the Go-board of f and f(n) = (the Go-board of
i

If f#¢eand n € dom f and r = (X-coordinate(f))(n) and for every m
such that m € dom f and for every s such that s = (X-coordinate(f))(m)
holds 7 < s, then f(n) € rngLine(the Go-board of f,1).

If f#¢eand n € dom f and r = (X-coordinate(f))(n) and for every m
such that m € dom f and for every s such that s = (X-coordinate(f))(m)
holds s <, then f(n) € rngLine(the Go-board of f,lenthe Go-board of
f)-

If f#¢eandn € dom f and r = (Y-coordinate(f))(n) and for every m
such that m € dom f and for every s such that s = (Y-coordinate(f))(m)
holds r < s, then f(n) € rng((the Go-board of f)g 1).

If f#¢eand n € dom f and r = (Y-coordinate(f))(n) and for every m
such that m € dom f and for every s such that s = (Y-coordinate(f))(m)
holds s <7, then f(n) € rng((the Go-board of f)n width the Go—board of f)-
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Summary. Two useful facts about Go-board are proved.

MML Identifier: GOBOARDS.

The terminology and notation used in this paper have been introduced in the
following articles: [16], [8], [1], [5], [2], [14], [15], [17], [4], [10], [9], [3], [6], 7],
[13], [11], and [12]. For simplicity we follow the rules: p, ¢ are points of £2, f,
g are finite sequences of elements of 5%, n, m, i, j are natural numbers, and G
is a Go-board. One can prove the following two propositions:

(1)  Suppose that
(i)  for every n such that n € dom f there exist 4, j such that (i, j) € the

indices of G and f(n) = G, j,

(ii)  f is one-to-one,

(iii)  for every m such that 1 < n and n <len f — 2 holds L(f,n,n+ 1) N
L(fn+1,0+2) = {f(n+ 1)},

(iv)  for all n, m such that n —m > 1 or m —n > 1 holds L(f,n,n+1)N
L(f,m,m+1) =0,

(v) for all n, p, g such that 1 <n and n <lenf —1 and f(n) = p and
f(n+1) = g holds p1 = q1 or p2 = ga.
Then there exists g such that g is a sequence which elements belong to
G and g is one-to-one and for every n such that 1 <n and n <leng — 2
holds £(g,n,n+1)NL(g,n+1,n+2) = {g(n+1)} and for all n, m such
that n —m > 1 or m —n > 1 holds L(g,n,n+ 1) N L(g,m,m +1) =0
and for all n, p, ¢ such that 1 < n and n <leng — 1 and g(n) = p and
g(n + 1) = g holds p1 = g1 or p2 = g2 and L(f) = L(g) and f(1) = g(1)
and f(len f) = g(len g) and len f < leng.

!This article was written during my visit at Shinshu University in 1992.
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Suppose for every n such that n € dom f there exist ¢, j such that
(i, j) € the indices of G and f(n) = G;; and f is a special sequence.
Then there exists g such that g is a sequence which elements belong to
G and g is a special sequence and L(f) = L(g) and f(1) = ¢g(1) and
f(en f) = g(leng) and len f <leng.
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Summary. We prove the Go-board theorem which is a special
case of Hex Theorem. The article is based on [15].

MML Identifier: GOBOARD4.

The terminology and notation used in this paper are introduced in the following
articles: [16], [7], [1], [4], [2], [13], [14], [17], [3], [8], [5], [6], [9], [12], [10], and
[11]. For simplicity we adopt the following convention: p, p1, pe, ¢, q1, g2 will
be points of 5%, Py, P, will be subsets of 5%, f1, fo will be finite sequences of
elements of 5%, r, s will be real numbers, n will be a natural number, and G
will be a Go-board. We now state several propositions:
(1) Given G, f1, fa. Suppose that
i) 1<len f,
(i) 1<lenfo,
(i)  f1 is a sequence which elements belong to G,
(iv) f2 is a sequence which elements belong to G,
(v) ) € rng Line(G, 1),
(vi) len f1) € rng Line(G, len G),
(vii) ) € mmg(Go,1),
(viii) len f2) € mg(Go width ¢)-
Then rng f1 Nrog fo # 0.
(2) Given G, f1, fa. Suppose that
(i) 2<lenfy,
(ii) 2 <len fo,

e
i
fa(1
fa

(iii)  f1 is a sequence which elements belong to G,
(iv)  fo is a sequence which elements belong to G,
(v)  fi(1) € rngLine(G, 1),

N2 NS NG N

(vi)  fi(len f1) € rngLine(G,len G),

!This article was written during my visit at Shinshu University in 1992.
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(vii)  f2(1) € rng(Go,),
(viii)  fa(len f2) € rng(Gowidth ¢)-
Then L(f1) N L(f2) # 0.

(3) Given G, f1, fa. Suppose that
(i f1 is a special sequence,

(i
ii

)
i) f2 is a special sequence,
(iii)  f1 is a sequence which elements belong to G,
(iv)  f2 is a sequence which elements belong to G,
(v)
)
)
)

v)  fi(1) € rngLine(G, 1),
(vi)  fi(len f1) € rng Line(G,len G),
(Vii ng ) S rng(GD,l),

fo(len f3) € mg(Go,widtn @)-
Then £(f1) N L(f2) # 0.
(4)  Given f1, fo. Suppose that
(i) 2<lenf,
(11) 2< len f27
(iii)  for all n, p, ¢ such that n € dom f; and n+ 1 € dom f; and f1(n) =p
and fi(n + 1) = ¢ holds p1 = q1 or p2 = gz,
(iv)  for all n, p, ¢ such that n € dom f3 and n+ 1 € dom f2 and fo(n) =p
and f2(n + 1) = ¢ holds p1 = q1 or p2 = g2,
(v)  for every n such that n € dom f; and n+ 1 € dom f; holds fi(n) #

fi (n + 1)7
(vi)  for every n such that n € dom f; and n 4+ 1 € dom fo holds fa(n) #
fa(n+1),
(vii)  for every r such that r = (X-coordinate(f1))(1) and for all n, s such
that n € dom f; and s = (X-coordinate(f1))(n) holds r < s,
(viii)  for every r such that r = (X-coordinate(f1))(1) and for all n, s such
that n € dom f2 and s = (X-coordinate(f2))(n) holds r <'s,
e(f1

(viii

(ix) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s
such that n € dom f; and s = (X-coordinate(f1))(n) holds s <r,
(x) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s
such that n € dom fy and s = (X-coordinate(f2))(n) holds s < r,
)

(f2
(xi)  for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n € dom f; and s = (Y-coordinate(f1))(n) holds r < s,
(xii)  for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n € dom fy and s = (Y-coordinate(f2))(n) holds r < s,
(xiii)  for every r such that r = (Y-coordinate(f2))(len f3) and for all n, s
such that n € dom f; and s = (Y-coordinate(f1))(n) holds s < r,
(xiv)  for every r such that r = (Y-coordinate(f3))(len f2) and for all n, s
such that n € dom fy and s = (Y-coordinate(f2))(n) holds s < r.
Then L(f1) N L(f2) # 0.
(5)  Given f1, fa. Suppose that
(i)  fi1 is a special sequence,
(ii)  f2 is a special sequence,
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(iii)  for every r such that r = (X-coordinate(f1))(1) and for all n, s such
that n € dom f; and s = (X-coordinate(f1))(n) holds r < s,
(iv)  for every r such that r = (X-coordinate(f1))(1) and for all n, s such
that n € dom fy and s = (X-coordinate(f2))(n) holds r < s,
(v)  for every r such that r = (X-coordinate(f1))(len f1) and for all n, s
such that n € dom f; and s = (X-coordinate(f1))(n) holds s <r,
(vi)  for every r such that r = (X-coordinate(f1))(len f1) and for all n, s
such that n € dom fy and s = (X-coordinate(f2))(n) holds s < r,
(vii)  for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n € dom f; and s = (Y-coordinate(f1))(n) holds r < s,
(viii)  for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n € dom fy and s = (Y-coordinate(f2))(n) holds r < s,
(ix) for every r such that r = (Y-coordinate(f2))(len f3) and for all n, s
such that n € dom f; and s = (Y-coordinate(f1))(n) holds s < r,
(x) for every r such that r = (Y-coordinate(f3))(len f2) and for all n, s
such that n € dom fy and s = (Y-coordinate(f2))(n) holds s < r.
Then L(f1) N L(f2) # 0.
(6) Given Py, P,. Suppose P is a special polygonal arc and P; is a special
polygonal arc. Given G, f1, fo. Suppose that
f1 is a special sequence,

S~
e

)

(i) P =L(f1),

(iii)  f2 is a special sequence,

(iv)  Py=L(f2),

(v)  f1is a sequence which elements belong to G,
(vi)  f2 is a sequence which elements belong to G,
(vii)  fi1(1) € rngLine(G, 1),

(viii)  fi(len f1) € rng Line(G,len G),

(ix)  f2(1) € rng(Go,),

(x)  fa(len f2) € ng(Gojwidtn )-

Then PN Py # 0.
(7)  Given Pj, P;. Suppose P; is a special polygonal arc and P is a special
polygonal arc. Given f1, fo. Suppose that

(i) fiis aNSpecial sequence,
(i)  Pr=L(f1),
(i)  fois aNSpecial sequence,
(IV) P :‘C(f2)7
(v)  for every r such that r = (X-coordinate(f;))(1) and for all n, s such

)
that n € dom f; and s = (X-coordinate(f1))(n) holds r < s,

(vi)  for every r such that r = (X-coordinate(f1))(1) and for all n, s such
that n € dom f3 and s = (X-coordinate(f2))(n) holds r <'s,

(vii)  for every r such that r = (X-coordinate(f1))(len f1) and for all n, s
such that n € dom f; and s = (X-coordinate(f1))(n) holds s < r,

(viii)  for every r such that r = (X-coordinate(f1))(len f1) and for all n, s
such that n € dom fy and s = (X-coordinate(f2))(n) holds s < r,
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)
)
(xii)  for every r such that r = (Y-coordinate(f2)
)

JAROSLAW KOTOWICZ AND YATSUKA NAKAMURA

(ix) for every r such that r = (Y-coordinate(f3))(1) and for all n, s such

e
that n € dom f; and s = (Y-coordinate(f1))(n) holds r < s,
e

(x) for every r such that r = (Y-coordinate(f3))(1) and for all n, s such

that n € dom f2 and s = (Y-coordinate(f2))(n) holds r < s,

(
(xi) for every r such that » = (Y-coordinate(f2))(len f3) and for all n, s

)

such that n € dom f; and s = (Y-coordinate(f1))(n) holds s < r,

)(len f3) and for all n, s
such that n € dom fy and s = (Y-coordinate(f2))(n) holds s < r.

Then PN Py # 0.

(8)  Given Py, P, p1, p2, q1, g2- Suppose that

1]
2]
3]
[4]

[5]
(6]

[7]
8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

ii)
(ili)  for every p such that p € P; U P, holds p17 < p1 and p1 < ¢11,
(iv)

(i) P is a special polygonal arc joining p; and g1,

P, is a special polygonal arc joining po and qo,

for every p such that p € P, U P, holds pao < pa and pa < ¢o9.
Then Py N Py # 0.
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Some Properties of Binary Relations

Waldemar Korczynski
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Summary. The article contains some theorems on binary rela-
tions, which are used in papers [2], [3], [1], and other.

MML Identifier: SYSREL.

The articles [5], [6], [7], and [4] provide the terminology and notation for this
paper. We adopt the following rules: x, y are arbitrary, X, Y, Z, W are sets,
and R, S, T are binary relations. We now state a number of propositions:

(1) XNY=0andze XUY,thenz e Xandz ¢ Y orxz €Y and
x ¢ X.

(2) XuUuY)uZ=XUZUYUZ).

3) XuUuXUuY)=XuUY.

(4 IKEXCYNZ,then X CY and X C Z.

(5) =0

(6) @o\R=w2.

(7) RCSifandonlyif R\ S=2.

(8) RNS=gifand only if R\ S = R.

(99 R\R=g2.

(10) If RC o, then R=g.

(11) sUR=Rand RUg=RandgNR=gand RN@ =2.

Let us consider X, Y. Then [ X, Y ] is a binary relation.
Next we state several propositions:
(12) If X #0andY #0, then dom} X, Y ]=X and mgf X, Y] =Y.
(13) dom(RN[X,Y])C X andmg(RN[X,Y]) CY.
(14) I XNY =0, then dom(RN[X,Y]) Nmg(RN[X,Y]) = 0 and
dom(R"NEX, Y] Nmg(R"N[X,Y]) =0.
(15) T RC[X,Y] thendomRC X and mgRCY.
(16) I RCEX, Y] then R-C}Y, X1.

© 1992 Fondation Philippe le Hodey
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(17) I XNY =0, then [ X, Y]NEY, X]=0.
(18) [X, Y| =Y, X].
Next we state a number of propositions:
(19) (RUS) - T=R-TUS-TandR-(SUT)=R-SUR-T.
(200 HTRC[X,Y]and (z,y) € R,thenzxe X andyeY.
(21) (i) EXNY=0and RC[X,YJU}Y, X]and (x,y) € Rand z € X,
thenz ¢ Y andy ¢ X andy €Y,
(i) fXNY=0and RC}[X,YJU[Y, X]and (z,y) € Randy €Y,
theny ¢ X and z ¢ Y and z € X,
i) fXNY=0and RC|[X,YJULY, X]and (z,y) € Rand z € Y,
thenz ¢ X andy ¢ Y and y € X,
(iv) fXNY=0and RC[X,Y]U}Y, X]and (z,y) € Rand y € X,
thenx ¢ X andy¢ Y andx €Y.
(22) IfrngRNdomS =0 ordomSNrngR =1, then R-S = 2.
(23) HRCIX,Y]and ZC X, then R1 Z=RN}Z Y]butif RC[X,
Yjand ZCY,then Z| R=RN}X, Z].

(24) HTRC[X,Y]and X =ZUW,then R=R|ZURW.

(25) HXNY=Qand RC[X,Y]JULY, X],then RI X C[X, Y]

(26) If RCS, then R~ C S™.

(27) Ax CEX, X1,

(28) Ax-Ax = Ax.

(29) Agy = {{o ).

(30) (=, y) € Ax if and only if (y, z) € Ax.

(31) Axuy = Ax UAy and Axny = Ax N Ay and AX\yzﬂx\Ay.
(32) If X CY, then Ax C Ay.

(33) AX\y\AX:@.

(34) If R C Agompr, then R = Agom k-

(35) IfAx CRUR”,then Ax C Rand Ax C R".

(36) If Ax C R, then Ax C R~.

(37) Ing [:X, X:], then R\AdomR :R\AX and R\Ang:R\Ax.
(38) If Ax-(R\Ax)=o,then dom(R\ Ax) =dom R\ dom(Ax) but if

(R\ Ax)-Ax =@, then rng(R\ Ax) =rng R\ rng(Ax).
(39) IHRCR-Rand R-(R\Awmgr) =@, then Ajpgg C Rbutif RC R-R
and (R \ AdomR) - R = @, then AdomR CR.

(40) i) IHRCR-Rand R-(R\ Awmgr) =@, then RN Agr = Dng R,
(i) if RCR-Rand (R\ Adomr) - R=2, then RN Adom g = Ldom R-
(41) IKR-(R\Ax) =@ and rmgR C X, then R- (R\ Amgr) = @ but if

(R\Ax)-R=2and domR C X, then (R\ AqomRr) - R=2.
Let us consider R. The functor CL(R) yielding a binary relation is defined
as follows:

(Def.1)  CL(R) = RN Adom &.



SOME PROPERTIES OF BINARY RELATIONS 133

One can prove the following propositions:
(42) CL(R) C R and CL(R) C Adom k.
(43)  If (z, y) € CL(R), then 2 € dom CL(R) and = = y.
(44)  dom CL(R) = rng CL(R).
(45) (i) x € dom CL(R) if and only if x € dom R and (z, z) € R,
(i) 2 € rngCL(R) if and only if z € dom R and (z, z) € R,
(iii) « € rngCL(R) if and only if x € rng R and (z, z) € R,
(iv)  z € dom CL(R) if and only if € rng R and (z, z) € R.
(46 CL(R) = Ddom CL(R)-
(47) i) U R-R=Rand R-(R\CL(R)) = @ and (x, y) € R and = # y,
then z € dom R \ dom CL(R) and y € dom CL(R),
(ii) if R-R=Rand (R\CL(R)) -R= o and (z, y) € R and = # y, then
y € rng R\ dom CL(R) and = € dom CL(R).
(48) i) I R-R=Rand R-(R\ DAdomr) = @ and (x, y) € R and x # y,
then z € dom R \ dom CL(R) and y € dom CL(R),
(i) if R-R=Rand (R\ Adomr) R =2 and (z, y) € R and x # y, then
y € rng R\ dom CL(R) and = € dom CL(R).
(49) i) IHR-R=Rand R-(R\ Adgomr) = &, then dom CL(R) = rmg R
and rng CL(R) = rng R,
(i) f R-R=Rand (R\AdomR) - R =@, then dom CL(R) = dom R and
rng CL(R) = dom R.
(50)  dom CL(R) C dom R and rng CL(R) C rng R and rng CL(R) C dom R
and dom CL(R) C rng R.
(51) AdomCL(R) C Agomr and ArngCL(R) C AdomR-
(52)  Adomcrr) € R and A,y cLr) € R
(53) If Ax CRand Ax - (R\Ax) =g, then R| X =Ax butif Ax CR
and (R\Ax) -Ax =@, then X | R= Ax.
(54) (1) I Adomcr(r) (R\Adom cr(r)) = @, then Ridom CL(R) = Agom crL(R)
and R [ rng CL(R) = AgomcL(r)>
(i) if (R\ Dmmgenr) - Dmger(r) = @, then dom CL(R) | R = Agom cL(Rr)
and rng CL(R) | R = Ag cr(r)-
(55) ItR- (R \ Adom R) = @, then AdomCL(R) ’ (R\ AdomCL(R)) = @ but if
(R \ Adom R) R = o, then (R \ Adom CL(R)) * DNdom CL(R) = 9.
(56) (1) IfS-R=5Sand R- (R\AdomR) = &, then S - (R\AdomR) =g,
(i) fR-S=Sand (R\ Ddomr) - R=2, then (R\ AqomR) - S = 2.
(57) I S-R=Sand R-(R\ Adgomr) = @, then CL(S) C CL(R) but if
R-S=Sand (R\ AdomRr) - R =@, then CL(S) C CL(R).
(58) (1) IfS-R=Sand R-(R\ Adomr) =@ and R-S = Rand S-(S\
AdomS) = &, then CL(S) = CL(R),
(i) ifR-S=Sand (R\Agompr)-R=2and S-R= Rand (S\Qdoms):S =
@, then CL(S) = CL(R).

~— ~—
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