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Summary. Let X and Y be topological spaces and let X1 and X2

be subspaces of X. Let f : X1 ∪ X2 → Y be a mapping defined on the
union of X1 and X2 such that the restriction mappings f|X1

and f|X2
are

continuous. It is well known that if X1 and X2 are both open (closed)
subspaces of X, then f is continuous (see e.g. [6, p.106]).

The aim is to show, using Mizar System, the following theorem (see
Section 5): If X1 and X2 are weakly separated, then f is continuous
(compare also [15, p.358] for related results). This theorem generalizes
the preceding one because if X1 and X2 are both open (closed), then
these subspaces are weakly separated (see [5]). However, the following
problem remains open.

Problem 1. Characterize the class of pairs of subspaces X1 and
X2 of a topological space X such that (∗) for any topological space
Y and for any mapping f : X1 ∪ X2 → Y , f is continuous if the
restrictions f|X1

and f|X2
are continuous.

In some special case we have the following characterization: X1 and X2

are separated iff X1 misses X2 and the condition (∗) is fulfilled. In con-
nection with this fact we hope that the following specification of the
preceding problem has an affirmative answer.

Problem 2. Suppose the condition (∗) is fulfilled. Must X1 and
X2 be weakly separated ?

Note that in the last section the concept of the union of two mappings
is introduced and studied. In particular, all results presented above are
reformulated using this notion. In the remaining sections we introduce
concepts needed for the formulation and the proof of theorems on prop-
erties of continuous mappings, restriction mappings and modifications of
the topology.

MML Identifier: TMAP 1.

The articles [13], [14], [2], [3], [1], [4], [11], [8], [10], [16], [7], [9], [12], and [5]
provide the notation and terminology for this paper.
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1. Set-Theoretic Preliminaries

In the sequel A, B will denote non-empty sets. Next we state several proposi-
tions:

(1) For every function f from A into B and for every subset A0 of A and
for every subset B0 of B holds f ◦ A0 ⊆ B0 if and only if A0 ⊆ f −1 B0.

(2) For every function f from A into B and for every non-empty subset A0

of A and for every function f0 from A0 into B such that for every element
c of A such that c ∈ A0 holds f(c) = f0(c) holds f

�
A0 = f0.

(3) For every function f from A into B and for every non-empty subset A0

of A and for every element c of A such that c ∈ A0 holds f(c) = (f
�
A0)(c).

(4) For every function f from A into B and for every non-empty subset A0

of A and for every subset C of A such that C ⊆ A0 holds f ◦C = (f
�
A0)◦C.

(5) For every function f from A into B and for every non-empty subset
A0 of A and for every subset D of B such that f −1 D ⊆ A0 holds
f −1 D = (f

�
A0) −1 D.

Let A, B be non-empty sets, and let A1, A2 be non-empty subsets of A, and
let f1 be a function from A1 into B, and let f2 be a function from A2 into B.
Let us assume that f1

�
(A1 ∩A2) = f2

�
(A1 ∩A2). The functor f1 ∪ f2 yielding

a function from A1 ∪A2 into B is defined by:

(Def.1) (f1 ∪ f2)
�
A1 = f1 and (f1 ∪ f2)

�
A2 = f2.

The following proposition is true

(6) Let A, B be non-empty sets. Then for all non-empty subsets A1, A2 of
A such that A1 misses A2 and for every function f1 from A1 into B and
for every function f2 from A2 into B holds f1

�
(A1 ∩A2) = f2

�
(A1 ∩A2)

and (f1 ∪ f2)
�
A1 = f1 and (f1 ∪ f2)

�
A2 = f2.

We follow the rules: A, B are non-empty sets and A1, A2, A3 are non-empty
subsets of A. We now state four propositions:

(7) For every function g from A1∪A2 into B and for every function g1 from
A1 into B and for every function g2 from A2 into B such that g

�
A1 = g1

and g
�
A2 = g2 holds g = g1 ∪ g2.

(8) For every function f1 from A1 into B and for every function f2 from A2

into B such that f1
�
(A1 ∩A2) = f2

�
(A1 ∩A2) holds f1 ∪ f2 = f2 ∪ f1.

(9) Let A12, A23 be non-empty subsets of A. Suppose A12 = A1 ∪ A2

and A23 = A2 ∪ A3. Let f1 be a function from A1 into B. Let f2 be a
function from A2 into B. Let f3 be a function from A3 into B. Suppose
f1

�
(A1 ∩ A2) = f2

�
(A1 ∩ A2) and f2

�
(A2 ∩ A3) = f3

�
(A2 ∩ A3) and

f1
�
(A1 ∩A3) = f3

�
(A1 ∩A3). Then for every function f12 from A12 into

B and for every function f23 from A23 into B such that f12 = f1 ∪ f2 and
f23 = f2 ∪ f3 holds f12 ∪ f3 = f1 ∪ f23.

(10) For every function f1 from A1 into B and for every function f2 from
A2 into B such that f1

�
(A1 ∩A2) = f2

�
(A1 ∩A2) holds A1 is a subset
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of A2 if and only if f1 ∪ f2 = f2 but A2 is a subset of A1 if and only if
f1 ∪ f2 = f1.

2. Selected Properties of Subspaces of Topological Spaces

In the sequel X is a topological space. Next we state four propositions:

(11) For every subspace X0 of X holds the topological structure of X0 is a
strict subspace of X.

(12) For all topological spaces X1, X2 such that X1 = the topological struc-
ture of X2 holds X1 is a subspace of X if and only if X2 is a subspace of
X.

(13) For all topological spaces X1, X2 such that X2 = the topological struc-
ture of X1 holds X1 is a closed subspace of X if and only if X2 is a closed
subspace of X.

(14) For all topological spaces X1, X2 such that X2 = the topological struc-
ture of X1 holds X1 is an open subspace of X if and only if X2 is an open
subspace of X.

In the sequel X1, X2 will denote subspaces of X. Next we state several
propositions:

(15) If X1 is a subspace of X2, then for every point x1 of X1 there exists a
point x2 of X2 such that x2 = x1.

(16) For every point x of X1 ∪X2 holds there exists a point x1 of X1 such
that x1 = x or there exists a point x2 of X2 such that x2 = x.

(17) If X1 meets X2, then for every point x of X1 ∩X2 holds there exists a
point x1 of X1 such that x1 = x and there exists a point x2 of X2 such
that x2 = x.

(18) For every point x of X1 ∪ X2 and for every subset F1 of X1 and for
every subset F2 of X2 such that F1 is closed and x ∈ F1 and F2 is closed
and x ∈ F2 there exists a subset H of X1 ∪X2 such that H is closed and
x ∈ H and H ⊆ F1 ∪ F2.

(19) For every point x of X1 ∪ X2 and for every subset U1 of X1 and for
every subset U2 of X2 such that U1 is open and x ∈ U1 and U2 is open
and x ∈ U2 there exists a subset V of X1 ∪X2 such that V is open and
x ∈ V and V ⊆ U1 ∪ U2.

(20) For every point x of X1∪X2 and for every point x1 of X1 and for every
point x2 of X2 such that x1 = x and x2 = x and for every neighbourhood
A1 of x1 and for every neighbourhood A2 of x2 there exists a subset V of
X1 ∪X2 such that V is open and x ∈ V and V ⊆ A1 ∪A2.

(21) For every point x of X1 ∪ X2 and for every point x1 of X1 and for
every point x2 of X2 such that x1 = x and x2 = x and for every neigh-
bourhood A1 of x1 and for every neighbourhood A2 of x2 there exists a
neighbourhood A of x such that A ⊆ A1 ∪A2.
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In the sequel X0, X1, X2, Y1, Y2 will be subspaces of X. One can prove the
following propositions:

(22) If X0 is a subspace of X1, then X0 meets X1 and X1 meets X0.

(23) If X0 is a subspace of X1 but X0 meets X2 or X2 meets X0, then X1

meets X2 and X2 meets X1.

(24) If X0 is a subspace of X1 but X1 misses X2 or X2 misses X1, then X0

misses X2 and X2 misses X0.

(25) X0 ∪X0 = the topological structure of X0.

(26) X0 ∩X0 = the topological structure of X0.

(27) If Y1 is a subspace of X1 and Y2 is a subspace of X2, then Y1 ∪ Y2 is a
subspace of X1 ∪X2.

(28) If Y1 meets Y2 and Y1 is a subspace of X1 and Y2 is a subspace of X2,
then Y1 ∩ Y2 is a subspace of X1 ∩X2.

(29) If X1 is a subspace of X0 and X2 is a subspace of X0, then X1 ∪X2 is
a subspace of X0.

(30) If X1 meets X2 and X1 is a subspace of X0 and X2 is a subspace of X0,
then X1 ∩X2 is a subspace of X0.

(31) (i) If X1 misses X0 or X0 misses X1 but X2 meets X0 or X0 meets X2,
then (X1 ∪X2) ∩X0 = X2 ∩X0 and X0 ∩ (X1 ∪X2) = X0 ∩X2,

(ii) if X1 meets X0 or X0 meets X1 but X2 misses X0 or X0 misses X2,
then (X1 ∪X2) ∩X0 = X1 ∩X0 and X0 ∩ (X1 ∪X2) = X0 ∩X1.

(32) If X1 meets X2, then if X1 is a subspace of X0, then X1 ∩ X2 is a
subspace of X0 ∩ X2 but if X2 is a subspace of X0, then X1 ∩ X2 is a
subspace of X1 ∩X0.

(33) If X1 is a subspace of X0 but X0 misses X2 or X2 misses X0, then
X0∩(X1∪X2) = the topological structure of X1 and X0∩(X2∪X1) = the
topological structure of X1.

(34) If X1 meets X2, then if X1 is a subspace of X0, then X0 ∩X2 meets X1

and X2 ∩X0 meets X1 but if X2 is a subspace of X0, then X1 ∩X0 meets
X2 and X0 ∩X1 meets X2.

(35) If X1 is a subspace of Y1 and X2 is a subspace of Y2 but Y1 misses Y2

or Y1 ∩ Y2 misses X1 ∪X2, then Y1 misses X2 and Y2 misses X1.

(36) Suppose X1 is not a subspace of X2 and X2 is not a subspace of X1

and X1 ∪X2 is a subspace of Y1 ∪ Y2 and Y1 ∩ (X1 ∪X2) is a subspace of
X1 and Y2 ∩ (X1 ∪X2) is a subspace of X2. Then Y1 meets X1 ∪X2 and
Y2 meets X1 ∪X2.

(37) Suppose that
(i) X1 meets X2,

(ii) X1 is not a subspace of X2,
(iii) X2 is not a subspace of X1,
(iv) the topological structure of X = Y1 ∪ Y2 ∪X0,
(v) Y1 ∩ (X1 ∪X2) is a subspace of X1,
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(vi) Y2 ∩ (X1 ∪X2) is a subspace of X2,
(vii) X0 ∩ (X1 ∪X2) is a subspace of X1 ∩X2.

Then Y1 meets X1 ∪X2 and Y2 meets X1 ∪X2.

(38) Suppose that
(i) X1 meets X2,
(ii) X1 is not a subspace of X2,

(iii) X2 is not a subspace of X1,
(iv) X1 ∪X2 is not a subspace of Y1 ∪ Y2,
(v) the topological structure of X = Y1 ∪ Y2 ∪X0,
(vi) Y1 ∩ (X1 ∪X2) is a subspace of X1,
(vii) Y2 ∩ (X1 ∪X2) is a subspace of X2,

(viii) X0 ∩ (X1 ∪X2) is a subspace of X1 ∩X2.
Then Y1 ∪ Y2 meets X1 ∪X2 and X0 meets X1 ∪X2.

(39) X1 ∪X2 meets X0 if and only if X1 meets X0 or X2 meets X0 but X0

meets X1 ∪X2 if and only if X0 meets X1 or X0 meets X2.

(40) X1 ∪X2 misses X0 if and only if X1 misses X0 and X2 misses X0 but
X0 misses X1 ∪X2 if and only if X0 misses X1 and X0 misses X2.

(41) If X1 meets X2, then if X1 ∩X2 meets X0, then X1 meets X0 and X2

meets X0 but if X0 meets X1 ∩X2, then X0 meets X1 and X0 meets X2.

(42) If X1 meets X2, then if X1 misses X0 or X2 misses X0, then X1 ∩X2

misses X0 but if X0 misses X1 or X0 misses X2, then X0 misses X1 ∩X2.

(43) For every closed subspace X0 of X such that X0 meets X1 holds X0∩X1

is a closed subspace of X1.

(44) For every open subspace X0 of X such that X0 meets X1 holds X0∩X1

is an open subspace of X1.

(45) For every closed subspace X0 of X such that X1 is a subspace of X0

and X0 misses X2 holds X1 is a closed subspace of X1 ∪X2 and X1 is a
closed subspace of X2 ∪X1.

(46) For every open subspace X0 of X such that X1 is a subspace of X0 and
X0 misses X2 holds X1 is an open subspace of X1∪X2 and X1 is an open
subspace of X2 ∪X1.

3. Continuity of Mappings

We now define two new constructions. Let X, Y be topological spaces. A
mapping from X into Y is a function from the carrier of X into the carrier of
Y .

We say that f is continuous at x if and only if:

(Def.2) for every neighbourhood G of f(x) there exists a neighbourhood H of
x such that f ◦ H ⊆ G.

In the sequel X, Y denote topological spaces and f denotes a mapping from
X into Y . One can prove the following propositions:
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(47) For every point x of X holds f is continuous at x if and only if for every
neighbourhood G of f(x) holds f −1 G is a neighbourhood of x.

(48) For every point x of X holds f is continuous at x if and only if for every
subset G of Y such that G is open and f(x) ∈ G there exists a subset H
of X such that H is open and x ∈ H and f ◦ H ⊆ G.

(49) f is continuous if and only if for every point x of X holds f is continuous
at x.

(50) For all topological spaces X, Y , Z such that the carrier of Y = the
carrier of Z and the topology of Z ⊆ the topology of Y and for every
mapping f from X into Y and for every mapping g from X into Z such
that f = g and for every point x of X such that f is continuous at x holds
g is continuous at x.

(51) Let X, Y , Z be topological spaces. Then if the carrier of X = the
carrier of Y and the topology of Y ⊆ the topology of X, then for every
mapping f from X into Z and for every mapping g from Y into Z such
that f = g and for every point x of X and for every point y of Y such
that x = y holds if g is continuous at y, then f is continuous at x.

Let X, Y , Z be topological spaces, and let f be a mapping from X into Y ,
and let g be a mapping from Y into Z. Then g · f is a mapping from X into Z.

We follow a convention: X, Y , Z are topological spaces, f is a mapping from
X into Y , and g is a mapping from Y into Z. The following propositions are
true:

(52) For every point x of X and for every point y of Y such that y = f(x)
holds if f is continuous at x and g is continuous at y, then g·f is continuous
at x.

(53) For every point y of Y such that f is continuous and g is continuous
at y and for every point x of X such that x ∈ f −1 {y} holds g · f is
continuous at x.

(54) For every point x of X such that f is continuous at x and g is continuous
holds g · f is continuous at x.

Let X, Y be topological spaces. We introduce continuous mapping from X
into Y as a synonym of continuous map from X into Y .

The following propositions are true:

(55) f is a continuous mapping from X into Y if and only if for every point
x of X holds f is continuous at x.

(56) For all topological spaces X, Y , Z such that the carrier of Y = the
carrier of Z and the topology of Z ⊆ the topology of Y every continuous
mapping from X into Y is a continuous mapping from X into Z.

(57) For all topological spaces X, Y , Z such that the carrier of X = the
carrier of Y and the topology of Y ⊆ the topology of X every continuous
mapping from Y into Z is a continuous mapping from X into Z.

Let X, Y be topological spaces, and let X0 be a subspace of X, and let f be
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a mapping from X into Y . The functor f
�
X0 yielding a mapping from X0 into

Y is defined by:

(Def.3) f
�
X0 = f

�
the carrier of X0.

In the sequel X, Y will denote topological spaces, X0 will denote a subspace
of X, and f will denote a mapping from X into Y . The following propositions
are true:

(58) For every point x of X such that x ∈ the carrier of X0 holds f(x) =
(f

�
X0)(x).

(59) For every mapping f0 from X0 into Y such that for every point x of X
such that x ∈ the carrier of X0 holds f(x) = f0(x) holds f

�
X0 = f0.

(60) If the topological structure of X0 = the topological structure of X, then
f = f

�
X0.

(61) For every subset A of X such that A ⊆ the carrier of X0 holds f ◦ A =
(f

�
X0) ◦ A.

(62) For every subset B of Y such that f −1 B ⊆ the carrier of X0 holds
f −1 B = (f

�
X0) −1 B.

(63) For every mapping g from X0 into Y there exists a mapping h from X
into Y such that h

�
X0 = g.

In the sequel f is a mapping from X into Y and X0 is a subspace of X. Next
we state several propositions:

(64) For every point x of X and for every point x0 of X0 such that x = x0

holds if f is continuous at x, then f
�
X0 is continuous at x0.

(65) For every subset A of X and for every point x of X and for every point
x0 of X0 such that A ⊆ the carrier of X0 and A is a neighbourhood of x
and x = x0 holds f is continuous at x if and only if f

�
X0 is continuous

at x0.

(66) For every subset A of X and for every point x of X and for every point
x0 of X0 such that A is open and x ∈ A and A ⊆ the carrier of X0 and
x = x0 holds f is continuous at x if and only if f

�
X0 is continuous at x0.

(67) For every open subspace X0 of X and for every point x of X and for
every point x0 of X0 such that x = x0 holds f is continuous at x if and
only if f

�
X0 is continuous at x0.

(68) For every continuous mapping f from X into Y and for every subspace
X0 of X holds f

�
X0 is a continuous mapping from X0 into Y .

(69) For all topological spaces X, Y , Z and for every subspace X0 of X and
for every mapping f from X into Y and for every mapping g from Y into
Z holds (g · f)

�
X0 = g · (f �

X0).

(70) For all topological spaces X, Y , Z and for every subspace X0 of X and
for every mapping g from Y into Z and for every mapping f from X into
Y such that g is continuous and f

�
X0 is continuous holds (g · f)

�
X0 is

continuous.
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(71) For all topological spaces X, Y , Z and for every subspace X0 of X and
for every continuous mapping g from Y into Z and for every mapping f
from X into Y such that f

�
X0 is a continuous mapping from X0 into Y

holds (g · f)
�
X0 is a continuous mapping from X0 into Z.

Let X, Y be topological spaces, and let X0, X1 be subspaces of X, and let g
be a mapping from X0 into Y . Let us assume that X1 is a subspace of X0. The
functor g

�
X1 yielding a mapping from X1 into Y is defined as follows:

(Def.4) g
�
X1 = g

�
the carrier of X1.

For simplicity we follow a convention: X, Y denote topological spaces, X0,
X1 denote subspaces of X, f denotes a mapping from X into Y , and g denotes
a mapping from X0 into Y . The following propositions are true:

(72) If X1 is a subspace of X0, then for every point x0 of X0 such that
x0 ∈ the carrier of X1 holds g(x0) = (g

�
X1)(x0).

(73) If X1 is a subspace of X0, then for every mapping g1 from X1 into Y
such that for every point x0 of X0 such that x0 ∈ the carrier of X1 holds
g(x0) = g1(x0) holds g

�
X1 = g1.

(74) g = g
�
X0.

(75) If X1 is a subspace of X0, then for every subset A of X0 such that
A ⊆ the carrier of X1 holds g ◦ A = (g

�
X1) ◦ A.

(76) If X1 is a subspace of X0, then for every subset B of Y such that
g −1 B ⊆ the carrier of X1 holds g −1 B = (g

�
X1) −1 B.

(77) For every mapping g from X0 into Y such that g = f
�
X0 holds if X1

is a subspace of X0, then g
�
X1 = f

�
X1.

(78) If X1 is a subspace of X0, then f
�
X0

�
X1 = f

�
X1.

(79) For all subspaces X0, X1, X2 of X such that X1 is a subspace of X0

and X2 is a subspace of X1 and for every mapping g from X0 into Y holds
g

�
X1

�
X2 = g

�
X2.

(80) For every mapping f from X into Y and for every mapping f0 from X1

into Y and for every mapping g from X0 into Y such that X0 = X and
f = g holds g

�
X1 = f0 if and only if f

�
X1 = f0.

We follow the rules: X0, X1, X2 are subspaces of X, f is a mapping from
X into Y , and g is a mapping from X0 into Y . One can prove the following
propositions:

(81) For every point x0 of X0 and for every point x1 of X1 such that x0 = x1

holds if X1 is a subspace of X0 and g is continuous at x0, then g
�
X1 is

continuous at x1.

(82) If X1 is a subspace of X0, then for every point x0 of X0 and for every
point x1 of X1 such that x0 = x1 holds if f

�
X0 is continuous at x0, then

f
�
X1 is continuous at x1.

(83) If X1 is a subspace of X0, then for every subset A of X0 and for every
point x0 of X0 and for every point x1 of X1 such that A ⊆ the carrier of
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X1 and A is a neighbourhood of x0 and x0 = x1 holds g is continuous at
x0 if and only if g

�
X1 is continuous at x1.

(84) If X1 is a subspace of X0, then for every subset A of X0 and for every
point x0 of X0 and for every point x1 of X1 such that A is open and
x0 ∈ A and A ⊆ the carrier of X1 and x0 = x1 holds g is continuous at
x0 if and only if g

�
X1 is continuous at x1.

(85) If X1 is a subspace of X0, then for every subset A of X and for every
point x0 of X0 and for every point x1 of X1 such that A is open and
x0 ∈ A and A ⊆ the carrier of X1 and x0 = x1 holds g is continuous at
x0 if and only if g

�
X1 is continuous at x1.

(86) If X1 is an open subspace of X0, then for every point x0 of X0 and for
every point x1 of X1 such that x0 = x1 holds g is continuous at x0 if and
only if g

�
X1 is continuous at x1.

(87) If X1 is an open subspace of X and X1 is a subspace of X0, then for
every point x0 of X0 and for every point x1 of X1 such that x0 = x1 holds
g is continuous at x0 if and only if g

�
X1 is continuous at x1.

(88) If the topological structure of X1 = X0, then for every point x0 of X0

and for every point x1 of X1 such that x0 = x1 holds if g
�
X1 is continuous

at x1, then g is continuous at x0.

(89) For every continuous mapping g from X0 into Y such that X1 is a
subspace of X0 holds g

�
X1 is a continuous mapping from X1 into Y .

(90) If X1 is a subspace of X0 and X2 is a subspace of X1, then for every
mapping g from X0 into Y such that g

�
X1 is a continuous mapping from

X1 into Y holds g
�
X2 is a continuous mapping from X2 into Y .

Let X be a topological space. The functor idX yielding a mapping from X
into X is defined as follows:

(Def.5) idX = id(the carrier of X).

One can prove the following four propositions:

(91) For every point x of X holds idX(x) = x.

(92) For every mapping f from X into X such that for every point x of X
holds f(x) = x holds f = idX .

(93) For every mapping f from X into Y holds f · idX = f and idY · f = f .

(94) idX is a continuous mapping from X into X.

We now define two new functors. Let X be a topological space, and let X0

be a subspace of X. The functor X0

↪→ yielding a mapping from X0 into X is
defined by:

(Def.6) X0

↪→ = idX
�
X0.

We introduce the functor X0 ↪→ X as a synonym of X0

↪→ .

Next we state four propositions:

(95) For every subspace X0 of X and for every point x of X such that x ∈ the

carrier of X0 holds (X0
↪→ )(x) = x.
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(96) For every subspace X0 of X and for every mapping f0 from X0 into X
such that for every point x of X such that x ∈ the carrier of X0 holds
x = f0(x) holds X0

↪→ = f0.

(97) For every subspace X0 of X and for every mapping f from X into Y

holds f
�
X0 = f · (X0

↪→ ).

(98) For every subspace X0 of X holds X0

↪→ is a continuous mapping from X0

into X.

4. A Modification of the Topology of Topological Spaces

In the sequel X will denote a topological space and H, G will denote subsets
of X. Let us consider X, and let A be a subset of X. The A-extension of the
topology of X yielding a family of subsets of X is defined as follows:

(Def.7) the A-extension of the topology of X = {H ∪G∩A : H ∈ the topology
of X ∧G ∈ the topology of X}.

We now state several propositions:

(99) For every subset A of X holds the topology of X ⊆ the A-extension of
the topology of X.

(100) For every subset A of X holds {G ∩ A : G ∈ the topology of X} ⊆ the
A-extension of the topology of X, where G ranges over subsets of X.

(101) For every subset A of X and for all subsets C, D of X such that C ∈ the
topology of X and D ∈ {G∩A : G ∈ the topology of X}, where G ranges
over subsets of X holds C ∪ D ∈ the A-extension of the topology of X
and C ∩D ∈ the A-extension of the topology of X.

(102) For every subset A of X holds A ∈ the A-extension of the topology of
X.

(103) For every subset A of X holds A ∈ the topology of X if and only if the
topology of X = the A-extension of the topology of X.

Let X be a topological space, and let A be a subset of X. The X modified
w.r.t. A yields a strict topological space and is defined by:

(Def.8) the X modified w.r.t. A = 〈the carrier of X, the A-extension of the
topology of X〉.

In the sequel A will be a subset of X. The following three propositions are
true:

(104) The carrier of the X modified w.r.t. A = the carrier of X and the
topology of the X modified w.r.t. A = the A-extension of the topology of
X.

(105) For every subset B of the X modified w.r.t. A such that B = A holds
B is open.

(106) A is open if and only if the topological structure of X = the X modified
w.r.t. A.
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Let X be a topological space, and let A be a subset of X. The functor
modidX,A yields a mapping from X into the X modified w.r.t. A and is defined
as follows:

(Def.9) modidX,A = id(the carrier of X).

We now state several propositions:

(107) If A is open, then modidX,A = idX .

(108) For every point x of X such that x /∈ A holds modidX,A is continuous
at x.

(109) For every subspace X0 of X such that (the carrier of X0) ∩ A = ∅ and
for every point x0 of X0 holds modidX,A

�
X0 is continuous at x0.

(110) For every subspace X0 of X such that the carrier of X0 = A and for
every point x0 of X0 holds modidX,A

�
X0 is continuous at x0.

(111) For every subspace X0 of X such that (the carrier of X0)∩A = ∅ holds
modidX,A

�
X0 is a continuous mapping from X0 into the X modified w.r.t.

A.

(112) For every subspace X0 of X such that the carrier of X0 = A holds
modidX,A

�
X0 is a continuous mapping from X0 into the X modified

w.r.t. A.

(113) For every subset A of X holds A is open if and only if modidX,A is a
continuous mapping from X into the X modified w.r.t. A.

Let X be a topological space, and let X0 be a subspace of X. The X modified
w.r.t. X0 yielding a strict topological space is defined as follows:

(Def.10) for every subset A of X such that A = the carrier of X0 holds the X
modified w.r.t. X0 = the X modified w.r.t. A.

In the sequel X0 will denote a subspace of X. The following three proposi-
tions are true:

(114) The carrier of the X modified w.r.t. X0 = the carrier of X and for
every subset A of X such that A = the carrier of X0 holds the topology
of the X modified w.r.t. X0 = the A-extension of the topology of X.

(115) For every subspace Y0 of the X modified w.r.t. X0 such that the carrier
of Y0 = the carrier of X0 holds Y0 is an open subspace of the X modified
w.r.t. X0.

(116) X0 is an open subspace of X if and only if the topological structure of
X = the X modified w.r.t. X0.

Let X be a topological space, and let X0 be a subspace of X. The functor
modidX,X0 yielding a mapping from X into the X modified w.r.t. X0 is defined
as follows:

(Def.11) for every subset A of X such that A = the carrier of X0 holds
modidX,X0 = modidX,A.

We now state several propositions:

(117) If X0 is an open subspace of X, then modidX,X0 = idX .
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(118) For all subspaces X0, X1 of X such that X0 misses X1 and for every
point x1 of X1 holds modidX,X0

�
X1 is continuous at x1.

(119) For every subspace X0 of X and for every point x0 of X0 holds

modidX,X0

�
X0

is continuous at x0.

(120) For all subspaces X0, X1 of X such that X0 misses X1 holds modidX,X0

�
X1 is a continuous mapping from X1 into the X modified w.r.t. X0.

(121) For every subspace X0 of X holds modidX,X0

�
X0 is a continuous map-

ping from X0 into the X modified w.r.t. X0.

(122) For every subspace X0 of X holds X0 is an open subspace of X if and
only if modidX,X0 is a continuous mapping from X into the X modified
w.r.t. X0.

5. Continuity of Mappings over the Union of Subspaces

In the sequel X, Y denote topological spaces. We now state three propositions:

(123) For all subspaces X1, X2 of X and for every mapping g from X1 ∪X2

into Y and for every point x1 of X1 and for every point x2 of X2 and
for every point x of X1 ∪ X2 such that x = x1 and x = x2 holds g is
continuous at x if and only if g

�
X1 is continuous at x1 and g

�
X2 is

continuous at x2.

(124) Let f be a mapping from X into Y . Then for all subspaces X1, X2 of
X and for every point x of X1 ∪X2 and for every point x1 of X1 and for
every point x2 of X2 such that x = x1 and x = x2 holds f

�
(X1 ∪ X2)

is continuous at x if and only if f
�
X1 is continuous at x1 and f

�
X2 is

continuous at x2.

(125) Let f be a mapping from X into Y . Then for all subspaces X1, X2 of
X such that X = X1 ∪X2 and for every point x of X and for every point
x1 of X1 and for every point x2 of X2 such that x = x1 and x = x2 holds
f is continuous at x if and only if f

�
X1 is continuous at x1 and f

�
X2

is continuous at x2.

In the sequel X1, X2 will denote subspaces of X. One can prove the following
propositions:

(126) If X1 and X2 are weakly separated, then for every mapping g from
X1 ∪X2 into Y holds g is a continuous mapping from X1 ∪X2 into Y if
and only if g

�
X1 is a continuous mapping from X1 into Y and g

�
X2 is

a continuous mapping from X2 into Y .

(127) For all closed subspaces X1, X2 of X and for every mapping g from
X1 ∪X2 into Y holds g is a continuous mapping from X1 ∪X2 into Y if
and only if g

�
X1 is a continuous mapping from X1 into Y and g

�
X2 is

a continuous mapping from X2 into Y .
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(128) For all open subspaces X1, X2 of X and for every mapping g from
X1 ∪X2 into Y holds g is a continuous mapping from X1 ∪X2 into Y if
and only if g

�
X1 is a continuous mapping from X1 into Y and g

�
X2 is

a continuous mapping from X2 into Y .

(129) If X1 and X2 are weakly separated, then for every mapping f from X
into Y holds f

�
(X1 ∪X2) is a continuous mapping from X1 ∪X2 into Y

if and only if f
�
X1 is a continuous mapping from X1 into Y and f

�
X2

is a continuous mapping from X2 into Y .

(130) For every mapping f from X into Y and for all closed subspaces X1,
X2 of X holds f

�
(X1∪X2) is a continuous mapping from X1∪X2 into Y

if and only if f
�
X1 is a continuous mapping from X1 into Y and f

�
X2

is a continuous mapping from X2 into Y .

(131) For every mapping f from X into Y and for all open subspaces X1, X2

of X holds f
�
(X1 ∪X2) is a continuous mapping from X1 ∪X2 into Y if

and only if f
�
X1 is a continuous mapping from X1 into Y and f

�
X2 is

a continuous mapping from X2 into Y .

(132) For every mapping f from X into Y and for all subspaces X1, X2 of X
such that X = X1 ∪X2 and X1 and X2 are weakly separated holds f is a
continuous mapping from X into Y if and only if f

�
X1 is a continuous

mapping from X1 into Y and f
�
X2 is a continuous mapping from X2

into Y .

(133) For every mapping f from X into Y and for all closed subspaces X1,
X2 of X such that X = X1 ∪X2 holds f is a continuous mapping from
X into Y if and only if f

�
X1 is a continuous mapping from X1 into Y

and f
�
X2 is a continuous mapping from X2 into Y .

(134) For every mapping f from X into Y and for all open subspaces X1, X2

of X such that X = X1 ∪ X2 holds f is a continuous mapping from X
into Y if and only if f

�
X1 is a continuous mapping from X1 into Y and

f
�
X2 is a continuous mapping from X2 into Y .

(135) X1 and X2 are separated if and only if X1 misses X2 and for every
topological space Y and for every mapping g from X1 ∪X2 into Y such
that g

�
X1 is a continuous mapping from X1 into Y and g

�
X2 is a

continuous mapping from X2 into Y holds g is a continuous mapping
from X1 ∪X2 into Y .

(136) X1 and X2 are separated if and only if X1 misses X2 and for every
topological space Y and for every mapping f from X into Y such that
f

�
X1 is a continuous mapping from X1 into Y and f

�
X2 is a continuous

mapping from X2 into Y holds f
�

(X1 ∪ X2) is a continuous mapping
from X1 ∪X2 into Y .

(137) For all subspaces X1, X2 of X such that X = X1 ∪X2 holds X1 and
X2 are separated if and only if X1 misses X2 and for every topological
space Y and for every mapping f from X into Y such that f

�
X1 is a

continuous mapping from X1 into Y and f
�
X2 is a continuous mapping
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from X2 into Y holds f is a continuous mapping from X into Y .

6. The Union of Continuous Mappings

Let X, Y be topological spaces, and let X1, X2 be subspaces of X, and let f1

be a mapping from X1 into Y , and let f2 be a mapping from X2 into Y . Let
us assume that X1 misses X2 or f1

�
(X1 ∩X2) = f2

�
(X1 ∩X2). The functor

f1 ∪ f2 yielding a mapping from X1 ∪X2 into Y is defined as follows:

(Def.12) (f1 ∪ f2)
�
X1 = f1 and (f1 ∪ f2)

�
X2 = f2.

In the sequel X, Y will denote topological spaces. We now state a number
of propositions:

(138) For all subspaces X1, X2 of X and for every mapping g from X1 ∪X2

into Y holds g = g
�
X1 ∪ g

�
X2.

(139) For all subspaces X1, X2 of X such that X = X1 ∪ X2 and for every
mapping g from X into Y holds g = g

�
X1 ∪ g

�
X2.

(140) For all subspaces X1, X2 of X such that X1 meets X2 and for every
mapping f1 from X1 into Y and for every mapping f2 from X2 into Y
holds (f1∪f2)

�
X1 = f1 and (f1∪f2)

�
X2 = f2 if and only if f1

�
(X1∩X2) =

f2
�
(X1 ∩X2).

(141) For all subspaces X1, X2 of X and for every mapping f1 from X1 into
Y and for every mapping f2 from X2 into Y such that f1

�
(X1 ∩X2) =

f2
�
(X1 ∩X2) holds X1 is a subspace of X2 if and only if f1 ∪ f2 = f2 but

X2 is a subspace of X1 if and only if f1 ∪ f2 = f1.

(142) For all subspaces X1, X2 of X and for every mapping f1 from X1 into
Y and for every mapping f2 from X2 into Y such that X1 misses X2 or
f1

�
(X1 ∩X2) = f2

�
(X1 ∩X2) holds f1 ∪ f2 = f2 ∪ f1.

(143) Let X1, X2, X3 be subspaces of X. Let f1 be a mapping from X1 into
Y . Let f2 be a mapping from X2 into Y . Let f3 be a mapping from X3

into Y . Suppose X1 misses X2 or f1
�

(X1 ∩ X2) = f2
�

(X1 ∩ X2) but
X1 misses X3 or f1

�
(X1 ∩ X3) = f3

�
(X1 ∩ X3) but X2 misses X3 or

f2
�
(X2 ∩X3) = f3

�
(X2 ∩X3). Then (f1 ∪ f2) ∪ f3 = f1 ∪ (f2 ∪ f3).

(144) For all subspaces X1, X2 of X such that X1 meets X2 and for every
continuous mapping f1 from X1 into Y and for every continuous mapping
f2 from X2 into Y such that f1

�
(X1 ∩X2) = f2

�
(X1 ∩X2) holds if X1

and X2 are weakly separated, then f1 ∪ f2 is a continuous mapping from
X1 ∪X2 into Y .

(145) For all subspaces X1, X2 of X such that X1 misses X2 and for every
continuous mapping f1 from X1 into Y and for every continuous mapping
f2 from X2 into Y such that X1 and X2 are weakly separated holds f1∪f2

is a continuous mapping from X1 ∪X2 into Y .

(146) For all closed subspaces X1, X2 of X such that X1 meets X2 and for
every continuous mapping f1 from X1 into Y and for every continuous
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mapping f2 from X2 into Y such that f1
�

(X1 ∩ X2) = f2
�

(X1 ∩ X2)
holds f1 ∪ f2 is a continuous mapping from X1 ∪X2 into Y .

(147) For all open subspaces X1, X2 of X such that X1 meets X2 and for
every continuous mapping f1 from X1 into Y and for every continuous
mapping f2 from X2 into Y such that f1

�
(X1 ∩ X2) = f2

�
(X1 ∩ X2)

holds f1 ∪ f2 is a continuous mapping from X1 ∪X2 into Y .

(148) For all closed subspaces X1, X2 of X such that X1 misses X2 and for
every continuous mapping f1 from X1 into Y and for every continuous
mapping f2 from X2 into Y holds f1 ∪ f2 is a continuous mapping from
X1 ∪X2 into Y .

(149) For all open subspaces X1, X2 of X such that X1 misses X2 and for
every continuous mapping f1 from X1 into Y and for every continuous
mapping f2 from X2 into Y holds f1 ∪ f2 is a continuous mapping from
X1 ∪X2 into Y .

(150) For all subspaces X1, X2 of X holds X1 and X2 are separated if and
only if X1 misses X2 and for every topological space Y and for every
continuous mapping f1 from X1 into Y and for every continuous mapping
f2 from X2 into Y holds f1 ∪ f2 is a continuous mapping from X1 ∪X2

into Y .

(151) For all subspaces X1, X2 of X such that X = X1 ∪ X2 and for every
continuous mapping f1 from X1 into Y and for every continuous mapping
f2 from X2 into Y such that (f1 ∪ f2)

�
X1 = f1 and (f1 ∪ f2)

�
X2 = f2

holds if X1 and X2 are weakly separated, then f1 ∪ f2 is a continuous
mapping from X into Y .

(152) For all closed subspaces X1, X2 of X and for every continuous mapping
f1 from X1 into Y and for every continuous mapping f2 from X2 into Y
such that X = X1 ∪X2 and (f1 ∪ f2)

�
X1 = f1 and (f1 ∪ f2)

�
X2 = f2

holds f1 ∪ f2 is a continuous mapping from X into Y .

(153) For all open subspaces X1, X2 of X and for every continuous mapping
f1 from X1 into Y and for every continuous mapping f2 from X2 into Y
such that X = X1 ∪X2 and (f1 ∪ f2)

�
X1 = f1 and (f1 ∪ f2)

�
X2 = f2

holds f1 ∪ f2 is a continuous mapping from X into Y .
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for their active interest in the publication of this article and for elucidating to
me new advanced Mizar constructions.

References
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The articles [11], [1], [2], [3], [13], [5], [6], [9], [8], [4], [12], [7], and [10] provide the
notation and terminology for this paper. For simplicity we adopt the following
rules: D, D1, D2 denote non-empty sets, n, k denote natural numbers, p, r
denote real numbers, and f denotes a function. Let us consider D1, D2. A
function is called a sequence of partial functions from D1 into D2 if:

(Def.1) dom it = � and rng it ⊆ D1→̇D2.

In the sequel F , F1, F2 are sequences of partial functions from D1 into D2.
Let us consider D1, D2, F , n. Then F (n) is a partial function from D1 to D2.

In the sequel G, H, H1, H2, J are sequences of partial functions from D into�
. One can prove the following two propositions:

(1) f is a sequence of partial functions from D1 into D2 if and only if
dom f = � and for every n holds f(n) is a partial function from D1 to
D2.

(2) For all F1, F2 such that for every n holds F1(n) = F2(n) holds F1 = F2.

The scheme ExFuncSeq deals with a non-empty set A, a non-empty set B,
and a unary functor F yielding a partial function from A to B and states that:

there exists a sequence G of partial functions from A into B such that for
every n holds G(n) = F(n)
for all values of the parameters.
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We now define several new functors. Let us consider D, H, r. The functor
r H yields a sequence of partial functions from D into

�
and is defined as follows:

(Def.2) for every n holds (r H)(n) = r H(n).

Let us consider D, H. The functor H−1 yielding a sequence of partial functions
from D into

�
is defined by:

(Def.3) for every n holds H−1(n) = 1
H(n) .

The functor −H yields a sequence of partial functions from D into
�

and is
defined by:

(Def.4) for every n holds (−H)(n) = −H(n).

The functor |H| yields a sequence of partial functions from D into
�

and is
defined as follows:

(Def.5) for every n holds |H|(n) = |H(n)|.
Let us consider D, G, H. The functor G + H yields a sequence of partial
functions from D into

�
and is defined by:

(Def.6) for every n holds (G+H)(n) = G(n) +H(n).

The functor G − H yielding a sequence of partial functions from D into
�

is
defined as follows:

(Def.7) G−H = G+−H.

The functor GH yields a sequence of partial functions from D into
�

and is
defined as follows:

(Def.8) for every n holds (GH)(n) = G(n)H(n).

Let us consider D, H, G. The functor G
H yielding a sequence of partial functions

from D into
�

is defined as follows:

(Def.9) G
H = GH−1.

Next we state a number of propositions:

(3) H1 = G
H if and only if for every n holds H1(n) = G(n)

H(n) .

(4) H1 = G−H if and only if for every n holds H1(n) = G(n)−H(n).

(5) G+H = H +G and (G+H) + J = G+ (H + J).

(6) GH = H G and (GH) J = G (H J).

(7) (G+H) J = GJ +H J and J (G+H) = J G+ J H.

(8) −H = (−1)H.

(9) (G−H) J = GJ −H J and J G− J H = J (G−H).

(10) r (G+H) = r G+ r H and r (G−H) = r G− r H.

(11) (r · p)H = r (pH).

(12) 1H = H.

(13) −−H = H.

(14) G−1 H−1 = (GH)−1.

(15) If r 6= 0, then (r H)−1 = r−1 H−1.

(16) |H|−1 = |H−1|.
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(17) |GH| = |G| |H|.
(18) |GH | =

|G|
|H| .

(19) |r H| = |r| |H|.
In the sequel x is an element of D, X, Y are sets, and f is a partial function

from D to
�
. We now define three new constructions. Let us consider D1, D2,

F , X. We say that X is common for elements of F if and only if:

(Def.10) X 6= ∅ and for every n holds X ⊆ domF (n).

Let us consider D, H, x. The functor H#x yielding a sequence of real numbers
is defined as follows:

(Def.11) for every n holds (H#x)(n) = H(n)(x).

Let us consider D, H, X. We say that H is point-convergent on X if and only
if:

(Def.12) X is common for elements of H and there exists f such that X = dom f
and for every x such that x ∈ X and for every p such that p > 0 there
exists k such that for every n such that n ≥ k holds |H(n)(x)−f(x)| < p.

Next we state two propositions:

(20) H is point-convergent on X if and only if X is common for elements
of H and there exists f such that X = dom f and for every x such that
x ∈ X holds H#x is convergent and lim(H#x) = f(x).

(21) H is point-convergent on X if and only if X is common for elements of
H and for every x such that x ∈ X holds H#x is convergent.

We now define two new constructions. Let us consider D, H, X. We say
that H is uniform-convergent on X if and only if:

(Def.13) X is common for elements of H and there exists f such that X = dom f
and for every p such that p > 0 there exists k such that for all n, x such
that n ≥ k and x ∈ X holds |H(n)(x)− f(x)| < p.

Let us assume that H is point-convergent on X. The functor limXH yielding a
partial function from D to

�
is defined as follows:

(Def.14) dom limXH = X and for every x such that x ∈ dom limXH holds
(limXH)(x) = lim(H#x).

We now state a number of propositions:

(22) If H is point-convergent on X, then f = limXH if and only if dom f =
X and for every x such that x ∈ X and for every p such that p > 0 there
exists k such that for every n such that n ≥ k holds |H(n)(x)−f(x)| < p.

(23) If H is uniform-convergent on X, then H is point-convergent on X.

(24) If Y ⊆ X and Y 6= ∅ and X is common for elements of H, then Y is
common for elements of H.

(25) If Y ⊆ X and Y 6= ∅ and H is point-convergent on X, then H is
point-convergent on Y and limXH

�
Y = limYH.

(26) If Y ⊆ X and Y 6= ∅ and H is uniform-convergent on X, then H is
uniform-convergent on Y .
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(27) If X is common for elements of H, then for every x such that x ∈ X
holds {x} is common for elements of H.

(28) If H is point-convergent on X, then for every x such that x ∈ X holds
{x} is common for elements of H.

(29) Suppose {x} is common for elements of H1 and {x} is common for
elements of H2. ThenH1#x+H2#x = (H1+H2)#x andH1#x−H2#x =
(H1 −H2)#x and (H1#x) (H2#x) = (H1 H2)#x.

(30) If {x} is common for elements of H, then |H|#x = |H#x| and
(−H)#x = −H#x.

(31) If {x} is common for elements of H, then (r H)#x = r (H#x).

(32) Suppose X is common for elements of H1 and X is common for ele-
ments of H2. Then for every x such that x ∈ X holds H1#x+ H2#x =
(H1 +H2)#x and H1#x−H2#x = (H1−H2)#x and (H1#x) (H2#x) =
(H1 H2)#x.

(33) If X is common for elements of H, then for every x such that x ∈ X
holds |H|#x = |H#x| and (−H)#x = −H#x.

(34) If X is common for elements of H, then for every x such that x ∈ X
holds (r H)#x = r (H#x).

(35) Suppose H1 is point-convergent on X and H2 is point-convergent on X.
Then for every x such that x ∈ X holds H1#x+H2#x = (H1 +H2)#x
and H1#x−H2#x = (H1 −H2)#x and (H1#x) (H2#x) = (H1 H2)#x.

(36) If H is point-convergent on X, then for every x such that x ∈ X holds
|H|#x = |H#x| and (−H)#x = −H#x.

(37) If H is point-convergent on X, then for every x such that x ∈ X holds
(r H)#x = r (H#x).

(38) If X is common for elements of H1 and X is common for elements of
H2, then X is common for elements of H1 + H2 and X is common for
elements of H1 −H2 and X is common for elements of H1 H2.

(39) If X is common for elements of H, then X is common for elements of
|H| and X is common for elements of −H.

(40) If X is common for elements of H, then X is common for elements of
r H.

(41) Suppose H1 is point-convergent on X and H2 is point-convergent on X.
Then

(i) H1 +H2 is point-convergent on X,
(ii) limX(H1 +H2) = limXH1 + limXH2,
(iii) H1 −H2 is point-convergent on X,
(iv) limX(H1 −H2) = limXH1 − limXH2,
(v) H1 H2 is point-convergent on X,
(vi) limX(H1 H2) = limXH1 limXH2.

(42) If H is point-convergent on X, then |H| is point-convergent on X and
limX |H| = |limXH| and −H is point-convergent on X and limX(−H) =
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−limXH.

(43) If H is point-convergent on X, then r H is point-convergent on X and
limX(r H) = r limXH.

(44) H is uniform-convergent on X if and only if X is common for elements
of H and H is point-convergent on X and for every r such that 0 < r
there exists k such that for all n, x such that n ≥ k and x ∈ X holds
|H(n)(x)− (limXH)(x)| < r.

In the sequel H will be a sequence of partial functions from
�

into
�
. Let us

consider n, k. Then max(n, k) is a natural number.

We now state the proposition

(45) If H is uniform-convergent on X and for every n holds H(n) is contin-
uous on X, then limXH is continuous on X.
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Summary. We shall describe n-dimensional spaces with the reper
operation [10, pages 72–79]. An inspiration to such approach comes from
the monograph [12] and so-called Leibniz program. Let us recall that
the Leibniz program is a program of algebraization of geometry using
purely geometric notions. Leibniz formulated his program in opposition to
algebraization method developed by Descartes. The Euclidean geometry
in Szmielew’s approach [12] is a theory of structures 〈S; ‖,⊕, O〉, where
〈S; ‖,⊕, O〉 is Desarguean midpoint plane and O ⊆ S × S × S is the
relation of equi-orthogonal basis. Points o, p, q are in relation O if they
form an isosceles triangle with the right angle in vertex a. If we fix vertices
a, p, then there exist exactly two points q, q′ such that O(apq), O(apq′).
Moreover q ⊕ q′ = a. In accordance with the Leibniz program we replace
the relation of equi-orthogonal basis by a binary operation ∗ : S×S → S,
called the reper operation. A standard model for the Euclidean geometry
in the above sense is the oriented plane over the field of real numbers with
the reper operations ∗ defined by the condition: a ∗ b = q iff the point q
is the result of rotating of p about right angle around the center a.

MML Identifier: MIDSP 3.

The terminology and notation used here are introduced in the following articles:
[13], [5], [6], [3], [7], [2], [4], [1], [8], [11], and [9].

1. Substitutions in tuples

For simplicity we adopt the following rules: n, i, j, k, l are natural numbers, D
is a non-empty set, c, d are elements of D, and p, q, r are finite sequences of
elements of D. The following propositions are true:

(1) If len p = j + 1 + k, then there exist q, r, c such that len q = j and
len r = k and p = q � 〈c〉 � r.

(2) If i ∈ Seg n, then there exist j, k such that n = j + 1 + k and i = j + 1.
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(3) Suppose p = q � 〈c〉 � r and i = len q + 1. Then for every l such that
1 ≤ l and l ≤ len q holds p(l) = q(l) and p(i) = c and for every l such that
i+ 1 ≤ l and l ≤ len p holds p(l) = r(l − i).

(4) l ≤ j or l = j + 1 or j + 2 ≤ l.
(5) If l ∈ Seg n \ {i} and i = j + 1, then 1 ≤ l and l ≤ j or i + 1 ≤ l and

l ≤ n.

Let us consider n, i, D, d, and let p be an element of Dn+1. Let us assume
that i ∈ Seg(n+ 1). The functor p(i/d) yielding an element of Dn+1 is defined
as follows:

(Def.1) p(i/d)(i) = d and for every l such that l ∈ Seg len p\{i} holds p(i/d)(l) =
p(l).

2. Reper Algebra Structure and its Properties

Let us consider n. We consider structures of reper algebra over n which are
extension of a midpoint algebra structure and are systems
〈a carrier, a midpoint operation, a reper〉,

where the carrier is a non-empty set, the midpoint operation is a binary op-
eration on the carrier, and the reper is a function from (the carrier)n into the
carrier. Let us observe that there exists a structure of reper algebra over n+ 2
which is midpoint algebra-like.

We adopt the following rules: R1 will denote a midpoint algebra-like structure
of reper algebra over n+ 2 and a, b, d, p1, p′1 will denote points of R1. We now
define two new modes. Let us consider i, D. A tuple of i and D is an element
of Di.

Let us consider n, R1, i. A tuple of i and R1 is a tuple of i and the carrier
of R1.

In the sequel p, q will denote tuples of n+ 1 and R1. Let us consider n, R1,
a. Then 〈a〉 is a tuple of 1 and R1. Let us consider n, R1, i, j, and let p be a
tuple of i and R1, and let q be a tuple of j and R1. Then p � q is a tuple of i+ j
and R1.

We now state the proposition

(6) 〈a〉 � p is a tuple of n+ 2 and R1.

We now define two new functors. Let us consider n, R1, a, p. The functor
∗(a, p) yielding a point of R1 is defined as follows:

(Def.2) ∗(a, p) = (the reper of R1)(〈a〉 � p).
Let us consider n, i, R1, d, p. The functor p � i→̇d yields a tuple of n+ 1 and R1

and is defined as follows:

(Def.3) for every D and for every element p′ of Dn+1 and for every element
d′ of D such that D = the carrier of R1 and p′ = p and d′ = d holds
p � i→̇d = p′(i/d′).
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We now state the proposition

(7) If i ∈ Seg(n + 1), then p � i→̇d (i) = d and for every l such that l ∈
Seg len p \ {i} holds p � i→̇d (l) = p(l).

Let us consider n. A natural number is said to be a natural number of n if:

(Def.4) 1 ≤ it and it ≤ n+ 1.

In the sequel m is a natural number of n. We now state several propositions:

(8) i is a natural number of n if and only if i ∈ Seg(n+ 1).

(9) 1 ≤ i+ 1.

(10) If i ≤ n, then i+ 1 is a natural number of n.

(11) If for every m holds p(m) = q(m), then p = q.

(12) For every natural number l of n such that l = i holds p � i→̇d (l) = d and
for all natural numbers l, i of n such that l 6= i holds p � i→̇d (l) = p(l).

We now define three new predicates. Let us consider n, D, and let p be an
element of Dn+1, and let us consider m. Then p(m) is an element of D. Let us
consider n, R1. We say that R1 is invariance if and only if:

(Def.5) for all a, b, p, q such that for every m holds a⊕ q(m) = b⊕ p(m) holds
a⊕ ∗(b, q) = b⊕ ∗(a, p).

Let us consider n, i, R1. We say that R1 has property of zero in i if and only if:

(Def.6) for all a, p holds ∗(a, p � i→̇a ) = a.

We say that R1 is semi additive in i if and only if:

(Def.7) for all a, p1, p such that p(i) = p1 holds ∗(a, p � i→̇a⊕p1 ) = a⊕ ∗(a, p).
The following proposition is true

(13) If R1 is semi additive in m, then for all a, d, p, q such that q = p �m→̇d
holds ∗(a, p �m→̇a⊕d ) = a⊕ ∗(a, q).

We now define two new predicates. Let us consider n, i, R1. We say that R1

is additive in i if and only if:

(Def.8) for all a, p1, p′1, p such that p(i) = p1 holds ∗(a, p � i→̇p1⊕p′1 ) = ∗(a, p) ⊕
∗(a, p � i→̇p′1 ).

We say that R1 is alternative in i if and only if:

(Def.9) for all a, p, p1 such that p(i) = p1 holds ∗(a, p � i+1→̇p1 ) = a.

In the sequel W is an atlas of R1 and v is a vector of W . Let us consider n,
R1, W , i. A tuple of i and W is a tuple of i and the carrier of the algebra of W .

In the sequel x, y are tuples of n+ 1 and W . Let us consider n, R1, W , x,
i, v. The functor x � i→̇v yields a tuple of n+ 1 and W and is defined by:

(Def.10) for every D and for every element x′ of Dn+1 and for every element v′

of D such that D = the carrier of the algebra of W and x′ = x and v′ = v
holds x � i→̇v = x′(i/v′).

Next we state three propositions:

(14) If i ∈ Seg(n + 1), then x � i→̇v (i) = v and for every l such that l ∈
Seg lenx \ {i} holds x � i→̇v (l) = x(l).
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(15) For every natural number l of n such that l = i holds x � i→̇v (l) = v and
for all natural numbers l, i of n such that l 6= i holds x � i→̇v (l) = x(l).

(16) If for every m holds x(m) = y(m), then x = y.

The scheme SeqLambdaD’ concerns a natural number A, a non-empty set B,
and a unary functor F yielding an element of B and states that:

there exists a finite sequence z of elements of B such that len z = A+ 1 and
for every natural number j of A holds z(j) = F(j)
for all values of the parameters.

We now define two new functors. Let us consider n, R1, W , a, x. The functor
(a, x).W yielding a tuple of n+ 1 and R1 is defined as follows:

(Def.11) ((a, x).W )(m) = (a, x(m)).W .

Let us consider n, R1, W , a, p. The functor W (a, p) yielding a tuple of n+ 1
and W is defined by:

(Def.12) W (a, p)(m) = W (a, p(m)).

The following three propositions are true:

(17) W (a, p) = x if and only if (a, x).W = p.

(18) W (a, (a, x).W ) = x.

(19) (a,W (a, p)).W = p.

Let us consider n, R1, W , a, x. The functor Φ(a, x) yields a vector of W and
is defined by:

(Def.13) Φ(a, x) = W (a, ∗(a, (a, x).W )).

One can prove the following propositions:

(20) IfW (a, p) = x and W (a, b) = v, then ∗(a, p) = b if and only if Φ(a, x) =
v.

(21) R1 is invariance if and only if for all a, b, x holds Φ(a, x) = Φ(b, x).

(22) 1 ∈ Seg(n+ 1).

(23) 1 is an element of Seg(n+ 1).

(24) 1 is a natural number of n.

3. Reper Algebra and its Atlas

Let us consider n. A midpoint algebra-like structure of reper algebra over n+ 2
is called a reper algebra of n if:

(Def.14) it is invariance.

For simplicity we adopt the following convention: R1 will be a reper algebra
of n, a, b will be points of R1, p will be a tuple of n + 1 and R1, W will be
an atlas of R1, v will be a vector of W , and x will be a tuple of n+ 1 and W .
Next we state the proposition

(25) Φ(a, x) = Φ(b, x).
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Let us consider n, R1, W , x. The functor Φ(x) yields a vector of W and is
defined by:

(Def.15) for every a holds Φ(x) = Φ(a, x).

We now state a number of propositions:

(26) If W (a, p) = x and W (a, b) = v and Φ(x) = v, then ∗(a, p) = b.

(27) If (a, x).W = p and (a, v).W = b and ∗(a, p) = b, then Φ(x) = v.

(28) If W (a, p) = x and W (a, b) = v, then W (a, p �m→̇b ) = x �m→̇v .

(29) If (a, x).W = p and (a, v).W = b, then (a, x �m→̇v ).W = p �m→̇b .
(30) R1 has property of zero in m if and only if for every x holds

Φ((x �m→̇0W )) = 0W .

(31) R1 is semi additive inm if and only if for every x holds Φ((x �m→̇2x(m) )) =
2 Φ(x).

(32) If R1 has property of zero in m and R1 is additive in m, then R1 is semi
additive in m.

(33) If R1 has property of zero in m, then R1 is additive in m if and only if
for all x, v holds Φ((x �m→̇x(m)+v )) = Φ(x) + Φ((x �m→̇v )).

(34) If W (a, p) = x and m ≤ n, then W (a, p �m+1→̇p(m) ) = x �m+1→̇x(m) .

(35) If (a, x).W = p and m ≤ n, then (a, x �m+1→̇x(m) ).W = p �m+1→̇p(m) .

(36) If m ≤ n, then R1 is alternative in m if and only if for every x holds

Φ((x �m+1→̇x(m) )) = 0W .
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Summary. Some theorems and properties of cyclic groups have
been proved with special regard to isomorphisms of these groups. Among
other things it has been proved that an arbitrary cyclic group is iso-
morphic with groups of integers with addition or group of integers with
addition modulo m. Moreover, it has been proved that two arbitrary
cyclic groups of the same order are isomorphic and that the class of cyclic
groups is closed in consideration of homomorphism images. Some other
properties of groups of this type have been proved too.

MML Identifier: GR CY 2.

The terminology and notation used in this paper have been introduced in the
following articles: [19], [6], [11], [7], [12], [2], [18], [1], [10], [4], [14], [17], [21],
[13], [31], [25], [29], [23], [3], [27], [26], [24], [30], [15], [16], [5], [28], [22], [20],
[9], and [8]. For simplicity we adopt the following rules: F , G will be groups,
G1 will be a subgroup of G, G2 will be a cyclic group, H will be a subgroup of
G2, f will be a homomorphism from G to G2, a, b will be elements of G, g will
be an element of G2, a1 will be an element of G1, k, m, n, p, s will be natural
numbers, and i, i1, i2 will be integers. The following propositions are true:

(1) For all n, m such that 0 < m holds nmodm = n−m · (n÷m).

(2) If i2 > 0, then i1 mod i2 ≥ 0.

(3) If i2 > 0, then i1 mod i2 < i2.

(4) i1 = (i1 ÷ i2) · i2 + (i1 mod i2).

(5) For all m, n such that m > 0 or n > 0 there exist i, i1 such that
i ·m+ i1 · n = gcd(m,n).

(6) If ord(a) > 1 and a = bk, then k 6= 0.

(7) If G is finite, then ord(G) > 0.

(8) a ∈ gr({a}).
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(9) If a = a1, then gr({a}) = gr({a1}).
(10) gr({a}) is a cyclic group.

(11) For every strict group G and for every element b of G holds for every
element a of G there exists i such that a = bi if and only if G = gr({b}).

(12) For every strict group G and for every element b of G such that G is
finite holds for every element a of G there exists p such that a = bp if and
only if G = gr({b}).

(13) For every strict group G and for every element a of G such that G is
finite and G = gr({a}) and for every strict subgroup G1 of G there exists
p such that G1 = gr({ap}).

(14) If G is finite and G = gr({a}) and ord(G) = n and n = p · s, then
ord(ap) = s.

(15) If s | k, then ak ∈ gr({as}).
(16) If G is finite and ord(gr({as})) = ord(gr({ak})) and ak ∈ gr({as}), then

gr({as}) = gr({ak}).
(17) If G is finite and ord(G) = n and G = gr({a}) and ord(G1) = p and

G1 = gr({ak}), then n | k · p.
(18) For every strict group G and for every element a of G such that G is

finite and G = gr({a}) and ord(G) = n holds G = gr({ak}) if and only if
gcd(k, n) = 1.

(19) If G2 = gr({g}) and g ∈ H, then the half group structure of G2 = the
half group structure of H.

(20) If G2 = gr({g}), then G2 is finite if and only if there exist i, i1 such
that i 6= i1 and gi = gi1 .

Let us consider n satisfying the condition: n > 0. Let h be an element of� +
n . The functor @h yielding a natural number is defined as follows:

(Def.1) @h = h.

The following propositions are true:

(21) For every strict cyclic group G2 such that G2 is finite and ord(G2) = n
holds

� +
n and G2 are isomorphic.

(22) For every strict cyclic group G2 such that G2 is infinite holds
� + and

G2 are isomorphic.

(23) For all strict cyclic groups G2, H1 such that H1 is finite and G2 is finite
and ord(H1) = ord(G2) holds H1 and G2 are isomorphic.

(24) For all strict groups F , G such that F is finite and G is finite and
ord(F ) = p and ord(G) = p and p is prime holds F and G are isomorphic.

(25) For all strict groups F , G such that F is finite and G is finite and
ord(F ) = 2 and ord(G) = 2 holds F and G are isomorphic.

(26) For every strict group G such that G is finite and ord(G) = 2 and for
every strict subgroup H of G holds H = {1}G or H = G.
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(27) For every strict group G such that G is finite and ord(G) = 2 holds G
is a cyclic group.

(28) For every strict group G such that G is finite and G is a cyclic group and
ord(G) = n and for every p such that p | n there exists a strict subgroup
G1 of G such that ord(G1) = p and for every strict subgroup G3 of G
such that ord(G3) = p holds G3 = G1.

Let us note that every group which is cyclic is also Abelian.

We now state two propositions:

(29) If G2 = gr({g}), then for all G, f such that g ∈ Im f holds f is an
epimorphism.

(30) For every strict cyclic group G2 such that G2 is finite and ord(G2) = n
and there exists k such that n = 2 ·k there exists an element g1 of G2 such
that ord(g1) = 2 and for every element g2 of G2 such that ord(g2) = 2
holds g1 = g2.

Let us consider G. Then Z(G) is a strict normal subgroup of G.

One can prove the following propositions:

(31) For every strict cyclic group G2 such that G2 is finite and ord(G2) = n
and there exists k such that n = 2 · k there exists a subgroup H of G2

such that ord(H) = 2 and H is a cyclic group.

(32) For every strict group G and for every homomorphism g from G to F
such that G is a cyclic group holds Im g is a cyclic group.

(33) For all strict groups G, F such that G and F are isomorphic but G is
a cyclic group or F is a cyclic group holds G is a cyclic group and F is a
cyclic group.
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Summary. We define some well known isomorphisms between

functor categories: between A
˙� (o,m) and A, between C[:A,B:] and (CB)

A
,

and between [:B,C:]A and [:BA, CA:]. Compare [12] and [11]. Unfortu-
nately in this paper ”functor” is used in two different meanings, as a
lingual function and as a functor between categories.

MML Identifier: ISOCAT 2.

The notation and terminology used in this paper are introduced in the following
papers: [17], [18], [4], [5], [3], [7], [1], [2], [10], [13], [8], [14], [6], [9], [16], and
[15].

1. Preliminaries

The scheme ChoiceD concerns a non-empty set A, a non-empty set B, and a
binary predicate P, and states that:

there exists a function h from A into B such that for every element a of A
holds P[a, h(a)]
provided the parameters meet the following requirement:
• for every element a of A there exists an element b of B such that
P[a, b].

Let A, B, C be non-empty sets, and let f be a function from A into CB.
Then uncurry f is a function from [:A, B :] into C.

We now state several propositions:

(1) For all non-empty sets A, B, C and for every function f from A into
CB holds curry uncurry f = f .
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(2) For all non-empty sets A, B, C and for every function f from A into
CB and for every element a of A and for every element b of B holds
(uncurry f)(〈〈a, b〉〉) = f(a)(b).

(3) For an arbitrary x and for every non-empty set A and for all functions
f , g from {x} into A such that f(x) = g(x) holds f = g.

(4) For all non-empty sets A, B and for every element x of A and for every
function f from A into B holds f(x) ∈ rng f .

(5) For all non-empty sets A, B, C and for all functions f , g from A into [:B,
C :] such that π1(B×C)·f = π1(B×C)·g and π2(B×C)·f = π2(B×C)·g
holds f = g.

We adopt the following rules: A, B, C will be categories and F , F1, F2 will
be functors from A to B. The following two propositions are true:

(6) For every morphism f of A holds idcod f · f = f .

(7) For every morphism f of A holds f · iddom f = f .

In the sequel o, m will be arbitrary. The following two propositions are true:

(8) o is an object of BA if and only if o is a functor from A to B.

(9) For every morphism f of BA there exist functors F1, F2 from A to B
and there exists a natural transformation t from F1 to F2 such that F1

is naturally transformable to F2 and dom f = F1 and cod f = F2 and
f = 〈〈〈〈F1, F2〉〉, t〉〉.

2. The isomorphism between A ˙� (o,m) and A

Let us consider A, B, and let a be an object of A. The functor a 7→ B yields a
functor from BA to B and is defined by:

(Def.1) for all functors F1, F2 from A to B and for every natural transformation
t from F1 to F2 such that F1 is naturally transformable to F2 holds (a 7→
B)(〈〈〈〈F1, F2〉〉, t〉〉) = t(a).

One can prove the following two propositions:

(10) The objects of ˙� (o,m) = {o} and the morphisms of ˙� (o,m) = {m}.
(11) A ˙� (o,m) ∼= A.

3. The isomorphism between C [:A,B:] and (CB)
A

Next we state four propositions:

(12) For every functor F from [:A, B :] to C and for every object a of A and
for every object b of B holds F (a,−)(b) = F (〈〈a, b〉〉).

(13) For all objects a1, a2 of A and for all objects b1, b2 of B holds
hom(a1, a2) 6= ∅ and hom(b1, b2) 6= ∅ if and only if hom(〈〈a1, b1〉〉, 〈〈a2,
b2〉〉) 6= ∅.
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(14) Let a1, a2 be objects of A. Then for all objects b1, b2 of B such that
hom(〈〈a1, b1〉〉, 〈〈a2, b2〉〉) 6= ∅ and for every morphism f of A and for every
morphism g of B holds 〈〈f, g〉〉 is a morphism from 〈〈a1, b1〉〉 to 〈〈a2, b2〉〉 if
and only if f is a morphism from a1 to a2 and g is a morphism from b1

to b2.

(15) For all functors F1, F2 from [:A, B :] to C such that F1 is naturally
transformable to F2 and for every natural transformation t from F1 to
F2 and for every object a of A holds F1(a,−) is naturally transformable
to F2(a,−) and (curry t)(a) is a natural transformation from F1(a,−) to
F2(a,−).

Let us consider A, B, C, and let F be a functor from [:A, B :] to C, and
let f be a morphism of A. The functor curry(F, f) yields a function from the
morphisms of B into the morphisms of C and is defined by:

(Def.2) curry(F, f) = (curryF )(f).

The following two propositions are true:

(16) For all objects a1, a2 of A and for all objects b1, b2 of B and for every
morphism f of A and for every morphism g of B such that f ∈ hom(a1, a2)
and g ∈ hom(b1, b2) holds 〈〈f, g〉〉 ∈ hom(〈〈a1, b1〉〉, 〈〈a2, b2〉〉).

(17) For every functor F from [:A, B :] to C and for all objects a, b of A such
that hom(a, b) 6= ∅ and for every morphism f from a to b holds F (a,−)
is naturally transformable to F (b,−) and curry(F, f) · the id-map of B is
a natural transformation from F (a,−) to F (b,−).

Let us consider A, B, C, and let F be a functor from [:A, B :] to C, and let
f be a morphism of A. The functor F (f,−) yielding a natural transformation
from F (dom f,−) to F (cod f,−) is defined by:

(Def.3) F (f,−) = curry(F, f) · the id-map of B.

We now state four propositions:

(18) For every functor F from [:A, B :] to C and for every morphism g of A
holds F (dom g,−) is naturally transformable to F (cod g,−).

(19) For every functor F from [:A, B :] to C and for every morphism f of A
and for every object b of B holds F (f,−)(b) = F (〈〈f, idb〉〉).

(20) For every functor F from [:A, B :] to C and for every object a of A holds
idF (a,−) = F (ida,−).

(21) For every functor F from [:A, B :] to C and for all morphisms g, f of
A such that dom g = cod f and for every natural transformation t from
F (dom f,−) to F (dom g,−) such that t = F (f,−) holds F (g · f,−) =
F (g,−) ◦ t.

Let us consider A, B, C, and let F be a functor from [:A, B :] to C. The
functor export(F ) yielding a functor from A to CB is defined as follows:

(Def.4) for every morphism f of A holds (export(F ))(f) = 〈〈〈〈F (dom f,−),
F (cod f,−)〉〉, F (f,−)〉〉.

We now state several propositions:
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(22) For every functor F from [:A, B :] to C and for every morphism f of A
holds (export(F ))(f) = 〈〈〈〈F (dom f,−), F (cod f,−)〉〉, F (f,−)〉〉.

(23) For all functors F1, F2 from A to B such that F1 is transformable to F2

and for every transformation t from F1 to F2 and for every object a of A
holds t(a) ∈ hom(F1(a), F2(a)).

(24) For every functor F from [:A, B :] to C and for every object a of A holds
(export(F ))(a) = F (a,−).

(25) For every functor F from [:A, B :] to C and for every object a of A holds
(export(F ))(a) is a functor from B to C.

(26) For all functors F1, F2 from [:A, B :] to C such that export(F1) =
export(F2) holds F1 = F2.

(27) Let F1, F2 be functors from [:A, B :] to C. Suppose F1 is naturally
transformable to F2. Let t be a natural transformation from F1 to F2.
Then export(F1) is naturally transformable to export(F2) and there ex-
ists a natural transformation G from export(F1) to export(F2) such that
for every function s from [: the objects of A, the objects of B :] into the
morphisms of C such that t = s and for every object a of A holds
G(a) = 〈〈〈〈(export(F1))(a), (export(F2))(a)〉〉, (curry s)(a)〉〉.

Let us consider A, B, C, and let F1, F2 be functors from [:A, B :] to C
satisfying the condition: F1 is naturally transformable to F2. Let t be a nat-
ural transformation from F1 to F2. The functor export(t) yielding a natural
transformation from export(F1) to export(F2) is defined as follows:

(Def.5) for every function s from [: the objects of A, the objects of B :] into
the morphisms of C such that t = s and for every object a of A holds
(export(t))(a) = 〈〈〈〈(export(F1))(a), (export(F2))(a)〉〉, (curry s)(a)〉〉.

We now state several propositions:

(28) For every functor F from [:A, B :] to C holds idexport(F ) = export(idF ).

(29) For all functors F1, F2, F3 from [:A, B :] to C such that F1 is naturally
transformable to F2 and F2 is naturally transformable to F3 and for every
natural transformation t1 from F1 to F2 and for every natural transfor-
mation t2 from F2 to F3 holds export(t2 ◦ t1) = export(t2) ◦ export(t1).

(30) For all functors F1, F2 from [:A, B :] to C such that F1 is naturally
transformable to F2 and for all natural transformations t1, t2 from F1 to
F2 such that export(t1) = export(t2) holds t1 = t2.

(31) For every functor G from A to CB there exists a functor F from [:A,
B :] to C such that G = export(F ).

(32) For all functors F1, F2 from [:A, B :] to C such that export(F1) is nat-
urally transformable to export(F2) and for every natural transformation
t from export(F1) to export(F2) holds F1 is naturally transformable to
F2 and there exists a natural transformation u from F1 to F2 such that
t = export(u).



some isomorphisms between functor categories 37

Let us consider A, B, C. The functor exportA,B,C yields a functor from

C [:A,B :] to (CB)A and is defined by:

(Def.6) for all functors F1, F2 from [:A, B :] to C such that F1 is naturally trans-
formable to F2 and for every natural transformation t from F1 to F2 holds
exportA,B,C(〈〈〈〈F1, F2〉〉, t〉〉) = 〈〈〈〈export(F1), export(F2)〉〉, export(t)〉〉.

Next we state two propositions:

(33) exportA,B,C is an isomorphism.

(34) C [:A,B :] ∼= (CB)A.

4. The isomorphism between [:B,C:]A and [:BA, CA:]

We now state the proposition

(35) For all functors F1, F2 from A to B and for every functor G from B
to C such that F1 is naturally transformable to F2 and for every natural
transformation t from F1 to F2 holds G · t = G · t qua a function .

We now define two new functors. Let us consider A, B. Then π1(A× B) is
a functor from [:A, B :] to A. Then π2(A × B) is a functor from [:A, B :] to B.
Let us consider A, B, C, and let F be a functor from A to B, and let G be a
functor from A to C. Then 〈F,G〉 is a functor from A to [:B, C :]. Let F be a
functor from A to [:B, C :]. The functor π1·F yielding a functor from A to B is
defined as follows:

(Def.7) π1 · F = π1(B × C) · F .

The functor π2 · F yielding a functor from A to C is defined by:

(Def.8) π2 · F = π2(B × C) · F .

The following two propositions are true:

(36) For every functor F from A to B and for every functor G from A to C
holds π1 · 〈F,G〉 = F and π2 · 〈F,G〉 = G.

(37) For all functors F , G from A to [:B, C :] such that π1 · F = π1 · G and
π2 · F = π2 ·G holds F = G.

We now define two new functors. Let us consider A, B, C, and let F1, F2

be functors from A to [:B, C :], and let t be a natural transformation from F1

to F2. The functor π1· t yielding a natural transformation from π1· F1 to π1· F2

is defined as follows:

(Def.9) π1 · t = π1(B × C) · t.
The functor π2·t yielding a natural transformation from π2·F1 to π2·F2 is defined
as follows:

(Def.10) π2 · t = π2(B × C) · t.
We now state several propositions:
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(38) For all functors F , G from A to [:B, C :] such that F is naturally trans-
formable to G holds π1 · F is naturally transformable to π1 ·G and π2 · F
is naturally transformable to π2 ·G.

(39) For all functors F1, F2, G1, G2 from A to [:B, C :] such that F1 is
naturally transformable to F2 and G1 is naturally transformable to G2

and for every natural transformation s from F1 to F2 and for every natural
transformation t from G1 to G2 such that π1 · s = π1 · t and π2 · s = π2 · t
holds s = t.

(40) For every functor F from A to [:B, C :] holds idπ1·F = π1 · (idF ) and
idπ2·F = π2 · (idF ).

(41) For all functors F , G, H from A to [:B, C :] such that F is naturally
transformable to G and G is naturally transformable to H and for every
natural transformation s from F to G and for every natural transforma-
tion t from G to H holds π1· (t ◦ s) = π1· t ◦ π1·s and π2· (t ◦ s) = π2· t ◦ π2·s.

(42) For every functor F from A to B and for every functor G from A to
C and for all objects a, b of A such that hom(a, b) 6= ∅ and for every
morphism f from a to b holds 〈F,G〉(f) = 〈〈F (f), G(f)〉〉.

(43) For every functor F from A to B and for every functor G from A to C
and for every object a of A holds 〈F,G〉(a) = 〈〈F (a), G(a)〉〉.

(44) For all functors F1, G1 from A to B and for all functors F2, G2 from A
to C such that F1 is transformable to G1 and F2 is transformable to G2

holds 〈F1, F2〉 is transformable to 〈G1, G2〉.
Let us consider A, B, C, and let F1, G1 be functors from A to B, and let

F2, G2 be functors from A to C satisfying the condition: F1 is transformable to
G1 and F2 is transformable to G2. Let t1 be a transformation from F1 to G1,
and let t2 be a transformation from F2 to G2. The functor 〈t1, t2〉 yielding a
transformation from 〈F1, F2〉 to 〈G1, G2〉 is defined as follows:

(Def.11) 〈t1, t2〉 = 〈t1, t2〉.
One can prove the following propositions:

(45) For all functors F1, G1 from A to B and for all functors F2, G2 from A to
C such that F1 is transformable to G1 and F2 is transformable to G2 and
for every transformation t1 from F1 to G1 and for every transformation
t2 from F2 to G2 and for every object a of A holds 〈t1, t2〉(a) = 〈〈t1(a),
t2(a)〉〉.

(46) For all functors F1, G1 from A to B and for all functors F2, G2 from
A to C such that F1 is naturally transformable to G1 and F2 is naturally
transformable to G2 holds 〈F1, F2〉 is naturally transformable to 〈G1, G2〉.

Let us consider A, B, C, and let F1, G1 be functors from A to B, and
let F2, G2 be functors from A to C satisfying the conditions: F1 is naturally
transformable to G1 and F2 is naturally transformable to G2. Let t1 be a natural
transformation from F1 to G1, and let t2 be a natural transformation from F2

to G2. The functor 〈t1, t2〉 yielding a natural transformation from 〈F1, F2〉 to
〈G1, G2〉 is defined as follows:
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(Def.12) 〈t1, t2〉 = 〈t1, t2〉.
Next we state the proposition

(47) For all functors F1, G1 from A to B and for all functors F2, G2 from
A to C such that F1 is naturally transformable to G1 and F2 is naturally
transformable to G2 and for every natural transformation t1 from F1 to G1

and for every natural transformation t2 from F2 to G2 holds π1·〈t1, t2〉 = t1
and π2 · 〈t1, t2〉 = t2.

Let us consider A, B, C. The functor distributeA,B,C yielding a functor

from [:B, C :]A to [:BA, CA :] is defined by:

(Def.13) for all functors F1, F2 from A to [:B, C :] such that F1 is naturally
transformable to F2 and for every natural transformation t from F1 to F2

holds distributeA,B,C(〈〈〈〈F1, F2〉〉, t〉〉) = 〈〈〈〈〈〈π1·F1, π1·F2〉〉, π1· t〉〉, 〈〈〈〈π2·F1,
π2 · F2〉〉, π2 · t〉〉〉〉.

One can prove the following two propositions:

(48) distributeA,B,C is an isomorphism.

(49) [:B, C :]A ∼= [:BA, CA :].
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Summary. Let T be a topological space and let A be a subset of

T . Recall that A is said to be a closed domain of T if A = IntA and A
is said to be an open domain of T if A = IntA (see e.g. [8], [15]). Some
simple generalization of these notions is the following one. A is said to
be a domain of T provided IntA ⊆ A ⊆ IntA (see [15] and compare [7]).
In this paper certain connections between these concepts are introduced
and studied.

Our main results are concerned with the following well–known theo-
rems (see e.g. [9], [2]). For a given topological space all its closed domains
form a Boolean lattice, and similarly all its open domains form a Boolean
lattice, too. It is proved that all domains of a given topological space
form a complemented lattice. Moreover, it is shown that both the lattice
of open domains and the lattice of closed domains are sublattices of the
lattice of all domains. In the beginning some useful theorems about sub-
sets of topological spaces are proved and certain properties of domains,
closed domains and open domains are discussed.

MML Identifier: TDLAT 1.

The terminology and notation used in this paper are introduced in the following
articles: [14], [11], [4], [5], [16], [3], [13], [10], [15], [1], [12], and [6].

1. Preliminary Theorems on Subset of Topological Spaces

In the sequel T is a topological space. We now state a number of propositions:

(1) For all subsets A, B of T holds A ∪B = ΩT if and only if Ac ⊆ B.

(2) For all subsets A, B of T holds A ∩B = ∅T if and only if B ⊆ Ac.

1This paper was done under the supervision of Z. Karno while the author was visiting the
Institute of Mathematics of Warsaw University in Bia lystok.
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(3) For every subset A of T holds IntA ⊆ A.

(4) For every subset A of T holds IntA ⊆ Int IntA.

(5) For every subset A of T holds IntA = Int IntA.

(6) For all subsets A, B of T such that A is closed or B is closed holds
IntA ∪ IntB = Int(A ∪B).

(7) For all subsets A, B of T such that A is open or B is open holds
IntA ∩ IntB = IntA ∩B.

(8) For every subset A of T holds Int(A ∩Ac) = ∅T .

(9) For every subset A of T holds A ∪ Int(Ac) = ΩT .

(10) For all subsets A, B of T holds IntA ∪ (IntB ∪B)∪(A∪(IntB∪B)) =
IntA ∪B ∪ (A ∪B).

(11) For all subsets A, C of T holds Int IntA ∪A ∪ C ∪ (IntA ∪ A ∪ C) =
IntA ∪ C ∪ (A ∪ C).

(12) For all subsets A, B of T holds Int(A ∩ (IntB ∩B))∩(A∩(IntB∩B)) =
Int(A ∩B) ∩ (A ∩B).

(13) For all subsets A, C of T holds Int(IntA ∩A ∩ C) ∩ (IntA ∩A ∩ C) =
Int(A ∩C) ∩ (A ∩ C).

2. Properties of Domains of Topological Spaces

In the sequel T will be a topological space. Next we state a number of proposi-
tions:

(14) ∅T is a domain.

(15) ΩT is a domain.

(16) For every subset A of T such that A is a domain holds Ac is a domain.

(17) For all subsets A, B of T such that A is a domain and B is a domain
holds IntA ∪B∪(A∪B) is a domain and Int(A ∩B)∩(A∩B) is a domain.

(18) ∅T is a closed domain.

(19) ΩT is a closed domain.

(20) ∅T is an open domain.

(21) ΩT is an open domain.

(22) For every subset A of T holds IntA is a closed domain.

(23) For every subset A of T holds IntA is an open domain.

(24) For every subset A of T such that A is a domain holds A is a closed
domain.

(25) For every subset A of T such that A is a domain holds IntA is an open
domain.

(26) For every subset A of T such that A is a domain holds Ac is a closed
domain.
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(27) For every subset A of T such that A is a domain holds Int(Ac) is an
open domain.

(28) For all subsets A, B, C of T such that A is a closed domain and B is

a closed domain and C is a closed domain holds Int(A ∩ Int(B ∩ C)) =

Int(Int(A ∩B) ∩ C).

(29) For all subsets A, B, C of T such that A is an open domain and B

is an open domain and C is an open domain holds IntA ∪ IntB ∪C =

Int IntA ∪B ∪ C.

3. The Lattice of Domains

We now define five new functors. Let T be a topological space. The domains
of T yields a non-empty family of subsets of the carrier of T and is defined as
follows:

(Def.1) the domains of T = {A : A is a domain}, where A ranges over subsets
of T .

The domains union of T yielding a binary operation on the domains of T is
defined by:

(Def.2) for all elements A, B of the domains of T holds (the domains union of
T )(A, B) = IntA ∪B ∪ (A ∪B).

We introduce the functor D-Union(T ) as a synonym of the domains union of T .
The domains meet of T yields a binary operation on the domains of T and is
defined as follows:

(Def.3) for all elements A, B of the domains of T holds (the domains meet of
T )(A, B) = Int(A ∩B) ∩ (A ∩B).

We introduce the functor D-Meet(T ) as a synonym of the domains meet of T .

One can prove the following proposition

(30) For every topological space T holds 〈the domains of T ,D-Union(T ),
D-Meet(T )〉 is a complemented lattice.

Let T be a topological space. The lattice of domains of T yields a comple-
mented lattice and is defined by:

(Def.4) the lattice of domains of T = 〈the domains of T , the domains union of
T , the domains meet of T 〉.

4. The Lattice of Closed Domains

Let T be a topological space. The closed domains of T yielding a non-empty
family of subsets of the carrier of T is defined as follows:
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(Def.5) the closed domains of T = {A : A is a closed domain}, where A ranges
over subsets of T .

Next we state the proposition

(31) For every topological space T holds the closed domains of T ⊆ the
domains of T .

We now define two new functors. Let T be a topological space. The closed
domains union of T yielding a binary operation on the closed domains of T is
defined by:

(Def.6) for all elements A, B of the closed domains of T holds (the closed
domains union of T )(A, B) = A ∪B.

We introduce the functor CLD-Union(T ) as a synonym of the closed domains
union of T .

Next we state the proposition

(32) For all elements A, B of the closed domains of T holds
(CLD-Union(T ))(A, B) = (D-Union(T ))(A, B).

We now define two new functors. Let T be a topological space. The closed
domains meet of T yielding a binary operation on the closed domains of T is
defined as follows:

(Def.7) for all elements A, B of the closed domains of T holds (the closed
domains meet of T )(A, B) = Int(A ∩B).

We introduce the functor CLD-Meet(T ) as a synonym of the closed domains
meet of T .

One can prove the following two propositions:

(33) For all elements A, B of the closed domains of T holds (CLD-Meet(T ))(A,
B) = (D-Meet(T ))(A, B).

(34) For every topological space T holds 〈the closed domains of
T ,CLD-Union(T ),CLD-Meet(T )〉
is a Boolean lattice.

Let T be a topological space. The lattice of closed domains of T yielding a
Boolean lattice is defined as follows:

(Def.8) the lattice of closed domains of T = 〈the closed domains of T , the closed
domains union of T , the closed domains meet of T 〉.

5. The Lattice of Open Domains

Let T be a topological space. The open domains of T yields a non-empty family
of subsets of the carrier of T and is defined by:

(Def.9) the open domains of T = {A : A is an open domain}, where A ranges
over subsets of T .

Next we state the proposition
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(35) For every topological space T holds the open domains of T ⊆ the do-
mains of T .

We now define two new functors. Let T be a topological space. The open
domains union of T yielding a binary operation on the open domains of T is
defined by:

(Def.10) for all elements A, B of the open domains of T holds (the open domains
union of T )(A, B) = IntA ∪B.

We introduce the functor OPD-Union(T ) as a synonym of the open domains
union of T .

One can prove the following proposition

(36) For all elements A, B of the open domains of T holds (OPD-Union(T ))(A,
B) = (D-Union(T ))(A, B).

We now define two new functors. Let T be a topological space. The open
domains meet of T yielding a binary operation on the open domains of T is
defined by:

(Def.11) for all elements A, B of the open domains of T holds (the open domains
meet of T )(A, B) = A ∩B.

We introduce the functor OPD-Meet(T ) as a synonym of the open domains meet
of T .

We now state two propositions:

(37) For all elements A, B of the open domains of T holds (OPD-Meet(T ))(A,
B) = (D-Meet(T ))(A, B).

(38) For every topological space T holds 〈the open domains of
T ,OPD-Union(T ),OPD-Meet(T )〉
is a Boolean lattice.

Let T be a topological space. The lattice of open domains of T yielding a
Boolean lattice is defined by:

(Def.12) the lattice of open domains of T = 〈the open domains of T , the open
domains union of T , the open domains meet of T 〉.

6. Connections between Lattices of Domains

In the sequel T will be a topological space. The following propositions are true:

(39) CLD-Union(T ) = D-Union(T )
�

[: the closed domains of T , the closed
domains of T :].

(40) CLD-Meet(T ) = D-Meet(T )
�
[: the closed domains of T , the closed do-

mains of T :].

(41) The lattice of closed domains of T is a sublattice of the lattice of domains
of T .

(42) OPD-Union(T ) = D-Union(T )
�
[: the open domains of T , the open do-

mains of T :].
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(43) OPD-Meet(T ) = D-Meet(T )
�

[: the open domains of T , the open do-
mains of T :].

(44) The lattice of open domains of T is a sublattice of the lattice of domains
of T .
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[4] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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Summary. This article contains the notions of trivial and non-
trivial leftmodules and rings, cyclic submodules and inclusion of sub-
modules. A few basic theorems related to these notions are proved.

MML Identifier: LMOD 6.

The notation and terminology used here are introduced in the following papers:
[15], [16], [3], [4], [2], [1], [5], [6], [7], [14], [9], [13], [12], [10], [11], and [8].

1. Preliminaries

For simplicity we adopt the following rules: x is arbitrary, K denotes an asso-
ciative ring, r denotes a scalar of K, V , M , M1, M2, N denote left modules over
K, a denotes a vector of V , m, m1, m2 denote vectors of M , n, n1, n2 denote
vectors of N , A denotes a subset of V , l denotes a linear combination of A, and
W , W1, W2, W3 denote submodules of V . Next we state four propositions:

(1) If M1 = the left module structure of M2, then x ∈ M1 if and only if
x ∈M2.

(2) For every vector v of the left module structure of V such that a = v
holds r · a = r · v.

(3) The left module structure of V is a strict submodule of V .

(4) V is a submodule of ΩV .
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2. Trivial and non-trivial modules and rings

We now define two new predicates. Let us consider K, V . We say that V is
non-trivial if and only if:

(Def.1) there exists a vector a of V such that a 6= ΘV .

Let us consider K. We say that K is non-trivial if and only if:

(Def.2) 0K 6= 1K .

We now state three propositions:

(5) If K is trivial, then for every r holds r = 0K and for every a holds
a = ΘV .

(6) If K is trivial, then V is trivial.

(7) V is trivial if and only if the left module structure of V = 0V .

3. Submodules and subsets

We now define two new functors. Let us consider K, V , and let W be a strict
submodule of V . The functor ë(W ) yields an element of Sub(V ) and is defined
by:

(Def.3) ë(W ) = W .

The functor ç(V ) yields a non-empty subset of V and is defined as follows:

(Def.4) ç(V ) = the carrier of V .

The following two propositions are true:

(8) For all sets X, Y , A such that X ⊆ Y and A is a subset of X holds A
is a subset of Y .

(9) Every subset of W is a subset of V .

Let us consider K, V , W , and let A be a subset of W . The functor ı̈(A)
yields a subset of V and is defined by:

(Def.5) ı̈(A) = A.

Let A be a non-empty subset of W . Then ı̈(A) is a non-empty subset of V .

The following propositions are true:

(10) x ∈ ç(V ) if and only if x ∈ V .

(11) x ∈ ı̈(ç(W )) if and only if x ∈W .

(12) A ⊆ ç(Lin(A)).

(13) If A 6= ∅ and A is linearly closed, then
∑
l ∈ A.

(14) If ΘV ∈ A and A is linearly closed, then
∑
l ∈ A.

(15) If ΘV ∈ A and A is linearly closed, then A = ç(Lin(A)).
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4. Cyclic submodules

Let us consider K, V , a. Then {a} is a non-empty subset of V . The functor∏∗ a yielding a strict submodule of V is defined by:

(Def.6)
∏∗ a = Lin({a}).

5. Inclusion of left R-modules

Let us consider K, M , N . The predicate M ⊆ N is defined as follows:

(Def.7) M is a submodule of N .

We now state a number of propositions:

(16) If M ⊆ N , then if x ∈M , then x ∈ N but if x is a vector of M , then x
is a vector of N .

(17) Suppose M ⊆ N . Then
(i) ΘM = ΘN ,
(ii) if m1 = n1 and m2 = n2, then m1 +m2 = n1 + n2,

(iii) if m = n, then r ·m = r · n,
(iv) if m = n, then −n = −m,
(v) if m1 = n1 and m2 = n2, then m1 −m2 = n1 − n2,
(vi) ΘN ∈M ,
(vii) ΘM ∈ N ,

(viii) if n1 ∈M and n2 ∈M , then n1 + n2 ∈M ,
(ix) if n ∈M , then r · n ∈M ,
(x) if n ∈M , then −n ∈M ,
(xi) if n1 ∈M and n2 ∈M , then n1 − n2 ∈M .

(18) Suppose M1 ⊆ N and M2 ⊆ N . Then
(i) ΘM1 = ΘM2 ,
(ii) ΘM1 ∈M2,

(iii) if the carrier of M1 ⊆ the carrier of M2, then M1 ⊆M2,
(iv) if for every n such that n ∈M1 holds n ∈M2, then M1 ⊆M2,
(v) if the carrier of M1 = the carrier of M2 and M1 is strict and M2 is

strict, then M1 = M2,
(vi) 0M1 ⊆M2.

(19) W1 +W2 ⊆ V and W1 ∩W2 ⊆ V .

(20) N ⊆ N .

(21) For all strict left modules V , M over K such that V ⊆M and M ⊆ V
holds V = M .

(22) If V ⊆M and M ⊆ N , then V ⊆ N .

(23) If M ⊆ N , then 0M ⊆ N .

(24) If M ⊆ N , then 0N ⊆M .

(25) If M ⊆ N , then M ⊆ ΩN .
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(26) W1 ⊆W1 +W2 and W2 ⊆W1 +W2.

(27) W1 ∩W2 ⊆W1 and W1 ∩W2 ⊆W2.

(28) If W1 ⊆W2, then W1 ∩W3 ⊆W2 ∩W3.

(29) If W1 ⊆W3, then W1 ∩W2 ⊆W3.

(30) If W1 ⊆W2 and W1 ⊆W3, then W1 ⊆W2 ∩W3.

(31) W1 ∩W2 ⊆W1 +W2.

(32) W1 ∩W2 +W2 ∩W3 ⊆W2 ∩ (W1 +W3).

(33) If W1 ⊆W2, then W2 ∩ (W1 +W3) = W1 ∩W2 +W2 ∩W3.

(34) W2 +W1 ∩W3 ⊆ (W1 +W2) ∩ (W2 +W3).

(35) If W1 ⊆W2, then W2 +W1 ∩W3 = (W1 +W2) ∩ (W2 +W3).

(36) If W1 ⊆W2, then W1 ⊆W2 +W3.

(37) If W1 ⊆W3 and W2 ⊆W3, then W1 +W2 ⊆W3.

(38) For all subsets A, B of V such that A ⊆ B holds Lin(A) ⊆ Lin(B).

(39) For all subsets A, B of V holds Lin(A ∩B) ⊆ Lin(A) ∩ Lin(B).

(40) If M1 ⊆M2, then ç(M1) ⊆ ç(M2).

(41) W1 ⊆W2 if and only if for every a such that a ∈W1 holds a ∈W2.

(42) W1 ⊆W2 if and only if ç(W1) ⊆ ç(W2).

(43) W1 ⊆W2 if and only if ı̈(ç(W1)) ⊆ ı̈(ç(W2)).

(44) 0W ⊆ V and 0V ⊆W and 0W1 ⊆W2.
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The articles [1], [6], [7], [5], [3], [2], [4], and [8] provide the notation and termi-
nology for this paper. In the sequel V will be a real linear space, A1 will be
an affine structure, and x, y will be vectors of V . One can prove the following
propositions:

(1) Suppose x, y span the space. Then
(i) for all elements u, u1, v, v1, w, w1, w2 of the carrier of CESpace(V, x, y)

holds u, u>>v, w and u, v>>w,w but if u, v>>u1, v1 and u, v>>v1, u1,
then u = v or u1 = v1 but if u, v>>u1, v1 and u, v>>u1, w, then u, v>>v1, w
or u, v>>w, v1 but if u, v>>u1, v1, then v, u>>v1, u1 but if u, v>>u1, v1

and u, v>>v1, w, then u, v>>u1, w but if u, u1>>v, v1, then v, v1>>u, u1

or v, v1>>u1, u,
(ii) for every elements u, v, w of the carrier of CESpace(V, x, y) there

exists an element u1 of the carrier of CESpace(V, x, y) such that w 6= u1

and w, u1>>u, v,
(iii) for every elements u, v, w of the carrier of CESpace(V, x, y) there

exists an element u1 of the carrier of CESpace(V, x, y) such that w 6= u1

and u, v>>w, u1.

(2) Suppose x, y span the space. Then
(i) for all elements u, u1, v, v1, w, w1, w2 of the carrier of CMSpace(V, x, y)

holds u, u>>v, w and u, v>>w,w but if u, v>>u1, v1 and u, v>>v1, u1,
then u = v or u1 = v1 but if u, v>>u1, v1 and u, v>>u1, w, then u, v>>v1, w
or u, v>>w, v1 but if u, v>>u1, v1, then v, u>>v1, u1 but if u, v>>u1, v1
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and u, v>>v1, w, then u, v>>u1, w but if u, u1>>v, v1, then v, v1>>u, u1

or v, v1>>u1, u,
(ii) for every elements u, v, w of the carrier of CMSpace(V, x, y) there

exists an element u1 of the carrier of CMSpace(V, x, y) such that w 6= u1

and w, u1>>u, v,
(iii) for every elements u, v, w of the carrier of CMSpace(V, x, y) there

exists an element u1 of the carrier of CMSpace(V, x, y) such that w 6= u1

and u, v>>w, u1.

We now define two new constructions. An affine structure is oriented orthog-
onality if it satisfies the conditions (Def.1).

(Def.1) (i) For all elements u, u1, v, v1, w, w1, w2 of the carrier of it holds
u, u>>v, w and u, v>>w,w but if u, v>>u1, v1 and u, v>>v1, u1, then
u = v or u1 = v1 but if u, v>>u1, v1 and u, v>>u1, w, then u, v>>v1, w
or u, v>>w, v1 but if u, v>>u1, v1, then v, u>>v1, u1 but if u, v>>u1, v1

and u, v>>v1, w, then u, v>>u1, w but if u, u1>>v, v1, then v, v1>>u, u1

or v, v1>>u1, u,
(ii) for every elements u, v, w of the carrier of it there exists an element

u1 of the carrier of it such that w 6= u1 and w, u1>>u, v,
(iii) for every elements u, v, w of the carrier of it there exists an element

u1 of the carrier of it such that w 6= u1 and u, v>>w, u1.

An oriented orthogonality space is an oriented orthogonality affine structure.

Next we state three propositions:

(3) The following conditions are equivalent:
(i) for all elements u, u1, v, v1, w, w1, w2 of the carrier of A1 holds
u, u>>v, w and u, v>>w,w but if u, v>>u1, v1 and u, v>>v1, u1, then
u = v or u1 = v1 but if u, v>>u1, v1 and u, v>>u1, w, then u, v>>v1, w
or u, v>>w, v1 but if u, v>>u1, v1, then v, u>>v1, u1 but if u, v>>u1, v1

and u, v>>v1, w, then u, v>>u1, w but if u, u1>>v, v1, then v, v1>>u, u1

or v, v1>>u1, u and for every elements u, v, w of the carrier of A1 there
exists an element u1 of the carrier of A1 such that w 6= u1 and w, u1>>u, v
and for every elements u, v, w of the carrier of A1 there exists an element
u1 of the carrier of A1 such that w 6= u1 and u, v>>w, u1,

(ii) A1 is an oriented orthogonality space.

(4) If x, y span the space, then CMSpace(V, x, y) is an oriented orthogo-
nality space.

(5) If x, y span the space, then CESpace(V, x, y) is an oriented orthogonality
space.

We follow a convention: A1 will denote an oriented orthogonality space and
u, u1, u2, v, v1, v2, w, w1 will denote elements of the carrier of A1. We now
state three propositions:

(6) For every elements u, v, w of the carrier of A1 there exists an element
u1 of the carrier of A1 such that u1, w>>u, v and u1 6= w.

(7) For all elements u, v, w of the carrier of A1 holds u, v>>w,w.
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(8) For every elements u, v, w of the carrier of A1 there exists an element
u1 of the carrier of A1 such that u 6= u1 but v, w>>u, u1 or v, w>>u1, u.

We now define several new constructions. Let A1 be an oriented orthogonality
space, and let a, b, c, d be elements of the carrier of A1. The predicate a, b ⊥ c, d
is defined by:

(Def.2) a, b>>c, d or a, b>>d, c.
Let a, b, c, d be elements of the carrier of A1. The predicate a, b � �‖ c, d is defined
as follows:

(Def.3) there exist elements e, f of the carrier of A1 such that e 6= f and
e, f>>a, b and e, f>>c, d.

An oriented orthogonality space is semi transitive if:

(Def.4) for all elements u, u1, u2, v, v1, v2, w, w1 of the carrier of it such that
u, u1>>v, v1 and w,w1>>v, v1 and w,w1>>u2, v2 holds w = w1 or v = v1

or u, u1>>u2, v2.

An oriented orthogonality space is right transitive if:

(Def.5) for all elements u, u1, u2, v, v1, v2, w, w1 of the carrier of it such that
u, u1>>v, v1 and v, v1>>w,w1 and u2, v2>>w,w1 holds w = w1 or v = v1

or u, u1>>u2, v2.

An oriented orthogonality space is left transitive if:

(Def.6) for all elements u, u1, u2, v, v1, v2, w, w1 of the carrier of it such that
u, u1>>v, v1 and v, v1>>w,w1 and u, u1>>u2, v2 holds u = u1 or v = v1

or u2, v2>>w,w1.

An oriented orthogonality space is Euclidean like if:

(Def.7) for all elements u, u1, v, v1 of the carrier of it such that u, u1>>v, v1

holds v, v1>>u1, u.

An oriented orthogonality space is Minkowskian like if:

(Def.8) for all elements u, u1, v, v1 of the carrier of it such that u, u1>>v, v1

holds v, v1>>u, u1.

One can prove the following propositions:

(9) u, u1 � �‖ w,w and w,w � �‖ u, u1.

(10) If u, u1 � �‖ v, v1, then v, v1 � �‖ u, u1.

(11) If u, u1 � �‖ v, v1, then u1, u � �‖ v1, v.

(12) A1 is left transitive if and only if for all v, v1, w, w1, u2, v2 such that
v, v1 � �‖ u2, v2 and v, v1>>w,w1 and v 6= v1 holds u2, v2>>w,w1.

(13) A1 is semi transitive if and only if for all u, u1, u2, v, v1, v2 such that
u, u1>>v, v1 and v, v1 � �‖ u2, v2 and v 6= v1 holds u, u1>>u2, v2.

(14) If A1 is semi transitive, then for all u, u1, v, v1, w, w1 such that u, u1 � �‖
v, v1 and v, v1 � �‖ w,w1 and v 6= v1 holds u, u1 � �‖ w,w1.

(15) If x, y span the space and A1 = CESpace(V, x, y), then A1 is Euclidean
like, left transitive, right transitive and semi transitive.
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One can readily verify that there exists an oriented orthogonality space which
is Euclidean like, left transitive, right transitive and semi transitive.

We now state the proposition

(16) If x, y span the space and A1 = CMSpace(V, x, y), then
A1 is Minkowskian like, left transitive, right transitive and semi transitive.

Let us note that there exists an oriented orthogonality space which is Min-
kowskian like, left transitive, right transitive and semi transitive.

Next we state four propositions:

(17) If A1 is left transitive, then A1 is right transitive.

(18) If A1 is left transitive, then A1 is semi transitive.

(19) If A1 is semi transitive, then A1 is right transitive if and only if for all
u, u1, v, v1, u2, v2 such that u, u1>>u2, v2 and v, v1>>u2, v2 and u2 6= v2

holds u, u1 � �‖ v, v1.

(20) If A1 is right transitive but A1 is Euclidean like or A1 is Minkowskian
like, then A1 is left transitive.
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Summary. Let 	 = 〈S;K, 0, 1,+, ·〉 be a ring. The structure
op 	 = 〈S;K, 0, 1,+, •〉 is called anti-ring, if α • β = β · α for elements
α, β of K [12, pages 5–7]. It is easily seen that op 	 is also a ring. If
V is a left module over 	 , then V is a right module over op 	 . If W
is a right module over 	 , then W is a left module over op 	 . Let K,L
be rings. A morphism J : K −→ L is called anti-homomorphism, if
J(α · β) = J(β) · J(α) for elements α, β of K. If J : K −→ L is a
homomorphism, then J : K −→ opL is an anti-homomorphism. Let K,L
be rings, V,W left modules over K,L respectively and J : K −→ L an
anti-monomorphism. A map f : V −→ W is called J - semilinear, if
f(x + y) = f(x) + f(y) and f(α · x) = J(α) · f(x) for vectors x, y of V
and a scalar α of K.

MML Identifier: MOD 4.

The papers [19], [18], [21], [3], [4], [1], [20], [17], [2], [7], [8], [11], [14], [15], [16],
[5], [6], [9], [13], and [10] provide the notation and terminology for this paper.

1. Opposite functions

In the sequel A, B, C are non-empty sets and f is a function from [:A, B :] into
C. Let us consider A, B, C, f . Then 
 f is a function from [:B, A :] into C.

We now state the proposition

(1) For every element x of A and for every element y of B holds f(x,
y) = ( 
 f)(y, x).
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2. Opposite rings

In the sequel K, L will be field structures. Let us consider K. The functor opK
yielding a strict field structure is defined by:

(Def.1) opK = 〈the carrier of K, 
 (the multiplication of K), the addition of K,
the reverse-map of K, the unity of K, the zero of K〉.

We now state four propositions:

(2) The group structure of opK = the group structure of K and for an
arbitrary x holds x is a scalar of opK if and only if x is a scalar of K.

(3) op(opK) = the field structure of K.

(4) (i) 0K = 0opK ,
(ii) 1K = 1opK ,
(iii) for all scalars x, y, z, u of K and for all scalars a, b, c, d of opK such

that x = a and y = b and z = c and u = d holds x+y = a+b and x·y = b·a
and −x = −a and x+ y+ z = a+ b+ c and x+ (y+ z) = a+ (b+ c) and
(x · y) · z = c · (b · a) and x · (y · z) = (c · b) · a and x · (y + z) = (b+ c) · a
and (y + z) · x = a · (b+ c) and x · y + z · u = b · a+ d · c.

(5) For every ring K holds opK is a strict ring.

Let K be a ring. Then opK is a strict ring.

One can prove the following proposition

(6) For every associative ring K holds opK is an associative ring.

Let K be an associative ring. Then opK is a strict associative ring.

Next we state the proposition

(7) For every skew field K holds opK is a skew field.

Let K be a skew field. Then opK is a strict skew field.

One can prove the following proposition

(8) For every field K holds opK is a strict field.

Let K be a field. Then opK is a strict field.

3. Opposite modules

In the sequel V denotes a left module structure over K. Let us consider K, V .
The functor opV yields a strict right module structure over opK and is defined
as follows:

(Def.2) for every function o from [: the carrier of V, the carrier of opK :] into the
carrier of V such that o = 
 (the left multiplication of V ) holds opV = 〈the
carrier of V, the addition of V, the reverse-map of V, the zero of V, o〉.

The following proposition is true

(9) The group structure of opV = the group structure of V and for an
arbitrary x holds x is a vector of V if and only if x is a vector of opV .
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Let us consider K, V , and let o be a function from [: the carrier of K, the
carrier of V :] into the carrier of V . The functor opo yields a function from [: the
carrier of opV, the carrier of opK :] into the carrier of opV and is defined by:

(Def.3) opo = 
 o.
One can prove the following two propositions:

(10) The right multiplication of opV = op(the left multiplication of V ).

(11) opV = 〈the carrier of opV, the addition of opV, the reverse-map of opV,
the zero of opV, op(the left multiplication of V )〉.

In the sequel W denotes a right module structure over K. Let us consider
K, W . The functor opW yields a strict left module structure over opK and is
defined by:

(Def.4) for every function o from [: the carrier of opK, the carrier of W :] into
the carrier of W such that o = 
 (the right multiplication of W ) holds
opW = 〈the carrier of W, the addition of W, the reverse-map of W, the zero
of W, o〉.

We now state the proposition

(12) The group structure of opW = the group structure of W and for an
arbitrary x holds x is a vector of W if and only if x is a vector of opW .

Let us consider K, W , and let o be a function from [: the carrier of W, the
carrier of K :] into the carrier of W . The functor opo yielding a function from
[: the carrier of opK, the carrier of opW :] into the carrier of opW is defined as
follows:

(Def.5) opo = 
 o.
The following propositions are true:

(13) The left multiplication of opW = op(the right multiplication of W ).

(14) opW = 〈the carrier of opW, the addition of opW, the reverse-map of opW,
the zero of opW, op(the right multiplication of W )〉.

(15) For every function o from [: the carrier of K, the carrier of V :] into the
carrier of V holds op(opo) = o.

(16) For every function o from [: the carrier of K, the carrier of V :] into the
carrier of V and for every scalar x of K and for every scalar y of opK and
for every vector v of V and for every vector w of opV such that x = y and
v = w holds (opo)(w, y) = o(x, v).

(17) Let K, L be rings. Then for every V being a left module structure over
K and for every W being a right module structure over L and for every
scalar x of K and for every scalar y of L and for every vector v of V and
for every vector w of W such that L = opK and W = opV and x = y and
v = w holds w · y = x · v.

(18) For all rings K, L and for every V being a left module structure over
K and for every W being a right module structure over L and for all
vectors v1, v2 of V and for all vectors w1, w2 of W such that L = opK
and W = opV and v1 = w1 and v2 = w2 holds w1 + w2 = v1 + v2.
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(19) For every function o from [: the carrier of W, the carrier of K :] into the
carrier of W holds op(opo) = o.

(20) For every function o from [: the carrier of W, the carrier of K :] into the
carrier of W and for every scalar x of K and for every scalar y of opK and
for every vector v of W and for every vector w of opW such that x = y
and v = w holds (opo)(y, w) = o(v, x).

(21) Let K, L be rings. Then for every V being a left module structure over
K and for every W being a right module structure over L and for every
scalar x of K and for every scalar y of L and for every vector v of V and
for every vector w of W such that K = opL and V = opW and x = y and
v = w holds w · y = x · v.

(22) For all rings K, L and for every V being a left module structure over
K and for every W being a right module structure over L and for all
vectors v1, v2 of V and for all vectors w1, w2 of W such that K = opL
and V = opW and v1 = w1 and v2 = w2 holds w1 + w2 = v1 + v2.

(23) For every K being a strict field structure and for every V being a left
module structure over K holds op(opV ) = the left module structure of V .

(24) For every K being a strict field structure and for every W being a right
module structure over K holds op(opW ) = the right module structure of
W .

(25) For every associative ring K and for every left module V over K holds
opV is a strict right module over opK.

Let K be an associative ring, and let V be a left module over K. Then opV
is a strict right module over opK.

One can prove the following proposition

(26) For every associative ring K and for every right module W over K holds
opW is a strict left module over opK.

Let K be an associative ring, and let W be a right module over K. Then
opW is a strict left module over opK.

4. Morphisms of rings

We now define several new attributes. Let us consider K, L. A map from K
into L is antilinear if:

(Def.6) for all scalars x, y of K holds it(x+ y) = it(x) + it(y) and for all scalars
x, y of K holds it(x · y) = it(y) · it(x) and it(1K) = 1L.

A map from K into L is monomorphism if:

(Def.7) it is linear and it is one-to-one.

A map from K into L is antimonomorphism if:

(Def.8) it is antilinear and it is one-to-one.

A map from K into L is epimorphism if:
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(Def.9) it is linear and rng it = the carrier of L.

A map from K into L is antiepimorphism if:

(Def.10) it is antilinear and rng it = the carrier of L.

A map from K into L is isomorphism if:

(Def.11) it is monomorphism and rng it = the carrier of L.

A map from K into L is antiisomorphism if:

(Def.12) it is antimonomorphism and rng it = the carrier of L.

In the sequel J denotes a map from K into K. We now define four new
attributes. Let us consider K. A map from K into K is endomorphism if:

(Def.13) it is linear.

A map from K into K is antiendomorphism if:

(Def.14) it is antilinear.

A map from K into K is automorphism if:

(Def.15) it is isomorphism.

A map from K into K is antiautomorphism if:

(Def.16) it is antiisomorphism.

One can prove the following propositions:

(27) J is automorphism if and only if the following conditions are satisfied:
(i) for all scalars x, y of K holds J(x+ y) = J(x) + J(y),
(ii) for all scalars x, y of K holds J(x · y) = J(x) · J(y),

(iii) J(1K) = 1K ,
(iv) J is one-to-one,
(v) rng J = the carrier of K.

(28) J is antiautomorphism if and only if the following conditions are satis-
fied:

(i) for all scalars x, y of K holds J(x+ y) = J(x) + J(y),
(ii) for all scalars x, y of K holds J(x · y) = J(y) · J(x),

(iii) J(1K) = 1K ,
(iv) J is one-to-one,
(v) rng J = the carrier of K.

(29) idK is automorphism.

We follow the rules: K, L will denote rings, J will denote a map from K
into L, and x, y will denote scalars of K. Next we state three propositions:

(30) If J is linear, then J(0K) = 0L and J(−x) = −J(x) and J(x − y) =
J(x)− J(y).

(31) If J is antilinear, then J(0K) = 0L and J(−x) = −J(x) and J(x− y) =
J(x)− J(y).

(32) For every associative ring K holds idK is antiautomorphism if and only
if K is a commutative ring.

One can prove the following proposition
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(33) For every skew field K holds idK is antiautomorphism if and only if K
is a field.

5. Opposite morphisms to morphisms of rings

In the sequel K, L will be field structures and J will be a map from K into L.
Let us consider K, L, J . The functor opJ yielding a map from K into opL is
defined by:

(Def.17) opJ = J .

Next we state several propositions:

(34) op(opJ) = J .

(35) J is linear if and only if opJ is antilinear.

(36) J is antilinear if and only if opJ is linear.

(37) J is monomorphism if and only if opJ is antimonomorphism.

(38) J is antimonomorphism if and only if opJ is monomorphism.

(39) J is epimorphism if and only if opJ is antiepimorphism.

(40) J is antiepimorphism if and only if opJ is epimorphism.

(41) J is isomorphism if and only if opJ is antiisomorphism.

(42) J is antiisomorphism if and only if opJ is isomorphism.

In the sequel J will be a map from K into K. We now state four propositions:

(43) J is endomorphism if and only if opJ is antilinear.

(44) J is antiendomorphism if and only if opJ is linear.

(45) J is automorphism if and only if opJ is antiisomorphism.

(46) J is antiautomorphism if and only if opJ is isomorphism.

6. Morphisms of groups

In the sequel G, H will denote groups. Let us consider G, H. A map from G
into H is said to be a homomorphism from G to H if:

(Def.18) for all elements x, y of G holds it(x+ y) = it(x) + it(y).

Then zero(G,H) is a homomorphism from G to H.

In the sequel f is a homomorphism from G to H. We now define four
new constructions. Let us consider G, H. A homomorphism from G to H is
monomorphism if:

(Def.19) it is one-to-one.

A homomorphism from G to H is epimorphism if:

(Def.20) rng it = the carrier of H.

A homomorphism from G to H is isomorphism if:
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(Def.21) it is one-to-one and rng it = the carrier of H.

Let us consider G. An endomorphism of G is a homomorphism from G to G.

We now state the proposition

(47) For every element x of G holds idG(x) = x.

We now define two new constructions. Let us consider G. An endomorphism
of G is automorphism-like if:

(Def.22) it is isomorphism.

An automorphism of G is an automorphism-like endomorphism of G.
Then idG is an automorphism of G.

In the sequel x, y will be elements of G. We now state the proposition

(48) f(0G) = 0H and f(−x) = −f(x) and f(x−′ y) = f(x)−′ f(y).

We adopt the following convention: G, H denote Abelian groups, f denotes
a homomorphism from G to H, and x, y denote elements of G. The following
proposition is true

(49) f(x− y) = f(x)− f(y).

7. Semilinear morphisms

For simplicity we adopt the following rules: K, L are associative rings, J is a
map from K into L, V is a left module over K, and W is a left module over
L. Let us consider K, L, J , V , W . A map from V into W is said to be a
homomorphism from V to W by J if:

(Def.23) for all vectors x, y of V holds it(x + y) = it(x) + it(y) and for every
scalar a of K and for every vector x of V holds it(a · x) = J(a) · it(x).

The following proposition is true

(50) zero(V,W ) is a homomorphism from V to W by J .

In the sequel f denotes a homomorphism from V to W by J . We now define
three new predicates. Let us consider K, L, J , V , W , f . We say that f is a
monomorphism wrp J if and only if:

(Def.24) f is one-to-one.

We say that f is a epimorphism wrp J if and only if:

(Def.25) rng f = the carrier of W .

We say that f is a isomorphism wrp J if and only if:

(Def.26) f is one-to-one and rng f = the carrier of W .

In the sequel J will denote a map from K into K and f will denote a ho-
momorphism from V to V by J . We now define two new constructions. Let us
consider K, J , V . An endomorphism of J and V is a homomorphism from V
to V by J .

Let us consider K, J , V , f . We say that f is a automorphism wrp J if and
only if:
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(Def.27) f is one-to-one and rng f = the carrier of V .

In the sequel W is a left module over K. Let us consider K, V , W . A
homomorphism from V to W is a homomorphism from V to W by idK .

Next we state the proposition

(51) For every map f from V into W holds f is a homomorphism from V to
W if and only if for all vectors x, y of V holds f(x+y) = f(x) +f(y) and
for every scalar a of K and for every vector x of V holds f(a ·x) = a ·f(x).

We now define five new constructions. Let us consider K, V , W . A homo-
morphism from V to W is monomorphism if:

(Def.28) it is one-to-one.

A homomorphism from V to W is epimorphism if:

(Def.29) rng it = the carrier of W .

A homomorphism from V to W is isomorphism if:

(Def.30) it is one-to-one and rng it = the carrier of W .

Let us consider K, V . An endomorphism of V is a homomorphism from V to
V .

An endomorphism of V is automorphism if:

(Def.31) it is one-to-one and rng it = the carrier of V .

8. Annex

Next we state three propositions:

(52) For every skew field K holds K is a field if and only if for all scalars x,
y of K holds x · y = y · x.

(53) For every K being a field structure holds K is a field if and only if K
is a skew field and for all scalars x, y of K holds x · y = y · x.

(54) For every groupG and for all elements x, y, z of G such that x+y = x+z
holds y = z.
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Summary. The paper contains definitions and basic properties of

Caratheodor’s measure, with values in
�

, the enlarged set of real numbers,

where
�

denotes set
�

=
� ∪ {−∞,+∞} - by [14]. The article includes

the text being a continuation of the paper [3]. Caratheodor’s theorem and
some theorems concerning basic properties of Caratheodor’s measure are
proved. The work is the sixth part of the series of articles concerning the
Lebesgue measure theory.

MML Identifier: MEASURE4.

The terminology and notation used in this paper have been introduced in the
following papers: [16], [15], [10], [11], [8], [9], [1], [13], [2], [12], [4], [5], [7], [6],
[3], and [17]. One can prove the following propositions:

(1) For all Real numbers x, y, z such that 0 � ≤ x and 0 � ≤ y and 0 � ≤ z
holds (x+ y) + z = x+ (y + z).

(2) For all Real numbers x, y, z such that x 6= −∞ and x 6= +∞ holds
y + x ≤ z if and only if y ≤ z − x.

(3) For all Real numbers x, y such that 0 � ≤ x and 0 � ≤ y holds x + y =
y + x.

(4) For every set X and for every σ-field S of subsets of X and for every
function F from � into S and for every element A of S and for every
function G from � into S such that for every element n of � holds G(n) =
A ∩ F (n) holds

⋃
rngG = A ∩⋃ rngF .

(5) Let X be a set. Let S be a σ-field of subsets of X. Let F be a function
from � into S. Let G be a function from � into S. Suppose G(0) = F (0)
and for every element n of � holds G(n + 1) = F (n + 1) ∪ G(n). Then
for every function H from � into S such that H(0) = F (0) and for every
element n of � holds H(n+1) = F (n+1)\G(n) holds

⋃
rngF =

⋃
rngH.

(6) For every set X holds 2X is a σ-field of subsets of X.
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Let X be a set, and let F be a function from � into 2X . Then rngF is a
non-empty family of subsets of X. Let A be a non-empty family of subsets of
X. Then

⋃
A is an element of 2X . Let F be a function from 2X into

�
. We say

that F is non-negative if and only if:

(Def.1) for every element A of 2X holds 0 � ≤ F (A).

Let F be a function from � into 2X , and let M be a function from 2X into
�
.

Then M · F is a function from � into
�
.

One can prove the following propositions:

(7) For every set X and for every Real numbers a, b there exists a function
M from 2X into

�
such that for every element A of 2X holds if A = ∅,

then M(A) = a but if A 6= ∅, then M(A) = b.

(8) For every set X there exists a function M from 2X into
�

such that for
every element A of 2X holds M(A) = 0 � .

(9) For every set X and for every function F from � into 2X and for every
function M from 2X into

�
such that M is non-negative holds M · F is

non-negative.

(10) For every set X and for every function F from � into 2X and for every
function M from 2X into

�
and for every natural number n holds (M ·

F )(n) = M(F (n)).

(11) Let X be a set. Then there exists a function M from 2X into
�

such
that M is non-negative and M(∅) = 0 � and for all elements A, B of 2X

such that A ⊆ B holds M(A) ≤ M(B) and for every function F from �
into 2X holds M(

⋃
rngF ) ≤∑(M · F ).

We now define two new constructions. Let X be a set. A function from 2X

into
�

is said to be a Caratheodor’s measure on X if:

(Def.2) it is non-negative and it(∅) = 0 � and for all elements A, B of 2X such
that A ⊆ B holds it(A) ≤ it(B) and for every function F from � into 2X

holds it(
⋃

rngF ) ≤∑(it · F ).

Let C be a Caratheodor’s measure on X. The functor σ-Field(C) yielding a
non-empty family of subsets of X is defined by:

(Def.3) for every element A of 2X holds A ∈ σ-Field(C) if and only if for all
elements W , Z of 2X such that W ⊆ A and Z ⊆ X \ A holds C(W ) +
C(Z) ≤ C(W ∪ Z).

The following propositions are true:

(12) For every set X and for every Caratheodor’s measure C on X and for
all elements W , Z of 2X holds C(W ∪ Z) ≤ C(W ) + C(Z).

(13) For every set X and for every Caratheodor’s measure C on X and for
all elements W , Z of 2X holds C(Z) + C(W ) = C(W ) + C(Z).

(14) For every set X and for every Caratheodor’s measure C on X and for
every element A of 2X holds A ∈ σ-Field(C) if and only if for all elements
W , Z of 2X such that W ⊆ A and Z ⊆ X \ A holds C(W ) + C(Z) =
C(W ∪ Z).
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(15) For every set X and for every Caratheodor’s measure C on X and for
all elements W , Z of 2X such that W ∈ σ-Field(C) and Z ∈ σ-Field(C)
and Z ∩W = ∅ holds C(W ∪ Z) = C(W ) + C(Z).

(16) For every set X and for every Caratheodor’s measure C on X and for
every set A such that A ∈ σ-Field(C) holds X \ A ∈ σ-Field(C).

(17) For every set X and for every Caratheodor’s measure C on X and
for all sets A, B such that A ∈ σ-Field(C) and B ∈ σ-Field(C) holds
A ∪B ∈ σ-Field(C).

(18) For every set X and for every Caratheodor’s measure C on X and
for all sets A, B such that A ∈ σ-Field(C) and B ∈ σ-Field(C) holds
A ∩B ∈ σ-Field(C).

(19) For every set X and for every Caratheodor’s measure C on X and
for all sets A, B such that A ∈ σ-Field(C) and B ∈ σ-Field(C) holds
A \ B ∈ σ-Field(C).

(20) For every set X and for every σ-field S of subsets of X and for every
function N from � into S and for every element A of S there exists
a function F from � into S such that for every element n of � holds
F (n) = A ∩N(n).

(21) For every set X and for every Caratheodor’s measure C on X holds
σ-Field(C) is a σ-field of subsets of X.

Let X be a set, and let C be a Caratheodor’s measure on X. Then σ-Field(C)
is a σ-field of subsets of X. Let S be a σ-field of subsets of X, and let A be a
subfamily of S. Then

⋃
A is an element of S. The functor σ-Meas(C) yields a

function from σ-Field(C) into
�

and is defined by:

(Def.4) for every element A of 2X such that A ∈ σ-Field(C) holds
(σ-Meas(C))(A) = C(A).

One can prove the following proposition

(22) For every set X and for every Caratheodor’s measure C on X holds
σ-Meas(C) is a measure on σ-Field(C).

Let X be a set, and let C be a Caratheodor’s measure on X, and let A be
an element of σ-Field(C). Then C(A) is a Real number.

One can prove the following proposition

(23) For every set X and for every Caratheodor’s measure C on X holds
σ-Meas(C) is a σ-measure on σ-Field(C).

Let X be a set, and let C be a Caratheodor’s measure on X. Then σ-Meas(C)
is a σ-measure on σ-Field(C).

The following propositions are true:

(24) For every set X and for every Caratheodor’s measure C on X and for
every element A of 2X such that C(A) = 0 � holds A ∈ σ-Field(C).

(25) For every set X and for every Caratheodor’s measure C on X holds
σ-Meas(C) is complete on σ-Field(C).
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Summary. Let T be a topological space and let A be a subset of
T . Recall that A is said to be a domain in T provided IntA ⊆ A ⊆ IntA
(see [24] and comp. [14]). This notion is a simple generalization of the
notions of open and closed domains in T (see [24]). Our main result is
concerned with an extension of the following well–known theorem (see
e.g. [5], [17], [13]). For a given topological space the Boolean lattices of
all its closed domains and all its open domains are complete. It is proved
here, using Mizar System, that the complemented lattice of all domains
of a given topological space is complete, too (comp. [23]).

It is known that both the lattice of open domains and the lattice of
closed domains are sublattices of the lattice of all domains [23]. However,
the following two problems remain open.

Problem 1. Let L be a sublattice of the lattice of all domains.
Suppose L is complete, is smallest with respect to inclusion, and
contains as sublattices the lattice of all closed domains and the
lattice of all open domains. Must L be equal to the lattice of all
domains ?

A domain in T is said to be a Borel domain provided it is a Borel set. Of
course every open (closed) domain is a Borel domain. It can be proved
that all Borel domains form a sublattice of the lattice of domains.

Problem 2. Let L be a sublattice of the lattice of all domains.
Suppose L is smallest with respect to inclusion and contains as
sublattices the lattice of all closed domains and the lattice of all
open domains. Must L be equal to the lattice of all Borel domains ?

Note that in the beginning the closure and the interior operations for fam-
ilies of subsets of topological spaces are introduced and their important
properties are presented (comp. [16], [15], [17]). Using these notions, cer-
tain properties of domains, closed domains and open domains are studied
(comp. [15], [13]).

MML Identifier: TDLAT 2.

1This paper was done while the second author was visiting the Institute of Mathematics of
Warsaw University in Bia lystok.

71
c© 1992 Fondation Philippe le Hodey

ISSN 0777–4028



72 zbigniew karno and toshihiko watanabe

The papers [20], [22], [21], [18], [8], [9], [12], [4], [3], [19], [24], [11], [6], [7], [25],
[10], [2], [1], and [23] provide the notation and terminology for this paper.

1. Preliminary Theorems about Subsets of Topological Spaces

In the sequel T will denote a topological space. One can prove the following
propositions:

(1) For every subset A of T holds Int IntA ⊆ IntA and Int IntA ⊆ IntA.

(2) For every subset A of T holds IntA ⊆ IntA and IntA ⊆ IntA.

(3) For all subsets A, B of T such that B is closed holds if Int(A ∩B) = A,
then A ⊆ B.

(4) For all subsets A, B of T such that A is open holds if IntA ∪B = B,
then A ⊆ B.

(5) For every subset A of T such that A ⊆ IntA holds A ∪ IntA ⊆
Int(A ∪ IntA).

(6) For every subset A of T such that IntA ⊆ A holds IntA ∩ IntA ⊆
A ∩ IntA.

2. The Closure and the Interior Operations for Families
of Subsets of a Topological Space

In the sequel T will be a topological space. Let us consider T , and let F be a
family of subsets of T . We introduce the functor F as a synonym of clf F .

One can prove the following propositions:

(7) For every family F of subsets of T holds F = {A :
∨
B[A = B∧B ∈ F ]},

where A ranges over subsets of T , and B ranges over subsets of T .

(8) For every family F of subsets of T holds F = F .

(9) For every family F of subsets of T holds F = ∅ if and only if F = ∅.
(10) For all families F , G of subsets of T holds F ∩G ⊆ F ∩G.

(11) For all families F , G of subsets of T holds F \G ⊆ F \G.

(12) For every family F of subsets of T and for every subset A of T such
that A ∈ F holds

⋂
F ⊆ A and A ⊆ ⋃F .

(13) For every family F of subsets of T holds
⋂
F ⊆ ⋂F .

(14) For every family F of subsets of T holds
⋂
F ⊆ ⋂F .

(15) For every family F of subsets of T holds
⋃
F ⊆ ⋃F .

Let us consider T , and let F be a family of subsets of T . The functor IntF
yielding a family of subsets of T is defined as follows:

(Def.1) for every subset A of T holds A ∈ IntF if and only if there exists a
subset B of T such that A = IntB and B ∈ F .
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The following propositions are true:

(16) For every family F of subsets of T holds IntF = {A :
∨
B[A = IntB ∧

B ∈ F ]}, where A ranges over subsets of T , and B ranges over subsets of
T .

(17) For every family F of subsets of T holds IntF = Int IntF .

(18) For every family F of subsets of T holds IntF is open.

(19) For every family F of subsets of T holds F = ∅ if and only if IntF = ∅.
(20) For every subset A of T and for every family F of subsets of T such

that F = {A} holds IntF = {IntA}.
(21) For all families F , G of subsets of T such that F ⊆ G holds IntF ⊆

IntG.

(22) For all families F , G of subsets of T holds Int(F ∪G) = IntF ∪ IntG.

(23) For all families F , G of subsets of T holds Int(F ∩G) ⊆ IntF ∩ IntG.

(24) For all families F , G of subsets of T holds IntF \ IntG ⊆ Int(F \G).

(25) For every family F of subsets of T and for every subset A of T such
that A ∈ F holds IntA ⊆ ⋃ IntF and

⋂
IntF ⊆ IntA.

(26) For every family F of subsets of T holds
⋃

IntF ⊆ ⋃F .

(27) For every family F of subsets of T holds
⋂

IntF ⊆ ⋂F .

(28) For every family F of subsets of T holds
⋃

IntF ⊆ Int
⋃
F .

(29) For every family F of subsets of T holds Int
⋂
F ⊆ ⋂ IntF .

(30) For every family F of subsets of T such that F is finite holds Int
⋂
F =⋂

IntF .

In the sequel F denotes a family of subsets of T . The following propositions
are true:

(31) IntF = {A :
∨
B[A = IntB ∧ B ∈ F ]}, where A ranges over subsets of

T , and B ranges over subsets of T .

(32) IntF = {A :
∨
B[A = IntB ∧ B ∈ F ]}, where A ranges over subsets of

T , and B ranges over subsets of T .

(33) IntF = {A :
∨
B[A = IntB ∧ B ∈ F ]}, where A ranges over subsets of

T , and B ranges over subsets of T .

(34) Int IntF = {A :
∨
B [A = Int IntB ∧ B ∈ F ]}, where A ranges over

subsets of T , and B ranges over subsets of T .

(35) Int IntF = IntF .

(36) Int IntF = IntF .

(37)
⋃

IntF ⊆ ⋃ IntF .

(38)
⋂

IntF ⊆ ⋂ IntF .

(39)
⋃

IntF ⊆ ⋃ IntF .

(40)
⋂

IntF ⊆ ⋂ IntF .

(41)
⋃

Int IntF ⊆ ⋃ IntF .



74 zbigniew karno and toshihiko watanabe

(42)
⋂

Int IntF ⊆ ⋂ IntF .

(43)
⋃

Int IntF ⊆ ⋃ IntF .

(44)
⋂

Int IntF ⊆ ⋂ IntF .

(45)
⋃

IntF ⊆ ⋃F .

(46)
⋂

IntF ⊆ ⋂F .

(47)
⋃

IntF ⊆ ⋃ Int IntF .

(48)
⋂

IntF ⊆ ⋂ Int IntF .

(49)
⋃

IntF ⊆ Int
⋃
F .

(50) Int
⋂
F ⊆ ⋂ IntF .

(51)
⋃

IntF ⊆ Int
⋃
F .

(52) Int
⋂
F ⊆ ⋂ IntF .

(53)
⋃

IntF ⊆ Int
⋃
F .

(54) Int
⋂
F ⊆ ⋂ IntF .

(55)
⋃

Int IntF ⊆ Int Int
⋃
F .

(56) Int Int
⋂
F ⊆ ⋂ Int IntF .

(57) For every family F of subsets of T such that for every subset A of T

such that A ∈ F holds A ⊆ IntA holds
⋃
F ⊆ Int

⋃
F and

⋃
F = Int

⋃
F .

(58) For every family F of subsets of T such that for every subset A of T
such that A ∈ F holds IntA ⊆ A holds Int

⋂
F ⊆ ⋂F and Int Int

⋂
F =

Int
⋂
F .

3. Selected Properties of Domains of a Topological Space

In the sequel T is a topological space. We now state several propositions:

(59) For all subsets A, B of T such that B is a domain holds IntA ∪B ∪
(A ∪B) = B if and only if A ⊆ B.

(60) For all subsets A, B of T such that A is a domain holds Int(A ∩B) ∩
(A ∩B) = A if and only if A ⊆ B.

(61) For all subsets A, B of T such that A is a closed domain and B is a
closed domain holds IntA ⊆ IntB if and only if A ⊆ B.

(62) For all subsets A, B of T such that A is an open domain and B is an
open domain holds A ⊆ B if and only if A ⊆ B.

(63) For all subsets A, B of T such that A is a closed domain holds if A ⊆ B,
then Int(A ∩B) = A.

(64) For all subsets A, B of T such that B is an open domain holds if A ⊆ B,
then IntA ∪B = B.

Let us consider T . A family of subsets of T is domains-family if:

(Def.2) for every subset A of T such that A ∈ it holds A is a domain.
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The following propositions are true:

(65) For every family F of subsets of T holds F ⊆ the domains of T if and
only if F is domains-family.

(66) For every family F of subsets of T such that F is domains-family holds
⋃
F ⊆ Int

⋃
F and

⋃
F = Int

⋃
F .

(67) For every family F of subsets of T such that F is domains-family holds
Int
⋂
F ⊆ ⋂F and Int Int

⋂
F = Int

⋂
F .

(68) For every family F of subsets of T such that F is domains-family holds⋃
F ∪ Int

⋃
F is a domain.

(69) Let F be a family of subsets of T . Then for every subset B of T such
that B ∈ F holds B ⊆ ⋃

F ∪ Int
⋃
F and for every subset A of T such

that A is a domain holds if for every subset B of T such that B ∈ F holds
B ⊆ A, then

⋃
F ∪ Int

⋃
F ⊆ A.

(70) For every family F of subsets of T such that F is domains-family holds⋂
F ∩ Int

⋂
F is a domain.

(71) Let F be a family of subsets of T . Then
(i) for every subset B of T such that B ∈ F holds

⋂
F ∩ Int

⋂
F ⊆ B,

(ii) F = ∅ or for every subset A of T such that A is a domain holds if for
every subsetB of T such that B ∈ F holds A ⊆ B, thenA ⊆ ⋂F∩Int

⋂
F .

Let us consider T . A family of subsets of T is closed-domains-family if:

(Def.3) for every subset A of T such that A ∈ it holds A is a closed domain.

We now state several propositions:

(72) For every family F of subsets of T holds F ⊆ the closed domains of T
if and only if F is closed-domains-family.

(73) For every family F of subsets of T such that F is closed-domains-family
holds F is domains-family.

(74) For every family F of subsets of T such that F is closed-domains-family
holds F is closed.

(75) For every family F of subsets of T such that F is domains-family holds
F is closed-domains-family.

(76) For every family F of subsets of T such that F is closed-domains-family
holds

⋃
F is a closed domain and Int

⋂
F is a closed domain.

(77) For every family F of subsets of T holds for every subset B of T such
that B ∈ F holds B ⊆ ⋃

F and for every subset A of T such that A is
a closed domain holds if for every subset B of T such that B ∈ F holds
B ⊆ A, then

⋃
F ⊆ A.

(78) Let F be a family of subsets of T . Then if F is closed, then for every
subset B of T such that B ∈ F holds Int

⋂
F ⊆ B but F = ∅ or for every

subset A of T such that A is a closed domain holds if for every subset B
of T such that B ∈ F holds A ⊆ B, then A ⊆ Int

⋂
F .

Let us consider T . A family of subsets of T is open-domains-family if:
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(Def.4) for every subset A of T such that A ∈ it holds A is an open domain.

We now state several propositions:

(79) For every family F of subsets of T holds F ⊆ the open domains of T if
and only if F is open-domains-family.

(80) For every family F of subsets of T such that F is open-domains-family
holds F is domains-family.

(81) For every family F of subsets of T such that F is open-domains-family
holds F is open.

(82) For every family F of subsets of T such that F is domains-family holds
IntF is open-domains-family.

(83) For every family F of subsets of T such that F is open-domains-family
holds Int

⋂
F is an open domain and Int

⋃
F is an open domain.

(84) For every family F of subsets of T holds if F is open, then for every
subset B of T such that B ∈ F holds B ⊆ Int

⋃
F but for every subset A

of T such that A is an open domain holds if for every subset B of T such
that B ∈ F holds B ⊆ A, then Int

⋃
F ⊆ A.

(85) For every family F of subsets of T holds for every subset B of T such
that B ∈ F holds Int

⋂
F ⊆ B but F = ∅ or for every subset A of T

such that A is an open domain holds if for every subset B of T such that
B ∈ F holds A ⊆ B, then A ⊆ Int

⋂
F .

4. Completeness of the Lattice of Domains

In the sequel T denotes a topological space. Next we state several propositions:

(86) The carrier of the lattice of domains of T = the domains of T .

(87) For all elements a, b of the lattice of domains of T and for all elements
A, B of the domains of T such that a = A and b = B holds a t b =
IntA ∪B ∪ (A ∪B) and a u b = Int(A ∩B) ∩ (A ∩B).

(88) ⊥the lattice of domains of T = ∅T and >the lattice of domains of T = ΩT .

(89) For all elements a, b of the lattice of domains of T and for all elements
A, B of the domains of T such that a = A and b = B holds a v b if and
only if A ⊆ B.

(90) For every subset X of the lattice of domains of T there exists an element
a of the lattice of domains of T such that X v a and for every element b
of the lattice of domains of T such that X v b holds a v b.

(91) The lattice of domains of T is complete.

(92) For every family F of subsets of T such that F is domains-family and
for every subset X of the lattice of domains of T such that X = F holds⊔

(the lattice of domains of T ) X =
⋃
F ∪ Int

⋃
F .

(93) For every family F of subsets of T such that F is domains-family and
for every subset X of the lattice of domains of T such that X = F holds
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if X 6= ∅, then d−e(the lattice of domains of T )X =
⋂
F ∩ Int

⋂
F but if X = ∅,

then d−e(the lattice of domains of T )X = ΩT .

5. Completeness of the Lattices of Closed Domains
and Open Domains

In the sequel T will be a topological space. The following propositions are true:

(94) The carrier of the lattice of closed domains of T = the closed domains
of T .

(95) For all elements a, b of the lattice of closed domains of T and for all
elements A, B of the closed domains of T such that a = A and b = B
holds a t b = A ∪B and a u b = Int(A ∩B).

(96) ⊥the lattice of closed domains of T = ∅T and>the lattice of closed domains of T = ΩT .

(97) For all elements a, b of the lattice of closed domains of T and for all
elements A, B of the closed domains of T such that a = A and b = B
holds a v b if and only if A ⊆ B.

(98) For every subset X of the lattice of closed domains of T there exists
an element a of the lattice of closed domains of T such that X v a and
for every element b of the lattice of closed domains of T such that X v b
holds a v b.

(99) The lattice of closed domains of T is complete.

(100) For every family F of subsets of T such that F is closed-domains-family
and for every subset X of the lattice of closed domains of T such that
X = F holds

⊔
(the lattice of closed domains of T ) X =

⋃
F .

(101) For every family F of subsets of T such that F is closed-domains-family
and for every subset X of the lattice of closed domains of T such that
X = F holds if X 6= ∅, then d−e(the lattice of closed domains of T )X = Int

⋂
F

but if X = ∅, then d−e(the lattice of closed domains of T )X = ΩT .

(102) For every family F of subsets of T such that F is closed-domains-family
and for every subset X of the lattice of domains of T such that X = F
holds if X 6= ∅, then d−e(the lattice of domains of T )X = Int

⋂
F but if X = ∅,

then d−e(the lattice of domains of T )X = ΩT .

(103) The carrier of the lattice of open domains of T = the open domains of
T .

(104) For all elements a, b of the lattice of open domains of T and for all
elements A, B of the open domains of T such that a = A and b = B holds
a t b = IntA ∪B and a u b = A ∩B.

(105) ⊥the lattice of open domains of T = ∅T and >the lattice of open domains of T = ΩT .

(106) For all elements a, b of the lattice of open domains of T and for all
elements A, B of the open domains of T such that a = A and b = B holds
a v b if and only if A ⊆ B.
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(107) For every subset X of the lattice of open domains of T there exists an
element a of the lattice of open domains of T such that X v a and for
every element b of the lattice of open domains of T such that X v b holds
a v b.

(108) The lattice of open domains of T is complete.

(109) For every family F of subsets of T such that F is open-domains-family
and for every subset X of the lattice of open domains of T such that
X = F holds

⊔
(the lattice of open domains of T ) X = Int

⋃
F .

(110) For every family F of subsets of T such that F is open-domains-family
and for every subset X of the lattice of open domains of T such that
X = F holds if X 6= ∅, then d−e(the lattice of open domains of T )X = Int

⋂
F but

if X = ∅, then d−e(the lattice of open domains of T )X = ΩT .

(111) For every family F of subsets of T such that F is open-domains-family
and for every subset X of the lattice of domains of T such that X = F
holds

⊔
(the lattice of domains of T ) X = Int

⋃
F .
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Summary. The aim is to prove, using Mizar System, one of the
most important result in general topology, namely the Stone Theorem
on paracompactness of metrizable spaces [19]. Our proof is based on
[18] (and also [16]). We prove first auxiliary fact that every open cover
of any metrizable space has a locally finite open refinement. We show
next the main theorem that every metrizable space is paracompact. The
remaining material is devoted to concepts and certain properties needed
for the formulation and the proof of that theorem (see also [5]).

MML Identifier: PCOMPS 2.

The notation and terminology used here are introduced in the following articles:
[21], [7], [8], [13], [26], [15], [10], [20], [11], [23], [1], [14], [9], [5], [12], [17], [24],
[2], [3], [4], [25], [6], and [22].

1. Selected Properties of Real Numbers

We adopt the following rules: r, u, v, w, y are real numbers and k is a natural
number. One can prove the following propositions:

(1) r0� = 1.

(2) r1� = r.

(3) If r > 0 and u > 0, then there exists a natural number k such that
u

2k� ≤ r.
(4) If k ≥ n and r ≥ 1, then rk� ≥ rn� .
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2. Certain Functions Defined on Families of Sets

We adopt the following convention: R will be a binary relation, A, B, C will
be sets, and t will be arbitrary. The following proposition is true

(5) If R well orders A, then R |2 A well orders A and A = field(R |2 A).

The scheme MinSet concerns a set A, a binary relation B, and a unary
predicate P, and states that:

there exists arbitrary X such that X ∈ A and P[X] and for an arbitrary Y
such that Y ∈ A and P[Y ] holds 〈〈X, Y 〉〉 ∈ B
provided the parameters meet the following conditions:
• B well orders A,
• there exists arbitrary X such that X ∈ A and P[X].
We now define three new functors. Let F1 be a family of sets, and let R be

a binary relation, and let B be an element of F1. The functor
⋃
β<RB

β yields a
family of sets and is defined as follows:

(Def.1)
⋃
β<RB

β =
⋃

(R−Seg(B)).

Let F1 be a family of sets, and let R be a binary relation. The disjoint family
of F1, R yielding a family of sets is defined by:

(Def.2) A ∈ the disjoint family of F1, R if and only if there exists an element
B of F1 such that B ∈ F1 and A = B \ ⋃β<RB β.

Let X be a set, and let n be a natural number, and let f be a function from �
into 2X . The functor

⋃
κ<n f(κ) yields a set and is defined as follows:

(Def.3)
⋃
κ<n f(κ) =

⋃
(f ◦ (Seg n \ {n})).

3. Paracompactness of Metrizable Spaces

We adopt the following convention: P1 will denote a topological space, F1, G1

will denote families of subsets of P1, and W , X will denote subsets of P1. We
now state several propositions:

(6) If P1 is a T3 space, then for every F1 such that F1 is a cover of P1 and
F1 is open there exists H1 such that H1 is open and H1 is a cover of P1

and for every V such that V ∈ H1 there exists W such that W ∈ F1 and
V ⊆W .

(7) For all P1, F1 such that P1 is a T2 space and P1 is paracompact and F1

is a cover of P1 and F1 is open there exists G1 such that G1 is open and
G1 is a cover of P1 and clf G1 is finer than F1 and G1 is locally finite.

(8) For every function f from [: the carrier of P1, the carrier of P1 :] into
�

such that f is a metric of the carrier of P1 holds if P2 = MetrSp((the
carrier of P1), f), then the carrier of P2 = the carrier of P1.

(9) For every function f from [: the carrier of P1, the carrier of P1 :] into
�

such that f is a metric of the carrier of P1 holds if P2 = MetrSp((the
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carrier of P1), f), then x is a point of P1 if and only if x is an element of
the carrier of P2.

(10) For every function f from [: the carrier of P1, the carrier of P1 :] into
�

such that f is a metric of the carrier of P1 holds if P2 = MetrSp((the
carrier of P1), f), then X is a subset of P1 if and only if X is a subset of
the carrier of P2.

(11) For every function f from [: the carrier of P1, the carrier of P1 :] into
�

such that f is a metric of the carrier of P1 holds if P2 = MetrSp((the
carrier of P1), f), then F1 is a family of subsets of P1 if and only if F1 is
a family of subsets of the carrier of P2.

In the sequel k is a natural number. Let P2 be a non-empty set, and let g

be a function from � into (22P2 )∗, and let us consider n. Then g(n) is a finite

sequence of elements of 22P2 .

The following propositions are true:

(12) If P1 is metrizable, then for every family F1 of subsets of P1 such that
F1 is a cover of P1 and F1 is open there exists a family G1 of subsets of
P1 such that G1 is open and G1 is a cover of P1 and G1 is finer than F1

and G1 is locally finite.

(13) If P1 is metrizable, then P1 is paracompact.
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Summary. The aim is to prove, using Mizar System, the following
simplest version of the Brouwer Fixed Point Theorem [2]. For every
continuous mapping f : � → � of the topological unit interval � there exists
a point x such that f(x) = x (see e.g. [9], [3]).

MML Identifier: TREAL 1.

The terminology and notation used here are introduced in the following papers:
[23], [22], [25], [16], [5], [6], [20], [4], [18], [10], [24], [14], [19], [17], [7], [15], [11],
[1], [21], [8], [13], and [12].

1. Properties of Topological Intervals

The following three propositions are true:

(1) For all real numbers a, b, c, d such that a ≤ c and d ≤ b and c ≤ d
holds [c, d] ⊆ [a, b].

(2) For all real numbers a, b, c, d such that a ≤ c and b ≤ d and c ≤ b holds
[a, b] ∪ [c, d] = [a, d].

(3) For all real numbers a, b, c, d such that a ≤ c and b ≤ d and c ≤ b holds
[a, b] ∩ [c, d] = [c, b].

In the sequel a, b, c, d are real numbers. We now state four propositions:

(4) For every subset A of
� 1 such that A = [a, b] holds A is closed.

(5) If a ≤ b, then [a, b]T is a closed subspace of
� 1 .

(6) If a ≤ c and d ≤ b and c ≤ d, then [c, d]T is a closed subspace of [a, b]T.

1This paper was done under the supervision of Z. Karno while the author was visiting the
Institute of Mathematics of Warsaw University in Bia lystok.
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(7) If a ≤ c and b ≤ d and c ≤ b, then [a, d]T = [a, b]T ∪ [c, d]T and
[c, b]T = [a, b]T ∩ [c, d]T.

We now define two new functors. Let a, b be real numbers. Let us assume
that a ≤ b. The functor a[a,b]T yields a point of [a, b]T and is defined by:

(Def.1) a[a,b]T = a.

The functor b[a,b]T yields a point of [a, b]T and is defined by:

(Def.2) b[a,b]T = b.

One can prove the following two propositions:

(8) 0 � = 0[0,1]T and 1 � = 1[0,1]T .

(9) If a ≤ b and b ≤ c, then a[a,b]T = a[a,c]T and c[b,c]T = c[a,c]T .

2. Continuous Mappings Between Topological Intervals

Let a, b be real numbers satisfying the condition: a ≤ b. Let t1, t2 be points
of [a, b]T. The functor L01(t1, t2) yielding a mapping from [0, 1]T into [a, b]T is
defined as follows:

(Def.3) for every point s of [0, 1]T and for all real numbers r, r1, r2 such that
s = r and r1 = t1 and r2 = t2 holds (L01(t1, t2))(s) = (1− r) · r1 + r · r2.

We now state four propositions:

(10) Let a, b be real numbers. Then if a ≤ b, then for all points t1, t2 of
[a, b]T and for every point s of [0, 1]T and for all real numbers r, r1, r2 such
that s = r and r1 = t1 and r2 = t2 holds (L01(t1, t2))(s) = (r2−r1) ·r+r1.

(11) For all real numbers a, b such that a ≤ b and for all points t1, t2 of
[a, b]T holds L01(t1, t2) is a continuous mapping from [0, 1]T into [a, b]T.

(12) For all real numbers a, b such that a ≤ b and for all points t1, t2 of
[a, b]T holds (L01(t1, t2))(0[0,1]T) = t1 and (L01(t1, t2))(1[0,1]T) = t2.

(13) L01(0[0,1]T , 1[0,1]T) = id([0, 1]T).

Let a, b be real numbers satisfying the condition: a < b. Let t1, t2 be
points of [0, 1]T. The functor P01(a, b, t1, t2) yielding a mapping from [a, b]T
into [0, 1]T is defined as follows:

(Def.4) for every point s of [a, b]T and for all real numbers r, r1, r2 such that

s = r and r1 = t1 and r2 = t2 holds (P01(a, b, t1, t2))(s) = (b−r)·r1+(r−a)·r2
b−a .

The following propositions are true:

(14) Let a, b be real numbers. Suppose a < b. Let t1, t2 be points of [0, 1]T.
Let s be a point of [a, b]T. Then for all real numbers r, r1, r2 such that s =
r and r1 = t1 and r2 = t2 holds (P01(a, b, t1, t2))(s) = r2−r1

b−a · r+ b·r1−a·r2
b−a .

(15) For all real numbers a, b such that a < b and for all points t1, t2 of [0, 1]T
holds P01(a, b, t1, t2) is a continuous mapping from [a, b]T into [0, 1]T.

(16) For all real numbers a, b such that a < b and for all points t1, t2 of [0, 1]T
holds (P01(a, b, t1, t2))(a[a,b]T) = t1 and (P01(a, b, t1, t2))(b[a,b]T) = t2.
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(17) P01(0, 1, 0[0,1]T , 1[0,1]T) = id([0, 1]T).

(18) Let a, b be real numbers. Then if a < b, then
id([a, b]T) = L01(a[a,b]T , b[a,b]T) · P01(a, b, 0[0,1]T , 1[0,1]T)
and id([0, 1]T) = P01(a, b, 0[0,1]T , 1[0,1]T) · L01(a[a,b]T , b[a,b]T).

(19) Let a, b be real numbers. Then if a < b, then
id([a, b]T) = L01(b[a,b]T , a[a,b]T) · P01(a, b, 1[0,1]T , 0[0,1]T)
and id([0, 1]T) = P01(a, b, 1[0,1]T , 0[0,1]T) · L01(b[a,b]T , a[a,b]T).

(20) Let a, b be real numbers. Suppose a < b. Then
(i) L01(a[a,b]T , b[a,b]T) is a homeomorphism,

(ii) (L01(a[a,b]T , b[a,b]T))−1 = P01(a, b, 0[0,1]T , 1[0,1]T),
(iii) P01(a, b, 0[0,1]T , 1[0,1]T) is a homeomorphism,

(iv) (P01(a, b, 0[0,1]T , 1[0,1]T))−1 = L01(a[a,b]T , b[a,b]T).

(21) Let a, b be real numbers. Suppose a < b. Then
(i) L01(b[a,b]T , a[a,b]T) is a homeomorphism,

(ii) (L01(b[a,b]T , a[a,b]T))−1 = P01(a, b, 1[0,1]T , 0[0,1]T),
(iii) P01(a, b, 1[0,1]T , 0[0,1]T) is a homeomorphism,

(iv) (P01(a, b, 1[0,1]T , 0[0,1]T))−1 = L01(b[a,b]T , a[a,b]T).

3. Connectedness of Intervals and Brouwer Fixed Point Theorem
for Intervals

We now state several propositions:

(22) � is connected.

(23) For all real numbers a, b such that a ≤ b holds [a, b]T is connected.

(24) For every continuous mapping f from � into � there exists a point x of
� such that f(x) = x.

(25) For all real numbers a, b such that a ≤ b and for every continuous
mapping f from [a, b]T into [a, b]T there exists a point x of [a, b]T such
that f(x) = x.

(26) Let X, Y be subspaces of
� 1 . Then for every continuous mapping f

from X into Y such that there exist real numbers a, b such that a ≤ b and
[a, b] ⊆ the carrier of X and [a, b] ⊆ the carrier of Y and f ◦ [a, b] ⊆ [a, b]
there exists a point x of X such that f(x) = x.

(27) For all subspaces X, Y of
� 1 and for every continuous mapping f from

X into Y such that there exist real numbers a, b such that a ≤ b and
[a, b] ⊆ the carrier of X and f ◦ [a, b] ⊆ [a, b] there exists a point x of X
such that f(x) = x.
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Summary. In the first section the results of [23, axiom (30)]1, i.e.
the correspondence between natural and ordinal (cardinal) numbers are
shown. The next section is concerned with the concepts of infinity and
cofinality (see [3]), and introduces alephs as infinite cardinal numbers.
The arithmetics of alephs, i.e. some facts about addition and multiplica-
tion, is present in the third section. The concepts of regular and irregular
alephs are introduced in the fourth section, and the fact that ℵ0 and every
non-limit cardinal number are regular is proved there. Finally, for every
alephs α and β

αβ =





2β , if α ≤ β,∑
γ<α

γβ , if β < cfα and α is limit cardinal,(∑
γ<α

γβ
)cfα

, if cfα ≤ β ≤ α.

Some proofs are based on [20].

MML Identifier: CARD 5.

The papers [24], [6], [16], [14], [21], [19], [26], [10], [17], [12], [15], [13], [25], [22],
[11], [2], [18], [5], [9], [1], [8], [7], [4], and [3] provide the notation and terminology
for this paper.

1. Results of [23, axiom (30)]

One can readily check that every set which is cardinal is also ordinal-like.

For simplicity we adopt the following convention: n denotes a natural num-
ber, A, B denote ordinal numbers, X denotes a set, and x, y are arbitrary. We
now state several propositions:

1Axiom (30) – n = {k ∈ � : k < n} for every natural number n.
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(1) 0 = ∅ and 1 = {0} and 2 = {0, 1}.
(2) succn = n+ 1.

(3) For every n holds ord(n) = n and n = n.

(4) 0 = 0 and 1 = 1.

(5) 0 = 0 and 1 = 1 and 2 = 2.

(6) If X is finite, then cardX = X .

(7) � = ω and � = ℵ0.

(8) Segn = (n+ 1) \ {0}.

2. Infinity, alephs and cofinality

We adopt the following rules: f is a function, K, M , N are cardinal numbers,
and p1, p2 are sequences of ordinal numbers. The following propositions are
true:

(9) X
+

= X+.

(10) y ∈ ⋃ f if and only if there exists x such that x ∈ dom f and y ∈ f(x).

(11) ℵA is not finite.

(12) If M is not finite, then there exists A such that M = ℵA.

(13) There exists n such that M = n or there exists A such that M = ℵA.

Let us consider p1. Then
⋃
p1 is an ordinal number.

Next we state a number of propositions:

(14) IfX ⊆ A, then there exists p1 such that p1 = the canonical isomorphism

between ⊆⊆
X

and ⊆X and p1 is increasing and dom p1 = ⊆
X and rng p1 =

X.

(15) If X ⊆ A, then supX is cofinal with ⊆X .

(16) If X ⊆ A, then X = ⊆
X .

(17) There exists B such that B ⊆ A and A is cofinal with B.

(18) There exists M such that M ≤ A and A is cofinal with M and for every
B such that A is cofinal with B holds M ⊆ B.

(19) If rng p1 = rng p2 and p1 is increasing and p2 is increasing, then p1 = p2.

(20) If p1 is increasing, then p1 is one-to-one.

(21) (p1 � p2)
�
dom p1 = p1.

(22) If X 6= ∅, then {Y : Y < M} ≤M ·XM
, where Y ranges over elements

of 2X .

(23) M < 2
M

.

We now define four new constructions. A set is infinite if:

(Def.1) it is not finite.
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Let us observe that there exists a set which is infinite. One can readily check
that there exists a cardinal number which is infinite. One can readily check that
every set which is infinite is also non-empty.

An aleph is an infinite cardinal number.
Let us consider M . The functor cf M yielding a cardinal number is defined

by:

(Def.2) M is cofinal with cf M and for every N such that M is cofinal with N
holds cf M ≤ N .

Let us consider N . The functor (α 7→ αN )α∈M yielding a function yielding
cardinal numbers is defined as follows:

(Def.3) for every x holds x ∈ dom((α 7→ αN )α∈M ) if and only if x ∈ M and
x is a cardinal number and for every K such that K ∈ M holds (α 7→
αN )α∈M (K) = KN .

Let us consider A. Then ℵA is an aleph.

3. Arithmetics of alephs

In the sequel a, b will be alephs. The following propositions are true:

(24) There exists A such that a = ℵA.

(25) a 6= 0 and a 6= 1 and a 6= 2 and a 6= n and n < a and ℵ0 ≤ a.

(26) If a ≤M or a < M , then M is an aleph.

(27) If a ≤M or a < M , then a+M = M and M + a = M and a ·M = M
and M · a = M .

(28) a+ a = a and a · a = a.

(29) If M ≤ a or M < a, then a+M = a and M + a = a.

(30) If 0 < M but M ≤ a or M < a, then a ·M = a and M · a = a.

(31) M ≤Ma.

(32)
⋃
a = a.

Let us consider a, M . Then a+M is an aleph. Let us consider M , a. Then
M + a is an aleph. Let us consider a, b. Then a+ b is an aleph. Then a · b is an
aleph. Then ab is an aleph.

4. Regular alephs

We now define two new attributes. An aleph is regular if:

(Def.4) cf it = it.

An aleph is irregular if:

(Def.5) cf it < it.
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Let us consider a. Then a+ is an aleph. We see that the element of a is an
ordinal number.

One can prove the following propositions:

(33) cf M ≤M .

(34) cf(ℵ0) = ℵ0.

(35) cf(a+) = a+.

(36) ℵ0 ≤ cf a.

(37) cf 0 = 0 and cf n+ 1 = 1.

(38) If X ⊆M and X < cf M , then supX ∈M and
⋃
X ∈M .

(39) If dom p1 = M and rng p1 ⊆ N and M < cf N , then sup p1 ∈ N and⋃
p1 ∈ N .

Let us consider a. Then cf a is an aleph.

One can prove the following propositions:

(40) If cf a < a, then a is a limit cardinal number.

(41) If cf a < a, then there exists a sequence x1 of ordinal numbers such that
domx1 = cf a and rng x1 ⊆ a and x1 is increasing and a = supx1 and x1

is a function yielding cardinal numbers and 0 /∈ rng x1.

(42) ℵ0 is regular and a+ is regular.

5. Infinite powers

In the sequel a, b will denote alephs. The following propositions are true:

(43) If a ≤ b, then ab = 2
b
.

(44) (a+)b = ab · (a+).

(45)
∑

((α 7→ αb)α∈a) ≤ ab.
(46) If a is a limit cardinal number and b < cf a, then ab =

∑
((α 7→ αb)α∈a).

(47) If cf a ≤ b and b < a, then ab = (
∑

((α 7→ αb)α∈a))cf a.
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Summary. Some properties of line segments in 2-dimensional Eu-
clidean space and some relations between line segments and balls are
proved.
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The terminology and notation used in this paper have been introduced in the
following papers: [17], [13], [1], [7], [2], [8], [4], [15], [16], [18], [6], [14], [5], [9],
[10], [3], [11], and [12].

1. Real Numbers Preliminaries

For simplicity we follow the rules: p, p1, p2, p3, q will denote points of E2
T, f , h

will denote finite sequences of elements of E 2
T, r, r1, r2, s, s1, s2 will denote real

numbers, u, u1, u2 will denote points of E2, n, m, i, j, k will denote natural
numbers, and x, y, z will be arbitrary. One can prove the following propositions:

(1) 3− 2 = 1 and 3− 1 = 2 and 1
2 = 1− 1

2 .

(2) 0 ≤ 1
2 and 1

2 ≤ 1.

(3) If r < s, then r < r+s
2 and r+s

2 < s and r < s+r
2 and s+r

2 < s.

(4) If r 6= s, then r 6= r+s
2 and r+s

2 6= s.

(5) If r1 > s1 and r2 ≥ s2 or r1 ≥ s1 and r2 > s2, then r1 + r2 > s1 + s2.

1The article was written during my visit at Shinshu University in 1992.
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2. Properties of Line Segments

We now state a number of propositions:

(6) 1 ∈ Seg len〈x, y, z〉 and 2 ∈ Seg len〈x, y, z〉 and 3 ∈ Seg len〈x, y, z〉.
(7) (p1 + p2)1 = p11 + p21 and (p1 + p2)2 = p12 + p22.

(8) (p1 − p2)1 = p11 − p21 and (p1 − p2)2 = p12 − p22.

(9) (r · p)1 = r · p1 and (r · p)2 = r · p2.

(10) If p1 = 〈r1, s1〉 and p2 = 〈r2, s2〉, then p1 + p2 = 〈r1 + r2, s1 + s2〉 and
p1 − p2 = 〈r1 − r2, s1 − s2〉.

(11) p = q if and only if p1 = q1 and p2 = q2.

(12) If u1 = p1 and u2 = p2, then ρ2(u1, u2) =
√

(p11 − p21)2 + (p12 − p22)2.

(13) The carrier of EnT = the carrier of En.

(14) x is a point of E2 if and only if x is a point of E2
T.

(15) If r1 < s1, then {p1 : p11 = r ∧ r1 ≤ p12 ∧ p12 ≤ s1} = L([r, r1], [r, s1]).

(16) If r1 < s1, then {p1 : p12 = r ∧ r1 ≤ p11 ∧ p11 ≤ s1} = L([r1, r], [s1, r]).

(17) If p ∈ L([r, r1], [r, s1]), then p1 = r.

(18) If p ∈ L([r1, r], [s1, r]), then p2 = r.

(19) If p1 6= q1 and p2 = q2, then [
p1+q1

2 , p2] ∈ L(p, q).

(20) If p1 = q1 and p2 6= q2, then [p1,
p2+q2

2 ] ∈ L(p, q).

(21) If f = 〈p, p1, q〉 and i 6= 0 and j − i > 1, then L(f, j, j + 1) = ∅.
(22) If i = 0, then L(f, i, i+ 1) = ∅.
(23) If f = 〈p1, p2, p3〉, then L̃(f) = L(p1, p2) ∪ L(p2, p3).

(24) If i ∈ dom f and j ∈ dom(f
�
i) and k ∈ dom(f

�
i), then L(f, j, k) =

L(f
�
i, j, k).

(25) If j ∈ dom f and i ∈ dom f , then L(f � h, j, i) = L(f, j, i).

(26) L(f, i, i+ 1) ⊆ L̃(f).

(27) L̃(f
�
i) ⊆ L̃(f).

(28) For all r, p1, p2, u such that r > 0 and p1 ∈ Ball(u, r) and p2 ∈ Ball(u, r)
holds L(p1, p2) ⊆ Ball(u, r).

(29) If u = p1 and p1 = [r1, s1] and p2 = [r2, s2] and p = [r2, s1] and
p2 ∈ Ball(u, r), then p ∈ Ball(u, r).

(30) If r1 6= s1 and r > 0 and [s, r1] ∈ Ball(u, r) and [s, s1] ∈ Ball(u, r), then
[s, r1+s1

2 ] ∈ Ball(u, r).

(31) If r1 6= s1 and r > 0 and [r1, s] ∈ Ball(u, r) and [s1, s] ∈ Ball(u, r), then
[ r1+s1

2 , s] ∈ Ball(u, r).

(32) If r1 6= s1 and s2 6= r2 and r > 0 and [r1, r2] ∈ Ball(u, r) and [s1,
s2] ∈ Ball(u, r), then [r1, s2] ∈ Ball(u, r) or [s1, r2] ∈ Ball(u, r).

(33) Suppose that
(i) f(1) /∈ Ball(u, r),
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(ii) 1 ≤ m,
(iii) m ≤ len f − 1,
(iv) L(f,m,m+ 1) ∩ Ball(u, r) 6= ∅,
(v) for every i such that 1 ≤ i and i ≤ len f − 1 and L(f, i, i + 1) ∩

Ball(u, r) 6= ∅ holds m ≤ i.
Then f(m) /∈ Ball(u, r).

(34) For all q, p2, p such that q2 = p22 and p2 6= p22 holds (L(p2, [p21,
p2]) ∪ L([p21, p2], p)) ∩ L(q, p2) = {p2}.

(35) For all q, p2, p such that q1 = p21 and p1 6= p21 holds (L(p2, [p1,
p22]) ∪ L([p1, p22], p)) ∩ L(q, p2) = {p2}.

(36) If p1 6= q1 and p2 6= q2, then L(p, [p1, q2]) ∩ L([p1, q2], q) = {[p1, q2]}.
One can prove the following propositions:

(37) If p1 6= q1 and p2 6= q2, then L(p, [q1, p2]) ∩ L([q1, p2], q) = {[q1, p2]}.
(38) If p1 = q1 and p2 6= q2, then L(p, [p1,

p2+q2
2 ])∩L([p1,

p2+q2
2 ], q) = {[p1,

p2+q2
2 ]}.

(39) If p1 6= q1 and p2 = q2, then L(p, [
p1+q1

2 , p2]) ∩ L([
p1+q1

2 , p2], q) =

{[p1+q1
2 , p2]}.

(40) If i > 2 and i ∈ dom f and f is a special sequence, then f
�
i is a special

sequence.

(41) If p1 6= q1 and p2 6= q2 and f = 〈p, [p1, q2], q〉, then f(1) = p and
f(len f) = q and f is a special sequence.

(42) If p1 6= q1 and p2 6= q2 and f = 〈p, [q1, p2], q〉, then f(1) = p and
f(len f) = q and f is a special sequence.

(43) If p1 = q1 and p2 6= q2 and f = 〈p, [p1,
p2+q2

2 ], q〉, then f(1) = p and
f(len f) = q and f is a special sequence.

(44) If p1 6= q1 and p2 = q2 and f = 〈p, [ p1+q1
2 , p2], q〉, then f(1) = p and

f(len f) = q and f is a special sequence.

(45) If i ∈ dom f and i + 1 ∈ dom f and f(i) = p and f(i + 1) = q, then

L̃(f
�
(i+ 1)) = L̃(f

�
i) ∪ L(p, q).

(46) If len f ≥ 2 and p /∈ L̃(f), then for every n such that 1 ≤ n and n ≤ len f
holds f(n) 6= p.

(47) If q 6= p and L(q, p) ∩ L̃(f) = {q}, then p /∈ L̃(f).

(48) Suppose that
(i) f is a special sequence,
(ii) f(1) = p,

(iii) f(len f) = q,
(iv) p /∈ Ball(u, r),
(v) q ∈ Ball(u, r),
(vi) q ∈ L(f,m,m+ 1),
(vii) 1 ≤ m,

(viii) m ≤ len f − 1,
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(ix) L(f,m,m+ 1) ∩ Ball(u, r) 6= ∅.
Then m = len f − 1.

(49) Suppose that
(i) r > 0,

(ii) p1 /∈ Ball(u, r),
(iii) q ∈ Ball(u, r),
(iv) p ∈ Ball(u, r),
(v) p /∈ L(p1, q),
(vi) q1 = p1 and q2 6= p2 or q1 6= p1 and q2 = p2,

(vii) p11 = q1 or p12 = q2.
Then L(p1, q) ∩ L(q, p) = {q}.

(50) Suppose that
(i) r > 0,

(ii) p1 /∈ Ball(u, r),
(iii) p ∈ Ball(u, r),
(iv) [p1, q2] ∈ Ball(u, r),
(v) q ∈ Ball(u, r),
(vi) [p1, q2] /∈ L(p1, p),

(vii) p11 = p1,
(viii) p1 6= q1,

(ix) p2 6= q2.
Then (L(p, [p1, q2]) ∪ L([p1, q2], q)) ∩ L(p1, p) = {p}.

(51) Suppose that
(i) r > 0,

(ii) p1 /∈ Ball(u, r),
(iii) p ∈ Ball(u, r),
(iv) [q1, p2] ∈ Ball(u, r),
(v) q ∈ Ball(u, r),
(vi) [q1, p2] /∈ L(p1, p),

(vii) p12 = p2,
(viii) p1 6= q1,

(ix) p2 6= q2.
Then (L(p, [q1, p2]) ∪ L([q1, p2], q)) ∩ L(p1, p) = {p}.
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[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,
1(1):55–65, 1990.
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[18] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

Received August 24, 1992



100



FORMALIZED MATHEMATICS

Volume 3, Number 1, 1992
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Summary. A concept of special polygonal arc joining two different
points is defined. Any two points in a ball can be connected by this kind
of arc, and that is also true for any region in E2

T.

MML Identifier: TOPREAL4.

The notation and terminology used here have been introduced in the following
articles: [13], [9], [1], [4], [2], [12], [11], [14], [10], [5], [3], [6], [7], and [8]. For
simplicity we follow a convention: P , P1, P2, R will denote subsets of E2

T, p,
p1, p2, q will denote points of E2

T, f , h will denote finite sequences of elements
of E2

T, r will denote a real number, u will denote a point of E 2, and n, i will
denote natural numbers. We now define three new predicates. Let us consider
P , p, q. We say that P is a special polygonal arc joining p and q if and only if:

(Def.1) there exists f such that f is a special sequence and P = L̃(f) and
p = f(1) and q = f(len f).

Let us consider P . We say that P is a special polygon if and only if the conditions
(Def.2) is satisfied.

(Def.2) (i) There exist p1, p2 such that p1 6= p2 and p1 ∈ P and p2 ∈ P ,
(ii) for all p, q such that p ∈ P and q ∈ P and p 6= q there exist P1, P2

such that P1 is a special polygonal arc joining p and q and P2 is a special
polygonal arc joining p and q and P1 ∩ P2 = {p, q} and P = P1 ∪ P2.

We say that P is a region if and only if:

(Def.3) P is open and P is connected.

The following propositions are true:

1The article was written during my visit at Shinshu University in 1992.
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(1) If P is a special polygonal arc joining p and q, then P is a special
polygonal arc.

(2) If P is a special polygonal arc joining p and q, then P is an arc from p
to q.

(3) If P is a special polygonal arc joining p and q, then p ∈ P and q ∈ P .

(4) If P is a special polygonal arc joining p and q, then p 6= q.

(5) If P is a special polygon, then P is a simple closed curve.

(6) Suppose p1 = q1 and p2 6= q2 and r > 0 and p ∈ Ball(u, r) and

q ∈ Ball(u, r) and f = 〈p, [p1,
p2+q2

2 ], q〉. Then f is a special sequence

and f(1) = p and f(len f) = q and L̃(f) is a special polygonal arc joining

p and q and L̃(f) ⊆ Ball(u, r).

(7) Suppose p1 6= q1 and p2 = q2 and r > 0 and p ∈ Ball(u, r) and

q ∈ Ball(u, r) and f = 〈p, [ p1+q1
2 , p2], q〉. Then f is a special sequence

and f(1) = p and f(len f) = q and L̃(f) is a special polygonal arc joining

p and q and L̃(f) ⊆ Ball(u, r).

(8) Suppose p1 6= q1 and p2 6= q2 and r > 0 and p ∈ Ball(u, r) and
q ∈ Ball(u, r) and [p1, q2] ∈ Ball(u, r) and f = 〈p, [p1, q2], q〉. Then f is

a special sequence and f(1) = p and f(len f) = q and L̃(f) is a special

polygonal arc joining p and q and L̃(f) ⊆ Ball(u, r).

(9) Suppose p1 6= q1 and p2 6= q2 and r > 0 and p ∈ Ball(u, r) and
q ∈ Ball(u, r) and [q1, p2] ∈ Ball(u, r) and f = 〈p, [q1, p2], q〉. Then f is

a special sequence and f(1) = p and f(len f) = q and L̃(f) is a special

polygonal arc joining p and q and L̃(f) ⊆ Ball(u, r).

(10) If r > 0 and p 6= q and p ∈ Ball(u, r) and q ∈ Ball(u, r), then there exists
P such that P is a special polygonal arc joining p and q and P ⊆ Ball(u, r).

(11) Suppose p 6= p1 and p12 = p2 and f is a special sequence and f(1) = p1

and f(len f) = p2 and p ∈ L(f, 1, 2) and h = 〈p1, [
p11+p1

2 , p12], p〉. Then

h is a special sequence and h(1) = p1 and h(len h) = p and L̃(h) is a

special polygonal arc joining p1 and p and L̃(h) ⊆ L̃(f) and L̃(h) =

L̃(f
�
1) ∪ L(p1, p).

(12) Suppose p 6= p1 and p11 = p1 and f is a special sequence and f(1) = p1

and f(len f) = p2 and p ∈ L(f, 1, 2) and h = 〈p1, [p11,
p12+p2

2 ], p〉. Then

h is a special sequence and h(1) = p1 and h(len h) = p and L̃(h) is a

special polygonal arc joining p1 and p and L̃(h) ⊆ L̃(f) and L̃(h) =

L̃(f
�
1) ∪ L(p1, p).

(13) Suppose that
(i) p 6= p1,

(ii) f is a special sequence,
(iii) f(1) = p1,
(iv) f(len f) = p2,
(v) i ∈ dom f ,
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(vi) i+ 1 ∈ dom f ,

(vii) i > 1,

(viii) p ∈ L(f, i, i+ 1),

(ix) p 6= f(i),

(x) p 6= f(i+ 1),

(xi) h = (f
�
i) � 〈p〉,

(xii) q = f(i).

Then h is a special sequence and h(1) = p1 and h(len h) = p and L̃(h)

is a special polygonal arc joining p1 and p and L̃(h) ⊆ L̃(f) and L̃(h) =

L̃(f
�
i) ∪ L(q, p).

(14) Suppose p 6= p1 and f is a special sequence and f(1) = p1 and f(len f) =

p2 and f(2) = p and p2 = p12 and h = 〈p1, [
p11+p1

2 , p12], p〉. Then

(i) h is a special sequence,

(ii) h(1) = p1,

(iii) h(len h) = p,

(iv) L̃(h) is a special polygonal arc joining p1 and p,

(v) L̃(h) ⊆ L̃(f),

(vi) L̃(h) = L̃(f
�
1) ∪ L(p1, p),

(vii) L̃(h) = L̃(f
�
2) ∪ L(p, p).

(15) Suppose p 6= p1 and f is a special sequence and f(1) = p1 and f(len f) =

p2 and f(2) = p and p1 = p11 and h = 〈p1, [p11,
p12+p2

2 ], p〉. Then

(i) h is a special sequence,

(ii) h(1) = p1,

(iii) h(len h) = p,

(iv) L̃(h) is a special polygonal arc joining p1 and p,

(v) L̃(h) ⊆ L̃(f),

(vi) L̃(h) = L̃(f
�
1) ∪ L(p1, p),

(vii) L̃(h) = L̃(f
�
2) ∪ L(p, p).

(16) Suppose p 6= p1 and f is a special sequence and f(1) = p1 and f(len f) =
p2 and f(i) = p and i > 2 and i ∈ dom f and h = f

�
i. Then h is a special

sequence and h(1) = p1 and h(len h) = p and L̃(h) is a special polygonal

arc joining p1 and p and L̃(h) ⊆ L̃(f) and L̃(h) = L̃(f
�
i) ∪ L(p, p).

(17) Suppose p 6= p1 and f is a special sequence and f(1) = p1 and f(len f) =
p2 and p ∈ L(f, n, n + 1) and q = f(n). Then there exists h such that

h is a special sequence and h(1) = p1 and h(len h) = p and L̃(h) is a

special polygonal arc joining p1 and p and L̃(h) ⊆ L̃(f) and L̃(h) =

L̃(f
�
n) ∪ L(q, p).

(18) Suppose p 6= p1 and f is a special sequence and f(1) = p1 and f(len f) =

p2 and p ∈ L̃(f). Then there exists h such that h is a special sequence

and h(1) = p1 and h(len h) = p and L̃(h) is a special polygonal arc joining

p1 and p and L̃(h) ⊆ L̃(f).
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(19) Suppose that
(i) p1 = p21 and p2 6= p22 or p1 6= p21 and p2 = p22,

(ii) r > 0,
(iii) p1 /∈ Ball(u, r),
(iv) p2 ∈ Ball(u, r),
(v) p ∈ Ball(u, r),
(vi) f is a special sequence,

(vii) f(1) = p1,
(viii) f(len f) = p2,

(ix) L(p2, p) ∩ L̃(f) = {p2},
(x) h = f � 〈p〉.

Then h is a special sequence and L̃(h) is a special polygonal arc joining

p1 and p and L̃(h) ⊆ L̃(f) ∪Ball(u, r).

(20) Suppose that
(i) r > 0,

(ii) p1 /∈ Ball(u, r),
(iii) p2 ∈ Ball(u, r),
(iv) p ∈ Ball(u, r),
(v) [p1, p22] ∈ Ball(u, r),
(vi) f is a special sequence,

(vii) f(1) = p1,
(viii) f(len f) = p2,

(ix) p1 6= p21,
(x) p2 6= p22,
(xi) h = f � 〈[p1, p22], p〉,

(xii) (L(p2, [p1, p22]) ∪ L([p1, p22], p)) ∩ L̃(f) = {p2}.
Then L̃(h) is a special polygonal arc joining p1 and p and L̃(h) ⊆ L̃(f) ∪
Ball(u, r).

(21) Suppose that
(i) r > 0,

(ii) p1 /∈ Ball(u, r),
(iii) p2 ∈ Ball(u, r),
(iv) p ∈ Ball(u, r),
(v) [p21, p2] ∈ Ball(u, r),
(vi) f is a special sequence,

(vii) f(1) = p1,
(viii) f(len f) = p2,

(ix) p1 6= p21,
(x) p2 6= p22,
(xi) h = f � 〈[p21, p2], p〉,

(xii) (L(p2, [p21, p2]) ∪ L([p21, p2], p)) ∩ L̃(f) = {p2}.
Then L̃(h) is a special polygonal arc joining p1 and p and L̃(h) ⊆ L̃(f) ∪
Ball(u, r).
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(22) Suppose r > 0 and p1 /∈ Ball(u, r) and p2 ∈ Ball(u, r) and p ∈ Ball(u, r)

and f is a special sequence and f(1) = p1 and f(len f) = p2 and p /∈ L̃(f).

Then there exists h such that L̃(h) is a special polygonal arc joining p1

and p and L̃(h) ⊆ L̃(f) ∪ Ball(u, r).

(23) Given R, p, p1, p2, P , r, u. Then if p 6= p1 and P is a special polygonal
arc joining p1 and p2 and P ⊆ R and r > 0 and p ∈ Ball(u, r) and
p2 ∈ Ball(u, r) and Ball(u, r) ⊆ R, then there exists P1 such that P1 is a
special polygonal arc joining p1 and p and P1 ⊆ R.

(24) For every p such that R is a region and P = {q : q 6= p∧q ∈ R∧¬∨P1
[P1

is a special polygonal arc joining p and q ∧ P1 ⊆ R]} holds P is open.

(25) If R is a region and p ∈ R and P = {q : q = p ∨ ∨P1
[P1 is a special

polygonal arc joining p and q ∧ P1 ⊆ R]}, then P is open.

(26) If p ∈ R and P = {q : q = p ∨ ∨P1
[P1 is a special polygonal arc joining

p and q ∧ P1 ⊆ R]}, then P ⊆ R.

(27) If R is a region and p ∈ R and P = {q : q = p ∨ ∨P1
[P1 is a special

polygonal arc joining p and q ∧ P1 ⊆ R]}, then R ⊆ P .

(28) If R is a region and p ∈ R and P = {q : q = p ∨ ∨P1
[P1 is a special

polygonal arc joining p and q ∧ P1 ⊆ R]}, then R = P .

(29) If R is a region and p ∈ R and q ∈ R and p 6= q, then there exists P
such that P is a special polygonal arc joining p and q and P ⊆ R.
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Summary. In the article we introduce Go-board as some kinds
of matrix which elements belong to topological space E2

T. We define the
functor of delaying column in Go-board and relation between Go-board
and finite sequence of point from E2

T. Basic facts about those notations
are proved. The concept of the article is based on [16].

MML Identifier: GOBOARD1.

The notation and terminology used here have been introduced in the following
papers: [17], [11], [2], [6], [3], [9], [7], [14], [15], [1], [18], [5], [12], [4], [8], [10],
and [13].

1. Real Numbers Preliminaries

For simplicity we follow the rules: p denotes a point of E 2
T, f , f1, f2, g denote

finite sequences of elements of E2
T, v denotes a finite sequence of elements of�

, r, s denote real numbers, n, m, i, j, k denote natural numbers, and x is
arbitrary. One can prove the following three propositions:

(1) |r − s| = 1 if and only if r > s and r = s+ 1 or r < s and s = r + 1.

(2) |i− j|+ |n−m| = 1 if and only if |i− j| = 1 and n = m or |n−m| = 1
and i = j.

(3) n > 1 if and only if there exists m such that n = m+ 1 and m > 0.

1This article was written during my visit at Shinshu University in 1992.
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2. Finite Sequences Preliminaries

The scheme FinSeqDChoice concerns a non-empty set A, a natural number B,
and a binary predicate P, and states that:

there exists a finite sequence f of elements of A such that len f = B and for
every n such that n ∈ SegB holds P[n, f(n)]
provided the parameters have the following property:
• for every n such that n ∈ SegB there exists an element d of A such

that P[n, d].
One can prove the following propositions:

(4) If n = m+ 1 and i ∈ Seg n, then len Sgm(Seg n \ {i}) = m.

(5) Suppose n = m + 1 and k ∈ Seg n and i ∈ Segm. Then if 1 ≤ i and
i < k, then (Sgm(Seg n \ {k}))(i) = i but if k ≤ i and i ≤ m, then
(Sgm(Seg n \ {k}))(i) = i+ 1.

(6) For every finite sequence f and for all n, m such that len f = m+1 and
n ∈ Seg len f holds len(f � n) = m.

(7) For every finite sequence f and for all n, m, k such that len f = m+ 1
and n ∈ Seg len f and k ∈ Segm holds f � n(k) = f(k) or f � n(k) = f(k+1).

(8) For every finite sequence f and for all n, m, k such that len f = m+ 1
and n ∈ Seg len f and 1 ≤ k and k < n holds f � n(k) = f(k).

(9) For every finite sequence f and for all n, m, k such that len f = m+ 1
and n ∈ Seg len f and n ≤ k and k ≤ m holds f � n(k) = f(k + 1).

(10) If n ∈ dom f and m ∈ Seg n, then (f
�
n)(m) = f(m) and m ∈ dom f .

We now define four new constructions. A finite sequence of elements of
�

is
increasing if:

(Def.1) for all n, m such that n ∈ dom it and m ∈ dom it and n < m and for
all r, s such that r = it(n) and s = it(m) holds r < s.

A finite sequence is constant if:

(Def.2) for all n, m such that n ∈ dom it and m ∈ dom it holds it(n) = it(m).

Let us observe that there exists a finite sequence of elements of
�

which is
increasing. Note also that there exists a finite sequence of elements of

�
which

is constant.
Let us consider f . The functor X-coordinate(f) yields a finite sequence of

elements of
�

and is defined by:

(Def.3) len X-coordinate(f) = len f
and for every n such that n ∈ dom X-coordinate(f) and for every p such
that p = f(n) holds (X-coordinate(f))(n) = p1.

The functor Y-coordinate(f) yielding a finite sequence of elements of
�

is defined
as follows:

(Def.4) len Y-coordinate(f) = len f
and for every n such that n ∈ dom Y-coordinate(f) and for every p such
that p = f(n) holds (Y-coordinate(f))(n) = p2.
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One can prove the following propositions:

(11) Suppose that
(i) v 6= ε,
(ii) rng v ⊆ Segn,

(iii) v(len v) = n,
(iv) for every k such that 1 ≤ k and k ≤ len v− 1 and for all r, s such that

r = v(k) and s = v(k + 1) holds |r − s| = 1 or r = s,
(v) i ∈ Seg n,
(vi) i+ 1 ∈ Seg n,
(vii) m ∈ dom v,

(viii) v(m) = i,
(ix) for every k such that k ∈ dom v and v(k) = i holds k ≤ m.

Then m+ 1 ∈ dom v and v(m+ 1) = i+ 1.

(12) Suppose that
(i) v 6= ε,
(ii) rng v ⊆ Segn,

(iii) v(1) = 1,
(iv) v(len v) = n,
(v) for every k such that 1 ≤ k and k ≤ len v− 1 and for all r, s such that

r = v(k) and s = v(k + 1) holds |r − s| = 1 or r = s.
Then

(vi) for every i such that i ∈ Seg n there exists k such that k ∈ dom v and
v(k) = i,

(vii) for all m, k, i, r such that m ∈ dom v and v(m) = i and for every j
such that j ∈ dom v and v(j) = i holds j ≤ m and m < k and k ∈ dom v
and r = v(k) holds i < r.

(13) If i ∈ dom f and 2 ≤ len f , then f(i) ∈ L̃(f).

3. Matrix Preliminaries

Next we state two propositions:

(14) For every non-empty set D and for every matrix M over D and for
all i, j such that j ∈ Seg lenM and i ∈ Seg widthM holds M � ,i(j) =
Line(M, j)(i).

(15) For every non-empty set D and for every matrix M over D and for
every k such that k ∈ Seg lenM holds M(k) = Line(M,k).

We now define several new constructions. Let T be a topological space. A
matrix over T is a matrix over the carrier of T .

A matrix over E2
T is non-trivial if:

(Def.5) 0 < len it and 0 < width it.

A matrix over E2
T is line X-constant if:
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(Def.6) for every n such that n ∈ Seg len it holds X-coordinate(Line(it, n)) is
constant.

A matrix over E2
T is column Y-constant if:

(Def.7) for every n such that n ∈ Seg width it holds Y-coordinate(it � ,n) is con-
stant.

A matrix over E2
T is line Y-increasing if:

(Def.8) for every n such that n ∈ Seg len it holds Y-coordinate(Line(it, n)) is
increasing.

A matrix over E2
T is column X-increasing if:

(Def.9) for every n such that n ∈ Seg width it holds X-coordinate(it � ,n) is in-
creasing.

One can readily verify that there exists a matrix over E 2
T which is non-trivial, line

X-constant, column Y-constant, line Y-increasing and column X-increasing.

We now state two propositions:

(16) For every column X-increasing line X-constant matrix M over E 2
T and

for all x, n, m such that x ∈ rng Line(M,n) and x ∈ rng Line(M,m) and
n ∈ Seg lenM and m ∈ Seg lenM holds n = m.

(17) For every line Y-increasing column Y-constant matrix M over E 2
T and

for all x, n, m such that x ∈ rng(M � ,n) and x ∈ rng(M � ,m) and n ∈
Seg widthM and m ∈ Seg widthM holds n = m.

4. Basic Go-Board‘s Notation

A Go-board is a non-trivial line X-constant column Y-constant line Y-increasing
column X-increasing matrix over E 2

T.

In the sequel G denotes a Go-board. The following four propositions are
true:

(18) If x = Gm,k and x = Gi,j and 〈〈m, k〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the
indices of G, then m = i and k = j.

(19) If m ∈ dom f and f(1) ∈ rng(G � ,1), then (f
�
m)(1) ∈ rng(G � ,1).

(20) If m ∈ dom f and f(m) ∈ rng(G � ,widthG), then (f
�
m)(len(f

�
m)) ∈

rng(G � ,widthG).

(21) If rng f ∩ rng(G � ,i) = ∅ and f(n) = Gm,k and n ∈ dom f and m ∈
Seg lenG, then i 6= k.

Let us consider G, i. Let us assume that i ∈ Seg widthG and widthG > 1.
The deleting of i-column in G yielding a Go-board is defined by:

(Def.10) len(the deleting of i-column in G) = lenG and for every k such that
k ∈ Seg lenG holds (the deleting of i-column in G)(k) = Line(G, k) � i .

One can prove the following propositions:

(22) If i ∈ Seg widthG and widthG > 1 and k ∈ Seg lenG, then Line(the
deleting of i-column in G, k) = Line(G, k) � i .
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(23) If i ∈ Seg widthG and widthG = m + 1 and m > 0, then width(the
deleting of i-column in G) = m.

(24) If i ∈ Seg widthG and widthG > 1, then widthG = width(the deleting
of i-column in G) + 1.

(25) If i ∈ Seg widthG and widthG > 1 and n ∈ Seg lenG and m ∈
Seg width(the deleting of i-column in G), then (the deleting of i-column
in G)n,m = Line(G,n) � i (m).

(26) If i ∈ Seg widthG and widthG = m+1 and m > 0 and 1 ≤ k and k < i,
then (the deleting of i-column in G) � ,k = G � ,k and k ∈ Seg width(the
deleting of i-column in G) and k ∈ Seg widthG.

(27) Suppose i ∈ Seg widthG and widthG = m + 1 and m > 0 and i ≤ k
and k ≤ m. Then (the deleting of i-column in G) � ,k = G � ,k+1 and
k ∈ Seg width(the deleting of i-column in G) and k + 1 ∈ Seg widthG.

(28) If i ∈ Seg widthG and widthG = m + 1 and m > 0 and n ∈ Seg lenG
and 1 ≤ k and k < i, then (the deleting of i-column in G)n,k = Gn,k and
k ∈ Seg widthG.

(29) Suppose i ∈ Seg widthG and widthG = m + 1 and m > 0 and n ∈
Seg lenG and i ≤ k and k ≤ m. Then (the deleting of i-column in
G)n,k = Gn,k+1 and k + 1 ∈ Seg widthG.

(30) If widthG = m + 1 and m > 0 and k ∈ Segm, then (the deleting of
1-column in G) � ,k = G � ,k+1 and k ∈ Seg width(the deleting of 1-column
in G) and k + 1 ∈ Seg widthG.

(31) If widthG = m+ 1 and m > 0 and k ∈ Segm and n ∈ Seg lenG, then
(the deleting of 1-column in G)n,k = Gn,k+1 and 1 ∈ Seg widthG.

(32) If widthG = m + 1 and m > 0 and k ∈ Segm, then (the deleting
of widthG-column in G) � ,k = G � ,k and k ∈ Seg width(the deleting of
widthG-column in G).

(33) If widthG = m+ 1 and m > 0 and k ∈ Segm and n ∈ Seg lenG, then
k ∈ Seg widthG and (the deleting of widthG-column in G)n,k = Gn,k
and widthG ∈ Seg widthG.

(34) Suppose rng f ∩ rng(G � ,i) = ∅ and f(n) ∈ rng Line(G,m) and n ∈
dom f and i ∈ Seg widthG and m ∈ Seg lenG and widthG > 1. Then
f(n) ∈ rng Line(the deleting of i-column in G,m).

Let us consider f , G. We say that f is a sequence which elements belong to
G if and only if the conditions (Def.11) is satisfied.

(Def.11) (i) For every n such that n ∈ dom f there exist i, j such that 〈〈i, j〉〉 ∈ the
indices of G and f(n) = Gi,j ,

(ii) for every n such that n ∈ dom f and n+ 1 ∈ dom f and for all m, k,
i, j such that 〈〈m, k〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and
f(n) = Gm,k and f(n+ 1) = Gi,j holds |m− i|+ |k − j| = 1.

One can prove the following propositions:
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(35) If f is a sequence which elements belong to G and m ∈ dom f , then
1 ≤ len(f

�
m) and f

�
m is a sequence which elements belong to G.

(36) Suppose that
(i) for every n such that n ∈ dom f1 there exist i, j such that 〈〈i, j〉〉 ∈ the

indices of G and f1(n) = Gi,j,
(ii) for every n such that n ∈ dom f2 there exist i, j such that 〈〈i, j〉〉 ∈ the

indices of G and f2(n) = Gi,j.
Then for every n such that n ∈ dom(f1 � f2) there exist i, j such that 〈〈i,
j〉〉 ∈ the indices of G and (f1 � f2)(n) = Gi,j .

(37) Suppose that
(i) for every n such that n ∈ dom f1 and n+ 1 ∈ dom f1 and for all m, k,
i, j such that 〈〈m, k〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and
f1(n) = Gm,k and f1(n+ 1) = Gi,j holds |m− i|+ |k − j| = 1,

(ii) for every n such that n ∈ dom f2 and n+ 1 ∈ dom f2 and for all m, k,
i, j such that 〈〈m, k〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and
f2(n) = Gm,k and f2(n+ 1) = Gi,j holds |m− i|+ |k − j| = 1,

(iii) for all m, k, i, j such that 〈〈m, k〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the
indices of G and f1(len f1) = Gm,k and f2(1) = Gi,j and len f1 ∈ dom f1

and 1 ∈ dom f2 holds |m− i|+ |k − j| = 1.
Given n. Suppose n ∈ dom(f1 � f2) and n+1 ∈ dom(f1 � f2). Given m, k,
i, j. Then if 〈〈m, k〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and
(f1 � f2)(n) = Gm,k and (f1 � f2)(n+ 1) = Gi,j, then |m− i|+ |k− j| = 1.

(38) If f is a sequence which elements belong to G and i ∈ Seg widthG
and rng f ∩ rng(G � ,i) = ∅ and widthG > 1, then f is a sequence which
elements belong to the deleting of i-column in G.

(39) If f is a sequence which elements belong to G and i ∈ dom f , then there
exists n such that n ∈ Seg lenG and f(i) ∈ rng Line(G,n).

(40) Suppose f is a sequence which elements belong to G and i ∈ dom f
and i + 1 ∈ dom f and n ∈ Seg lenG and f(i) ∈ rng Line(G,n). Then
f(i+1) ∈ rng Line(G,n) or for every k such that f(i+1) ∈ rng Line(G, k)
and k ∈ Seg lenG holds |n− k| = 1.

(41) Suppose that
(i) 1 ≤ len f ,

(ii) f(len f) ∈ rng Line(G, lenG),
(iii) f is a sequence which elements belong to G,
(iv) i ∈ Seg lenG,
(v) i+ 1 ∈ Seg lenG,
(vi) m ∈ dom f ,

(vii) f(m) ∈ rng Line(G, i),
(viii) for every k such that k ∈ dom f and f(k) ∈ rng Line(G, i) holds k ≤ m.

Then m+ 1 ∈ dom f and f(m+ 1) ∈ rng Line(G, i + 1).

(42) Suppose 1 ≤ len f and f(1) ∈ rng Line(G, 1) and
f(len f) ∈ rng Line(G, lenG)
and f is a sequence which elements belong to G. Then
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(i) for every i such that 1 ≤ i and i ≤ lenG there exists k such that
k ∈ dom f and f(k) ∈ rng Line(G, i),

(ii) for every i such that 1 ≤ i and i ≤ lenG and 2 ≤ len f holds L̃(f) ∩
rng Line(G, i) 6= ∅,

(iii) for all i, j, k, m such that 1 ≤ i and i ≤ lenG and 1 ≤ j and j ≤ lenG
and k ∈ dom f and m ∈ dom f and f(k) ∈ rng Line(G, i) and for every n
such that n ∈ dom f and f(n) ∈ rng Line(G, i) holds n ≤ k and k < m
and f(m) ∈ rng Line(G, j) holds i < j.

(43) If f is a sequence which elements belong to G and i ∈ dom f , then there
exists n such that n ∈ Seg widthG and f(i) ∈ rng(G � ,n).

(44) Suppose f is a sequence which elements belong to G and i ∈ dom f
and i + 1 ∈ dom f and n ∈ Seg widthG and f(i) ∈ rng(G � ,n). Then
f(i + 1) ∈ rng(G � ,n) or for every k such that f(i + 1) ∈ rng(G � ,k) and
k ∈ Seg widthG holds |n− k| = 1.

(45) Suppose that
(i) 1 ≤ len f ,
(ii) f(len f) ∈ rng(G � ,widthG),

(iii) f is a sequence which elements belong to G,

(iv) i ∈ Seg widthG,
(v) i+ 1 ∈ Seg widthG,
(vi) m ∈ dom f ,
(vii) f(m) ∈ rng(G � ,i),

(viii) for every k such that k ∈ dom f and f(k) ∈ rng(G � ,i) holds k ≤ m.

Then m+ 1 ∈ dom f and f(m+ 1) ∈ rng(G � ,i+1).

(46) Suppose 1 ≤ len f and f(1) ∈ rng(G � ,1) and f(len f) ∈ rng(G � ,widthG)
and f is a sequence which elements belong to G. Then

(i) for every i such that 1 ≤ i and i ≤ widthG there exists k such that
k ∈ dom f and f(k) ∈ rng(G � ,i),

(ii) for every i such that 1 ≤ i and i ≤ widthG and 2 ≤ len f holds

L̃(f) ∩ rng(G � ,i) 6= ∅,
(iii) for all i, j, k, m such that 1 ≤ i and i ≤ widthG and 1 ≤ j and

j ≤ widthG and k ∈ dom f and m ∈ dom f and f(k) ∈ rng(G � ,i) and
for every n such that n ∈ dom f and f(n) ∈ rng(G � ,i) holds n ≤ k and
k < m and f(m) ∈ rng(G � ,j) holds i < j.

(47) Suppose that
(i) n ∈ dom f ,
(ii) f(n) ∈ rng(G � ,k),

(iii) k ∈ Seg widthG,

(iv) f(1) ∈ rng(G � ,1),
(v) f is a sequence which elements belong to G,
(vi) for every i such that i ∈ dom f and f(i) ∈ rng(G � ,k) holds n ≤ i.

Then for every i such that i ∈ dom f and i ≤ n and for every m such that
m ∈ Seg widthG and f(i) ∈ rng(G � ,m) holds m ≤ k.
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(48) Suppose f is a sequence which elements belong toG and f(1) ∈ rng(G � ,1)
and f(len f) ∈ rng(G � ,widthG) and widthG > 1 and 1 ≤ len f . Then there
exists g such that g(1) ∈ rng((the deleting of widthG-column in G) � ,1)
and g(len g) ∈ rng((the deleting of widthG-column in

G) � ,width(the deleting of widthG−column inG))
and 1 ≤ len g and g is a sequence which elements belong to the deleting
of widthG-column in G and rng g ⊆ rng f .

(49) Suppose f is a sequence which elements belong to G and
rng f ∩ rng(G � ,1) 6= ∅ and rng f ∩ rng(G � ,widthG) 6= ∅.
Then there exists g such that rng g ⊆ rng f and g(1) ∈ rng(G � ,1) and
g(len g) ∈ rng(G � ,widthG) and 1 ≤ len g and g is a sequence which elements
belong to G.

(50) Suppose k ∈ Seg lenG and f is a sequence which elements belong
to G and f(len f) ∈ rng Line(G, lenG) and n ∈ dom f and f(n) ∈
rng Line(G, k). Then

(i) for every i such that k ≤ i and i ≤ lenG there exists j such that
j ∈ dom f and n ≤ j and f(j) ∈ rng Line(G, i),

(ii) for every i such that k < i and i ≤ lenG there exists j such that
j ∈ dom f and n < j and f(j) ∈ rng Line(G, i).
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Summary. In article we define Go-board determined by finite
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T. A few facts about this
notation are proved.

MML Identifier: GOBOARD2.

The papers [17], [10], [2], [6], [3], [8], [15], [16], [1], [18], [13], [5], [12], [11], [4],
[7], [9], and [14] provide the notation and terminology for this paper.

1. Real Numbers Preliminaries

For simplicity we follow the rules: p, q denote points of E 2
T, f , f1, f2, g denote

finite sequences of elements of E2
T, R denotes a subset of

�
, r, s denote real

numbers, v, v1, v2 denote finite sequences of elements of
�
, n, m, i, j, k denote

natural numbers, and G denotes a Go-board. We now state the proposition

(1) If R is finite and R 6= ∅, then R is upper bounded and supR ∈ R and
R is lower bounded and inf R ∈ R.

2. Properties of Finite Sequences of Points from E 2
T

One can prove the following propositions:

(2) For every finite sequence f holds f is one-to-one if and only if for all n,
m such that n ∈ dom f and m ∈ dom f and n 6= m holds f(n) 6= f(m).

(3) For every n holds 1 ≤ n and n ≤ len f − 1 if and only if n ∈ dom f and
n+ 1 ∈ dom f .

1This article was written during my visit at Shinshu University in 1992.
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(4) For every n holds 1 ≤ n and n ≤ len f − 2 if and only if n ∈ dom f and
n+ 1 ∈ dom f and n+ 2 ∈ dom f .

(5) The following conditions are equivalent:
(i) for all n, m such that n−m > 1 or m− n > 1 holds L(f, n, n+ 1) ∩
L(f,m,m+ 1) = ∅,

(ii) for all n, m such that n −m > 1 or m − n > 1 but n ∈ dom f and
n+ 1 ∈ dom f and m ∈ dom f and m+ 1 ∈ dom f holds L(f, n, n+ 1) ∩
L(f,m,m+ 1) = ∅.

(6) Suppose that
(i) for every n such that 1 ≤ n and n ≤ len f − 2 holds L(f, n, n + 1) ∩
L(f, n+ 1, n+ 2) = {f(n+ 1)},

(ii) for all n, m such that n−m > 1 or m− n > 1 holds L(f, n, n+ 1) ∩
L(f,m,m+ 1) = ∅,

(iii) f is one-to-one,
(iv) f(len f) ∈ L(f, i, i+ 1),
(v) i ∈ dom f ,
(vi) i+ 1 ∈ dom f .

Then i+ 1 = len f .

(7) If k 6= 0 and len f = k + 1, then L̃(f) = L̃(f
�
k) ∪ L(f, k, k + 1).

(8) Suppose that
(i) 1 < k,

(ii) len f = k + 1,
(iii) for every n such that 1 ≤ n and n ≤ len f − 2 holds L(f, n, n + 1) ∩
L(f, n+ 1, n+ 2) = {f(n+ 1)},

(iv) for all n, m such that n−m > 1 or m− n > 1 holds L(f, n, n+ 1) ∩
L(f,m,m+ 1) = ∅.
Then L̃(f

�
k) ∩ L(f, k, k + 1) = {f(k)}.

(9) If len f1 < n and n ≤ len(f1 � f2)− 1 and m = n− len f1, then L(f1 �
f2, n, n+ 1) = L(f2,m,m+ 1).

(10) L̃(f) ⊆ L̃(f � g).
(11) Suppose for all n, m such that n−m > 1 or m−n > 1 holds L(f, n, n+

1) ∩ L(f,m,m + 1) = ∅. Then for all n, m such that n − m > 1 or
m− n > 1 holds L(f

�
i, n, n+ 1) ∩ L(f

�
i,m,m+ 1) = ∅.

(12) Suppose that
(i) for all n, p, q such that 1 ≤ n and n ≤ len f1 − 1 and f1(n) = p and
f1(n+ 1) = q holds p1 = q1 or p2 = q2,

(ii) for all n, p, q such that 1 ≤ n and n ≤ len f2 − 1 and f2(n) = p and
f2(n+ 1) = q holds p1 = q1 or p2 = q2,

(iii) for all p, q such that f1(len f1) = p and f2(1) = q holds p1 = q1 or
p2 = q2.
Then for all n, p, q such that 1 ≤ n and n ≤ len(f1 � f2) − 1 and
(f1 � f2)(n) = p and (f1 � f2)(n+ 1) = q holds p1 = q1 or p2 = q2.

(13) If f 6= ε, then X-coordinate(f) 6= ε.
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(14) If f 6= ε, then Y-coordinate(f) 6= ε.

(15) Suppose for all n, p, q such that n ∈ dom f and n + 1 ∈ dom f and
f(n) = p and f(n+ 1) = q holds p1 = q1 or p2 = q2. Given n. Suppose
n ∈ dom f and n + 1 ∈ dom f . Then for all i, j, m, k such that 〈〈i,
j〉〉 ∈ the indices of G and 〈〈m, k〉〉 ∈ the indices of G and f(n) = Gi,j and
f(n+ 1) = Gm,k holds i = m or k = j.

(16) Suppose that
(i) for every n such that n ∈ dom f there exist i, j such that 〈〈i, j〉〉 ∈ the

indices of G and f(n) = Gi,j ,
(ii) for all n, p, q such that n ∈ dom f and n + 1 ∈ dom f and f(n) = p

and f(n+ 1) = q holds p1 = q1 or p2 = q2,
(iii) for every n such that n ∈ dom f and n + 1 ∈ dom f holds f(n) 6=

f(n+ 1).
Then there exists g such that g is a sequence which elements belong
to G and L̃(f) = L̃(g) and g(1) = f(1) and g(len g) = f(len f) and
len f ≤ len g.

(17) If v is increasing, then for all n, m such that n ∈ dom v and m ∈ dom v
and n ≤ m and for all r, s such that r = v(n) and s = v(m) holds r ≤ s.

(18) If v is increasing, then for all n, m such that n ∈ dom v and m ∈ dom v
and n 6= m holds v(n) 6= v(m).

(19) If v is increasing and v1 = v
�
Segn, then v1 is increasing.

(20) For every v there exists v1 such that rng v1 = rng v and len v1 =
card rng v and v1 is increasing.

(21) For all v1, v2 such that len v1 = len v2 and rng v1 = rng v2 and v1 is
increasing and v2 is increasing holds v1 = v2.

3. Go-Board Determined by Finite Sequence

We now define three new functors. Let v1, v2 be increasing finite sequences of
elements of

�
. Let us assume that v1 6= ε and v2 6= ε. The Go-board of v1, v2

yields a Go-board and is defined by:

(Def.1) len the Go-board of v1, v2 = len v1 and width the Go-board of v1, v2 =
len v2 and for all n, m such that 〈〈n, m〉〉 ∈ the indices of the Go-board
of v1, v2 and for all r, s such that v1(n) = r and v2(m) = s holds (the
Go-board of v1, v2)n,m = [r, s].

Let us consider v. The functor Inc(v) yielding an increasing finite sequence of
elements of

�
is defined by:

(Def.2) rng Inc(v) = rng v and len Inc(v) = card rng v.

Let us consider f . Let us assume that f 6= ε. The Go-board of f yielding a
Go-board is defined by:

(Def.3) the Go-board of f = the Go-board of Inc(X-coordinate(f)),
Inc(Y-coordinate(f)).
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One can prove the following propositions:

(22) If v 6= ε, then Inc(v) 6= ε.

(23) If f 6= ε, then len the Go-board of f = card rng X-coordinate(f) and
width the Go-board of f = card rng Y-coordinate(f).

(24) If f 6= ε, then for every n such that n ∈ dom f there exist i, j such that
〈〈i, j〉〉 ∈ the indices of the Go-board of f and f(n) = (the Go-board of
f)i,j.

(25) If f 6= ε and n ∈ dom f and r = (X-coordinate(f))(n) and for every m
such that m ∈ dom f and for every s such that s = (X-coordinate(f))(m)
holds r ≤ s, then f(n) ∈ rng Line(the Go-board of f, 1).

(26) If f 6= ε and n ∈ dom f and r = (X-coordinate(f))(n) and for every m
such that m ∈ dom f and for every s such that s = (X-coordinate(f))(m)
holds s ≤ r, then f(n) ∈ rng Line(the Go-board of f, len the Go-board of
f).

(27) If f 6= ε and n ∈ dom f and r = (Y-coordinate(f))(n) and for every m
such that m ∈ dom f and for every s such that s = (Y-coordinate(f))(m)
holds r ≤ s, then f(n) ∈ rng((the Go-board of f) � ,1).

(28) If f 6= ε and n ∈ dom f and r = (Y-coordinate(f))(n) and for every m
such that m ∈ dom f and for every s such that s = (Y-coordinate(f))(m)
holds s ≤ r, then f(n) ∈ rng((the Go-board of f) � ,width the Go−board of f).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–

485, 1991.
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Summary. Two useful facts about Go-board are proved.

MML Identifier: GOBOARD3.

The terminology and notation used in this paper have been introduced in the
following articles: [16], [8], [1], [5], [2], [14], [15], [17], [4], [10], [9], [3], [6], [7],
[13], [11], and [12]. For simplicity we follow the rules: p, q are points of E 2

T, f ,
g are finite sequences of elements of E 2

T, n, m, i, j are natural numbers, and G
is a Go-board. One can prove the following two propositions:

(1) Suppose that
(i) for every n such that n ∈ dom f there exist i, j such that 〈〈i, j〉〉 ∈ the

indices of G and f(n) = Gi,j ,
(ii) f is one-to-one,

(iii) for every n such that 1 ≤ n and n ≤ len f − 2 holds L(f, n, n + 1) ∩
L(f, n+ 1, n+ 2) = {f(n+ 1)},

(iv) for all n, m such that n−m > 1 or m− n > 1 holds L(f, n, n+ 1) ∩
L(f,m,m+ 1) = ∅,

(v) for all n, p, q such that 1 ≤ n and n ≤ len f − 1 and f(n) = p and
f(n+ 1) = q holds p1 = q1 or p2 = q2.

Then there exists g such that g is a sequence which elements belong to
G and g is one-to-one and for every n such that 1 ≤ n and n ≤ len g − 2
holds L(g, n, n+ 1)∩L(g, n+ 1, n+ 2) = {g(n+ 1)} and for all n, m such
that n −m > 1 or m − n > 1 holds L(g, n, n + 1) ∩ L(g,m,m + 1) = ∅
and for all n, p, q such that 1 ≤ n and n ≤ len g − 1 and g(n) = p and

g(n+ 1) = q holds p1 = q1 or p2 = q2 and L̃(f) = L̃(g) and f(1) = g(1)
and f(len f) = g(len g) and len f ≤ len g.

1This article was written during my visit at Shinshu University in 1992.
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(2) Suppose for every n such that n ∈ dom f there exist i, j such that
〈〈i, j〉〉 ∈ the indices of G and f(n) = Gi,j and f is a special sequence.
Then there exists g such that g is a sequence which elements belong to
G and g is a special sequence and L̃(f) = L̃(g) and f(1) = g(1) and
f(len f) = g(len g) and len f ≤ len g.
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Summary. We prove the Go-board theorem which is a special
case of Hex Theorem. The article is based on [15].

MML Identifier: GOBOARD4.

The terminology and notation used in this paper are introduced in the following
articles: [16], [7], [1], [4], [2], [13], [14], [17], [3], [8], [5], [6], [9], [12], [10], and
[11]. For simplicity we adopt the following convention: p, p1, p2, q, q1, q2 will
be points of E2

T, P1, P2 will be subsets of E2
T, f1, f2 will be finite sequences of

elements of E2
T, r, s will be real numbers, n will be a natural number, and G

will be a Go-board. We now state several propositions:

(1) Given G, f1, f2. Suppose that
(i) 1 ≤ len f1,
(ii) 1 ≤ len f2,

(iii) f1 is a sequence which elements belong to G,
(iv) f2 is a sequence which elements belong to G,
(v) f1(1) ∈ rng Line(G, 1),
(vi) f1(len f1) ∈ rng Line(G, lenG),
(vii) f2(1) ∈ rng(G � ,1),

(viii) f2(len f2) ∈ rng(G � ,widthG).
Then rng f1 ∩ rng f2 6= ∅.

(2) Given G, f1, f2. Suppose that
(i) 2 ≤ len f1,
(ii) 2 ≤ len f2,

(iii) f1 is a sequence which elements belong to G,
(iv) f2 is a sequence which elements belong to G,
(v) f1(1) ∈ rng Line(G, 1),
(vi) f1(len f1) ∈ rng Line(G, lenG),

1This article was written during my visit at Shinshu University in 1992.
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(vii) f2(1) ∈ rng(G � ,1),
(viii) f2(len f2) ∈ rng(G � ,widthG).

Then L̃(f1) ∩ L̃(f2) 6= ∅.
(3) Given G, f1, f2. Suppose that

(i) f1 is a special sequence,
(ii) f2 is a special sequence,
(iii) f1 is a sequence which elements belong to G,
(iv) f2 is a sequence which elements belong to G,
(v) f1(1) ∈ rng Line(G, 1),
(vi) f1(len f1) ∈ rng Line(G, lenG),

(vii) f2(1) ∈ rng(G � ,1),
(viii) f2(len f2) ∈ rng(G � ,widthG).

Then L̃(f1) ∩ L̃(f2) 6= ∅.
(4) Given f1, f2. Suppose that

(i) 2 ≤ len f1,
(ii) 2 ≤ len f2,
(iii) for all n, p, q such that n ∈ dom f1 and n+ 1 ∈ dom f1 and f1(n) = p

and f1(n+ 1) = q holds p1 = q1 or p2 = q2,
(iv) for all n, p, q such that n ∈ dom f2 and n+ 1 ∈ dom f2 and f2(n) = p

and f2(n+ 1) = q holds p1 = q1 or p2 = q2,
(v) for every n such that n ∈ dom f1 and n + 1 ∈ dom f1 holds f1(n) 6=

f1(n+ 1),
(vi) for every n such that n ∈ dom f2 and n + 1 ∈ dom f2 holds f2(n) 6=

f2(n+ 1),
(vii) for every r such that r = (X-coordinate(f1))(1) and for all n, s such

that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds r ≤ s,
(viii) for every r such that r = (X-coordinate(f1))(1) and for all n, s such

that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds r ≤ s,
(ix) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds s ≤ r,
(x) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds s ≤ r,
(xi) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such

that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds r ≤ s,
(xii) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such

that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds r ≤ s,
(xiii) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s

such that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds s ≤ r,
(xiv) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s

such that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds s ≤ r.
Then L̃(f1) ∩ L̃(f2) 6= ∅.

(5) Given f1, f2. Suppose that
(i) f1 is a special sequence,

(ii) f2 is a special sequence,
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(iii) for every r such that r = (X-coordinate(f1))(1) and for all n, s such
that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds r ≤ s,

(iv) for every r such that r = (X-coordinate(f1))(1) and for all n, s such
that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds r ≤ s,

(v) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s
such that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds s ≤ r,

(vi) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s
such that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds s ≤ r,

(vii) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds r ≤ s,

(viii) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds r ≤ s,

(ix) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s
such that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds s ≤ r,

(x) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s
such that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds s ≤ r.
Then L̃(f1) ∩ L̃(f2) 6= ∅.

(6) Given P1, P2. Suppose P1 is a special polygonal arc and P2 is a special
polygonal arc. Given G, f1, f2. Suppose that

(i) f1 is a special sequence,

(ii) P1 = L̃(f1),
(iii) f2 is a special sequence,

(iv) P2 = L̃(f2),
(v) f1 is a sequence which elements belong to G,
(vi) f2 is a sequence which elements belong to G,
(vii) f1(1) ∈ rng Line(G, 1),

(viii) f1(len f1) ∈ rng Line(G, lenG),
(ix) f2(1) ∈ rng(G � ,1),
(x) f2(len f2) ∈ rng(G � ,widthG).

Then P1 ∩ P2 6= ∅.
(7) Given P1, P2. Suppose P1 is a special polygonal arc and P2 is a special

polygonal arc. Given f1, f2. Suppose that
(i) f1 is a special sequence,

(ii) P1 = L̃(f1),
(iii) f2 is a special sequence,

(iv) P2 = L̃(f2),
(v) for every r such that r = (X-coordinate(f1))(1) and for all n, s such

that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds r ≤ s,
(vi) for every r such that r = (X-coordinate(f1))(1) and for all n, s such

that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds r ≤ s,
(vii) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f1 and s = (X-coordinate(f1))(n) holds s ≤ r,
(viii) for every r such that r = (X-coordinate(f1))(len f1) and for all n, s

such that n ∈ dom f2 and s = (X-coordinate(f2))(n) holds s ≤ r,
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(ix) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds r ≤ s,

(x) for every r such that r = (Y-coordinate(f2))(1) and for all n, s such
that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds r ≤ s,

(xi) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s
such that n ∈ dom f1 and s = (Y-coordinate(f1))(n) holds s ≤ r,

(xii) for every r such that r = (Y-coordinate(f2))(len f2) and for all n, s
such that n ∈ dom f2 and s = (Y-coordinate(f2))(n) holds s ≤ r.
Then P1 ∩ P2 6= ∅.

(8) Given P1, P2, p1, p2, q1, q2. Suppose that
(i) P1 is a special polygonal arc joining p1 and q1,

(ii) P2 is a special polygonal arc joining p2 and q2,
(iii) for every p such that p ∈ P1 ∪ P2 holds p11 ≤ p1 and p1 ≤ q11,
(iv) for every p such that p ∈ P1 ∪ P2 holds p22 ≤ p2 and p2 ≤ q22.

Then P1 ∩ P2 6= ∅.
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Summary. The article contains some theorems on binary rela-
tions, which are used in papers [2], [3], [1], and other.

MML Identifier: SYSREL.

The articles [5], [6], [7], and [4] provide the terminology and notation for this
paper. We adopt the following rules: x, y are arbitrary, X, Y , Z, W are sets,
and R, S, T are binary relations. We now state a number of propositions:

(1) If X ∩ Y = ∅ and x ∈ X ∪ Y , then x ∈ X and x /∈ Y or x ∈ Y and
x /∈ X.

(2) (X ∪ Y ) ∪ Z = X ∪ Z ∪ (Y ∪ Z).

(3) X ∪ (X ∪ Y ) = X ∪ Y .

(4) If X ⊆ Y ∩ Z, then X ⊆ Y and X ⊆ Z.

(5) � = ∅.
(6) � \R = � .

(7) R ⊆ S if and only if R \ S = � .

(8) R ∩ S = � if and only if R \ S = R.

(9) R \R = � .

(10) If R ⊆ � , then R = � .

(11) � ∪R = R and R ∪ � = R and � ∩R = � and R ∩ � = � .

Let us consider X, Y . Then [:X, Y :] is a binary relation.

Next we state several propositions:

(12) If X 6= ∅ and Y 6= ∅, then dom[:X, Y :] = X and rng[:X, Y :] = Y .

(13) dom(R ∩ [:X, Y :]) ⊆ X and rng(R ∩ [:X, Y :]) ⊆ Y .

(14) If X ∩ Y = ∅, then dom(R ∩ [:X, Y :]) ∩ rng(R ∩ [:X, Y :]) = ∅ and
dom(R � ∩ [:X, Y :]) ∩ rng(R � ∩ [:X, Y :]) = ∅.

(15) If R ⊆ [:X, Y :], then domR ⊆ X and rngR ⊆ Y .

(16) If R ⊆ [:X, Y :], then R � ⊆ [: Y, X :].
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(17) If X ∩ Y = ∅, then [:X, Y :] ∩ [: Y, X :] = ∅.
(18) [:X, Y :] � = [:Y, X :].

Next we state a number of propositions:

(19) (R ∪ S) · T = R · T ∪ S · T and R · (S ∪ T ) = R · S ∪R · T .

(20) If R ⊆ [:X, Y :] and 〈〈x, y〉〉 ∈ R, then x ∈ X and y ∈ Y .

(21) (i) If X ∩ Y = ∅ and R ⊆ [:X, Y :]∪ [: Y, X :] and 〈〈x, y〉〉 ∈ R and x ∈ X,
then x /∈ Y and y /∈ X and y ∈ Y ,

(ii) if X ∩ Y = ∅ and R ⊆ [:X, Y :] ∪ [: Y, X :] and 〈〈x, y〉〉 ∈ R and y ∈ Y ,
then y /∈ X and x /∈ Y and x ∈ X,

(iii) if X ∩ Y = ∅ and R ⊆ [:X, Y :] ∪ [: Y, X :] and 〈〈x, y〉〉 ∈ R and x ∈ Y ,
then x /∈ X and y /∈ Y and y ∈ X,

(iv) if X ∩ Y = ∅ and R ⊆ [:X, Y :] ∪ [: Y, X :] and 〈〈x, y〉〉 ∈ R and y ∈ X,
then x /∈ X and y /∈ Y and x ∈ Y .

(22) If rngR ∩ domS = ∅ or domS ∩ rngR = ∅, then R · S = � .

(23) If R ⊆ [:X, Y :] and Z ⊆ X, then R
�
Z = R ∩ [:Z, Y :] but if R ⊆ [:X,

Y :] and Z ⊆ Y , then Z
�
R = R ∩ [:X, Z :].

(24) If R ⊆ [:X, Y :] and X = Z ∪W , then R = R
�
Z ∪R �

W .

(25) If X ∩ Y = ∅ and R ⊆ [:X, Y :] ∪ [:Y, X :], then R
�
X ⊆ [:X, Y :].

(26) If R ⊆ S, then R � ⊆ S � .

(27) 4X ⊆ [:X, X :].

(28) 4X · 4X = 4X .

(29) 4{x} = {〈〈x, x〉〉}.
(30) 〈〈x, y〉〉 ∈ 4X if and only if 〈〈y, x〉〉 ∈ 4X .

(31) 4X∪Y = 4X ∪4Y and 4X∩Y =4X ∩4Y and 4X\Y = 4X \ 4Y .

(32) If X ⊆ Y , then 4X ⊆ 4Y .

(33) 4X\Y \ 4X = � .

(34) If R ⊆ 4domR, then R = 4domR.

(35) If 4X ⊆ R ∪R � , then 4X ⊆ R and 4X ⊆ R � .

(36) If 4X ⊆ R, then 4X ⊆ R � .

(37) If R ⊆ [:X, X :], then R \ 4domR = R \ 4X and R \ 4rngR = R \ 4X .

(38) If 4X · (R \ 4X) = � , then dom(R \ 4X) = domR \ dom(4X) but if
(R \ 4X) · 4X = � , then rng(R \ 4X) = rngR \ rng(4X).

(39) If R ⊆ R ·R and R · (R \4rngR) = � , then 4rngR ⊆ R but if R ⊆ R ·R
and (R \ 4domR) · R = � , then 4domR ⊆ R.

(40) (i) If R ⊆ R ·R and R · (R \ 4rngR) = � , then R ∩4rngR = 4rngR,
(ii) if R ⊆ R ·R and (R \ 4domR) · R = � , then R ∩4domR =4domR.

(41) If R · (R \ 4X) = � and rngR ⊆ X, then R · (R \ 4rngR) = � but if
(R \ 4X) · R = � and domR ⊆ X, then (R \ 4domR) · R = � .

Let us consider R. The functor CL(R) yielding a binary relation is defined
as follows:

(Def.1) CL(R) = R ∩4domR.
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One can prove the following propositions:

(42) CL(R) ⊆ R and CL(R) ⊆ 4domR.

(43) If 〈〈x, y〉〉 ∈ CL(R), then x ∈ dom CL(R) and x = y.

(44) dom CL(R) = rng CL(R).

(45) (i) x ∈ dom CL(R) if and only if x ∈ domR and 〈〈x, x〉〉 ∈ R,
(ii) x ∈ rng CL(R) if and only if x ∈ domR and 〈〈x, x〉〉 ∈ R,

(iii) x ∈ rng CL(R) if and only if x ∈ rngR and 〈〈x, x〉〉 ∈ R,
(iv) x ∈ dom CL(R) if and only if x ∈ rngR and 〈〈x, x〉〉 ∈ R.

(46) CL(R) = 4dom CL(R).

(47) (i) If R · R = R and R · (R \ CL(R)) = � and 〈〈x, y〉〉 ∈ R and x 6= y,
then x ∈ domR \ dom CL(R) and y ∈ dom CL(R),

(ii) if R ·R = R and (R \ CL(R)) ·R = � and 〈〈x, y〉〉 ∈ R and x 6= y, then
y ∈ rngR \ dom CL(R) and x ∈ dom CL(R).

(48) (i) If R · R = R and R · (R \ 4domR) = � and 〈〈x, y〉〉 ∈ R and x 6= y,
then x ∈ domR \ dom CL(R) and y ∈ dom CL(R),

(ii) if R ·R = R and (R \4domR) ·R = � and 〈〈x, y〉〉 ∈ R and x 6= y, then
y ∈ rngR \ dom CL(R) and x ∈ dom CL(R).

(49) (i) If R · R = R and R · (R \ 4domR) = � , then dom CL(R) = rngR
and rng CL(R) = rngR,

(ii) if R ·R = R and (R \ 4domR) ·R = � , then dom CL(R) = domR and
rng CL(R) = domR.

(50) dom CL(R) ⊆ domR and rng CL(R) ⊆ rngR and rng CL(R) ⊆ domR
and dom CL(R) ⊆ rngR.

(51) 4dom CL(R) ⊆ 4domR and 4rng CL(R) ⊆ 4domR.

(52) 4dom CL(R) ⊆ R and 4rng CL(R) ⊆ R.

(53) If 4X ⊆ R and 4X · (R \ 4X) = � , then R
�
X = 4X but if 4X ⊆ R

and (R \ 4X) · 4X = � , then X
�
R = 4X .

(54) (i) If4dom CL(R)·(R\4dom CL(R)) = � , thenR
�
dom CL(R) = 4dom CL(R)

and R
�
rng CL(R) = 4dom CL(R),

(ii) if (R \4rng CL(R)) · 4rng CL(R) = � , then dom CL(R)
�
R = 4dom CL(R)

and rng CL(R)
�
R = 4rng CL(R).

(55) If R · (R \ 4domR) = � , then 4dom CL(R) · (R \ 4dom CL(R)) = � but if
(R \ 4domR) ·R = � , then (R \ 4dom CL(R)) · 4dom CL(R) = � .

(56) (i) If S · R = S and R · (R \ 4domR) = � , then S · (R \ 4domR) = � ,
(ii) if R · S = S and (R \ 4domR) · R = � , then (R \ 4domR) · S = � .

(57) If S · R = S and R · (R \ 4domR) = � , then CL(S) ⊆ CL(R) but if
R · S = S and (R \ 4domR) ·R = � , then CL(S) ⊆ CL(R).

(58) (i) If S · R = S and R · (R \ 4domR) = � and R · S = R and S · (S \
4domS) = � , then CL(S) = CL(R),

(ii) if R·S = S and (R\4domR)·R = � and S ·R = R and (S\4domS)·S =
� , then CL(S) = CL(R).
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