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Summary. Some theorems and properties of cyclic groups have
been proved with special regard to isomorphisms of these groups. Among
other things it has been proved that an arbitrary cyclic group is iso-
morphic with groups of integers with addition or group of integers with
addition modulo m. Moreover, it has been proved that two arbitrary
cyclic groups of the same order are isomorphic and that the class of cyclic
groups is closed in consideration of homomorphism images. Some other
properties of groups of this type have been proved too.

MML Identifier: GR CY 2.

The terminology and notation used in this paper have been introduced in the
following articles: [19], [6], [11], [7], [12], [2], [18], [1], [10], [4], [14], [17], [21],
[13], [31], [25], [29], [23], [3], [27], [26], [24], [30], [15], [16], [5], [28], [22], [20],
[9], and [8]. For simplicity we adopt the following rules: F , G will be groups,
G1 will be a subgroup of G, G2 will be a cyclic group, H will be a subgroup of
G2, f will be a homomorphism from G to G2, a, b will be elements of G, g will
be an element of G2, a1 will be an element of G1, k, m, n, p, s will be natural
numbers, and i, i1, i2 will be integers. The following propositions are true:

(1) For all n, m such that 0 < m holds n mod m = n − m · (n ÷ m).

(2) If i2 > 0, then i1 mod i2 ≥ 0.

(3) If i2 > 0, then i1 mod i2 < i2.

(4) i1 = (i1 ÷ i2) · i2 + (i1 mod i2).

(5) For all m, n such that m > 0 or n > 0 there exist i, i1 such that
i · m + i1 · n = gcd(m,n).

(6) If ord(a) > 1 and a = bk, then k 6= 0.

(7) If G is finite, then ord(G) > 0.

(8) a ∈ gr({a}).
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(9) If a = a1, then gr({a}) = gr({a1}).

(10) gr({a}) is a cyclic group.

(11) For every strict group G and for every element b of G holds for every
element a of G there exists i such that a = bi if and only if G = gr({b}).

(12) For every strict group G and for every element b of G such that G is
finite holds for every element a of G there exists p such that a = bp if and
only if G = gr({b}).

(13) For every strict group G and for every element a of G such that G is
finite and G = gr({a}) and for every strict subgroup G1 of G there exists
p such that G1 = gr({ap}).

(14) If G is finite and G = gr({a}) and ord(G) = n and n = p · s, then
ord(ap) = s.

(15) If s | k, then ak ∈ gr({as}).

(16) If G is finite and ord(gr({as})) = ord(gr({ak})) and ak ∈ gr({as}), then
gr({as}) = gr({ak}).

(17) If G is finite and ord(G) = n and G = gr({a}) and ord(G1) = p and
G1 = gr({ak}), then n | k · p.

(18) For every strict group G and for every element a of G such that G is
finite and G = gr({a}) and ord(G) = n holds G = gr({ak}) if and only if
gcd(k, n) = 1.

(19) If G2 = gr({g}) and g ∈ H, then the half group structure of G2 = the
half group structure of H.

(20) If G2 = gr({g}), then G2 is finite if and only if there exist i, i1 such
that i 6= i1 and gi = gi1 .

Let us consider n satisfying the condition: n > 0. Let h be an element of� +
n . The functor @h yielding a natural number is defined as follows:

(Def.1) @h = h.

The following propositions are true:

(21) For every strict cyclic group G2 such that G2 is finite and ord(G2) = n

holds
� +

n and G2 are isomorphic.

(22) For every strict cyclic group G2 such that G2 is infinite holds
� + and

G2 are isomorphic.

(23) For all strict cyclic groups G2, H1 such that H1 is finite and G2 is finite
and ord(H1) = ord(G2) holds H1 and G2 are isomorphic.

(24) For all strict groups F , G such that F is finite and G is finite and
ord(F ) = p and ord(G) = p and p is prime holds F and G are isomorphic.

(25) For all strict groups F , G such that F is finite and G is finite and
ord(F ) = 2 and ord(G) = 2 holds F and G are isomorphic.

(26) For every strict group G such that G is finite and ord(G) = 2 and for
every strict subgroup H of G holds H = {1}G or H = G.
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(27) For every strict group G such that G is finite and ord(G) = 2 holds G

is a cyclic group.

(28) For every strict group G such that G is finite and G is a cyclic group and
ord(G) = n and for every p such that p | n there exists a strict subgroup
G1 of G such that ord(G1) = p and for every strict subgroup G3 of G

such that ord(G3) = p holds G3 = G1.

Let us note that every group which is cyclic is also Abelian.

We now state two propositions:

(29) If G2 = gr({g}), then for all G, f such that g ∈ Im f holds f is an
epimorphism.

(30) For every strict cyclic group G2 such that G2 is finite and ord(G2) = n

and there exists k such that n = 2 ·k there exists an element g1 of G2 such
that ord(g1) = 2 and for every element g2 of G2 such that ord(g2) = 2
holds g1 = g2.

Let us consider G. Then Z(G) is a strict normal subgroup of G.

One can prove the following propositions:

(31) For every strict cyclic group G2 such that G2 is finite and ord(G2) = n

and there exists k such that n = 2 · k there exists a subgroup H of G2

such that ord(H) = 2 and H is a cyclic group.

(32) For every strict group G and for every homomorphism g from G to F

such that G is a cyclic group holds Im g is a cyclic group.

(33) For all strict groups G, F such that G and F are isomorphic but G is
a cyclic group or F is a cyclic group holds G is a cyclic group and F is a
cyclic group.
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[12] Eugeniusz Kusak, Wojciech Leończuk, and Micha l Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.



32 dariusz surowik

[13] Rafa l Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative
primes. Formalized Mathematics, 1(5):829–832, 1990.

[14] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263–264, 1990.

[15] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-

ematics, 2(5):623–627, 1991.
[16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[18] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,

1(2):369–376, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
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